Merge remote-tracking branches 'asoc/topic/cs35l35', 'asoc/topic/cs53l30', 'asoc...
[sfrench/cifs-2.6.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31
32 #include "xhci.h"
33 #include "xhci-trace.h"
34 #include "xhci-mtk.h"
35
36 #define DRIVER_AUTHOR "Sarah Sharp"
37 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
38
39 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
40
41 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
42 static int link_quirk;
43 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
44 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
45
46 static unsigned int quirks;
47 module_param(quirks, uint, S_IRUGO);
48 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
49
50 /* TODO: copied from ehci-hcd.c - can this be refactored? */
51 /*
52  * xhci_handshake - spin reading hc until handshake completes or fails
53  * @ptr: address of hc register to be read
54  * @mask: bits to look at in result of read
55  * @done: value of those bits when handshake succeeds
56  * @usec: timeout in microseconds
57  *
58  * Returns negative errno, or zero on success
59  *
60  * Success happens when the "mask" bits have the specified value (hardware
61  * handshake done).  There are two failure modes:  "usec" have passed (major
62  * hardware flakeout), or the register reads as all-ones (hardware removed).
63  */
64 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
65 {
66         u32     result;
67
68         do {
69                 result = readl(ptr);
70                 if (result == ~(u32)0)          /* card removed */
71                         return -ENODEV;
72                 result &= mask;
73                 if (result == done)
74                         return 0;
75                 udelay(1);
76                 usec--;
77         } while (usec > 0);
78         return -ETIMEDOUT;
79 }
80
81 /*
82  * Disable interrupts and begin the xHCI halting process.
83  */
84 void xhci_quiesce(struct xhci_hcd *xhci)
85 {
86         u32 halted;
87         u32 cmd;
88         u32 mask;
89
90         mask = ~(XHCI_IRQS);
91         halted = readl(&xhci->op_regs->status) & STS_HALT;
92         if (!halted)
93                 mask &= ~CMD_RUN;
94
95         cmd = readl(&xhci->op_regs->command);
96         cmd &= mask;
97         writel(cmd, &xhci->op_regs->command);
98 }
99
100 /*
101  * Force HC into halt state.
102  *
103  * Disable any IRQs and clear the run/stop bit.
104  * HC will complete any current and actively pipelined transactions, and
105  * should halt within 16 ms of the run/stop bit being cleared.
106  * Read HC Halted bit in the status register to see when the HC is finished.
107  */
108 int xhci_halt(struct xhci_hcd *xhci)
109 {
110         int ret;
111         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
112         xhci_quiesce(xhci);
113
114         ret = xhci_handshake(&xhci->op_regs->status,
115                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
116         if (ret) {
117                 xhci_warn(xhci, "Host halt failed, %d\n", ret);
118                 return ret;
119         }
120         xhci->xhc_state |= XHCI_STATE_HALTED;
121         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
122         return ret;
123 }
124
125 /*
126  * Set the run bit and wait for the host to be running.
127  */
128 static int xhci_start(struct xhci_hcd *xhci)
129 {
130         u32 temp;
131         int ret;
132
133         temp = readl(&xhci->op_regs->command);
134         temp |= (CMD_RUN);
135         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
136                         temp);
137         writel(temp, &xhci->op_regs->command);
138
139         /*
140          * Wait for the HCHalted Status bit to be 0 to indicate the host is
141          * running.
142          */
143         ret = xhci_handshake(&xhci->op_regs->status,
144                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
145         if (ret == -ETIMEDOUT)
146                 xhci_err(xhci, "Host took too long to start, "
147                                 "waited %u microseconds.\n",
148                                 XHCI_MAX_HALT_USEC);
149         if (!ret)
150                 /* clear state flags. Including dying, halted or removing */
151                 xhci->xhc_state = 0;
152
153         return ret;
154 }
155
156 /*
157  * Reset a halted HC.
158  *
159  * This resets pipelines, timers, counters, state machines, etc.
160  * Transactions will be terminated immediately, and operational registers
161  * will be set to their defaults.
162  */
163 int xhci_reset(struct xhci_hcd *xhci)
164 {
165         u32 command;
166         u32 state;
167         int ret, i;
168
169         state = readl(&xhci->op_regs->status);
170
171         if (state == ~(u32)0) {
172                 xhci_warn(xhci, "Host not accessible, reset failed.\n");
173                 return -ENODEV;
174         }
175
176         if ((state & STS_HALT) == 0) {
177                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
178                 return 0;
179         }
180
181         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
182         command = readl(&xhci->op_regs->command);
183         command |= CMD_RESET;
184         writel(command, &xhci->op_regs->command);
185
186         /* Existing Intel xHCI controllers require a delay of 1 mS,
187          * after setting the CMD_RESET bit, and before accessing any
188          * HC registers. This allows the HC to complete the
189          * reset operation and be ready for HC register access.
190          * Without this delay, the subsequent HC register access,
191          * may result in a system hang very rarely.
192          */
193         if (xhci->quirks & XHCI_INTEL_HOST)
194                 udelay(1000);
195
196         ret = xhci_handshake(&xhci->op_regs->command,
197                         CMD_RESET, 0, 10 * 1000 * 1000);
198         if (ret)
199                 return ret;
200
201         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
202                          "Wait for controller to be ready for doorbell rings");
203         /*
204          * xHCI cannot write to any doorbells or operational registers other
205          * than status until the "Controller Not Ready" flag is cleared.
206          */
207         ret = xhci_handshake(&xhci->op_regs->status,
208                         STS_CNR, 0, 10 * 1000 * 1000);
209
210         for (i = 0; i < 2; i++) {
211                 xhci->bus_state[i].port_c_suspend = 0;
212                 xhci->bus_state[i].suspended_ports = 0;
213                 xhci->bus_state[i].resuming_ports = 0;
214         }
215
216         return ret;
217 }
218
219 #ifdef CONFIG_PCI
220 static int xhci_free_msi(struct xhci_hcd *xhci)
221 {
222         int i;
223
224         if (!xhci->msix_entries)
225                 return -EINVAL;
226
227         for (i = 0; i < xhci->msix_count; i++)
228                 if (xhci->msix_entries[i].vector)
229                         free_irq(xhci->msix_entries[i].vector,
230                                         xhci_to_hcd(xhci));
231         return 0;
232 }
233
234 /*
235  * Set up MSI
236  */
237 static int xhci_setup_msi(struct xhci_hcd *xhci)
238 {
239         int ret;
240         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
241
242         ret = pci_enable_msi(pdev);
243         if (ret) {
244                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
245                                 "failed to allocate MSI entry");
246                 return ret;
247         }
248
249         ret = request_irq(pdev->irq, xhci_msi_irq,
250                                 0, "xhci_hcd", xhci_to_hcd(xhci));
251         if (ret) {
252                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
253                                 "disable MSI interrupt");
254                 pci_disable_msi(pdev);
255         }
256
257         return ret;
258 }
259
260 /*
261  * Free IRQs
262  * free all IRQs request
263  */
264 static void xhci_free_irq(struct xhci_hcd *xhci)
265 {
266         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
267         int ret;
268
269         /* return if using legacy interrupt */
270         if (xhci_to_hcd(xhci)->irq > 0)
271                 return;
272
273         ret = xhci_free_msi(xhci);
274         if (!ret)
275                 return;
276         if (pdev->irq > 0)
277                 free_irq(pdev->irq, xhci_to_hcd(xhci));
278
279         return;
280 }
281
282 /*
283  * Set up MSI-X
284  */
285 static int xhci_setup_msix(struct xhci_hcd *xhci)
286 {
287         int i, ret = 0;
288         struct usb_hcd *hcd = xhci_to_hcd(xhci);
289         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
290
291         /*
292          * calculate number of msi-x vectors supported.
293          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
294          *   with max number of interrupters based on the xhci HCSPARAMS1.
295          * - num_online_cpus: maximum msi-x vectors per CPUs core.
296          *   Add additional 1 vector to ensure always available interrupt.
297          */
298         xhci->msix_count = min(num_online_cpus() + 1,
299                                 HCS_MAX_INTRS(xhci->hcs_params1));
300
301         xhci->msix_entries =
302                 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
303                                 GFP_KERNEL);
304         if (!xhci->msix_entries)
305                 return -ENOMEM;
306
307         for (i = 0; i < xhci->msix_count; i++) {
308                 xhci->msix_entries[i].entry = i;
309                 xhci->msix_entries[i].vector = 0;
310         }
311
312         ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
313         if (ret) {
314                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
315                                 "Failed to enable MSI-X");
316                 goto free_entries;
317         }
318
319         for (i = 0; i < xhci->msix_count; i++) {
320                 ret = request_irq(xhci->msix_entries[i].vector,
321                                 xhci_msi_irq,
322                                 0, "xhci_hcd", xhci_to_hcd(xhci));
323                 if (ret)
324                         goto disable_msix;
325         }
326
327         hcd->msix_enabled = 1;
328         return ret;
329
330 disable_msix:
331         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
332         xhci_free_irq(xhci);
333         pci_disable_msix(pdev);
334 free_entries:
335         kfree(xhci->msix_entries);
336         xhci->msix_entries = NULL;
337         return ret;
338 }
339
340 /* Free any IRQs and disable MSI-X */
341 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
342 {
343         struct usb_hcd *hcd = xhci_to_hcd(xhci);
344         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
345
346         if (xhci->quirks & XHCI_PLAT)
347                 return;
348
349         xhci_free_irq(xhci);
350
351         if (xhci->msix_entries) {
352                 pci_disable_msix(pdev);
353                 kfree(xhci->msix_entries);
354                 xhci->msix_entries = NULL;
355         } else {
356                 pci_disable_msi(pdev);
357         }
358
359         hcd->msix_enabled = 0;
360         return;
361 }
362
363 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
364 {
365         int i;
366
367         if (xhci->msix_entries) {
368                 for (i = 0; i < xhci->msix_count; i++)
369                         synchronize_irq(xhci->msix_entries[i].vector);
370         }
371 }
372
373 static int xhci_try_enable_msi(struct usb_hcd *hcd)
374 {
375         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
376         struct pci_dev  *pdev;
377         int ret;
378
379         /* The xhci platform device has set up IRQs through usb_add_hcd. */
380         if (xhci->quirks & XHCI_PLAT)
381                 return 0;
382
383         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
384         /*
385          * Some Fresco Logic host controllers advertise MSI, but fail to
386          * generate interrupts.  Don't even try to enable MSI.
387          */
388         if (xhci->quirks & XHCI_BROKEN_MSI)
389                 goto legacy_irq;
390
391         /* unregister the legacy interrupt */
392         if (hcd->irq)
393                 free_irq(hcd->irq, hcd);
394         hcd->irq = 0;
395
396         ret = xhci_setup_msix(xhci);
397         if (ret)
398                 /* fall back to msi*/
399                 ret = xhci_setup_msi(xhci);
400
401         if (!ret)
402                 /* hcd->irq is 0, we have MSI */
403                 return 0;
404
405         if (!pdev->irq) {
406                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
407                 return -EINVAL;
408         }
409
410  legacy_irq:
411         if (!strlen(hcd->irq_descr))
412                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
413                          hcd->driver->description, hcd->self.busnum);
414
415         /* fall back to legacy interrupt*/
416         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
417                         hcd->irq_descr, hcd);
418         if (ret) {
419                 xhci_err(xhci, "request interrupt %d failed\n",
420                                 pdev->irq);
421                 return ret;
422         }
423         hcd->irq = pdev->irq;
424         return 0;
425 }
426
427 #else
428
429 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
430 {
431         return 0;
432 }
433
434 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
435 {
436 }
437
438 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
439 {
440 }
441
442 #endif
443
444 static void compliance_mode_recovery(unsigned long arg)
445 {
446         struct xhci_hcd *xhci;
447         struct usb_hcd *hcd;
448         u32 temp;
449         int i;
450
451         xhci = (struct xhci_hcd *)arg;
452
453         for (i = 0; i < xhci->num_usb3_ports; i++) {
454                 temp = readl(xhci->usb3_ports[i]);
455                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
456                         /*
457                          * Compliance Mode Detected. Letting USB Core
458                          * handle the Warm Reset
459                          */
460                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
461                                         "Compliance mode detected->port %d",
462                                         i + 1);
463                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
464                                         "Attempting compliance mode recovery");
465                         hcd = xhci->shared_hcd;
466
467                         if (hcd->state == HC_STATE_SUSPENDED)
468                                 usb_hcd_resume_root_hub(hcd);
469
470                         usb_hcd_poll_rh_status(hcd);
471                 }
472         }
473
474         if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
475                 mod_timer(&xhci->comp_mode_recovery_timer,
476                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
477 }
478
479 /*
480  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
481  * that causes ports behind that hardware to enter compliance mode sometimes.
482  * The quirk creates a timer that polls every 2 seconds the link state of
483  * each host controller's port and recovers it by issuing a Warm reset
484  * if Compliance mode is detected, otherwise the port will become "dead" (no
485  * device connections or disconnections will be detected anymore). Becasue no
486  * status event is generated when entering compliance mode (per xhci spec),
487  * this quirk is needed on systems that have the failing hardware installed.
488  */
489 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
490 {
491         xhci->port_status_u0 = 0;
492         setup_timer(&xhci->comp_mode_recovery_timer,
493                     compliance_mode_recovery, (unsigned long)xhci);
494         xhci->comp_mode_recovery_timer.expires = jiffies +
495                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
496
497         add_timer(&xhci->comp_mode_recovery_timer);
498         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
499                         "Compliance mode recovery timer initialized");
500 }
501
502 /*
503  * This function identifies the systems that have installed the SN65LVPE502CP
504  * USB3.0 re-driver and that need the Compliance Mode Quirk.
505  * Systems:
506  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
507  */
508 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
509 {
510         const char *dmi_product_name, *dmi_sys_vendor;
511
512         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
513         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
514         if (!dmi_product_name || !dmi_sys_vendor)
515                 return false;
516
517         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
518                 return false;
519
520         if (strstr(dmi_product_name, "Z420") ||
521                         strstr(dmi_product_name, "Z620") ||
522                         strstr(dmi_product_name, "Z820") ||
523                         strstr(dmi_product_name, "Z1 Workstation"))
524                 return true;
525
526         return false;
527 }
528
529 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
530 {
531         return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
532 }
533
534
535 /*
536  * Initialize memory for HCD and xHC (one-time init).
537  *
538  * Program the PAGESIZE register, initialize the device context array, create
539  * device contexts (?), set up a command ring segment (or two?), create event
540  * ring (one for now).
541  */
542 int xhci_init(struct usb_hcd *hcd)
543 {
544         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
545         int retval = 0;
546
547         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
548         spin_lock_init(&xhci->lock);
549         if (xhci->hci_version == 0x95 && link_quirk) {
550                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
551                                 "QUIRK: Not clearing Link TRB chain bits.");
552                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
553         } else {
554                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
555                                 "xHCI doesn't need link TRB QUIRK");
556         }
557         retval = xhci_mem_init(xhci, GFP_KERNEL);
558         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
559
560         /* Initializing Compliance Mode Recovery Data If Needed */
561         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
562                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
563                 compliance_mode_recovery_timer_init(xhci);
564         }
565
566         return retval;
567 }
568
569 /*-------------------------------------------------------------------------*/
570
571
572 static int xhci_run_finished(struct xhci_hcd *xhci)
573 {
574         if (xhci_start(xhci)) {
575                 xhci_halt(xhci);
576                 return -ENODEV;
577         }
578         xhci->shared_hcd->state = HC_STATE_RUNNING;
579         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
580
581         if (xhci->quirks & XHCI_NEC_HOST)
582                 xhci_ring_cmd_db(xhci);
583
584         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
585                         "Finished xhci_run for USB3 roothub");
586         return 0;
587 }
588
589 /*
590  * Start the HC after it was halted.
591  *
592  * This function is called by the USB core when the HC driver is added.
593  * Its opposite is xhci_stop().
594  *
595  * xhci_init() must be called once before this function can be called.
596  * Reset the HC, enable device slot contexts, program DCBAAP, and
597  * set command ring pointer and event ring pointer.
598  *
599  * Setup MSI-X vectors and enable interrupts.
600  */
601 int xhci_run(struct usb_hcd *hcd)
602 {
603         u32 temp;
604         u64 temp_64;
605         int ret;
606         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
607
608         /* Start the xHCI host controller running only after the USB 2.0 roothub
609          * is setup.
610          */
611
612         hcd->uses_new_polling = 1;
613         if (!usb_hcd_is_primary_hcd(hcd))
614                 return xhci_run_finished(xhci);
615
616         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
617
618         ret = xhci_try_enable_msi(hcd);
619         if (ret)
620                 return ret;
621
622         xhci_dbg(xhci, "Command ring memory map follows:\n");
623         xhci_debug_ring(xhci, xhci->cmd_ring);
624         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
625         xhci_dbg_cmd_ptrs(xhci);
626
627         xhci_dbg(xhci, "ERST memory map follows:\n");
628         xhci_dbg_erst(xhci, &xhci->erst);
629         xhci_dbg(xhci, "Event ring:\n");
630         xhci_debug_ring(xhci, xhci->event_ring);
631         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
632         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
633         temp_64 &= ~ERST_PTR_MASK;
634         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
635                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
636
637         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
638                         "// Set the interrupt modulation register");
639         temp = readl(&xhci->ir_set->irq_control);
640         temp &= ~ER_IRQ_INTERVAL_MASK;
641         /*
642          * the increment interval is 8 times as much as that defined
643          * in xHCI spec on MTK's controller
644          */
645         temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160);
646         writel(temp, &xhci->ir_set->irq_control);
647
648         /* Set the HCD state before we enable the irqs */
649         temp = readl(&xhci->op_regs->command);
650         temp |= (CMD_EIE);
651         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
652                         "// Enable interrupts, cmd = 0x%x.", temp);
653         writel(temp, &xhci->op_regs->command);
654
655         temp = readl(&xhci->ir_set->irq_pending);
656         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
657                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
658                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
659         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
660         xhci_print_ir_set(xhci, 0);
661
662         if (xhci->quirks & XHCI_NEC_HOST) {
663                 struct xhci_command *command;
664                 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
665                 if (!command)
666                         return -ENOMEM;
667                 xhci_queue_vendor_command(xhci, command, 0, 0, 0,
668                                 TRB_TYPE(TRB_NEC_GET_FW));
669         }
670         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
671                         "Finished xhci_run for USB2 roothub");
672         return 0;
673 }
674 EXPORT_SYMBOL_GPL(xhci_run);
675
676 /*
677  * Stop xHCI driver.
678  *
679  * This function is called by the USB core when the HC driver is removed.
680  * Its opposite is xhci_run().
681  *
682  * Disable device contexts, disable IRQs, and quiesce the HC.
683  * Reset the HC, finish any completed transactions, and cleanup memory.
684  */
685 void xhci_stop(struct usb_hcd *hcd)
686 {
687         u32 temp;
688         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
689
690         mutex_lock(&xhci->mutex);
691
692         if (!(xhci->xhc_state & XHCI_STATE_HALTED)) {
693                 spin_lock_irq(&xhci->lock);
694
695                 xhci->xhc_state |= XHCI_STATE_HALTED;
696                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
697                 xhci_halt(xhci);
698                 xhci_reset(xhci);
699                 spin_unlock_irq(&xhci->lock);
700         }
701
702         if (!usb_hcd_is_primary_hcd(hcd)) {
703                 mutex_unlock(&xhci->mutex);
704                 return;
705         }
706
707         xhci_cleanup_msix(xhci);
708
709         /* Deleting Compliance Mode Recovery Timer */
710         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
711                         (!(xhci_all_ports_seen_u0(xhci)))) {
712                 del_timer_sync(&xhci->comp_mode_recovery_timer);
713                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
714                                 "%s: compliance mode recovery timer deleted",
715                                 __func__);
716         }
717
718         if (xhci->quirks & XHCI_AMD_PLL_FIX)
719                 usb_amd_dev_put();
720
721         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
722                         "// Disabling event ring interrupts");
723         temp = readl(&xhci->op_regs->status);
724         writel(temp & ~STS_EINT, &xhci->op_regs->status);
725         temp = readl(&xhci->ir_set->irq_pending);
726         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
727         xhci_print_ir_set(xhci, 0);
728
729         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
730         xhci_mem_cleanup(xhci);
731         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
732                         "xhci_stop completed - status = %x",
733                         readl(&xhci->op_regs->status));
734         mutex_unlock(&xhci->mutex);
735 }
736
737 /*
738  * Shutdown HC (not bus-specific)
739  *
740  * This is called when the machine is rebooting or halting.  We assume that the
741  * machine will be powered off, and the HC's internal state will be reset.
742  * Don't bother to free memory.
743  *
744  * This will only ever be called with the main usb_hcd (the USB3 roothub).
745  */
746 void xhci_shutdown(struct usb_hcd *hcd)
747 {
748         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
749
750         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
751                 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
752
753         spin_lock_irq(&xhci->lock);
754         xhci_halt(xhci);
755         /* Workaround for spurious wakeups at shutdown with HSW */
756         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
757                 xhci_reset(xhci);
758         spin_unlock_irq(&xhci->lock);
759
760         xhci_cleanup_msix(xhci);
761
762         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
763                         "xhci_shutdown completed - status = %x",
764                         readl(&xhci->op_regs->status));
765
766         /* Yet another workaround for spurious wakeups at shutdown with HSW */
767         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
768                 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
769 }
770
771 #ifdef CONFIG_PM
772 static void xhci_save_registers(struct xhci_hcd *xhci)
773 {
774         xhci->s3.command = readl(&xhci->op_regs->command);
775         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
776         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
777         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
778         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
779         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
780         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
781         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
782         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
783 }
784
785 static void xhci_restore_registers(struct xhci_hcd *xhci)
786 {
787         writel(xhci->s3.command, &xhci->op_regs->command);
788         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
789         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
790         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
791         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
792         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
793         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
794         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
795         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
796 }
797
798 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
799 {
800         u64     val_64;
801
802         /* step 2: initialize command ring buffer */
803         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
804         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
805                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
806                                       xhci->cmd_ring->dequeue) &
807                  (u64) ~CMD_RING_RSVD_BITS) |
808                 xhci->cmd_ring->cycle_state;
809         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
810                         "// Setting command ring address to 0x%llx",
811                         (long unsigned long) val_64);
812         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
813 }
814
815 /*
816  * The whole command ring must be cleared to zero when we suspend the host.
817  *
818  * The host doesn't save the command ring pointer in the suspend well, so we
819  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
820  * aligned, because of the reserved bits in the command ring dequeue pointer
821  * register.  Therefore, we can't just set the dequeue pointer back in the
822  * middle of the ring (TRBs are 16-byte aligned).
823  */
824 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
825 {
826         struct xhci_ring *ring;
827         struct xhci_segment *seg;
828
829         ring = xhci->cmd_ring;
830         seg = ring->deq_seg;
831         do {
832                 memset(seg->trbs, 0,
833                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
834                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
835                         cpu_to_le32(~TRB_CYCLE);
836                 seg = seg->next;
837         } while (seg != ring->deq_seg);
838
839         /* Reset the software enqueue and dequeue pointers */
840         ring->deq_seg = ring->first_seg;
841         ring->dequeue = ring->first_seg->trbs;
842         ring->enq_seg = ring->deq_seg;
843         ring->enqueue = ring->dequeue;
844
845         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
846         /*
847          * Ring is now zeroed, so the HW should look for change of ownership
848          * when the cycle bit is set to 1.
849          */
850         ring->cycle_state = 1;
851
852         /*
853          * Reset the hardware dequeue pointer.
854          * Yes, this will need to be re-written after resume, but we're paranoid
855          * and want to make sure the hardware doesn't access bogus memory
856          * because, say, the BIOS or an SMI started the host without changing
857          * the command ring pointers.
858          */
859         xhci_set_cmd_ring_deq(xhci);
860 }
861
862 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
863 {
864         int port_index;
865         __le32 __iomem **port_array;
866         unsigned long flags;
867         u32 t1, t2;
868
869         spin_lock_irqsave(&xhci->lock, flags);
870
871         /* disable usb3 ports Wake bits */
872         port_index = xhci->num_usb3_ports;
873         port_array = xhci->usb3_ports;
874         while (port_index--) {
875                 t1 = readl(port_array[port_index]);
876                 t1 = xhci_port_state_to_neutral(t1);
877                 t2 = t1 & ~PORT_WAKE_BITS;
878                 if (t1 != t2)
879                         writel(t2, port_array[port_index]);
880         }
881
882         /* disable usb2 ports Wake bits */
883         port_index = xhci->num_usb2_ports;
884         port_array = xhci->usb2_ports;
885         while (port_index--) {
886                 t1 = readl(port_array[port_index]);
887                 t1 = xhci_port_state_to_neutral(t1);
888                 t2 = t1 & ~PORT_WAKE_BITS;
889                 if (t1 != t2)
890                         writel(t2, port_array[port_index]);
891         }
892
893         spin_unlock_irqrestore(&xhci->lock, flags);
894 }
895
896 /*
897  * Stop HC (not bus-specific)
898  *
899  * This is called when the machine transition into S3/S4 mode.
900  *
901  */
902 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
903 {
904         int                     rc = 0;
905         unsigned int            delay = XHCI_MAX_HALT_USEC;
906         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
907         u32                     command;
908
909         if (!hcd->state)
910                 return 0;
911
912         if (hcd->state != HC_STATE_SUSPENDED ||
913                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
914                 return -EINVAL;
915
916         /* Clear root port wake on bits if wakeup not allowed. */
917         if (!do_wakeup)
918                 xhci_disable_port_wake_on_bits(xhci);
919
920         /* Don't poll the roothubs on bus suspend. */
921         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
922         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
923         del_timer_sync(&hcd->rh_timer);
924         clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
925         del_timer_sync(&xhci->shared_hcd->rh_timer);
926
927         spin_lock_irq(&xhci->lock);
928         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
929         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
930         /* step 1: stop endpoint */
931         /* skipped assuming that port suspend has done */
932
933         /* step 2: clear Run/Stop bit */
934         command = readl(&xhci->op_regs->command);
935         command &= ~CMD_RUN;
936         writel(command, &xhci->op_regs->command);
937
938         /* Some chips from Fresco Logic need an extraordinary delay */
939         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
940
941         if (xhci_handshake(&xhci->op_regs->status,
942                       STS_HALT, STS_HALT, delay)) {
943                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
944                 spin_unlock_irq(&xhci->lock);
945                 return -ETIMEDOUT;
946         }
947         xhci_clear_command_ring(xhci);
948
949         /* step 3: save registers */
950         xhci_save_registers(xhci);
951
952         /* step 4: set CSS flag */
953         command = readl(&xhci->op_regs->command);
954         command |= CMD_CSS;
955         writel(command, &xhci->op_regs->command);
956         if (xhci_handshake(&xhci->op_regs->status,
957                                 STS_SAVE, 0, 10 * 1000)) {
958                 xhci_warn(xhci, "WARN: xHC save state timeout\n");
959                 spin_unlock_irq(&xhci->lock);
960                 return -ETIMEDOUT;
961         }
962         spin_unlock_irq(&xhci->lock);
963
964         /*
965          * Deleting Compliance Mode Recovery Timer because the xHCI Host
966          * is about to be suspended.
967          */
968         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
969                         (!(xhci_all_ports_seen_u0(xhci)))) {
970                 del_timer_sync(&xhci->comp_mode_recovery_timer);
971                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
972                                 "%s: compliance mode recovery timer deleted",
973                                 __func__);
974         }
975
976         /* step 5: remove core well power */
977         /* synchronize irq when using MSI-X */
978         xhci_msix_sync_irqs(xhci);
979
980         return rc;
981 }
982 EXPORT_SYMBOL_GPL(xhci_suspend);
983
984 /*
985  * start xHC (not bus-specific)
986  *
987  * This is called when the machine transition from S3/S4 mode.
988  *
989  */
990 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
991 {
992         u32                     command, temp = 0, status;
993         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
994         struct usb_hcd          *secondary_hcd;
995         int                     retval = 0;
996         bool                    comp_timer_running = false;
997
998         if (!hcd->state)
999                 return 0;
1000
1001         /* Wait a bit if either of the roothubs need to settle from the
1002          * transition into bus suspend.
1003          */
1004         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
1005                         time_before(jiffies,
1006                                 xhci->bus_state[1].next_statechange))
1007                 msleep(100);
1008
1009         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1010         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1011
1012         spin_lock_irq(&xhci->lock);
1013         if (xhci->quirks & XHCI_RESET_ON_RESUME)
1014                 hibernated = true;
1015
1016         if (!hibernated) {
1017                 /* step 1: restore register */
1018                 xhci_restore_registers(xhci);
1019                 /* step 2: initialize command ring buffer */
1020                 xhci_set_cmd_ring_deq(xhci);
1021                 /* step 3: restore state and start state*/
1022                 /* step 3: set CRS flag */
1023                 command = readl(&xhci->op_regs->command);
1024                 command |= CMD_CRS;
1025                 writel(command, &xhci->op_regs->command);
1026                 if (xhci_handshake(&xhci->op_regs->status,
1027                               STS_RESTORE, 0, 10 * 1000)) {
1028                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1029                         spin_unlock_irq(&xhci->lock);
1030                         return -ETIMEDOUT;
1031                 }
1032                 temp = readl(&xhci->op_regs->status);
1033         }
1034
1035         /* If restore operation fails, re-initialize the HC during resume */
1036         if ((temp & STS_SRE) || hibernated) {
1037
1038                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1039                                 !(xhci_all_ports_seen_u0(xhci))) {
1040                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1041                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1042                                 "Compliance Mode Recovery Timer deleted!");
1043                 }
1044
1045                 /* Let the USB core know _both_ roothubs lost power. */
1046                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1047                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1048
1049                 xhci_dbg(xhci, "Stop HCD\n");
1050                 xhci_halt(xhci);
1051                 xhci_reset(xhci);
1052                 spin_unlock_irq(&xhci->lock);
1053                 xhci_cleanup_msix(xhci);
1054
1055                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1056                 temp = readl(&xhci->op_regs->status);
1057                 writel(temp & ~STS_EINT, &xhci->op_regs->status);
1058                 temp = readl(&xhci->ir_set->irq_pending);
1059                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1060                 xhci_print_ir_set(xhci, 0);
1061
1062                 xhci_dbg(xhci, "cleaning up memory\n");
1063                 xhci_mem_cleanup(xhci);
1064                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1065                             readl(&xhci->op_regs->status));
1066
1067                 /* USB core calls the PCI reinit and start functions twice:
1068                  * first with the primary HCD, and then with the secondary HCD.
1069                  * If we don't do the same, the host will never be started.
1070                  */
1071                 if (!usb_hcd_is_primary_hcd(hcd))
1072                         secondary_hcd = hcd;
1073                 else
1074                         secondary_hcd = xhci->shared_hcd;
1075
1076                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1077                 retval = xhci_init(hcd->primary_hcd);
1078                 if (retval)
1079                         return retval;
1080                 comp_timer_running = true;
1081
1082                 xhci_dbg(xhci, "Start the primary HCD\n");
1083                 retval = xhci_run(hcd->primary_hcd);
1084                 if (!retval) {
1085                         xhci_dbg(xhci, "Start the secondary HCD\n");
1086                         retval = xhci_run(secondary_hcd);
1087                 }
1088                 hcd->state = HC_STATE_SUSPENDED;
1089                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1090                 goto done;
1091         }
1092
1093         /* step 4: set Run/Stop bit */
1094         command = readl(&xhci->op_regs->command);
1095         command |= CMD_RUN;
1096         writel(command, &xhci->op_regs->command);
1097         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1098                   0, 250 * 1000);
1099
1100         /* step 5: walk topology and initialize portsc,
1101          * portpmsc and portli
1102          */
1103         /* this is done in bus_resume */
1104
1105         /* step 6: restart each of the previously
1106          * Running endpoints by ringing their doorbells
1107          */
1108
1109         spin_unlock_irq(&xhci->lock);
1110
1111  done:
1112         if (retval == 0) {
1113                 /* Resume root hubs only when have pending events. */
1114                 status = readl(&xhci->op_regs->status);
1115                 if (status & STS_EINT) {
1116                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1117                         usb_hcd_resume_root_hub(hcd);
1118                 }
1119         }
1120
1121         /*
1122          * If system is subject to the Quirk, Compliance Mode Timer needs to
1123          * be re-initialized Always after a system resume. Ports are subject
1124          * to suffer the Compliance Mode issue again. It doesn't matter if
1125          * ports have entered previously to U0 before system's suspension.
1126          */
1127         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1128                 compliance_mode_recovery_timer_init(xhci);
1129
1130         /* Re-enable port polling. */
1131         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1132         set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1133         usb_hcd_poll_rh_status(xhci->shared_hcd);
1134         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1135         usb_hcd_poll_rh_status(hcd);
1136
1137         return retval;
1138 }
1139 EXPORT_SYMBOL_GPL(xhci_resume);
1140 #endif  /* CONFIG_PM */
1141
1142 /*-------------------------------------------------------------------------*/
1143
1144 /**
1145  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1146  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1147  * value to right shift 1 for the bitmask.
1148  *
1149  * Index  = (epnum * 2) + direction - 1,
1150  * where direction = 0 for OUT, 1 for IN.
1151  * For control endpoints, the IN index is used (OUT index is unused), so
1152  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1153  */
1154 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1155 {
1156         unsigned int index;
1157         if (usb_endpoint_xfer_control(desc))
1158                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1159         else
1160                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1161                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1162         return index;
1163 }
1164
1165 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1166  * address from the XHCI endpoint index.
1167  */
1168 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1169 {
1170         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1171         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1172         return direction | number;
1173 }
1174
1175 /* Find the flag for this endpoint (for use in the control context).  Use the
1176  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1177  * bit 1, etc.
1178  */
1179 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1180 {
1181         return 1 << (xhci_get_endpoint_index(desc) + 1);
1182 }
1183
1184 /* Find the flag for this endpoint (for use in the control context).  Use the
1185  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1186  * bit 1, etc.
1187  */
1188 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1189 {
1190         return 1 << (ep_index + 1);
1191 }
1192
1193 /* Compute the last valid endpoint context index.  Basically, this is the
1194  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1195  * we find the most significant bit set in the added contexts flags.
1196  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1197  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1198  */
1199 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1200 {
1201         return fls(added_ctxs) - 1;
1202 }
1203
1204 /* Returns 1 if the arguments are OK;
1205  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1206  */
1207 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1208                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1209                 const char *func) {
1210         struct xhci_hcd *xhci;
1211         struct xhci_virt_device *virt_dev;
1212
1213         if (!hcd || (check_ep && !ep) || !udev) {
1214                 pr_debug("xHCI %s called with invalid args\n", func);
1215                 return -EINVAL;
1216         }
1217         if (!udev->parent) {
1218                 pr_debug("xHCI %s called for root hub\n", func);
1219                 return 0;
1220         }
1221
1222         xhci = hcd_to_xhci(hcd);
1223         if (check_virt_dev) {
1224                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1225                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1226                                         func);
1227                         return -EINVAL;
1228                 }
1229
1230                 virt_dev = xhci->devs[udev->slot_id];
1231                 if (virt_dev->udev != udev) {
1232                         xhci_dbg(xhci, "xHCI %s called with udev and "
1233                                           "virt_dev does not match\n", func);
1234                         return -EINVAL;
1235                 }
1236         }
1237
1238         if (xhci->xhc_state & XHCI_STATE_HALTED)
1239                 return -ENODEV;
1240
1241         return 1;
1242 }
1243
1244 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1245                 struct usb_device *udev, struct xhci_command *command,
1246                 bool ctx_change, bool must_succeed);
1247
1248 /*
1249  * Full speed devices may have a max packet size greater than 8 bytes, but the
1250  * USB core doesn't know that until it reads the first 8 bytes of the
1251  * descriptor.  If the usb_device's max packet size changes after that point,
1252  * we need to issue an evaluate context command and wait on it.
1253  */
1254 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1255                 unsigned int ep_index, struct urb *urb)
1256 {
1257         struct xhci_container_ctx *out_ctx;
1258         struct xhci_input_control_ctx *ctrl_ctx;
1259         struct xhci_ep_ctx *ep_ctx;
1260         struct xhci_command *command;
1261         int max_packet_size;
1262         int hw_max_packet_size;
1263         int ret = 0;
1264
1265         out_ctx = xhci->devs[slot_id]->out_ctx;
1266         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1267         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1268         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1269         if (hw_max_packet_size != max_packet_size) {
1270                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1271                                 "Max Packet Size for ep 0 changed.");
1272                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1273                                 "Max packet size in usb_device = %d",
1274                                 max_packet_size);
1275                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1276                                 "Max packet size in xHCI HW = %d",
1277                                 hw_max_packet_size);
1278                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1279                                 "Issuing evaluate context command.");
1280
1281                 /* Set up the input context flags for the command */
1282                 /* FIXME: This won't work if a non-default control endpoint
1283                  * changes max packet sizes.
1284                  */
1285
1286                 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1287                 if (!command)
1288                         return -ENOMEM;
1289
1290                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1291                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1292                 if (!ctrl_ctx) {
1293                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1294                                         __func__);
1295                         ret = -ENOMEM;
1296                         goto command_cleanup;
1297                 }
1298                 /* Set up the modified control endpoint 0 */
1299                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1300                                 xhci->devs[slot_id]->out_ctx, ep_index);
1301
1302                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1303                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1304                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1305
1306                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1307                 ctrl_ctx->drop_flags = 0;
1308
1309                 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1310                 xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1311                 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1312                 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1313
1314                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1315                                 true, false);
1316
1317                 /* Clean up the input context for later use by bandwidth
1318                  * functions.
1319                  */
1320                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1321 command_cleanup:
1322                 kfree(command->completion);
1323                 kfree(command);
1324         }
1325         return ret;
1326 }
1327
1328 /*
1329  * non-error returns are a promise to giveback() the urb later
1330  * we drop ownership so next owner (or urb unlink) can get it
1331  */
1332 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1333 {
1334         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1335         unsigned long flags;
1336         int ret = 0;
1337         unsigned int slot_id, ep_index, ep_state;
1338         struct urb_priv *urb_priv;
1339         int num_tds;
1340
1341         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1342                                         true, true, __func__) <= 0)
1343                 return -EINVAL;
1344
1345         slot_id = urb->dev->slot_id;
1346         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1347
1348         if (!HCD_HW_ACCESSIBLE(hcd)) {
1349                 if (!in_interrupt())
1350                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1351                 return -ESHUTDOWN;
1352         }
1353
1354         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1355                 num_tds = urb->number_of_packets;
1356         else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1357             urb->transfer_buffer_length > 0 &&
1358             urb->transfer_flags & URB_ZERO_PACKET &&
1359             !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1360                 num_tds = 2;
1361         else
1362                 num_tds = 1;
1363
1364         urb_priv = kzalloc(sizeof(struct urb_priv) +
1365                            num_tds * sizeof(struct xhci_td), mem_flags);
1366         if (!urb_priv)
1367                 return -ENOMEM;
1368
1369         urb_priv->num_tds = num_tds;
1370         urb_priv->num_tds_done = 0;
1371         urb->hcpriv = urb_priv;
1372
1373         trace_xhci_urb_enqueue(urb);
1374
1375         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1376                 /* Check to see if the max packet size for the default control
1377                  * endpoint changed during FS device enumeration
1378                  */
1379                 if (urb->dev->speed == USB_SPEED_FULL) {
1380                         ret = xhci_check_maxpacket(xhci, slot_id,
1381                                         ep_index, urb);
1382                         if (ret < 0) {
1383                                 xhci_urb_free_priv(urb_priv);
1384                                 urb->hcpriv = NULL;
1385                                 return ret;
1386                         }
1387                 }
1388         }
1389
1390         spin_lock_irqsave(&xhci->lock, flags);
1391
1392         if (xhci->xhc_state & XHCI_STATE_DYING) {
1393                 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1394                          urb->ep->desc.bEndpointAddress, urb);
1395                 ret = -ESHUTDOWN;
1396                 goto free_priv;
1397         }
1398
1399         switch (usb_endpoint_type(&urb->ep->desc)) {
1400
1401         case USB_ENDPOINT_XFER_CONTROL:
1402                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1403                                          slot_id, ep_index);
1404                 break;
1405         case USB_ENDPOINT_XFER_BULK:
1406                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
1407                 if (ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1408                         xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1409                                   ep_state);
1410                         ret = -EINVAL;
1411                         break;
1412                 }
1413                 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1414                                          slot_id, ep_index);
1415                 break;
1416
1417
1418         case USB_ENDPOINT_XFER_INT:
1419                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1420                                 slot_id, ep_index);
1421                 break;
1422
1423         case USB_ENDPOINT_XFER_ISOC:
1424                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1425                                 slot_id, ep_index);
1426         }
1427
1428         if (ret) {
1429 free_priv:
1430                 xhci_urb_free_priv(urb_priv);
1431                 urb->hcpriv = NULL;
1432         }
1433         spin_unlock_irqrestore(&xhci->lock, flags);
1434         return ret;
1435 }
1436
1437 /*
1438  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1439  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1440  * should pick up where it left off in the TD, unless a Set Transfer Ring
1441  * Dequeue Pointer is issued.
1442  *
1443  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1444  * the ring.  Since the ring is a contiguous structure, they can't be physically
1445  * removed.  Instead, there are two options:
1446  *
1447  *  1) If the HC is in the middle of processing the URB to be canceled, we
1448  *     simply move the ring's dequeue pointer past those TRBs using the Set
1449  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1450  *     when drivers timeout on the last submitted URB and attempt to cancel.
1451  *
1452  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1453  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1454  *     HC will need to invalidate the any TRBs it has cached after the stop
1455  *     endpoint command, as noted in the xHCI 0.95 errata.
1456  *
1457  *  3) The TD may have completed by the time the Stop Endpoint Command
1458  *     completes, so software needs to handle that case too.
1459  *
1460  * This function should protect against the TD enqueueing code ringing the
1461  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1462  * It also needs to account for multiple cancellations on happening at the same
1463  * time for the same endpoint.
1464  *
1465  * Note that this function can be called in any context, or so says
1466  * usb_hcd_unlink_urb()
1467  */
1468 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1469 {
1470         unsigned long flags;
1471         int ret, i;
1472         u32 temp;
1473         struct xhci_hcd *xhci;
1474         struct urb_priv *urb_priv;
1475         struct xhci_td *td;
1476         unsigned int ep_index;
1477         struct xhci_ring *ep_ring;
1478         struct xhci_virt_ep *ep;
1479         struct xhci_command *command;
1480         struct xhci_virt_device *vdev;
1481
1482         xhci = hcd_to_xhci(hcd);
1483         spin_lock_irqsave(&xhci->lock, flags);
1484
1485         trace_xhci_urb_dequeue(urb);
1486
1487         /* Make sure the URB hasn't completed or been unlinked already */
1488         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1489         if (ret)
1490                 goto done;
1491
1492         /* give back URB now if we can't queue it for cancel */
1493         vdev = xhci->devs[urb->dev->slot_id];
1494         urb_priv = urb->hcpriv;
1495         if (!vdev || !urb_priv)
1496                 goto err_giveback;
1497
1498         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1499         ep = &vdev->eps[ep_index];
1500         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1501         if (!ep || !ep_ring)
1502                 goto err_giveback;
1503
1504         temp = readl(&xhci->op_regs->status);
1505         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1506                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1507                                 "HW died, freeing TD.");
1508                 for (i = urb_priv->num_tds_done;
1509                      i < urb_priv->num_tds;
1510                      i++) {
1511                         td = &urb_priv->td[i];
1512                         if (!list_empty(&td->td_list))
1513                                 list_del_init(&td->td_list);
1514                         if (!list_empty(&td->cancelled_td_list))
1515                                 list_del_init(&td->cancelled_td_list);
1516                 }
1517                 goto err_giveback;
1518         }
1519
1520         i = urb_priv->num_tds_done;
1521         if (i < urb_priv->num_tds)
1522                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1523                                 "Cancel URB %p, dev %s, ep 0x%x, "
1524                                 "starting at offset 0x%llx",
1525                                 urb, urb->dev->devpath,
1526                                 urb->ep->desc.bEndpointAddress,
1527                                 (unsigned long long) xhci_trb_virt_to_dma(
1528                                         urb_priv->td[i].start_seg,
1529                                         urb_priv->td[i].first_trb));
1530
1531         for (; i < urb_priv->num_tds; i++) {
1532                 td = &urb_priv->td[i];
1533                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1534         }
1535
1536         /* Queue a stop endpoint command, but only if this is
1537          * the first cancellation to be handled.
1538          */
1539         if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1540                 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1541                 if (!command) {
1542                         ret = -ENOMEM;
1543                         goto done;
1544                 }
1545                 ep->ep_state |= EP_STOP_CMD_PENDING;
1546                 ep->stop_cmd_timer.expires = jiffies +
1547                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1548                 add_timer(&ep->stop_cmd_timer);
1549                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1550                                          ep_index, 0);
1551                 xhci_ring_cmd_db(xhci);
1552         }
1553 done:
1554         spin_unlock_irqrestore(&xhci->lock, flags);
1555         return ret;
1556
1557 err_giveback:
1558         if (urb_priv)
1559                 xhci_urb_free_priv(urb_priv);
1560         usb_hcd_unlink_urb_from_ep(hcd, urb);
1561         spin_unlock_irqrestore(&xhci->lock, flags);
1562         usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1563         return ret;
1564 }
1565
1566 /* Drop an endpoint from a new bandwidth configuration for this device.
1567  * Only one call to this function is allowed per endpoint before
1568  * check_bandwidth() or reset_bandwidth() must be called.
1569  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1570  * add the endpoint to the schedule with possibly new parameters denoted by a
1571  * different endpoint descriptor in usb_host_endpoint.
1572  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1573  * not allowed.
1574  *
1575  * The USB core will not allow URBs to be queued to an endpoint that is being
1576  * disabled, so there's no need for mutual exclusion to protect
1577  * the xhci->devs[slot_id] structure.
1578  */
1579 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1580                 struct usb_host_endpoint *ep)
1581 {
1582         struct xhci_hcd *xhci;
1583         struct xhci_container_ctx *in_ctx, *out_ctx;
1584         struct xhci_input_control_ctx *ctrl_ctx;
1585         unsigned int ep_index;
1586         struct xhci_ep_ctx *ep_ctx;
1587         u32 drop_flag;
1588         u32 new_add_flags, new_drop_flags;
1589         int ret;
1590
1591         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1592         if (ret <= 0)
1593                 return ret;
1594         xhci = hcd_to_xhci(hcd);
1595         if (xhci->xhc_state & XHCI_STATE_DYING)
1596                 return -ENODEV;
1597
1598         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1599         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1600         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1601                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1602                                 __func__, drop_flag);
1603                 return 0;
1604         }
1605
1606         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1607         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1608         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1609         if (!ctrl_ctx) {
1610                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1611                                 __func__);
1612                 return 0;
1613         }
1614
1615         ep_index = xhci_get_endpoint_index(&ep->desc);
1616         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1617         /* If the HC already knows the endpoint is disabled,
1618          * or the HCD has noted it is disabled, ignore this request
1619          */
1620         if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1621             le32_to_cpu(ctrl_ctx->drop_flags) &
1622             xhci_get_endpoint_flag(&ep->desc)) {
1623                 /* Do not warn when called after a usb_device_reset */
1624                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1625                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1626                                   __func__, ep);
1627                 return 0;
1628         }
1629
1630         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1631         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1632
1633         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1634         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1635
1636         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1637
1638         if (xhci->quirks & XHCI_MTK_HOST)
1639                 xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1640
1641         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1642                         (unsigned int) ep->desc.bEndpointAddress,
1643                         udev->slot_id,
1644                         (unsigned int) new_drop_flags,
1645                         (unsigned int) new_add_flags);
1646         return 0;
1647 }
1648
1649 /* Add an endpoint to a new possible bandwidth configuration for this device.
1650  * Only one call to this function is allowed per endpoint before
1651  * check_bandwidth() or reset_bandwidth() must be called.
1652  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1653  * add the endpoint to the schedule with possibly new parameters denoted by a
1654  * different endpoint descriptor in usb_host_endpoint.
1655  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1656  * not allowed.
1657  *
1658  * The USB core will not allow URBs to be queued to an endpoint until the
1659  * configuration or alt setting is installed in the device, so there's no need
1660  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1661  */
1662 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1663                 struct usb_host_endpoint *ep)
1664 {
1665         struct xhci_hcd *xhci;
1666         struct xhci_container_ctx *in_ctx;
1667         unsigned int ep_index;
1668         struct xhci_input_control_ctx *ctrl_ctx;
1669         u32 added_ctxs;
1670         u32 new_add_flags, new_drop_flags;
1671         struct xhci_virt_device *virt_dev;
1672         int ret = 0;
1673
1674         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1675         if (ret <= 0) {
1676                 /* So we won't queue a reset ep command for a root hub */
1677                 ep->hcpriv = NULL;
1678                 return ret;
1679         }
1680         xhci = hcd_to_xhci(hcd);
1681         if (xhci->xhc_state & XHCI_STATE_DYING)
1682                 return -ENODEV;
1683
1684         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1685         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1686                 /* FIXME when we have to issue an evaluate endpoint command to
1687                  * deal with ep0 max packet size changing once we get the
1688                  * descriptors
1689                  */
1690                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1691                                 __func__, added_ctxs);
1692                 return 0;
1693         }
1694
1695         virt_dev = xhci->devs[udev->slot_id];
1696         in_ctx = virt_dev->in_ctx;
1697         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1698         if (!ctrl_ctx) {
1699                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1700                                 __func__);
1701                 return 0;
1702         }
1703
1704         ep_index = xhci_get_endpoint_index(&ep->desc);
1705         /* If this endpoint is already in use, and the upper layers are trying
1706          * to add it again without dropping it, reject the addition.
1707          */
1708         if (virt_dev->eps[ep_index].ring &&
1709                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1710                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1711                                 "without dropping it.\n",
1712                                 (unsigned int) ep->desc.bEndpointAddress);
1713                 return -EINVAL;
1714         }
1715
1716         /* If the HCD has already noted the endpoint is enabled,
1717          * ignore this request.
1718          */
1719         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1720                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1721                                 __func__, ep);
1722                 return 0;
1723         }
1724
1725         /*
1726          * Configuration and alternate setting changes must be done in
1727          * process context, not interrupt context (or so documenation
1728          * for usb_set_interface() and usb_set_configuration() claim).
1729          */
1730         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1731                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1732                                 __func__, ep->desc.bEndpointAddress);
1733                 return -ENOMEM;
1734         }
1735
1736         if (xhci->quirks & XHCI_MTK_HOST) {
1737                 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1738                 if (ret < 0) {
1739                         xhci_free_or_cache_endpoint_ring(xhci,
1740                                 virt_dev, ep_index);
1741                         return ret;
1742                 }
1743         }
1744
1745         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1746         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1747
1748         /* If xhci_endpoint_disable() was called for this endpoint, but the
1749          * xHC hasn't been notified yet through the check_bandwidth() call,
1750          * this re-adds a new state for the endpoint from the new endpoint
1751          * descriptors.  We must drop and re-add this endpoint, so we leave the
1752          * drop flags alone.
1753          */
1754         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1755
1756         /* Store the usb_device pointer for later use */
1757         ep->hcpriv = udev;
1758
1759         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1760                         (unsigned int) ep->desc.bEndpointAddress,
1761                         udev->slot_id,
1762                         (unsigned int) new_drop_flags,
1763                         (unsigned int) new_add_flags);
1764         return 0;
1765 }
1766
1767 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1768 {
1769         struct xhci_input_control_ctx *ctrl_ctx;
1770         struct xhci_ep_ctx *ep_ctx;
1771         struct xhci_slot_ctx *slot_ctx;
1772         int i;
1773
1774         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1775         if (!ctrl_ctx) {
1776                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1777                                 __func__);
1778                 return;
1779         }
1780
1781         /* When a device's add flag and drop flag are zero, any subsequent
1782          * configure endpoint command will leave that endpoint's state
1783          * untouched.  Make sure we don't leave any old state in the input
1784          * endpoint contexts.
1785          */
1786         ctrl_ctx->drop_flags = 0;
1787         ctrl_ctx->add_flags = 0;
1788         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1789         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1790         /* Endpoint 0 is always valid */
1791         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1792         for (i = 1; i < 31; i++) {
1793                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1794                 ep_ctx->ep_info = 0;
1795                 ep_ctx->ep_info2 = 0;
1796                 ep_ctx->deq = 0;
1797                 ep_ctx->tx_info = 0;
1798         }
1799 }
1800
1801 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1802                 struct usb_device *udev, u32 *cmd_status)
1803 {
1804         int ret;
1805
1806         switch (*cmd_status) {
1807         case COMP_COMMAND_ABORTED:
1808         case COMP_STOPPED:
1809                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1810                 ret = -ETIME;
1811                 break;
1812         case COMP_RESOURCE_ERROR:
1813                 dev_warn(&udev->dev,
1814                          "Not enough host controller resources for new device state.\n");
1815                 ret = -ENOMEM;
1816                 /* FIXME: can we allocate more resources for the HC? */
1817                 break;
1818         case COMP_BANDWIDTH_ERROR:
1819         case COMP_SECONDARY_BANDWIDTH_ERROR:
1820                 dev_warn(&udev->dev,
1821                          "Not enough bandwidth for new device state.\n");
1822                 ret = -ENOSPC;
1823                 /* FIXME: can we go back to the old state? */
1824                 break;
1825         case COMP_TRB_ERROR:
1826                 /* the HCD set up something wrong */
1827                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1828                                 "add flag = 1, "
1829                                 "and endpoint is not disabled.\n");
1830                 ret = -EINVAL;
1831                 break;
1832         case COMP_INCOMPATIBLE_DEVICE_ERROR:
1833                 dev_warn(&udev->dev,
1834                          "ERROR: Incompatible device for endpoint configure command.\n");
1835                 ret = -ENODEV;
1836                 break;
1837         case COMP_SUCCESS:
1838                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1839                                 "Successful Endpoint Configure command");
1840                 ret = 0;
1841                 break;
1842         default:
1843                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1844                                 *cmd_status);
1845                 ret = -EINVAL;
1846                 break;
1847         }
1848         return ret;
1849 }
1850
1851 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1852                 struct usb_device *udev, u32 *cmd_status)
1853 {
1854         int ret;
1855         struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1856
1857         switch (*cmd_status) {
1858         case COMP_COMMAND_ABORTED:
1859         case COMP_STOPPED:
1860                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1861                 ret = -ETIME;
1862                 break;
1863         case COMP_PARAMETER_ERROR:
1864                 dev_warn(&udev->dev,
1865                          "WARN: xHCI driver setup invalid evaluate context command.\n");
1866                 ret = -EINVAL;
1867                 break;
1868         case COMP_SLOT_NOT_ENABLED_ERROR:
1869                 dev_warn(&udev->dev,
1870                         "WARN: slot not enabled for evaluate context command.\n");
1871                 ret = -EINVAL;
1872                 break;
1873         case COMP_CONTEXT_STATE_ERROR:
1874                 dev_warn(&udev->dev,
1875                         "WARN: invalid context state for evaluate context command.\n");
1876                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1877                 ret = -EINVAL;
1878                 break;
1879         case COMP_INCOMPATIBLE_DEVICE_ERROR:
1880                 dev_warn(&udev->dev,
1881                         "ERROR: Incompatible device for evaluate context command.\n");
1882                 ret = -ENODEV;
1883                 break;
1884         case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
1885                 /* Max Exit Latency too large error */
1886                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1887                 ret = -EINVAL;
1888                 break;
1889         case COMP_SUCCESS:
1890                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1891                                 "Successful evaluate context command");
1892                 ret = 0;
1893                 break;
1894         default:
1895                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1896                         *cmd_status);
1897                 ret = -EINVAL;
1898                 break;
1899         }
1900         return ret;
1901 }
1902
1903 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1904                 struct xhci_input_control_ctx *ctrl_ctx)
1905 {
1906         u32 valid_add_flags;
1907         u32 valid_drop_flags;
1908
1909         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1910          * (bit 1).  The default control endpoint is added during the Address
1911          * Device command and is never removed until the slot is disabled.
1912          */
1913         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1914         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1915
1916         /* Use hweight32 to count the number of ones in the add flags, or
1917          * number of endpoints added.  Don't count endpoints that are changed
1918          * (both added and dropped).
1919          */
1920         return hweight32(valid_add_flags) -
1921                 hweight32(valid_add_flags & valid_drop_flags);
1922 }
1923
1924 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1925                 struct xhci_input_control_ctx *ctrl_ctx)
1926 {
1927         u32 valid_add_flags;
1928         u32 valid_drop_flags;
1929
1930         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1931         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1932
1933         return hweight32(valid_drop_flags) -
1934                 hweight32(valid_add_flags & valid_drop_flags);
1935 }
1936
1937 /*
1938  * We need to reserve the new number of endpoints before the configure endpoint
1939  * command completes.  We can't subtract the dropped endpoints from the number
1940  * of active endpoints until the command completes because we can oversubscribe
1941  * the host in this case:
1942  *
1943  *  - the first configure endpoint command drops more endpoints than it adds
1944  *  - a second configure endpoint command that adds more endpoints is queued
1945  *  - the first configure endpoint command fails, so the config is unchanged
1946  *  - the second command may succeed, even though there isn't enough resources
1947  *
1948  * Must be called with xhci->lock held.
1949  */
1950 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1951                 struct xhci_input_control_ctx *ctrl_ctx)
1952 {
1953         u32 added_eps;
1954
1955         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1956         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1957                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1958                                 "Not enough ep ctxs: "
1959                                 "%u active, need to add %u, limit is %u.",
1960                                 xhci->num_active_eps, added_eps,
1961                                 xhci->limit_active_eps);
1962                 return -ENOMEM;
1963         }
1964         xhci->num_active_eps += added_eps;
1965         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1966                         "Adding %u ep ctxs, %u now active.", added_eps,
1967                         xhci->num_active_eps);
1968         return 0;
1969 }
1970
1971 /*
1972  * The configure endpoint was failed by the xHC for some other reason, so we
1973  * need to revert the resources that failed configuration would have used.
1974  *
1975  * Must be called with xhci->lock held.
1976  */
1977 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1978                 struct xhci_input_control_ctx *ctrl_ctx)
1979 {
1980         u32 num_failed_eps;
1981
1982         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1983         xhci->num_active_eps -= num_failed_eps;
1984         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1985                         "Removing %u failed ep ctxs, %u now active.",
1986                         num_failed_eps,
1987                         xhci->num_active_eps);
1988 }
1989
1990 /*
1991  * Now that the command has completed, clean up the active endpoint count by
1992  * subtracting out the endpoints that were dropped (but not changed).
1993  *
1994  * Must be called with xhci->lock held.
1995  */
1996 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1997                 struct xhci_input_control_ctx *ctrl_ctx)
1998 {
1999         u32 num_dropped_eps;
2000
2001         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2002         xhci->num_active_eps -= num_dropped_eps;
2003         if (num_dropped_eps)
2004                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2005                                 "Removing %u dropped ep ctxs, %u now active.",
2006                                 num_dropped_eps,
2007                                 xhci->num_active_eps);
2008 }
2009
2010 static unsigned int xhci_get_block_size(struct usb_device *udev)
2011 {
2012         switch (udev->speed) {
2013         case USB_SPEED_LOW:
2014         case USB_SPEED_FULL:
2015                 return FS_BLOCK;
2016         case USB_SPEED_HIGH:
2017                 return HS_BLOCK;
2018         case USB_SPEED_SUPER:
2019         case USB_SPEED_SUPER_PLUS:
2020                 return SS_BLOCK;
2021         case USB_SPEED_UNKNOWN:
2022         case USB_SPEED_WIRELESS:
2023         default:
2024                 /* Should never happen */
2025                 return 1;
2026         }
2027 }
2028
2029 static unsigned int
2030 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2031 {
2032         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2033                 return LS_OVERHEAD;
2034         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2035                 return FS_OVERHEAD;
2036         return HS_OVERHEAD;
2037 }
2038
2039 /* If we are changing a LS/FS device under a HS hub,
2040  * make sure (if we are activating a new TT) that the HS bus has enough
2041  * bandwidth for this new TT.
2042  */
2043 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2044                 struct xhci_virt_device *virt_dev,
2045                 int old_active_eps)
2046 {
2047         struct xhci_interval_bw_table *bw_table;
2048         struct xhci_tt_bw_info *tt_info;
2049
2050         /* Find the bandwidth table for the root port this TT is attached to. */
2051         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2052         tt_info = virt_dev->tt_info;
2053         /* If this TT already had active endpoints, the bandwidth for this TT
2054          * has already been added.  Removing all periodic endpoints (and thus
2055          * making the TT enactive) will only decrease the bandwidth used.
2056          */
2057         if (old_active_eps)
2058                 return 0;
2059         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2060                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2061                         return -ENOMEM;
2062                 return 0;
2063         }
2064         /* Not sure why we would have no new active endpoints...
2065          *
2066          * Maybe because of an Evaluate Context change for a hub update or a
2067          * control endpoint 0 max packet size change?
2068          * FIXME: skip the bandwidth calculation in that case.
2069          */
2070         return 0;
2071 }
2072
2073 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2074                 struct xhci_virt_device *virt_dev)
2075 {
2076         unsigned int bw_reserved;
2077
2078         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2079         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2080                 return -ENOMEM;
2081
2082         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2083         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2084                 return -ENOMEM;
2085
2086         return 0;
2087 }
2088
2089 /*
2090  * This algorithm is a very conservative estimate of the worst-case scheduling
2091  * scenario for any one interval.  The hardware dynamically schedules the
2092  * packets, so we can't tell which microframe could be the limiting factor in
2093  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2094  *
2095  * Obviously, we can't solve an NP complete problem to find the minimum worst
2096  * case scenario.  Instead, we come up with an estimate that is no less than
2097  * the worst case bandwidth used for any one microframe, but may be an
2098  * over-estimate.
2099  *
2100  * We walk the requirements for each endpoint by interval, starting with the
2101  * smallest interval, and place packets in the schedule where there is only one
2102  * possible way to schedule packets for that interval.  In order to simplify
2103  * this algorithm, we record the largest max packet size for each interval, and
2104  * assume all packets will be that size.
2105  *
2106  * For interval 0, we obviously must schedule all packets for each interval.
2107  * The bandwidth for interval 0 is just the amount of data to be transmitted
2108  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2109  * the number of packets).
2110  *
2111  * For interval 1, we have two possible microframes to schedule those packets
2112  * in.  For this algorithm, if we can schedule the same number of packets for
2113  * each possible scheduling opportunity (each microframe), we will do so.  The
2114  * remaining number of packets will be saved to be transmitted in the gaps in
2115  * the next interval's scheduling sequence.
2116  *
2117  * As we move those remaining packets to be scheduled with interval 2 packets,
2118  * we have to double the number of remaining packets to transmit.  This is
2119  * because the intervals are actually powers of 2, and we would be transmitting
2120  * the previous interval's packets twice in this interval.  We also have to be
2121  * sure that when we look at the largest max packet size for this interval, we
2122  * also look at the largest max packet size for the remaining packets and take
2123  * the greater of the two.
2124  *
2125  * The algorithm continues to evenly distribute packets in each scheduling
2126  * opportunity, and push the remaining packets out, until we get to the last
2127  * interval.  Then those packets and their associated overhead are just added
2128  * to the bandwidth used.
2129  */
2130 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2131                 struct xhci_virt_device *virt_dev,
2132                 int old_active_eps)
2133 {
2134         unsigned int bw_reserved;
2135         unsigned int max_bandwidth;
2136         unsigned int bw_used;
2137         unsigned int block_size;
2138         struct xhci_interval_bw_table *bw_table;
2139         unsigned int packet_size = 0;
2140         unsigned int overhead = 0;
2141         unsigned int packets_transmitted = 0;
2142         unsigned int packets_remaining = 0;
2143         unsigned int i;
2144
2145         if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2146                 return xhci_check_ss_bw(xhci, virt_dev);
2147
2148         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2149                 max_bandwidth = HS_BW_LIMIT;
2150                 /* Convert percent of bus BW reserved to blocks reserved */
2151                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2152         } else {
2153                 max_bandwidth = FS_BW_LIMIT;
2154                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2155         }
2156
2157         bw_table = virt_dev->bw_table;
2158         /* We need to translate the max packet size and max ESIT payloads into
2159          * the units the hardware uses.
2160          */
2161         block_size = xhci_get_block_size(virt_dev->udev);
2162
2163         /* If we are manipulating a LS/FS device under a HS hub, double check
2164          * that the HS bus has enough bandwidth if we are activing a new TT.
2165          */
2166         if (virt_dev->tt_info) {
2167                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2168                                 "Recalculating BW for rootport %u",
2169                                 virt_dev->real_port);
2170                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2171                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2172                                         "newly activated TT.\n");
2173                         return -ENOMEM;
2174                 }
2175                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2176                                 "Recalculating BW for TT slot %u port %u",
2177                                 virt_dev->tt_info->slot_id,
2178                                 virt_dev->tt_info->ttport);
2179         } else {
2180                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2181                                 "Recalculating BW for rootport %u",
2182                                 virt_dev->real_port);
2183         }
2184
2185         /* Add in how much bandwidth will be used for interval zero, or the
2186          * rounded max ESIT payload + number of packets * largest overhead.
2187          */
2188         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2189                 bw_table->interval_bw[0].num_packets *
2190                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2191
2192         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2193                 unsigned int bw_added;
2194                 unsigned int largest_mps;
2195                 unsigned int interval_overhead;
2196
2197                 /*
2198                  * How many packets could we transmit in this interval?
2199                  * If packets didn't fit in the previous interval, we will need
2200                  * to transmit that many packets twice within this interval.
2201                  */
2202                 packets_remaining = 2 * packets_remaining +
2203                         bw_table->interval_bw[i].num_packets;
2204
2205                 /* Find the largest max packet size of this or the previous
2206                  * interval.
2207                  */
2208                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2209                         largest_mps = 0;
2210                 else {
2211                         struct xhci_virt_ep *virt_ep;
2212                         struct list_head *ep_entry;
2213
2214                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2215                         virt_ep = list_entry(ep_entry,
2216                                         struct xhci_virt_ep, bw_endpoint_list);
2217                         /* Convert to blocks, rounding up */
2218                         largest_mps = DIV_ROUND_UP(
2219                                         virt_ep->bw_info.max_packet_size,
2220                                         block_size);
2221                 }
2222                 if (largest_mps > packet_size)
2223                         packet_size = largest_mps;
2224
2225                 /* Use the larger overhead of this or the previous interval. */
2226                 interval_overhead = xhci_get_largest_overhead(
2227                                 &bw_table->interval_bw[i]);
2228                 if (interval_overhead > overhead)
2229                         overhead = interval_overhead;
2230
2231                 /* How many packets can we evenly distribute across
2232                  * (1 << (i + 1)) possible scheduling opportunities?
2233                  */
2234                 packets_transmitted = packets_remaining >> (i + 1);
2235
2236                 /* Add in the bandwidth used for those scheduled packets */
2237                 bw_added = packets_transmitted * (overhead + packet_size);
2238
2239                 /* How many packets do we have remaining to transmit? */
2240                 packets_remaining = packets_remaining % (1 << (i + 1));
2241
2242                 /* What largest max packet size should those packets have? */
2243                 /* If we've transmitted all packets, don't carry over the
2244                  * largest packet size.
2245                  */
2246                 if (packets_remaining == 0) {
2247                         packet_size = 0;
2248                         overhead = 0;
2249                 } else if (packets_transmitted > 0) {
2250                         /* Otherwise if we do have remaining packets, and we've
2251                          * scheduled some packets in this interval, take the
2252                          * largest max packet size from endpoints with this
2253                          * interval.
2254                          */
2255                         packet_size = largest_mps;
2256                         overhead = interval_overhead;
2257                 }
2258                 /* Otherwise carry over packet_size and overhead from the last
2259                  * time we had a remainder.
2260                  */
2261                 bw_used += bw_added;
2262                 if (bw_used > max_bandwidth) {
2263                         xhci_warn(xhci, "Not enough bandwidth. "
2264                                         "Proposed: %u, Max: %u\n",
2265                                 bw_used, max_bandwidth);
2266                         return -ENOMEM;
2267                 }
2268         }
2269         /*
2270          * Ok, we know we have some packets left over after even-handedly
2271          * scheduling interval 15.  We don't know which microframes they will
2272          * fit into, so we over-schedule and say they will be scheduled every
2273          * microframe.
2274          */
2275         if (packets_remaining > 0)
2276                 bw_used += overhead + packet_size;
2277
2278         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2279                 unsigned int port_index = virt_dev->real_port - 1;
2280
2281                 /* OK, we're manipulating a HS device attached to a
2282                  * root port bandwidth domain.  Include the number of active TTs
2283                  * in the bandwidth used.
2284                  */
2285                 bw_used += TT_HS_OVERHEAD *
2286                         xhci->rh_bw[port_index].num_active_tts;
2287         }
2288
2289         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2290                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2291                 "Available: %u " "percent",
2292                 bw_used, max_bandwidth, bw_reserved,
2293                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2294                 max_bandwidth);
2295
2296         bw_used += bw_reserved;
2297         if (bw_used > max_bandwidth) {
2298                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2299                                 bw_used, max_bandwidth);
2300                 return -ENOMEM;
2301         }
2302
2303         bw_table->bw_used = bw_used;
2304         return 0;
2305 }
2306
2307 static bool xhci_is_async_ep(unsigned int ep_type)
2308 {
2309         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2310                                         ep_type != ISOC_IN_EP &&
2311                                         ep_type != INT_IN_EP);
2312 }
2313
2314 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2315 {
2316         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2317 }
2318
2319 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2320 {
2321         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2322
2323         if (ep_bw->ep_interval == 0)
2324                 return SS_OVERHEAD_BURST +
2325                         (ep_bw->mult * ep_bw->num_packets *
2326                                         (SS_OVERHEAD + mps));
2327         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2328                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2329                                 1 << ep_bw->ep_interval);
2330
2331 }
2332
2333 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2334                 struct xhci_bw_info *ep_bw,
2335                 struct xhci_interval_bw_table *bw_table,
2336                 struct usb_device *udev,
2337                 struct xhci_virt_ep *virt_ep,
2338                 struct xhci_tt_bw_info *tt_info)
2339 {
2340         struct xhci_interval_bw *interval_bw;
2341         int normalized_interval;
2342
2343         if (xhci_is_async_ep(ep_bw->type))
2344                 return;
2345
2346         if (udev->speed >= USB_SPEED_SUPER) {
2347                 if (xhci_is_sync_in_ep(ep_bw->type))
2348                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2349                                 xhci_get_ss_bw_consumed(ep_bw);
2350                 else
2351                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2352                                 xhci_get_ss_bw_consumed(ep_bw);
2353                 return;
2354         }
2355
2356         /* SuperSpeed endpoints never get added to intervals in the table, so
2357          * this check is only valid for HS/FS/LS devices.
2358          */
2359         if (list_empty(&virt_ep->bw_endpoint_list))
2360                 return;
2361         /* For LS/FS devices, we need to translate the interval expressed in
2362          * microframes to frames.
2363          */
2364         if (udev->speed == USB_SPEED_HIGH)
2365                 normalized_interval = ep_bw->ep_interval;
2366         else
2367                 normalized_interval = ep_bw->ep_interval - 3;
2368
2369         if (normalized_interval == 0)
2370                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2371         interval_bw = &bw_table->interval_bw[normalized_interval];
2372         interval_bw->num_packets -= ep_bw->num_packets;
2373         switch (udev->speed) {
2374         case USB_SPEED_LOW:
2375                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2376                 break;
2377         case USB_SPEED_FULL:
2378                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2379                 break;
2380         case USB_SPEED_HIGH:
2381                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2382                 break;
2383         case USB_SPEED_SUPER:
2384         case USB_SPEED_SUPER_PLUS:
2385         case USB_SPEED_UNKNOWN:
2386         case USB_SPEED_WIRELESS:
2387                 /* Should never happen because only LS/FS/HS endpoints will get
2388                  * added to the endpoint list.
2389                  */
2390                 return;
2391         }
2392         if (tt_info)
2393                 tt_info->active_eps -= 1;
2394         list_del_init(&virt_ep->bw_endpoint_list);
2395 }
2396
2397 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2398                 struct xhci_bw_info *ep_bw,
2399                 struct xhci_interval_bw_table *bw_table,
2400                 struct usb_device *udev,
2401                 struct xhci_virt_ep *virt_ep,
2402                 struct xhci_tt_bw_info *tt_info)
2403 {
2404         struct xhci_interval_bw *interval_bw;
2405         struct xhci_virt_ep *smaller_ep;
2406         int normalized_interval;
2407
2408         if (xhci_is_async_ep(ep_bw->type))
2409                 return;
2410
2411         if (udev->speed == USB_SPEED_SUPER) {
2412                 if (xhci_is_sync_in_ep(ep_bw->type))
2413                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2414                                 xhci_get_ss_bw_consumed(ep_bw);
2415                 else
2416                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2417                                 xhci_get_ss_bw_consumed(ep_bw);
2418                 return;
2419         }
2420
2421         /* For LS/FS devices, we need to translate the interval expressed in
2422          * microframes to frames.
2423          */
2424         if (udev->speed == USB_SPEED_HIGH)
2425                 normalized_interval = ep_bw->ep_interval;
2426         else
2427                 normalized_interval = ep_bw->ep_interval - 3;
2428
2429         if (normalized_interval == 0)
2430                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2431         interval_bw = &bw_table->interval_bw[normalized_interval];
2432         interval_bw->num_packets += ep_bw->num_packets;
2433         switch (udev->speed) {
2434         case USB_SPEED_LOW:
2435                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2436                 break;
2437         case USB_SPEED_FULL:
2438                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2439                 break;
2440         case USB_SPEED_HIGH:
2441                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2442                 break;
2443         case USB_SPEED_SUPER:
2444         case USB_SPEED_SUPER_PLUS:
2445         case USB_SPEED_UNKNOWN:
2446         case USB_SPEED_WIRELESS:
2447                 /* Should never happen because only LS/FS/HS endpoints will get
2448                  * added to the endpoint list.
2449                  */
2450                 return;
2451         }
2452
2453         if (tt_info)
2454                 tt_info->active_eps += 1;
2455         /* Insert the endpoint into the list, largest max packet size first. */
2456         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2457                         bw_endpoint_list) {
2458                 if (ep_bw->max_packet_size >=
2459                                 smaller_ep->bw_info.max_packet_size) {
2460                         /* Add the new ep before the smaller endpoint */
2461                         list_add_tail(&virt_ep->bw_endpoint_list,
2462                                         &smaller_ep->bw_endpoint_list);
2463                         return;
2464                 }
2465         }
2466         /* Add the new endpoint at the end of the list. */
2467         list_add_tail(&virt_ep->bw_endpoint_list,
2468                         &interval_bw->endpoints);
2469 }
2470
2471 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2472                 struct xhci_virt_device *virt_dev,
2473                 int old_active_eps)
2474 {
2475         struct xhci_root_port_bw_info *rh_bw_info;
2476         if (!virt_dev->tt_info)
2477                 return;
2478
2479         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2480         if (old_active_eps == 0 &&
2481                                 virt_dev->tt_info->active_eps != 0) {
2482                 rh_bw_info->num_active_tts += 1;
2483                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2484         } else if (old_active_eps != 0 &&
2485                                 virt_dev->tt_info->active_eps == 0) {
2486                 rh_bw_info->num_active_tts -= 1;
2487                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2488         }
2489 }
2490
2491 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2492                 struct xhci_virt_device *virt_dev,
2493                 struct xhci_container_ctx *in_ctx)
2494 {
2495         struct xhci_bw_info ep_bw_info[31];
2496         int i;
2497         struct xhci_input_control_ctx *ctrl_ctx;
2498         int old_active_eps = 0;
2499
2500         if (virt_dev->tt_info)
2501                 old_active_eps = virt_dev->tt_info->active_eps;
2502
2503         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2504         if (!ctrl_ctx) {
2505                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2506                                 __func__);
2507                 return -ENOMEM;
2508         }
2509
2510         for (i = 0; i < 31; i++) {
2511                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2512                         continue;
2513
2514                 /* Make a copy of the BW info in case we need to revert this */
2515                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2516                                 sizeof(ep_bw_info[i]));
2517                 /* Drop the endpoint from the interval table if the endpoint is
2518                  * being dropped or changed.
2519                  */
2520                 if (EP_IS_DROPPED(ctrl_ctx, i))
2521                         xhci_drop_ep_from_interval_table(xhci,
2522                                         &virt_dev->eps[i].bw_info,
2523                                         virt_dev->bw_table,
2524                                         virt_dev->udev,
2525                                         &virt_dev->eps[i],
2526                                         virt_dev->tt_info);
2527         }
2528         /* Overwrite the information stored in the endpoints' bw_info */
2529         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2530         for (i = 0; i < 31; i++) {
2531                 /* Add any changed or added endpoints to the interval table */
2532                 if (EP_IS_ADDED(ctrl_ctx, i))
2533                         xhci_add_ep_to_interval_table(xhci,
2534                                         &virt_dev->eps[i].bw_info,
2535                                         virt_dev->bw_table,
2536                                         virt_dev->udev,
2537                                         &virt_dev->eps[i],
2538                                         virt_dev->tt_info);
2539         }
2540
2541         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2542                 /* Ok, this fits in the bandwidth we have.
2543                  * Update the number of active TTs.
2544                  */
2545                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2546                 return 0;
2547         }
2548
2549         /* We don't have enough bandwidth for this, revert the stored info. */
2550         for (i = 0; i < 31; i++) {
2551                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2552                         continue;
2553
2554                 /* Drop the new copies of any added or changed endpoints from
2555                  * the interval table.
2556                  */
2557                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2558                         xhci_drop_ep_from_interval_table(xhci,
2559                                         &virt_dev->eps[i].bw_info,
2560                                         virt_dev->bw_table,
2561                                         virt_dev->udev,
2562                                         &virt_dev->eps[i],
2563                                         virt_dev->tt_info);
2564                 }
2565                 /* Revert the endpoint back to its old information */
2566                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2567                                 sizeof(ep_bw_info[i]));
2568                 /* Add any changed or dropped endpoints back into the table */
2569                 if (EP_IS_DROPPED(ctrl_ctx, i))
2570                         xhci_add_ep_to_interval_table(xhci,
2571                                         &virt_dev->eps[i].bw_info,
2572                                         virt_dev->bw_table,
2573                                         virt_dev->udev,
2574                                         &virt_dev->eps[i],
2575                                         virt_dev->tt_info);
2576         }
2577         return -ENOMEM;
2578 }
2579
2580
2581 /* Issue a configure endpoint command or evaluate context command
2582  * and wait for it to finish.
2583  */
2584 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2585                 struct usb_device *udev,
2586                 struct xhci_command *command,
2587                 bool ctx_change, bool must_succeed)
2588 {
2589         int ret;
2590         unsigned long flags;
2591         struct xhci_input_control_ctx *ctrl_ctx;
2592         struct xhci_virt_device *virt_dev;
2593
2594         if (!command)
2595                 return -EINVAL;
2596
2597         spin_lock_irqsave(&xhci->lock, flags);
2598         virt_dev = xhci->devs[udev->slot_id];
2599
2600         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2601         if (!ctrl_ctx) {
2602                 spin_unlock_irqrestore(&xhci->lock, flags);
2603                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2604                                 __func__);
2605                 return -ENOMEM;
2606         }
2607
2608         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2609                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2610                 spin_unlock_irqrestore(&xhci->lock, flags);
2611                 xhci_warn(xhci, "Not enough host resources, "
2612                                 "active endpoint contexts = %u\n",
2613                                 xhci->num_active_eps);
2614                 return -ENOMEM;
2615         }
2616         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2617             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2618                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2619                         xhci_free_host_resources(xhci, ctrl_ctx);
2620                 spin_unlock_irqrestore(&xhci->lock, flags);
2621                 xhci_warn(xhci, "Not enough bandwidth\n");
2622                 return -ENOMEM;
2623         }
2624
2625         if (!ctx_change)
2626                 ret = xhci_queue_configure_endpoint(xhci, command,
2627                                 command->in_ctx->dma,
2628                                 udev->slot_id, must_succeed);
2629         else
2630                 ret = xhci_queue_evaluate_context(xhci, command,
2631                                 command->in_ctx->dma,
2632                                 udev->slot_id, must_succeed);
2633         if (ret < 0) {
2634                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2635                         xhci_free_host_resources(xhci, ctrl_ctx);
2636                 spin_unlock_irqrestore(&xhci->lock, flags);
2637                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2638                                 "FIXME allocate a new ring segment");
2639                 return -ENOMEM;
2640         }
2641         xhci_ring_cmd_db(xhci);
2642         spin_unlock_irqrestore(&xhci->lock, flags);
2643
2644         /* Wait for the configure endpoint command to complete */
2645         wait_for_completion(command->completion);
2646
2647         if (!ctx_change)
2648                 ret = xhci_configure_endpoint_result(xhci, udev,
2649                                                      &command->status);
2650         else
2651                 ret = xhci_evaluate_context_result(xhci, udev,
2652                                                    &command->status);
2653
2654         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2655                 spin_lock_irqsave(&xhci->lock, flags);
2656                 /* If the command failed, remove the reserved resources.
2657                  * Otherwise, clean up the estimate to include dropped eps.
2658                  */
2659                 if (ret)
2660                         xhci_free_host_resources(xhci, ctrl_ctx);
2661                 else
2662                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2663                 spin_unlock_irqrestore(&xhci->lock, flags);
2664         }
2665         return ret;
2666 }
2667
2668 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2669         struct xhci_virt_device *vdev, int i)
2670 {
2671         struct xhci_virt_ep *ep = &vdev->eps[i];
2672
2673         if (ep->ep_state & EP_HAS_STREAMS) {
2674                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2675                                 xhci_get_endpoint_address(i));
2676                 xhci_free_stream_info(xhci, ep->stream_info);
2677                 ep->stream_info = NULL;
2678                 ep->ep_state &= ~EP_HAS_STREAMS;
2679         }
2680 }
2681
2682 /* Called after one or more calls to xhci_add_endpoint() or
2683  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2684  * to call xhci_reset_bandwidth().
2685  *
2686  * Since we are in the middle of changing either configuration or
2687  * installing a new alt setting, the USB core won't allow URBs to be
2688  * enqueued for any endpoint on the old config or interface.  Nothing
2689  * else should be touching the xhci->devs[slot_id] structure, so we
2690  * don't need to take the xhci->lock for manipulating that.
2691  */
2692 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2693 {
2694         int i;
2695         int ret = 0;
2696         struct xhci_hcd *xhci;
2697         struct xhci_virt_device *virt_dev;
2698         struct xhci_input_control_ctx *ctrl_ctx;
2699         struct xhci_slot_ctx *slot_ctx;
2700         struct xhci_command *command;
2701
2702         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2703         if (ret <= 0)
2704                 return ret;
2705         xhci = hcd_to_xhci(hcd);
2706         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2707                 (xhci->xhc_state & XHCI_STATE_REMOVING))
2708                 return -ENODEV;
2709
2710         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2711         virt_dev = xhci->devs[udev->slot_id];
2712
2713         command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2714         if (!command)
2715                 return -ENOMEM;
2716
2717         command->in_ctx = virt_dev->in_ctx;
2718
2719         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2720         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2721         if (!ctrl_ctx) {
2722                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2723                                 __func__);
2724                 ret = -ENOMEM;
2725                 goto command_cleanup;
2726         }
2727         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2728         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2729         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2730
2731         /* Don't issue the command if there's no endpoints to update. */
2732         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2733             ctrl_ctx->drop_flags == 0) {
2734                 ret = 0;
2735                 goto command_cleanup;
2736         }
2737         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2738         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2739         for (i = 31; i >= 1; i--) {
2740                 __le32 le32 = cpu_to_le32(BIT(i));
2741
2742                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2743                     || (ctrl_ctx->add_flags & le32) || i == 1) {
2744                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2745                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2746                         break;
2747                 }
2748         }
2749         xhci_dbg(xhci, "New Input Control Context:\n");
2750         xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2751                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2752
2753         ret = xhci_configure_endpoint(xhci, udev, command,
2754                         false, false);
2755         if (ret)
2756                 /* Callee should call reset_bandwidth() */
2757                 goto command_cleanup;
2758
2759         xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2760         xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2761                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2762
2763         /* Free any rings that were dropped, but not changed. */
2764         for (i = 1; i < 31; i++) {
2765                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2766                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2767                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2768                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2769                 }
2770         }
2771         xhci_zero_in_ctx(xhci, virt_dev);
2772         /*
2773          * Install any rings for completely new endpoints or changed endpoints,
2774          * and free or cache any old rings from changed endpoints.
2775          */
2776         for (i = 1; i < 31; i++) {
2777                 if (!virt_dev->eps[i].new_ring)
2778                         continue;
2779                 /* Only cache or free the old ring if it exists.
2780                  * It may not if this is the first add of an endpoint.
2781                  */
2782                 if (virt_dev->eps[i].ring) {
2783                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2784                 }
2785                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2786                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2787                 virt_dev->eps[i].new_ring = NULL;
2788         }
2789 command_cleanup:
2790         kfree(command->completion);
2791         kfree(command);
2792
2793         return ret;
2794 }
2795
2796 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2797 {
2798         struct xhci_hcd *xhci;
2799         struct xhci_virt_device *virt_dev;
2800         int i, ret;
2801
2802         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2803         if (ret <= 0)
2804                 return;
2805         xhci = hcd_to_xhci(hcd);
2806
2807         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2808         virt_dev = xhci->devs[udev->slot_id];
2809         /* Free any rings allocated for added endpoints */
2810         for (i = 0; i < 31; i++) {
2811                 if (virt_dev->eps[i].new_ring) {
2812                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2813                         virt_dev->eps[i].new_ring = NULL;
2814                 }
2815         }
2816         xhci_zero_in_ctx(xhci, virt_dev);
2817 }
2818
2819 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2820                 struct xhci_container_ctx *in_ctx,
2821                 struct xhci_container_ctx *out_ctx,
2822                 struct xhci_input_control_ctx *ctrl_ctx,
2823                 u32 add_flags, u32 drop_flags)
2824 {
2825         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2826         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2827         xhci_slot_copy(xhci, in_ctx, out_ctx);
2828         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2829
2830         xhci_dbg(xhci, "Input Context:\n");
2831         xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2832 }
2833
2834 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2835                 unsigned int slot_id, unsigned int ep_index,
2836                 struct xhci_dequeue_state *deq_state)
2837 {
2838         struct xhci_input_control_ctx *ctrl_ctx;
2839         struct xhci_container_ctx *in_ctx;
2840         struct xhci_ep_ctx *ep_ctx;
2841         u32 added_ctxs;
2842         dma_addr_t addr;
2843
2844         in_ctx = xhci->devs[slot_id]->in_ctx;
2845         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2846         if (!ctrl_ctx) {
2847                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2848                                 __func__);
2849                 return;
2850         }
2851
2852         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2853                         xhci->devs[slot_id]->out_ctx, ep_index);
2854         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2855         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2856                         deq_state->new_deq_ptr);
2857         if (addr == 0) {
2858                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2859                                 "reset ep command\n");
2860                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2861                                 deq_state->new_deq_seg,
2862                                 deq_state->new_deq_ptr);
2863                 return;
2864         }
2865         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2866
2867         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2868         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2869                         xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2870                         added_ctxs, added_ctxs);
2871 }
2872
2873 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2874                         unsigned int ep_index, struct xhci_td *td)
2875 {
2876         struct xhci_dequeue_state deq_state;
2877         struct xhci_virt_ep *ep;
2878         struct usb_device *udev = td->urb->dev;
2879
2880         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2881                         "Cleaning up stalled endpoint ring");
2882         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2883         /* We need to move the HW's dequeue pointer past this TD,
2884          * or it will attempt to resend it on the next doorbell ring.
2885          */
2886         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2887                         ep_index, ep->stopped_stream, td, &deq_state);
2888
2889         if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2890                 return;
2891
2892         /* HW with the reset endpoint quirk will use the saved dequeue state to
2893          * issue a configure endpoint command later.
2894          */
2895         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2896                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2897                                 "Queueing new dequeue state");
2898                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2899                                 ep_index, ep->stopped_stream, &deq_state);
2900         } else {
2901                 /* Better hope no one uses the input context between now and the
2902                  * reset endpoint completion!
2903                  * XXX: No idea how this hardware will react when stream rings
2904                  * are enabled.
2905                  */
2906                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2907                                 "Setting up input context for "
2908                                 "configure endpoint command");
2909                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2910                                 ep_index, &deq_state);
2911         }
2912 }
2913
2914 /* Called when clearing halted device. The core should have sent the control
2915  * message to clear the device halt condition. The host side of the halt should
2916  * already be cleared with a reset endpoint command issued when the STALL tx
2917  * event was received.
2918  *
2919  * Context: in_interrupt
2920  */
2921
2922 void xhci_endpoint_reset(struct usb_hcd *hcd,
2923                 struct usb_host_endpoint *ep)
2924 {
2925         struct xhci_hcd *xhci;
2926
2927         xhci = hcd_to_xhci(hcd);
2928
2929         /*
2930          * We might need to implement the config ep cmd in xhci 4.8.1 note:
2931          * The Reset Endpoint Command may only be issued to endpoints in the
2932          * Halted state. If software wishes reset the Data Toggle or Sequence
2933          * Number of an endpoint that isn't in the Halted state, then software
2934          * may issue a Configure Endpoint Command with the Drop and Add bits set
2935          * for the target endpoint. that is in the Stopped state.
2936          */
2937
2938         /* For now just print debug to follow the situation */
2939         xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
2940                  ep->desc.bEndpointAddress);
2941 }
2942
2943 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2944                 struct usb_device *udev, struct usb_host_endpoint *ep,
2945                 unsigned int slot_id)
2946 {
2947         int ret;
2948         unsigned int ep_index;
2949         unsigned int ep_state;
2950
2951         if (!ep)
2952                 return -EINVAL;
2953         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2954         if (ret <= 0)
2955                 return -EINVAL;
2956         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
2957                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2958                                 " descriptor for ep 0x%x does not support streams\n",
2959                                 ep->desc.bEndpointAddress);
2960                 return -EINVAL;
2961         }
2962
2963         ep_index = xhci_get_endpoint_index(&ep->desc);
2964         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2965         if (ep_state & EP_HAS_STREAMS ||
2966                         ep_state & EP_GETTING_STREAMS) {
2967                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2968                                 "already has streams set up.\n",
2969                                 ep->desc.bEndpointAddress);
2970                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2971                                 "dynamic stream context array reallocation.\n");
2972                 return -EINVAL;
2973         }
2974         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2975                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2976                                 "endpoint 0x%x; URBs are pending.\n",
2977                                 ep->desc.bEndpointAddress);
2978                 return -EINVAL;
2979         }
2980         return 0;
2981 }
2982
2983 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2984                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
2985 {
2986         unsigned int max_streams;
2987
2988         /* The stream context array size must be a power of two */
2989         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
2990         /*
2991          * Find out how many primary stream array entries the host controller
2992          * supports.  Later we may use secondary stream arrays (similar to 2nd
2993          * level page entries), but that's an optional feature for xHCI host
2994          * controllers. xHCs must support at least 4 stream IDs.
2995          */
2996         max_streams = HCC_MAX_PSA(xhci->hcc_params);
2997         if (*num_stream_ctxs > max_streams) {
2998                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2999                                 max_streams);
3000                 *num_stream_ctxs = max_streams;
3001                 *num_streams = max_streams;
3002         }
3003 }
3004
3005 /* Returns an error code if one of the endpoint already has streams.
3006  * This does not change any data structures, it only checks and gathers
3007  * information.
3008  */
3009 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3010                 struct usb_device *udev,
3011                 struct usb_host_endpoint **eps, unsigned int num_eps,
3012                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3013 {
3014         unsigned int max_streams;
3015         unsigned int endpoint_flag;
3016         int i;
3017         int ret;
3018
3019         for (i = 0; i < num_eps; i++) {
3020                 ret = xhci_check_streams_endpoint(xhci, udev,
3021                                 eps[i], udev->slot_id);
3022                 if (ret < 0)
3023                         return ret;
3024
3025                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3026                 if (max_streams < (*num_streams - 1)) {
3027                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3028                                         eps[i]->desc.bEndpointAddress,
3029                                         max_streams);
3030                         *num_streams = max_streams+1;
3031                 }
3032
3033                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3034                 if (*changed_ep_bitmask & endpoint_flag)
3035                         return -EINVAL;
3036                 *changed_ep_bitmask |= endpoint_flag;
3037         }
3038         return 0;
3039 }
3040
3041 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3042                 struct usb_device *udev,
3043                 struct usb_host_endpoint **eps, unsigned int num_eps)
3044 {
3045         u32 changed_ep_bitmask = 0;
3046         unsigned int slot_id;
3047         unsigned int ep_index;
3048         unsigned int ep_state;
3049         int i;
3050
3051         slot_id = udev->slot_id;
3052         if (!xhci->devs[slot_id])
3053                 return 0;
3054
3055         for (i = 0; i < num_eps; i++) {
3056                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3057                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3058                 /* Are streams already being freed for the endpoint? */
3059                 if (ep_state & EP_GETTING_NO_STREAMS) {
3060                         xhci_warn(xhci, "WARN Can't disable streams for "
3061                                         "endpoint 0x%x, "
3062                                         "streams are being disabled already\n",
3063                                         eps[i]->desc.bEndpointAddress);
3064                         return 0;
3065                 }
3066                 /* Are there actually any streams to free? */
3067                 if (!(ep_state & EP_HAS_STREAMS) &&
3068                                 !(ep_state & EP_GETTING_STREAMS)) {
3069                         xhci_warn(xhci, "WARN Can't disable streams for "
3070                                         "endpoint 0x%x, "
3071                                         "streams are already disabled!\n",
3072                                         eps[i]->desc.bEndpointAddress);
3073                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3074                                         "with non-streams endpoint\n");
3075                         return 0;
3076                 }
3077                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3078         }
3079         return changed_ep_bitmask;
3080 }
3081
3082 /*
3083  * The USB device drivers use this function (through the HCD interface in USB
3084  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3085  * coordinate mass storage command queueing across multiple endpoints (basically
3086  * a stream ID == a task ID).
3087  *
3088  * Setting up streams involves allocating the same size stream context array
3089  * for each endpoint and issuing a configure endpoint command for all endpoints.
3090  *
3091  * Don't allow the call to succeed if one endpoint only supports one stream
3092  * (which means it doesn't support streams at all).
3093  *
3094  * Drivers may get less stream IDs than they asked for, if the host controller
3095  * hardware or endpoints claim they can't support the number of requested
3096  * stream IDs.
3097  */
3098 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3099                 struct usb_host_endpoint **eps, unsigned int num_eps,
3100                 unsigned int num_streams, gfp_t mem_flags)
3101 {
3102         int i, ret;
3103         struct xhci_hcd *xhci;
3104         struct xhci_virt_device *vdev;
3105         struct xhci_command *config_cmd;
3106         struct xhci_input_control_ctx *ctrl_ctx;
3107         unsigned int ep_index;
3108         unsigned int num_stream_ctxs;
3109         unsigned int max_packet;
3110         unsigned long flags;
3111         u32 changed_ep_bitmask = 0;
3112
3113         if (!eps)
3114                 return -EINVAL;
3115
3116         /* Add one to the number of streams requested to account for
3117          * stream 0 that is reserved for xHCI usage.
3118          */
3119         num_streams += 1;
3120         xhci = hcd_to_xhci(hcd);
3121         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3122                         num_streams);
3123
3124         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3125         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3126                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3127                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3128                 return -ENOSYS;
3129         }
3130
3131         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3132         if (!config_cmd) {
3133                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3134                 return -ENOMEM;
3135         }
3136         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3137         if (!ctrl_ctx) {
3138                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3139                                 __func__);
3140                 xhci_free_command(xhci, config_cmd);
3141                 return -ENOMEM;
3142         }
3143
3144         /* Check to make sure all endpoints are not already configured for
3145          * streams.  While we're at it, find the maximum number of streams that
3146          * all the endpoints will support and check for duplicate endpoints.
3147          */
3148         spin_lock_irqsave(&xhci->lock, flags);
3149         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3150                         num_eps, &num_streams, &changed_ep_bitmask);
3151         if (ret < 0) {
3152                 xhci_free_command(xhci, config_cmd);
3153                 spin_unlock_irqrestore(&xhci->lock, flags);
3154                 return ret;
3155         }
3156         if (num_streams <= 1) {
3157                 xhci_warn(xhci, "WARN: endpoints can't handle "
3158                                 "more than one stream.\n");
3159                 xhci_free_command(xhci, config_cmd);
3160                 spin_unlock_irqrestore(&xhci->lock, flags);
3161                 return -EINVAL;
3162         }
3163         vdev = xhci->devs[udev->slot_id];
3164         /* Mark each endpoint as being in transition, so
3165          * xhci_urb_enqueue() will reject all URBs.
3166          */
3167         for (i = 0; i < num_eps; i++) {
3168                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3169                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3170         }
3171         spin_unlock_irqrestore(&xhci->lock, flags);
3172
3173         /* Setup internal data structures and allocate HW data structures for
3174          * streams (but don't install the HW structures in the input context
3175          * until we're sure all memory allocation succeeded).
3176          */
3177         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3178         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3179                         num_stream_ctxs, num_streams);
3180
3181         for (i = 0; i < num_eps; i++) {
3182                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3183                 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3184                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3185                                 num_stream_ctxs,
3186                                 num_streams,
3187                                 max_packet, mem_flags);
3188                 if (!vdev->eps[ep_index].stream_info)
3189                         goto cleanup;
3190                 /* Set maxPstreams in endpoint context and update deq ptr to
3191                  * point to stream context array. FIXME
3192                  */
3193         }
3194
3195         /* Set up the input context for a configure endpoint command. */
3196         for (i = 0; i < num_eps; i++) {
3197                 struct xhci_ep_ctx *ep_ctx;
3198
3199                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3200                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3201
3202                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3203                                 vdev->out_ctx, ep_index);
3204                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3205                                 vdev->eps[ep_index].stream_info);
3206         }
3207         /* Tell the HW to drop its old copy of the endpoint context info
3208          * and add the updated copy from the input context.
3209          */
3210         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3211                         vdev->out_ctx, ctrl_ctx,
3212                         changed_ep_bitmask, changed_ep_bitmask);
3213
3214         /* Issue and wait for the configure endpoint command */
3215         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3216                         false, false);
3217
3218         /* xHC rejected the configure endpoint command for some reason, so we
3219          * leave the old ring intact and free our internal streams data
3220          * structure.
3221          */
3222         if (ret < 0)
3223                 goto cleanup;
3224
3225         spin_lock_irqsave(&xhci->lock, flags);
3226         for (i = 0; i < num_eps; i++) {
3227                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3228                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3229                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3230                          udev->slot_id, ep_index);
3231                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3232         }
3233         xhci_free_command(xhci, config_cmd);
3234         spin_unlock_irqrestore(&xhci->lock, flags);
3235
3236         /* Subtract 1 for stream 0, which drivers can't use */
3237         return num_streams - 1;
3238
3239 cleanup:
3240         /* If it didn't work, free the streams! */
3241         for (i = 0; i < num_eps; i++) {
3242                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3243                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3244                 vdev->eps[ep_index].stream_info = NULL;
3245                 /* FIXME Unset maxPstreams in endpoint context and
3246                  * update deq ptr to point to normal string ring.
3247                  */
3248                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3249                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3250                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3251         }
3252         xhci_free_command(xhci, config_cmd);
3253         return -ENOMEM;
3254 }
3255
3256 /* Transition the endpoint from using streams to being a "normal" endpoint
3257  * without streams.
3258  *
3259  * Modify the endpoint context state, submit a configure endpoint command,
3260  * and free all endpoint rings for streams if that completes successfully.
3261  */
3262 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3263                 struct usb_host_endpoint **eps, unsigned int num_eps,
3264                 gfp_t mem_flags)
3265 {
3266         int i, ret;
3267         struct xhci_hcd *xhci;
3268         struct xhci_virt_device *vdev;
3269         struct xhci_command *command;
3270         struct xhci_input_control_ctx *ctrl_ctx;
3271         unsigned int ep_index;
3272         unsigned long flags;
3273         u32 changed_ep_bitmask;
3274
3275         xhci = hcd_to_xhci(hcd);
3276         vdev = xhci->devs[udev->slot_id];
3277
3278         /* Set up a configure endpoint command to remove the streams rings */
3279         spin_lock_irqsave(&xhci->lock, flags);
3280         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3281                         udev, eps, num_eps);
3282         if (changed_ep_bitmask == 0) {
3283                 spin_unlock_irqrestore(&xhci->lock, flags);
3284                 return -EINVAL;
3285         }
3286
3287         /* Use the xhci_command structure from the first endpoint.  We may have
3288          * allocated too many, but the driver may call xhci_free_streams() for
3289          * each endpoint it grouped into one call to xhci_alloc_streams().
3290          */
3291         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3292         command = vdev->eps[ep_index].stream_info->free_streams_command;
3293         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3294         if (!ctrl_ctx) {
3295                 spin_unlock_irqrestore(&xhci->lock, flags);
3296                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3297                                 __func__);
3298                 return -EINVAL;
3299         }
3300
3301         for (i = 0; i < num_eps; i++) {
3302                 struct xhci_ep_ctx *ep_ctx;
3303
3304                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3305                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3306                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3307                         EP_GETTING_NO_STREAMS;
3308
3309                 xhci_endpoint_copy(xhci, command->in_ctx,
3310                                 vdev->out_ctx, ep_index);
3311                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3312                                 &vdev->eps[ep_index]);
3313         }
3314         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3315                         vdev->out_ctx, ctrl_ctx,
3316                         changed_ep_bitmask, changed_ep_bitmask);
3317         spin_unlock_irqrestore(&xhci->lock, flags);
3318
3319         /* Issue and wait for the configure endpoint command,
3320          * which must succeed.
3321          */
3322         ret = xhci_configure_endpoint(xhci, udev, command,
3323                         false, true);
3324
3325         /* xHC rejected the configure endpoint command for some reason, so we
3326          * leave the streams rings intact.
3327          */
3328         if (ret < 0)
3329                 return ret;
3330
3331         spin_lock_irqsave(&xhci->lock, flags);
3332         for (i = 0; i < num_eps; i++) {
3333                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3334                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3335                 vdev->eps[ep_index].stream_info = NULL;
3336                 /* FIXME Unset maxPstreams in endpoint context and
3337                  * update deq ptr to point to normal string ring.
3338                  */
3339                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3340                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3341         }
3342         spin_unlock_irqrestore(&xhci->lock, flags);
3343
3344         return 0;
3345 }
3346
3347 /*
3348  * Deletes endpoint resources for endpoints that were active before a Reset
3349  * Device command, or a Disable Slot command.  The Reset Device command leaves
3350  * the control endpoint intact, whereas the Disable Slot command deletes it.
3351  *
3352  * Must be called with xhci->lock held.
3353  */
3354 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3355         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3356 {
3357         int i;
3358         unsigned int num_dropped_eps = 0;
3359         unsigned int drop_flags = 0;
3360
3361         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3362                 if (virt_dev->eps[i].ring) {
3363                         drop_flags |= 1 << i;
3364                         num_dropped_eps++;
3365                 }
3366         }
3367         xhci->num_active_eps -= num_dropped_eps;
3368         if (num_dropped_eps)
3369                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3370                                 "Dropped %u ep ctxs, flags = 0x%x, "
3371                                 "%u now active.",
3372                                 num_dropped_eps, drop_flags,
3373                                 xhci->num_active_eps);
3374 }
3375
3376 /*
3377  * This submits a Reset Device Command, which will set the device state to 0,
3378  * set the device address to 0, and disable all the endpoints except the default
3379  * control endpoint.  The USB core should come back and call
3380  * xhci_address_device(), and then re-set up the configuration.  If this is
3381  * called because of a usb_reset_and_verify_device(), then the old alternate
3382  * settings will be re-installed through the normal bandwidth allocation
3383  * functions.
3384  *
3385  * Wait for the Reset Device command to finish.  Remove all structures
3386  * associated with the endpoints that were disabled.  Clear the input device
3387  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3388  *
3389  * If the virt_dev to be reset does not exist or does not match the udev,
3390  * it means the device is lost, possibly due to the xHC restore error and
3391  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3392  * re-allocate the device.
3393  */
3394 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3395 {
3396         int ret, i;
3397         unsigned long flags;
3398         struct xhci_hcd *xhci;
3399         unsigned int slot_id;
3400         struct xhci_virt_device *virt_dev;
3401         struct xhci_command *reset_device_cmd;
3402         int last_freed_endpoint;
3403         struct xhci_slot_ctx *slot_ctx;
3404         int old_active_eps = 0;
3405
3406         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3407         if (ret <= 0)
3408                 return ret;
3409         xhci = hcd_to_xhci(hcd);
3410         slot_id = udev->slot_id;
3411         virt_dev = xhci->devs[slot_id];
3412         if (!virt_dev) {
3413                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3414                                 "not exist. Re-allocate the device\n", slot_id);
3415                 ret = xhci_alloc_dev(hcd, udev);
3416                 if (ret == 1)
3417                         return 0;
3418                 else
3419                         return -EINVAL;
3420         }
3421
3422         if (virt_dev->tt_info)
3423                 old_active_eps = virt_dev->tt_info->active_eps;
3424
3425         if (virt_dev->udev != udev) {
3426                 /* If the virt_dev and the udev does not match, this virt_dev
3427                  * may belong to another udev.
3428                  * Re-allocate the device.
3429                  */
3430                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3431                                 "not match the udev. Re-allocate the device\n",
3432                                 slot_id);
3433                 ret = xhci_alloc_dev(hcd, udev);
3434                 if (ret == 1)
3435                         return 0;
3436                 else
3437                         return -EINVAL;
3438         }
3439
3440         /* If device is not setup, there is no point in resetting it */
3441         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3442         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3443                                                 SLOT_STATE_DISABLED)
3444                 return 0;
3445
3446         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3447         /* Allocate the command structure that holds the struct completion.
3448          * Assume we're in process context, since the normal device reset
3449          * process has to wait for the device anyway.  Storage devices are
3450          * reset as part of error handling, so use GFP_NOIO instead of
3451          * GFP_KERNEL.
3452          */
3453         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3454         if (!reset_device_cmd) {
3455                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3456                 return -ENOMEM;
3457         }
3458
3459         /* Attempt to submit the Reset Device command to the command ring */
3460         spin_lock_irqsave(&xhci->lock, flags);
3461
3462         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3463         if (ret) {
3464                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3465                 spin_unlock_irqrestore(&xhci->lock, flags);
3466                 goto command_cleanup;
3467         }
3468         xhci_ring_cmd_db(xhci);
3469         spin_unlock_irqrestore(&xhci->lock, flags);
3470
3471         /* Wait for the Reset Device command to finish */
3472         wait_for_completion(reset_device_cmd->completion);
3473
3474         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3475          * unless we tried to reset a slot ID that wasn't enabled,
3476          * or the device wasn't in the addressed or configured state.
3477          */
3478         ret = reset_device_cmd->status;
3479         switch (ret) {
3480         case COMP_COMMAND_ABORTED:
3481         case COMP_STOPPED:
3482                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3483                 ret = -ETIME;
3484                 goto command_cleanup;
3485         case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3486         case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3487                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3488                                 slot_id,
3489                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3490                 xhci_dbg(xhci, "Not freeing device rings.\n");
3491                 /* Don't treat this as an error.  May change my mind later. */
3492                 ret = 0;
3493                 goto command_cleanup;
3494         case COMP_SUCCESS:
3495                 xhci_dbg(xhci, "Successful reset device command.\n");
3496                 break;
3497         default:
3498                 if (xhci_is_vendor_info_code(xhci, ret))
3499                         break;
3500                 xhci_warn(xhci, "Unknown completion code %u for "
3501                                 "reset device command.\n", ret);
3502                 ret = -EINVAL;
3503                 goto command_cleanup;
3504         }
3505
3506         /* Free up host controller endpoint resources */
3507         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3508                 spin_lock_irqsave(&xhci->lock, flags);
3509                 /* Don't delete the default control endpoint resources */
3510                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3511                 spin_unlock_irqrestore(&xhci->lock, flags);
3512         }
3513
3514         /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3515         last_freed_endpoint = 1;
3516         for (i = 1; i < 31; i++) {
3517                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3518
3519                 if (ep->ep_state & EP_HAS_STREAMS) {
3520                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3521                                         xhci_get_endpoint_address(i));
3522                         xhci_free_stream_info(xhci, ep->stream_info);
3523                         ep->stream_info = NULL;
3524                         ep->ep_state &= ~EP_HAS_STREAMS;
3525                 }
3526
3527                 if (ep->ring) {
3528                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3529                         last_freed_endpoint = i;
3530                 }
3531                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3532                         xhci_drop_ep_from_interval_table(xhci,
3533                                         &virt_dev->eps[i].bw_info,
3534                                         virt_dev->bw_table,
3535                                         udev,
3536                                         &virt_dev->eps[i],
3537                                         virt_dev->tt_info);
3538                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3539         }
3540         /* If necessary, update the number of active TTs on this root port */
3541         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3542
3543         xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3544         xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3545         ret = 0;
3546
3547 command_cleanup:
3548         xhci_free_command(xhci, reset_device_cmd);
3549         return ret;
3550 }
3551
3552 /*
3553  * At this point, the struct usb_device is about to go away, the device has
3554  * disconnected, and all traffic has been stopped and the endpoints have been
3555  * disabled.  Free any HC data structures associated with that device.
3556  */
3557 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3558 {
3559         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3560         struct xhci_virt_device *virt_dev;
3561         unsigned long flags;
3562         u32 state;
3563         int i, ret;
3564         struct xhci_command *command;
3565
3566         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3567         if (!command)
3568                 return;
3569
3570 #ifndef CONFIG_USB_DEFAULT_PERSIST
3571         /*
3572          * We called pm_runtime_get_noresume when the device was attached.
3573          * Decrement the counter here to allow controller to runtime suspend
3574          * if no devices remain.
3575          */
3576         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3577                 pm_runtime_put_noidle(hcd->self.controller);
3578 #endif
3579
3580         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3581         /* If the host is halted due to driver unload, we still need to free the
3582          * device.
3583          */
3584         if (ret <= 0 && ret != -ENODEV) {
3585                 kfree(command);
3586                 return;
3587         }
3588
3589         virt_dev = xhci->devs[udev->slot_id];
3590
3591         /* Stop any wayward timer functions (which may grab the lock) */
3592         for (i = 0; i < 31; i++) {
3593                 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3594                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3595         }
3596
3597         spin_lock_irqsave(&xhci->lock, flags);
3598         /* Don't disable the slot if the host controller is dead. */
3599         state = readl(&xhci->op_regs->status);
3600         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3601                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3602                 xhci_free_virt_device(xhci, udev->slot_id);
3603                 spin_unlock_irqrestore(&xhci->lock, flags);
3604                 kfree(command);
3605                 return;
3606         }
3607
3608         if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3609                                     udev->slot_id)) {
3610                 spin_unlock_irqrestore(&xhci->lock, flags);
3611                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3612                 return;
3613         }
3614         xhci_ring_cmd_db(xhci);
3615         spin_unlock_irqrestore(&xhci->lock, flags);
3616
3617         /*
3618          * Event command completion handler will free any data structures
3619          * associated with the slot.  XXX Can free sleep?
3620          */
3621 }
3622
3623 /*
3624  * Checks if we have enough host controller resources for the default control
3625  * endpoint.
3626  *
3627  * Must be called with xhci->lock held.
3628  */
3629 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3630 {
3631         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3632                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3633                                 "Not enough ep ctxs: "
3634                                 "%u active, need to add 1, limit is %u.",
3635                                 xhci->num_active_eps, xhci->limit_active_eps);
3636                 return -ENOMEM;
3637         }
3638         xhci->num_active_eps += 1;
3639         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3640                         "Adding 1 ep ctx, %u now active.",
3641                         xhci->num_active_eps);
3642         return 0;
3643 }
3644
3645
3646 /*
3647  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3648  * timed out, or allocating memory failed.  Returns 1 on success.
3649  */
3650 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3651 {
3652         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3653         unsigned long flags;
3654         int ret, slot_id;
3655         struct xhci_command *command;
3656
3657         command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
3658         if (!command)
3659                 return 0;
3660
3661         /* xhci->slot_id and xhci->addr_dev are not thread-safe */
3662         mutex_lock(&xhci->mutex);
3663         spin_lock_irqsave(&xhci->lock, flags);
3664         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3665         if (ret) {
3666                 spin_unlock_irqrestore(&xhci->lock, flags);
3667                 mutex_unlock(&xhci->mutex);
3668                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3669                 xhci_free_command(xhci, command);
3670                 return 0;
3671         }
3672         xhci_ring_cmd_db(xhci);
3673         spin_unlock_irqrestore(&xhci->lock, flags);
3674
3675         wait_for_completion(command->completion);
3676         slot_id = command->slot_id;
3677         mutex_unlock(&xhci->mutex);
3678
3679         if (!slot_id || command->status != COMP_SUCCESS) {
3680                 xhci_err(xhci, "Error while assigning device slot ID\n");
3681                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3682                                 HCS_MAX_SLOTS(
3683                                         readl(&xhci->cap_regs->hcs_params1)));
3684                 xhci_free_command(xhci, command);
3685                 return 0;
3686         }
3687
3688         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3689                 spin_lock_irqsave(&xhci->lock, flags);
3690                 ret = xhci_reserve_host_control_ep_resources(xhci);
3691                 if (ret) {
3692                         spin_unlock_irqrestore(&xhci->lock, flags);
3693                         xhci_warn(xhci, "Not enough host resources, "
3694                                         "active endpoint contexts = %u\n",
3695                                         xhci->num_active_eps);
3696                         goto disable_slot;
3697                 }
3698                 spin_unlock_irqrestore(&xhci->lock, flags);
3699         }
3700         /* Use GFP_NOIO, since this function can be called from
3701          * xhci_discover_or_reset_device(), which may be called as part of
3702          * mass storage driver error handling.
3703          */
3704         if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3705                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3706                 goto disable_slot;
3707         }
3708         udev->slot_id = slot_id;
3709
3710 #ifndef CONFIG_USB_DEFAULT_PERSIST
3711         /*
3712          * If resetting upon resume, we can't put the controller into runtime
3713          * suspend if there is a device attached.
3714          */
3715         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3716                 pm_runtime_get_noresume(hcd->self.controller);
3717 #endif
3718
3719
3720         xhci_free_command(xhci, command);
3721         /* Is this a LS or FS device under a HS hub? */
3722         /* Hub or peripherial? */
3723         return 1;
3724
3725 disable_slot:
3726         /* Disable slot, if we can do it without mem alloc */
3727         spin_lock_irqsave(&xhci->lock, flags);
3728         kfree(command->completion);
3729         command->completion = NULL;
3730         command->status = 0;
3731         if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3732                                      udev->slot_id))
3733                 xhci_ring_cmd_db(xhci);
3734         spin_unlock_irqrestore(&xhci->lock, flags);
3735         return 0;
3736 }
3737
3738 /*
3739  * Issue an Address Device command and optionally send a corresponding
3740  * SetAddress request to the device.
3741  */
3742 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3743                              enum xhci_setup_dev setup)
3744 {
3745         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3746         unsigned long flags;
3747         struct xhci_virt_device *virt_dev;
3748         int ret = 0;
3749         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3750         struct xhci_slot_ctx *slot_ctx;
3751         struct xhci_input_control_ctx *ctrl_ctx;
3752         u64 temp_64;
3753         struct xhci_command *command = NULL;
3754
3755         mutex_lock(&xhci->mutex);
3756
3757         if (xhci->xhc_state) {  /* dying, removing or halted */
3758                 ret = -ESHUTDOWN;
3759                 goto out;
3760         }
3761
3762         if (!udev->slot_id) {
3763                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3764                                 "Bad Slot ID %d", udev->slot_id);
3765                 ret = -EINVAL;
3766                 goto out;
3767         }
3768
3769         virt_dev = xhci->devs[udev->slot_id];
3770
3771         if (WARN_ON(!virt_dev)) {
3772                 /*
3773                  * In plug/unplug torture test with an NEC controller,
3774                  * a zero-dereference was observed once due to virt_dev = 0.
3775                  * Print useful debug rather than crash if it is observed again!
3776                  */
3777                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3778                         udev->slot_id);
3779                 ret = -EINVAL;
3780                 goto out;
3781         }
3782
3783         if (setup == SETUP_CONTEXT_ONLY) {
3784                 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3785                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3786                     SLOT_STATE_DEFAULT) {
3787                         xhci_dbg(xhci, "Slot already in default state\n");
3788                         goto out;
3789                 }
3790         }
3791
3792         command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
3793         if (!command) {
3794                 ret = -ENOMEM;
3795                 goto out;
3796         }
3797
3798         command->in_ctx = virt_dev->in_ctx;
3799
3800         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3801         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3802         if (!ctrl_ctx) {
3803                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3804                                 __func__);
3805                 ret = -EINVAL;
3806                 goto out;
3807         }
3808         /*
3809          * If this is the first Set Address since device plug-in or
3810          * virt_device realloaction after a resume with an xHCI power loss,
3811          * then set up the slot context.
3812          */
3813         if (!slot_ctx->dev_info)
3814                 xhci_setup_addressable_virt_dev(xhci, udev);
3815         /* Otherwise, update the control endpoint ring enqueue pointer. */
3816         else
3817                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3818         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3819         ctrl_ctx->drop_flags = 0;
3820
3821         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3822         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3823         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3824                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3825
3826         spin_lock_irqsave(&xhci->lock, flags);
3827         trace_xhci_setup_device(virt_dev);
3828         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3829                                         udev->slot_id, setup);
3830         if (ret) {
3831                 spin_unlock_irqrestore(&xhci->lock, flags);
3832                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3833                                 "FIXME: allocate a command ring segment");
3834                 goto out;
3835         }
3836         xhci_ring_cmd_db(xhci);
3837         spin_unlock_irqrestore(&xhci->lock, flags);
3838
3839         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3840         wait_for_completion(command->completion);
3841
3842         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3843          * the SetAddress() "recovery interval" required by USB and aborting the
3844          * command on a timeout.
3845          */
3846         switch (command->status) {
3847         case COMP_COMMAND_ABORTED:
3848         case COMP_STOPPED:
3849                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3850                 ret = -ETIME;
3851                 break;
3852         case COMP_CONTEXT_STATE_ERROR:
3853         case COMP_SLOT_NOT_ENABLED_ERROR:
3854                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3855                          act, udev->slot_id);
3856                 ret = -EINVAL;
3857                 break;
3858         case COMP_USB_TRANSACTION_ERROR:
3859                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3860                 ret = -EPROTO;
3861                 break;
3862         case COMP_INCOMPATIBLE_DEVICE_ERROR:
3863                 dev_warn(&udev->dev,
3864                          "ERROR: Incompatible device for setup %s command\n", act);
3865                 ret = -ENODEV;
3866                 break;
3867         case COMP_SUCCESS:
3868                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3869                                "Successful setup %s command", act);
3870                 break;
3871         default:
3872                 xhci_err(xhci,
3873                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
3874                          act, command->status);
3875                 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3876                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3877                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3878                 ret = -EINVAL;
3879                 break;
3880         }
3881         if (ret)
3882                 goto out;
3883         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3884         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3885                         "Op regs DCBAA ptr = %#016llx", temp_64);
3886         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3887                 "Slot ID %d dcbaa entry @%p = %#016llx",
3888                 udev->slot_id,
3889                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3890                 (unsigned long long)
3891                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3892         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3893                         "Output Context DMA address = %#08llx",
3894                         (unsigned long long)virt_dev->out_ctx->dma);
3895         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3896         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3897         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3898                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3899         xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3900         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3901         /*
3902          * USB core uses address 1 for the roothubs, so we add one to the
3903          * address given back to us by the HC.
3904          */
3905         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3906         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3907                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3908         /* Zero the input context control for later use */
3909         ctrl_ctx->add_flags = 0;
3910         ctrl_ctx->drop_flags = 0;
3911
3912         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3913                        "Internal device address = %d",
3914                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3915 out:
3916         mutex_unlock(&xhci->mutex);
3917         if (command) {
3918                 kfree(command->completion);
3919                 kfree(command);
3920         }
3921         return ret;
3922 }
3923
3924 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3925 {
3926         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3927 }
3928
3929 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3930 {
3931         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3932 }
3933
3934 /*
3935  * Transfer the port index into real index in the HW port status
3936  * registers. Caculate offset between the port's PORTSC register
3937  * and port status base. Divide the number of per port register
3938  * to get the real index. The raw port number bases 1.
3939  */
3940 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3941 {
3942         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3943         __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3944         __le32 __iomem *addr;
3945         int raw_port;
3946
3947         if (hcd->speed < HCD_USB3)
3948                 addr = xhci->usb2_ports[port1 - 1];
3949         else
3950                 addr = xhci->usb3_ports[port1 - 1];
3951
3952         raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3953         return raw_port;
3954 }
3955
3956 /*
3957  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3958  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3959  */
3960 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3961                         struct usb_device *udev, u16 max_exit_latency)
3962 {
3963         struct xhci_virt_device *virt_dev;
3964         struct xhci_command *command;
3965         struct xhci_input_control_ctx *ctrl_ctx;
3966         struct xhci_slot_ctx *slot_ctx;
3967         unsigned long flags;
3968         int ret;
3969
3970         spin_lock_irqsave(&xhci->lock, flags);
3971
3972         virt_dev = xhci->devs[udev->slot_id];
3973
3974         /*
3975          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
3976          * xHC was re-initialized. Exit latency will be set later after
3977          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
3978          */
3979
3980         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
3981                 spin_unlock_irqrestore(&xhci->lock, flags);
3982                 return 0;
3983         }
3984
3985         /* Attempt to issue an Evaluate Context command to change the MEL. */
3986         command = xhci->lpm_command;
3987         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3988         if (!ctrl_ctx) {
3989                 spin_unlock_irqrestore(&xhci->lock, flags);
3990                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3991                                 __func__);
3992                 return -ENOMEM;
3993         }
3994
3995         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
3996         spin_unlock_irqrestore(&xhci->lock, flags);
3997
3998         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3999         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4000         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4001         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4002         slot_ctx->dev_state = 0;
4003
4004         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4005                         "Set up evaluate context for LPM MEL change.");
4006         xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4007         xhci_dbg_ctx(xhci, command->in_ctx, 0);
4008
4009         /* Issue and wait for the evaluate context command. */
4010         ret = xhci_configure_endpoint(xhci, udev, command,
4011                         true, true);
4012         xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4013         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4014
4015         if (!ret) {
4016                 spin_lock_irqsave(&xhci->lock, flags);
4017                 virt_dev->current_mel = max_exit_latency;
4018                 spin_unlock_irqrestore(&xhci->lock, flags);
4019         }
4020         return ret;
4021 }
4022
4023 #ifdef CONFIG_PM
4024
4025 /* BESL to HIRD Encoding array for USB2 LPM */
4026 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4027         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4028
4029 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4030 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4031                                         struct usb_device *udev)
4032 {
4033         int u2del, besl, besl_host;
4034         int besl_device = 0;
4035         u32 field;
4036
4037         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4038         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4039
4040         if (field & USB_BESL_SUPPORT) {
4041                 for (besl_host = 0; besl_host < 16; besl_host++) {
4042                         if (xhci_besl_encoding[besl_host] >= u2del)
4043                                 break;
4044                 }
4045                 /* Use baseline BESL value as default */
4046                 if (field & USB_BESL_BASELINE_VALID)
4047                         besl_device = USB_GET_BESL_BASELINE(field);
4048                 else if (field & USB_BESL_DEEP_VALID)
4049                         besl_device = USB_GET_BESL_DEEP(field);
4050         } else {
4051                 if (u2del <= 50)
4052                         besl_host = 0;
4053                 else
4054                         besl_host = (u2del - 51) / 75 + 1;
4055         }
4056
4057         besl = besl_host + besl_device;
4058         if (besl > 15)
4059                 besl = 15;
4060
4061         return besl;
4062 }
4063
4064 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4065 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4066 {
4067         u32 field;
4068         int l1;
4069         int besld = 0;
4070         int hirdm = 0;
4071
4072         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4073
4074         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4075         l1 = udev->l1_params.timeout / 256;
4076
4077         /* device has preferred BESLD */
4078         if (field & USB_BESL_DEEP_VALID) {
4079                 besld = USB_GET_BESL_DEEP(field);
4080                 hirdm = 1;
4081         }
4082
4083         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4084 }
4085
4086 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4087                         struct usb_device *udev, int enable)
4088 {
4089         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4090         __le32 __iomem  **port_array;
4091         __le32 __iomem  *pm_addr, *hlpm_addr;
4092         u32             pm_val, hlpm_val, field;
4093         unsigned int    port_num;
4094         unsigned long   flags;
4095         int             hird, exit_latency;
4096         int             ret;
4097
4098         if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4099                         !udev->lpm_capable)
4100                 return -EPERM;
4101
4102         if (!udev->parent || udev->parent->parent ||
4103                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4104                 return -EPERM;
4105
4106         if (udev->usb2_hw_lpm_capable != 1)
4107                 return -EPERM;
4108
4109         spin_lock_irqsave(&xhci->lock, flags);
4110
4111         port_array = xhci->usb2_ports;
4112         port_num = udev->portnum - 1;
4113         pm_addr = port_array[port_num] + PORTPMSC;
4114         pm_val = readl(pm_addr);
4115         hlpm_addr = port_array[port_num] + PORTHLPMC;
4116         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4117
4118         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4119                         enable ? "enable" : "disable", port_num + 1);
4120
4121         if (enable) {
4122                 /* Host supports BESL timeout instead of HIRD */
4123                 if (udev->usb2_hw_lpm_besl_capable) {
4124                         /* if device doesn't have a preferred BESL value use a
4125                          * default one which works with mixed HIRD and BESL
4126                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4127                          */
4128                         if ((field & USB_BESL_SUPPORT) &&
4129                             (field & USB_BESL_BASELINE_VALID))
4130                                 hird = USB_GET_BESL_BASELINE(field);
4131                         else
4132                                 hird = udev->l1_params.besl;
4133
4134                         exit_latency = xhci_besl_encoding[hird];
4135                         spin_unlock_irqrestore(&xhci->lock, flags);
4136
4137                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4138                          * input context for link powermanagement evaluate
4139                          * context commands. It is protected by hcd->bandwidth
4140                          * mutex and is shared by all devices. We need to set
4141                          * the max ext latency in USB 2 BESL LPM as well, so
4142                          * use the same mutex and xhci_change_max_exit_latency()
4143                          */
4144                         mutex_lock(hcd->bandwidth_mutex);
4145                         ret = xhci_change_max_exit_latency(xhci, udev,
4146                                                            exit_latency);
4147                         mutex_unlock(hcd->bandwidth_mutex);
4148
4149                         if (ret < 0)
4150                                 return ret;
4151                         spin_lock_irqsave(&xhci->lock, flags);
4152
4153                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4154                         writel(hlpm_val, hlpm_addr);
4155                         /* flush write */
4156                         readl(hlpm_addr);
4157                 } else {
4158                         hird = xhci_calculate_hird_besl(xhci, udev);
4159                 }
4160
4161                 pm_val &= ~PORT_HIRD_MASK;
4162                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4163                 writel(pm_val, pm_addr);
4164                 pm_val = readl(pm_addr);
4165                 pm_val |= PORT_HLE;
4166                 writel(pm_val, pm_addr);
4167                 /* flush write */
4168                 readl(pm_addr);
4169         } else {
4170                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4171                 writel(pm_val, pm_addr);
4172                 /* flush write */
4173                 readl(pm_addr);
4174                 if (udev->usb2_hw_lpm_besl_capable) {
4175                         spin_unlock_irqrestore(&xhci->lock, flags);
4176                         mutex_lock(hcd->bandwidth_mutex);
4177                         xhci_change_max_exit_latency(xhci, udev, 0);
4178                         mutex_unlock(hcd->bandwidth_mutex);
4179                         return 0;
4180                 }
4181         }
4182
4183         spin_unlock_irqrestore(&xhci->lock, flags);
4184         return 0;
4185 }
4186
4187 /* check if a usb2 port supports a given extened capability protocol
4188  * only USB2 ports extended protocol capability values are cached.
4189  * Return 1 if capability is supported
4190  */
4191 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4192                                            unsigned capability)
4193 {
4194         u32 port_offset, port_count;
4195         int i;
4196
4197         for (i = 0; i < xhci->num_ext_caps; i++) {
4198                 if (xhci->ext_caps[i] & capability) {
4199                         /* port offsets starts at 1 */
4200                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4201                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4202                         if (port >= port_offset &&
4203                             port < port_offset + port_count)
4204                                 return 1;
4205                 }
4206         }
4207         return 0;
4208 }
4209
4210 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4211 {
4212         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4213         int             portnum = udev->portnum - 1;
4214
4215         if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4216                         !udev->lpm_capable)
4217                 return 0;
4218
4219         /* we only support lpm for non-hub device connected to root hub yet */
4220         if (!udev->parent || udev->parent->parent ||
4221                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4222                 return 0;
4223
4224         if (xhci->hw_lpm_support == 1 &&
4225                         xhci_check_usb2_port_capability(
4226                                 xhci, portnum, XHCI_HLC)) {
4227                 udev->usb2_hw_lpm_capable = 1;
4228                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4229                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4230                 if (xhci_check_usb2_port_capability(xhci, portnum,
4231                                         XHCI_BLC))
4232                         udev->usb2_hw_lpm_besl_capable = 1;
4233         }
4234
4235         return 0;
4236 }
4237
4238 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4239
4240 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4241 static unsigned long long xhci_service_interval_to_ns(
4242                 struct usb_endpoint_descriptor *desc)
4243 {
4244         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4245 }
4246
4247 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4248                 enum usb3_link_state state)
4249 {
4250         unsigned long long sel;
4251         unsigned long long pel;
4252         unsigned int max_sel_pel;
4253         char *state_name;
4254
4255         switch (state) {
4256         case USB3_LPM_U1:
4257                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4258                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4259                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4260                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4261                 state_name = "U1";
4262                 break;
4263         case USB3_LPM_U2:
4264                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4265                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4266                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4267                 state_name = "U2";
4268                 break;
4269         default:
4270                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4271                                 __func__);
4272                 return USB3_LPM_DISABLED;
4273         }
4274
4275         if (sel <= max_sel_pel && pel <= max_sel_pel)
4276                 return USB3_LPM_DEVICE_INITIATED;
4277
4278         if (sel > max_sel_pel)
4279                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4280                                 "due to long SEL %llu ms\n",
4281                                 state_name, sel);
4282         else
4283                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4284                                 "due to long PEL %llu ms\n",
4285                                 state_name, pel);
4286         return USB3_LPM_DISABLED;
4287 }
4288
4289 /* The U1 timeout should be the maximum of the following values:
4290  *  - For control endpoints, U1 system exit latency (SEL) * 3
4291  *  - For bulk endpoints, U1 SEL * 5
4292  *  - For interrupt endpoints:
4293  *    - Notification EPs, U1 SEL * 3
4294  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4295  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4296  */
4297 static unsigned long long xhci_calculate_intel_u1_timeout(
4298                 struct usb_device *udev,
4299                 struct usb_endpoint_descriptor *desc)
4300 {
4301         unsigned long long timeout_ns;
4302         int ep_type;
4303         int intr_type;
4304
4305         ep_type = usb_endpoint_type(desc);
4306         switch (ep_type) {
4307         case USB_ENDPOINT_XFER_CONTROL:
4308                 timeout_ns = udev->u1_params.sel * 3;
4309                 break;
4310         case USB_ENDPOINT_XFER_BULK:
4311                 timeout_ns = udev->u1_params.sel * 5;
4312                 break;
4313         case USB_ENDPOINT_XFER_INT:
4314                 intr_type = usb_endpoint_interrupt_type(desc);
4315                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4316                         timeout_ns = udev->u1_params.sel * 3;
4317                         break;
4318                 }
4319                 /* Otherwise the calculation is the same as isoc eps */
4320         case USB_ENDPOINT_XFER_ISOC:
4321                 timeout_ns = xhci_service_interval_to_ns(desc);
4322                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4323                 if (timeout_ns < udev->u1_params.sel * 2)
4324                         timeout_ns = udev->u1_params.sel * 2;
4325                 break;
4326         default:
4327                 return 0;
4328         }
4329
4330         return timeout_ns;
4331 }
4332
4333 /* Returns the hub-encoded U1 timeout value. */
4334 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4335                 struct usb_device *udev,
4336                 struct usb_endpoint_descriptor *desc)
4337 {
4338         unsigned long long timeout_ns;
4339
4340         if (xhci->quirks & XHCI_INTEL_HOST)
4341                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4342         else
4343                 timeout_ns = udev->u1_params.sel;
4344
4345         /* The U1 timeout is encoded in 1us intervals.
4346          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4347          */
4348         if (timeout_ns == USB3_LPM_DISABLED)
4349                 timeout_ns = 1;
4350         else
4351                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4352
4353         /* If the necessary timeout value is bigger than what we can set in the
4354          * USB 3.0 hub, we have to disable hub-initiated U1.
4355          */
4356         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4357                 return timeout_ns;
4358         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4359                         "due to long timeout %llu ms\n", timeout_ns);
4360         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4361 }
4362
4363 /* The U2 timeout should be the maximum of:
4364  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4365  *  - largest bInterval of any active periodic endpoint (to avoid going
4366  *    into lower power link states between intervals).
4367  *  - the U2 Exit Latency of the device
4368  */
4369 static unsigned long long xhci_calculate_intel_u2_timeout(
4370                 struct usb_device *udev,
4371                 struct usb_endpoint_descriptor *desc)
4372 {
4373         unsigned long long timeout_ns;
4374         unsigned long long u2_del_ns;
4375
4376         timeout_ns = 10 * 1000 * 1000;
4377
4378         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4379                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4380                 timeout_ns = xhci_service_interval_to_ns(desc);
4381
4382         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4383         if (u2_del_ns > timeout_ns)
4384                 timeout_ns = u2_del_ns;
4385
4386         return timeout_ns;
4387 }
4388
4389 /* Returns the hub-encoded U2 timeout value. */
4390 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4391                 struct usb_device *udev,
4392                 struct usb_endpoint_descriptor *desc)
4393 {
4394         unsigned long long timeout_ns;
4395
4396         if (xhci->quirks & XHCI_INTEL_HOST)
4397                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4398         else
4399                 timeout_ns = udev->u2_params.sel;
4400
4401         /* The U2 timeout is encoded in 256us intervals */
4402         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4403         /* If the necessary timeout value is bigger than what we can set in the
4404          * USB 3.0 hub, we have to disable hub-initiated U2.
4405          */
4406         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4407                 return timeout_ns;
4408         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4409                         "due to long timeout %llu ms\n", timeout_ns);
4410         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4411 }
4412
4413 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4414                 struct usb_device *udev,
4415                 struct usb_endpoint_descriptor *desc,
4416                 enum usb3_link_state state,
4417                 u16 *timeout)
4418 {
4419         if (state == USB3_LPM_U1)
4420                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4421         else if (state == USB3_LPM_U2)
4422                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4423
4424         return USB3_LPM_DISABLED;
4425 }
4426
4427 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4428                 struct usb_device *udev,
4429                 struct usb_endpoint_descriptor *desc,
4430                 enum usb3_link_state state,
4431                 u16 *timeout)
4432 {
4433         u16 alt_timeout;
4434
4435         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4436                 desc, state, timeout);
4437
4438         /* If we found we can't enable hub-initiated LPM, or
4439          * the U1 or U2 exit latency was too high to allow
4440          * device-initiated LPM as well, just stop searching.
4441          */
4442         if (alt_timeout == USB3_LPM_DISABLED ||
4443                         alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4444                 *timeout = alt_timeout;
4445                 return -E2BIG;
4446         }
4447         if (alt_timeout > *timeout)
4448                 *timeout = alt_timeout;
4449         return 0;
4450 }
4451
4452 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4453                 struct usb_device *udev,
4454                 struct usb_host_interface *alt,
4455                 enum usb3_link_state state,
4456                 u16 *timeout)
4457 {
4458         int j;
4459
4460         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4461                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4462                                         &alt->endpoint[j].desc, state, timeout))
4463                         return -E2BIG;
4464                 continue;
4465         }
4466         return 0;
4467 }
4468
4469 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4470                 enum usb3_link_state state)
4471 {
4472         struct usb_device *parent;
4473         unsigned int num_hubs;
4474
4475         if (state == USB3_LPM_U2)
4476                 return 0;
4477
4478         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4479         for (parent = udev->parent, num_hubs = 0; parent->parent;
4480                         parent = parent->parent)
4481                 num_hubs++;
4482
4483         if (num_hubs < 2)
4484                 return 0;
4485
4486         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4487                         " below second-tier hub.\n");
4488         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4489                         "to decrease power consumption.\n");
4490         return -E2BIG;
4491 }
4492
4493 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4494                 struct usb_device *udev,
4495                 enum usb3_link_state state)
4496 {
4497         if (xhci->quirks & XHCI_INTEL_HOST)
4498                 return xhci_check_intel_tier_policy(udev, state);
4499         else
4500                 return 0;
4501 }
4502
4503 /* Returns the U1 or U2 timeout that should be enabled.
4504  * If the tier check or timeout setting functions return with a non-zero exit
4505  * code, that means the timeout value has been finalized and we shouldn't look
4506  * at any more endpoints.
4507  */
4508 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4509                         struct usb_device *udev, enum usb3_link_state state)
4510 {
4511         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4512         struct usb_host_config *config;
4513         char *state_name;
4514         int i;
4515         u16 timeout = USB3_LPM_DISABLED;
4516
4517         if (state == USB3_LPM_U1)
4518                 state_name = "U1";
4519         else if (state == USB3_LPM_U2)
4520                 state_name = "U2";
4521         else {
4522                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4523                                 state);
4524                 return timeout;
4525         }
4526
4527         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4528                 return timeout;
4529
4530         /* Gather some information about the currently installed configuration
4531          * and alternate interface settings.
4532          */
4533         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4534                         state, &timeout))
4535                 return timeout;
4536
4537         config = udev->actconfig;
4538         if (!config)
4539                 return timeout;
4540
4541         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4542                 struct usb_driver *driver;
4543                 struct usb_interface *intf = config->interface[i];
4544
4545                 if (!intf)
4546                         continue;
4547
4548                 /* Check if any currently bound drivers want hub-initiated LPM
4549                  * disabled.
4550                  */
4551                 if (intf->dev.driver) {
4552                         driver = to_usb_driver(intf->dev.driver);
4553                         if (driver && driver->disable_hub_initiated_lpm) {
4554                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4555                                                 "at request of driver %s\n",
4556                                                 state_name, driver->name);
4557                                 return xhci_get_timeout_no_hub_lpm(udev, state);
4558                         }
4559                 }
4560
4561                 /* Not sure how this could happen... */
4562                 if (!intf->cur_altsetting)
4563                         continue;
4564
4565                 if (xhci_update_timeout_for_interface(xhci, udev,
4566                                         intf->cur_altsetting,
4567                                         state, &timeout))
4568                         return timeout;
4569         }
4570         return timeout;
4571 }
4572
4573 static int calculate_max_exit_latency(struct usb_device *udev,
4574                 enum usb3_link_state state_changed,
4575                 u16 hub_encoded_timeout)
4576 {
4577         unsigned long long u1_mel_us = 0;
4578         unsigned long long u2_mel_us = 0;
4579         unsigned long long mel_us = 0;
4580         bool disabling_u1;
4581         bool disabling_u2;
4582         bool enabling_u1;
4583         bool enabling_u2;
4584
4585         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4586                         hub_encoded_timeout == USB3_LPM_DISABLED);
4587         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4588                         hub_encoded_timeout == USB3_LPM_DISABLED);
4589
4590         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4591                         hub_encoded_timeout != USB3_LPM_DISABLED);
4592         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4593                         hub_encoded_timeout != USB3_LPM_DISABLED);
4594
4595         /* If U1 was already enabled and we're not disabling it,
4596          * or we're going to enable U1, account for the U1 max exit latency.
4597          */
4598         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4599                         enabling_u1)
4600                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4601         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4602                         enabling_u2)
4603                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4604
4605         if (u1_mel_us > u2_mel_us)
4606                 mel_us = u1_mel_us;
4607         else
4608                 mel_us = u2_mel_us;
4609         /* xHCI host controller max exit latency field is only 16 bits wide. */
4610         if (mel_us > MAX_EXIT) {
4611                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4612                                 "is too big.\n", mel_us);
4613                 return -E2BIG;
4614         }
4615         return mel_us;
4616 }
4617
4618 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4619 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4620                         struct usb_device *udev, enum usb3_link_state state)
4621 {
4622         struct xhci_hcd *xhci;
4623         u16 hub_encoded_timeout;
4624         int mel;
4625         int ret;
4626
4627         xhci = hcd_to_xhci(hcd);
4628         /* The LPM timeout values are pretty host-controller specific, so don't
4629          * enable hub-initiated timeouts unless the vendor has provided
4630          * information about their timeout algorithm.
4631          */
4632         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4633                         !xhci->devs[udev->slot_id])
4634                 return USB3_LPM_DISABLED;
4635
4636         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4637         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4638         if (mel < 0) {
4639                 /* Max Exit Latency is too big, disable LPM. */
4640                 hub_encoded_timeout = USB3_LPM_DISABLED;
4641                 mel = 0;
4642         }
4643
4644         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4645         if (ret)
4646                 return ret;
4647         return hub_encoded_timeout;
4648 }
4649
4650 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4651                         struct usb_device *udev, enum usb3_link_state state)
4652 {
4653         struct xhci_hcd *xhci;
4654         u16 mel;
4655
4656         xhci = hcd_to_xhci(hcd);
4657         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4658                         !xhci->devs[udev->slot_id])
4659                 return 0;
4660
4661         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4662         return xhci_change_max_exit_latency(xhci, udev, mel);
4663 }
4664 #else /* CONFIG_PM */
4665
4666 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4667                                 struct usb_device *udev, int enable)
4668 {
4669         return 0;
4670 }
4671
4672 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4673 {
4674         return 0;
4675 }
4676
4677 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4678                         struct usb_device *udev, enum usb3_link_state state)
4679 {
4680         return USB3_LPM_DISABLED;
4681 }
4682
4683 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4684                         struct usb_device *udev, enum usb3_link_state state)
4685 {
4686         return 0;
4687 }
4688 #endif  /* CONFIG_PM */
4689
4690 /*-------------------------------------------------------------------------*/
4691
4692 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4693  * internal data structures for the device.
4694  */
4695 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4696                         struct usb_tt *tt, gfp_t mem_flags)
4697 {
4698         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4699         struct xhci_virt_device *vdev;
4700         struct xhci_command *config_cmd;
4701         struct xhci_input_control_ctx *ctrl_ctx;
4702         struct xhci_slot_ctx *slot_ctx;
4703         unsigned long flags;
4704         unsigned think_time;
4705         int ret;
4706
4707         /* Ignore root hubs */
4708         if (!hdev->parent)
4709                 return 0;
4710
4711         vdev = xhci->devs[hdev->slot_id];
4712         if (!vdev) {
4713                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4714                 return -EINVAL;
4715         }
4716         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4717         if (!config_cmd) {
4718                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4719                 return -ENOMEM;
4720         }
4721         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4722         if (!ctrl_ctx) {
4723                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4724                                 __func__);
4725                 xhci_free_command(xhci, config_cmd);
4726                 return -ENOMEM;
4727         }
4728
4729         spin_lock_irqsave(&xhci->lock, flags);
4730         if (hdev->speed == USB_SPEED_HIGH &&
4731                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4732                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4733                 xhci_free_command(xhci, config_cmd);
4734                 spin_unlock_irqrestore(&xhci->lock, flags);
4735                 return -ENOMEM;
4736         }
4737
4738         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4739         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4740         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4741         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4742         /*
4743          * refer to section 6.2.2: MTT should be 0 for full speed hub,
4744          * but it may be already set to 1 when setup an xHCI virtual
4745          * device, so clear it anyway.
4746          */
4747         if (tt->multi)
4748                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4749         else if (hdev->speed == USB_SPEED_FULL)
4750                 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4751
4752         if (xhci->hci_version > 0x95) {
4753                 xhci_dbg(xhci, "xHCI version %x needs hub "
4754                                 "TT think time and number of ports\n",
4755                                 (unsigned int) xhci->hci_version);
4756                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4757                 /* Set TT think time - convert from ns to FS bit times.
4758                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4759                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4760                  *
4761                  * xHCI 1.0: this field shall be 0 if the device is not a
4762                  * High-spped hub.
4763                  */
4764                 think_time = tt->think_time;
4765                 if (think_time != 0)
4766                         think_time = (think_time / 666) - 1;
4767                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4768                         slot_ctx->tt_info |=
4769                                 cpu_to_le32(TT_THINK_TIME(think_time));
4770         } else {
4771                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4772                                 "TT think time or number of ports\n",
4773                                 (unsigned int) xhci->hci_version);
4774         }
4775         slot_ctx->dev_state = 0;
4776         spin_unlock_irqrestore(&xhci->lock, flags);
4777
4778         xhci_dbg(xhci, "Set up %s for hub device.\n",
4779                         (xhci->hci_version > 0x95) ?
4780                         "configure endpoint" : "evaluate context");
4781         xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4782         xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4783
4784         /* Issue and wait for the configure endpoint or
4785          * evaluate context command.
4786          */
4787         if (xhci->hci_version > 0x95)
4788                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4789                                 false, false);
4790         else
4791                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4792                                 true, false);
4793
4794         xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4795         xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4796
4797         xhci_free_command(xhci, config_cmd);
4798         return ret;
4799 }
4800
4801 int xhci_get_frame(struct usb_hcd *hcd)
4802 {
4803         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4804         /* EHCI mods by the periodic size.  Why? */
4805         return readl(&xhci->run_regs->microframe_index) >> 3;
4806 }
4807
4808 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4809 {
4810         struct xhci_hcd         *xhci;
4811         struct device           *dev = hcd->self.controller;
4812         int                     retval;
4813
4814         /* Accept arbitrarily long scatter-gather lists */
4815         hcd->self.sg_tablesize = ~0;
4816
4817         /* support to build packet from discontinuous buffers */
4818         hcd->self.no_sg_constraint = 1;
4819
4820         /* XHCI controllers don't stop the ep queue on short packets :| */
4821         hcd->self.no_stop_on_short = 1;
4822
4823         xhci = hcd_to_xhci(hcd);
4824
4825         if (usb_hcd_is_primary_hcd(hcd)) {
4826                 xhci->main_hcd = hcd;
4827                 /* Mark the first roothub as being USB 2.0.
4828                  * The xHCI driver will register the USB 3.0 roothub.
4829                  */
4830                 hcd->speed = HCD_USB2;
4831                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4832                 /*
4833                  * USB 2.0 roothub under xHCI has an integrated TT,
4834                  * (rate matching hub) as opposed to having an OHCI/UHCI
4835                  * companion controller.
4836                  */
4837                 hcd->has_tt = 1;
4838         } else {
4839                 if (xhci->sbrn == 0x31) {
4840                         xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4841                         hcd->speed = HCD_USB31;
4842                         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
4843                 }
4844                 /* xHCI private pointer was set in xhci_pci_probe for the second
4845                  * registered roothub.
4846                  */
4847                 return 0;
4848         }
4849
4850         mutex_init(&xhci->mutex);
4851         xhci->cap_regs = hcd->regs;
4852         xhci->op_regs = hcd->regs +
4853                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4854         xhci->run_regs = hcd->regs +
4855                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4856         /* Cache read-only capability registers */
4857         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4858         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4859         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4860         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4861         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4862         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4863         if (xhci->hci_version > 0x100)
4864                 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4865         xhci_print_registers(xhci);
4866
4867         xhci->quirks |= quirks;
4868
4869         get_quirks(dev, xhci);
4870
4871         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4872          * success event after a short transfer. This quirk will ignore such
4873          * spurious event.
4874          */
4875         if (xhci->hci_version > 0x96)
4876                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4877
4878         /* Make sure the HC is halted. */
4879         retval = xhci_halt(xhci);
4880         if (retval)
4881                 return retval;
4882
4883         xhci_dbg(xhci, "Resetting HCD\n");
4884         /* Reset the internal HC memory state and registers. */
4885         retval = xhci_reset(xhci);
4886         if (retval)
4887                 return retval;
4888         xhci_dbg(xhci, "Reset complete\n");
4889
4890         /*
4891          * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
4892          * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
4893          * address memory pointers actually. So, this driver clears the AC64
4894          * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
4895          * DMA_BIT_MASK(32)) in this xhci_gen_setup().
4896          */
4897         if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
4898                 xhci->hcc_params &= ~BIT(0);
4899
4900         /* Set dma_mask and coherent_dma_mask to 64-bits,
4901          * if xHC supports 64-bit addressing */
4902         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4903                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4904                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4905                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4906         } else {
4907                 /*
4908                  * This is to avoid error in cases where a 32-bit USB
4909                  * controller is used on a 64-bit capable system.
4910                  */
4911                 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4912                 if (retval)
4913                         return retval;
4914                 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4915                 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4916         }
4917
4918         xhci_dbg(xhci, "Calling HCD init\n");
4919         /* Initialize HCD and host controller data structures. */
4920         retval = xhci_init(hcd);
4921         if (retval)
4922                 return retval;
4923         xhci_dbg(xhci, "Called HCD init\n");
4924
4925         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4926                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
4927
4928         return 0;
4929 }
4930 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4931
4932 static const struct hc_driver xhci_hc_driver = {
4933         .description =          "xhci-hcd",
4934         .product_desc =         "xHCI Host Controller",
4935         .hcd_priv_size =        sizeof(struct xhci_hcd),
4936
4937         /*
4938          * generic hardware linkage
4939          */
4940         .irq =                  xhci_irq,
4941         .flags =                HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4942
4943         /*
4944          * basic lifecycle operations
4945          */
4946         .reset =                NULL, /* set in xhci_init_driver() */
4947         .start =                xhci_run,
4948         .stop =                 xhci_stop,
4949         .shutdown =             xhci_shutdown,
4950
4951         /*
4952          * managing i/o requests and associated device resources
4953          */
4954         .urb_enqueue =          xhci_urb_enqueue,
4955         .urb_dequeue =          xhci_urb_dequeue,
4956         .alloc_dev =            xhci_alloc_dev,
4957         .free_dev =             xhci_free_dev,
4958         .alloc_streams =        xhci_alloc_streams,
4959         .free_streams =         xhci_free_streams,
4960         .add_endpoint =         xhci_add_endpoint,
4961         .drop_endpoint =        xhci_drop_endpoint,
4962         .endpoint_reset =       xhci_endpoint_reset,
4963         .check_bandwidth =      xhci_check_bandwidth,
4964         .reset_bandwidth =      xhci_reset_bandwidth,
4965         .address_device =       xhci_address_device,
4966         .enable_device =        xhci_enable_device,
4967         .update_hub_device =    xhci_update_hub_device,
4968         .reset_device =         xhci_discover_or_reset_device,
4969
4970         /*
4971          * scheduling support
4972          */
4973         .get_frame_number =     xhci_get_frame,
4974
4975         /*
4976          * root hub support
4977          */
4978         .hub_control =          xhci_hub_control,
4979         .hub_status_data =      xhci_hub_status_data,
4980         .bus_suspend =          xhci_bus_suspend,
4981         .bus_resume =           xhci_bus_resume,
4982
4983         /*
4984          * call back when device connected and addressed
4985          */
4986         .update_device =        xhci_update_device,
4987         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
4988         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
4989         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
4990         .find_raw_port_number = xhci_find_raw_port_number,
4991 };
4992
4993 void xhci_init_driver(struct hc_driver *drv,
4994                       const struct xhci_driver_overrides *over)
4995 {
4996         BUG_ON(!over);
4997
4998         /* Copy the generic table to drv then apply the overrides */
4999         *drv = xhci_hc_driver;
5000
5001         if (over) {
5002                 drv->hcd_priv_size += over->extra_priv_size;
5003                 if (over->reset)
5004                         drv->reset = over->reset;
5005                 if (over->start)
5006                         drv->start = over->start;
5007         }
5008 }
5009 EXPORT_SYMBOL_GPL(xhci_init_driver);
5010
5011 MODULE_DESCRIPTION(DRIVER_DESC);
5012 MODULE_AUTHOR(DRIVER_AUTHOR);
5013 MODULE_LICENSE("GPL");
5014
5015 static int __init xhci_hcd_init(void)
5016 {
5017         /*
5018          * Check the compiler generated sizes of structures that must be laid
5019          * out in specific ways for hardware access.
5020          */
5021         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5022         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5023         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5024         /* xhci_device_control has eight fields, and also
5025          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5026          */
5027         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5028         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5029         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5030         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5031         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5032         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5033         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5034
5035         if (usb_disabled())
5036                 return -ENODEV;
5037
5038         return 0;
5039 }
5040
5041 /*
5042  * If an init function is provided, an exit function must also be provided
5043  * to allow module unload.
5044  */
5045 static void __exit xhci_hcd_fini(void) { }
5046
5047 module_init(xhci_hcd_init);
5048 module_exit(xhci_hcd_fini);