Merge remote-tracking branches 'asoc/topic/uda1380', 'asoc/topic/unregister', 'asoc...
[sfrench/cifs-2.6.git] / drivers / usb / gadget / udc / pch_udc.c
1 /*
2  * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; version 2 of the License.
7  */
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/pci.h>
12 #include <linux/delay.h>
13 #include <linux/errno.h>
14 #include <linux/list.h>
15 #include <linux/interrupt.h>
16 #include <linux/usb/ch9.h>
17 #include <linux/usb/gadget.h>
18 #include <linux/gpio.h>
19 #include <linux/irq.h>
20
21 /* GPIO port for VBUS detecting */
22 static int vbus_gpio_port = -1;         /* GPIO port number (-1:Not used) */
23
24 #define PCH_VBUS_PERIOD         3000    /* VBUS polling period (msec) */
25 #define PCH_VBUS_INTERVAL       10      /* VBUS polling interval (msec) */
26
27 /* Address offset of Registers */
28 #define UDC_EP_REG_SHIFT        0x20    /* Offset to next EP */
29
30 #define UDC_EPCTL_ADDR          0x00    /* Endpoint control */
31 #define UDC_EPSTS_ADDR          0x04    /* Endpoint status */
32 #define UDC_BUFIN_FRAMENUM_ADDR 0x08    /* buffer size in / frame number out */
33 #define UDC_BUFOUT_MAXPKT_ADDR  0x0C    /* buffer size out / maxpkt in */
34 #define UDC_SUBPTR_ADDR         0x10    /* setup buffer pointer */
35 #define UDC_DESPTR_ADDR         0x14    /* Data descriptor pointer */
36 #define UDC_CONFIRM_ADDR        0x18    /* Write/Read confirmation */
37
38 #define UDC_DEVCFG_ADDR         0x400   /* Device configuration */
39 #define UDC_DEVCTL_ADDR         0x404   /* Device control */
40 #define UDC_DEVSTS_ADDR         0x408   /* Device status */
41 #define UDC_DEVIRQSTS_ADDR      0x40C   /* Device irq status */
42 #define UDC_DEVIRQMSK_ADDR      0x410   /* Device irq mask */
43 #define UDC_EPIRQSTS_ADDR       0x414   /* Endpoint irq status */
44 #define UDC_EPIRQMSK_ADDR       0x418   /* Endpoint irq mask */
45 #define UDC_DEVLPM_ADDR         0x41C   /* LPM control / status */
46 #define UDC_CSR_BUSY_ADDR       0x4f0   /* UDC_CSR_BUSY Status register */
47 #define UDC_SRST_ADDR           0x4fc   /* SOFT RESET register */
48 #define UDC_CSR_ADDR            0x500   /* USB_DEVICE endpoint register */
49
50 /* Endpoint control register */
51 /* Bit position */
52 #define UDC_EPCTL_MRXFLUSH              (1 << 12)
53 #define UDC_EPCTL_RRDY                  (1 << 9)
54 #define UDC_EPCTL_CNAK                  (1 << 8)
55 #define UDC_EPCTL_SNAK                  (1 << 7)
56 #define UDC_EPCTL_NAK                   (1 << 6)
57 #define UDC_EPCTL_P                     (1 << 3)
58 #define UDC_EPCTL_F                     (1 << 1)
59 #define UDC_EPCTL_S                     (1 << 0)
60 #define UDC_EPCTL_ET_SHIFT              4
61 /* Mask patern */
62 #define UDC_EPCTL_ET_MASK               0x00000030
63 /* Value for ET field */
64 #define UDC_EPCTL_ET_CONTROL            0
65 #define UDC_EPCTL_ET_ISO                1
66 #define UDC_EPCTL_ET_BULK               2
67 #define UDC_EPCTL_ET_INTERRUPT          3
68
69 /* Endpoint status register */
70 /* Bit position */
71 #define UDC_EPSTS_XFERDONE              (1 << 27)
72 #define UDC_EPSTS_RSS                   (1 << 26)
73 #define UDC_EPSTS_RCS                   (1 << 25)
74 #define UDC_EPSTS_TXEMPTY               (1 << 24)
75 #define UDC_EPSTS_TDC                   (1 << 10)
76 #define UDC_EPSTS_HE                    (1 << 9)
77 #define UDC_EPSTS_MRXFIFO_EMP           (1 << 8)
78 #define UDC_EPSTS_BNA                   (1 << 7)
79 #define UDC_EPSTS_IN                    (1 << 6)
80 #define UDC_EPSTS_OUT_SHIFT             4
81 /* Mask patern */
82 #define UDC_EPSTS_OUT_MASK              0x00000030
83 #define UDC_EPSTS_ALL_CLR_MASK          0x1F0006F0
84 /* Value for OUT field */
85 #define UDC_EPSTS_OUT_SETUP             2
86 #define UDC_EPSTS_OUT_DATA              1
87
88 /* Device configuration register */
89 /* Bit position */
90 #define UDC_DEVCFG_CSR_PRG              (1 << 17)
91 #define UDC_DEVCFG_SP                   (1 << 3)
92 /* SPD Valee */
93 #define UDC_DEVCFG_SPD_HS               0x0
94 #define UDC_DEVCFG_SPD_FS               0x1
95 #define UDC_DEVCFG_SPD_LS               0x2
96
97 /* Device control register */
98 /* Bit position */
99 #define UDC_DEVCTL_THLEN_SHIFT          24
100 #define UDC_DEVCTL_BRLEN_SHIFT          16
101 #define UDC_DEVCTL_CSR_DONE             (1 << 13)
102 #define UDC_DEVCTL_SD                   (1 << 10)
103 #define UDC_DEVCTL_MODE                 (1 << 9)
104 #define UDC_DEVCTL_BREN                 (1 << 8)
105 #define UDC_DEVCTL_THE                  (1 << 7)
106 #define UDC_DEVCTL_DU                   (1 << 4)
107 #define UDC_DEVCTL_TDE                  (1 << 3)
108 #define UDC_DEVCTL_RDE                  (1 << 2)
109 #define UDC_DEVCTL_RES                  (1 << 0)
110
111 /* Device status register */
112 /* Bit position */
113 #define UDC_DEVSTS_TS_SHIFT             18
114 #define UDC_DEVSTS_ENUM_SPEED_SHIFT     13
115 #define UDC_DEVSTS_ALT_SHIFT            8
116 #define UDC_DEVSTS_INTF_SHIFT           4
117 #define UDC_DEVSTS_CFG_SHIFT            0
118 /* Mask patern */
119 #define UDC_DEVSTS_TS_MASK              0xfffc0000
120 #define UDC_DEVSTS_ENUM_SPEED_MASK      0x00006000
121 #define UDC_DEVSTS_ALT_MASK             0x00000f00
122 #define UDC_DEVSTS_INTF_MASK            0x000000f0
123 #define UDC_DEVSTS_CFG_MASK             0x0000000f
124 /* value for maximum speed for SPEED field */
125 #define UDC_DEVSTS_ENUM_SPEED_FULL      1
126 #define UDC_DEVSTS_ENUM_SPEED_HIGH      0
127 #define UDC_DEVSTS_ENUM_SPEED_LOW       2
128 #define UDC_DEVSTS_ENUM_SPEED_FULLX     3
129
130 /* Device irq register */
131 /* Bit position */
132 #define UDC_DEVINT_RWKP                 (1 << 7)
133 #define UDC_DEVINT_ENUM                 (1 << 6)
134 #define UDC_DEVINT_SOF                  (1 << 5)
135 #define UDC_DEVINT_US                   (1 << 4)
136 #define UDC_DEVINT_UR                   (1 << 3)
137 #define UDC_DEVINT_ES                   (1 << 2)
138 #define UDC_DEVINT_SI                   (1 << 1)
139 #define UDC_DEVINT_SC                   (1 << 0)
140 /* Mask patern */
141 #define UDC_DEVINT_MSK                  0x7f
142
143 /* Endpoint irq register */
144 /* Bit position */
145 #define UDC_EPINT_IN_SHIFT              0
146 #define UDC_EPINT_OUT_SHIFT             16
147 #define UDC_EPINT_IN_EP0                (1 << 0)
148 #define UDC_EPINT_OUT_EP0               (1 << 16)
149 /* Mask patern */
150 #define UDC_EPINT_MSK_DISABLE_ALL       0xffffffff
151
152 /* UDC_CSR_BUSY Status register */
153 /* Bit position */
154 #define UDC_CSR_BUSY                    (1 << 0)
155
156 /* SOFT RESET register */
157 /* Bit position */
158 #define UDC_PSRST                       (1 << 1)
159 #define UDC_SRST                        (1 << 0)
160
161 /* USB_DEVICE endpoint register */
162 /* Bit position */
163 #define UDC_CSR_NE_NUM_SHIFT            0
164 #define UDC_CSR_NE_DIR_SHIFT            4
165 #define UDC_CSR_NE_TYPE_SHIFT           5
166 #define UDC_CSR_NE_CFG_SHIFT            7
167 #define UDC_CSR_NE_INTF_SHIFT           11
168 #define UDC_CSR_NE_ALT_SHIFT            15
169 #define UDC_CSR_NE_MAX_PKT_SHIFT        19
170 /* Mask patern */
171 #define UDC_CSR_NE_NUM_MASK             0x0000000f
172 #define UDC_CSR_NE_DIR_MASK             0x00000010
173 #define UDC_CSR_NE_TYPE_MASK            0x00000060
174 #define UDC_CSR_NE_CFG_MASK             0x00000780
175 #define UDC_CSR_NE_INTF_MASK            0x00007800
176 #define UDC_CSR_NE_ALT_MASK             0x00078000
177 #define UDC_CSR_NE_MAX_PKT_MASK         0x3ff80000
178
179 #define PCH_UDC_CSR(ep) (UDC_CSR_ADDR + ep*4)
180 #define PCH_UDC_EPINT(in, num)\
181                 (1 << (num + (in ? UDC_EPINT_IN_SHIFT : UDC_EPINT_OUT_SHIFT)))
182
183 /* Index of endpoint */
184 #define UDC_EP0IN_IDX           0
185 #define UDC_EP0OUT_IDX          1
186 #define UDC_EPIN_IDX(ep)        (ep * 2)
187 #define UDC_EPOUT_IDX(ep)       (ep * 2 + 1)
188 #define PCH_UDC_EP0             0
189 #define PCH_UDC_EP1             1
190 #define PCH_UDC_EP2             2
191 #define PCH_UDC_EP3             3
192
193 /* Number of endpoint */
194 #define PCH_UDC_EP_NUM          32      /* Total number of EPs (16 IN,16 OUT) */
195 #define PCH_UDC_USED_EP_NUM     4       /* EP number of EP's really used */
196 /* Length Value */
197 #define PCH_UDC_BRLEN           0x0F    /* Burst length */
198 #define PCH_UDC_THLEN           0x1F    /* Threshold length */
199 /* Value of EP Buffer Size */
200 #define UDC_EP0IN_BUFF_SIZE     16
201 #define UDC_EPIN_BUFF_SIZE      256
202 #define UDC_EP0OUT_BUFF_SIZE    16
203 #define UDC_EPOUT_BUFF_SIZE     256
204 /* Value of EP maximum packet size */
205 #define UDC_EP0IN_MAX_PKT_SIZE  64
206 #define UDC_EP0OUT_MAX_PKT_SIZE 64
207 #define UDC_BULK_MAX_PKT_SIZE   512
208
209 /* DMA */
210 #define DMA_DIR_RX              1       /* DMA for data receive */
211 #define DMA_DIR_TX              2       /* DMA for data transmit */
212 #define DMA_ADDR_INVALID        (~(dma_addr_t)0)
213 #define UDC_DMA_MAXPACKET       65536   /* maximum packet size for DMA */
214
215 /**
216  * struct pch_udc_data_dma_desc - Structure to hold DMA descriptor information
217  *                                for data
218  * @status:             Status quadlet
219  * @reserved:           Reserved
220  * @dataptr:            Buffer descriptor
221  * @next:               Next descriptor
222  */
223 struct pch_udc_data_dma_desc {
224         u32 status;
225         u32 reserved;
226         u32 dataptr;
227         u32 next;
228 };
229
230 /**
231  * struct pch_udc_stp_dma_desc - Structure to hold DMA descriptor information
232  *                               for control data
233  * @status:     Status
234  * @reserved:   Reserved
235  * @data12:     First setup word
236  * @data34:     Second setup word
237  */
238 struct pch_udc_stp_dma_desc {
239         u32 status;
240         u32 reserved;
241         struct usb_ctrlrequest request;
242 } __attribute((packed));
243
244 /* DMA status definitions */
245 /* Buffer status */
246 #define PCH_UDC_BUFF_STS        0xC0000000
247 #define PCH_UDC_BS_HST_RDY      0x00000000
248 #define PCH_UDC_BS_DMA_BSY      0x40000000
249 #define PCH_UDC_BS_DMA_DONE     0x80000000
250 #define PCH_UDC_BS_HST_BSY      0xC0000000
251 /*  Rx/Tx Status */
252 #define PCH_UDC_RXTX_STS        0x30000000
253 #define PCH_UDC_RTS_SUCC        0x00000000
254 #define PCH_UDC_RTS_DESERR      0x10000000
255 #define PCH_UDC_RTS_BUFERR      0x30000000
256 /* Last Descriptor Indication */
257 #define PCH_UDC_DMA_LAST        0x08000000
258 /* Number of Rx/Tx Bytes Mask */
259 #define PCH_UDC_RXTX_BYTES      0x0000ffff
260
261 /**
262  * struct pch_udc_cfg_data - Structure to hold current configuration
263  *                           and interface information
264  * @cur_cfg:    current configuration in use
265  * @cur_intf:   current interface in use
266  * @cur_alt:    current alt interface in use
267  */
268 struct pch_udc_cfg_data {
269         u16 cur_cfg;
270         u16 cur_intf;
271         u16 cur_alt;
272 };
273
274 /**
275  * struct pch_udc_ep - Structure holding a PCH USB device Endpoint information
276  * @ep:                 embedded ep request
277  * @td_stp_phys:        for setup request
278  * @td_data_phys:       for data request
279  * @td_stp:             for setup request
280  * @td_data:            for data request
281  * @dev:                reference to device struct
282  * @offset_addr:        offset address of ep register
283  * @desc:               for this ep
284  * @queue:              queue for requests
285  * @num:                endpoint number
286  * @in:                 endpoint is IN
287  * @halted:             endpoint halted?
288  * @epsts:              Endpoint status
289  */
290 struct pch_udc_ep {
291         struct usb_ep                   ep;
292         dma_addr_t                      td_stp_phys;
293         dma_addr_t                      td_data_phys;
294         struct pch_udc_stp_dma_desc     *td_stp;
295         struct pch_udc_data_dma_desc    *td_data;
296         struct pch_udc_dev              *dev;
297         unsigned long                   offset_addr;
298         struct list_head                queue;
299         unsigned                        num:5,
300                                         in:1,
301                                         halted:1;
302         unsigned long                   epsts;
303 };
304
305 /**
306  * struct pch_vbus_gpio_data - Structure holding GPIO informaton
307  *                                      for detecting VBUS
308  * @port:               gpio port number
309  * @intr:               gpio interrupt number
310  * @irq_work_fall       Structure for WorkQueue
311  * @irq_work_rise       Structure for WorkQueue
312  */
313 struct pch_vbus_gpio_data {
314         int                     port;
315         int                     intr;
316         struct work_struct      irq_work_fall;
317         struct work_struct      irq_work_rise;
318 };
319
320 /**
321  * struct pch_udc_dev - Structure holding complete information
322  *                      of the PCH USB device
323  * @gadget:             gadget driver data
324  * @driver:             reference to gadget driver bound
325  * @pdev:               reference to the PCI device
326  * @ep:                 array of endpoints
327  * @lock:               protects all state
328  * @stall:              stall requested
329  * @prot_stall:         protcol stall requested
330  * @registered:         driver registered with system
331  * @suspended:          driver in suspended state
332  * @connected:          gadget driver associated
333  * @vbus_session:       required vbus_session state
334  * @set_cfg_not_acked:  pending acknowledgement 4 setup
335  * @waiting_zlp_ack:    pending acknowledgement 4 ZLP
336  * @data_requests:      DMA pool for data requests
337  * @stp_requests:       DMA pool for setup requests
338  * @dma_addr:           DMA pool for received
339  * @setup_data:         Received setup data
340  * @base_addr:          for mapped device memory
341  * @cfg_data:           current cfg, intf, and alt in use
342  * @vbus_gpio:          GPIO informaton for detecting VBUS
343  */
344 struct pch_udc_dev {
345         struct usb_gadget               gadget;
346         struct usb_gadget_driver        *driver;
347         struct pci_dev                  *pdev;
348         struct pch_udc_ep               ep[PCH_UDC_EP_NUM];
349         spinlock_t                      lock; /* protects all state */
350         unsigned
351                         stall:1,
352                         prot_stall:1,
353                         suspended:1,
354                         connected:1,
355                         vbus_session:1,
356                         set_cfg_not_acked:1,
357                         waiting_zlp_ack:1;
358         struct pci_pool         *data_requests;
359         struct pci_pool         *stp_requests;
360         dma_addr_t                      dma_addr;
361         struct usb_ctrlrequest          setup_data;
362         void __iomem                    *base_addr;
363         struct pch_udc_cfg_data         cfg_data;
364         struct pch_vbus_gpio_data       vbus_gpio;
365 };
366 #define to_pch_udc(g)   (container_of((g), struct pch_udc_dev, gadget))
367
368 #define PCH_UDC_PCI_BAR_QUARK_X1000     0
369 #define PCH_UDC_PCI_BAR                 1
370
371 #define PCI_DEVICE_ID_INTEL_QUARK_X1000_UDC     0x0939
372 #define PCI_DEVICE_ID_INTEL_EG20T_UDC           0x8808
373
374 #define PCI_VENDOR_ID_ROHM              0x10DB
375 #define PCI_DEVICE_ID_ML7213_IOH_UDC    0x801D
376 #define PCI_DEVICE_ID_ML7831_IOH_UDC    0x8808
377
378 static const char       ep0_string[] = "ep0in";
379 static DEFINE_SPINLOCK(udc_stall_spinlock);     /* stall spin lock */
380 static bool speed_fs;
381 module_param_named(speed_fs, speed_fs, bool, S_IRUGO);
382 MODULE_PARM_DESC(speed_fs, "true for Full speed operation");
383
384 /**
385  * struct pch_udc_request - Structure holding a PCH USB device request packet
386  * @req:                embedded ep request
387  * @td_data_phys:       phys. address
388  * @td_data:            first dma desc. of chain
389  * @td_data_last:       last dma desc. of chain
390  * @queue:              associated queue
391  * @dma_going:          DMA in progress for request
392  * @dma_mapped:         DMA memory mapped for request
393  * @dma_done:           DMA completed for request
394  * @chain_len:          chain length
395  * @buf:                Buffer memory for align adjustment
396  * @dma:                DMA memory for align adjustment
397  */
398 struct pch_udc_request {
399         struct usb_request              req;
400         dma_addr_t                      td_data_phys;
401         struct pch_udc_data_dma_desc    *td_data;
402         struct pch_udc_data_dma_desc    *td_data_last;
403         struct list_head                queue;
404         unsigned                        dma_going:1,
405                                         dma_mapped:1,
406                                         dma_done:1;
407         unsigned                        chain_len;
408         void                            *buf;
409         dma_addr_t                      dma;
410 };
411
412 static inline u32 pch_udc_readl(struct pch_udc_dev *dev, unsigned long reg)
413 {
414         return ioread32(dev->base_addr + reg);
415 }
416
417 static inline void pch_udc_writel(struct pch_udc_dev *dev,
418                                     unsigned long val, unsigned long reg)
419 {
420         iowrite32(val, dev->base_addr + reg);
421 }
422
423 static inline void pch_udc_bit_set(struct pch_udc_dev *dev,
424                                      unsigned long reg,
425                                      unsigned long bitmask)
426 {
427         pch_udc_writel(dev, pch_udc_readl(dev, reg) | bitmask, reg);
428 }
429
430 static inline void pch_udc_bit_clr(struct pch_udc_dev *dev,
431                                      unsigned long reg,
432                                      unsigned long bitmask)
433 {
434         pch_udc_writel(dev, pch_udc_readl(dev, reg) & ~(bitmask), reg);
435 }
436
437 static inline u32 pch_udc_ep_readl(struct pch_udc_ep *ep, unsigned long reg)
438 {
439         return ioread32(ep->dev->base_addr + ep->offset_addr + reg);
440 }
441
442 static inline void pch_udc_ep_writel(struct pch_udc_ep *ep,
443                                     unsigned long val, unsigned long reg)
444 {
445         iowrite32(val, ep->dev->base_addr + ep->offset_addr + reg);
446 }
447
448 static inline void pch_udc_ep_bit_set(struct pch_udc_ep *ep,
449                                      unsigned long reg,
450                                      unsigned long bitmask)
451 {
452         pch_udc_ep_writel(ep, pch_udc_ep_readl(ep, reg) | bitmask, reg);
453 }
454
455 static inline void pch_udc_ep_bit_clr(struct pch_udc_ep *ep,
456                                      unsigned long reg,
457                                      unsigned long bitmask)
458 {
459         pch_udc_ep_writel(ep, pch_udc_ep_readl(ep, reg) & ~(bitmask), reg);
460 }
461
462 /**
463  * pch_udc_csr_busy() - Wait till idle.
464  * @dev:        Reference to pch_udc_dev structure
465  */
466 static void pch_udc_csr_busy(struct pch_udc_dev *dev)
467 {
468         unsigned int count = 200;
469
470         /* Wait till idle */
471         while ((pch_udc_readl(dev, UDC_CSR_BUSY_ADDR) & UDC_CSR_BUSY)
472                 && --count)
473                 cpu_relax();
474         if (!count)
475                 dev_err(&dev->pdev->dev, "%s: wait error\n", __func__);
476 }
477
478 /**
479  * pch_udc_write_csr() - Write the command and status registers.
480  * @dev:        Reference to pch_udc_dev structure
481  * @val:        value to be written to CSR register
482  * @addr:       address of CSR register
483  */
484 static void pch_udc_write_csr(struct pch_udc_dev *dev, unsigned long val,
485                                unsigned int ep)
486 {
487         unsigned long reg = PCH_UDC_CSR(ep);
488
489         pch_udc_csr_busy(dev);          /* Wait till idle */
490         pch_udc_writel(dev, val, reg);
491         pch_udc_csr_busy(dev);          /* Wait till idle */
492 }
493
494 /**
495  * pch_udc_read_csr() - Read the command and status registers.
496  * @dev:        Reference to pch_udc_dev structure
497  * @addr:       address of CSR register
498  *
499  * Return codes:        content of CSR register
500  */
501 static u32 pch_udc_read_csr(struct pch_udc_dev *dev, unsigned int ep)
502 {
503         unsigned long reg = PCH_UDC_CSR(ep);
504
505         pch_udc_csr_busy(dev);          /* Wait till idle */
506         pch_udc_readl(dev, reg);        /* Dummy read */
507         pch_udc_csr_busy(dev);          /* Wait till idle */
508         return pch_udc_readl(dev, reg);
509 }
510
511 /**
512  * pch_udc_rmt_wakeup() - Initiate for remote wakeup
513  * @dev:        Reference to pch_udc_dev structure
514  */
515 static inline void pch_udc_rmt_wakeup(struct pch_udc_dev *dev)
516 {
517         pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
518         mdelay(1);
519         pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
520 }
521
522 /**
523  * pch_udc_get_frame() - Get the current frame from device status register
524  * @dev:        Reference to pch_udc_dev structure
525  * Retern       current frame
526  */
527 static inline int pch_udc_get_frame(struct pch_udc_dev *dev)
528 {
529         u32 frame = pch_udc_readl(dev, UDC_DEVSTS_ADDR);
530         return (frame & UDC_DEVSTS_TS_MASK) >> UDC_DEVSTS_TS_SHIFT;
531 }
532
533 /**
534  * pch_udc_clear_selfpowered() - Clear the self power control
535  * @dev:        Reference to pch_udc_regs structure
536  */
537 static inline void pch_udc_clear_selfpowered(struct pch_udc_dev *dev)
538 {
539         pch_udc_bit_clr(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_SP);
540 }
541
542 /**
543  * pch_udc_set_selfpowered() - Set the self power control
544  * @dev:        Reference to pch_udc_regs structure
545  */
546 static inline void pch_udc_set_selfpowered(struct pch_udc_dev *dev)
547 {
548         pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_SP);
549 }
550
551 /**
552  * pch_udc_set_disconnect() - Set the disconnect status.
553  * @dev:        Reference to pch_udc_regs structure
554  */
555 static inline void pch_udc_set_disconnect(struct pch_udc_dev *dev)
556 {
557         pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
558 }
559
560 /**
561  * pch_udc_clear_disconnect() - Clear the disconnect status.
562  * @dev:        Reference to pch_udc_regs structure
563  */
564 static void pch_udc_clear_disconnect(struct pch_udc_dev *dev)
565 {
566         /* Clear the disconnect */
567         pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
568         pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
569         mdelay(1);
570         /* Resume USB signalling */
571         pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
572 }
573
574 /**
575  * pch_udc_reconnect() - This API initializes usb device controller,
576  *                                              and clear the disconnect status.
577  * @dev:                Reference to pch_udc_regs structure
578  */
579 static void pch_udc_init(struct pch_udc_dev *dev);
580 static void pch_udc_reconnect(struct pch_udc_dev *dev)
581 {
582         pch_udc_init(dev);
583
584         /* enable device interrupts */
585         /* pch_udc_enable_interrupts() */
586         pch_udc_bit_clr(dev, UDC_DEVIRQMSK_ADDR,
587                         UDC_DEVINT_UR | UDC_DEVINT_ENUM);
588
589         /* Clear the disconnect */
590         pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
591         pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
592         mdelay(1);
593         /* Resume USB signalling */
594         pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
595 }
596
597 /**
598  * pch_udc_vbus_session() - set or clearr the disconnect status.
599  * @dev:        Reference to pch_udc_regs structure
600  * @is_active:  Parameter specifying the action
601  *                0:   indicating VBUS power is ending
602  *                !0:  indicating VBUS power is starting
603  */
604 static inline void pch_udc_vbus_session(struct pch_udc_dev *dev,
605                                           int is_active)
606 {
607         if (is_active) {
608                 pch_udc_reconnect(dev);
609                 dev->vbus_session = 1;
610         } else {
611                 if (dev->driver && dev->driver->disconnect) {
612                         spin_lock(&dev->lock);
613                         dev->driver->disconnect(&dev->gadget);
614                         spin_unlock(&dev->lock);
615                 }
616                 pch_udc_set_disconnect(dev);
617                 dev->vbus_session = 0;
618         }
619 }
620
621 /**
622  * pch_udc_ep_set_stall() - Set the stall of endpoint
623  * @ep:         Reference to structure of type pch_udc_ep_regs
624  */
625 static void pch_udc_ep_set_stall(struct pch_udc_ep *ep)
626 {
627         if (ep->in) {
628                 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_F);
629                 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
630         } else {
631                 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
632         }
633 }
634
635 /**
636  * pch_udc_ep_clear_stall() - Clear the stall of endpoint
637  * @ep:         Reference to structure of type pch_udc_ep_regs
638  */
639 static inline void pch_udc_ep_clear_stall(struct pch_udc_ep *ep)
640 {
641         /* Clear the stall */
642         pch_udc_ep_bit_clr(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
643         /* Clear NAK by writing CNAK */
644         pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_CNAK);
645 }
646
647 /**
648  * pch_udc_ep_set_trfr_type() - Set the transfer type of endpoint
649  * @ep:         Reference to structure of type pch_udc_ep_regs
650  * @type:       Type of endpoint
651  */
652 static inline void pch_udc_ep_set_trfr_type(struct pch_udc_ep *ep,
653                                         u8 type)
654 {
655         pch_udc_ep_writel(ep, ((type << UDC_EPCTL_ET_SHIFT) &
656                                 UDC_EPCTL_ET_MASK), UDC_EPCTL_ADDR);
657 }
658
659 /**
660  * pch_udc_ep_set_bufsz() - Set the maximum packet size for the endpoint
661  * @ep:         Reference to structure of type pch_udc_ep_regs
662  * @buf_size:   The buffer word size
663  */
664 static void pch_udc_ep_set_bufsz(struct pch_udc_ep *ep,
665                                                  u32 buf_size, u32 ep_in)
666 {
667         u32 data;
668         if (ep_in) {
669                 data = pch_udc_ep_readl(ep, UDC_BUFIN_FRAMENUM_ADDR);
670                 data = (data & 0xffff0000) | (buf_size & 0xffff);
671                 pch_udc_ep_writel(ep, data, UDC_BUFIN_FRAMENUM_ADDR);
672         } else {
673                 data = pch_udc_ep_readl(ep, UDC_BUFOUT_MAXPKT_ADDR);
674                 data = (buf_size << 16) | (data & 0xffff);
675                 pch_udc_ep_writel(ep, data, UDC_BUFOUT_MAXPKT_ADDR);
676         }
677 }
678
679 /**
680  * pch_udc_ep_set_maxpkt() - Set the Max packet size for the endpoint
681  * @ep:         Reference to structure of type pch_udc_ep_regs
682  * @pkt_size:   The packet byte size
683  */
684 static void pch_udc_ep_set_maxpkt(struct pch_udc_ep *ep, u32 pkt_size)
685 {
686         u32 data = pch_udc_ep_readl(ep, UDC_BUFOUT_MAXPKT_ADDR);
687         data = (data & 0xffff0000) | (pkt_size & 0xffff);
688         pch_udc_ep_writel(ep, data, UDC_BUFOUT_MAXPKT_ADDR);
689 }
690
691 /**
692  * pch_udc_ep_set_subptr() - Set the Setup buffer pointer for the endpoint
693  * @ep:         Reference to structure of type pch_udc_ep_regs
694  * @addr:       Address of the register
695  */
696 static inline void pch_udc_ep_set_subptr(struct pch_udc_ep *ep, u32 addr)
697 {
698         pch_udc_ep_writel(ep, addr, UDC_SUBPTR_ADDR);
699 }
700
701 /**
702  * pch_udc_ep_set_ddptr() - Set the Data descriptor pointer for the endpoint
703  * @ep:         Reference to structure of type pch_udc_ep_regs
704  * @addr:       Address of the register
705  */
706 static inline void pch_udc_ep_set_ddptr(struct pch_udc_ep *ep, u32 addr)
707 {
708         pch_udc_ep_writel(ep, addr, UDC_DESPTR_ADDR);
709 }
710
711 /**
712  * pch_udc_ep_set_pd() - Set the poll demand bit for the endpoint
713  * @ep:         Reference to structure of type pch_udc_ep_regs
714  */
715 static inline void pch_udc_ep_set_pd(struct pch_udc_ep *ep)
716 {
717         pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_P);
718 }
719
720 /**
721  * pch_udc_ep_set_rrdy() - Set the receive ready bit for the endpoint
722  * @ep:         Reference to structure of type pch_udc_ep_regs
723  */
724 static inline void pch_udc_ep_set_rrdy(struct pch_udc_ep *ep)
725 {
726         pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_RRDY);
727 }
728
729 /**
730  * pch_udc_ep_clear_rrdy() - Clear the receive ready bit for the endpoint
731  * @ep:         Reference to structure of type pch_udc_ep_regs
732  */
733 static inline void pch_udc_ep_clear_rrdy(struct pch_udc_ep *ep)
734 {
735         pch_udc_ep_bit_clr(ep, UDC_EPCTL_ADDR, UDC_EPCTL_RRDY);
736 }
737
738 /**
739  * pch_udc_set_dma() - Set the 'TDE' or RDE bit of device control
740  *                      register depending on the direction specified
741  * @dev:        Reference to structure of type pch_udc_regs
742  * @dir:        whether Tx or Rx
743  *                DMA_DIR_RX: Receive
744  *                DMA_DIR_TX: Transmit
745  */
746 static inline void pch_udc_set_dma(struct pch_udc_dev *dev, int dir)
747 {
748         if (dir == DMA_DIR_RX)
749                 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RDE);
750         else if (dir == DMA_DIR_TX)
751                 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_TDE);
752 }
753
754 /**
755  * pch_udc_clear_dma() - Clear the 'TDE' or RDE bit of device control
756  *                               register depending on the direction specified
757  * @dev:        Reference to structure of type pch_udc_regs
758  * @dir:        Whether Tx or Rx
759  *                DMA_DIR_RX: Receive
760  *                DMA_DIR_TX: Transmit
761  */
762 static inline void pch_udc_clear_dma(struct pch_udc_dev *dev, int dir)
763 {
764         if (dir == DMA_DIR_RX)
765                 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RDE);
766         else if (dir == DMA_DIR_TX)
767                 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_TDE);
768 }
769
770 /**
771  * pch_udc_set_csr_done() - Set the device control register
772  *                              CSR done field (bit 13)
773  * @dev:        reference to structure of type pch_udc_regs
774  */
775 static inline void pch_udc_set_csr_done(struct pch_udc_dev *dev)
776 {
777         pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_CSR_DONE);
778 }
779
780 /**
781  * pch_udc_disable_interrupts() - Disables the specified interrupts
782  * @dev:        Reference to structure of type pch_udc_regs
783  * @mask:       Mask to disable interrupts
784  */
785 static inline void pch_udc_disable_interrupts(struct pch_udc_dev *dev,
786                                             u32 mask)
787 {
788         pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, mask);
789 }
790
791 /**
792  * pch_udc_enable_interrupts() - Enable the specified interrupts
793  * @dev:        Reference to structure of type pch_udc_regs
794  * @mask:       Mask to enable interrupts
795  */
796 static inline void pch_udc_enable_interrupts(struct pch_udc_dev *dev,
797                                            u32 mask)
798 {
799         pch_udc_bit_clr(dev, UDC_DEVIRQMSK_ADDR, mask);
800 }
801
802 /**
803  * pch_udc_disable_ep_interrupts() - Disable endpoint interrupts
804  * @dev:        Reference to structure of type pch_udc_regs
805  * @mask:       Mask to disable interrupts
806  */
807 static inline void pch_udc_disable_ep_interrupts(struct pch_udc_dev *dev,
808                                                 u32 mask)
809 {
810         pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, mask);
811 }
812
813 /**
814  * pch_udc_enable_ep_interrupts() - Enable endpoint interrupts
815  * @dev:        Reference to structure of type pch_udc_regs
816  * @mask:       Mask to enable interrupts
817  */
818 static inline void pch_udc_enable_ep_interrupts(struct pch_udc_dev *dev,
819                                               u32 mask)
820 {
821         pch_udc_bit_clr(dev, UDC_EPIRQMSK_ADDR, mask);
822 }
823
824 /**
825  * pch_udc_read_device_interrupts() - Read the device interrupts
826  * @dev:        Reference to structure of type pch_udc_regs
827  * Retern       The device interrupts
828  */
829 static inline u32 pch_udc_read_device_interrupts(struct pch_udc_dev *dev)
830 {
831         return pch_udc_readl(dev, UDC_DEVIRQSTS_ADDR);
832 }
833
834 /**
835  * pch_udc_write_device_interrupts() - Write device interrupts
836  * @dev:        Reference to structure of type pch_udc_regs
837  * @val:        The value to be written to interrupt register
838  */
839 static inline void pch_udc_write_device_interrupts(struct pch_udc_dev *dev,
840                                                      u32 val)
841 {
842         pch_udc_writel(dev, val, UDC_DEVIRQSTS_ADDR);
843 }
844
845 /**
846  * pch_udc_read_ep_interrupts() - Read the endpoint interrupts
847  * @dev:        Reference to structure of type pch_udc_regs
848  * Retern       The endpoint interrupt
849  */
850 static inline u32 pch_udc_read_ep_interrupts(struct pch_udc_dev *dev)
851 {
852         return pch_udc_readl(dev, UDC_EPIRQSTS_ADDR);
853 }
854
855 /**
856  * pch_udc_write_ep_interrupts() - Clear endpoint interupts
857  * @dev:        Reference to structure of type pch_udc_regs
858  * @val:        The value to be written to interrupt register
859  */
860 static inline void pch_udc_write_ep_interrupts(struct pch_udc_dev *dev,
861                                              u32 val)
862 {
863         pch_udc_writel(dev, val, UDC_EPIRQSTS_ADDR);
864 }
865
866 /**
867  * pch_udc_read_device_status() - Read the device status
868  * @dev:        Reference to structure of type pch_udc_regs
869  * Retern       The device status
870  */
871 static inline u32 pch_udc_read_device_status(struct pch_udc_dev *dev)
872 {
873         return pch_udc_readl(dev, UDC_DEVSTS_ADDR);
874 }
875
876 /**
877  * pch_udc_read_ep_control() - Read the endpoint control
878  * @ep:         Reference to structure of type pch_udc_ep_regs
879  * Retern       The endpoint control register value
880  */
881 static inline u32 pch_udc_read_ep_control(struct pch_udc_ep *ep)
882 {
883         return pch_udc_ep_readl(ep, UDC_EPCTL_ADDR);
884 }
885
886 /**
887  * pch_udc_clear_ep_control() - Clear the endpoint control register
888  * @ep:         Reference to structure of type pch_udc_ep_regs
889  * Retern       The endpoint control register value
890  */
891 static inline void pch_udc_clear_ep_control(struct pch_udc_ep *ep)
892 {
893         return pch_udc_ep_writel(ep, 0, UDC_EPCTL_ADDR);
894 }
895
896 /**
897  * pch_udc_read_ep_status() - Read the endpoint status
898  * @ep:         Reference to structure of type pch_udc_ep_regs
899  * Retern       The endpoint status
900  */
901 static inline u32 pch_udc_read_ep_status(struct pch_udc_ep *ep)
902 {
903         return pch_udc_ep_readl(ep, UDC_EPSTS_ADDR);
904 }
905
906 /**
907  * pch_udc_clear_ep_status() - Clear the endpoint status
908  * @ep:         Reference to structure of type pch_udc_ep_regs
909  * @stat:       Endpoint status
910  */
911 static inline void pch_udc_clear_ep_status(struct pch_udc_ep *ep,
912                                          u32 stat)
913 {
914         return pch_udc_ep_writel(ep, stat, UDC_EPSTS_ADDR);
915 }
916
917 /**
918  * pch_udc_ep_set_nak() - Set the bit 7 (SNAK field)
919  *                              of the endpoint control register
920  * @ep:         Reference to structure of type pch_udc_ep_regs
921  */
922 static inline void pch_udc_ep_set_nak(struct pch_udc_ep *ep)
923 {
924         pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_SNAK);
925 }
926
927 /**
928  * pch_udc_ep_clear_nak() - Set the bit 8 (CNAK field)
929  *                              of the endpoint control register
930  * @ep:         reference to structure of type pch_udc_ep_regs
931  */
932 static void pch_udc_ep_clear_nak(struct pch_udc_ep *ep)
933 {
934         unsigned int loopcnt = 0;
935         struct pch_udc_dev *dev = ep->dev;
936
937         if (!(pch_udc_ep_readl(ep, UDC_EPCTL_ADDR) & UDC_EPCTL_NAK))
938                 return;
939         if (!ep->in) {
940                 loopcnt = 10000;
941                 while (!(pch_udc_read_ep_status(ep) & UDC_EPSTS_MRXFIFO_EMP) &&
942                         --loopcnt)
943                         udelay(5);
944                 if (!loopcnt)
945                         dev_err(&dev->pdev->dev, "%s: RxFIFO not Empty\n",
946                                 __func__);
947         }
948         loopcnt = 10000;
949         while ((pch_udc_read_ep_control(ep) & UDC_EPCTL_NAK) && --loopcnt) {
950                 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_CNAK);
951                 udelay(5);
952         }
953         if (!loopcnt)
954                 dev_err(&dev->pdev->dev, "%s: Clear NAK not set for ep%d%s\n",
955                         __func__, ep->num, (ep->in ? "in" : "out"));
956 }
957
958 /**
959  * pch_udc_ep_fifo_flush() - Flush the endpoint fifo
960  * @ep: reference to structure of type pch_udc_ep_regs
961  * @dir:        direction of endpoint
962  *                0:  endpoint is OUT
963  *                !0: endpoint is IN
964  */
965 static void pch_udc_ep_fifo_flush(struct pch_udc_ep *ep, int dir)
966 {
967         if (dir) {      /* IN ep */
968                 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_F);
969                 return;
970         }
971 }
972
973 /**
974  * pch_udc_ep_enable() - This api enables endpoint
975  * @regs:       Reference to structure pch_udc_ep_regs
976  * @desc:       endpoint descriptor
977  */
978 static void pch_udc_ep_enable(struct pch_udc_ep *ep,
979                                struct pch_udc_cfg_data *cfg,
980                                const struct usb_endpoint_descriptor *desc)
981 {
982         u32 val = 0;
983         u32 buff_size = 0;
984
985         pch_udc_ep_set_trfr_type(ep, desc->bmAttributes);
986         if (ep->in)
987                 buff_size = UDC_EPIN_BUFF_SIZE;
988         else
989                 buff_size = UDC_EPOUT_BUFF_SIZE;
990         pch_udc_ep_set_bufsz(ep, buff_size, ep->in);
991         pch_udc_ep_set_maxpkt(ep, usb_endpoint_maxp(desc));
992         pch_udc_ep_set_nak(ep);
993         pch_udc_ep_fifo_flush(ep, ep->in);
994         /* Configure the endpoint */
995         val = ep->num << UDC_CSR_NE_NUM_SHIFT | ep->in << UDC_CSR_NE_DIR_SHIFT |
996               ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) <<
997                 UDC_CSR_NE_TYPE_SHIFT) |
998               (cfg->cur_cfg << UDC_CSR_NE_CFG_SHIFT) |
999               (cfg->cur_intf << UDC_CSR_NE_INTF_SHIFT) |
1000               (cfg->cur_alt << UDC_CSR_NE_ALT_SHIFT) |
1001               usb_endpoint_maxp(desc) << UDC_CSR_NE_MAX_PKT_SHIFT;
1002
1003         if (ep->in)
1004                 pch_udc_write_csr(ep->dev, val, UDC_EPIN_IDX(ep->num));
1005         else
1006                 pch_udc_write_csr(ep->dev, val, UDC_EPOUT_IDX(ep->num));
1007 }
1008
1009 /**
1010  * pch_udc_ep_disable() - This api disables endpoint
1011  * @regs:       Reference to structure pch_udc_ep_regs
1012  */
1013 static void pch_udc_ep_disable(struct pch_udc_ep *ep)
1014 {
1015         if (ep->in) {
1016                 /* flush the fifo */
1017                 pch_udc_ep_writel(ep, UDC_EPCTL_F, UDC_EPCTL_ADDR);
1018                 /* set NAK */
1019                 pch_udc_ep_writel(ep, UDC_EPCTL_SNAK, UDC_EPCTL_ADDR);
1020                 pch_udc_ep_bit_set(ep, UDC_EPSTS_ADDR, UDC_EPSTS_IN);
1021         } else {
1022                 /* set NAK */
1023                 pch_udc_ep_writel(ep, UDC_EPCTL_SNAK, UDC_EPCTL_ADDR);
1024         }
1025         /* reset desc pointer */
1026         pch_udc_ep_writel(ep, 0, UDC_DESPTR_ADDR);
1027 }
1028
1029 /**
1030  * pch_udc_wait_ep_stall() - Wait EP stall.
1031  * @dev:        Reference to pch_udc_dev structure
1032  */
1033 static void pch_udc_wait_ep_stall(struct pch_udc_ep *ep)
1034 {
1035         unsigned int count = 10000;
1036
1037         /* Wait till idle */
1038         while ((pch_udc_read_ep_control(ep) & UDC_EPCTL_S) && --count)
1039                 udelay(5);
1040         if (!count)
1041                 dev_err(&ep->dev->pdev->dev, "%s: wait error\n", __func__);
1042 }
1043
1044 /**
1045  * pch_udc_init() - This API initializes usb device controller
1046  * @dev:        Rreference to pch_udc_regs structure
1047  */
1048 static void pch_udc_init(struct pch_udc_dev *dev)
1049 {
1050         if (NULL == dev) {
1051                 pr_err("%s: Invalid address\n", __func__);
1052                 return;
1053         }
1054         /* Soft Reset and Reset PHY */
1055         pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
1056         pch_udc_writel(dev, UDC_SRST | UDC_PSRST, UDC_SRST_ADDR);
1057         mdelay(1);
1058         pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
1059         pch_udc_writel(dev, 0x00, UDC_SRST_ADDR);
1060         mdelay(1);
1061         /* mask and clear all device interrupts */
1062         pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, UDC_DEVINT_MSK);
1063         pch_udc_bit_set(dev, UDC_DEVIRQSTS_ADDR, UDC_DEVINT_MSK);
1064
1065         /* mask and clear all ep interrupts */
1066         pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
1067         pch_udc_bit_set(dev, UDC_EPIRQSTS_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
1068
1069         /* enable dynamic CSR programmingi, self powered and device speed */
1070         if (speed_fs)
1071                 pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_CSR_PRG |
1072                                 UDC_DEVCFG_SP | UDC_DEVCFG_SPD_FS);
1073         else /* defaul high speed */
1074                 pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_CSR_PRG |
1075                                 UDC_DEVCFG_SP | UDC_DEVCFG_SPD_HS);
1076         pch_udc_bit_set(dev, UDC_DEVCTL_ADDR,
1077                         (PCH_UDC_THLEN << UDC_DEVCTL_THLEN_SHIFT) |
1078                         (PCH_UDC_BRLEN << UDC_DEVCTL_BRLEN_SHIFT) |
1079                         UDC_DEVCTL_MODE | UDC_DEVCTL_BREN |
1080                         UDC_DEVCTL_THE);
1081 }
1082
1083 /**
1084  * pch_udc_exit() - This API exit usb device controller
1085  * @dev:        Reference to pch_udc_regs structure
1086  */
1087 static void pch_udc_exit(struct pch_udc_dev *dev)
1088 {
1089         /* mask all device interrupts */
1090         pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, UDC_DEVINT_MSK);
1091         /* mask all ep interrupts */
1092         pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
1093         /* put device in disconnected state */
1094         pch_udc_set_disconnect(dev);
1095 }
1096
1097 /**
1098  * pch_udc_pcd_get_frame() - This API is invoked to get the current frame number
1099  * @gadget:     Reference to the gadget driver
1100  *
1101  * Return codes:
1102  *      0:              Success
1103  *      -EINVAL:        If the gadget passed is NULL
1104  */
1105 static int pch_udc_pcd_get_frame(struct usb_gadget *gadget)
1106 {
1107         struct pch_udc_dev      *dev;
1108
1109         if (!gadget)
1110                 return -EINVAL;
1111         dev = container_of(gadget, struct pch_udc_dev, gadget);
1112         return pch_udc_get_frame(dev);
1113 }
1114
1115 /**
1116  * pch_udc_pcd_wakeup() - This API is invoked to initiate a remote wakeup
1117  * @gadget:     Reference to the gadget driver
1118  *
1119  * Return codes:
1120  *      0:              Success
1121  *      -EINVAL:        If the gadget passed is NULL
1122  */
1123 static int pch_udc_pcd_wakeup(struct usb_gadget *gadget)
1124 {
1125         struct pch_udc_dev      *dev;
1126         unsigned long           flags;
1127
1128         if (!gadget)
1129                 return -EINVAL;
1130         dev = container_of(gadget, struct pch_udc_dev, gadget);
1131         spin_lock_irqsave(&dev->lock, flags);
1132         pch_udc_rmt_wakeup(dev);
1133         spin_unlock_irqrestore(&dev->lock, flags);
1134         return 0;
1135 }
1136
1137 /**
1138  * pch_udc_pcd_selfpowered() - This API is invoked to specify whether the device
1139  *                              is self powered or not
1140  * @gadget:     Reference to the gadget driver
1141  * @value:      Specifies self powered or not
1142  *
1143  * Return codes:
1144  *      0:              Success
1145  *      -EINVAL:        If the gadget passed is NULL
1146  */
1147 static int pch_udc_pcd_selfpowered(struct usb_gadget *gadget, int value)
1148 {
1149         struct pch_udc_dev      *dev;
1150
1151         if (!gadget)
1152                 return -EINVAL;
1153         gadget->is_selfpowered = (value != 0);
1154         dev = container_of(gadget, struct pch_udc_dev, gadget);
1155         if (value)
1156                 pch_udc_set_selfpowered(dev);
1157         else
1158                 pch_udc_clear_selfpowered(dev);
1159         return 0;
1160 }
1161
1162 /**
1163  * pch_udc_pcd_pullup() - This API is invoked to make the device
1164  *                              visible/invisible to the host
1165  * @gadget:     Reference to the gadget driver
1166  * @is_on:      Specifies whether the pull up is made active or inactive
1167  *
1168  * Return codes:
1169  *      0:              Success
1170  *      -EINVAL:        If the gadget passed is NULL
1171  */
1172 static int pch_udc_pcd_pullup(struct usb_gadget *gadget, int is_on)
1173 {
1174         struct pch_udc_dev      *dev;
1175
1176         if (!gadget)
1177                 return -EINVAL;
1178         dev = container_of(gadget, struct pch_udc_dev, gadget);
1179         if (is_on) {
1180                 pch_udc_reconnect(dev);
1181         } else {
1182                 if (dev->driver && dev->driver->disconnect) {
1183                         spin_lock(&dev->lock);
1184                         dev->driver->disconnect(&dev->gadget);
1185                         spin_unlock(&dev->lock);
1186                 }
1187                 pch_udc_set_disconnect(dev);
1188         }
1189
1190         return 0;
1191 }
1192
1193 /**
1194  * pch_udc_pcd_vbus_session() - This API is used by a driver for an external
1195  *                              transceiver (or GPIO) that
1196  *                              detects a VBUS power session starting/ending
1197  * @gadget:     Reference to the gadget driver
1198  * @is_active:  specifies whether the session is starting or ending
1199  *
1200  * Return codes:
1201  *      0:              Success
1202  *      -EINVAL:        If the gadget passed is NULL
1203  */
1204 static int pch_udc_pcd_vbus_session(struct usb_gadget *gadget, int is_active)
1205 {
1206         struct pch_udc_dev      *dev;
1207
1208         if (!gadget)
1209                 return -EINVAL;
1210         dev = container_of(gadget, struct pch_udc_dev, gadget);
1211         pch_udc_vbus_session(dev, is_active);
1212         return 0;
1213 }
1214
1215 /**
1216  * pch_udc_pcd_vbus_draw() - This API is used by gadget drivers during
1217  *                              SET_CONFIGURATION calls to
1218  *                              specify how much power the device can consume
1219  * @gadget:     Reference to the gadget driver
1220  * @mA:         specifies the current limit in 2mA unit
1221  *
1222  * Return codes:
1223  *      -EINVAL:        If the gadget passed is NULL
1224  *      -EOPNOTSUPP:
1225  */
1226 static int pch_udc_pcd_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
1227 {
1228         return -EOPNOTSUPP;
1229 }
1230
1231 static int pch_udc_start(struct usb_gadget *g,
1232                 struct usb_gadget_driver *driver);
1233 static int pch_udc_stop(struct usb_gadget *g);
1234
1235 static const struct usb_gadget_ops pch_udc_ops = {
1236         .get_frame = pch_udc_pcd_get_frame,
1237         .wakeup = pch_udc_pcd_wakeup,
1238         .set_selfpowered = pch_udc_pcd_selfpowered,
1239         .pullup = pch_udc_pcd_pullup,
1240         .vbus_session = pch_udc_pcd_vbus_session,
1241         .vbus_draw = pch_udc_pcd_vbus_draw,
1242         .udc_start = pch_udc_start,
1243         .udc_stop = pch_udc_stop,
1244 };
1245
1246 /**
1247  * pch_vbus_gpio_get_value() - This API gets value of GPIO port as VBUS status.
1248  * @dev:        Reference to the driver structure
1249  *
1250  * Return value:
1251  *      1: VBUS is high
1252  *      0: VBUS is low
1253  *     -1: It is not enable to detect VBUS using GPIO
1254  */
1255 static int pch_vbus_gpio_get_value(struct pch_udc_dev *dev)
1256 {
1257         int vbus = 0;
1258
1259         if (dev->vbus_gpio.port)
1260                 vbus = gpio_get_value(dev->vbus_gpio.port) ? 1 : 0;
1261         else
1262                 vbus = -1;
1263
1264         return vbus;
1265 }
1266
1267 /**
1268  * pch_vbus_gpio_work_fall() - This API keeps watch on VBUS becoming Low.
1269  *                             If VBUS is Low, disconnect is processed
1270  * @irq_work:   Structure for WorkQueue
1271  *
1272  */
1273 static void pch_vbus_gpio_work_fall(struct work_struct *irq_work)
1274 {
1275         struct pch_vbus_gpio_data *vbus_gpio = container_of(irq_work,
1276                 struct pch_vbus_gpio_data, irq_work_fall);
1277         struct pch_udc_dev *dev =
1278                 container_of(vbus_gpio, struct pch_udc_dev, vbus_gpio);
1279         int vbus_saved = -1;
1280         int vbus;
1281         int count;
1282
1283         if (!dev->vbus_gpio.port)
1284                 return;
1285
1286         for (count = 0; count < (PCH_VBUS_PERIOD / PCH_VBUS_INTERVAL);
1287                 count++) {
1288                 vbus = pch_vbus_gpio_get_value(dev);
1289
1290                 if ((vbus_saved == vbus) && (vbus == 0)) {
1291                         dev_dbg(&dev->pdev->dev, "VBUS fell");
1292                         if (dev->driver
1293                                 && dev->driver->disconnect) {
1294                                 dev->driver->disconnect(
1295                                         &dev->gadget);
1296                         }
1297                         if (dev->vbus_gpio.intr)
1298                                 pch_udc_init(dev);
1299                         else
1300                                 pch_udc_reconnect(dev);
1301                         return;
1302                 }
1303                 vbus_saved = vbus;
1304                 mdelay(PCH_VBUS_INTERVAL);
1305         }
1306 }
1307
1308 /**
1309  * pch_vbus_gpio_work_rise() - This API checks VBUS is High.
1310  *                             If VBUS is High, connect is processed
1311  * @irq_work:   Structure for WorkQueue
1312  *
1313  */
1314 static void pch_vbus_gpio_work_rise(struct work_struct *irq_work)
1315 {
1316         struct pch_vbus_gpio_data *vbus_gpio = container_of(irq_work,
1317                 struct pch_vbus_gpio_data, irq_work_rise);
1318         struct pch_udc_dev *dev =
1319                 container_of(vbus_gpio, struct pch_udc_dev, vbus_gpio);
1320         int vbus;
1321
1322         if (!dev->vbus_gpio.port)
1323                 return;
1324
1325         mdelay(PCH_VBUS_INTERVAL);
1326         vbus = pch_vbus_gpio_get_value(dev);
1327
1328         if (vbus == 1) {
1329                 dev_dbg(&dev->pdev->dev, "VBUS rose");
1330                 pch_udc_reconnect(dev);
1331                 return;
1332         }
1333 }
1334
1335 /**
1336  * pch_vbus_gpio_irq() - IRQ handler for GPIO intrerrupt for changing VBUS
1337  * @irq:        Interrupt request number
1338  * @dev:        Reference to the device structure
1339  *
1340  * Return codes:
1341  *      0: Success
1342  *      -EINVAL: GPIO port is invalid or can't be initialized.
1343  */
1344 static irqreturn_t pch_vbus_gpio_irq(int irq, void *data)
1345 {
1346         struct pch_udc_dev *dev = (struct pch_udc_dev *)data;
1347
1348         if (!dev->vbus_gpio.port || !dev->vbus_gpio.intr)
1349                 return IRQ_NONE;
1350
1351         if (pch_vbus_gpio_get_value(dev))
1352                 schedule_work(&dev->vbus_gpio.irq_work_rise);
1353         else
1354                 schedule_work(&dev->vbus_gpio.irq_work_fall);
1355
1356         return IRQ_HANDLED;
1357 }
1358
1359 /**
1360  * pch_vbus_gpio_init() - This API initializes GPIO port detecting VBUS.
1361  * @dev:        Reference to the driver structure
1362  * @vbus_gpio   Number of GPIO port to detect gpio
1363  *
1364  * Return codes:
1365  *      0: Success
1366  *      -EINVAL: GPIO port is invalid or can't be initialized.
1367  */
1368 static int pch_vbus_gpio_init(struct pch_udc_dev *dev, int vbus_gpio_port)
1369 {
1370         int err;
1371         int irq_num = 0;
1372
1373         dev->vbus_gpio.port = 0;
1374         dev->vbus_gpio.intr = 0;
1375
1376         if (vbus_gpio_port <= -1)
1377                 return -EINVAL;
1378
1379         err = gpio_is_valid(vbus_gpio_port);
1380         if (!err) {
1381                 pr_err("%s: gpio port %d is invalid\n",
1382                         __func__, vbus_gpio_port);
1383                 return -EINVAL;
1384         }
1385
1386         err = gpio_request(vbus_gpio_port, "pch_vbus");
1387         if (err) {
1388                 pr_err("%s: can't request gpio port %d, err: %d\n",
1389                         __func__, vbus_gpio_port, err);
1390                 return -EINVAL;
1391         }
1392
1393         dev->vbus_gpio.port = vbus_gpio_port;
1394         gpio_direction_input(vbus_gpio_port);
1395         INIT_WORK(&dev->vbus_gpio.irq_work_fall, pch_vbus_gpio_work_fall);
1396
1397         irq_num = gpio_to_irq(vbus_gpio_port);
1398         if (irq_num > 0) {
1399                 irq_set_irq_type(irq_num, IRQ_TYPE_EDGE_BOTH);
1400                 err = request_irq(irq_num, pch_vbus_gpio_irq, 0,
1401                         "vbus_detect", dev);
1402                 if (!err) {
1403                         dev->vbus_gpio.intr = irq_num;
1404                         INIT_WORK(&dev->vbus_gpio.irq_work_rise,
1405                                 pch_vbus_gpio_work_rise);
1406                 } else {
1407                         pr_err("%s: can't request irq %d, err: %d\n",
1408                                 __func__, irq_num, err);
1409                 }
1410         }
1411
1412         return 0;
1413 }
1414
1415 /**
1416  * pch_vbus_gpio_free() - This API frees resources of GPIO port
1417  * @dev:        Reference to the driver structure
1418  */
1419 static void pch_vbus_gpio_free(struct pch_udc_dev *dev)
1420 {
1421         if (dev->vbus_gpio.intr)
1422                 free_irq(dev->vbus_gpio.intr, dev);
1423
1424         if (dev->vbus_gpio.port)
1425                 gpio_free(dev->vbus_gpio.port);
1426 }
1427
1428 /**
1429  * complete_req() - This API is invoked from the driver when processing
1430  *                      of a request is complete
1431  * @ep:         Reference to the endpoint structure
1432  * @req:        Reference to the request structure
1433  * @status:     Indicates the success/failure of completion
1434  */
1435 static void complete_req(struct pch_udc_ep *ep, struct pch_udc_request *req,
1436                                                                  int status)
1437         __releases(&dev->lock)
1438         __acquires(&dev->lock)
1439 {
1440         struct pch_udc_dev      *dev;
1441         unsigned halted = ep->halted;
1442
1443         list_del_init(&req->queue);
1444
1445         /* set new status if pending */
1446         if (req->req.status == -EINPROGRESS)
1447                 req->req.status = status;
1448         else
1449                 status = req->req.status;
1450
1451         dev = ep->dev;
1452         if (req->dma_mapped) {
1453                 if (req->dma == DMA_ADDR_INVALID) {
1454                         if (ep->in)
1455                                 dma_unmap_single(&dev->pdev->dev, req->req.dma,
1456                                                  req->req.length,
1457                                                  DMA_TO_DEVICE);
1458                         else
1459                                 dma_unmap_single(&dev->pdev->dev, req->req.dma,
1460                                                  req->req.length,
1461                                                  DMA_FROM_DEVICE);
1462                         req->req.dma = DMA_ADDR_INVALID;
1463                 } else {
1464                         if (ep->in)
1465                                 dma_unmap_single(&dev->pdev->dev, req->dma,
1466                                                  req->req.length,
1467                                                  DMA_TO_DEVICE);
1468                         else {
1469                                 dma_unmap_single(&dev->pdev->dev, req->dma,
1470                                                  req->req.length,
1471                                                  DMA_FROM_DEVICE);
1472                                 memcpy(req->req.buf, req->buf, req->req.length);
1473                         }
1474                         kfree(req->buf);
1475                         req->dma = DMA_ADDR_INVALID;
1476                 }
1477                 req->dma_mapped = 0;
1478         }
1479         ep->halted = 1;
1480         spin_unlock(&dev->lock);
1481         if (!ep->in)
1482                 pch_udc_ep_clear_rrdy(ep);
1483         usb_gadget_giveback_request(&ep->ep, &req->req);
1484         spin_lock(&dev->lock);
1485         ep->halted = halted;
1486 }
1487
1488 /**
1489  * empty_req_queue() - This API empties the request queue of an endpoint
1490  * @ep:         Reference to the endpoint structure
1491  */
1492 static void empty_req_queue(struct pch_udc_ep *ep)
1493 {
1494         struct pch_udc_request  *req;
1495
1496         ep->halted = 1;
1497         while (!list_empty(&ep->queue)) {
1498                 req = list_entry(ep->queue.next, struct pch_udc_request, queue);
1499                 complete_req(ep, req, -ESHUTDOWN);      /* Remove from list */
1500         }
1501 }
1502
1503 /**
1504  * pch_udc_free_dma_chain() - This function frees the DMA chain created
1505  *                              for the request
1506  * @dev         Reference to the driver structure
1507  * @req         Reference to the request to be freed
1508  *
1509  * Return codes:
1510  *      0: Success
1511  */
1512 static void pch_udc_free_dma_chain(struct pch_udc_dev *dev,
1513                                    struct pch_udc_request *req)
1514 {
1515         struct pch_udc_data_dma_desc *td = req->td_data;
1516         unsigned i = req->chain_len;
1517
1518         dma_addr_t addr2;
1519         dma_addr_t addr = (dma_addr_t)td->next;
1520         td->next = 0x00;
1521         for (; i > 1; --i) {
1522                 /* do not free first desc., will be done by free for request */
1523                 td = phys_to_virt(addr);
1524                 addr2 = (dma_addr_t)td->next;
1525                 pci_pool_free(dev->data_requests, td, addr);
1526                 addr = addr2;
1527         }
1528         req->chain_len = 1;
1529 }
1530
1531 /**
1532  * pch_udc_create_dma_chain() - This function creates or reinitializes
1533  *                              a DMA chain
1534  * @ep:         Reference to the endpoint structure
1535  * @req:        Reference to the request
1536  * @buf_len:    The buffer length
1537  * @gfp_flags:  Flags to be used while mapping the data buffer
1538  *
1539  * Return codes:
1540  *      0:              success,
1541  *      -ENOMEM:        pci_pool_alloc invocation fails
1542  */
1543 static int pch_udc_create_dma_chain(struct pch_udc_ep *ep,
1544                                     struct pch_udc_request *req,
1545                                     unsigned long buf_len,
1546                                     gfp_t gfp_flags)
1547 {
1548         struct pch_udc_data_dma_desc *td = req->td_data, *last;
1549         unsigned long bytes = req->req.length, i = 0;
1550         dma_addr_t dma_addr;
1551         unsigned len = 1;
1552
1553         if (req->chain_len > 1)
1554                 pch_udc_free_dma_chain(ep->dev, req);
1555
1556         if (req->dma == DMA_ADDR_INVALID)
1557                 td->dataptr = req->req.dma;
1558         else
1559                 td->dataptr = req->dma;
1560
1561         td->status = PCH_UDC_BS_HST_BSY;
1562         for (; ; bytes -= buf_len, ++len) {
1563                 td->status = PCH_UDC_BS_HST_BSY | min(buf_len, bytes);
1564                 if (bytes <= buf_len)
1565                         break;
1566                 last = td;
1567                 td = pci_pool_alloc(ep->dev->data_requests, gfp_flags,
1568                                     &dma_addr);
1569                 if (!td)
1570                         goto nomem;
1571                 i += buf_len;
1572                 td->dataptr = req->td_data->dataptr + i;
1573                 last->next = dma_addr;
1574         }
1575
1576         req->td_data_last = td;
1577         td->status |= PCH_UDC_DMA_LAST;
1578         td->next = req->td_data_phys;
1579         req->chain_len = len;
1580         return 0;
1581
1582 nomem:
1583         if (len > 1) {
1584                 req->chain_len = len;
1585                 pch_udc_free_dma_chain(ep->dev, req);
1586         }
1587         req->chain_len = 1;
1588         return -ENOMEM;
1589 }
1590
1591 /**
1592  * prepare_dma() - This function creates and initializes the DMA chain
1593  *                      for the request
1594  * @ep:         Reference to the endpoint structure
1595  * @req:        Reference to the request
1596  * @gfp:        Flag to be used while mapping the data buffer
1597  *
1598  * Return codes:
1599  *      0:              Success
1600  *      Other 0:        linux error number on failure
1601  */
1602 static int prepare_dma(struct pch_udc_ep *ep, struct pch_udc_request *req,
1603                           gfp_t gfp)
1604 {
1605         int     retval;
1606
1607         /* Allocate and create a DMA chain */
1608         retval = pch_udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp);
1609         if (retval) {
1610                 pr_err("%s: could not create DMA chain:%d\n", __func__, retval);
1611                 return retval;
1612         }
1613         if (ep->in)
1614                 req->td_data->status = (req->td_data->status &
1615                                 ~PCH_UDC_BUFF_STS) | PCH_UDC_BS_HST_RDY;
1616         return 0;
1617 }
1618
1619 /**
1620  * process_zlp() - This function process zero length packets
1621  *                      from the gadget driver
1622  * @ep:         Reference to the endpoint structure
1623  * @req:        Reference to the request
1624  */
1625 static void process_zlp(struct pch_udc_ep *ep, struct pch_udc_request *req)
1626 {
1627         struct pch_udc_dev      *dev = ep->dev;
1628
1629         /* IN zlp's are handled by hardware */
1630         complete_req(ep, req, 0);
1631
1632         /* if set_config or set_intf is waiting for ack by zlp
1633          * then set CSR_DONE
1634          */
1635         if (dev->set_cfg_not_acked) {
1636                 pch_udc_set_csr_done(dev);
1637                 dev->set_cfg_not_acked = 0;
1638         }
1639         /* setup command is ACK'ed now by zlp */
1640         if (!dev->stall && dev->waiting_zlp_ack) {
1641                 pch_udc_ep_clear_nak(&(dev->ep[UDC_EP0IN_IDX]));
1642                 dev->waiting_zlp_ack = 0;
1643         }
1644 }
1645
1646 /**
1647  * pch_udc_start_rxrequest() - This function starts the receive requirement.
1648  * @ep:         Reference to the endpoint structure
1649  * @req:        Reference to the request structure
1650  */
1651 static void pch_udc_start_rxrequest(struct pch_udc_ep *ep,
1652                                          struct pch_udc_request *req)
1653 {
1654         struct pch_udc_data_dma_desc *td_data;
1655
1656         pch_udc_clear_dma(ep->dev, DMA_DIR_RX);
1657         td_data = req->td_data;
1658         /* Set the status bits for all descriptors */
1659         while (1) {
1660                 td_data->status = (td_data->status & ~PCH_UDC_BUFF_STS) |
1661                                     PCH_UDC_BS_HST_RDY;
1662                 if ((td_data->status & PCH_UDC_DMA_LAST) ==  PCH_UDC_DMA_LAST)
1663                         break;
1664                 td_data = phys_to_virt(td_data->next);
1665         }
1666         /* Write the descriptor pointer */
1667         pch_udc_ep_set_ddptr(ep, req->td_data_phys);
1668         req->dma_going = 1;
1669         pch_udc_enable_ep_interrupts(ep->dev, UDC_EPINT_OUT_EP0 << ep->num);
1670         pch_udc_set_dma(ep->dev, DMA_DIR_RX);
1671         pch_udc_ep_clear_nak(ep);
1672         pch_udc_ep_set_rrdy(ep);
1673 }
1674
1675 /**
1676  * pch_udc_pcd_ep_enable() - This API enables the endpoint. It is called
1677  *                              from gadget driver
1678  * @usbep:      Reference to the USB endpoint structure
1679  * @desc:       Reference to the USB endpoint descriptor structure
1680  *
1681  * Return codes:
1682  *      0:              Success
1683  *      -EINVAL:
1684  *      -ESHUTDOWN:
1685  */
1686 static int pch_udc_pcd_ep_enable(struct usb_ep *usbep,
1687                                     const struct usb_endpoint_descriptor *desc)
1688 {
1689         struct pch_udc_ep       *ep;
1690         struct pch_udc_dev      *dev;
1691         unsigned long           iflags;
1692
1693         if (!usbep || (usbep->name == ep0_string) || !desc ||
1694             (desc->bDescriptorType != USB_DT_ENDPOINT) || !desc->wMaxPacketSize)
1695                 return -EINVAL;
1696
1697         ep = container_of(usbep, struct pch_udc_ep, ep);
1698         dev = ep->dev;
1699         if (!dev->driver || (dev->gadget.speed == USB_SPEED_UNKNOWN))
1700                 return -ESHUTDOWN;
1701         spin_lock_irqsave(&dev->lock, iflags);
1702         ep->ep.desc = desc;
1703         ep->halted = 0;
1704         pch_udc_ep_enable(ep, &ep->dev->cfg_data, desc);
1705         ep->ep.maxpacket = usb_endpoint_maxp(desc);
1706         pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
1707         spin_unlock_irqrestore(&dev->lock, iflags);
1708         return 0;
1709 }
1710
1711 /**
1712  * pch_udc_pcd_ep_disable() - This API disables endpoint and is called
1713  *                              from gadget driver
1714  * @usbep       Reference to the USB endpoint structure
1715  *
1716  * Return codes:
1717  *      0:              Success
1718  *      -EINVAL:
1719  */
1720 static int pch_udc_pcd_ep_disable(struct usb_ep *usbep)
1721 {
1722         struct pch_udc_ep       *ep;
1723         unsigned long   iflags;
1724
1725         if (!usbep)
1726                 return -EINVAL;
1727
1728         ep = container_of(usbep, struct pch_udc_ep, ep);
1729         if ((usbep->name == ep0_string) || !ep->ep.desc)
1730                 return -EINVAL;
1731
1732         spin_lock_irqsave(&ep->dev->lock, iflags);
1733         empty_req_queue(ep);
1734         ep->halted = 1;
1735         pch_udc_ep_disable(ep);
1736         pch_udc_disable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
1737         ep->ep.desc = NULL;
1738         INIT_LIST_HEAD(&ep->queue);
1739         spin_unlock_irqrestore(&ep->dev->lock, iflags);
1740         return 0;
1741 }
1742
1743 /**
1744  * pch_udc_alloc_request() - This function allocates request structure.
1745  *                              It is called by gadget driver
1746  * @usbep:      Reference to the USB endpoint structure
1747  * @gfp:        Flag to be used while allocating memory
1748  *
1749  * Return codes:
1750  *      NULL:                   Failure
1751  *      Allocated address:      Success
1752  */
1753 static struct usb_request *pch_udc_alloc_request(struct usb_ep *usbep,
1754                                                   gfp_t gfp)
1755 {
1756         struct pch_udc_request          *req;
1757         struct pch_udc_ep               *ep;
1758         struct pch_udc_data_dma_desc    *dma_desc;
1759
1760         if (!usbep)
1761                 return NULL;
1762         ep = container_of(usbep, struct pch_udc_ep, ep);
1763         req = kzalloc(sizeof *req, gfp);
1764         if (!req)
1765                 return NULL;
1766         req->req.dma = DMA_ADDR_INVALID;
1767         req->dma = DMA_ADDR_INVALID;
1768         INIT_LIST_HEAD(&req->queue);
1769         if (!ep->dev->dma_addr)
1770                 return &req->req;
1771         /* ep0 in requests are allocated from data pool here */
1772         dma_desc = pci_pool_alloc(ep->dev->data_requests, gfp,
1773                                   &req->td_data_phys);
1774         if (NULL == dma_desc) {
1775                 kfree(req);
1776                 return NULL;
1777         }
1778         /* prevent from using desc. - set HOST BUSY */
1779         dma_desc->status |= PCH_UDC_BS_HST_BSY;
1780         dma_desc->dataptr = cpu_to_le32(DMA_ADDR_INVALID);
1781         req->td_data = dma_desc;
1782         req->td_data_last = dma_desc;
1783         req->chain_len = 1;
1784         return &req->req;
1785 }
1786
1787 /**
1788  * pch_udc_free_request() - This function frees request structure.
1789  *                              It is called by gadget driver
1790  * @usbep:      Reference to the USB endpoint structure
1791  * @usbreq:     Reference to the USB request
1792  */
1793 static void pch_udc_free_request(struct usb_ep *usbep,
1794                                   struct usb_request *usbreq)
1795 {
1796         struct pch_udc_ep       *ep;
1797         struct pch_udc_request  *req;
1798         struct pch_udc_dev      *dev;
1799
1800         if (!usbep || !usbreq)
1801                 return;
1802         ep = container_of(usbep, struct pch_udc_ep, ep);
1803         req = container_of(usbreq, struct pch_udc_request, req);
1804         dev = ep->dev;
1805         if (!list_empty(&req->queue))
1806                 dev_err(&dev->pdev->dev, "%s: %s req=0x%p queue not empty\n",
1807                         __func__, usbep->name, req);
1808         if (req->td_data != NULL) {
1809                 if (req->chain_len > 1)
1810                         pch_udc_free_dma_chain(ep->dev, req);
1811                 pci_pool_free(ep->dev->data_requests, req->td_data,
1812                               req->td_data_phys);
1813         }
1814         kfree(req);
1815 }
1816
1817 /**
1818  * pch_udc_pcd_queue() - This function queues a request packet. It is called
1819  *                      by gadget driver
1820  * @usbep:      Reference to the USB endpoint structure
1821  * @usbreq:     Reference to the USB request
1822  * @gfp:        Flag to be used while mapping the data buffer
1823  *
1824  * Return codes:
1825  *      0:                      Success
1826  *      linux error number:     Failure
1827  */
1828 static int pch_udc_pcd_queue(struct usb_ep *usbep, struct usb_request *usbreq,
1829                                                                  gfp_t gfp)
1830 {
1831         int retval = 0;
1832         struct pch_udc_ep       *ep;
1833         struct pch_udc_dev      *dev;
1834         struct pch_udc_request  *req;
1835         unsigned long   iflags;
1836
1837         if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf)
1838                 return -EINVAL;
1839         ep = container_of(usbep, struct pch_udc_ep, ep);
1840         dev = ep->dev;
1841         if (!ep->ep.desc && ep->num)
1842                 return -EINVAL;
1843         req = container_of(usbreq, struct pch_udc_request, req);
1844         if (!list_empty(&req->queue))
1845                 return -EINVAL;
1846         if (!dev->driver || (dev->gadget.speed == USB_SPEED_UNKNOWN))
1847                 return -ESHUTDOWN;
1848         spin_lock_irqsave(&dev->lock, iflags);
1849         /* map the buffer for dma */
1850         if (usbreq->length &&
1851             ((usbreq->dma == DMA_ADDR_INVALID) || !usbreq->dma)) {
1852                 if (!((unsigned long)(usbreq->buf) & 0x03)) {
1853                         if (ep->in)
1854                                 usbreq->dma = dma_map_single(&dev->pdev->dev,
1855                                                              usbreq->buf,
1856                                                              usbreq->length,
1857                                                              DMA_TO_DEVICE);
1858                         else
1859                                 usbreq->dma = dma_map_single(&dev->pdev->dev,
1860                                                              usbreq->buf,
1861                                                              usbreq->length,
1862                                                              DMA_FROM_DEVICE);
1863                 } else {
1864                         req->buf = kzalloc(usbreq->length, GFP_ATOMIC);
1865                         if (!req->buf) {
1866                                 retval = -ENOMEM;
1867                                 goto probe_end;
1868                         }
1869                         if (ep->in) {
1870                                 memcpy(req->buf, usbreq->buf, usbreq->length);
1871                                 req->dma = dma_map_single(&dev->pdev->dev,
1872                                                           req->buf,
1873                                                           usbreq->length,
1874                                                           DMA_TO_DEVICE);
1875                         } else
1876                                 req->dma = dma_map_single(&dev->pdev->dev,
1877                                                           req->buf,
1878                                                           usbreq->length,
1879                                                           DMA_FROM_DEVICE);
1880                 }
1881                 req->dma_mapped = 1;
1882         }
1883         if (usbreq->length > 0) {
1884                 retval = prepare_dma(ep, req, GFP_ATOMIC);
1885                 if (retval)
1886                         goto probe_end;
1887         }
1888         usbreq->actual = 0;
1889         usbreq->status = -EINPROGRESS;
1890         req->dma_done = 0;
1891         if (list_empty(&ep->queue) && !ep->halted) {
1892                 /* no pending transfer, so start this req */
1893                 if (!usbreq->length) {
1894                         process_zlp(ep, req);
1895                         retval = 0;
1896                         goto probe_end;
1897                 }
1898                 if (!ep->in) {
1899                         pch_udc_start_rxrequest(ep, req);
1900                 } else {
1901                         /*
1902                         * For IN trfr the descriptors will be programmed and
1903                         * P bit will be set when
1904                         * we get an IN token
1905                         */
1906                         pch_udc_wait_ep_stall(ep);
1907                         pch_udc_ep_clear_nak(ep);
1908                         pch_udc_enable_ep_interrupts(ep->dev, (1 << ep->num));
1909                 }
1910         }
1911         /* Now add this request to the ep's pending requests */
1912         if (req != NULL)
1913                 list_add_tail(&req->queue, &ep->queue);
1914
1915 probe_end:
1916         spin_unlock_irqrestore(&dev->lock, iflags);
1917         return retval;
1918 }
1919
1920 /**
1921  * pch_udc_pcd_dequeue() - This function de-queues a request packet.
1922  *                              It is called by gadget driver
1923  * @usbep:      Reference to the USB endpoint structure
1924  * @usbreq:     Reference to the USB request
1925  *
1926  * Return codes:
1927  *      0:                      Success
1928  *      linux error number:     Failure
1929  */
1930 static int pch_udc_pcd_dequeue(struct usb_ep *usbep,
1931                                 struct usb_request *usbreq)
1932 {
1933         struct pch_udc_ep       *ep;
1934         struct pch_udc_request  *req;
1935         unsigned long           flags;
1936         int ret = -EINVAL;
1937
1938         ep = container_of(usbep, struct pch_udc_ep, ep);
1939         if (!usbep || !usbreq || (!ep->ep.desc && ep->num))
1940                 return ret;
1941         req = container_of(usbreq, struct pch_udc_request, req);
1942         spin_lock_irqsave(&ep->dev->lock, flags);
1943         /* make sure it's still queued on this endpoint */
1944         list_for_each_entry(req, &ep->queue, queue) {
1945                 if (&req->req == usbreq) {
1946                         pch_udc_ep_set_nak(ep);
1947                         if (!list_empty(&req->queue))
1948                                 complete_req(ep, req, -ECONNRESET);
1949                         ret = 0;
1950                         break;
1951                 }
1952         }
1953         spin_unlock_irqrestore(&ep->dev->lock, flags);
1954         return ret;
1955 }
1956
1957 /**
1958  * pch_udc_pcd_set_halt() - This function Sets or clear the endpoint halt
1959  *                          feature
1960  * @usbep:      Reference to the USB endpoint structure
1961  * @halt:       Specifies whether to set or clear the feature
1962  *
1963  * Return codes:
1964  *      0:                      Success
1965  *      linux error number:     Failure
1966  */
1967 static int pch_udc_pcd_set_halt(struct usb_ep *usbep, int halt)
1968 {
1969         struct pch_udc_ep       *ep;
1970         unsigned long iflags;
1971         int ret;
1972
1973         if (!usbep)
1974                 return -EINVAL;
1975         ep = container_of(usbep, struct pch_udc_ep, ep);
1976         if (!ep->ep.desc && !ep->num)
1977                 return -EINVAL;
1978         if (!ep->dev->driver || (ep->dev->gadget.speed == USB_SPEED_UNKNOWN))
1979                 return -ESHUTDOWN;
1980         spin_lock_irqsave(&udc_stall_spinlock, iflags);
1981         if (list_empty(&ep->queue)) {
1982                 if (halt) {
1983                         if (ep->num == PCH_UDC_EP0)
1984                                 ep->dev->stall = 1;
1985                         pch_udc_ep_set_stall(ep);
1986                         pch_udc_enable_ep_interrupts(
1987                                 ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
1988                 } else {
1989                         pch_udc_ep_clear_stall(ep);
1990                 }
1991                 ret = 0;
1992         } else {
1993                 ret = -EAGAIN;
1994         }
1995         spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
1996         return ret;
1997 }
1998
1999 /**
2000  * pch_udc_pcd_set_wedge() - This function Sets or clear the endpoint
2001  *                              halt feature
2002  * @usbep:      Reference to the USB endpoint structure
2003  * @halt:       Specifies whether to set or clear the feature
2004  *
2005  * Return codes:
2006  *      0:                      Success
2007  *      linux error number:     Failure
2008  */
2009 static int pch_udc_pcd_set_wedge(struct usb_ep *usbep)
2010 {
2011         struct pch_udc_ep       *ep;
2012         unsigned long iflags;
2013         int ret;
2014
2015         if (!usbep)
2016                 return -EINVAL;
2017         ep = container_of(usbep, struct pch_udc_ep, ep);
2018         if (!ep->ep.desc && !ep->num)
2019                 return -EINVAL;
2020         if (!ep->dev->driver || (ep->dev->gadget.speed == USB_SPEED_UNKNOWN))
2021                 return -ESHUTDOWN;
2022         spin_lock_irqsave(&udc_stall_spinlock, iflags);
2023         if (!list_empty(&ep->queue)) {
2024                 ret = -EAGAIN;
2025         } else {
2026                 if (ep->num == PCH_UDC_EP0)
2027                         ep->dev->stall = 1;
2028                 pch_udc_ep_set_stall(ep);
2029                 pch_udc_enable_ep_interrupts(ep->dev,
2030                                              PCH_UDC_EPINT(ep->in, ep->num));
2031                 ep->dev->prot_stall = 1;
2032                 ret = 0;
2033         }
2034         spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
2035         return ret;
2036 }
2037
2038 /**
2039  * pch_udc_pcd_fifo_flush() - This function Flush the FIFO of specified endpoint
2040  * @usbep:      Reference to the USB endpoint structure
2041  */
2042 static void pch_udc_pcd_fifo_flush(struct usb_ep *usbep)
2043 {
2044         struct pch_udc_ep  *ep;
2045
2046         if (!usbep)
2047                 return;
2048
2049         ep = container_of(usbep, struct pch_udc_ep, ep);
2050         if (ep->ep.desc || !ep->num)
2051                 pch_udc_ep_fifo_flush(ep, ep->in);
2052 }
2053
2054 static const struct usb_ep_ops pch_udc_ep_ops = {
2055         .enable         = pch_udc_pcd_ep_enable,
2056         .disable        = pch_udc_pcd_ep_disable,
2057         .alloc_request  = pch_udc_alloc_request,
2058         .free_request   = pch_udc_free_request,
2059         .queue          = pch_udc_pcd_queue,
2060         .dequeue        = pch_udc_pcd_dequeue,
2061         .set_halt       = pch_udc_pcd_set_halt,
2062         .set_wedge      = pch_udc_pcd_set_wedge,
2063         .fifo_status    = NULL,
2064         .fifo_flush     = pch_udc_pcd_fifo_flush,
2065 };
2066
2067 /**
2068  * pch_udc_init_setup_buff() - This function initializes the SETUP buffer
2069  * @td_stp:     Reference to the SETP buffer structure
2070  */
2071 static void pch_udc_init_setup_buff(struct pch_udc_stp_dma_desc *td_stp)
2072 {
2073         static u32      pky_marker;
2074
2075         if (!td_stp)
2076                 return;
2077         td_stp->reserved = ++pky_marker;
2078         memset(&td_stp->request, 0xFF, sizeof td_stp->request);
2079         td_stp->status = PCH_UDC_BS_HST_RDY;
2080 }
2081
2082 /**
2083  * pch_udc_start_next_txrequest() - This function starts
2084  *                                      the next transmission requirement
2085  * @ep: Reference to the endpoint structure
2086  */
2087 static void pch_udc_start_next_txrequest(struct pch_udc_ep *ep)
2088 {
2089         struct pch_udc_request *req;
2090         struct pch_udc_data_dma_desc *td_data;
2091
2092         if (pch_udc_read_ep_control(ep) & UDC_EPCTL_P)
2093                 return;
2094
2095         if (list_empty(&ep->queue))
2096                 return;
2097
2098         /* next request */
2099         req = list_entry(ep->queue.next, struct pch_udc_request, queue);
2100         if (req->dma_going)
2101                 return;
2102         if (!req->td_data)
2103                 return;
2104         pch_udc_wait_ep_stall(ep);
2105         req->dma_going = 1;
2106         pch_udc_ep_set_ddptr(ep, 0);
2107         td_data = req->td_data;
2108         while (1) {
2109                 td_data->status = (td_data->status & ~PCH_UDC_BUFF_STS) |
2110                                    PCH_UDC_BS_HST_RDY;
2111                 if ((td_data->status & PCH_UDC_DMA_LAST) == PCH_UDC_DMA_LAST)
2112                         break;
2113                 td_data = phys_to_virt(td_data->next);
2114         }
2115         pch_udc_ep_set_ddptr(ep, req->td_data_phys);
2116         pch_udc_set_dma(ep->dev, DMA_DIR_TX);
2117         pch_udc_ep_set_pd(ep);
2118         pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
2119         pch_udc_ep_clear_nak(ep);
2120 }
2121
2122 /**
2123  * pch_udc_complete_transfer() - This function completes a transfer
2124  * @ep:         Reference to the endpoint structure
2125  */
2126 static void pch_udc_complete_transfer(struct pch_udc_ep *ep)
2127 {
2128         struct pch_udc_request *req;
2129         struct pch_udc_dev *dev = ep->dev;
2130
2131         if (list_empty(&ep->queue))
2132                 return;
2133         req = list_entry(ep->queue.next, struct pch_udc_request, queue);
2134         if ((req->td_data_last->status & PCH_UDC_BUFF_STS) !=
2135             PCH_UDC_BS_DMA_DONE)
2136                 return;
2137         if ((req->td_data_last->status & PCH_UDC_RXTX_STS) !=
2138              PCH_UDC_RTS_SUCC) {
2139                 dev_err(&dev->pdev->dev, "Invalid RXTX status (0x%08x) "
2140                         "epstatus=0x%08x\n",
2141                        (req->td_data_last->status & PCH_UDC_RXTX_STS),
2142                        (int)(ep->epsts));
2143                 return;
2144         }
2145
2146         req->req.actual = req->req.length;
2147         req->td_data_last->status = PCH_UDC_BS_HST_BSY | PCH_UDC_DMA_LAST;
2148         req->td_data->status = PCH_UDC_BS_HST_BSY | PCH_UDC_DMA_LAST;
2149         complete_req(ep, req, 0);
2150         req->dma_going = 0;
2151         if (!list_empty(&ep->queue)) {
2152                 pch_udc_wait_ep_stall(ep);
2153                 pch_udc_ep_clear_nak(ep);
2154                 pch_udc_enable_ep_interrupts(ep->dev,
2155                                              PCH_UDC_EPINT(ep->in, ep->num));
2156         } else {
2157                 pch_udc_disable_ep_interrupts(ep->dev,
2158                                               PCH_UDC_EPINT(ep->in, ep->num));
2159         }
2160 }
2161
2162 /**
2163  * pch_udc_complete_receiver() - This function completes a receiver
2164  * @ep:         Reference to the endpoint structure
2165  */
2166 static void pch_udc_complete_receiver(struct pch_udc_ep *ep)
2167 {
2168         struct pch_udc_request *req;
2169         struct pch_udc_dev *dev = ep->dev;
2170         unsigned int count;
2171         struct pch_udc_data_dma_desc *td;
2172         dma_addr_t addr;
2173
2174         if (list_empty(&ep->queue))
2175                 return;
2176         /* next request */
2177         req = list_entry(ep->queue.next, struct pch_udc_request, queue);
2178         pch_udc_clear_dma(ep->dev, DMA_DIR_RX);
2179         pch_udc_ep_set_ddptr(ep, 0);
2180         if ((req->td_data_last->status & PCH_UDC_BUFF_STS) ==
2181             PCH_UDC_BS_DMA_DONE)
2182                 td = req->td_data_last;
2183         else
2184                 td = req->td_data;
2185
2186         while (1) {
2187                 if ((td->status & PCH_UDC_RXTX_STS) != PCH_UDC_RTS_SUCC) {
2188                         dev_err(&dev->pdev->dev, "Invalid RXTX status=0x%08x "
2189                                 "epstatus=0x%08x\n",
2190                                 (req->td_data->status & PCH_UDC_RXTX_STS),
2191                                 (int)(ep->epsts));
2192                         return;
2193                 }
2194                 if ((td->status & PCH_UDC_BUFF_STS) == PCH_UDC_BS_DMA_DONE)
2195                         if (td->status & PCH_UDC_DMA_LAST) {
2196                                 count = td->status & PCH_UDC_RXTX_BYTES;
2197                                 break;
2198                         }
2199                 if (td == req->td_data_last) {
2200                         dev_err(&dev->pdev->dev, "Not complete RX descriptor");
2201                         return;
2202                 }
2203                 addr = (dma_addr_t)td->next;
2204                 td = phys_to_virt(addr);
2205         }
2206         /* on 64k packets the RXBYTES field is zero */
2207         if (!count && (req->req.length == UDC_DMA_MAXPACKET))
2208                 count = UDC_DMA_MAXPACKET;
2209         req->td_data->status |= PCH_UDC_DMA_LAST;
2210         td->status |= PCH_UDC_BS_HST_BSY;
2211
2212         req->dma_going = 0;
2213         req->req.actual = count;
2214         complete_req(ep, req, 0);
2215         /* If there is a new/failed requests try that now */
2216         if (!list_empty(&ep->queue)) {
2217                 req = list_entry(ep->queue.next, struct pch_udc_request, queue);
2218                 pch_udc_start_rxrequest(ep, req);
2219         }
2220 }
2221
2222 /**
2223  * pch_udc_svc_data_in() - This function process endpoint interrupts
2224  *                              for IN endpoints
2225  * @dev:        Reference to the device structure
2226  * @ep_num:     Endpoint that generated the interrupt
2227  */
2228 static void pch_udc_svc_data_in(struct pch_udc_dev *dev, int ep_num)
2229 {
2230         u32     epsts;
2231         struct pch_udc_ep       *ep;
2232
2233         ep = &dev->ep[UDC_EPIN_IDX(ep_num)];
2234         epsts = ep->epsts;
2235         ep->epsts = 0;
2236
2237         if (!(epsts & (UDC_EPSTS_IN | UDC_EPSTS_BNA  | UDC_EPSTS_HE |
2238                        UDC_EPSTS_TDC | UDC_EPSTS_RCS | UDC_EPSTS_TXEMPTY |
2239                        UDC_EPSTS_RSS | UDC_EPSTS_XFERDONE)))
2240                 return;
2241         if ((epsts & UDC_EPSTS_BNA))
2242                 return;
2243         if (epsts & UDC_EPSTS_HE)
2244                 return;
2245         if (epsts & UDC_EPSTS_RSS) {
2246                 pch_udc_ep_set_stall(ep);
2247                 pch_udc_enable_ep_interrupts(ep->dev,
2248                                              PCH_UDC_EPINT(ep->in, ep->num));
2249         }
2250         if (epsts & UDC_EPSTS_RCS) {
2251                 if (!dev->prot_stall) {
2252                         pch_udc_ep_clear_stall(ep);
2253                 } else {
2254                         pch_udc_ep_set_stall(ep);
2255                         pch_udc_enable_ep_interrupts(ep->dev,
2256                                                 PCH_UDC_EPINT(ep->in, ep->num));
2257                 }
2258         }
2259         if (epsts & UDC_EPSTS_TDC)
2260                 pch_udc_complete_transfer(ep);
2261         /* On IN interrupt, provide data if we have any */
2262         if ((epsts & UDC_EPSTS_IN) && !(epsts & UDC_EPSTS_RSS) &&
2263             !(epsts & UDC_EPSTS_TDC) && !(epsts & UDC_EPSTS_TXEMPTY))
2264                 pch_udc_start_next_txrequest(ep);
2265 }
2266
2267 /**
2268  * pch_udc_svc_data_out() - Handles interrupts from OUT endpoint
2269  * @dev:        Reference to the device structure
2270  * @ep_num:     Endpoint that generated the interrupt
2271  */
2272 static void pch_udc_svc_data_out(struct pch_udc_dev *dev, int ep_num)
2273 {
2274         u32                     epsts;
2275         struct pch_udc_ep               *ep;
2276         struct pch_udc_request          *req = NULL;
2277
2278         ep = &dev->ep[UDC_EPOUT_IDX(ep_num)];
2279         epsts = ep->epsts;
2280         ep->epsts = 0;
2281
2282         if ((epsts & UDC_EPSTS_BNA) && (!list_empty(&ep->queue))) {
2283                 /* next request */
2284                 req = list_entry(ep->queue.next, struct pch_udc_request,
2285                                  queue);
2286                 if ((req->td_data_last->status & PCH_UDC_BUFF_STS) !=
2287                      PCH_UDC_BS_DMA_DONE) {
2288                         if (!req->dma_going)
2289                                 pch_udc_start_rxrequest(ep, req);
2290                         return;
2291                 }
2292         }
2293         if (epsts & UDC_EPSTS_HE)
2294                 return;
2295         if (epsts & UDC_EPSTS_RSS) {
2296                 pch_udc_ep_set_stall(ep);
2297                 pch_udc_enable_ep_interrupts(ep->dev,
2298                                              PCH_UDC_EPINT(ep->in, ep->num));
2299         }
2300         if (epsts & UDC_EPSTS_RCS) {
2301                 if (!dev->prot_stall) {
2302                         pch_udc_ep_clear_stall(ep);
2303                 } else {
2304                         pch_udc_ep_set_stall(ep);
2305                         pch_udc_enable_ep_interrupts(ep->dev,
2306                                                 PCH_UDC_EPINT(ep->in, ep->num));
2307                 }
2308         }
2309         if (((epsts & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
2310             UDC_EPSTS_OUT_DATA) {
2311                 if (ep->dev->prot_stall == 1) {
2312                         pch_udc_ep_set_stall(ep);
2313                         pch_udc_enable_ep_interrupts(ep->dev,
2314                                                 PCH_UDC_EPINT(ep->in, ep->num));
2315                 } else {
2316                         pch_udc_complete_receiver(ep);
2317                 }
2318         }
2319         if (list_empty(&ep->queue))
2320                 pch_udc_set_dma(dev, DMA_DIR_RX);
2321 }
2322
2323 /**
2324  * pch_udc_svc_control_in() - Handle Control IN endpoint interrupts
2325  * @dev:        Reference to the device structure
2326  */
2327 static void pch_udc_svc_control_in(struct pch_udc_dev *dev)
2328 {
2329         u32     epsts;
2330         struct pch_udc_ep       *ep;
2331         struct pch_udc_ep       *ep_out;
2332
2333         ep = &dev->ep[UDC_EP0IN_IDX];
2334         ep_out = &dev->ep[UDC_EP0OUT_IDX];
2335         epsts = ep->epsts;
2336         ep->epsts = 0;
2337
2338         if (!(epsts & (UDC_EPSTS_IN | UDC_EPSTS_BNA | UDC_EPSTS_HE |
2339                        UDC_EPSTS_TDC | UDC_EPSTS_RCS | UDC_EPSTS_TXEMPTY |
2340                        UDC_EPSTS_XFERDONE)))
2341                 return;
2342         if ((epsts & UDC_EPSTS_BNA))
2343                 return;
2344         if (epsts & UDC_EPSTS_HE)
2345                 return;
2346         if ((epsts & UDC_EPSTS_TDC) && (!dev->stall)) {
2347                 pch_udc_complete_transfer(ep);
2348                 pch_udc_clear_dma(dev, DMA_DIR_RX);
2349                 ep_out->td_data->status = (ep_out->td_data->status &
2350                                         ~PCH_UDC_BUFF_STS) |
2351                                         PCH_UDC_BS_HST_RDY;
2352                 pch_udc_ep_clear_nak(ep_out);
2353                 pch_udc_set_dma(dev, DMA_DIR_RX);
2354                 pch_udc_ep_set_rrdy(ep_out);
2355         }
2356         /* On IN interrupt, provide data if we have any */
2357         if ((epsts & UDC_EPSTS_IN) && !(epsts & UDC_EPSTS_TDC) &&
2358              !(epsts & UDC_EPSTS_TXEMPTY))
2359                 pch_udc_start_next_txrequest(ep);
2360 }
2361
2362 /**
2363  * pch_udc_svc_control_out() - Routine that handle Control
2364  *                                      OUT endpoint interrupts
2365  * @dev:        Reference to the device structure
2366  */
2367 static void pch_udc_svc_control_out(struct pch_udc_dev *dev)
2368         __releases(&dev->lock)
2369         __acquires(&dev->lock)
2370 {
2371         u32     stat;
2372         int setup_supported;
2373         struct pch_udc_ep       *ep;
2374
2375         ep = &dev->ep[UDC_EP0OUT_IDX];
2376         stat = ep->epsts;
2377         ep->epsts = 0;
2378
2379         /* If setup data */
2380         if (((stat & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
2381             UDC_EPSTS_OUT_SETUP) {
2382                 dev->stall = 0;
2383                 dev->ep[UDC_EP0IN_IDX].halted = 0;
2384                 dev->ep[UDC_EP0OUT_IDX].halted = 0;
2385                 dev->setup_data = ep->td_stp->request;
2386                 pch_udc_init_setup_buff(ep->td_stp);
2387                 pch_udc_clear_dma(dev, DMA_DIR_RX);
2388                 pch_udc_ep_fifo_flush(&(dev->ep[UDC_EP0IN_IDX]),
2389                                       dev->ep[UDC_EP0IN_IDX].in);
2390                 if ((dev->setup_data.bRequestType & USB_DIR_IN))
2391                         dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IDX].ep;
2392                 else /* OUT */
2393                         dev->gadget.ep0 = &ep->ep;
2394                 spin_lock(&dev->lock);
2395                 /* If Mass storage Reset */
2396                 if ((dev->setup_data.bRequestType == 0x21) &&
2397                     (dev->setup_data.bRequest == 0xFF))
2398                         dev->prot_stall = 0;
2399                 /* call gadget with setup data received */
2400                 setup_supported = dev->driver->setup(&dev->gadget,
2401                                                      &dev->setup_data);
2402                 spin_unlock(&dev->lock);
2403
2404                 if (dev->setup_data.bRequestType & USB_DIR_IN) {
2405                         ep->td_data->status = (ep->td_data->status &
2406                                                 ~PCH_UDC_BUFF_STS) |
2407                                                 PCH_UDC_BS_HST_RDY;
2408                         pch_udc_ep_set_ddptr(ep, ep->td_data_phys);
2409                 }
2410                 /* ep0 in returns data on IN phase */
2411                 if (setup_supported >= 0 && setup_supported <
2412                                             UDC_EP0IN_MAX_PKT_SIZE) {
2413                         pch_udc_ep_clear_nak(&(dev->ep[UDC_EP0IN_IDX]));
2414                         /* Gadget would have queued a request when
2415                          * we called the setup */
2416                         if (!(dev->setup_data.bRequestType & USB_DIR_IN)) {
2417                                 pch_udc_set_dma(dev, DMA_DIR_RX);
2418                                 pch_udc_ep_clear_nak(ep);
2419                         }
2420                 } else if (setup_supported < 0) {
2421                         /* if unsupported request, then stall */
2422                         pch_udc_ep_set_stall(&(dev->ep[UDC_EP0IN_IDX]));
2423                         pch_udc_enable_ep_interrupts(ep->dev,
2424                                                 PCH_UDC_EPINT(ep->in, ep->num));
2425                         dev->stall = 0;
2426                         pch_udc_set_dma(dev, DMA_DIR_RX);
2427                 } else {
2428                         dev->waiting_zlp_ack = 1;
2429                 }
2430         } else if ((((stat & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
2431                      UDC_EPSTS_OUT_DATA) && !dev->stall) {
2432                 pch_udc_clear_dma(dev, DMA_DIR_RX);
2433                 pch_udc_ep_set_ddptr(ep, 0);
2434                 if (!list_empty(&ep->queue)) {
2435                         ep->epsts = stat;
2436                         pch_udc_svc_data_out(dev, PCH_UDC_EP0);
2437                 }
2438                 pch_udc_set_dma(dev, DMA_DIR_RX);
2439         }
2440         pch_udc_ep_set_rrdy(ep);
2441 }
2442
2443
2444 /**
2445  * pch_udc_postsvc_epinters() - This function enables end point interrupts
2446  *                              and clears NAK status
2447  * @dev:        Reference to the device structure
2448  * @ep_num:     End point number
2449  */
2450 static void pch_udc_postsvc_epinters(struct pch_udc_dev *dev, int ep_num)
2451 {
2452         struct pch_udc_ep       *ep = &dev->ep[UDC_EPIN_IDX(ep_num)];
2453         if (list_empty(&ep->queue))
2454                 return;
2455         pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
2456         pch_udc_ep_clear_nak(ep);
2457 }
2458
2459 /**
2460  * pch_udc_read_all_epstatus() - This function read all endpoint status
2461  * @dev:        Reference to the device structure
2462  * @ep_intr:    Status of endpoint interrupt
2463  */
2464 static void pch_udc_read_all_epstatus(struct pch_udc_dev *dev, u32 ep_intr)
2465 {
2466         int i;
2467         struct pch_udc_ep       *ep;
2468
2469         for (i = 0; i < PCH_UDC_USED_EP_NUM; i++) {
2470                 /* IN */
2471                 if (ep_intr & (0x1 << i)) {
2472                         ep = &dev->ep[UDC_EPIN_IDX(i)];
2473                         ep->epsts = pch_udc_read_ep_status(ep);
2474                         pch_udc_clear_ep_status(ep, ep->epsts);
2475                 }
2476                 /* OUT */
2477                 if (ep_intr & (0x10000 << i)) {
2478                         ep = &dev->ep[UDC_EPOUT_IDX(i)];
2479                         ep->epsts = pch_udc_read_ep_status(ep);
2480                         pch_udc_clear_ep_status(ep, ep->epsts);
2481                 }
2482         }
2483 }
2484
2485 /**
2486  * pch_udc_activate_control_ep() - This function enables the control endpoints
2487  *                                      for traffic after a reset
2488  * @dev:        Reference to the device structure
2489  */
2490 static void pch_udc_activate_control_ep(struct pch_udc_dev *dev)
2491 {
2492         struct pch_udc_ep       *ep;
2493         u32 val;
2494
2495         /* Setup the IN endpoint */
2496         ep = &dev->ep[UDC_EP0IN_IDX];
2497         pch_udc_clear_ep_control(ep);
2498         pch_udc_ep_fifo_flush(ep, ep->in);
2499         pch_udc_ep_set_bufsz(ep, UDC_EP0IN_BUFF_SIZE, ep->in);
2500         pch_udc_ep_set_maxpkt(ep, UDC_EP0IN_MAX_PKT_SIZE);
2501         /* Initialize the IN EP Descriptor */
2502         ep->td_data      = NULL;
2503         ep->td_stp       = NULL;
2504         ep->td_data_phys = 0;
2505         ep->td_stp_phys  = 0;
2506
2507         /* Setup the OUT endpoint */
2508         ep = &dev->ep[UDC_EP0OUT_IDX];
2509         pch_udc_clear_ep_control(ep);
2510         pch_udc_ep_fifo_flush(ep, ep->in);
2511         pch_udc_ep_set_bufsz(ep, UDC_EP0OUT_BUFF_SIZE, ep->in);
2512         pch_udc_ep_set_maxpkt(ep, UDC_EP0OUT_MAX_PKT_SIZE);
2513         val = UDC_EP0OUT_MAX_PKT_SIZE << UDC_CSR_NE_MAX_PKT_SHIFT;
2514         pch_udc_write_csr(ep->dev, val, UDC_EP0OUT_IDX);
2515
2516         /* Initialize the SETUP buffer */
2517         pch_udc_init_setup_buff(ep->td_stp);
2518         /* Write the pointer address of dma descriptor */
2519         pch_udc_ep_set_subptr(ep, ep->td_stp_phys);
2520         /* Write the pointer address of Setup descriptor */
2521         pch_udc_ep_set_ddptr(ep, ep->td_data_phys);
2522
2523         /* Initialize the dma descriptor */
2524         ep->td_data->status  = PCH_UDC_DMA_LAST;
2525         ep->td_data->dataptr = dev->dma_addr;
2526         ep->td_data->next    = ep->td_data_phys;
2527
2528         pch_udc_ep_clear_nak(ep);
2529 }
2530
2531
2532 /**
2533  * pch_udc_svc_ur_interrupt() - This function handles a USB reset interrupt
2534  * @dev:        Reference to driver structure
2535  */
2536 static void pch_udc_svc_ur_interrupt(struct pch_udc_dev *dev)
2537 {
2538         struct pch_udc_ep       *ep;
2539         int i;
2540
2541         pch_udc_clear_dma(dev, DMA_DIR_TX);
2542         pch_udc_clear_dma(dev, DMA_DIR_RX);
2543         /* Mask all endpoint interrupts */
2544         pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
2545         /* clear all endpoint interrupts */
2546         pch_udc_write_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
2547
2548         for (i = 0; i < PCH_UDC_EP_NUM; i++) {
2549                 ep = &dev->ep[i];
2550                 pch_udc_clear_ep_status(ep, UDC_EPSTS_ALL_CLR_MASK);
2551                 pch_udc_clear_ep_control(ep);
2552                 pch_udc_ep_set_ddptr(ep, 0);
2553                 pch_udc_write_csr(ep->dev, 0x00, i);
2554         }
2555         dev->stall = 0;
2556         dev->prot_stall = 0;
2557         dev->waiting_zlp_ack = 0;
2558         dev->set_cfg_not_acked = 0;
2559
2560         /* disable ep to empty req queue. Skip the control EP's */
2561         for (i = 0; i < (PCH_UDC_USED_EP_NUM*2); i++) {
2562                 ep = &dev->ep[i];
2563                 pch_udc_ep_set_nak(ep);
2564                 pch_udc_ep_fifo_flush(ep, ep->in);
2565                 /* Complete request queue */
2566                 empty_req_queue(ep);
2567         }
2568         if (dev->driver) {
2569                 spin_unlock(&dev->lock);
2570                 usb_gadget_udc_reset(&dev->gadget, dev->driver);
2571                 spin_lock(&dev->lock);
2572         }
2573 }
2574
2575 /**
2576  * pch_udc_svc_enum_interrupt() - This function handles a USB speed enumeration
2577  *                              done interrupt
2578  * @dev:        Reference to driver structure
2579  */
2580 static void pch_udc_svc_enum_interrupt(struct pch_udc_dev *dev)
2581 {
2582         u32 dev_stat, dev_speed;
2583         u32 speed = USB_SPEED_FULL;
2584
2585         dev_stat = pch_udc_read_device_status(dev);
2586         dev_speed = (dev_stat & UDC_DEVSTS_ENUM_SPEED_MASK) >>
2587                                                  UDC_DEVSTS_ENUM_SPEED_SHIFT;
2588         switch (dev_speed) {
2589         case UDC_DEVSTS_ENUM_SPEED_HIGH:
2590                 speed = USB_SPEED_HIGH;
2591                 break;
2592         case  UDC_DEVSTS_ENUM_SPEED_FULL:
2593                 speed = USB_SPEED_FULL;
2594                 break;
2595         case  UDC_DEVSTS_ENUM_SPEED_LOW:
2596                 speed = USB_SPEED_LOW;
2597                 break;
2598         default:
2599                 BUG();
2600         }
2601         dev->gadget.speed = speed;
2602         pch_udc_activate_control_ep(dev);
2603         pch_udc_enable_ep_interrupts(dev, UDC_EPINT_IN_EP0 | UDC_EPINT_OUT_EP0);
2604         pch_udc_set_dma(dev, DMA_DIR_TX);
2605         pch_udc_set_dma(dev, DMA_DIR_RX);
2606         pch_udc_ep_set_rrdy(&(dev->ep[UDC_EP0OUT_IDX]));
2607
2608         /* enable device interrupts */
2609         pch_udc_enable_interrupts(dev, UDC_DEVINT_UR | UDC_DEVINT_US |
2610                                         UDC_DEVINT_ES | UDC_DEVINT_ENUM |
2611                                         UDC_DEVINT_SI | UDC_DEVINT_SC);
2612 }
2613
2614 /**
2615  * pch_udc_svc_intf_interrupt() - This function handles a set interface
2616  *                                interrupt
2617  * @dev:        Reference to driver structure
2618  */
2619 static void pch_udc_svc_intf_interrupt(struct pch_udc_dev *dev)
2620 {
2621         u32 reg, dev_stat = 0;
2622         int i;
2623
2624         dev_stat = pch_udc_read_device_status(dev);
2625         dev->cfg_data.cur_intf = (dev_stat & UDC_DEVSTS_INTF_MASK) >>
2626                                                          UDC_DEVSTS_INTF_SHIFT;
2627         dev->cfg_data.cur_alt = (dev_stat & UDC_DEVSTS_ALT_MASK) >>
2628                                                          UDC_DEVSTS_ALT_SHIFT;
2629         dev->set_cfg_not_acked = 1;
2630         /* Construct the usb request for gadget driver and inform it */
2631         memset(&dev->setup_data, 0 , sizeof dev->setup_data);
2632         dev->setup_data.bRequest = USB_REQ_SET_INTERFACE;
2633         dev->setup_data.bRequestType = USB_RECIP_INTERFACE;
2634         dev->setup_data.wValue = cpu_to_le16(dev->cfg_data.cur_alt);
2635         dev->setup_data.wIndex = cpu_to_le16(dev->cfg_data.cur_intf);
2636         /* programm the Endpoint Cfg registers */
2637         /* Only one end point cfg register */
2638         reg = pch_udc_read_csr(dev, UDC_EP0OUT_IDX);
2639         reg = (reg & ~UDC_CSR_NE_INTF_MASK) |
2640               (dev->cfg_data.cur_intf << UDC_CSR_NE_INTF_SHIFT);
2641         reg = (reg & ~UDC_CSR_NE_ALT_MASK) |
2642               (dev->cfg_data.cur_alt << UDC_CSR_NE_ALT_SHIFT);
2643         pch_udc_write_csr(dev, reg, UDC_EP0OUT_IDX);
2644         for (i = 0; i < PCH_UDC_USED_EP_NUM * 2; i++) {
2645                 /* clear stall bits */
2646                 pch_udc_ep_clear_stall(&(dev->ep[i]));
2647                 dev->ep[i].halted = 0;
2648         }
2649         dev->stall = 0;
2650         spin_unlock(&dev->lock);
2651         dev->driver->setup(&dev->gadget, &dev->setup_data);
2652         spin_lock(&dev->lock);
2653 }
2654
2655 /**
2656  * pch_udc_svc_cfg_interrupt() - This function handles a set configuration
2657  *                              interrupt
2658  * @dev:        Reference to driver structure
2659  */
2660 static void pch_udc_svc_cfg_interrupt(struct pch_udc_dev *dev)
2661 {
2662         int i;
2663         u32 reg, dev_stat = 0;
2664
2665         dev_stat = pch_udc_read_device_status(dev);
2666         dev->set_cfg_not_acked = 1;
2667         dev->cfg_data.cur_cfg = (dev_stat & UDC_DEVSTS_CFG_MASK) >>
2668                                 UDC_DEVSTS_CFG_SHIFT;
2669         /* make usb request for gadget driver */
2670         memset(&dev->setup_data, 0 , sizeof dev->setup_data);
2671         dev->setup_data.bRequest = USB_REQ_SET_CONFIGURATION;
2672         dev->setup_data.wValue = cpu_to_le16(dev->cfg_data.cur_cfg);
2673         /* program the NE registers */
2674         /* Only one end point cfg register */
2675         reg = pch_udc_read_csr(dev, UDC_EP0OUT_IDX);
2676         reg = (reg & ~UDC_CSR_NE_CFG_MASK) |
2677               (dev->cfg_data.cur_cfg << UDC_CSR_NE_CFG_SHIFT);
2678         pch_udc_write_csr(dev, reg, UDC_EP0OUT_IDX);
2679         for (i = 0; i < PCH_UDC_USED_EP_NUM * 2; i++) {
2680                 /* clear stall bits */
2681                 pch_udc_ep_clear_stall(&(dev->ep[i]));
2682                 dev->ep[i].halted = 0;
2683         }
2684         dev->stall = 0;
2685
2686         /* call gadget zero with setup data received */
2687         spin_unlock(&dev->lock);
2688         dev->driver->setup(&dev->gadget, &dev->setup_data);
2689         spin_lock(&dev->lock);
2690 }
2691
2692 /**
2693  * pch_udc_dev_isr() - This function services device interrupts
2694  *                      by invoking appropriate routines.
2695  * @dev:        Reference to the device structure
2696  * @dev_intr:   The Device interrupt status.
2697  */
2698 static void pch_udc_dev_isr(struct pch_udc_dev *dev, u32 dev_intr)
2699 {
2700         int vbus;
2701
2702         /* USB Reset Interrupt */
2703         if (dev_intr & UDC_DEVINT_UR) {
2704                 pch_udc_svc_ur_interrupt(dev);
2705                 dev_dbg(&dev->pdev->dev, "USB_RESET\n");
2706         }
2707         /* Enumeration Done Interrupt */
2708         if (dev_intr & UDC_DEVINT_ENUM) {
2709                 pch_udc_svc_enum_interrupt(dev);
2710                 dev_dbg(&dev->pdev->dev, "USB_ENUM\n");
2711         }
2712         /* Set Interface Interrupt */
2713         if (dev_intr & UDC_DEVINT_SI)
2714                 pch_udc_svc_intf_interrupt(dev);
2715         /* Set Config Interrupt */
2716         if (dev_intr & UDC_DEVINT_SC)
2717                 pch_udc_svc_cfg_interrupt(dev);
2718         /* USB Suspend interrupt */
2719         if (dev_intr & UDC_DEVINT_US) {
2720                 if (dev->driver
2721                         && dev->driver->suspend) {
2722                         spin_unlock(&dev->lock);
2723                         dev->driver->suspend(&dev->gadget);
2724                         spin_lock(&dev->lock);
2725                 }
2726
2727                 vbus = pch_vbus_gpio_get_value(dev);
2728                 if ((dev->vbus_session == 0)
2729                         && (vbus != 1)) {
2730                         if (dev->driver && dev->driver->disconnect) {
2731                                 spin_unlock(&dev->lock);
2732                                 dev->driver->disconnect(&dev->gadget);
2733                                 spin_lock(&dev->lock);
2734                         }
2735                         pch_udc_reconnect(dev);
2736                 } else if ((dev->vbus_session == 0)
2737                         && (vbus == 1)
2738                         && !dev->vbus_gpio.intr)
2739                         schedule_work(&dev->vbus_gpio.irq_work_fall);
2740
2741                 dev_dbg(&dev->pdev->dev, "USB_SUSPEND\n");
2742         }
2743         /* Clear the SOF interrupt, if enabled */
2744         if (dev_intr & UDC_DEVINT_SOF)
2745                 dev_dbg(&dev->pdev->dev, "SOF\n");
2746         /* ES interrupt, IDLE > 3ms on the USB */
2747         if (dev_intr & UDC_DEVINT_ES)
2748                 dev_dbg(&dev->pdev->dev, "ES\n");
2749         /* RWKP interrupt */
2750         if (dev_intr & UDC_DEVINT_RWKP)
2751                 dev_dbg(&dev->pdev->dev, "RWKP\n");
2752 }
2753
2754 /**
2755  * pch_udc_isr() - This function handles interrupts from the PCH USB Device
2756  * @irq:        Interrupt request number
2757  * @dev:        Reference to the device structure
2758  */
2759 static irqreturn_t pch_udc_isr(int irq, void *pdev)
2760 {
2761         struct pch_udc_dev *dev = (struct pch_udc_dev *) pdev;
2762         u32 dev_intr, ep_intr;
2763         int i;
2764
2765         dev_intr = pch_udc_read_device_interrupts(dev);
2766         ep_intr = pch_udc_read_ep_interrupts(dev);
2767
2768         /* For a hot plug, this find that the controller is hung up. */
2769         if (dev_intr == ep_intr)
2770                 if (dev_intr == pch_udc_readl(dev, UDC_DEVCFG_ADDR)) {
2771                         dev_dbg(&dev->pdev->dev, "UDC: Hung up\n");
2772                         /* The controller is reset */
2773                         pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
2774                         return IRQ_HANDLED;
2775                 }
2776         if (dev_intr)
2777                 /* Clear device interrupts */
2778                 pch_udc_write_device_interrupts(dev, dev_intr);
2779         if (ep_intr)
2780                 /* Clear ep interrupts */
2781                 pch_udc_write_ep_interrupts(dev, ep_intr);
2782         if (!dev_intr && !ep_intr)
2783                 return IRQ_NONE;
2784         spin_lock(&dev->lock);
2785         if (dev_intr)
2786                 pch_udc_dev_isr(dev, dev_intr);
2787         if (ep_intr) {
2788                 pch_udc_read_all_epstatus(dev, ep_intr);
2789                 /* Process Control In interrupts, if present */
2790                 if (ep_intr & UDC_EPINT_IN_EP0) {
2791                         pch_udc_svc_control_in(dev);
2792                         pch_udc_postsvc_epinters(dev, 0);
2793                 }
2794                 /* Process Control Out interrupts, if present */
2795                 if (ep_intr & UDC_EPINT_OUT_EP0)
2796                         pch_udc_svc_control_out(dev);
2797                 /* Process data in end point interrupts */
2798                 for (i = 1; i < PCH_UDC_USED_EP_NUM; i++) {
2799                         if (ep_intr & (1 <<  i)) {
2800                                 pch_udc_svc_data_in(dev, i);
2801                                 pch_udc_postsvc_epinters(dev, i);
2802                         }
2803                 }
2804                 /* Process data out end point interrupts */
2805                 for (i = UDC_EPINT_OUT_SHIFT + 1; i < (UDC_EPINT_OUT_SHIFT +
2806                                                  PCH_UDC_USED_EP_NUM); i++)
2807                         if (ep_intr & (1 <<  i))
2808                                 pch_udc_svc_data_out(dev, i -
2809                                                          UDC_EPINT_OUT_SHIFT);
2810         }
2811         spin_unlock(&dev->lock);
2812         return IRQ_HANDLED;
2813 }
2814
2815 /**
2816  * pch_udc_setup_ep0() - This function enables control endpoint for traffic
2817  * @dev:        Reference to the device structure
2818  */
2819 static void pch_udc_setup_ep0(struct pch_udc_dev *dev)
2820 {
2821         /* enable ep0 interrupts */
2822         pch_udc_enable_ep_interrupts(dev, UDC_EPINT_IN_EP0 |
2823                                                 UDC_EPINT_OUT_EP0);
2824         /* enable device interrupts */
2825         pch_udc_enable_interrupts(dev, UDC_DEVINT_UR | UDC_DEVINT_US |
2826                                        UDC_DEVINT_ES | UDC_DEVINT_ENUM |
2827                                        UDC_DEVINT_SI | UDC_DEVINT_SC);
2828 }
2829
2830 /**
2831  * pch_udc_pcd_reinit() - This API initializes the endpoint structures
2832  * @dev:        Reference to the driver structure
2833  */
2834 static void pch_udc_pcd_reinit(struct pch_udc_dev *dev)
2835 {
2836         const char *const ep_string[] = {
2837                 ep0_string, "ep0out", "ep1in", "ep1out", "ep2in", "ep2out",
2838                 "ep3in", "ep3out", "ep4in", "ep4out", "ep5in", "ep5out",
2839                 "ep6in", "ep6out", "ep7in", "ep7out", "ep8in", "ep8out",
2840                 "ep9in", "ep9out", "ep10in", "ep10out", "ep11in", "ep11out",
2841                 "ep12in", "ep12out", "ep13in", "ep13out", "ep14in", "ep14out",
2842                 "ep15in", "ep15out",
2843         };
2844         int i;
2845
2846         dev->gadget.speed = USB_SPEED_UNKNOWN;
2847         INIT_LIST_HEAD(&dev->gadget.ep_list);
2848
2849         /* Initialize the endpoints structures */
2850         memset(dev->ep, 0, sizeof dev->ep);
2851         for (i = 0; i < PCH_UDC_EP_NUM; i++) {
2852                 struct pch_udc_ep *ep = &dev->ep[i];
2853                 ep->dev = dev;
2854                 ep->halted = 1;
2855                 ep->num = i / 2;
2856                 ep->in = ~i & 1;
2857                 ep->ep.name = ep_string[i];
2858                 ep->ep.ops = &pch_udc_ep_ops;
2859                 if (ep->in) {
2860                         ep->offset_addr = ep->num * UDC_EP_REG_SHIFT;
2861                         ep->ep.caps.dir_in = true;
2862                 } else {
2863                         ep->offset_addr = (UDC_EPINT_OUT_SHIFT + ep->num) *
2864                                           UDC_EP_REG_SHIFT;
2865                         ep->ep.caps.dir_out = true;
2866                 }
2867                 if (i == UDC_EP0IN_IDX || i == UDC_EP0OUT_IDX) {
2868                         ep->ep.caps.type_control = true;
2869                 } else {
2870                         ep->ep.caps.type_iso = true;
2871                         ep->ep.caps.type_bulk = true;
2872                         ep->ep.caps.type_int = true;
2873                 }
2874                 /* need to set ep->ep.maxpacket and set Default Configuration?*/
2875                 usb_ep_set_maxpacket_limit(&ep->ep, UDC_BULK_MAX_PKT_SIZE);
2876                 list_add_tail(&ep->ep.ep_list, &dev->gadget.ep_list);
2877                 INIT_LIST_HEAD(&ep->queue);
2878         }
2879         usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0IN_IDX].ep, UDC_EP0IN_MAX_PKT_SIZE);
2880         usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0OUT_IDX].ep, UDC_EP0OUT_MAX_PKT_SIZE);
2881
2882         /* remove ep0 in and out from the list.  They have own pointer */
2883         list_del_init(&dev->ep[UDC_EP0IN_IDX].ep.ep_list);
2884         list_del_init(&dev->ep[UDC_EP0OUT_IDX].ep.ep_list);
2885
2886         dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IDX].ep;
2887         INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
2888 }
2889
2890 /**
2891  * pch_udc_pcd_init() - This API initializes the driver structure
2892  * @dev:        Reference to the driver structure
2893  *
2894  * Return codes:
2895  *      0: Success
2896  */
2897 static int pch_udc_pcd_init(struct pch_udc_dev *dev)
2898 {
2899         pch_udc_init(dev);
2900         pch_udc_pcd_reinit(dev);
2901         pch_vbus_gpio_init(dev, vbus_gpio_port);
2902         return 0;
2903 }
2904
2905 /**
2906  * init_dma_pools() - create dma pools during initialization
2907  * @pdev:       reference to struct pci_dev
2908  */
2909 static int init_dma_pools(struct pch_udc_dev *dev)
2910 {
2911         struct pch_udc_stp_dma_desc     *td_stp;
2912         struct pch_udc_data_dma_desc    *td_data;
2913         void                            *ep0out_buf;
2914
2915         /* DMA setup */
2916         dev->data_requests = pci_pool_create("data_requests", dev->pdev,
2917                 sizeof(struct pch_udc_data_dma_desc), 0, 0);
2918         if (!dev->data_requests) {
2919                 dev_err(&dev->pdev->dev, "%s: can't get request data pool\n",
2920                         __func__);
2921                 return -ENOMEM;
2922         }
2923
2924         /* dma desc for setup data */
2925         dev->stp_requests = pci_pool_create("setup requests", dev->pdev,
2926                 sizeof(struct pch_udc_stp_dma_desc), 0, 0);
2927         if (!dev->stp_requests) {
2928                 dev_err(&dev->pdev->dev, "%s: can't get setup request pool\n",
2929                         __func__);
2930                 return -ENOMEM;
2931         }
2932         /* setup */
2933         td_stp = pci_pool_alloc(dev->stp_requests, GFP_KERNEL,
2934                                 &dev->ep[UDC_EP0OUT_IDX].td_stp_phys);
2935         if (!td_stp) {
2936                 dev_err(&dev->pdev->dev,
2937                         "%s: can't allocate setup dma descriptor\n", __func__);
2938                 return -ENOMEM;
2939         }
2940         dev->ep[UDC_EP0OUT_IDX].td_stp = td_stp;
2941
2942         /* data: 0 packets !? */
2943         td_data = pci_pool_alloc(dev->data_requests, GFP_KERNEL,
2944                                 &dev->ep[UDC_EP0OUT_IDX].td_data_phys);
2945         if (!td_data) {
2946                 dev_err(&dev->pdev->dev,
2947                         "%s: can't allocate data dma descriptor\n", __func__);
2948                 return -ENOMEM;
2949         }
2950         dev->ep[UDC_EP0OUT_IDX].td_data = td_data;
2951         dev->ep[UDC_EP0IN_IDX].td_stp = NULL;
2952         dev->ep[UDC_EP0IN_IDX].td_stp_phys = 0;
2953         dev->ep[UDC_EP0IN_IDX].td_data = NULL;
2954         dev->ep[UDC_EP0IN_IDX].td_data_phys = 0;
2955
2956         ep0out_buf = devm_kzalloc(&dev->pdev->dev, UDC_EP0OUT_BUFF_SIZE * 4,
2957                                   GFP_KERNEL);
2958         if (!ep0out_buf)
2959                 return -ENOMEM;
2960         dev->dma_addr = dma_map_single(&dev->pdev->dev, ep0out_buf,
2961                                        UDC_EP0OUT_BUFF_SIZE * 4,
2962                                        DMA_FROM_DEVICE);
2963         return 0;
2964 }
2965
2966 static int pch_udc_start(struct usb_gadget *g,
2967                 struct usb_gadget_driver *driver)
2968 {
2969         struct pch_udc_dev      *dev = to_pch_udc(g);
2970
2971         driver->driver.bus = NULL;
2972         dev->driver = driver;
2973
2974         /* get ready for ep0 traffic */
2975         pch_udc_setup_ep0(dev);
2976
2977         /* clear SD */
2978         if ((pch_vbus_gpio_get_value(dev) != 0) || !dev->vbus_gpio.intr)
2979                 pch_udc_clear_disconnect(dev);
2980
2981         dev->connected = 1;
2982         return 0;
2983 }
2984
2985 static int pch_udc_stop(struct usb_gadget *g)
2986 {
2987         struct pch_udc_dev      *dev = to_pch_udc(g);
2988
2989         pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
2990
2991         /* Assures that there are no pending requests with this driver */
2992         dev->driver = NULL;
2993         dev->connected = 0;
2994
2995         /* set SD */
2996         pch_udc_set_disconnect(dev);
2997
2998         return 0;
2999 }
3000
3001 static void pch_udc_shutdown(struct pci_dev *pdev)
3002 {
3003         struct pch_udc_dev *dev = pci_get_drvdata(pdev);
3004
3005         pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
3006         pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
3007
3008         /* disable the pullup so the host will think we're gone */
3009         pch_udc_set_disconnect(dev);
3010 }
3011
3012 static void pch_udc_remove(struct pci_dev *pdev)
3013 {
3014         struct pch_udc_dev      *dev = pci_get_drvdata(pdev);
3015
3016         usb_del_gadget_udc(&dev->gadget);
3017
3018         /* gadget driver must not be registered */
3019         if (dev->driver)
3020                 dev_err(&pdev->dev,
3021                         "%s: gadget driver still bound!!!\n", __func__);
3022         /* dma pool cleanup */
3023         if (dev->data_requests)
3024                 pci_pool_destroy(dev->data_requests);
3025
3026         if (dev->stp_requests) {
3027                 /* cleanup DMA desc's for ep0in */
3028                 if (dev->ep[UDC_EP0OUT_IDX].td_stp) {
3029                         pci_pool_free(dev->stp_requests,
3030                                 dev->ep[UDC_EP0OUT_IDX].td_stp,
3031                                 dev->ep[UDC_EP0OUT_IDX].td_stp_phys);
3032                 }
3033                 if (dev->ep[UDC_EP0OUT_IDX].td_data) {
3034                         pci_pool_free(dev->stp_requests,
3035                                 dev->ep[UDC_EP0OUT_IDX].td_data,
3036                                 dev->ep[UDC_EP0OUT_IDX].td_data_phys);
3037                 }
3038                 pci_pool_destroy(dev->stp_requests);
3039         }
3040
3041         if (dev->dma_addr)
3042                 dma_unmap_single(&dev->pdev->dev, dev->dma_addr,
3043                                  UDC_EP0OUT_BUFF_SIZE * 4, DMA_FROM_DEVICE);
3044
3045         pch_vbus_gpio_free(dev);
3046
3047         pch_udc_exit(dev);
3048 }
3049
3050 #ifdef CONFIG_PM_SLEEP
3051 static int pch_udc_suspend(struct device *d)
3052 {
3053         struct pci_dev *pdev = to_pci_dev(d);
3054         struct pch_udc_dev *dev = pci_get_drvdata(pdev);
3055
3056         pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
3057         pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
3058
3059         return 0;
3060 }
3061
3062 static int pch_udc_resume(struct device *d)
3063 {
3064         return 0;
3065 }
3066
3067 static SIMPLE_DEV_PM_OPS(pch_udc_pm, pch_udc_suspend, pch_udc_resume);
3068 #define PCH_UDC_PM_OPS          (&pch_udc_pm)
3069 #else
3070 #define PCH_UDC_PM_OPS          NULL
3071 #endif /* CONFIG_PM_SLEEP */
3072
3073 static int pch_udc_probe(struct pci_dev *pdev,
3074                           const struct pci_device_id *id)
3075 {
3076         int                     bar;
3077         int                     retval;
3078         struct pch_udc_dev      *dev;
3079
3080         /* init */
3081         dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL);
3082         if (!dev)
3083                 return -ENOMEM;
3084
3085         /* pci setup */
3086         retval = pcim_enable_device(pdev);
3087         if (retval)
3088                 return retval;
3089
3090         pci_set_drvdata(pdev, dev);
3091
3092         /* Determine BAR based on PCI ID */
3093         if (id->device == PCI_DEVICE_ID_INTEL_QUARK_X1000_UDC)
3094                 bar = PCH_UDC_PCI_BAR_QUARK_X1000;
3095         else
3096                 bar = PCH_UDC_PCI_BAR;
3097
3098         /* PCI resource allocation */
3099         retval = pcim_iomap_regions(pdev, 1 << bar, pci_name(pdev));
3100         if (retval)
3101                 return retval;
3102
3103         dev->base_addr = pcim_iomap_table(pdev)[bar];
3104
3105         /* initialize the hardware */
3106         if (pch_udc_pcd_init(dev))
3107                 return -ENODEV;
3108
3109         pci_enable_msi(pdev);
3110
3111         retval = devm_request_irq(&pdev->dev, pdev->irq, pch_udc_isr,
3112                                   IRQF_SHARED, KBUILD_MODNAME, dev);
3113         if (retval) {
3114                 dev_err(&pdev->dev, "%s: request_irq(%d) fail\n", __func__,
3115                         pdev->irq);
3116                 goto finished;
3117         }
3118
3119         pci_set_master(pdev);
3120         pci_try_set_mwi(pdev);
3121
3122         /* device struct setup */
3123         spin_lock_init(&dev->lock);
3124         dev->pdev = pdev;
3125         dev->gadget.ops = &pch_udc_ops;
3126
3127         retval = init_dma_pools(dev);
3128         if (retval)
3129                 goto finished;
3130
3131         dev->gadget.name = KBUILD_MODNAME;
3132         dev->gadget.max_speed = USB_SPEED_HIGH;
3133
3134         /* Put the device in disconnected state till a driver is bound */
3135         pch_udc_set_disconnect(dev);
3136         retval = usb_add_gadget_udc(&pdev->dev, &dev->gadget);
3137         if (retval)
3138                 goto finished;
3139         return 0;
3140
3141 finished:
3142         pch_udc_remove(pdev);
3143         return retval;
3144 }
3145
3146 static const struct pci_device_id pch_udc_pcidev_id[] = {
3147         {
3148                 PCI_DEVICE(PCI_VENDOR_ID_INTEL,
3149                            PCI_DEVICE_ID_INTEL_QUARK_X1000_UDC),
3150                 .class = PCI_CLASS_SERIAL_USB_DEVICE,
3151                 .class_mask = 0xffffffff,
3152         },
3153         {
3154                 PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_EG20T_UDC),
3155                 .class = PCI_CLASS_SERIAL_USB_DEVICE,
3156                 .class_mask = 0xffffffff,
3157         },
3158         {
3159                 PCI_DEVICE(PCI_VENDOR_ID_ROHM, PCI_DEVICE_ID_ML7213_IOH_UDC),
3160                 .class = PCI_CLASS_SERIAL_USB_DEVICE,
3161                 .class_mask = 0xffffffff,
3162         },
3163         {
3164                 PCI_DEVICE(PCI_VENDOR_ID_ROHM, PCI_DEVICE_ID_ML7831_IOH_UDC),
3165                 .class = PCI_CLASS_SERIAL_USB_DEVICE,
3166                 .class_mask = 0xffffffff,
3167         },
3168         { 0 },
3169 };
3170
3171 MODULE_DEVICE_TABLE(pci, pch_udc_pcidev_id);
3172
3173 static struct pci_driver pch_udc_driver = {
3174         .name = KBUILD_MODNAME,
3175         .id_table =     pch_udc_pcidev_id,
3176         .probe =        pch_udc_probe,
3177         .remove =       pch_udc_remove,
3178         .shutdown =     pch_udc_shutdown,
3179         .driver = {
3180                 .pm = PCH_UDC_PM_OPS,
3181         },
3182 };
3183
3184 module_pci_driver(pch_udc_driver);
3185
3186 MODULE_DESCRIPTION("Intel EG20T USB Device Controller");
3187 MODULE_AUTHOR("LAPIS Semiconductor, <tomoya-linux@dsn.lapis-semi.com>");
3188 MODULE_LICENSE("GPL");