Merge remote-tracking branches 'regulator/fix/da9211', 'regulator/fix/ltc3589' and...
[sfrench/cifs-2.6.git] / drivers / usb / host / xhci-mem.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
27 #include <linux/dma-mapping.h>
28
29 #include "xhci.h"
30 #include "xhci-trace.h"
31
32 /*
33  * Allocates a generic ring segment from the ring pool, sets the dma address,
34  * initializes the segment to zero, and sets the private next pointer to NULL.
35  *
36  * Section 4.11.1.1:
37  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
38  */
39 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
40                                         unsigned int cycle_state, gfp_t flags)
41 {
42         struct xhci_segment *seg;
43         dma_addr_t      dma;
44         int             i;
45
46         seg = kzalloc(sizeof *seg, flags);
47         if (!seg)
48                 return NULL;
49
50         seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
51         if (!seg->trbs) {
52                 kfree(seg);
53                 return NULL;
54         }
55
56         memset(seg->trbs, 0, TRB_SEGMENT_SIZE);
57         /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
58         if (cycle_state == 0) {
59                 for (i = 0; i < TRBS_PER_SEGMENT; i++)
60                         seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
61         }
62         seg->dma = dma;
63         seg->next = NULL;
64
65         return seg;
66 }
67
68 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
69 {
70         if (seg->trbs) {
71                 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
72                 seg->trbs = NULL;
73         }
74         kfree(seg);
75 }
76
77 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
78                                 struct xhci_segment *first)
79 {
80         struct xhci_segment *seg;
81
82         seg = first->next;
83         while (seg != first) {
84                 struct xhci_segment *next = seg->next;
85                 xhci_segment_free(xhci, seg);
86                 seg = next;
87         }
88         xhci_segment_free(xhci, first);
89 }
90
91 /*
92  * Make the prev segment point to the next segment.
93  *
94  * Change the last TRB in the prev segment to be a Link TRB which points to the
95  * DMA address of the next segment.  The caller needs to set any Link TRB
96  * related flags, such as End TRB, Toggle Cycle, and no snoop.
97  */
98 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
99                 struct xhci_segment *next, enum xhci_ring_type type)
100 {
101         u32 val;
102
103         if (!prev || !next)
104                 return;
105         prev->next = next;
106         if (type != TYPE_EVENT) {
107                 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
108                         cpu_to_le64(next->dma);
109
110                 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
111                 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
112                 val &= ~TRB_TYPE_BITMASK;
113                 val |= TRB_TYPE(TRB_LINK);
114                 /* Always set the chain bit with 0.95 hardware */
115                 /* Set chain bit for isoc rings on AMD 0.96 host */
116                 if (xhci_link_trb_quirk(xhci) ||
117                                 (type == TYPE_ISOC &&
118                                  (xhci->quirks & XHCI_AMD_0x96_HOST)))
119                         val |= TRB_CHAIN;
120                 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
121         }
122 }
123
124 /*
125  * Link the ring to the new segments.
126  * Set Toggle Cycle for the new ring if needed.
127  */
128 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
129                 struct xhci_segment *first, struct xhci_segment *last,
130                 unsigned int num_segs)
131 {
132         struct xhci_segment *next;
133
134         if (!ring || !first || !last)
135                 return;
136
137         next = ring->enq_seg->next;
138         xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
139         xhci_link_segments(xhci, last, next, ring->type);
140         ring->num_segs += num_segs;
141         ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
142
143         if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
144                 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
145                         &= ~cpu_to_le32(LINK_TOGGLE);
146                 last->trbs[TRBS_PER_SEGMENT-1].link.control
147                         |= cpu_to_le32(LINK_TOGGLE);
148                 ring->last_seg = last;
149         }
150 }
151
152 /*
153  * We need a radix tree for mapping physical addresses of TRBs to which stream
154  * ID they belong to.  We need to do this because the host controller won't tell
155  * us which stream ring the TRB came from.  We could store the stream ID in an
156  * event data TRB, but that doesn't help us for the cancellation case, since the
157  * endpoint may stop before it reaches that event data TRB.
158  *
159  * The radix tree maps the upper portion of the TRB DMA address to a ring
160  * segment that has the same upper portion of DMA addresses.  For example, say I
161  * have segments of size 1KB, that are always 1KB aligned.  A segment may
162  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
163  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
164  * pass the radix tree a key to get the right stream ID:
165  *
166  *      0x10c90fff >> 10 = 0x43243
167  *      0x10c912c0 >> 10 = 0x43244
168  *      0x10c91400 >> 10 = 0x43245
169  *
170  * Obviously, only those TRBs with DMA addresses that are within the segment
171  * will make the radix tree return the stream ID for that ring.
172  *
173  * Caveats for the radix tree:
174  *
175  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
176  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
177  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
178  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
179  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
180  * extended systems (where the DMA address can be bigger than 32-bits),
181  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
182  */
183 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
184                 struct xhci_ring *ring,
185                 struct xhci_segment *seg,
186                 gfp_t mem_flags)
187 {
188         unsigned long key;
189         int ret;
190
191         key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
192         /* Skip any segments that were already added. */
193         if (radix_tree_lookup(trb_address_map, key))
194                 return 0;
195
196         ret = radix_tree_maybe_preload(mem_flags);
197         if (ret)
198                 return ret;
199         ret = radix_tree_insert(trb_address_map,
200                         key, ring);
201         radix_tree_preload_end();
202         return ret;
203 }
204
205 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
206                 struct xhci_segment *seg)
207 {
208         unsigned long key;
209
210         key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
211         if (radix_tree_lookup(trb_address_map, key))
212                 radix_tree_delete(trb_address_map, key);
213 }
214
215 static int xhci_update_stream_segment_mapping(
216                 struct radix_tree_root *trb_address_map,
217                 struct xhci_ring *ring,
218                 struct xhci_segment *first_seg,
219                 struct xhci_segment *last_seg,
220                 gfp_t mem_flags)
221 {
222         struct xhci_segment *seg;
223         struct xhci_segment *failed_seg;
224         int ret;
225
226         if (WARN_ON_ONCE(trb_address_map == NULL))
227                 return 0;
228
229         seg = first_seg;
230         do {
231                 ret = xhci_insert_segment_mapping(trb_address_map,
232                                 ring, seg, mem_flags);
233                 if (ret)
234                         goto remove_streams;
235                 if (seg == last_seg)
236                         return 0;
237                 seg = seg->next;
238         } while (seg != first_seg);
239
240         return 0;
241
242 remove_streams:
243         failed_seg = seg;
244         seg = first_seg;
245         do {
246                 xhci_remove_segment_mapping(trb_address_map, seg);
247                 if (seg == failed_seg)
248                         return ret;
249                 seg = seg->next;
250         } while (seg != first_seg);
251
252         return ret;
253 }
254
255 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
256 {
257         struct xhci_segment *seg;
258
259         if (WARN_ON_ONCE(ring->trb_address_map == NULL))
260                 return;
261
262         seg = ring->first_seg;
263         do {
264                 xhci_remove_segment_mapping(ring->trb_address_map, seg);
265                 seg = seg->next;
266         } while (seg != ring->first_seg);
267 }
268
269 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
270 {
271         return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
272                         ring->first_seg, ring->last_seg, mem_flags);
273 }
274
275 /* XXX: Do we need the hcd structure in all these functions? */
276 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
277 {
278         if (!ring)
279                 return;
280
281         if (ring->first_seg) {
282                 if (ring->type == TYPE_STREAM)
283                         xhci_remove_stream_mapping(ring);
284                 xhci_free_segments_for_ring(xhci, ring->first_seg);
285         }
286
287         kfree(ring);
288 }
289
290 static void xhci_initialize_ring_info(struct xhci_ring *ring,
291                                         unsigned int cycle_state)
292 {
293         /* The ring is empty, so the enqueue pointer == dequeue pointer */
294         ring->enqueue = ring->first_seg->trbs;
295         ring->enq_seg = ring->first_seg;
296         ring->dequeue = ring->enqueue;
297         ring->deq_seg = ring->first_seg;
298         /* The ring is initialized to 0. The producer must write 1 to the cycle
299          * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
300          * compare CCS to the cycle bit to check ownership, so CCS = 1.
301          *
302          * New rings are initialized with cycle state equal to 1; if we are
303          * handling ring expansion, set the cycle state equal to the old ring.
304          */
305         ring->cycle_state = cycle_state;
306         /* Not necessary for new rings, but needed for re-initialized rings */
307         ring->enq_updates = 0;
308         ring->deq_updates = 0;
309
310         /*
311          * Each segment has a link TRB, and leave an extra TRB for SW
312          * accounting purpose
313          */
314         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
315 }
316
317 /* Allocate segments and link them for a ring */
318 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
319                 struct xhci_segment **first, struct xhci_segment **last,
320                 unsigned int num_segs, unsigned int cycle_state,
321                 enum xhci_ring_type type, gfp_t flags)
322 {
323         struct xhci_segment *prev;
324
325         prev = xhci_segment_alloc(xhci, cycle_state, flags);
326         if (!prev)
327                 return -ENOMEM;
328         num_segs--;
329
330         *first = prev;
331         while (num_segs > 0) {
332                 struct xhci_segment     *next;
333
334                 next = xhci_segment_alloc(xhci, cycle_state, flags);
335                 if (!next) {
336                         prev = *first;
337                         while (prev) {
338                                 next = prev->next;
339                                 xhci_segment_free(xhci, prev);
340                                 prev = next;
341                         }
342                         return -ENOMEM;
343                 }
344                 xhci_link_segments(xhci, prev, next, type);
345
346                 prev = next;
347                 num_segs--;
348         }
349         xhci_link_segments(xhci, prev, *first, type);
350         *last = prev;
351
352         return 0;
353 }
354
355 /**
356  * Create a new ring with zero or more segments.
357  *
358  * Link each segment together into a ring.
359  * Set the end flag and the cycle toggle bit on the last segment.
360  * See section 4.9.1 and figures 15 and 16.
361  */
362 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
363                 unsigned int num_segs, unsigned int cycle_state,
364                 enum xhci_ring_type type, gfp_t flags)
365 {
366         struct xhci_ring        *ring;
367         int ret;
368
369         ring = kzalloc(sizeof *(ring), flags);
370         if (!ring)
371                 return NULL;
372
373         ring->num_segs = num_segs;
374         INIT_LIST_HEAD(&ring->td_list);
375         ring->type = type;
376         if (num_segs == 0)
377                 return ring;
378
379         ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
380                         &ring->last_seg, num_segs, cycle_state, type, flags);
381         if (ret)
382                 goto fail;
383
384         /* Only event ring does not use link TRB */
385         if (type != TYPE_EVENT) {
386                 /* See section 4.9.2.1 and 6.4.4.1 */
387                 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
388                         cpu_to_le32(LINK_TOGGLE);
389         }
390         xhci_initialize_ring_info(ring, cycle_state);
391         return ring;
392
393 fail:
394         kfree(ring);
395         return NULL;
396 }
397
398 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
399                 struct xhci_virt_device *virt_dev,
400                 unsigned int ep_index)
401 {
402         int rings_cached;
403
404         rings_cached = virt_dev->num_rings_cached;
405         if (rings_cached < XHCI_MAX_RINGS_CACHED) {
406                 virt_dev->ring_cache[rings_cached] =
407                         virt_dev->eps[ep_index].ring;
408                 virt_dev->num_rings_cached++;
409                 xhci_dbg(xhci, "Cached old ring, "
410                                 "%d ring%s cached\n",
411                                 virt_dev->num_rings_cached,
412                                 (virt_dev->num_rings_cached > 1) ? "s" : "");
413         } else {
414                 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
415                 xhci_dbg(xhci, "Ring cache full (%d rings), "
416                                 "freeing ring\n",
417                                 virt_dev->num_rings_cached);
418         }
419         virt_dev->eps[ep_index].ring = NULL;
420 }
421
422 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
423  * pointers to the beginning of the ring.
424  */
425 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
426                         struct xhci_ring *ring, unsigned int cycle_state,
427                         enum xhci_ring_type type)
428 {
429         struct xhci_segment     *seg = ring->first_seg;
430         int i;
431
432         do {
433                 memset(seg->trbs, 0,
434                                 sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
435                 if (cycle_state == 0) {
436                         for (i = 0; i < TRBS_PER_SEGMENT; i++)
437                                 seg->trbs[i].link.control |=
438                                         cpu_to_le32(TRB_CYCLE);
439                 }
440                 /* All endpoint rings have link TRBs */
441                 xhci_link_segments(xhci, seg, seg->next, type);
442                 seg = seg->next;
443         } while (seg != ring->first_seg);
444         ring->type = type;
445         xhci_initialize_ring_info(ring, cycle_state);
446         /* td list should be empty since all URBs have been cancelled,
447          * but just in case...
448          */
449         INIT_LIST_HEAD(&ring->td_list);
450 }
451
452 /*
453  * Expand an existing ring.
454  * Look for a cached ring or allocate a new ring which has same segment numbers
455  * and link the two rings.
456  */
457 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
458                                 unsigned int num_trbs, gfp_t flags)
459 {
460         struct xhci_segment     *first;
461         struct xhci_segment     *last;
462         unsigned int            num_segs;
463         unsigned int            num_segs_needed;
464         int                     ret;
465
466         num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
467                                 (TRBS_PER_SEGMENT - 1);
468
469         /* Allocate number of segments we needed, or double the ring size */
470         num_segs = ring->num_segs > num_segs_needed ?
471                         ring->num_segs : num_segs_needed;
472
473         ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
474                         num_segs, ring->cycle_state, ring->type, flags);
475         if (ret)
476                 return -ENOMEM;
477
478         if (ring->type == TYPE_STREAM)
479                 ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
480                                                 ring, first, last, flags);
481         if (ret) {
482                 struct xhci_segment *next;
483                 do {
484                         next = first->next;
485                         xhci_segment_free(xhci, first);
486                         if (first == last)
487                                 break;
488                         first = next;
489                 } while (true);
490                 return ret;
491         }
492
493         xhci_link_rings(xhci, ring, first, last, num_segs);
494         xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
495                         "ring expansion succeed, now has %d segments",
496                         ring->num_segs);
497
498         return 0;
499 }
500
501 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
502
503 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
504                                                     int type, gfp_t flags)
505 {
506         struct xhci_container_ctx *ctx;
507
508         if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
509                 return NULL;
510
511         ctx = kzalloc(sizeof(*ctx), flags);
512         if (!ctx)
513                 return NULL;
514
515         ctx->type = type;
516         ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
517         if (type == XHCI_CTX_TYPE_INPUT)
518                 ctx->size += CTX_SIZE(xhci->hcc_params);
519
520         ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
521         if (!ctx->bytes) {
522                 kfree(ctx);
523                 return NULL;
524         }
525         memset(ctx->bytes, 0, ctx->size);
526         return ctx;
527 }
528
529 static void xhci_free_container_ctx(struct xhci_hcd *xhci,
530                              struct xhci_container_ctx *ctx)
531 {
532         if (!ctx)
533                 return;
534         dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
535         kfree(ctx);
536 }
537
538 struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
539                                               struct xhci_container_ctx *ctx)
540 {
541         if (ctx->type != XHCI_CTX_TYPE_INPUT)
542                 return NULL;
543
544         return (struct xhci_input_control_ctx *)ctx->bytes;
545 }
546
547 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
548                                         struct xhci_container_ctx *ctx)
549 {
550         if (ctx->type == XHCI_CTX_TYPE_DEVICE)
551                 return (struct xhci_slot_ctx *)ctx->bytes;
552
553         return (struct xhci_slot_ctx *)
554                 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
555 }
556
557 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
558                                     struct xhci_container_ctx *ctx,
559                                     unsigned int ep_index)
560 {
561         /* increment ep index by offset of start of ep ctx array */
562         ep_index++;
563         if (ctx->type == XHCI_CTX_TYPE_INPUT)
564                 ep_index++;
565
566         return (struct xhci_ep_ctx *)
567                 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
568 }
569
570
571 /***************** Streams structures manipulation *************************/
572
573 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
574                 unsigned int num_stream_ctxs,
575                 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
576 {
577         struct device *dev = xhci_to_hcd(xhci)->self.controller;
578         size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
579
580         if (size > MEDIUM_STREAM_ARRAY_SIZE)
581                 dma_free_coherent(dev, size,
582                                 stream_ctx, dma);
583         else if (size <= SMALL_STREAM_ARRAY_SIZE)
584                 return dma_pool_free(xhci->small_streams_pool,
585                                 stream_ctx, dma);
586         else
587                 return dma_pool_free(xhci->medium_streams_pool,
588                                 stream_ctx, dma);
589 }
590
591 /*
592  * The stream context array for each endpoint with bulk streams enabled can
593  * vary in size, based on:
594  *  - how many streams the endpoint supports,
595  *  - the maximum primary stream array size the host controller supports,
596  *  - and how many streams the device driver asks for.
597  *
598  * The stream context array must be a power of 2, and can be as small as
599  * 64 bytes or as large as 1MB.
600  */
601 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
602                 unsigned int num_stream_ctxs, dma_addr_t *dma,
603                 gfp_t mem_flags)
604 {
605         struct device *dev = xhci_to_hcd(xhci)->self.controller;
606         size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
607
608         if (size > MEDIUM_STREAM_ARRAY_SIZE)
609                 return dma_alloc_coherent(dev, size,
610                                 dma, mem_flags);
611         else if (size <= SMALL_STREAM_ARRAY_SIZE)
612                 return dma_pool_alloc(xhci->small_streams_pool,
613                                 mem_flags, dma);
614         else
615                 return dma_pool_alloc(xhci->medium_streams_pool,
616                                 mem_flags, dma);
617 }
618
619 struct xhci_ring *xhci_dma_to_transfer_ring(
620                 struct xhci_virt_ep *ep,
621                 u64 address)
622 {
623         if (ep->ep_state & EP_HAS_STREAMS)
624                 return radix_tree_lookup(&ep->stream_info->trb_address_map,
625                                 address >> TRB_SEGMENT_SHIFT);
626         return ep->ring;
627 }
628
629 struct xhci_ring *xhci_stream_id_to_ring(
630                 struct xhci_virt_device *dev,
631                 unsigned int ep_index,
632                 unsigned int stream_id)
633 {
634         struct xhci_virt_ep *ep = &dev->eps[ep_index];
635
636         if (stream_id == 0)
637                 return ep->ring;
638         if (!ep->stream_info)
639                 return NULL;
640
641         if (stream_id > ep->stream_info->num_streams)
642                 return NULL;
643         return ep->stream_info->stream_rings[stream_id];
644 }
645
646 /*
647  * Change an endpoint's internal structure so it supports stream IDs.  The
648  * number of requested streams includes stream 0, which cannot be used by device
649  * drivers.
650  *
651  * The number of stream contexts in the stream context array may be bigger than
652  * the number of streams the driver wants to use.  This is because the number of
653  * stream context array entries must be a power of two.
654  */
655 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
656                 unsigned int num_stream_ctxs,
657                 unsigned int num_streams, gfp_t mem_flags)
658 {
659         struct xhci_stream_info *stream_info;
660         u32 cur_stream;
661         struct xhci_ring *cur_ring;
662         u64 addr;
663         int ret;
664
665         xhci_dbg(xhci, "Allocating %u streams and %u "
666                         "stream context array entries.\n",
667                         num_streams, num_stream_ctxs);
668         if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
669                 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
670                 return NULL;
671         }
672         xhci->cmd_ring_reserved_trbs++;
673
674         stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
675         if (!stream_info)
676                 goto cleanup_trbs;
677
678         stream_info->num_streams = num_streams;
679         stream_info->num_stream_ctxs = num_stream_ctxs;
680
681         /* Initialize the array of virtual pointers to stream rings. */
682         stream_info->stream_rings = kzalloc(
683                         sizeof(struct xhci_ring *)*num_streams,
684                         mem_flags);
685         if (!stream_info->stream_rings)
686                 goto cleanup_info;
687
688         /* Initialize the array of DMA addresses for stream rings for the HW. */
689         stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
690                         num_stream_ctxs, &stream_info->ctx_array_dma,
691                         mem_flags);
692         if (!stream_info->stream_ctx_array)
693                 goto cleanup_ctx;
694         memset(stream_info->stream_ctx_array, 0,
695                         sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
696
697         /* Allocate everything needed to free the stream rings later */
698         stream_info->free_streams_command =
699                 xhci_alloc_command(xhci, true, true, mem_flags);
700         if (!stream_info->free_streams_command)
701                 goto cleanup_ctx;
702
703         INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
704
705         /* Allocate rings for all the streams that the driver will use,
706          * and add their segment DMA addresses to the radix tree.
707          * Stream 0 is reserved.
708          */
709         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
710                 stream_info->stream_rings[cur_stream] =
711                         xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, mem_flags);
712                 cur_ring = stream_info->stream_rings[cur_stream];
713                 if (!cur_ring)
714                         goto cleanup_rings;
715                 cur_ring->stream_id = cur_stream;
716                 cur_ring->trb_address_map = &stream_info->trb_address_map;
717                 /* Set deq ptr, cycle bit, and stream context type */
718                 addr = cur_ring->first_seg->dma |
719                         SCT_FOR_CTX(SCT_PRI_TR) |
720                         cur_ring->cycle_state;
721                 stream_info->stream_ctx_array[cur_stream].stream_ring =
722                         cpu_to_le64(addr);
723                 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
724                                 cur_stream, (unsigned long long) addr);
725
726                 ret = xhci_update_stream_mapping(cur_ring, mem_flags);
727                 if (ret) {
728                         xhci_ring_free(xhci, cur_ring);
729                         stream_info->stream_rings[cur_stream] = NULL;
730                         goto cleanup_rings;
731                 }
732         }
733         /* Leave the other unused stream ring pointers in the stream context
734          * array initialized to zero.  This will cause the xHC to give us an
735          * error if the device asks for a stream ID we don't have setup (if it
736          * was any other way, the host controller would assume the ring is
737          * "empty" and wait forever for data to be queued to that stream ID).
738          */
739
740         return stream_info;
741
742 cleanup_rings:
743         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
744                 cur_ring = stream_info->stream_rings[cur_stream];
745                 if (cur_ring) {
746                         xhci_ring_free(xhci, cur_ring);
747                         stream_info->stream_rings[cur_stream] = NULL;
748                 }
749         }
750         xhci_free_command(xhci, stream_info->free_streams_command);
751 cleanup_ctx:
752         kfree(stream_info->stream_rings);
753 cleanup_info:
754         kfree(stream_info);
755 cleanup_trbs:
756         xhci->cmd_ring_reserved_trbs--;
757         return NULL;
758 }
759 /*
760  * Sets the MaxPStreams field and the Linear Stream Array field.
761  * Sets the dequeue pointer to the stream context array.
762  */
763 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
764                 struct xhci_ep_ctx *ep_ctx,
765                 struct xhci_stream_info *stream_info)
766 {
767         u32 max_primary_streams;
768         /* MaxPStreams is the number of stream context array entries, not the
769          * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
770          * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
771          */
772         max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
773         xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
774                         "Setting number of stream ctx array entries to %u",
775                         1 << (max_primary_streams + 1));
776         ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
777         ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
778                                        | EP_HAS_LSA);
779         ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
780 }
781
782 /*
783  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
784  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
785  * not at the beginning of the ring).
786  */
787 void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
788                 struct xhci_ep_ctx *ep_ctx,
789                 struct xhci_virt_ep *ep)
790 {
791         dma_addr_t addr;
792         ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
793         addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
794         ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
795 }
796
797 /* Frees all stream contexts associated with the endpoint,
798  *
799  * Caller should fix the endpoint context streams fields.
800  */
801 void xhci_free_stream_info(struct xhci_hcd *xhci,
802                 struct xhci_stream_info *stream_info)
803 {
804         int cur_stream;
805         struct xhci_ring *cur_ring;
806
807         if (!stream_info)
808                 return;
809
810         for (cur_stream = 1; cur_stream < stream_info->num_streams;
811                         cur_stream++) {
812                 cur_ring = stream_info->stream_rings[cur_stream];
813                 if (cur_ring) {
814                         xhci_ring_free(xhci, cur_ring);
815                         stream_info->stream_rings[cur_stream] = NULL;
816                 }
817         }
818         xhci_free_command(xhci, stream_info->free_streams_command);
819         xhci->cmd_ring_reserved_trbs--;
820         if (stream_info->stream_ctx_array)
821                 xhci_free_stream_ctx(xhci,
822                                 stream_info->num_stream_ctxs,
823                                 stream_info->stream_ctx_array,
824                                 stream_info->ctx_array_dma);
825
826         kfree(stream_info->stream_rings);
827         kfree(stream_info);
828 }
829
830
831 /***************** Device context manipulation *************************/
832
833 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
834                 struct xhci_virt_ep *ep)
835 {
836         init_timer(&ep->stop_cmd_timer);
837         ep->stop_cmd_timer.data = (unsigned long) ep;
838         ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
839         ep->xhci = xhci;
840 }
841
842 static void xhci_free_tt_info(struct xhci_hcd *xhci,
843                 struct xhci_virt_device *virt_dev,
844                 int slot_id)
845 {
846         struct list_head *tt_list_head;
847         struct xhci_tt_bw_info *tt_info, *next;
848         bool slot_found = false;
849
850         /* If the device never made it past the Set Address stage,
851          * it may not have the real_port set correctly.
852          */
853         if (virt_dev->real_port == 0 ||
854                         virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
855                 xhci_dbg(xhci, "Bad real port.\n");
856                 return;
857         }
858
859         tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
860         list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
861                 /* Multi-TT hubs will have more than one entry */
862                 if (tt_info->slot_id == slot_id) {
863                         slot_found = true;
864                         list_del(&tt_info->tt_list);
865                         kfree(tt_info);
866                 } else if (slot_found) {
867                         break;
868                 }
869         }
870 }
871
872 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
873                 struct xhci_virt_device *virt_dev,
874                 struct usb_device *hdev,
875                 struct usb_tt *tt, gfp_t mem_flags)
876 {
877         struct xhci_tt_bw_info          *tt_info;
878         unsigned int                    num_ports;
879         int                             i, j;
880
881         if (!tt->multi)
882                 num_ports = 1;
883         else
884                 num_ports = hdev->maxchild;
885
886         for (i = 0; i < num_ports; i++, tt_info++) {
887                 struct xhci_interval_bw_table *bw_table;
888
889                 tt_info = kzalloc(sizeof(*tt_info), mem_flags);
890                 if (!tt_info)
891                         goto free_tts;
892                 INIT_LIST_HEAD(&tt_info->tt_list);
893                 list_add(&tt_info->tt_list,
894                                 &xhci->rh_bw[virt_dev->real_port - 1].tts);
895                 tt_info->slot_id = virt_dev->udev->slot_id;
896                 if (tt->multi)
897                         tt_info->ttport = i+1;
898                 bw_table = &tt_info->bw_table;
899                 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
900                         INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
901         }
902         return 0;
903
904 free_tts:
905         xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
906         return -ENOMEM;
907 }
908
909
910 /* All the xhci_tds in the ring's TD list should be freed at this point.
911  * Should be called with xhci->lock held if there is any chance the TT lists
912  * will be manipulated by the configure endpoint, allocate device, or update
913  * hub functions while this function is removing the TT entries from the list.
914  */
915 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
916 {
917         struct xhci_virt_device *dev;
918         int i;
919         int old_active_eps = 0;
920
921         /* Slot ID 0 is reserved */
922         if (slot_id == 0 || !xhci->devs[slot_id])
923                 return;
924
925         dev = xhci->devs[slot_id];
926         xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
927         if (!dev)
928                 return;
929
930         if (dev->tt_info)
931                 old_active_eps = dev->tt_info->active_eps;
932
933         for (i = 0; i < 31; ++i) {
934                 if (dev->eps[i].ring)
935                         xhci_ring_free(xhci, dev->eps[i].ring);
936                 if (dev->eps[i].stream_info)
937                         xhci_free_stream_info(xhci,
938                                         dev->eps[i].stream_info);
939                 /* Endpoints on the TT/root port lists should have been removed
940                  * when usb_disable_device() was called for the device.
941                  * We can't drop them anyway, because the udev might have gone
942                  * away by this point, and we can't tell what speed it was.
943                  */
944                 if (!list_empty(&dev->eps[i].bw_endpoint_list))
945                         xhci_warn(xhci, "Slot %u endpoint %u "
946                                         "not removed from BW list!\n",
947                                         slot_id, i);
948         }
949         /* If this is a hub, free the TT(s) from the TT list */
950         xhci_free_tt_info(xhci, dev, slot_id);
951         /* If necessary, update the number of active TTs on this root port */
952         xhci_update_tt_active_eps(xhci, dev, old_active_eps);
953
954         if (dev->ring_cache) {
955                 for (i = 0; i < dev->num_rings_cached; i++)
956                         xhci_ring_free(xhci, dev->ring_cache[i]);
957                 kfree(dev->ring_cache);
958         }
959
960         if (dev->in_ctx)
961                 xhci_free_container_ctx(xhci, dev->in_ctx);
962         if (dev->out_ctx)
963                 xhci_free_container_ctx(xhci, dev->out_ctx);
964
965         kfree(xhci->devs[slot_id]);
966         xhci->devs[slot_id] = NULL;
967 }
968
969 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
970                 struct usb_device *udev, gfp_t flags)
971 {
972         struct xhci_virt_device *dev;
973         int i;
974
975         /* Slot ID 0 is reserved */
976         if (slot_id == 0 || xhci->devs[slot_id]) {
977                 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
978                 return 0;
979         }
980
981         xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
982         if (!xhci->devs[slot_id])
983                 return 0;
984         dev = xhci->devs[slot_id];
985
986         /* Allocate the (output) device context that will be used in the HC. */
987         dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
988         if (!dev->out_ctx)
989                 goto fail;
990
991         xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
992                         (unsigned long long)dev->out_ctx->dma);
993
994         /* Allocate the (input) device context for address device command */
995         dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
996         if (!dev->in_ctx)
997                 goto fail;
998
999         xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
1000                         (unsigned long long)dev->in_ctx->dma);
1001
1002         /* Initialize the cancellation list and watchdog timers for each ep */
1003         for (i = 0; i < 31; i++) {
1004                 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
1005                 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1006                 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1007         }
1008
1009         /* Allocate endpoint 0 ring */
1010         dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, flags);
1011         if (!dev->eps[0].ring)
1012                 goto fail;
1013
1014         /* Allocate pointers to the ring cache */
1015         dev->ring_cache = kzalloc(
1016                         sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
1017                         flags);
1018         if (!dev->ring_cache)
1019                 goto fail;
1020         dev->num_rings_cached = 0;
1021
1022         init_completion(&dev->cmd_completion);
1023         dev->udev = udev;
1024
1025         /* Point to output device context in dcbaa. */
1026         xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1027         xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1028                  slot_id,
1029                  &xhci->dcbaa->dev_context_ptrs[slot_id],
1030                  le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1031
1032         return 1;
1033 fail:
1034         xhci_free_virt_device(xhci, slot_id);
1035         return 0;
1036 }
1037
1038 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1039                 struct usb_device *udev)
1040 {
1041         struct xhci_virt_device *virt_dev;
1042         struct xhci_ep_ctx      *ep0_ctx;
1043         struct xhci_ring        *ep_ring;
1044
1045         virt_dev = xhci->devs[udev->slot_id];
1046         ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1047         ep_ring = virt_dev->eps[0].ring;
1048         /*
1049          * FIXME we don't keep track of the dequeue pointer very well after a
1050          * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1051          * host to our enqueue pointer.  This should only be called after a
1052          * configured device has reset, so all control transfers should have
1053          * been completed or cancelled before the reset.
1054          */
1055         ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1056                                                         ep_ring->enqueue)
1057                                    | ep_ring->cycle_state);
1058 }
1059
1060 /*
1061  * The xHCI roothub may have ports of differing speeds in any order in the port
1062  * status registers.  xhci->port_array provides an array of the port speed for
1063  * each offset into the port status registers.
1064  *
1065  * The xHCI hardware wants to know the roothub port number that the USB device
1066  * is attached to (or the roothub port its ancestor hub is attached to).  All we
1067  * know is the index of that port under either the USB 2.0 or the USB 3.0
1068  * roothub, but that doesn't give us the real index into the HW port status
1069  * registers. Call xhci_find_raw_port_number() to get real index.
1070  */
1071 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1072                 struct usb_device *udev)
1073 {
1074         struct usb_device *top_dev;
1075         struct usb_hcd *hcd;
1076
1077         if (udev->speed == USB_SPEED_SUPER)
1078                 hcd = xhci->shared_hcd;
1079         else
1080                 hcd = xhci->main_hcd;
1081
1082         for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1083                         top_dev = top_dev->parent)
1084                 /* Found device below root hub */;
1085
1086         return  xhci_find_raw_port_number(hcd, top_dev->portnum);
1087 }
1088
1089 /* Setup an xHCI virtual device for a Set Address command */
1090 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1091 {
1092         struct xhci_virt_device *dev;
1093         struct xhci_ep_ctx      *ep0_ctx;
1094         struct xhci_slot_ctx    *slot_ctx;
1095         u32                     port_num;
1096         u32                     max_packets;
1097         struct usb_device *top_dev;
1098
1099         dev = xhci->devs[udev->slot_id];
1100         /* Slot ID 0 is reserved */
1101         if (udev->slot_id == 0 || !dev) {
1102                 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1103                                 udev->slot_id);
1104                 return -EINVAL;
1105         }
1106         ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1107         slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1108
1109         /* 3) Only the control endpoint is valid - one endpoint context */
1110         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1111         switch (udev->speed) {
1112         case USB_SPEED_SUPER:
1113                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1114                 max_packets = MAX_PACKET(512);
1115                 break;
1116         case USB_SPEED_HIGH:
1117                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1118                 max_packets = MAX_PACKET(64);
1119                 break;
1120         /* USB core guesses at a 64-byte max packet first for FS devices */
1121         case USB_SPEED_FULL:
1122                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1123                 max_packets = MAX_PACKET(64);
1124                 break;
1125         case USB_SPEED_LOW:
1126                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1127                 max_packets = MAX_PACKET(8);
1128                 break;
1129         case USB_SPEED_WIRELESS:
1130                 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1131                 return -EINVAL;
1132                 break;
1133         default:
1134                 /* Speed was set earlier, this shouldn't happen. */
1135                 return -EINVAL;
1136         }
1137         /* Find the root hub port this device is under */
1138         port_num = xhci_find_real_port_number(xhci, udev);
1139         if (!port_num)
1140                 return -EINVAL;
1141         slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1142         /* Set the port number in the virtual_device to the faked port number */
1143         for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1144                         top_dev = top_dev->parent)
1145                 /* Found device below root hub */;
1146         dev->fake_port = top_dev->portnum;
1147         dev->real_port = port_num;
1148         xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1149         xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1150
1151         /* Find the right bandwidth table that this device will be a part of.
1152          * If this is a full speed device attached directly to a root port (or a
1153          * decendent of one), it counts as a primary bandwidth domain, not a
1154          * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1155          * will never be created for the HS root hub.
1156          */
1157         if (!udev->tt || !udev->tt->hub->parent) {
1158                 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1159         } else {
1160                 struct xhci_root_port_bw_info *rh_bw;
1161                 struct xhci_tt_bw_info *tt_bw;
1162
1163                 rh_bw = &xhci->rh_bw[port_num - 1];
1164                 /* Find the right TT. */
1165                 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1166                         if (tt_bw->slot_id != udev->tt->hub->slot_id)
1167                                 continue;
1168
1169                         if (!dev->udev->tt->multi ||
1170                                         (udev->tt->multi &&
1171                                          tt_bw->ttport == dev->udev->ttport)) {
1172                                 dev->bw_table = &tt_bw->bw_table;
1173                                 dev->tt_info = tt_bw;
1174                                 break;
1175                         }
1176                 }
1177                 if (!dev->tt_info)
1178                         xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1179         }
1180
1181         /* Is this a LS/FS device under an external HS hub? */
1182         if (udev->tt && udev->tt->hub->parent) {
1183                 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1184                                                 (udev->ttport << 8));
1185                 if (udev->tt->multi)
1186                         slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1187         }
1188         xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1189         xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1190
1191         /* Step 4 - ring already allocated */
1192         /* Step 5 */
1193         ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1194
1195         /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1196         ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1197                                          max_packets);
1198
1199         ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1200                                    dev->eps[0].ring->cycle_state);
1201
1202         /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1203
1204         return 0;
1205 }
1206
1207 /*
1208  * Convert interval expressed as 2^(bInterval - 1) == interval into
1209  * straight exponent value 2^n == interval.
1210  *
1211  */
1212 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1213                 struct usb_host_endpoint *ep)
1214 {
1215         unsigned int interval;
1216
1217         interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1218         if (interval != ep->desc.bInterval - 1)
1219                 dev_warn(&udev->dev,
1220                          "ep %#x - rounding interval to %d %sframes\n",
1221                          ep->desc.bEndpointAddress,
1222                          1 << interval,
1223                          udev->speed == USB_SPEED_FULL ? "" : "micro");
1224
1225         if (udev->speed == USB_SPEED_FULL) {
1226                 /*
1227                  * Full speed isoc endpoints specify interval in frames,
1228                  * not microframes. We are using microframes everywhere,
1229                  * so adjust accordingly.
1230                  */
1231                 interval += 3;  /* 1 frame = 2^3 uframes */
1232         }
1233
1234         return interval;
1235 }
1236
1237 /*
1238  * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1239  * microframes, rounded down to nearest power of 2.
1240  */
1241 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1242                 struct usb_host_endpoint *ep, unsigned int desc_interval,
1243                 unsigned int min_exponent, unsigned int max_exponent)
1244 {
1245         unsigned int interval;
1246
1247         interval = fls(desc_interval) - 1;
1248         interval = clamp_val(interval, min_exponent, max_exponent);
1249         if ((1 << interval) != desc_interval)
1250                 dev_warn(&udev->dev,
1251                          "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1252                          ep->desc.bEndpointAddress,
1253                          1 << interval,
1254                          desc_interval);
1255
1256         return interval;
1257 }
1258
1259 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1260                 struct usb_host_endpoint *ep)
1261 {
1262         if (ep->desc.bInterval == 0)
1263                 return 0;
1264         return xhci_microframes_to_exponent(udev, ep,
1265                         ep->desc.bInterval, 0, 15);
1266 }
1267
1268
1269 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1270                 struct usb_host_endpoint *ep)
1271 {
1272         return xhci_microframes_to_exponent(udev, ep,
1273                         ep->desc.bInterval * 8, 3, 10);
1274 }
1275
1276 /* Return the polling or NAK interval.
1277  *
1278  * The polling interval is expressed in "microframes".  If xHCI's Interval field
1279  * is set to N, it will service the endpoint every 2^(Interval)*125us.
1280  *
1281  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1282  * is set to 0.
1283  */
1284 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1285                 struct usb_host_endpoint *ep)
1286 {
1287         unsigned int interval = 0;
1288
1289         switch (udev->speed) {
1290         case USB_SPEED_HIGH:
1291                 /* Max NAK rate */
1292                 if (usb_endpoint_xfer_control(&ep->desc) ||
1293                     usb_endpoint_xfer_bulk(&ep->desc)) {
1294                         interval = xhci_parse_microframe_interval(udev, ep);
1295                         break;
1296                 }
1297                 /* Fall through - SS and HS isoc/int have same decoding */
1298
1299         case USB_SPEED_SUPER:
1300                 if (usb_endpoint_xfer_int(&ep->desc) ||
1301                     usb_endpoint_xfer_isoc(&ep->desc)) {
1302                         interval = xhci_parse_exponent_interval(udev, ep);
1303                 }
1304                 break;
1305
1306         case USB_SPEED_FULL:
1307                 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1308                         interval = xhci_parse_exponent_interval(udev, ep);
1309                         break;
1310                 }
1311                 /*
1312                  * Fall through for interrupt endpoint interval decoding
1313                  * since it uses the same rules as low speed interrupt
1314                  * endpoints.
1315                  */
1316
1317         case USB_SPEED_LOW:
1318                 if (usb_endpoint_xfer_int(&ep->desc) ||
1319                     usb_endpoint_xfer_isoc(&ep->desc)) {
1320
1321                         interval = xhci_parse_frame_interval(udev, ep);
1322                 }
1323                 break;
1324
1325         default:
1326                 BUG();
1327         }
1328         return EP_INTERVAL(interval);
1329 }
1330
1331 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1332  * High speed endpoint descriptors can define "the number of additional
1333  * transaction opportunities per microframe", but that goes in the Max Burst
1334  * endpoint context field.
1335  */
1336 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1337                 struct usb_host_endpoint *ep)
1338 {
1339         if (udev->speed != USB_SPEED_SUPER ||
1340                         !usb_endpoint_xfer_isoc(&ep->desc))
1341                 return 0;
1342         return ep->ss_ep_comp.bmAttributes;
1343 }
1344
1345 static u32 xhci_get_endpoint_type(struct usb_device *udev,
1346                 struct usb_host_endpoint *ep)
1347 {
1348         int in;
1349         u32 type;
1350
1351         in = usb_endpoint_dir_in(&ep->desc);
1352         if (usb_endpoint_xfer_control(&ep->desc)) {
1353                 type = EP_TYPE(CTRL_EP);
1354         } else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1355                 if (in)
1356                         type = EP_TYPE(BULK_IN_EP);
1357                 else
1358                         type = EP_TYPE(BULK_OUT_EP);
1359         } else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1360                 if (in)
1361                         type = EP_TYPE(ISOC_IN_EP);
1362                 else
1363                         type = EP_TYPE(ISOC_OUT_EP);
1364         } else if (usb_endpoint_xfer_int(&ep->desc)) {
1365                 if (in)
1366                         type = EP_TYPE(INT_IN_EP);
1367                 else
1368                         type = EP_TYPE(INT_OUT_EP);
1369         } else {
1370                 type = 0;
1371         }
1372         return type;
1373 }
1374
1375 /* Return the maximum endpoint service interval time (ESIT) payload.
1376  * Basically, this is the maxpacket size, multiplied by the burst size
1377  * and mult size.
1378  */
1379 static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
1380                 struct usb_device *udev,
1381                 struct usb_host_endpoint *ep)
1382 {
1383         int max_burst;
1384         int max_packet;
1385
1386         /* Only applies for interrupt or isochronous endpoints */
1387         if (usb_endpoint_xfer_control(&ep->desc) ||
1388                         usb_endpoint_xfer_bulk(&ep->desc))
1389                 return 0;
1390
1391         if (udev->speed == USB_SPEED_SUPER)
1392                 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1393
1394         max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1395         max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
1396         /* A 0 in max burst means 1 transfer per ESIT */
1397         return max_packet * (max_burst + 1);
1398 }
1399
1400 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1401  * Drivers will have to call usb_alloc_streams() to do that.
1402  */
1403 int xhci_endpoint_init(struct xhci_hcd *xhci,
1404                 struct xhci_virt_device *virt_dev,
1405                 struct usb_device *udev,
1406                 struct usb_host_endpoint *ep,
1407                 gfp_t mem_flags)
1408 {
1409         unsigned int ep_index;
1410         struct xhci_ep_ctx *ep_ctx;
1411         struct xhci_ring *ep_ring;
1412         unsigned int max_packet;
1413         unsigned int max_burst;
1414         enum xhci_ring_type type;
1415         u32 max_esit_payload;
1416         u32 endpoint_type;
1417
1418         ep_index = xhci_get_endpoint_index(&ep->desc);
1419         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1420
1421         endpoint_type = xhci_get_endpoint_type(udev, ep);
1422         if (!endpoint_type)
1423                 return -EINVAL;
1424         ep_ctx->ep_info2 = cpu_to_le32(endpoint_type);
1425
1426         type = usb_endpoint_type(&ep->desc);
1427         /* Set up the endpoint ring */
1428         virt_dev->eps[ep_index].new_ring =
1429                 xhci_ring_alloc(xhci, 2, 1, type, mem_flags);
1430         if (!virt_dev->eps[ep_index].new_ring) {
1431                 /* Attempt to use the ring cache */
1432                 if (virt_dev->num_rings_cached == 0)
1433                         return -ENOMEM;
1434                 virt_dev->eps[ep_index].new_ring =
1435                         virt_dev->ring_cache[virt_dev->num_rings_cached];
1436                 virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1437                 virt_dev->num_rings_cached--;
1438                 xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
1439                                         1, type);
1440         }
1441         virt_dev->eps[ep_index].skip = false;
1442         ep_ring = virt_dev->eps[ep_index].new_ring;
1443         ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
1444
1445         ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
1446                                       | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
1447
1448         /* FIXME dig Mult and streams info out of ep companion desc */
1449
1450         /* Allow 3 retries for everything but isoc;
1451          * CErr shall be set to 0 for Isoch endpoints.
1452          */
1453         if (!usb_endpoint_xfer_isoc(&ep->desc))
1454                 ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(3));
1455         else
1456                 ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(0));
1457
1458         /* Set the max packet size and max burst */
1459         max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1460         max_burst = 0;
1461         switch (udev->speed) {
1462         case USB_SPEED_SUPER:
1463                 /* dig out max burst from ep companion desc */
1464                 max_burst = ep->ss_ep_comp.bMaxBurst;
1465                 break;
1466         case USB_SPEED_HIGH:
1467                 /* Some devices get this wrong */
1468                 if (usb_endpoint_xfer_bulk(&ep->desc))
1469                         max_packet = 512;
1470                 /* bits 11:12 specify the number of additional transaction
1471                  * opportunities per microframe (USB 2.0, section 9.6.6)
1472                  */
1473                 if (usb_endpoint_xfer_isoc(&ep->desc) ||
1474                                 usb_endpoint_xfer_int(&ep->desc)) {
1475                         max_burst = (usb_endpoint_maxp(&ep->desc)
1476                                      & 0x1800) >> 11;
1477                 }
1478                 break;
1479         case USB_SPEED_FULL:
1480         case USB_SPEED_LOW:
1481                 break;
1482         default:
1483                 BUG();
1484         }
1485         ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet) |
1486                         MAX_BURST(max_burst));
1487         max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
1488         ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
1489
1490         /*
1491          * XXX no idea how to calculate the average TRB buffer length for bulk
1492          * endpoints, as the driver gives us no clue how big each scatter gather
1493          * list entry (or buffer) is going to be.
1494          *
1495          * For isochronous and interrupt endpoints, we set it to the max
1496          * available, until we have new API in the USB core to allow drivers to
1497          * declare how much bandwidth they actually need.
1498          *
1499          * Normally, it would be calculated by taking the total of the buffer
1500          * lengths in the TD and then dividing by the number of TRBs in a TD,
1501          * including link TRBs, No-op TRBs, and Event data TRBs.  Since we don't
1502          * use Event Data TRBs, and we don't chain in a link TRB on short
1503          * transfers, we're basically dividing by 1.
1504          *
1505          * xHCI 1.0 specification indicates that the Average TRB Length should
1506          * be set to 8 for control endpoints.
1507          */
1508         if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100)
1509                 ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
1510         else
1511                 ep_ctx->tx_info |=
1512                          cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
1513
1514         /* FIXME Debug endpoint context */
1515         return 0;
1516 }
1517
1518 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1519                 struct xhci_virt_device *virt_dev,
1520                 struct usb_host_endpoint *ep)
1521 {
1522         unsigned int ep_index;
1523         struct xhci_ep_ctx *ep_ctx;
1524
1525         ep_index = xhci_get_endpoint_index(&ep->desc);
1526         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1527
1528         ep_ctx->ep_info = 0;
1529         ep_ctx->ep_info2 = 0;
1530         ep_ctx->deq = 0;
1531         ep_ctx->tx_info = 0;
1532         /* Don't free the endpoint ring until the set interface or configuration
1533          * request succeeds.
1534          */
1535 }
1536
1537 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1538 {
1539         bw_info->ep_interval = 0;
1540         bw_info->mult = 0;
1541         bw_info->num_packets = 0;
1542         bw_info->max_packet_size = 0;
1543         bw_info->type = 0;
1544         bw_info->max_esit_payload = 0;
1545 }
1546
1547 void xhci_update_bw_info(struct xhci_hcd *xhci,
1548                 struct xhci_container_ctx *in_ctx,
1549                 struct xhci_input_control_ctx *ctrl_ctx,
1550                 struct xhci_virt_device *virt_dev)
1551 {
1552         struct xhci_bw_info *bw_info;
1553         struct xhci_ep_ctx *ep_ctx;
1554         unsigned int ep_type;
1555         int i;
1556
1557         for (i = 1; i < 31; ++i) {
1558                 bw_info = &virt_dev->eps[i].bw_info;
1559
1560                 /* We can't tell what endpoint type is being dropped, but
1561                  * unconditionally clearing the bandwidth info for non-periodic
1562                  * endpoints should be harmless because the info will never be
1563                  * set in the first place.
1564                  */
1565                 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1566                         /* Dropped endpoint */
1567                         xhci_clear_endpoint_bw_info(bw_info);
1568                         continue;
1569                 }
1570
1571                 if (EP_IS_ADDED(ctrl_ctx, i)) {
1572                         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1573                         ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1574
1575                         /* Ignore non-periodic endpoints */
1576                         if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1577                                         ep_type != ISOC_IN_EP &&
1578                                         ep_type != INT_IN_EP)
1579                                 continue;
1580
1581                         /* Added or changed endpoint */
1582                         bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1583                                         le32_to_cpu(ep_ctx->ep_info));
1584                         /* Number of packets and mult are zero-based in the
1585                          * input context, but we want one-based for the
1586                          * interval table.
1587                          */
1588                         bw_info->mult = CTX_TO_EP_MULT(
1589                                         le32_to_cpu(ep_ctx->ep_info)) + 1;
1590                         bw_info->num_packets = CTX_TO_MAX_BURST(
1591                                         le32_to_cpu(ep_ctx->ep_info2)) + 1;
1592                         bw_info->max_packet_size = MAX_PACKET_DECODED(
1593                                         le32_to_cpu(ep_ctx->ep_info2));
1594                         bw_info->type = ep_type;
1595                         bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1596                                         le32_to_cpu(ep_ctx->tx_info));
1597                 }
1598         }
1599 }
1600
1601 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1602  * Useful when you want to change one particular aspect of the endpoint and then
1603  * issue a configure endpoint command.
1604  */
1605 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1606                 struct xhci_container_ctx *in_ctx,
1607                 struct xhci_container_ctx *out_ctx,
1608                 unsigned int ep_index)
1609 {
1610         struct xhci_ep_ctx *out_ep_ctx;
1611         struct xhci_ep_ctx *in_ep_ctx;
1612
1613         out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1614         in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1615
1616         in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1617         in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1618         in_ep_ctx->deq = out_ep_ctx->deq;
1619         in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1620 }
1621
1622 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1623  * Useful when you want to change one particular aspect of the endpoint and then
1624  * issue a configure endpoint command.  Only the context entries field matters,
1625  * but we'll copy the whole thing anyway.
1626  */
1627 void xhci_slot_copy(struct xhci_hcd *xhci,
1628                 struct xhci_container_ctx *in_ctx,
1629                 struct xhci_container_ctx *out_ctx)
1630 {
1631         struct xhci_slot_ctx *in_slot_ctx;
1632         struct xhci_slot_ctx *out_slot_ctx;
1633
1634         in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1635         out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1636
1637         in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1638         in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1639         in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1640         in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1641 }
1642
1643 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1644 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1645 {
1646         int i;
1647         struct device *dev = xhci_to_hcd(xhci)->self.controller;
1648         int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1649
1650         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1651                         "Allocating %d scratchpad buffers", num_sp);
1652
1653         if (!num_sp)
1654                 return 0;
1655
1656         xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1657         if (!xhci->scratchpad)
1658                 goto fail_sp;
1659
1660         xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1661                                      num_sp * sizeof(u64),
1662                                      &xhci->scratchpad->sp_dma, flags);
1663         if (!xhci->scratchpad->sp_array)
1664                 goto fail_sp2;
1665
1666         xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1667         if (!xhci->scratchpad->sp_buffers)
1668                 goto fail_sp3;
1669
1670         xhci->scratchpad->sp_dma_buffers =
1671                 kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1672
1673         if (!xhci->scratchpad->sp_dma_buffers)
1674                 goto fail_sp4;
1675
1676         xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1677         for (i = 0; i < num_sp; i++) {
1678                 dma_addr_t dma;
1679                 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1680                                 flags);
1681                 if (!buf)
1682                         goto fail_sp5;
1683
1684                 xhci->scratchpad->sp_array[i] = dma;
1685                 xhci->scratchpad->sp_buffers[i] = buf;
1686                 xhci->scratchpad->sp_dma_buffers[i] = dma;
1687         }
1688
1689         return 0;
1690
1691  fail_sp5:
1692         for (i = i - 1; i >= 0; i--) {
1693                 dma_free_coherent(dev, xhci->page_size,
1694                                     xhci->scratchpad->sp_buffers[i],
1695                                     xhci->scratchpad->sp_dma_buffers[i]);
1696         }
1697         kfree(xhci->scratchpad->sp_dma_buffers);
1698
1699  fail_sp4:
1700         kfree(xhci->scratchpad->sp_buffers);
1701
1702  fail_sp3:
1703         dma_free_coherent(dev, num_sp * sizeof(u64),
1704                             xhci->scratchpad->sp_array,
1705                             xhci->scratchpad->sp_dma);
1706
1707  fail_sp2:
1708         kfree(xhci->scratchpad);
1709         xhci->scratchpad = NULL;
1710
1711  fail_sp:
1712         return -ENOMEM;
1713 }
1714
1715 static void scratchpad_free(struct xhci_hcd *xhci)
1716 {
1717         int num_sp;
1718         int i;
1719         struct device *dev = xhci_to_hcd(xhci)->self.controller;
1720
1721         if (!xhci->scratchpad)
1722                 return;
1723
1724         num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1725
1726         for (i = 0; i < num_sp; i++) {
1727                 dma_free_coherent(dev, xhci->page_size,
1728                                     xhci->scratchpad->sp_buffers[i],
1729                                     xhci->scratchpad->sp_dma_buffers[i]);
1730         }
1731         kfree(xhci->scratchpad->sp_dma_buffers);
1732         kfree(xhci->scratchpad->sp_buffers);
1733         dma_free_coherent(dev, num_sp * sizeof(u64),
1734                             xhci->scratchpad->sp_array,
1735                             xhci->scratchpad->sp_dma);
1736         kfree(xhci->scratchpad);
1737         xhci->scratchpad = NULL;
1738 }
1739
1740 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1741                 bool allocate_in_ctx, bool allocate_completion,
1742                 gfp_t mem_flags)
1743 {
1744         struct xhci_command *command;
1745
1746         command = kzalloc(sizeof(*command), mem_flags);
1747         if (!command)
1748                 return NULL;
1749
1750         if (allocate_in_ctx) {
1751                 command->in_ctx =
1752                         xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1753                                         mem_flags);
1754                 if (!command->in_ctx) {
1755                         kfree(command);
1756                         return NULL;
1757                 }
1758         }
1759
1760         if (allocate_completion) {
1761                 command->completion =
1762                         kzalloc(sizeof(struct completion), mem_flags);
1763                 if (!command->completion) {
1764                         xhci_free_container_ctx(xhci, command->in_ctx);
1765                         kfree(command);
1766                         return NULL;
1767                 }
1768                 init_completion(command->completion);
1769         }
1770
1771         command->status = 0;
1772         INIT_LIST_HEAD(&command->cmd_list);
1773         return command;
1774 }
1775
1776 void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
1777 {
1778         if (urb_priv) {
1779                 kfree(urb_priv->td[0]);
1780                 kfree(urb_priv);
1781         }
1782 }
1783
1784 void xhci_free_command(struct xhci_hcd *xhci,
1785                 struct xhci_command *command)
1786 {
1787         xhci_free_container_ctx(xhci,
1788                         command->in_ctx);
1789         kfree(command->completion);
1790         kfree(command);
1791 }
1792
1793 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1794 {
1795         struct device   *dev = xhci_to_hcd(xhci)->self.controller;
1796         int size;
1797         int i, j, num_ports;
1798
1799         del_timer_sync(&xhci->cmd_timer);
1800
1801         /* Free the Event Ring Segment Table and the actual Event Ring */
1802         size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1803         if (xhci->erst.entries)
1804                 dma_free_coherent(dev, size,
1805                                 xhci->erst.entries, xhci->erst.erst_dma_addr);
1806         xhci->erst.entries = NULL;
1807         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed ERST");
1808         if (xhci->event_ring)
1809                 xhci_ring_free(xhci, xhci->event_ring);
1810         xhci->event_ring = NULL;
1811         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1812
1813         if (xhci->lpm_command)
1814                 xhci_free_command(xhci, xhci->lpm_command);
1815         xhci->lpm_command = NULL;
1816         if (xhci->cmd_ring)
1817                 xhci_ring_free(xhci, xhci->cmd_ring);
1818         xhci->cmd_ring = NULL;
1819         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1820         xhci_cleanup_command_queue(xhci);
1821
1822         num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1823         for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1824                 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1825                 for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1826                         struct list_head *ep = &bwt->interval_bw[j].endpoints;
1827                         while (!list_empty(ep))
1828                                 list_del_init(ep->next);
1829                 }
1830         }
1831
1832         for (i = 1; i < MAX_HC_SLOTS; ++i)
1833                 xhci_free_virt_device(xhci, i);
1834
1835         if (xhci->segment_pool)
1836                 dma_pool_destroy(xhci->segment_pool);
1837         xhci->segment_pool = NULL;
1838         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1839
1840         if (xhci->device_pool)
1841                 dma_pool_destroy(xhci->device_pool);
1842         xhci->device_pool = NULL;
1843         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1844
1845         if (xhci->small_streams_pool)
1846                 dma_pool_destroy(xhci->small_streams_pool);
1847         xhci->small_streams_pool = NULL;
1848         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1849                         "Freed small stream array pool");
1850
1851         if (xhci->medium_streams_pool)
1852                 dma_pool_destroy(xhci->medium_streams_pool);
1853         xhci->medium_streams_pool = NULL;
1854         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1855                         "Freed medium stream array pool");
1856
1857         if (xhci->dcbaa)
1858                 dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1859                                 xhci->dcbaa, xhci->dcbaa->dma);
1860         xhci->dcbaa = NULL;
1861
1862         scratchpad_free(xhci);
1863
1864         if (!xhci->rh_bw)
1865                 goto no_bw;
1866
1867         for (i = 0; i < num_ports; i++) {
1868                 struct xhci_tt_bw_info *tt, *n;
1869                 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1870                         list_del(&tt->tt_list);
1871                         kfree(tt);
1872                 }
1873         }
1874
1875 no_bw:
1876         xhci->cmd_ring_reserved_trbs = 0;
1877         xhci->num_usb2_ports = 0;
1878         xhci->num_usb3_ports = 0;
1879         xhci->num_active_eps = 0;
1880         kfree(xhci->usb2_ports);
1881         kfree(xhci->usb3_ports);
1882         kfree(xhci->port_array);
1883         kfree(xhci->rh_bw);
1884         kfree(xhci->ext_caps);
1885
1886         xhci->page_size = 0;
1887         xhci->page_shift = 0;
1888         xhci->bus_state[0].bus_suspended = 0;
1889         xhci->bus_state[1].bus_suspended = 0;
1890 }
1891
1892 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1893                 struct xhci_segment *input_seg,
1894                 union xhci_trb *start_trb,
1895                 union xhci_trb *end_trb,
1896                 dma_addr_t input_dma,
1897                 struct xhci_segment *result_seg,
1898                 char *test_name, int test_number)
1899 {
1900         unsigned long long start_dma;
1901         unsigned long long end_dma;
1902         struct xhci_segment *seg;
1903
1904         start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1905         end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1906
1907         seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
1908         if (seg != result_seg) {
1909                 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1910                                 test_name, test_number);
1911                 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1912                                 "input DMA 0x%llx\n",
1913                                 input_seg,
1914                                 (unsigned long long) input_dma);
1915                 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1916                                 "ending TRB %p (0x%llx DMA)\n",
1917                                 start_trb, start_dma,
1918                                 end_trb, end_dma);
1919                 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1920                                 result_seg, seg);
1921                 return -1;
1922         }
1923         return 0;
1924 }
1925
1926 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1927 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
1928 {
1929         struct {
1930                 dma_addr_t              input_dma;
1931                 struct xhci_segment     *result_seg;
1932         } simple_test_vector [] = {
1933                 /* A zeroed DMA field should fail */
1934                 { 0, NULL },
1935                 /* One TRB before the ring start should fail */
1936                 { xhci->event_ring->first_seg->dma - 16, NULL },
1937                 /* One byte before the ring start should fail */
1938                 { xhci->event_ring->first_seg->dma - 1, NULL },
1939                 /* Starting TRB should succeed */
1940                 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1941                 /* Ending TRB should succeed */
1942                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1943                         xhci->event_ring->first_seg },
1944                 /* One byte after the ring end should fail */
1945                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1946                 /* One TRB after the ring end should fail */
1947                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1948                 /* An address of all ones should fail */
1949                 { (dma_addr_t) (~0), NULL },
1950         };
1951         struct {
1952                 struct xhci_segment     *input_seg;
1953                 union xhci_trb          *start_trb;
1954                 union xhci_trb          *end_trb;
1955                 dma_addr_t              input_dma;
1956                 struct xhci_segment     *result_seg;
1957         } complex_test_vector [] = {
1958                 /* Test feeding a valid DMA address from a different ring */
1959                 {       .input_seg = xhci->event_ring->first_seg,
1960                         .start_trb = xhci->event_ring->first_seg->trbs,
1961                         .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1962                         .input_dma = xhci->cmd_ring->first_seg->dma,
1963                         .result_seg = NULL,
1964                 },
1965                 /* Test feeding a valid end TRB from a different ring */
1966                 {       .input_seg = xhci->event_ring->first_seg,
1967                         .start_trb = xhci->event_ring->first_seg->trbs,
1968                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1969                         .input_dma = xhci->cmd_ring->first_seg->dma,
1970                         .result_seg = NULL,
1971                 },
1972                 /* Test feeding a valid start and end TRB from a different ring */
1973                 {       .input_seg = xhci->event_ring->first_seg,
1974                         .start_trb = xhci->cmd_ring->first_seg->trbs,
1975                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1976                         .input_dma = xhci->cmd_ring->first_seg->dma,
1977                         .result_seg = NULL,
1978                 },
1979                 /* TRB in this ring, but after this TD */
1980                 {       .input_seg = xhci->event_ring->first_seg,
1981                         .start_trb = &xhci->event_ring->first_seg->trbs[0],
1982                         .end_trb = &xhci->event_ring->first_seg->trbs[3],
1983                         .input_dma = xhci->event_ring->first_seg->dma + 4*16,
1984                         .result_seg = NULL,
1985                 },
1986                 /* TRB in this ring, but before this TD */
1987                 {       .input_seg = xhci->event_ring->first_seg,
1988                         .start_trb = &xhci->event_ring->first_seg->trbs[3],
1989                         .end_trb = &xhci->event_ring->first_seg->trbs[6],
1990                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1991                         .result_seg = NULL,
1992                 },
1993                 /* TRB in this ring, but after this wrapped TD */
1994                 {       .input_seg = xhci->event_ring->first_seg,
1995                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1996                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
1997                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1998                         .result_seg = NULL,
1999                 },
2000                 /* TRB in this ring, but before this wrapped TD */
2001                 {       .input_seg = xhci->event_ring->first_seg,
2002                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2003                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
2004                         .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2005                         .result_seg = NULL,
2006                 },
2007                 /* TRB not in this ring, and we have a wrapped TD */
2008                 {       .input_seg = xhci->event_ring->first_seg,
2009                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2010                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
2011                         .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2012                         .result_seg = NULL,
2013                 },
2014         };
2015
2016         unsigned int num_tests;
2017         int i, ret;
2018
2019         num_tests = ARRAY_SIZE(simple_test_vector);
2020         for (i = 0; i < num_tests; i++) {
2021                 ret = xhci_test_trb_in_td(xhci,
2022                                 xhci->event_ring->first_seg,
2023                                 xhci->event_ring->first_seg->trbs,
2024                                 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2025                                 simple_test_vector[i].input_dma,
2026                                 simple_test_vector[i].result_seg,
2027                                 "Simple", i);
2028                 if (ret < 0)
2029                         return ret;
2030         }
2031
2032         num_tests = ARRAY_SIZE(complex_test_vector);
2033         for (i = 0; i < num_tests; i++) {
2034                 ret = xhci_test_trb_in_td(xhci,
2035                                 complex_test_vector[i].input_seg,
2036                                 complex_test_vector[i].start_trb,
2037                                 complex_test_vector[i].end_trb,
2038                                 complex_test_vector[i].input_dma,
2039                                 complex_test_vector[i].result_seg,
2040                                 "Complex", i);
2041                 if (ret < 0)
2042                         return ret;
2043         }
2044         xhci_dbg(xhci, "TRB math tests passed.\n");
2045         return 0;
2046 }
2047
2048 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2049 {
2050         u64 temp;
2051         dma_addr_t deq;
2052
2053         deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2054                         xhci->event_ring->dequeue);
2055         if (deq == 0 && !in_interrupt())
2056                 xhci_warn(xhci, "WARN something wrong with SW event ring "
2057                                 "dequeue ptr.\n");
2058         /* Update HC event ring dequeue pointer */
2059         temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2060         temp &= ERST_PTR_MASK;
2061         /* Don't clear the EHB bit (which is RW1C) because
2062          * there might be more events to service.
2063          */
2064         temp &= ~ERST_EHB;
2065         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2066                         "// Write event ring dequeue pointer, "
2067                         "preserving EHB bit");
2068         xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2069                         &xhci->ir_set->erst_dequeue);
2070 }
2071
2072 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2073                 __le32 __iomem *addr, u8 major_revision, int max_caps)
2074 {
2075         u32 temp, port_offset, port_count;
2076         int i;
2077
2078         if (major_revision > 0x03) {
2079                 xhci_warn(xhci, "Ignoring unknown port speed, "
2080                                 "Ext Cap %p, revision = 0x%x\n",
2081                                 addr, major_revision);
2082                 /* Ignoring port protocol we can't understand. FIXME */
2083                 return;
2084         }
2085
2086         /* Port offset and count in the third dword, see section 7.2 */
2087         temp = readl(addr + 2);
2088         port_offset = XHCI_EXT_PORT_OFF(temp);
2089         port_count = XHCI_EXT_PORT_COUNT(temp);
2090         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2091                         "Ext Cap %p, port offset = %u, "
2092                         "count = %u, revision = 0x%x",
2093                         addr, port_offset, port_count, major_revision);
2094         /* Port count includes the current port offset */
2095         if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2096                 /* WTF? "Valid values are â€˜1’ to MaxPorts" */
2097                 return;
2098
2099         /* cache usb2 port capabilities */
2100         if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2101                 xhci->ext_caps[xhci->num_ext_caps++] = temp;
2102
2103         /* Check the host's USB2 LPM capability */
2104         if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2105                         (temp & XHCI_L1C)) {
2106                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2107                                 "xHCI 0.96: support USB2 software lpm");
2108                 xhci->sw_lpm_support = 1;
2109         }
2110
2111         if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2112                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2113                                 "xHCI 1.0: support USB2 software lpm");
2114                 xhci->sw_lpm_support = 1;
2115                 if (temp & XHCI_HLC) {
2116                         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2117                                         "xHCI 1.0: support USB2 hardware lpm");
2118                         xhci->hw_lpm_support = 1;
2119                 }
2120         }
2121
2122         port_offset--;
2123         for (i = port_offset; i < (port_offset + port_count); i++) {
2124                 /* Duplicate entry.  Ignore the port if the revisions differ. */
2125                 if (xhci->port_array[i] != 0) {
2126                         xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2127                                         " port %u\n", addr, i);
2128                         xhci_warn(xhci, "Port was marked as USB %u, "
2129                                         "duplicated as USB %u\n",
2130                                         xhci->port_array[i], major_revision);
2131                         /* Only adjust the roothub port counts if we haven't
2132                          * found a similar duplicate.
2133                          */
2134                         if (xhci->port_array[i] != major_revision &&
2135                                 xhci->port_array[i] != DUPLICATE_ENTRY) {
2136                                 if (xhci->port_array[i] == 0x03)
2137                                         xhci->num_usb3_ports--;
2138                                 else
2139                                         xhci->num_usb2_ports--;
2140                                 xhci->port_array[i] = DUPLICATE_ENTRY;
2141                         }
2142                         /* FIXME: Should we disable the port? */
2143                         continue;
2144                 }
2145                 xhci->port_array[i] = major_revision;
2146                 if (major_revision == 0x03)
2147                         xhci->num_usb3_ports++;
2148                 else
2149                         xhci->num_usb2_ports++;
2150         }
2151         /* FIXME: Should we disable ports not in the Extended Capabilities? */
2152 }
2153
2154 /*
2155  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2156  * specify what speeds each port is supposed to be.  We can't count on the port
2157  * speed bits in the PORTSC register being correct until a device is connected,
2158  * but we need to set up the two fake roothubs with the correct number of USB
2159  * 3.0 and USB 2.0 ports at host controller initialization time.
2160  */
2161 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2162 {
2163         __le32 __iomem *addr, *tmp_addr;
2164         u32 offset, tmp_offset;
2165         unsigned int num_ports;
2166         int i, j, port_index;
2167         int cap_count = 0;
2168
2169         addr = &xhci->cap_regs->hcc_params;
2170         offset = XHCI_HCC_EXT_CAPS(readl(addr));
2171         if (offset == 0) {
2172                 xhci_err(xhci, "No Extended Capability registers, "
2173                                 "unable to set up roothub.\n");
2174                 return -ENODEV;
2175         }
2176
2177         num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2178         xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2179         if (!xhci->port_array)
2180                 return -ENOMEM;
2181
2182         xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2183         if (!xhci->rh_bw)
2184                 return -ENOMEM;
2185         for (i = 0; i < num_ports; i++) {
2186                 struct xhci_interval_bw_table *bw_table;
2187
2188                 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2189                 bw_table = &xhci->rh_bw[i].bw_table;
2190                 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2191                         INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2192         }
2193
2194         /*
2195          * For whatever reason, the first capability offset is from the
2196          * capability register base, not from the HCCPARAMS register.
2197          * See section 5.3.6 for offset calculation.
2198          */
2199         addr = &xhci->cap_regs->hc_capbase + offset;
2200
2201         tmp_addr = addr;
2202         tmp_offset = offset;
2203
2204         /* count extended protocol capability entries for later caching */
2205         do {
2206                 u32 cap_id;
2207                 cap_id = readl(tmp_addr);
2208                 if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2209                         cap_count++;
2210                 tmp_offset = XHCI_EXT_CAPS_NEXT(cap_id);
2211                 tmp_addr += tmp_offset;
2212         } while (tmp_offset);
2213
2214         xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
2215         if (!xhci->ext_caps)
2216                 return -ENOMEM;
2217
2218         while (1) {
2219                 u32 cap_id;
2220
2221                 cap_id = readl(addr);
2222                 if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2223                         xhci_add_in_port(xhci, num_ports, addr,
2224                                         (u8) XHCI_EXT_PORT_MAJOR(cap_id),
2225                                         cap_count);
2226                 offset = XHCI_EXT_CAPS_NEXT(cap_id);
2227                 if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
2228                                 == num_ports)
2229                         break;
2230                 /*
2231                  * Once you're into the Extended Capabilities, the offset is
2232                  * always relative to the register holding the offset.
2233                  */
2234                 addr += offset;
2235         }
2236
2237         if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2238                 xhci_warn(xhci, "No ports on the roothubs?\n");
2239                 return -ENODEV;
2240         }
2241         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2242                         "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2243                         xhci->num_usb2_ports, xhci->num_usb3_ports);
2244
2245         /* Place limits on the number of roothub ports so that the hub
2246          * descriptors aren't longer than the USB core will allocate.
2247          */
2248         if (xhci->num_usb3_ports > 15) {
2249                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2250                                 "Limiting USB 3.0 roothub ports to 15.");
2251                 xhci->num_usb3_ports = 15;
2252         }
2253         if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2254                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2255                                 "Limiting USB 2.0 roothub ports to %u.",
2256                                 USB_MAXCHILDREN);
2257                 xhci->num_usb2_ports = USB_MAXCHILDREN;
2258         }
2259
2260         /*
2261          * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2262          * Not sure how the USB core will handle a hub with no ports...
2263          */
2264         if (xhci->num_usb2_ports) {
2265                 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2266                                 xhci->num_usb2_ports, flags);
2267                 if (!xhci->usb2_ports)
2268                         return -ENOMEM;
2269
2270                 port_index = 0;
2271                 for (i = 0; i < num_ports; i++) {
2272                         if (xhci->port_array[i] == 0x03 ||
2273                                         xhci->port_array[i] == 0 ||
2274                                         xhci->port_array[i] == DUPLICATE_ENTRY)
2275                                 continue;
2276
2277                         xhci->usb2_ports[port_index] =
2278                                 &xhci->op_regs->port_status_base +
2279                                 NUM_PORT_REGS*i;
2280                         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2281                                         "USB 2.0 port at index %u, "
2282                                         "addr = %p", i,
2283                                         xhci->usb2_ports[port_index]);
2284                         port_index++;
2285                         if (port_index == xhci->num_usb2_ports)
2286                                 break;
2287                 }
2288         }
2289         if (xhci->num_usb3_ports) {
2290                 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2291                                 xhci->num_usb3_ports, flags);
2292                 if (!xhci->usb3_ports)
2293                         return -ENOMEM;
2294
2295                 port_index = 0;
2296                 for (i = 0; i < num_ports; i++)
2297                         if (xhci->port_array[i] == 0x03) {
2298                                 xhci->usb3_ports[port_index] =
2299                                         &xhci->op_regs->port_status_base +
2300                                         NUM_PORT_REGS*i;
2301                                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2302                                                 "USB 3.0 port at index %u, "
2303                                                 "addr = %p", i,
2304                                                 xhci->usb3_ports[port_index]);
2305                                 port_index++;
2306                                 if (port_index == xhci->num_usb3_ports)
2307                                         break;
2308                         }
2309         }
2310         return 0;
2311 }
2312
2313 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2314 {
2315         dma_addr_t      dma;
2316         struct device   *dev = xhci_to_hcd(xhci)->self.controller;
2317         unsigned int    val, val2;
2318         u64             val_64;
2319         struct xhci_segment     *seg;
2320         u32 page_size, temp;
2321         int i;
2322
2323         INIT_LIST_HEAD(&xhci->cmd_list);
2324
2325         page_size = readl(&xhci->op_regs->page_size);
2326         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2327                         "Supported page size register = 0x%x", page_size);
2328         for (i = 0; i < 16; i++) {
2329                 if ((0x1 & page_size) != 0)
2330                         break;
2331                 page_size = page_size >> 1;
2332         }
2333         if (i < 16)
2334                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2335                         "Supported page size of %iK", (1 << (i+12)) / 1024);
2336         else
2337                 xhci_warn(xhci, "WARN: no supported page size\n");
2338         /* Use 4K pages, since that's common and the minimum the HC supports */
2339         xhci->page_shift = 12;
2340         xhci->page_size = 1 << xhci->page_shift;
2341         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2342                         "HCD page size set to %iK", xhci->page_size / 1024);
2343
2344         /*
2345          * Program the Number of Device Slots Enabled field in the CONFIG
2346          * register with the max value of slots the HC can handle.
2347          */
2348         val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2349         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2350                         "// xHC can handle at most %d device slots.", val);
2351         val2 = readl(&xhci->op_regs->config_reg);
2352         val |= (val2 & ~HCS_SLOTS_MASK);
2353         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2354                         "// Setting Max device slots reg = 0x%x.", val);
2355         writel(val, &xhci->op_regs->config_reg);
2356
2357         /*
2358          * Section 5.4.8 - doorbell array must be
2359          * "physically contiguous and 64-byte (cache line) aligned".
2360          */
2361         xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2362                         GFP_KERNEL);
2363         if (!xhci->dcbaa)
2364                 goto fail;
2365         memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2366         xhci->dcbaa->dma = dma;
2367         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2368                         "// Device context base array address = 0x%llx (DMA), %p (virt)",
2369                         (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2370         xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2371
2372         /*
2373          * Initialize the ring segment pool.  The ring must be a contiguous
2374          * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2375          * however, the command ring segment needs 64-byte aligned segments
2376          * and our use of dma addresses in the trb_address_map radix tree needs
2377          * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2378          */
2379         xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2380                         TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2381
2382         /* See Table 46 and Note on Figure 55 */
2383         xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2384                         2112, 64, xhci->page_size);
2385         if (!xhci->segment_pool || !xhci->device_pool)
2386                 goto fail;
2387
2388         /* Linear stream context arrays don't have any boundary restrictions,
2389          * and only need to be 16-byte aligned.
2390          */
2391         xhci->small_streams_pool =
2392                 dma_pool_create("xHCI 256 byte stream ctx arrays",
2393                         dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2394         xhci->medium_streams_pool =
2395                 dma_pool_create("xHCI 1KB stream ctx arrays",
2396                         dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2397         /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2398          * will be allocated with dma_alloc_coherent()
2399          */
2400
2401         if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2402                 goto fail;
2403
2404         /* Set up the command ring to have one segments for now. */
2405         xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, flags);
2406         if (!xhci->cmd_ring)
2407                 goto fail;
2408         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2409                         "Allocated command ring at %p", xhci->cmd_ring);
2410         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2411                         (unsigned long long)xhci->cmd_ring->first_seg->dma);
2412
2413         /* Set the address in the Command Ring Control register */
2414         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2415         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2416                 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2417                 xhci->cmd_ring->cycle_state;
2418         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2419                         "// Setting command ring address to 0x%x", val);
2420         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2421         xhci_dbg_cmd_ptrs(xhci);
2422
2423         xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
2424         if (!xhci->lpm_command)
2425                 goto fail;
2426
2427         /* Reserve one command ring TRB for disabling LPM.
2428          * Since the USB core grabs the shared usb_bus bandwidth mutex before
2429          * disabling LPM, we only need to reserve one TRB for all devices.
2430          */
2431         xhci->cmd_ring_reserved_trbs++;
2432
2433         val = readl(&xhci->cap_regs->db_off);
2434         val &= DBOFF_MASK;
2435         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2436                         "// Doorbell array is located at offset 0x%x"
2437                         " from cap regs base addr", val);
2438         xhci->dba = (void __iomem *) xhci->cap_regs + val;
2439         xhci_dbg_regs(xhci);
2440         xhci_print_run_regs(xhci);
2441         /* Set ir_set to interrupt register set 0 */
2442         xhci->ir_set = &xhci->run_regs->ir_set[0];
2443
2444         /*
2445          * Event ring setup: Allocate a normal ring, but also setup
2446          * the event ring segment table (ERST).  Section 4.9.3.
2447          */
2448         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2449         xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2450                                                 flags);
2451         if (!xhci->event_ring)
2452                 goto fail;
2453         if (xhci_check_trb_in_td_math(xhci, flags) < 0)
2454                 goto fail;
2455
2456         xhci->erst.entries = dma_alloc_coherent(dev,
2457                         sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2458                         GFP_KERNEL);
2459         if (!xhci->erst.entries)
2460                 goto fail;
2461         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2462                         "// Allocated event ring segment table at 0x%llx",
2463                         (unsigned long long)dma);
2464
2465         memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2466         xhci->erst.num_entries = ERST_NUM_SEGS;
2467         xhci->erst.erst_dma_addr = dma;
2468         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2469                         "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx",
2470                         xhci->erst.num_entries,
2471                         xhci->erst.entries,
2472                         (unsigned long long)xhci->erst.erst_dma_addr);
2473
2474         /* set ring base address and size for each segment table entry */
2475         for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2476                 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2477                 entry->seg_addr = cpu_to_le64(seg->dma);
2478                 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2479                 entry->rsvd = 0;
2480                 seg = seg->next;
2481         }
2482
2483         /* set ERST count with the number of entries in the segment table */
2484         val = readl(&xhci->ir_set->erst_size);
2485         val &= ERST_SIZE_MASK;
2486         val |= ERST_NUM_SEGS;
2487         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2488                         "// Write ERST size = %i to ir_set 0 (some bits preserved)",
2489                         val);
2490         writel(val, &xhci->ir_set->erst_size);
2491
2492         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2493                         "// Set ERST entries to point to event ring.");
2494         /* set the segment table base address */
2495         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2496                         "// Set ERST base address for ir_set 0 = 0x%llx",
2497                         (unsigned long long)xhci->erst.erst_dma_addr);
2498         val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2499         val_64 &= ERST_PTR_MASK;
2500         val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2501         xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2502
2503         /* Set the event ring dequeue address */
2504         xhci_set_hc_event_deq(xhci);
2505         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2506                         "Wrote ERST address to ir_set 0.");
2507         xhci_print_ir_set(xhci, 0);
2508
2509         /* init command timeout timer */
2510         init_timer(&xhci->cmd_timer);
2511         xhci->cmd_timer.data = (unsigned long) xhci;
2512         xhci->cmd_timer.function = xhci_handle_command_timeout;
2513
2514         /*
2515          * XXX: Might need to set the Interrupter Moderation Register to
2516          * something other than the default (~1ms minimum between interrupts).
2517          * See section 5.5.1.2.
2518          */
2519         init_completion(&xhci->addr_dev);
2520         for (i = 0; i < MAX_HC_SLOTS; ++i)
2521                 xhci->devs[i] = NULL;
2522         for (i = 0; i < USB_MAXCHILDREN; ++i) {
2523                 xhci->bus_state[0].resume_done[i] = 0;
2524                 xhci->bus_state[1].resume_done[i] = 0;
2525                 /* Only the USB 2.0 completions will ever be used. */
2526                 init_completion(&xhci->bus_state[1].rexit_done[i]);
2527         }
2528
2529         if (scratchpad_alloc(xhci, flags))
2530                 goto fail;
2531         if (xhci_setup_port_arrays(xhci, flags))
2532                 goto fail;
2533
2534         /* Enable USB 3.0 device notifications for function remote wake, which
2535          * is necessary for allowing USB 3.0 devices to do remote wakeup from
2536          * U3 (device suspend).
2537          */
2538         temp = readl(&xhci->op_regs->dev_notification);
2539         temp &= ~DEV_NOTE_MASK;
2540         temp |= DEV_NOTE_FWAKE;
2541         writel(temp, &xhci->op_regs->dev_notification);
2542
2543         return 0;
2544
2545 fail:
2546         xhci_warn(xhci, "Couldn't initialize memory\n");
2547         xhci_halt(xhci);
2548         xhci_reset(xhci);
2549         xhci_mem_cleanup(xhci);
2550         return -ENOMEM;
2551 }