Merge remote-tracking branches 'asoc/fix/msm8916', 'asoc/fix/nau8825', 'asoc/fix...
[sfrench/cifs-2.6.git] / drivers / usb / gadget / function / f_fs.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * f_fs.c -- user mode file system API for USB composite function controllers
4  *
5  * Copyright (C) 2010 Samsung Electronics
6  * Author: Michal Nazarewicz <mina86@mina86.com>
7  *
8  * Based on inode.c (GadgetFS) which was:
9  * Copyright (C) 2003-2004 David Brownell
10  * Copyright (C) 2003 Agilent Technologies
11  */
12
13
14 /* #define DEBUG */
15 /* #define VERBOSE_DEBUG */
16
17 #include <linux/blkdev.h>
18 #include <linux/pagemap.h>
19 #include <linux/export.h>
20 #include <linux/hid.h>
21 #include <linux/module.h>
22 #include <linux/sched/signal.h>
23 #include <linux/uio.h>
24 #include <asm/unaligned.h>
25
26 #include <linux/usb/composite.h>
27 #include <linux/usb/functionfs.h>
28
29 #include <linux/aio.h>
30 #include <linux/mmu_context.h>
31 #include <linux/poll.h>
32 #include <linux/eventfd.h>
33
34 #include "u_fs.h"
35 #include "u_f.h"
36 #include "u_os_desc.h"
37 #include "configfs.h"
38
39 #define FUNCTIONFS_MAGIC        0xa647361 /* Chosen by a honest dice roll ;) */
40
41 /* Reference counter handling */
42 static void ffs_data_get(struct ffs_data *ffs);
43 static void ffs_data_put(struct ffs_data *ffs);
44 /* Creates new ffs_data object. */
45 static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
46         __attribute__((malloc));
47
48 /* Opened counter handling. */
49 static void ffs_data_opened(struct ffs_data *ffs);
50 static void ffs_data_closed(struct ffs_data *ffs);
51
52 /* Called with ffs->mutex held; take over ownership of data. */
53 static int __must_check
54 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
55 static int __must_check
56 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
57
58
59 /* The function structure ***************************************************/
60
61 struct ffs_ep;
62
63 struct ffs_function {
64         struct usb_configuration        *conf;
65         struct usb_gadget               *gadget;
66         struct ffs_data                 *ffs;
67
68         struct ffs_ep                   *eps;
69         u8                              eps_revmap[16];
70         short                           *interfaces_nums;
71
72         struct usb_function             function;
73 };
74
75
76 static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
77 {
78         return container_of(f, struct ffs_function, function);
79 }
80
81
82 static inline enum ffs_setup_state
83 ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
84 {
85         return (enum ffs_setup_state)
86                 cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
87 }
88
89
90 static void ffs_func_eps_disable(struct ffs_function *func);
91 static int __must_check ffs_func_eps_enable(struct ffs_function *func);
92
93 static int ffs_func_bind(struct usb_configuration *,
94                          struct usb_function *);
95 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
96 static void ffs_func_disable(struct usb_function *);
97 static int ffs_func_setup(struct usb_function *,
98                           const struct usb_ctrlrequest *);
99 static bool ffs_func_req_match(struct usb_function *,
100                                const struct usb_ctrlrequest *,
101                                bool config0);
102 static void ffs_func_suspend(struct usb_function *);
103 static void ffs_func_resume(struct usb_function *);
104
105
106 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
107 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
108
109
110 /* The endpoints structures *************************************************/
111
112 struct ffs_ep {
113         struct usb_ep                   *ep;    /* P: ffs->eps_lock */
114         struct usb_request              *req;   /* P: epfile->mutex */
115
116         /* [0]: full speed, [1]: high speed, [2]: super speed */
117         struct usb_endpoint_descriptor  *descs[3];
118
119         u8                              num;
120
121         int                             status; /* P: epfile->mutex */
122 };
123
124 struct ffs_epfile {
125         /* Protects ep->ep and ep->req. */
126         struct mutex                    mutex;
127
128         struct ffs_data                 *ffs;
129         struct ffs_ep                   *ep;    /* P: ffs->eps_lock */
130
131         struct dentry                   *dentry;
132
133         /*
134          * Buffer for holding data from partial reads which may happen since
135          * we’re rounding user read requests to a multiple of a max packet size.
136          *
137          * The pointer is initialised with NULL value and may be set by
138          * __ffs_epfile_read_data function to point to a temporary buffer.
139          *
140          * In normal operation, calls to __ffs_epfile_read_buffered will consume
141          * data from said buffer and eventually free it.  Importantly, while the
142          * function is using the buffer, it sets the pointer to NULL.  This is
143          * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
144          * can never run concurrently (they are synchronised by epfile->mutex)
145          * so the latter will not assign a new value to the pointer.
146          *
147          * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
148          * valid) and sets the pointer to READ_BUFFER_DROP value.  This special
149          * value is crux of the synchronisation between ffs_func_eps_disable and
150          * __ffs_epfile_read_data.
151          *
152          * Once __ffs_epfile_read_data is about to finish it will try to set the
153          * pointer back to its old value (as described above), but seeing as the
154          * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
155          * the buffer.
156          *
157          * == State transitions ==
158          *
159          * • ptr == NULL:  (initial state)
160          *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
161          *   ◦ __ffs_epfile_read_buffered:    nop
162          *   ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
163          *   ◦ reading finishes:              n/a, not in ‘and reading’ state
164          * • ptr == DROP:
165          *   ◦ __ffs_epfile_read_buffer_free: nop
166          *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL
167          *   ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
168          *   ◦ reading finishes:              n/a, not in ‘and reading’ state
169          * • ptr == buf:
170          *   ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
171          *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL and reading
172          *   ◦ __ffs_epfile_read_data:        n/a, __ffs_epfile_read_buffered
173          *                                    is always called first
174          *   ◦ reading finishes:              n/a, not in ‘and reading’ state
175          * • ptr == NULL and reading:
176          *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
177          *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
178          *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
179          *   ◦ reading finishes and …
180          *     … all data read:               free buf, go to ptr == NULL
181          *     … otherwise:                   go to ptr == buf and reading
182          * • ptr == DROP and reading:
183          *   ◦ __ffs_epfile_read_buffer_free: nop
184          *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
185          *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
186          *   ◦ reading finishes:              free buf, go to ptr == DROP
187          */
188         struct ffs_buffer               *read_buffer;
189 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
190
191         char                            name[5];
192
193         unsigned char                   in;     /* P: ffs->eps_lock */
194         unsigned char                   isoc;   /* P: ffs->eps_lock */
195
196         unsigned char                   _pad;
197 };
198
199 struct ffs_buffer {
200         size_t length;
201         char *data;
202         char storage[];
203 };
204
205 /*  ffs_io_data structure ***************************************************/
206
207 struct ffs_io_data {
208         bool aio;
209         bool read;
210
211         struct kiocb *kiocb;
212         struct iov_iter data;
213         const void *to_free;
214         char *buf;
215
216         struct mm_struct *mm;
217         struct work_struct work;
218
219         struct usb_ep *ep;
220         struct usb_request *req;
221
222         struct ffs_data *ffs;
223 };
224
225 struct ffs_desc_helper {
226         struct ffs_data *ffs;
227         unsigned interfaces_count;
228         unsigned eps_count;
229 };
230
231 static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
232 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
233
234 static struct dentry *
235 ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
236                    const struct file_operations *fops);
237
238 /* Devices management *******************************************************/
239
240 DEFINE_MUTEX(ffs_lock);
241 EXPORT_SYMBOL_GPL(ffs_lock);
242
243 static struct ffs_dev *_ffs_find_dev(const char *name);
244 static struct ffs_dev *_ffs_alloc_dev(void);
245 static void _ffs_free_dev(struct ffs_dev *dev);
246 static void *ffs_acquire_dev(const char *dev_name);
247 static void ffs_release_dev(struct ffs_data *ffs_data);
248 static int ffs_ready(struct ffs_data *ffs);
249 static void ffs_closed(struct ffs_data *ffs);
250
251 /* Misc helper functions ****************************************************/
252
253 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
254         __attribute__((warn_unused_result, nonnull));
255 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
256         __attribute__((warn_unused_result, nonnull));
257
258
259 /* Control file aka ep0 *****************************************************/
260
261 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
262 {
263         struct ffs_data *ffs = req->context;
264
265         complete(&ffs->ep0req_completion);
266 }
267
268 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
269 {
270         struct usb_request *req = ffs->ep0req;
271         int ret;
272
273         req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);
274
275         spin_unlock_irq(&ffs->ev.waitq.lock);
276
277         req->buf      = data;
278         req->length   = len;
279
280         /*
281          * UDC layer requires to provide a buffer even for ZLP, but should
282          * not use it at all. Let's provide some poisoned pointer to catch
283          * possible bug in the driver.
284          */
285         if (req->buf == NULL)
286                 req->buf = (void *)0xDEADBABE;
287
288         reinit_completion(&ffs->ep0req_completion);
289
290         ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
291         if (unlikely(ret < 0))
292                 return ret;
293
294         ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
295         if (unlikely(ret)) {
296                 usb_ep_dequeue(ffs->gadget->ep0, req);
297                 return -EINTR;
298         }
299
300         ffs->setup_state = FFS_NO_SETUP;
301         return req->status ? req->status : req->actual;
302 }
303
304 static int __ffs_ep0_stall(struct ffs_data *ffs)
305 {
306         if (ffs->ev.can_stall) {
307                 pr_vdebug("ep0 stall\n");
308                 usb_ep_set_halt(ffs->gadget->ep0);
309                 ffs->setup_state = FFS_NO_SETUP;
310                 return -EL2HLT;
311         } else {
312                 pr_debug("bogus ep0 stall!\n");
313                 return -ESRCH;
314         }
315 }
316
317 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
318                              size_t len, loff_t *ptr)
319 {
320         struct ffs_data *ffs = file->private_data;
321         ssize_t ret;
322         char *data;
323
324         ENTER();
325
326         /* Fast check if setup was canceled */
327         if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
328                 return -EIDRM;
329
330         /* Acquire mutex */
331         ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
332         if (unlikely(ret < 0))
333                 return ret;
334
335         /* Check state */
336         switch (ffs->state) {
337         case FFS_READ_DESCRIPTORS:
338         case FFS_READ_STRINGS:
339                 /* Copy data */
340                 if (unlikely(len < 16)) {
341                         ret = -EINVAL;
342                         break;
343                 }
344
345                 data = ffs_prepare_buffer(buf, len);
346                 if (IS_ERR(data)) {
347                         ret = PTR_ERR(data);
348                         break;
349                 }
350
351                 /* Handle data */
352                 if (ffs->state == FFS_READ_DESCRIPTORS) {
353                         pr_info("read descriptors\n");
354                         ret = __ffs_data_got_descs(ffs, data, len);
355                         if (unlikely(ret < 0))
356                                 break;
357
358                         ffs->state = FFS_READ_STRINGS;
359                         ret = len;
360                 } else {
361                         pr_info("read strings\n");
362                         ret = __ffs_data_got_strings(ffs, data, len);
363                         if (unlikely(ret < 0))
364                                 break;
365
366                         ret = ffs_epfiles_create(ffs);
367                         if (unlikely(ret)) {
368                                 ffs->state = FFS_CLOSING;
369                                 break;
370                         }
371
372                         ffs->state = FFS_ACTIVE;
373                         mutex_unlock(&ffs->mutex);
374
375                         ret = ffs_ready(ffs);
376                         if (unlikely(ret < 0)) {
377                                 ffs->state = FFS_CLOSING;
378                                 return ret;
379                         }
380
381                         return len;
382                 }
383                 break;
384
385         case FFS_ACTIVE:
386                 data = NULL;
387                 /*
388                  * We're called from user space, we can use _irq
389                  * rather then _irqsave
390                  */
391                 spin_lock_irq(&ffs->ev.waitq.lock);
392                 switch (ffs_setup_state_clear_cancelled(ffs)) {
393                 case FFS_SETUP_CANCELLED:
394                         ret = -EIDRM;
395                         goto done_spin;
396
397                 case FFS_NO_SETUP:
398                         ret = -ESRCH;
399                         goto done_spin;
400
401                 case FFS_SETUP_PENDING:
402                         break;
403                 }
404
405                 /* FFS_SETUP_PENDING */
406                 if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
407                         spin_unlock_irq(&ffs->ev.waitq.lock);
408                         ret = __ffs_ep0_stall(ffs);
409                         break;
410                 }
411
412                 /* FFS_SETUP_PENDING and not stall */
413                 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
414
415                 spin_unlock_irq(&ffs->ev.waitq.lock);
416
417                 data = ffs_prepare_buffer(buf, len);
418                 if (IS_ERR(data)) {
419                         ret = PTR_ERR(data);
420                         break;
421                 }
422
423                 spin_lock_irq(&ffs->ev.waitq.lock);
424
425                 /*
426                  * We are guaranteed to be still in FFS_ACTIVE state
427                  * but the state of setup could have changed from
428                  * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
429                  * to check for that.  If that happened we copied data
430                  * from user space in vain but it's unlikely.
431                  *
432                  * For sure we are not in FFS_NO_SETUP since this is
433                  * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
434                  * transition can be performed and it's protected by
435                  * mutex.
436                  */
437                 if (ffs_setup_state_clear_cancelled(ffs) ==
438                     FFS_SETUP_CANCELLED) {
439                         ret = -EIDRM;
440 done_spin:
441                         spin_unlock_irq(&ffs->ev.waitq.lock);
442                 } else {
443                         /* unlocks spinlock */
444                         ret = __ffs_ep0_queue_wait(ffs, data, len);
445                 }
446                 kfree(data);
447                 break;
448
449         default:
450                 ret = -EBADFD;
451                 break;
452         }
453
454         mutex_unlock(&ffs->mutex);
455         return ret;
456 }
457
458 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
459 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
460                                      size_t n)
461 {
462         /*
463          * n cannot be bigger than ffs->ev.count, which cannot be bigger than
464          * size of ffs->ev.types array (which is four) so that's how much space
465          * we reserve.
466          */
467         struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
468         const size_t size = n * sizeof *events;
469         unsigned i = 0;
470
471         memset(events, 0, size);
472
473         do {
474                 events[i].type = ffs->ev.types[i];
475                 if (events[i].type == FUNCTIONFS_SETUP) {
476                         events[i].u.setup = ffs->ev.setup;
477                         ffs->setup_state = FFS_SETUP_PENDING;
478                 }
479         } while (++i < n);
480
481         ffs->ev.count -= n;
482         if (ffs->ev.count)
483                 memmove(ffs->ev.types, ffs->ev.types + n,
484                         ffs->ev.count * sizeof *ffs->ev.types);
485
486         spin_unlock_irq(&ffs->ev.waitq.lock);
487         mutex_unlock(&ffs->mutex);
488
489         return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size;
490 }
491
492 static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
493                             size_t len, loff_t *ptr)
494 {
495         struct ffs_data *ffs = file->private_data;
496         char *data = NULL;
497         size_t n;
498         int ret;
499
500         ENTER();
501
502         /* Fast check if setup was canceled */
503         if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
504                 return -EIDRM;
505
506         /* Acquire mutex */
507         ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
508         if (unlikely(ret < 0))
509                 return ret;
510
511         /* Check state */
512         if (ffs->state != FFS_ACTIVE) {
513                 ret = -EBADFD;
514                 goto done_mutex;
515         }
516
517         /*
518          * We're called from user space, we can use _irq rather then
519          * _irqsave
520          */
521         spin_lock_irq(&ffs->ev.waitq.lock);
522
523         switch (ffs_setup_state_clear_cancelled(ffs)) {
524         case FFS_SETUP_CANCELLED:
525                 ret = -EIDRM;
526                 break;
527
528         case FFS_NO_SETUP:
529                 n = len / sizeof(struct usb_functionfs_event);
530                 if (unlikely(!n)) {
531                         ret = -EINVAL;
532                         break;
533                 }
534
535                 if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
536                         ret = -EAGAIN;
537                         break;
538                 }
539
540                 if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
541                                                         ffs->ev.count)) {
542                         ret = -EINTR;
543                         break;
544                 }
545
546                 return __ffs_ep0_read_events(ffs, buf,
547                                              min(n, (size_t)ffs->ev.count));
548
549         case FFS_SETUP_PENDING:
550                 if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
551                         spin_unlock_irq(&ffs->ev.waitq.lock);
552                         ret = __ffs_ep0_stall(ffs);
553                         goto done_mutex;
554                 }
555
556                 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
557
558                 spin_unlock_irq(&ffs->ev.waitq.lock);
559
560                 if (likely(len)) {
561                         data = kmalloc(len, GFP_KERNEL);
562                         if (unlikely(!data)) {
563                                 ret = -ENOMEM;
564                                 goto done_mutex;
565                         }
566                 }
567
568                 spin_lock_irq(&ffs->ev.waitq.lock);
569
570                 /* See ffs_ep0_write() */
571                 if (ffs_setup_state_clear_cancelled(ffs) ==
572                     FFS_SETUP_CANCELLED) {
573                         ret = -EIDRM;
574                         break;
575                 }
576
577                 /* unlocks spinlock */
578                 ret = __ffs_ep0_queue_wait(ffs, data, len);
579                 if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len)))
580                         ret = -EFAULT;
581                 goto done_mutex;
582
583         default:
584                 ret = -EBADFD;
585                 break;
586         }
587
588         spin_unlock_irq(&ffs->ev.waitq.lock);
589 done_mutex:
590         mutex_unlock(&ffs->mutex);
591         kfree(data);
592         return ret;
593 }
594
595 static int ffs_ep0_open(struct inode *inode, struct file *file)
596 {
597         struct ffs_data *ffs = inode->i_private;
598
599         ENTER();
600
601         if (unlikely(ffs->state == FFS_CLOSING))
602                 return -EBUSY;
603
604         file->private_data = ffs;
605         ffs_data_opened(ffs);
606
607         return 0;
608 }
609
610 static int ffs_ep0_release(struct inode *inode, struct file *file)
611 {
612         struct ffs_data *ffs = file->private_data;
613
614         ENTER();
615
616         ffs_data_closed(ffs);
617
618         return 0;
619 }
620
621 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
622 {
623         struct ffs_data *ffs = file->private_data;
624         struct usb_gadget *gadget = ffs->gadget;
625         long ret;
626
627         ENTER();
628
629         if (code == FUNCTIONFS_INTERFACE_REVMAP) {
630                 struct ffs_function *func = ffs->func;
631                 ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
632         } else if (gadget && gadget->ops->ioctl) {
633                 ret = gadget->ops->ioctl(gadget, code, value);
634         } else {
635                 ret = -ENOTTY;
636         }
637
638         return ret;
639 }
640
641 static unsigned int ffs_ep0_poll(struct file *file, poll_table *wait)
642 {
643         struct ffs_data *ffs = file->private_data;
644         unsigned int mask = POLLWRNORM;
645         int ret;
646
647         poll_wait(file, &ffs->ev.waitq, wait);
648
649         ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
650         if (unlikely(ret < 0))
651                 return mask;
652
653         switch (ffs->state) {
654         case FFS_READ_DESCRIPTORS:
655         case FFS_READ_STRINGS:
656                 mask |= POLLOUT;
657                 break;
658
659         case FFS_ACTIVE:
660                 switch (ffs->setup_state) {
661                 case FFS_NO_SETUP:
662                         if (ffs->ev.count)
663                                 mask |= POLLIN;
664                         break;
665
666                 case FFS_SETUP_PENDING:
667                 case FFS_SETUP_CANCELLED:
668                         mask |= (POLLIN | POLLOUT);
669                         break;
670                 }
671         case FFS_CLOSING:
672                 break;
673         case FFS_DEACTIVATED:
674                 break;
675         }
676
677         mutex_unlock(&ffs->mutex);
678
679         return mask;
680 }
681
682 static const struct file_operations ffs_ep0_operations = {
683         .llseek =       no_llseek,
684
685         .open =         ffs_ep0_open,
686         .write =        ffs_ep0_write,
687         .read =         ffs_ep0_read,
688         .release =      ffs_ep0_release,
689         .unlocked_ioctl =       ffs_ep0_ioctl,
690         .poll =         ffs_ep0_poll,
691 };
692
693
694 /* "Normal" endpoints operations ********************************************/
695
696 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
697 {
698         ENTER();
699         if (likely(req->context)) {
700                 struct ffs_ep *ep = _ep->driver_data;
701                 ep->status = req->status ? req->status : req->actual;
702                 complete(req->context);
703         }
704 }
705
706 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
707 {
708         ssize_t ret = copy_to_iter(data, data_len, iter);
709         if (likely(ret == data_len))
710                 return ret;
711
712         if (unlikely(iov_iter_count(iter)))
713                 return -EFAULT;
714
715         /*
716          * Dear user space developer!
717          *
718          * TL;DR: To stop getting below error message in your kernel log, change
719          * user space code using functionfs to align read buffers to a max
720          * packet size.
721          *
722          * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
723          * packet size.  When unaligned buffer is passed to functionfs, it
724          * internally uses a larger, aligned buffer so that such UDCs are happy.
725          *
726          * Unfortunately, this means that host may send more data than was
727          * requested in read(2) system call.  f_fs doesn’t know what to do with
728          * that excess data so it simply drops it.
729          *
730          * Was the buffer aligned in the first place, no such problem would
731          * happen.
732          *
733          * Data may be dropped only in AIO reads.  Synchronous reads are handled
734          * by splitting a request into multiple parts.  This splitting may still
735          * be a problem though so it’s likely best to align the buffer
736          * regardless of it being AIO or not..
737          *
738          * This only affects OUT endpoints, i.e. reading data with a read(2),
739          * aio_read(2) etc. system calls.  Writing data to an IN endpoint is not
740          * affected.
741          */
742         pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
743                "Align read buffer size to max packet size to avoid the problem.\n",
744                data_len, ret);
745
746         return ret;
747 }
748
749 static void ffs_user_copy_worker(struct work_struct *work)
750 {
751         struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
752                                                    work);
753         int ret = io_data->req->status ? io_data->req->status :
754                                          io_data->req->actual;
755         bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
756
757         if (io_data->read && ret > 0) {
758                 use_mm(io_data->mm);
759                 ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
760                 unuse_mm(io_data->mm);
761         }
762
763         io_data->kiocb->ki_complete(io_data->kiocb, ret, ret);
764
765         if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
766                 eventfd_signal(io_data->ffs->ffs_eventfd, 1);
767
768         usb_ep_free_request(io_data->ep, io_data->req);
769
770         if (io_data->read)
771                 kfree(io_data->to_free);
772         kfree(io_data->buf);
773         kfree(io_data);
774 }
775
776 static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
777                                          struct usb_request *req)
778 {
779         struct ffs_io_data *io_data = req->context;
780         struct ffs_data *ffs = io_data->ffs;
781
782         ENTER();
783
784         INIT_WORK(&io_data->work, ffs_user_copy_worker);
785         queue_work(ffs->io_completion_wq, &io_data->work);
786 }
787
788 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
789 {
790         /*
791          * See comment in struct ffs_epfile for full read_buffer pointer
792          * synchronisation story.
793          */
794         struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
795         if (buf && buf != READ_BUFFER_DROP)
796                 kfree(buf);
797 }
798
799 /* Assumes epfile->mutex is held. */
800 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
801                                           struct iov_iter *iter)
802 {
803         /*
804          * Null out epfile->read_buffer so ffs_func_eps_disable does not free
805          * the buffer while we are using it.  See comment in struct ffs_epfile
806          * for full read_buffer pointer synchronisation story.
807          */
808         struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
809         ssize_t ret;
810         if (!buf || buf == READ_BUFFER_DROP)
811                 return 0;
812
813         ret = copy_to_iter(buf->data, buf->length, iter);
814         if (buf->length == ret) {
815                 kfree(buf);
816                 return ret;
817         }
818
819         if (unlikely(iov_iter_count(iter))) {
820                 ret = -EFAULT;
821         } else {
822                 buf->length -= ret;
823                 buf->data += ret;
824         }
825
826         if (cmpxchg(&epfile->read_buffer, NULL, buf))
827                 kfree(buf);
828
829         return ret;
830 }
831
832 /* Assumes epfile->mutex is held. */
833 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
834                                       void *data, int data_len,
835                                       struct iov_iter *iter)
836 {
837         struct ffs_buffer *buf;
838
839         ssize_t ret = copy_to_iter(data, data_len, iter);
840         if (likely(data_len == ret))
841                 return ret;
842
843         if (unlikely(iov_iter_count(iter)))
844                 return -EFAULT;
845
846         /* See ffs_copy_to_iter for more context. */
847         pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
848                 data_len, ret);
849
850         data_len -= ret;
851         buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL);
852         if (!buf)
853                 return -ENOMEM;
854         buf->length = data_len;
855         buf->data = buf->storage;
856         memcpy(buf->storage, data + ret, data_len);
857
858         /*
859          * At this point read_buffer is NULL or READ_BUFFER_DROP (if
860          * ffs_func_eps_disable has been called in the meanwhile).  See comment
861          * in struct ffs_epfile for full read_buffer pointer synchronisation
862          * story.
863          */
864         if (unlikely(cmpxchg(&epfile->read_buffer, NULL, buf)))
865                 kfree(buf);
866
867         return ret;
868 }
869
870 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
871 {
872         struct ffs_epfile *epfile = file->private_data;
873         struct usb_request *req;
874         struct ffs_ep *ep;
875         char *data = NULL;
876         ssize_t ret, data_len = -EINVAL;
877         int halt;
878
879         /* Are we still active? */
880         if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
881                 return -ENODEV;
882
883         /* Wait for endpoint to be enabled */
884         ep = epfile->ep;
885         if (!ep) {
886                 if (file->f_flags & O_NONBLOCK)
887                         return -EAGAIN;
888
889                 ret = wait_event_interruptible(
890                                 epfile->ffs->wait, (ep = epfile->ep));
891                 if (ret)
892                         return -EINTR;
893         }
894
895         /* Do we halt? */
896         halt = (!io_data->read == !epfile->in);
897         if (halt && epfile->isoc)
898                 return -EINVAL;
899
900         /* We will be using request and read_buffer */
901         ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
902         if (unlikely(ret))
903                 goto error;
904
905         /* Allocate & copy */
906         if (!halt) {
907                 struct usb_gadget *gadget;
908
909                 /*
910                  * Do we have buffered data from previous partial read?  Check
911                  * that for synchronous case only because we do not have
912                  * facility to ‘wake up’ a pending asynchronous read and push
913                  * buffered data to it which we would need to make things behave
914                  * consistently.
915                  */
916                 if (!io_data->aio && io_data->read) {
917                         ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
918                         if (ret)
919                                 goto error_mutex;
920                 }
921
922                 /*
923                  * if we _do_ wait above, the epfile->ffs->gadget might be NULL
924                  * before the waiting completes, so do not assign to 'gadget'
925                  * earlier
926                  */
927                 gadget = epfile->ffs->gadget;
928
929                 spin_lock_irq(&epfile->ffs->eps_lock);
930                 /* In the meantime, endpoint got disabled or changed. */
931                 if (epfile->ep != ep) {
932                         ret = -ESHUTDOWN;
933                         goto error_lock;
934                 }
935                 data_len = iov_iter_count(&io_data->data);
936                 /*
937                  * Controller may require buffer size to be aligned to
938                  * maxpacketsize of an out endpoint.
939                  */
940                 if (io_data->read)
941                         data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
942                 spin_unlock_irq(&epfile->ffs->eps_lock);
943
944                 data = kmalloc(data_len, GFP_KERNEL);
945                 if (unlikely(!data)) {
946                         ret = -ENOMEM;
947                         goto error_mutex;
948                 }
949                 if (!io_data->read &&
950                     !copy_from_iter_full(data, data_len, &io_data->data)) {
951                         ret = -EFAULT;
952                         goto error_mutex;
953                 }
954         }
955
956         spin_lock_irq(&epfile->ffs->eps_lock);
957
958         if (epfile->ep != ep) {
959                 /* In the meantime, endpoint got disabled or changed. */
960                 ret = -ESHUTDOWN;
961         } else if (halt) {
962                 ret = usb_ep_set_halt(ep->ep);
963                 if (!ret)
964                         ret = -EBADMSG;
965         } else if (unlikely(data_len == -EINVAL)) {
966                 /*
967                  * Sanity Check: even though data_len can't be used
968                  * uninitialized at the time I write this comment, some
969                  * compilers complain about this situation.
970                  * In order to keep the code clean from warnings, data_len is
971                  * being initialized to -EINVAL during its declaration, which
972                  * means we can't rely on compiler anymore to warn no future
973                  * changes won't result in data_len being used uninitialized.
974                  * For such reason, we're adding this redundant sanity check
975                  * here.
976                  */
977                 WARN(1, "%s: data_len == -EINVAL\n", __func__);
978                 ret = -EINVAL;
979         } else if (!io_data->aio) {
980                 DECLARE_COMPLETION_ONSTACK(done);
981                 bool interrupted = false;
982
983                 req = ep->req;
984                 req->buf      = data;
985                 req->length   = data_len;
986
987                 req->context  = &done;
988                 req->complete = ffs_epfile_io_complete;
989
990                 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
991                 if (unlikely(ret < 0))
992                         goto error_lock;
993
994                 spin_unlock_irq(&epfile->ffs->eps_lock);
995
996                 if (unlikely(wait_for_completion_interruptible(&done))) {
997                         /*
998                          * To avoid race condition with ffs_epfile_io_complete,
999                          * dequeue the request first then check
1000                          * status. usb_ep_dequeue API should guarantee no race
1001                          * condition with req->complete callback.
1002                          */
1003                         usb_ep_dequeue(ep->ep, req);
1004                         interrupted = ep->status < 0;
1005                 }
1006
1007                 if (interrupted)
1008                         ret = -EINTR;
1009                 else if (io_data->read && ep->status > 0)
1010                         ret = __ffs_epfile_read_data(epfile, data, ep->status,
1011                                                      &io_data->data);
1012                 else
1013                         ret = ep->status;
1014                 goto error_mutex;
1015         } else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) {
1016                 ret = -ENOMEM;
1017         } else {
1018                 req->buf      = data;
1019                 req->length   = data_len;
1020
1021                 io_data->buf = data;
1022                 io_data->ep = ep->ep;
1023                 io_data->req = req;
1024                 io_data->ffs = epfile->ffs;
1025
1026                 req->context  = io_data;
1027                 req->complete = ffs_epfile_async_io_complete;
1028
1029                 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1030                 if (unlikely(ret)) {
1031                         usb_ep_free_request(ep->ep, req);
1032                         goto error_lock;
1033                 }
1034
1035                 ret = -EIOCBQUEUED;
1036                 /*
1037                  * Do not kfree the buffer in this function.  It will be freed
1038                  * by ffs_user_copy_worker.
1039                  */
1040                 data = NULL;
1041         }
1042
1043 error_lock:
1044         spin_unlock_irq(&epfile->ffs->eps_lock);
1045 error_mutex:
1046         mutex_unlock(&epfile->mutex);
1047 error:
1048         kfree(data);
1049         return ret;
1050 }
1051
1052 static int
1053 ffs_epfile_open(struct inode *inode, struct file *file)
1054 {
1055         struct ffs_epfile *epfile = inode->i_private;
1056
1057         ENTER();
1058
1059         if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1060                 return -ENODEV;
1061
1062         file->private_data = epfile;
1063         ffs_data_opened(epfile->ffs);
1064
1065         return 0;
1066 }
1067
1068 static int ffs_aio_cancel(struct kiocb *kiocb)
1069 {
1070         struct ffs_io_data *io_data = kiocb->private;
1071         struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
1072         int value;
1073
1074         ENTER();
1075
1076         spin_lock_irq(&epfile->ffs->eps_lock);
1077
1078         if (likely(io_data && io_data->ep && io_data->req))
1079                 value = usb_ep_dequeue(io_data->ep, io_data->req);
1080         else
1081                 value = -EINVAL;
1082
1083         spin_unlock_irq(&epfile->ffs->eps_lock);
1084
1085         return value;
1086 }
1087
1088 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1089 {
1090         struct ffs_io_data io_data, *p = &io_data;
1091         ssize_t res;
1092
1093         ENTER();
1094
1095         if (!is_sync_kiocb(kiocb)) {
1096                 p = kmalloc(sizeof(io_data), GFP_KERNEL);
1097                 if (unlikely(!p))
1098                         return -ENOMEM;
1099                 p->aio = true;
1100         } else {
1101                 p->aio = false;
1102         }
1103
1104         p->read = false;
1105         p->kiocb = kiocb;
1106         p->data = *from;
1107         p->mm = current->mm;
1108
1109         kiocb->private = p;
1110
1111         if (p->aio)
1112                 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1113
1114         res = ffs_epfile_io(kiocb->ki_filp, p);
1115         if (res == -EIOCBQUEUED)
1116                 return res;
1117         if (p->aio)
1118                 kfree(p);
1119         else
1120                 *from = p->data;
1121         return res;
1122 }
1123
1124 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1125 {
1126         struct ffs_io_data io_data, *p = &io_data;
1127         ssize_t res;
1128
1129         ENTER();
1130
1131         if (!is_sync_kiocb(kiocb)) {
1132                 p = kmalloc(sizeof(io_data), GFP_KERNEL);
1133                 if (unlikely(!p))
1134                         return -ENOMEM;
1135                 p->aio = true;
1136         } else {
1137                 p->aio = false;
1138         }
1139
1140         p->read = true;
1141         p->kiocb = kiocb;
1142         if (p->aio) {
1143                 p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1144                 if (!p->to_free) {
1145                         kfree(p);
1146                         return -ENOMEM;
1147                 }
1148         } else {
1149                 p->data = *to;
1150                 p->to_free = NULL;
1151         }
1152         p->mm = current->mm;
1153
1154         kiocb->private = p;
1155
1156         if (p->aio)
1157                 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1158
1159         res = ffs_epfile_io(kiocb->ki_filp, p);
1160         if (res == -EIOCBQUEUED)
1161                 return res;
1162
1163         if (p->aio) {
1164                 kfree(p->to_free);
1165                 kfree(p);
1166         } else {
1167                 *to = p->data;
1168         }
1169         return res;
1170 }
1171
1172 static int
1173 ffs_epfile_release(struct inode *inode, struct file *file)
1174 {
1175         struct ffs_epfile *epfile = inode->i_private;
1176
1177         ENTER();
1178
1179         __ffs_epfile_read_buffer_free(epfile);
1180         ffs_data_closed(epfile->ffs);
1181
1182         return 0;
1183 }
1184
1185 static long ffs_epfile_ioctl(struct file *file, unsigned code,
1186                              unsigned long value)
1187 {
1188         struct ffs_epfile *epfile = file->private_data;
1189         struct ffs_ep *ep;
1190         int ret;
1191
1192         ENTER();
1193
1194         if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1195                 return -ENODEV;
1196
1197         /* Wait for endpoint to be enabled */
1198         ep = epfile->ep;
1199         if (!ep) {
1200                 if (file->f_flags & O_NONBLOCK)
1201                         return -EAGAIN;
1202
1203                 ret = wait_event_interruptible(
1204                                 epfile->ffs->wait, (ep = epfile->ep));
1205                 if (ret)
1206                         return -EINTR;
1207         }
1208
1209         spin_lock_irq(&epfile->ffs->eps_lock);
1210
1211         /* In the meantime, endpoint got disabled or changed. */
1212         if (epfile->ep != ep) {
1213                 spin_unlock_irq(&epfile->ffs->eps_lock);
1214                 return -ESHUTDOWN;
1215         }
1216
1217         switch (code) {
1218         case FUNCTIONFS_FIFO_STATUS:
1219                 ret = usb_ep_fifo_status(epfile->ep->ep);
1220                 break;
1221         case FUNCTIONFS_FIFO_FLUSH:
1222                 usb_ep_fifo_flush(epfile->ep->ep);
1223                 ret = 0;
1224                 break;
1225         case FUNCTIONFS_CLEAR_HALT:
1226                 ret = usb_ep_clear_halt(epfile->ep->ep);
1227                 break;
1228         case FUNCTIONFS_ENDPOINT_REVMAP:
1229                 ret = epfile->ep->num;
1230                 break;
1231         case FUNCTIONFS_ENDPOINT_DESC:
1232         {
1233                 int desc_idx;
1234                 struct usb_endpoint_descriptor *desc;
1235
1236                 switch (epfile->ffs->gadget->speed) {
1237                 case USB_SPEED_SUPER:
1238                         desc_idx = 2;
1239                         break;
1240                 case USB_SPEED_HIGH:
1241                         desc_idx = 1;
1242                         break;
1243                 default:
1244                         desc_idx = 0;
1245                 }
1246                 desc = epfile->ep->descs[desc_idx];
1247
1248                 spin_unlock_irq(&epfile->ffs->eps_lock);
1249                 ret = copy_to_user((void *)value, desc, desc->bLength);
1250                 if (ret)
1251                         ret = -EFAULT;
1252                 return ret;
1253         }
1254         default:
1255                 ret = -ENOTTY;
1256         }
1257         spin_unlock_irq(&epfile->ffs->eps_lock);
1258
1259         return ret;
1260 }
1261
1262 static const struct file_operations ffs_epfile_operations = {
1263         .llseek =       no_llseek,
1264
1265         .open =         ffs_epfile_open,
1266         .write_iter =   ffs_epfile_write_iter,
1267         .read_iter =    ffs_epfile_read_iter,
1268         .release =      ffs_epfile_release,
1269         .unlocked_ioctl =       ffs_epfile_ioctl,
1270 };
1271
1272
1273 /* File system and super block operations ***********************************/
1274
1275 /*
1276  * Mounting the file system creates a controller file, used first for
1277  * function configuration then later for event monitoring.
1278  */
1279
1280 static struct inode *__must_check
1281 ffs_sb_make_inode(struct super_block *sb, void *data,
1282                   const struct file_operations *fops,
1283                   const struct inode_operations *iops,
1284                   struct ffs_file_perms *perms)
1285 {
1286         struct inode *inode;
1287
1288         ENTER();
1289
1290         inode = new_inode(sb);
1291
1292         if (likely(inode)) {
1293                 struct timespec ts = current_time(inode);
1294
1295                 inode->i_ino     = get_next_ino();
1296                 inode->i_mode    = perms->mode;
1297                 inode->i_uid     = perms->uid;
1298                 inode->i_gid     = perms->gid;
1299                 inode->i_atime   = ts;
1300                 inode->i_mtime   = ts;
1301                 inode->i_ctime   = ts;
1302                 inode->i_private = data;
1303                 if (fops)
1304                         inode->i_fop = fops;
1305                 if (iops)
1306                         inode->i_op  = iops;
1307         }
1308
1309         return inode;
1310 }
1311
1312 /* Create "regular" file */
1313 static struct dentry *ffs_sb_create_file(struct super_block *sb,
1314                                         const char *name, void *data,
1315                                         const struct file_operations *fops)
1316 {
1317         struct ffs_data *ffs = sb->s_fs_info;
1318         struct dentry   *dentry;
1319         struct inode    *inode;
1320
1321         ENTER();
1322
1323         dentry = d_alloc_name(sb->s_root, name);
1324         if (unlikely(!dentry))
1325                 return NULL;
1326
1327         inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1328         if (unlikely(!inode)) {
1329                 dput(dentry);
1330                 return NULL;
1331         }
1332
1333         d_add(dentry, inode);
1334         return dentry;
1335 }
1336
1337 /* Super block */
1338 static const struct super_operations ffs_sb_operations = {
1339         .statfs =       simple_statfs,
1340         .drop_inode =   generic_delete_inode,
1341 };
1342
1343 struct ffs_sb_fill_data {
1344         struct ffs_file_perms perms;
1345         umode_t root_mode;
1346         const char *dev_name;
1347         bool no_disconnect;
1348         struct ffs_data *ffs_data;
1349 };
1350
1351 static int ffs_sb_fill(struct super_block *sb, void *_data, int silent)
1352 {
1353         struct ffs_sb_fill_data *data = _data;
1354         struct inode    *inode;
1355         struct ffs_data *ffs = data->ffs_data;
1356
1357         ENTER();
1358
1359         ffs->sb              = sb;
1360         data->ffs_data       = NULL;
1361         sb->s_fs_info        = ffs;
1362         sb->s_blocksize      = PAGE_SIZE;
1363         sb->s_blocksize_bits = PAGE_SHIFT;
1364         sb->s_magic          = FUNCTIONFS_MAGIC;
1365         sb->s_op             = &ffs_sb_operations;
1366         sb->s_time_gran      = 1;
1367
1368         /* Root inode */
1369         data->perms.mode = data->root_mode;
1370         inode = ffs_sb_make_inode(sb, NULL,
1371                                   &simple_dir_operations,
1372                                   &simple_dir_inode_operations,
1373                                   &data->perms);
1374         sb->s_root = d_make_root(inode);
1375         if (unlikely(!sb->s_root))
1376                 return -ENOMEM;
1377
1378         /* EP0 file */
1379         if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs,
1380                                          &ffs_ep0_operations)))
1381                 return -ENOMEM;
1382
1383         return 0;
1384 }
1385
1386 static int ffs_fs_parse_opts(struct ffs_sb_fill_data *data, char *opts)
1387 {
1388         ENTER();
1389
1390         if (!opts || !*opts)
1391                 return 0;
1392
1393         for (;;) {
1394                 unsigned long value;
1395                 char *eq, *comma;
1396
1397                 /* Option limit */
1398                 comma = strchr(opts, ',');
1399                 if (comma)
1400                         *comma = 0;
1401
1402                 /* Value limit */
1403                 eq = strchr(opts, '=');
1404                 if (unlikely(!eq)) {
1405                         pr_err("'=' missing in %s\n", opts);
1406                         return -EINVAL;
1407                 }
1408                 *eq = 0;
1409
1410                 /* Parse value */
1411                 if (kstrtoul(eq + 1, 0, &value)) {
1412                         pr_err("%s: invalid value: %s\n", opts, eq + 1);
1413                         return -EINVAL;
1414                 }
1415
1416                 /* Interpret option */
1417                 switch (eq - opts) {
1418                 case 13:
1419                         if (!memcmp(opts, "no_disconnect", 13))
1420                                 data->no_disconnect = !!value;
1421                         else
1422                                 goto invalid;
1423                         break;
1424                 case 5:
1425                         if (!memcmp(opts, "rmode", 5))
1426                                 data->root_mode  = (value & 0555) | S_IFDIR;
1427                         else if (!memcmp(opts, "fmode", 5))
1428                                 data->perms.mode = (value & 0666) | S_IFREG;
1429                         else
1430                                 goto invalid;
1431                         break;
1432
1433                 case 4:
1434                         if (!memcmp(opts, "mode", 4)) {
1435                                 data->root_mode  = (value & 0555) | S_IFDIR;
1436                                 data->perms.mode = (value & 0666) | S_IFREG;
1437                         } else {
1438                                 goto invalid;
1439                         }
1440                         break;
1441
1442                 case 3:
1443                         if (!memcmp(opts, "uid", 3)) {
1444                                 data->perms.uid = make_kuid(current_user_ns(), value);
1445                                 if (!uid_valid(data->perms.uid)) {
1446                                         pr_err("%s: unmapped value: %lu\n", opts, value);
1447                                         return -EINVAL;
1448                                 }
1449                         } else if (!memcmp(opts, "gid", 3)) {
1450                                 data->perms.gid = make_kgid(current_user_ns(), value);
1451                                 if (!gid_valid(data->perms.gid)) {
1452                                         pr_err("%s: unmapped value: %lu\n", opts, value);
1453                                         return -EINVAL;
1454                                 }
1455                         } else {
1456                                 goto invalid;
1457                         }
1458                         break;
1459
1460                 default:
1461 invalid:
1462                         pr_err("%s: invalid option\n", opts);
1463                         return -EINVAL;
1464                 }
1465
1466                 /* Next iteration */
1467                 if (!comma)
1468                         break;
1469                 opts = comma + 1;
1470         }
1471
1472         return 0;
1473 }
1474
1475 /* "mount -t functionfs dev_name /dev/function" ends up here */
1476
1477 static struct dentry *
1478 ffs_fs_mount(struct file_system_type *t, int flags,
1479               const char *dev_name, void *opts)
1480 {
1481         struct ffs_sb_fill_data data = {
1482                 .perms = {
1483                         .mode = S_IFREG | 0600,
1484                         .uid = GLOBAL_ROOT_UID,
1485                         .gid = GLOBAL_ROOT_GID,
1486                 },
1487                 .root_mode = S_IFDIR | 0500,
1488                 .no_disconnect = false,
1489         };
1490         struct dentry *rv;
1491         int ret;
1492         void *ffs_dev;
1493         struct ffs_data *ffs;
1494
1495         ENTER();
1496
1497         ret = ffs_fs_parse_opts(&data, opts);
1498         if (unlikely(ret < 0))
1499                 return ERR_PTR(ret);
1500
1501         ffs = ffs_data_new(dev_name);
1502         if (unlikely(!ffs))
1503                 return ERR_PTR(-ENOMEM);
1504         ffs->file_perms = data.perms;
1505         ffs->no_disconnect = data.no_disconnect;
1506
1507         ffs->dev_name = kstrdup(dev_name, GFP_KERNEL);
1508         if (unlikely(!ffs->dev_name)) {
1509                 ffs_data_put(ffs);
1510                 return ERR_PTR(-ENOMEM);
1511         }
1512
1513         ffs_dev = ffs_acquire_dev(dev_name);
1514         if (IS_ERR(ffs_dev)) {
1515                 ffs_data_put(ffs);
1516                 return ERR_CAST(ffs_dev);
1517         }
1518         ffs->private_data = ffs_dev;
1519         data.ffs_data = ffs;
1520
1521         rv = mount_nodev(t, flags, &data, ffs_sb_fill);
1522         if (IS_ERR(rv) && data.ffs_data) {
1523                 ffs_release_dev(data.ffs_data);
1524                 ffs_data_put(data.ffs_data);
1525         }
1526         return rv;
1527 }
1528
1529 static void
1530 ffs_fs_kill_sb(struct super_block *sb)
1531 {
1532         ENTER();
1533
1534         kill_litter_super(sb);
1535         if (sb->s_fs_info) {
1536                 ffs_release_dev(sb->s_fs_info);
1537                 ffs_data_closed(sb->s_fs_info);
1538                 ffs_data_put(sb->s_fs_info);
1539         }
1540 }
1541
1542 static struct file_system_type ffs_fs_type = {
1543         .owner          = THIS_MODULE,
1544         .name           = "functionfs",
1545         .mount          = ffs_fs_mount,
1546         .kill_sb        = ffs_fs_kill_sb,
1547 };
1548 MODULE_ALIAS_FS("functionfs");
1549
1550
1551 /* Driver's main init/cleanup functions *************************************/
1552
1553 static int functionfs_init(void)
1554 {
1555         int ret;
1556
1557         ENTER();
1558
1559         ret = register_filesystem(&ffs_fs_type);
1560         if (likely(!ret))
1561                 pr_info("file system registered\n");
1562         else
1563                 pr_err("failed registering file system (%d)\n", ret);
1564
1565         return ret;
1566 }
1567
1568 static void functionfs_cleanup(void)
1569 {
1570         ENTER();
1571
1572         pr_info("unloading\n");
1573         unregister_filesystem(&ffs_fs_type);
1574 }
1575
1576
1577 /* ffs_data and ffs_function construction and destruction code **************/
1578
1579 static void ffs_data_clear(struct ffs_data *ffs);
1580 static void ffs_data_reset(struct ffs_data *ffs);
1581
1582 static void ffs_data_get(struct ffs_data *ffs)
1583 {
1584         ENTER();
1585
1586         refcount_inc(&ffs->ref);
1587 }
1588
1589 static void ffs_data_opened(struct ffs_data *ffs)
1590 {
1591         ENTER();
1592
1593         refcount_inc(&ffs->ref);
1594         if (atomic_add_return(1, &ffs->opened) == 1 &&
1595                         ffs->state == FFS_DEACTIVATED) {
1596                 ffs->state = FFS_CLOSING;
1597                 ffs_data_reset(ffs);
1598         }
1599 }
1600
1601 static void ffs_data_put(struct ffs_data *ffs)
1602 {
1603         ENTER();
1604
1605         if (unlikely(refcount_dec_and_test(&ffs->ref))) {
1606                 pr_info("%s(): freeing\n", __func__);
1607                 ffs_data_clear(ffs);
1608                 BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1609                        waitqueue_active(&ffs->ep0req_completion.wait) ||
1610                        waitqueue_active(&ffs->wait));
1611                 destroy_workqueue(ffs->io_completion_wq);
1612                 kfree(ffs->dev_name);
1613                 kfree(ffs);
1614         }
1615 }
1616
1617 static void ffs_data_closed(struct ffs_data *ffs)
1618 {
1619         ENTER();
1620
1621         if (atomic_dec_and_test(&ffs->opened)) {
1622                 if (ffs->no_disconnect) {
1623                         ffs->state = FFS_DEACTIVATED;
1624                         if (ffs->epfiles) {
1625                                 ffs_epfiles_destroy(ffs->epfiles,
1626                                                    ffs->eps_count);
1627                                 ffs->epfiles = NULL;
1628                         }
1629                         if (ffs->setup_state == FFS_SETUP_PENDING)
1630                                 __ffs_ep0_stall(ffs);
1631                 } else {
1632                         ffs->state = FFS_CLOSING;
1633                         ffs_data_reset(ffs);
1634                 }
1635         }
1636         if (atomic_read(&ffs->opened) < 0) {
1637                 ffs->state = FFS_CLOSING;
1638                 ffs_data_reset(ffs);
1639         }
1640
1641         ffs_data_put(ffs);
1642 }
1643
1644 static struct ffs_data *ffs_data_new(const char *dev_name)
1645 {
1646         struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1647         if (unlikely(!ffs))
1648                 return NULL;
1649
1650         ENTER();
1651
1652         ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
1653         if (!ffs->io_completion_wq) {
1654                 kfree(ffs);
1655                 return NULL;
1656         }
1657
1658         refcount_set(&ffs->ref, 1);
1659         atomic_set(&ffs->opened, 0);
1660         ffs->state = FFS_READ_DESCRIPTORS;
1661         mutex_init(&ffs->mutex);
1662         spin_lock_init(&ffs->eps_lock);
1663         init_waitqueue_head(&ffs->ev.waitq);
1664         init_waitqueue_head(&ffs->wait);
1665         init_completion(&ffs->ep0req_completion);
1666
1667         /* XXX REVISIT need to update it in some places, or do we? */
1668         ffs->ev.can_stall = 1;
1669
1670         return ffs;
1671 }
1672
1673 static void ffs_data_clear(struct ffs_data *ffs)
1674 {
1675         ENTER();
1676
1677         ffs_closed(ffs);
1678
1679         BUG_ON(ffs->gadget);
1680
1681         if (ffs->epfiles)
1682                 ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count);
1683
1684         if (ffs->ffs_eventfd)
1685                 eventfd_ctx_put(ffs->ffs_eventfd);
1686
1687         kfree(ffs->raw_descs_data);
1688         kfree(ffs->raw_strings);
1689         kfree(ffs->stringtabs);
1690 }
1691
1692 static void ffs_data_reset(struct ffs_data *ffs)
1693 {
1694         ENTER();
1695
1696         ffs_data_clear(ffs);
1697
1698         ffs->epfiles = NULL;
1699         ffs->raw_descs_data = NULL;
1700         ffs->raw_descs = NULL;
1701         ffs->raw_strings = NULL;
1702         ffs->stringtabs = NULL;
1703
1704         ffs->raw_descs_length = 0;
1705         ffs->fs_descs_count = 0;
1706         ffs->hs_descs_count = 0;
1707         ffs->ss_descs_count = 0;
1708
1709         ffs->strings_count = 0;
1710         ffs->interfaces_count = 0;
1711         ffs->eps_count = 0;
1712
1713         ffs->ev.count = 0;
1714
1715         ffs->state = FFS_READ_DESCRIPTORS;
1716         ffs->setup_state = FFS_NO_SETUP;
1717         ffs->flags = 0;
1718 }
1719
1720
1721 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1722 {
1723         struct usb_gadget_strings **lang;
1724         int first_id;
1725
1726         ENTER();
1727
1728         if (WARN_ON(ffs->state != FFS_ACTIVE
1729                  || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1730                 return -EBADFD;
1731
1732         first_id = usb_string_ids_n(cdev, ffs->strings_count);
1733         if (unlikely(first_id < 0))
1734                 return first_id;
1735
1736         ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1737         if (unlikely(!ffs->ep0req))
1738                 return -ENOMEM;
1739         ffs->ep0req->complete = ffs_ep0_complete;
1740         ffs->ep0req->context = ffs;
1741
1742         lang = ffs->stringtabs;
1743         if (lang) {
1744                 for (; *lang; ++lang) {
1745                         struct usb_string *str = (*lang)->strings;
1746                         int id = first_id;
1747                         for (; str->s; ++id, ++str)
1748                                 str->id = id;
1749                 }
1750         }
1751
1752         ffs->gadget = cdev->gadget;
1753         ffs_data_get(ffs);
1754         return 0;
1755 }
1756
1757 static void functionfs_unbind(struct ffs_data *ffs)
1758 {
1759         ENTER();
1760
1761         if (!WARN_ON(!ffs->gadget)) {
1762                 usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1763                 ffs->ep0req = NULL;
1764                 ffs->gadget = NULL;
1765                 clear_bit(FFS_FL_BOUND, &ffs->flags);
1766                 ffs_data_put(ffs);
1767         }
1768 }
1769
1770 static int ffs_epfiles_create(struct ffs_data *ffs)
1771 {
1772         struct ffs_epfile *epfile, *epfiles;
1773         unsigned i, count;
1774
1775         ENTER();
1776
1777         count = ffs->eps_count;
1778         epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1779         if (!epfiles)
1780                 return -ENOMEM;
1781
1782         epfile = epfiles;
1783         for (i = 1; i <= count; ++i, ++epfile) {
1784                 epfile->ffs = ffs;
1785                 mutex_init(&epfile->mutex);
1786                 if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1787                         sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1788                 else
1789                         sprintf(epfile->name, "ep%u", i);
1790                 epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
1791                                                  epfile,
1792                                                  &ffs_epfile_operations);
1793                 if (unlikely(!epfile->dentry)) {
1794                         ffs_epfiles_destroy(epfiles, i - 1);
1795                         return -ENOMEM;
1796                 }
1797         }
1798
1799         ffs->epfiles = epfiles;
1800         return 0;
1801 }
1802
1803 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1804 {
1805         struct ffs_epfile *epfile = epfiles;
1806
1807         ENTER();
1808
1809         for (; count; --count, ++epfile) {
1810                 BUG_ON(mutex_is_locked(&epfile->mutex));
1811                 if (epfile->dentry) {
1812                         d_delete(epfile->dentry);
1813                         dput(epfile->dentry);
1814                         epfile->dentry = NULL;
1815                 }
1816         }
1817
1818         kfree(epfiles);
1819 }
1820
1821 static void ffs_func_eps_disable(struct ffs_function *func)
1822 {
1823         struct ffs_ep *ep         = func->eps;
1824         struct ffs_epfile *epfile = func->ffs->epfiles;
1825         unsigned count            = func->ffs->eps_count;
1826         unsigned long flags;
1827
1828         spin_lock_irqsave(&func->ffs->eps_lock, flags);
1829         while (count--) {
1830                 /* pending requests get nuked */
1831                 if (likely(ep->ep))
1832                         usb_ep_disable(ep->ep);
1833                 ++ep;
1834
1835                 if (epfile) {
1836                         epfile->ep = NULL;
1837                         __ffs_epfile_read_buffer_free(epfile);
1838                         ++epfile;
1839                 }
1840         }
1841         spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1842 }
1843
1844 static int ffs_func_eps_enable(struct ffs_function *func)
1845 {
1846         struct ffs_data *ffs      = func->ffs;
1847         struct ffs_ep *ep         = func->eps;
1848         struct ffs_epfile *epfile = ffs->epfiles;
1849         unsigned count            = ffs->eps_count;
1850         unsigned long flags;
1851         int ret = 0;
1852
1853         spin_lock_irqsave(&func->ffs->eps_lock, flags);
1854         while(count--) {
1855                 struct usb_endpoint_descriptor *ds;
1856                 struct usb_ss_ep_comp_descriptor *comp_desc = NULL;
1857                 int needs_comp_desc = false;
1858                 int desc_idx;
1859
1860                 if (ffs->gadget->speed == USB_SPEED_SUPER) {
1861                         desc_idx = 2;
1862                         needs_comp_desc = true;
1863                 } else if (ffs->gadget->speed == USB_SPEED_HIGH)
1864                         desc_idx = 1;
1865                 else
1866                         desc_idx = 0;
1867
1868                 /* fall-back to lower speed if desc missing for current speed */
1869                 do {
1870                         ds = ep->descs[desc_idx];
1871                 } while (!ds && --desc_idx >= 0);
1872
1873                 if (!ds) {
1874                         ret = -EINVAL;
1875                         break;
1876                 }
1877
1878                 ep->ep->driver_data = ep;
1879                 ep->ep->desc = ds;
1880
1881                 if (needs_comp_desc) {
1882                         comp_desc = (struct usb_ss_ep_comp_descriptor *)(ds +
1883                                         USB_DT_ENDPOINT_SIZE);
1884                         ep->ep->maxburst = comp_desc->bMaxBurst + 1;
1885                         ep->ep->comp_desc = comp_desc;
1886                 }
1887
1888                 ret = usb_ep_enable(ep->ep);
1889                 if (likely(!ret)) {
1890                         epfile->ep = ep;
1891                         epfile->in = usb_endpoint_dir_in(ds);
1892                         epfile->isoc = usb_endpoint_xfer_isoc(ds);
1893                 } else {
1894                         break;
1895                 }
1896
1897                 ++ep;
1898                 ++epfile;
1899         }
1900
1901         wake_up_interruptible(&ffs->wait);
1902         spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1903
1904         return ret;
1905 }
1906
1907
1908 /* Parsing and building descriptors and strings *****************************/
1909
1910 /*
1911  * This validates if data pointed by data is a valid USB descriptor as
1912  * well as record how many interfaces, endpoints and strings are
1913  * required by given configuration.  Returns address after the
1914  * descriptor or NULL if data is invalid.
1915  */
1916
1917 enum ffs_entity_type {
1918         FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
1919 };
1920
1921 enum ffs_os_desc_type {
1922         FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
1923 };
1924
1925 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
1926                                    u8 *valuep,
1927                                    struct usb_descriptor_header *desc,
1928                                    void *priv);
1929
1930 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
1931                                     struct usb_os_desc_header *h, void *data,
1932                                     unsigned len, void *priv);
1933
1934 static int __must_check ffs_do_single_desc(char *data, unsigned len,
1935                                            ffs_entity_callback entity,
1936                                            void *priv)
1937 {
1938         struct usb_descriptor_header *_ds = (void *)data;
1939         u8 length;
1940         int ret;
1941
1942         ENTER();
1943
1944         /* At least two bytes are required: length and type */
1945         if (len < 2) {
1946                 pr_vdebug("descriptor too short\n");
1947                 return -EINVAL;
1948         }
1949
1950         /* If we have at least as many bytes as the descriptor takes? */
1951         length = _ds->bLength;
1952         if (len < length) {
1953                 pr_vdebug("descriptor longer then available data\n");
1954                 return -EINVAL;
1955         }
1956
1957 #define __entity_check_INTERFACE(val)  1
1958 #define __entity_check_STRING(val)     (val)
1959 #define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
1960 #define __entity(type, val) do {                                        \
1961                 pr_vdebug("entity " #type "(%02x)\n", (val));           \
1962                 if (unlikely(!__entity_check_ ##type(val))) {           \
1963                         pr_vdebug("invalid entity's value\n");          \
1964                         return -EINVAL;                                 \
1965                 }                                                       \
1966                 ret = entity(FFS_ ##type, &val, _ds, priv);             \
1967                 if (unlikely(ret < 0)) {                                \
1968                         pr_debug("entity " #type "(%02x); ret = %d\n",  \
1969                                  (val), ret);                           \
1970                         return ret;                                     \
1971                 }                                                       \
1972         } while (0)
1973
1974         /* Parse descriptor depending on type. */
1975         switch (_ds->bDescriptorType) {
1976         case USB_DT_DEVICE:
1977         case USB_DT_CONFIG:
1978         case USB_DT_STRING:
1979         case USB_DT_DEVICE_QUALIFIER:
1980                 /* function can't have any of those */
1981                 pr_vdebug("descriptor reserved for gadget: %d\n",
1982                       _ds->bDescriptorType);
1983                 return -EINVAL;
1984
1985         case USB_DT_INTERFACE: {
1986                 struct usb_interface_descriptor *ds = (void *)_ds;
1987                 pr_vdebug("interface descriptor\n");
1988                 if (length != sizeof *ds)
1989                         goto inv_length;
1990
1991                 __entity(INTERFACE, ds->bInterfaceNumber);
1992                 if (ds->iInterface)
1993                         __entity(STRING, ds->iInterface);
1994         }
1995                 break;
1996
1997         case USB_DT_ENDPOINT: {
1998                 struct usb_endpoint_descriptor *ds = (void *)_ds;
1999                 pr_vdebug("endpoint descriptor\n");
2000                 if (length != USB_DT_ENDPOINT_SIZE &&
2001                     length != USB_DT_ENDPOINT_AUDIO_SIZE)
2002                         goto inv_length;
2003                 __entity(ENDPOINT, ds->bEndpointAddress);
2004         }
2005                 break;
2006
2007         case HID_DT_HID:
2008                 pr_vdebug("hid descriptor\n");
2009                 if (length != sizeof(struct hid_descriptor))
2010                         goto inv_length;
2011                 break;
2012
2013         case USB_DT_OTG:
2014                 if (length != sizeof(struct usb_otg_descriptor))
2015                         goto inv_length;
2016                 break;
2017
2018         case USB_DT_INTERFACE_ASSOCIATION: {
2019                 struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2020                 pr_vdebug("interface association descriptor\n");
2021                 if (length != sizeof *ds)
2022                         goto inv_length;
2023                 if (ds->iFunction)
2024                         __entity(STRING, ds->iFunction);
2025         }
2026                 break;
2027
2028         case USB_DT_SS_ENDPOINT_COMP:
2029                 pr_vdebug("EP SS companion descriptor\n");
2030                 if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2031                         goto inv_length;
2032                 break;
2033
2034         case USB_DT_OTHER_SPEED_CONFIG:
2035         case USB_DT_INTERFACE_POWER:
2036         case USB_DT_DEBUG:
2037         case USB_DT_SECURITY:
2038         case USB_DT_CS_RADIO_CONTROL:
2039                 /* TODO */
2040                 pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2041                 return -EINVAL;
2042
2043         default:
2044                 /* We should never be here */
2045                 pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2046                 return -EINVAL;
2047
2048 inv_length:
2049                 pr_vdebug("invalid length: %d (descriptor %d)\n",
2050                           _ds->bLength, _ds->bDescriptorType);
2051                 return -EINVAL;
2052         }
2053
2054 #undef __entity
2055 #undef __entity_check_DESCRIPTOR
2056 #undef __entity_check_INTERFACE
2057 #undef __entity_check_STRING
2058 #undef __entity_check_ENDPOINT
2059
2060         return length;
2061 }
2062
2063 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2064                                      ffs_entity_callback entity, void *priv)
2065 {
2066         const unsigned _len = len;
2067         unsigned long num = 0;
2068
2069         ENTER();
2070
2071         for (;;) {
2072                 int ret;
2073
2074                 if (num == count)
2075                         data = NULL;
2076
2077                 /* Record "descriptor" entity */
2078                 ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2079                 if (unlikely(ret < 0)) {
2080                         pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2081                                  num, ret);
2082                         return ret;
2083                 }
2084
2085                 if (!data)
2086                         return _len - len;
2087
2088                 ret = ffs_do_single_desc(data, len, entity, priv);
2089                 if (unlikely(ret < 0)) {
2090                         pr_debug("%s returns %d\n", __func__, ret);
2091                         return ret;
2092                 }
2093
2094                 len -= ret;
2095                 data += ret;
2096                 ++num;
2097         }
2098 }
2099
2100 static int __ffs_data_do_entity(enum ffs_entity_type type,
2101                                 u8 *valuep, struct usb_descriptor_header *desc,
2102                                 void *priv)
2103 {
2104         struct ffs_desc_helper *helper = priv;
2105         struct usb_endpoint_descriptor *d;
2106
2107         ENTER();
2108
2109         switch (type) {
2110         case FFS_DESCRIPTOR:
2111                 break;
2112
2113         case FFS_INTERFACE:
2114                 /*
2115                  * Interfaces are indexed from zero so if we
2116                  * encountered interface "n" then there are at least
2117                  * "n+1" interfaces.
2118                  */
2119                 if (*valuep >= helper->interfaces_count)
2120                         helper->interfaces_count = *valuep + 1;
2121                 break;
2122
2123         case FFS_STRING:
2124                 /*
2125                  * Strings are indexed from 1 (0 is reserved
2126                  * for languages list)
2127                  */
2128                 if (*valuep > helper->ffs->strings_count)
2129                         helper->ffs->strings_count = *valuep;
2130                 break;
2131
2132         case FFS_ENDPOINT:
2133                 d = (void *)desc;
2134                 helper->eps_count++;
2135                 if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2136                         return -EINVAL;
2137                 /* Check if descriptors for any speed were already parsed */
2138                 if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2139                         helper->ffs->eps_addrmap[helper->eps_count] =
2140                                 d->bEndpointAddress;
2141                 else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2142                                 d->bEndpointAddress)
2143                         return -EINVAL;
2144                 break;
2145         }
2146
2147         return 0;
2148 }
2149
2150 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2151                                    struct usb_os_desc_header *desc)
2152 {
2153         u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2154         u16 w_index = le16_to_cpu(desc->wIndex);
2155
2156         if (bcd_version != 1) {
2157                 pr_vdebug("unsupported os descriptors version: %d",
2158                           bcd_version);
2159                 return -EINVAL;
2160         }
2161         switch (w_index) {
2162         case 0x4:
2163                 *next_type = FFS_OS_DESC_EXT_COMPAT;
2164                 break;
2165         case 0x5:
2166                 *next_type = FFS_OS_DESC_EXT_PROP;
2167                 break;
2168         default:
2169                 pr_vdebug("unsupported os descriptor type: %d", w_index);
2170                 return -EINVAL;
2171         }
2172
2173         return sizeof(*desc);
2174 }
2175
2176 /*
2177  * Process all extended compatibility/extended property descriptors
2178  * of a feature descriptor
2179  */
2180 static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2181                                               enum ffs_os_desc_type type,
2182                                               u16 feature_count,
2183                                               ffs_os_desc_callback entity,
2184                                               void *priv,
2185                                               struct usb_os_desc_header *h)
2186 {
2187         int ret;
2188         const unsigned _len = len;
2189
2190         ENTER();
2191
2192         /* loop over all ext compat/ext prop descriptors */
2193         while (feature_count--) {
2194                 ret = entity(type, h, data, len, priv);
2195                 if (unlikely(ret < 0)) {
2196                         pr_debug("bad OS descriptor, type: %d\n", type);
2197                         return ret;
2198                 }
2199                 data += ret;
2200                 len -= ret;
2201         }
2202         return _len - len;
2203 }
2204
2205 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
2206 static int __must_check ffs_do_os_descs(unsigned count,
2207                                         char *data, unsigned len,
2208                                         ffs_os_desc_callback entity, void *priv)
2209 {
2210         const unsigned _len = len;
2211         unsigned long num = 0;
2212
2213         ENTER();
2214
2215         for (num = 0; num < count; ++num) {
2216                 int ret;
2217                 enum ffs_os_desc_type type;
2218                 u16 feature_count;
2219                 struct usb_os_desc_header *desc = (void *)data;
2220
2221                 if (len < sizeof(*desc))
2222                         return -EINVAL;
2223
2224                 /*
2225                  * Record "descriptor" entity.
2226                  * Process dwLength, bcdVersion, wIndex, get b/wCount.
2227                  * Move the data pointer to the beginning of extended
2228                  * compatibilities proper or extended properties proper
2229                  * portions of the data
2230                  */
2231                 if (le32_to_cpu(desc->dwLength) > len)
2232                         return -EINVAL;
2233
2234                 ret = __ffs_do_os_desc_header(&type, desc);
2235                 if (unlikely(ret < 0)) {
2236                         pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2237                                  num, ret);
2238                         return ret;
2239                 }
2240                 /*
2241                  * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2242                  */
2243                 feature_count = le16_to_cpu(desc->wCount);
2244                 if (type == FFS_OS_DESC_EXT_COMPAT &&
2245                     (feature_count > 255 || desc->Reserved))
2246                                 return -EINVAL;
2247                 len -= ret;
2248                 data += ret;
2249
2250                 /*
2251                  * Process all function/property descriptors
2252                  * of this Feature Descriptor
2253                  */
2254                 ret = ffs_do_single_os_desc(data, len, type,
2255                                             feature_count, entity, priv, desc);
2256                 if (unlikely(ret < 0)) {
2257                         pr_debug("%s returns %d\n", __func__, ret);
2258                         return ret;
2259                 }
2260
2261                 len -= ret;
2262                 data += ret;
2263         }
2264         return _len - len;
2265 }
2266
2267 /**
2268  * Validate contents of the buffer from userspace related to OS descriptors.
2269  */
2270 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2271                                  struct usb_os_desc_header *h, void *data,
2272                                  unsigned len, void *priv)
2273 {
2274         struct ffs_data *ffs = priv;
2275         u8 length;
2276
2277         ENTER();
2278
2279         switch (type) {
2280         case FFS_OS_DESC_EXT_COMPAT: {
2281                 struct usb_ext_compat_desc *d = data;
2282                 int i;
2283
2284                 if (len < sizeof(*d) ||
2285                     d->bFirstInterfaceNumber >= ffs->interfaces_count)
2286                         return -EINVAL;
2287                 if (d->Reserved1 != 1) {
2288                         /*
2289                          * According to the spec, Reserved1 must be set to 1
2290                          * but older kernels incorrectly rejected non-zero
2291                          * values.  We fix it here to avoid returning EINVAL
2292                          * in response to values we used to accept.
2293                          */
2294                         pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n");
2295                         d->Reserved1 = 1;
2296                 }
2297                 for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2298                         if (d->Reserved2[i])
2299                                 return -EINVAL;
2300
2301                 length = sizeof(struct usb_ext_compat_desc);
2302         }
2303                 break;
2304         case FFS_OS_DESC_EXT_PROP: {
2305                 struct usb_ext_prop_desc *d = data;
2306                 u32 type, pdl;
2307                 u16 pnl;
2308
2309                 if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2310                         return -EINVAL;
2311                 length = le32_to_cpu(d->dwSize);
2312                 if (len < length)
2313                         return -EINVAL;
2314                 type = le32_to_cpu(d->dwPropertyDataType);
2315                 if (type < USB_EXT_PROP_UNICODE ||
2316                     type > USB_EXT_PROP_UNICODE_MULTI) {
2317                         pr_vdebug("unsupported os descriptor property type: %d",
2318                                   type);
2319                         return -EINVAL;
2320                 }
2321                 pnl = le16_to_cpu(d->wPropertyNameLength);
2322                 if (length < 14 + pnl) {
2323                         pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2324                                   length, pnl, type);
2325                         return -EINVAL;
2326                 }
2327                 pdl = le32_to_cpu(*(u32 *)((u8 *)data + 10 + pnl));
2328                 if (length != 14 + pnl + pdl) {
2329                         pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2330                                   length, pnl, pdl, type);
2331                         return -EINVAL;
2332                 }
2333                 ++ffs->ms_os_descs_ext_prop_count;
2334                 /* property name reported to the host as "WCHAR"s */
2335                 ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2336                 ffs->ms_os_descs_ext_prop_data_len += pdl;
2337         }
2338                 break;
2339         default:
2340                 pr_vdebug("unknown descriptor: %d\n", type);
2341                 return -EINVAL;
2342         }
2343         return length;
2344 }
2345
2346 static int __ffs_data_got_descs(struct ffs_data *ffs,
2347                                 char *const _data, size_t len)
2348 {
2349         char *data = _data, *raw_descs;
2350         unsigned os_descs_count = 0, counts[3], flags;
2351         int ret = -EINVAL, i;
2352         struct ffs_desc_helper helper;
2353
2354         ENTER();
2355
2356         if (get_unaligned_le32(data + 4) != len)
2357                 goto error;
2358
2359         switch (get_unaligned_le32(data)) {
2360         case FUNCTIONFS_DESCRIPTORS_MAGIC:
2361                 flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2362                 data += 8;
2363                 len  -= 8;
2364                 break;
2365         case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2366                 flags = get_unaligned_le32(data + 8);
2367                 ffs->user_flags = flags;
2368                 if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2369                               FUNCTIONFS_HAS_HS_DESC |
2370                               FUNCTIONFS_HAS_SS_DESC |
2371                               FUNCTIONFS_HAS_MS_OS_DESC |
2372                               FUNCTIONFS_VIRTUAL_ADDR |
2373                               FUNCTIONFS_EVENTFD |
2374                               FUNCTIONFS_ALL_CTRL_RECIP |
2375                               FUNCTIONFS_CONFIG0_SETUP)) {
2376                         ret = -ENOSYS;
2377                         goto error;
2378                 }
2379                 data += 12;
2380                 len  -= 12;
2381                 break;
2382         default:
2383                 goto error;
2384         }
2385
2386         if (flags & FUNCTIONFS_EVENTFD) {
2387                 if (len < 4)
2388                         goto error;
2389                 ffs->ffs_eventfd =
2390                         eventfd_ctx_fdget((int)get_unaligned_le32(data));
2391                 if (IS_ERR(ffs->ffs_eventfd)) {
2392                         ret = PTR_ERR(ffs->ffs_eventfd);
2393                         ffs->ffs_eventfd = NULL;
2394                         goto error;
2395                 }
2396                 data += 4;
2397                 len  -= 4;
2398         }
2399
2400         /* Read fs_count, hs_count and ss_count (if present) */
2401         for (i = 0; i < 3; ++i) {
2402                 if (!(flags & (1 << i))) {
2403                         counts[i] = 0;
2404                 } else if (len < 4) {
2405                         goto error;
2406                 } else {
2407                         counts[i] = get_unaligned_le32(data);
2408                         data += 4;
2409                         len  -= 4;
2410                 }
2411         }
2412         if (flags & (1 << i)) {
2413                 if (len < 4) {
2414                         goto error;
2415                 }
2416                 os_descs_count = get_unaligned_le32(data);
2417                 data += 4;
2418                 len -= 4;
2419         };
2420
2421         /* Read descriptors */
2422         raw_descs = data;
2423         helper.ffs = ffs;
2424         for (i = 0; i < 3; ++i) {
2425                 if (!counts[i])
2426                         continue;
2427                 helper.interfaces_count = 0;
2428                 helper.eps_count = 0;
2429                 ret = ffs_do_descs(counts[i], data, len,
2430                                    __ffs_data_do_entity, &helper);
2431                 if (ret < 0)
2432                         goto error;
2433                 if (!ffs->eps_count && !ffs->interfaces_count) {
2434                         ffs->eps_count = helper.eps_count;
2435                         ffs->interfaces_count = helper.interfaces_count;
2436                 } else {
2437                         if (ffs->eps_count != helper.eps_count) {
2438                                 ret = -EINVAL;
2439                                 goto error;
2440                         }
2441                         if (ffs->interfaces_count != helper.interfaces_count) {
2442                                 ret = -EINVAL;
2443                                 goto error;
2444                         }
2445                 }
2446                 data += ret;
2447                 len  -= ret;
2448         }
2449         if (os_descs_count) {
2450                 ret = ffs_do_os_descs(os_descs_count, data, len,
2451                                       __ffs_data_do_os_desc, ffs);
2452                 if (ret < 0)
2453                         goto error;
2454                 data += ret;
2455                 len -= ret;
2456         }
2457
2458         if (raw_descs == data || len) {
2459                 ret = -EINVAL;
2460                 goto error;
2461         }
2462
2463         ffs->raw_descs_data     = _data;
2464         ffs->raw_descs          = raw_descs;
2465         ffs->raw_descs_length   = data - raw_descs;
2466         ffs->fs_descs_count     = counts[0];
2467         ffs->hs_descs_count     = counts[1];
2468         ffs->ss_descs_count     = counts[2];
2469         ffs->ms_os_descs_count  = os_descs_count;
2470
2471         return 0;
2472
2473 error:
2474         kfree(_data);
2475         return ret;
2476 }
2477
2478 static int __ffs_data_got_strings(struct ffs_data *ffs,
2479                                   char *const _data, size_t len)
2480 {
2481         u32 str_count, needed_count, lang_count;
2482         struct usb_gadget_strings **stringtabs, *t;
2483         const char *data = _data;
2484         struct usb_string *s;
2485
2486         ENTER();
2487
2488         if (unlikely(len < 16 ||
2489                      get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2490                      get_unaligned_le32(data + 4) != len))
2491                 goto error;
2492         str_count  = get_unaligned_le32(data + 8);
2493         lang_count = get_unaligned_le32(data + 12);
2494
2495         /* if one is zero the other must be zero */
2496         if (unlikely(!str_count != !lang_count))
2497                 goto error;
2498
2499         /* Do we have at least as many strings as descriptors need? */
2500         needed_count = ffs->strings_count;
2501         if (unlikely(str_count < needed_count))
2502                 goto error;
2503
2504         /*
2505          * If we don't need any strings just return and free all
2506          * memory.
2507          */
2508         if (!needed_count) {
2509                 kfree(_data);
2510                 return 0;
2511         }
2512
2513         /* Allocate everything in one chunk so there's less maintenance. */
2514         {
2515                 unsigned i = 0;
2516                 vla_group(d);
2517                 vla_item(d, struct usb_gadget_strings *, stringtabs,
2518                         lang_count + 1);
2519                 vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
2520                 vla_item(d, struct usb_string, strings,
2521                         lang_count*(needed_count+1));
2522
2523                 char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2524
2525                 if (unlikely(!vlabuf)) {
2526                         kfree(_data);
2527                         return -ENOMEM;
2528                 }
2529
2530                 /* Initialize the VLA pointers */
2531                 stringtabs = vla_ptr(vlabuf, d, stringtabs);
2532                 t = vla_ptr(vlabuf, d, stringtab);
2533                 i = lang_count;
2534                 do {
2535                         *stringtabs++ = t++;
2536                 } while (--i);
2537                 *stringtabs = NULL;
2538
2539                 /* stringtabs = vlabuf = d_stringtabs for later kfree */
2540                 stringtabs = vla_ptr(vlabuf, d, stringtabs);
2541                 t = vla_ptr(vlabuf, d, stringtab);
2542                 s = vla_ptr(vlabuf, d, strings);
2543         }
2544
2545         /* For each language */
2546         data += 16;
2547         len -= 16;
2548
2549         do { /* lang_count > 0 so we can use do-while */
2550                 unsigned needed = needed_count;
2551
2552                 if (unlikely(len < 3))
2553                         goto error_free;
2554                 t->language = get_unaligned_le16(data);
2555                 t->strings  = s;
2556                 ++t;
2557
2558                 data += 2;
2559                 len -= 2;
2560
2561                 /* For each string */
2562                 do { /* str_count > 0 so we can use do-while */
2563                         size_t length = strnlen(data, len);
2564
2565                         if (unlikely(length == len))
2566                                 goto error_free;
2567
2568                         /*
2569                          * User may provide more strings then we need,
2570                          * if that's the case we simply ignore the
2571                          * rest
2572                          */
2573                         if (likely(needed)) {
2574                                 /*
2575                                  * s->id will be set while adding
2576                                  * function to configuration so for
2577                                  * now just leave garbage here.
2578                                  */
2579                                 s->s = data;
2580                                 --needed;
2581                                 ++s;
2582                         }
2583
2584                         data += length + 1;
2585                         len -= length + 1;
2586                 } while (--str_count);
2587
2588                 s->id = 0;   /* terminator */
2589                 s->s = NULL;
2590                 ++s;
2591
2592         } while (--lang_count);
2593
2594         /* Some garbage left? */
2595         if (unlikely(len))
2596                 goto error_free;
2597
2598         /* Done! */
2599         ffs->stringtabs = stringtabs;
2600         ffs->raw_strings = _data;
2601
2602         return 0;
2603
2604 error_free:
2605         kfree(stringtabs);
2606 error:
2607         kfree(_data);
2608         return -EINVAL;
2609 }
2610
2611
2612 /* Events handling and management *******************************************/
2613
2614 static void __ffs_event_add(struct ffs_data *ffs,
2615                             enum usb_functionfs_event_type type)
2616 {
2617         enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2618         int neg = 0;
2619
2620         /*
2621          * Abort any unhandled setup
2622          *
2623          * We do not need to worry about some cmpxchg() changing value
2624          * of ffs->setup_state without holding the lock because when
2625          * state is FFS_SETUP_PENDING cmpxchg() in several places in
2626          * the source does nothing.
2627          */
2628         if (ffs->setup_state == FFS_SETUP_PENDING)
2629                 ffs->setup_state = FFS_SETUP_CANCELLED;
2630
2631         /*
2632          * Logic of this function guarantees that there are at most four pending
2633          * evens on ffs->ev.types queue.  This is important because the queue
2634          * has space for four elements only and __ffs_ep0_read_events function
2635          * depends on that limit as well.  If more event types are added, those
2636          * limits have to be revisited or guaranteed to still hold.
2637          */
2638         switch (type) {
2639         case FUNCTIONFS_RESUME:
2640                 rem_type2 = FUNCTIONFS_SUSPEND;
2641                 /* FALL THROUGH */
2642         case FUNCTIONFS_SUSPEND:
2643         case FUNCTIONFS_SETUP:
2644                 rem_type1 = type;
2645                 /* Discard all similar events */
2646                 break;
2647
2648         case FUNCTIONFS_BIND:
2649         case FUNCTIONFS_UNBIND:
2650         case FUNCTIONFS_DISABLE:
2651         case FUNCTIONFS_ENABLE:
2652                 /* Discard everything other then power management. */
2653                 rem_type1 = FUNCTIONFS_SUSPEND;
2654                 rem_type2 = FUNCTIONFS_RESUME;
2655                 neg = 1;
2656                 break;
2657
2658         default:
2659                 WARN(1, "%d: unknown event, this should not happen\n", type);
2660                 return;
2661         }
2662
2663         {
2664                 u8 *ev  = ffs->ev.types, *out = ev;
2665                 unsigned n = ffs->ev.count;
2666                 for (; n; --n, ++ev)
2667                         if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2668                                 *out++ = *ev;
2669                         else
2670                                 pr_vdebug("purging event %d\n", *ev);
2671                 ffs->ev.count = out - ffs->ev.types;
2672         }
2673
2674         pr_vdebug("adding event %d\n", type);
2675         ffs->ev.types[ffs->ev.count++] = type;
2676         wake_up_locked(&ffs->ev.waitq);
2677         if (ffs->ffs_eventfd)
2678                 eventfd_signal(ffs->ffs_eventfd, 1);
2679 }
2680
2681 static void ffs_event_add(struct ffs_data *ffs,
2682                           enum usb_functionfs_event_type type)
2683 {
2684         unsigned long flags;
2685         spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2686         __ffs_event_add(ffs, type);
2687         spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2688 }
2689
2690 /* Bind/unbind USB function hooks *******************************************/
2691
2692 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
2693 {
2694         int i;
2695
2696         for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
2697                 if (ffs->eps_addrmap[i] == endpoint_address)
2698                         return i;
2699         return -ENOENT;
2700 }
2701
2702 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2703                                     struct usb_descriptor_header *desc,
2704                                     void *priv)
2705 {
2706         struct usb_endpoint_descriptor *ds = (void *)desc;
2707         struct ffs_function *func = priv;
2708         struct ffs_ep *ffs_ep;
2709         unsigned ep_desc_id;
2710         int idx;
2711         static const char *speed_names[] = { "full", "high", "super" };
2712
2713         if (type != FFS_DESCRIPTOR)
2714                 return 0;
2715
2716         /*
2717          * If ss_descriptors is not NULL, we are reading super speed
2718          * descriptors; if hs_descriptors is not NULL, we are reading high
2719          * speed descriptors; otherwise, we are reading full speed
2720          * descriptors.
2721          */
2722         if (func->function.ss_descriptors) {
2723                 ep_desc_id = 2;
2724                 func->function.ss_descriptors[(long)valuep] = desc;
2725         } else if (func->function.hs_descriptors) {
2726                 ep_desc_id = 1;
2727                 func->function.hs_descriptors[(long)valuep] = desc;
2728         } else {
2729                 ep_desc_id = 0;
2730                 func->function.fs_descriptors[(long)valuep]    = desc;
2731         }
2732
2733         if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2734                 return 0;
2735
2736         idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
2737         if (idx < 0)
2738                 return idx;
2739
2740         ffs_ep = func->eps + idx;
2741
2742         if (unlikely(ffs_ep->descs[ep_desc_id])) {
2743                 pr_err("two %sspeed descriptors for EP %d\n",
2744                           speed_names[ep_desc_id],
2745                           ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2746                 return -EINVAL;
2747         }
2748         ffs_ep->descs[ep_desc_id] = ds;
2749
2750         ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
2751         if (ffs_ep->ep) {
2752                 ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2753                 if (!ds->wMaxPacketSize)
2754                         ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2755         } else {
2756                 struct usb_request *req;
2757                 struct usb_ep *ep;
2758                 u8 bEndpointAddress;
2759
2760                 /*
2761                  * We back up bEndpointAddress because autoconfig overwrites
2762                  * it with physical endpoint address.
2763                  */
2764                 bEndpointAddress = ds->bEndpointAddress;
2765                 pr_vdebug("autoconfig\n");
2766                 ep = usb_ep_autoconfig(func->gadget, ds);
2767                 if (unlikely(!ep))
2768                         return -ENOTSUPP;
2769                 ep->driver_data = func->eps + idx;
2770
2771                 req = usb_ep_alloc_request(ep, GFP_KERNEL);
2772                 if (unlikely(!req))
2773                         return -ENOMEM;
2774
2775                 ffs_ep->ep  = ep;
2776                 ffs_ep->req = req;
2777                 func->eps_revmap[ds->bEndpointAddress &
2778                                  USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2779                 /*
2780                  * If we use virtual address mapping, we restore
2781                  * original bEndpointAddress value.
2782                  */
2783                 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2784                         ds->bEndpointAddress = bEndpointAddress;
2785         }
2786         ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2787
2788         return 0;
2789 }
2790
2791 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2792                                    struct usb_descriptor_header *desc,
2793                                    void *priv)
2794 {
2795         struct ffs_function *func = priv;
2796         unsigned idx;
2797         u8 newValue;
2798
2799         switch (type) {
2800         default:
2801         case FFS_DESCRIPTOR:
2802                 /* Handled in previous pass by __ffs_func_bind_do_descs() */
2803                 return 0;
2804
2805         case FFS_INTERFACE:
2806                 idx = *valuep;
2807                 if (func->interfaces_nums[idx] < 0) {
2808                         int id = usb_interface_id(func->conf, &func->function);
2809                         if (unlikely(id < 0))
2810                                 return id;
2811                         func->interfaces_nums[idx] = id;
2812                 }
2813                 newValue = func->interfaces_nums[idx];
2814                 break;
2815
2816         case FFS_STRING:
2817                 /* String' IDs are allocated when fsf_data is bound to cdev */
2818                 newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2819                 break;
2820
2821         case FFS_ENDPOINT:
2822                 /*
2823                  * USB_DT_ENDPOINT are handled in
2824                  * __ffs_func_bind_do_descs().
2825                  */
2826                 if (desc->bDescriptorType == USB_DT_ENDPOINT)
2827                         return 0;
2828
2829                 idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2830                 if (unlikely(!func->eps[idx].ep))
2831                         return -EINVAL;
2832
2833                 {
2834                         struct usb_endpoint_descriptor **descs;
2835                         descs = func->eps[idx].descs;
2836                         newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2837                 }
2838                 break;
2839         }
2840
2841         pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2842         *valuep = newValue;
2843         return 0;
2844 }
2845
2846 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
2847                                       struct usb_os_desc_header *h, void *data,
2848                                       unsigned len, void *priv)
2849 {
2850         struct ffs_function *func = priv;
2851         u8 length = 0;
2852
2853         switch (type) {
2854         case FFS_OS_DESC_EXT_COMPAT: {
2855                 struct usb_ext_compat_desc *desc = data;
2856                 struct usb_os_desc_table *t;
2857
2858                 t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
2859                 t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
2860                 memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
2861                        ARRAY_SIZE(desc->CompatibleID) +
2862                        ARRAY_SIZE(desc->SubCompatibleID));
2863                 length = sizeof(*desc);
2864         }
2865                 break;
2866         case FFS_OS_DESC_EXT_PROP: {
2867                 struct usb_ext_prop_desc *desc = data;
2868                 struct usb_os_desc_table *t;
2869                 struct usb_os_desc_ext_prop *ext_prop;
2870                 char *ext_prop_name;
2871                 char *ext_prop_data;
2872
2873                 t = &func->function.os_desc_table[h->interface];
2874                 t->if_id = func->interfaces_nums[h->interface];
2875
2876                 ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
2877                 func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
2878
2879                 ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
2880                 ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
2881                 ext_prop->data_len = le32_to_cpu(*(u32 *)
2882                         usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
2883                 length = ext_prop->name_len + ext_prop->data_len + 14;
2884
2885                 ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
2886                 func->ffs->ms_os_descs_ext_prop_name_avail +=
2887                         ext_prop->name_len;
2888
2889                 ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
2890                 func->ffs->ms_os_descs_ext_prop_data_avail +=
2891                         ext_prop->data_len;
2892                 memcpy(ext_prop_data,
2893                        usb_ext_prop_data_ptr(data, ext_prop->name_len),
2894                        ext_prop->data_len);
2895                 /* unicode data reported to the host as "WCHAR"s */
2896                 switch (ext_prop->type) {
2897                 case USB_EXT_PROP_UNICODE:
2898                 case USB_EXT_PROP_UNICODE_ENV:
2899                 case USB_EXT_PROP_UNICODE_LINK:
2900                 case USB_EXT_PROP_UNICODE_MULTI:
2901                         ext_prop->data_len *= 2;
2902                         break;
2903                 }
2904                 ext_prop->data = ext_prop_data;
2905
2906                 memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
2907                        ext_prop->name_len);
2908                 /* property name reported to the host as "WCHAR"s */
2909                 ext_prop->name_len *= 2;
2910                 ext_prop->name = ext_prop_name;
2911
2912                 t->os_desc->ext_prop_len +=
2913                         ext_prop->name_len + ext_prop->data_len + 14;
2914                 ++t->os_desc->ext_prop_count;
2915                 list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
2916         }
2917                 break;
2918         default:
2919                 pr_vdebug("unknown descriptor: %d\n", type);
2920         }
2921
2922         return length;
2923 }
2924
2925 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
2926                                                 struct usb_configuration *c)
2927 {
2928         struct ffs_function *func = ffs_func_from_usb(f);
2929         struct f_fs_opts *ffs_opts =
2930                 container_of(f->fi, struct f_fs_opts, func_inst);
2931         int ret;
2932
2933         ENTER();
2934
2935         /*
2936          * Legacy gadget triggers binding in functionfs_ready_callback,
2937          * which already uses locking; taking the same lock here would
2938          * cause a deadlock.
2939          *
2940          * Configfs-enabled gadgets however do need ffs_dev_lock.
2941          */
2942         if (!ffs_opts->no_configfs)
2943                 ffs_dev_lock();
2944         ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
2945         func->ffs = ffs_opts->dev->ffs_data;
2946         if (!ffs_opts->no_configfs)
2947                 ffs_dev_unlock();
2948         if (ret)
2949                 return ERR_PTR(ret);
2950
2951         func->conf = c;
2952         func->gadget = c->cdev->gadget;
2953
2954         /*
2955          * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
2956          * configurations are bound in sequence with list_for_each_entry,
2957          * in each configuration its functions are bound in sequence
2958          * with list_for_each_entry, so we assume no race condition
2959          * with regard to ffs_opts->bound access
2960          */
2961         if (!ffs_opts->refcnt) {
2962                 ret = functionfs_bind(func->ffs, c->cdev);
2963                 if (ret)
2964                         return ERR_PTR(ret);
2965         }
2966         ffs_opts->refcnt++;
2967         func->function.strings = func->ffs->stringtabs;
2968
2969         return ffs_opts;
2970 }
2971
2972 static int _ffs_func_bind(struct usb_configuration *c,
2973                           struct usb_function *f)
2974 {
2975         struct ffs_function *func = ffs_func_from_usb(f);
2976         struct ffs_data *ffs = func->ffs;
2977
2978         const int full = !!func->ffs->fs_descs_count;
2979         const int high = gadget_is_dualspeed(func->gadget) &&
2980                 func->ffs->hs_descs_count;
2981         const int super = gadget_is_superspeed(func->gadget) &&
2982                 func->ffs->ss_descs_count;
2983
2984         int fs_len, hs_len, ss_len, ret, i;
2985         struct ffs_ep *eps_ptr;
2986
2987         /* Make it a single chunk, less management later on */
2988         vla_group(d);
2989         vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
2990         vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
2991                 full ? ffs->fs_descs_count + 1 : 0);
2992         vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
2993                 high ? ffs->hs_descs_count + 1 : 0);
2994         vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
2995                 super ? ffs->ss_descs_count + 1 : 0);
2996         vla_item_with_sz(d, short, inums, ffs->interfaces_count);
2997         vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
2998                          c->cdev->use_os_string ? ffs->interfaces_count : 0);
2999         vla_item_with_sz(d, char[16], ext_compat,
3000                          c->cdev->use_os_string ? ffs->interfaces_count : 0);
3001         vla_item_with_sz(d, struct usb_os_desc, os_desc,
3002                          c->cdev->use_os_string ? ffs->interfaces_count : 0);
3003         vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
3004                          ffs->ms_os_descs_ext_prop_count);
3005         vla_item_with_sz(d, char, ext_prop_name,
3006                          ffs->ms_os_descs_ext_prop_name_len);
3007         vla_item_with_sz(d, char, ext_prop_data,
3008                          ffs->ms_os_descs_ext_prop_data_len);
3009         vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
3010         char *vlabuf;
3011
3012         ENTER();
3013
3014         /* Has descriptors only for speeds gadget does not support */
3015         if (unlikely(!(full | high | super)))
3016                 return -ENOTSUPP;
3017
3018         /* Allocate a single chunk, less management later on */
3019         vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3020         if (unlikely(!vlabuf))
3021                 return -ENOMEM;
3022
3023         ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
3024         ffs->ms_os_descs_ext_prop_name_avail =
3025                 vla_ptr(vlabuf, d, ext_prop_name);
3026         ffs->ms_os_descs_ext_prop_data_avail =
3027                 vla_ptr(vlabuf, d, ext_prop_data);
3028
3029         /* Copy descriptors  */
3030         memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3031                ffs->raw_descs_length);
3032
3033         memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3034         eps_ptr = vla_ptr(vlabuf, d, eps);
3035         for (i = 0; i < ffs->eps_count; i++)
3036                 eps_ptr[i].num = -1;
3037
3038         /* Save pointers
3039          * d_eps == vlabuf, func->eps used to kfree vlabuf later
3040         */
3041         func->eps             = vla_ptr(vlabuf, d, eps);
3042         func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3043
3044         /*
3045          * Go through all the endpoint descriptors and allocate
3046          * endpoints first, so that later we can rewrite the endpoint
3047          * numbers without worrying that it may be described later on.
3048          */
3049         if (likely(full)) {
3050                 func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3051                 fs_len = ffs_do_descs(ffs->fs_descs_count,
3052                                       vla_ptr(vlabuf, d, raw_descs),
3053                                       d_raw_descs__sz,
3054                                       __ffs_func_bind_do_descs, func);
3055                 if (unlikely(fs_len < 0)) {
3056                         ret = fs_len;
3057                         goto error;
3058                 }
3059         } else {
3060                 fs_len = 0;
3061         }
3062
3063         if (likely(high)) {
3064                 func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3065                 hs_len = ffs_do_descs(ffs->hs_descs_count,
3066                                       vla_ptr(vlabuf, d, raw_descs) + fs_len,
3067                                       d_raw_descs__sz - fs_len,
3068                                       __ffs_func_bind_do_descs, func);
3069                 if (unlikely(hs_len < 0)) {
3070                         ret = hs_len;
3071                         goto error;
3072                 }
3073         } else {
3074                 hs_len = 0;
3075         }
3076
3077         if (likely(super)) {
3078                 func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs);
3079                 ss_len = ffs_do_descs(ffs->ss_descs_count,
3080                                 vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3081                                 d_raw_descs__sz - fs_len - hs_len,
3082                                 __ffs_func_bind_do_descs, func);
3083                 if (unlikely(ss_len < 0)) {
3084                         ret = ss_len;
3085                         goto error;
3086                 }
3087         } else {
3088                 ss_len = 0;
3089         }
3090
3091         /*
3092          * Now handle interface numbers allocation and interface and
3093          * endpoint numbers rewriting.  We can do that in one go
3094          * now.
3095          */
3096         ret = ffs_do_descs(ffs->fs_descs_count +
3097                            (high ? ffs->hs_descs_count : 0) +
3098                            (super ? ffs->ss_descs_count : 0),
3099                            vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3100                            __ffs_func_bind_do_nums, func);
3101         if (unlikely(ret < 0))
3102                 goto error;
3103
3104         func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3105         if (c->cdev->use_os_string) {
3106                 for (i = 0; i < ffs->interfaces_count; ++i) {
3107                         struct usb_os_desc *desc;
3108
3109                         desc = func->function.os_desc_table[i].os_desc =
3110                                 vla_ptr(vlabuf, d, os_desc) +
3111                                 i * sizeof(struct usb_os_desc);
3112                         desc->ext_compat_id =
3113                                 vla_ptr(vlabuf, d, ext_compat) + i * 16;
3114                         INIT_LIST_HEAD(&desc->ext_prop);
3115                 }
3116                 ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3117                                       vla_ptr(vlabuf, d, raw_descs) +
3118                                       fs_len + hs_len + ss_len,
3119                                       d_raw_descs__sz - fs_len - hs_len -
3120                                       ss_len,
3121                                       __ffs_func_bind_do_os_desc, func);
3122                 if (unlikely(ret < 0))
3123                         goto error;
3124         }
3125         func->function.os_desc_n =
3126                 c->cdev->use_os_string ? ffs->interfaces_count : 0;
3127
3128         /* And we're done */
3129         ffs_event_add(ffs, FUNCTIONFS_BIND);
3130         return 0;
3131
3132 error:
3133         /* XXX Do we need to release all claimed endpoints here? */
3134         return ret;
3135 }
3136
3137 static int ffs_func_bind(struct usb_configuration *c,
3138                          struct usb_function *f)
3139 {
3140         struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3141         struct ffs_function *func = ffs_func_from_usb(f);
3142         int ret;
3143
3144         if (IS_ERR(ffs_opts))
3145                 return PTR_ERR(ffs_opts);
3146
3147         ret = _ffs_func_bind(c, f);
3148         if (ret && !--ffs_opts->refcnt)
3149                 functionfs_unbind(func->ffs);
3150
3151         return ret;
3152 }
3153
3154
3155 /* Other USB function hooks *************************************************/
3156
3157 static void ffs_reset_work(struct work_struct *work)
3158 {
3159         struct ffs_data *ffs = container_of(work,
3160                 struct ffs_data, reset_work);
3161         ffs_data_reset(ffs);
3162 }
3163
3164 static int ffs_func_set_alt(struct usb_function *f,
3165                             unsigned interface, unsigned alt)
3166 {
3167         struct ffs_function *func = ffs_func_from_usb(f);
3168         struct ffs_data *ffs = func->ffs;
3169         int ret = 0, intf;
3170
3171         if (alt != (unsigned)-1) {
3172                 intf = ffs_func_revmap_intf(func, interface);
3173                 if (unlikely(intf < 0))
3174                         return intf;
3175         }
3176
3177         if (ffs->func)
3178                 ffs_func_eps_disable(ffs->func);
3179
3180         if (ffs->state == FFS_DEACTIVATED) {
3181                 ffs->state = FFS_CLOSING;
3182                 INIT_WORK(&ffs->reset_work, ffs_reset_work);
3183                 schedule_work(&ffs->reset_work);
3184                 return -ENODEV;
3185         }
3186
3187         if (ffs->state != FFS_ACTIVE)
3188                 return -ENODEV;
3189
3190         if (alt == (unsigned)-1) {
3191                 ffs->func = NULL;
3192                 ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3193                 return 0;
3194         }
3195
3196         ffs->func = func;
3197         ret = ffs_func_eps_enable(func);
3198         if (likely(ret >= 0))
3199                 ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3200         return ret;
3201 }
3202
3203 static void ffs_func_disable(struct usb_function *f)
3204 {
3205         ffs_func_set_alt(f, 0, (unsigned)-1);
3206 }
3207
3208 static int ffs_func_setup(struct usb_function *f,
3209                           const struct usb_ctrlrequest *creq)
3210 {
3211         struct ffs_function *func = ffs_func_from_usb(f);
3212         struct ffs_data *ffs = func->ffs;
3213         unsigned long flags;
3214         int ret;
3215
3216         ENTER();
3217
3218         pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3219         pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
3220         pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
3221         pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
3222         pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
3223
3224         /*
3225          * Most requests directed to interface go through here
3226          * (notable exceptions are set/get interface) so we need to
3227          * handle them.  All other either handled by composite or
3228          * passed to usb_configuration->setup() (if one is set).  No
3229          * matter, we will handle requests directed to endpoint here
3230          * as well (as it's straightforward).  Other request recipient
3231          * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3232          * is being used.
3233          */
3234         if (ffs->state != FFS_ACTIVE)
3235                 return -ENODEV;
3236
3237         switch (creq->bRequestType & USB_RECIP_MASK) {
3238         case USB_RECIP_INTERFACE:
3239                 ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3240                 if (unlikely(ret < 0))
3241                         return ret;
3242                 break;
3243
3244         case USB_RECIP_ENDPOINT:
3245                 ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3246                 if (unlikely(ret < 0))
3247                         return ret;
3248                 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3249                         ret = func->ffs->eps_addrmap[ret];
3250                 break;
3251
3252         default:
3253                 if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3254                         ret = le16_to_cpu(creq->wIndex);
3255                 else
3256                         return -EOPNOTSUPP;
3257         }
3258
3259         spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3260         ffs->ev.setup = *creq;
3261         ffs->ev.setup.wIndex = cpu_to_le16(ret);
3262         __ffs_event_add(ffs, FUNCTIONFS_SETUP);
3263         spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3264
3265         return 0;
3266 }
3267
3268 static bool ffs_func_req_match(struct usb_function *f,
3269                                const struct usb_ctrlrequest *creq,
3270                                bool config0)
3271 {
3272         struct ffs_function *func = ffs_func_from_usb(f);
3273
3274         if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3275                 return false;
3276
3277         switch (creq->bRequestType & USB_RECIP_MASK) {
3278         case USB_RECIP_INTERFACE:
3279                 return (ffs_func_revmap_intf(func,
3280                                              le16_to_cpu(creq->wIndex)) >= 0);
3281         case USB_RECIP_ENDPOINT:
3282                 return (ffs_func_revmap_ep(func,
3283                                            le16_to_cpu(creq->wIndex)) >= 0);
3284         default:
3285                 return (bool) (func->ffs->user_flags &
3286                                FUNCTIONFS_ALL_CTRL_RECIP);
3287         }
3288 }
3289
3290 static void ffs_func_suspend(struct usb_function *f)
3291 {
3292         ENTER();
3293         ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3294 }
3295
3296 static void ffs_func_resume(struct usb_function *f)
3297 {
3298         ENTER();
3299         ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3300 }
3301
3302
3303 /* Endpoint and interface numbers reverse mapping ***************************/
3304
3305 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3306 {
3307         num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3308         return num ? num : -EDOM;
3309 }
3310
3311 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3312 {
3313         short *nums = func->interfaces_nums;
3314         unsigned count = func->ffs->interfaces_count;
3315
3316         for (; count; --count, ++nums) {
3317                 if (*nums >= 0 && *nums == intf)
3318                         return nums - func->interfaces_nums;
3319         }
3320
3321         return -EDOM;
3322 }
3323
3324
3325 /* Devices management *******************************************************/
3326
3327 static LIST_HEAD(ffs_devices);
3328
3329 static struct ffs_dev *_ffs_do_find_dev(const char *name)
3330 {
3331         struct ffs_dev *dev;
3332
3333         if (!name)
3334                 return NULL;
3335
3336         list_for_each_entry(dev, &ffs_devices, entry) {
3337                 if (strcmp(dev->name, name) == 0)
3338                         return dev;
3339         }
3340
3341         return NULL;
3342 }
3343
3344 /*
3345  * ffs_lock must be taken by the caller of this function
3346  */
3347 static struct ffs_dev *_ffs_get_single_dev(void)
3348 {
3349         struct ffs_dev *dev;
3350
3351         if (list_is_singular(&ffs_devices)) {
3352                 dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3353                 if (dev->single)
3354                         return dev;
3355         }
3356
3357         return NULL;
3358 }
3359
3360 /*
3361  * ffs_lock must be taken by the caller of this function
3362  */
3363 static struct ffs_dev *_ffs_find_dev(const char *name)
3364 {
3365         struct ffs_dev *dev;
3366
3367         dev = _ffs_get_single_dev();
3368         if (dev)
3369                 return dev;
3370
3371         return _ffs_do_find_dev(name);
3372 }
3373
3374 /* Configfs support *********************************************************/
3375
3376 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3377 {
3378         return container_of(to_config_group(item), struct f_fs_opts,
3379                             func_inst.group);
3380 }
3381
3382 static void ffs_attr_release(struct config_item *item)
3383 {
3384         struct f_fs_opts *opts = to_ffs_opts(item);
3385
3386         usb_put_function_instance(&opts->func_inst);
3387 }
3388
3389 static struct configfs_item_operations ffs_item_ops = {
3390         .release        = ffs_attr_release,
3391 };
3392
3393 static const struct config_item_type ffs_func_type = {
3394         .ct_item_ops    = &ffs_item_ops,
3395         .ct_owner       = THIS_MODULE,
3396 };
3397
3398
3399 /* Function registration interface ******************************************/
3400
3401 static void ffs_free_inst(struct usb_function_instance *f)
3402 {
3403         struct f_fs_opts *opts;
3404
3405         opts = to_f_fs_opts(f);
3406         ffs_dev_lock();
3407         _ffs_free_dev(opts->dev);
3408         ffs_dev_unlock();
3409         kfree(opts);
3410 }
3411
3412 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3413 {
3414         if (strlen(name) >= FIELD_SIZEOF(struct ffs_dev, name))
3415                 return -ENAMETOOLONG;
3416         return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
3417 }
3418
3419 static struct usb_function_instance *ffs_alloc_inst(void)
3420 {
3421         struct f_fs_opts *opts;
3422         struct ffs_dev *dev;
3423
3424         opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3425         if (!opts)
3426                 return ERR_PTR(-ENOMEM);
3427
3428         opts->func_inst.set_inst_name = ffs_set_inst_name;
3429         opts->func_inst.free_func_inst = ffs_free_inst;
3430         ffs_dev_lock();
3431         dev = _ffs_alloc_dev();
3432         ffs_dev_unlock();
3433         if (IS_ERR(dev)) {
3434                 kfree(opts);
3435                 return ERR_CAST(dev);
3436         }
3437         opts->dev = dev;
3438         dev->opts = opts;
3439
3440         config_group_init_type_name(&opts->func_inst.group, "",
3441                                     &ffs_func_type);
3442         return &opts->func_inst;
3443 }
3444
3445 static void ffs_free(struct usb_function *f)
3446 {
3447         kfree(ffs_func_from_usb(f));
3448 }
3449
3450 static void ffs_func_unbind(struct usb_configuration *c,
3451                             struct usb_function *f)
3452 {
3453         struct ffs_function *func = ffs_func_from_usb(f);
3454         struct ffs_data *ffs = func->ffs;
3455         struct f_fs_opts *opts =
3456                 container_of(f->fi, struct f_fs_opts, func_inst);
3457         struct ffs_ep *ep = func->eps;
3458         unsigned count = ffs->eps_count;
3459         unsigned long flags;
3460
3461         ENTER();
3462         if (ffs->func == func) {
3463                 ffs_func_eps_disable(func);
3464                 ffs->func = NULL;
3465         }
3466
3467         if (!--opts->refcnt)
3468                 functionfs_unbind(ffs);
3469
3470         /* cleanup after autoconfig */
3471         spin_lock_irqsave(&func->ffs->eps_lock, flags);
3472         while (count--) {
3473                 if (ep->ep && ep->req)
3474                         usb_ep_free_request(ep->ep, ep->req);
3475                 ep->req = NULL;
3476                 ++ep;
3477         }
3478         spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
3479         kfree(func->eps);
3480         func->eps = NULL;
3481         /*
3482          * eps, descriptors and interfaces_nums are allocated in the
3483          * same chunk so only one free is required.
3484          */
3485         func->function.fs_descriptors = NULL;
3486         func->function.hs_descriptors = NULL;
3487         func->function.ss_descriptors = NULL;
3488         func->interfaces_nums = NULL;
3489
3490         ffs_event_add(ffs, FUNCTIONFS_UNBIND);
3491 }
3492
3493 static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
3494 {
3495         struct ffs_function *func;
3496
3497         ENTER();
3498
3499         func = kzalloc(sizeof(*func), GFP_KERNEL);
3500         if (unlikely(!func))
3501                 return ERR_PTR(-ENOMEM);
3502
3503         func->function.name    = "Function FS Gadget";
3504
3505         func->function.bind    = ffs_func_bind;
3506         func->function.unbind  = ffs_func_unbind;
3507         func->function.set_alt = ffs_func_set_alt;
3508         func->function.disable = ffs_func_disable;
3509         func->function.setup   = ffs_func_setup;
3510         func->function.req_match = ffs_func_req_match;
3511         func->function.suspend = ffs_func_suspend;
3512         func->function.resume  = ffs_func_resume;
3513         func->function.free_func = ffs_free;
3514
3515         return &func->function;
3516 }
3517
3518 /*
3519  * ffs_lock must be taken by the caller of this function
3520  */
3521 static struct ffs_dev *_ffs_alloc_dev(void)
3522 {
3523         struct ffs_dev *dev;
3524         int ret;
3525
3526         if (_ffs_get_single_dev())
3527                         return ERR_PTR(-EBUSY);
3528
3529         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3530         if (!dev)
3531                 return ERR_PTR(-ENOMEM);
3532
3533         if (list_empty(&ffs_devices)) {
3534                 ret = functionfs_init();
3535                 if (ret) {
3536                         kfree(dev);
3537                         return ERR_PTR(ret);
3538                 }
3539         }
3540
3541         list_add(&dev->entry, &ffs_devices);
3542
3543         return dev;
3544 }
3545
3546 int ffs_name_dev(struct ffs_dev *dev, const char *name)
3547 {
3548         struct ffs_dev *existing;
3549         int ret = 0;
3550
3551         ffs_dev_lock();
3552
3553         existing = _ffs_do_find_dev(name);
3554         if (!existing)
3555                 strlcpy(dev->name, name, ARRAY_SIZE(dev->name));
3556         else if (existing != dev)
3557                 ret = -EBUSY;
3558
3559         ffs_dev_unlock();
3560
3561         return ret;
3562 }
3563 EXPORT_SYMBOL_GPL(ffs_name_dev);
3564
3565 int ffs_single_dev(struct ffs_dev *dev)
3566 {
3567         int ret;
3568
3569         ret = 0;
3570         ffs_dev_lock();
3571
3572         if (!list_is_singular(&ffs_devices))
3573                 ret = -EBUSY;
3574         else
3575                 dev->single = true;
3576
3577         ffs_dev_unlock();
3578         return ret;
3579 }
3580 EXPORT_SYMBOL_GPL(ffs_single_dev);
3581
3582 /*
3583  * ffs_lock must be taken by the caller of this function
3584  */
3585 static void _ffs_free_dev(struct ffs_dev *dev)
3586 {
3587         list_del(&dev->entry);
3588
3589         /* Clear the private_data pointer to stop incorrect dev access */
3590         if (dev->ffs_data)
3591                 dev->ffs_data->private_data = NULL;
3592
3593         kfree(dev);
3594         if (list_empty(&ffs_devices))
3595                 functionfs_cleanup();
3596 }
3597
3598 static void *ffs_acquire_dev(const char *dev_name)
3599 {
3600         struct ffs_dev *ffs_dev;
3601
3602         ENTER();
3603         ffs_dev_lock();
3604
3605         ffs_dev = _ffs_find_dev(dev_name);
3606         if (!ffs_dev)
3607                 ffs_dev = ERR_PTR(-ENOENT);
3608         else if (ffs_dev->mounted)
3609                 ffs_dev = ERR_PTR(-EBUSY);
3610         else if (ffs_dev->ffs_acquire_dev_callback &&
3611             ffs_dev->ffs_acquire_dev_callback(ffs_dev))
3612                 ffs_dev = ERR_PTR(-ENOENT);
3613         else
3614                 ffs_dev->mounted = true;
3615
3616         ffs_dev_unlock();
3617         return ffs_dev;
3618 }
3619
3620 static void ffs_release_dev(struct ffs_data *ffs_data)
3621 {
3622         struct ffs_dev *ffs_dev;
3623
3624         ENTER();
3625         ffs_dev_lock();
3626
3627         ffs_dev = ffs_data->private_data;
3628         if (ffs_dev) {
3629                 ffs_dev->mounted = false;
3630
3631                 if (ffs_dev->ffs_release_dev_callback)
3632                         ffs_dev->ffs_release_dev_callback(ffs_dev);
3633         }
3634
3635         ffs_dev_unlock();
3636 }
3637
3638 static int ffs_ready(struct ffs_data *ffs)
3639 {
3640         struct ffs_dev *ffs_obj;
3641         int ret = 0;
3642
3643         ENTER();
3644         ffs_dev_lock();
3645
3646         ffs_obj = ffs->private_data;
3647         if (!ffs_obj) {
3648                 ret = -EINVAL;
3649                 goto done;
3650         }
3651         if (WARN_ON(ffs_obj->desc_ready)) {
3652                 ret = -EBUSY;
3653                 goto done;
3654         }
3655
3656         ffs_obj->desc_ready = true;
3657         ffs_obj->ffs_data = ffs;
3658
3659         if (ffs_obj->ffs_ready_callback) {
3660                 ret = ffs_obj->ffs_ready_callback(ffs);
3661                 if (ret)
3662                         goto done;
3663         }
3664
3665         set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3666 done:
3667         ffs_dev_unlock();
3668         return ret;
3669 }
3670
3671 static void ffs_closed(struct ffs_data *ffs)
3672 {
3673         struct ffs_dev *ffs_obj;
3674         struct f_fs_opts *opts;
3675         struct config_item *ci;
3676
3677         ENTER();
3678         ffs_dev_lock();
3679
3680         ffs_obj = ffs->private_data;
3681         if (!ffs_obj)
3682                 goto done;
3683
3684         ffs_obj->desc_ready = false;
3685         ffs_obj->ffs_data = NULL;
3686
3687         if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
3688             ffs_obj->ffs_closed_callback)
3689                 ffs_obj->ffs_closed_callback(ffs);
3690
3691         if (ffs_obj->opts)
3692                 opts = ffs_obj->opts;
3693         else
3694                 goto done;
3695
3696         if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3697             || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
3698                 goto done;
3699
3700         ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
3701         ffs_dev_unlock();
3702
3703         unregister_gadget_item(ci);
3704         return;
3705 done:
3706         ffs_dev_unlock();
3707 }
3708
3709 /* Misc helper functions ****************************************************/
3710
3711 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
3712 {
3713         return nonblock
3714                 ? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN
3715                 : mutex_lock_interruptible(mutex);
3716 }
3717
3718 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3719 {
3720         char *data;
3721
3722         if (unlikely(!len))
3723                 return NULL;
3724
3725         data = kmalloc(len, GFP_KERNEL);
3726         if (unlikely(!data))
3727                 return ERR_PTR(-ENOMEM);
3728
3729         if (unlikely(copy_from_user(data, buf, len))) {
3730                 kfree(data);
3731                 return ERR_PTR(-EFAULT);
3732         }
3733
3734         pr_vdebug("Buffer from user space:\n");
3735         ffs_dump_mem("", data, len);
3736
3737         return data;
3738 }
3739
3740 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
3741 MODULE_LICENSE("GPL");
3742 MODULE_AUTHOR("Michal Nazarewicz");