Merge tag 'nfsd-5.3-1' of git://linux-nfs.org/~bfields/linux
[sfrench/cifs-2.6.git] / drivers / usb / dwc2 / hcd.c
1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /*
3  * hcd.c - DesignWare HS OTG Controller host-mode routines
4  *
5  * Copyright (C) 2004-2013 Synopsys, Inc.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions, and the following disclaimer,
12  *    without modification.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. The names of the above-listed copyright holders may not be used
17  *    to endorse or promote products derived from this software without
18  *    specific prior written permission.
19  *
20  * ALTERNATIVELY, this software may be distributed under the terms of the
21  * GNU General Public License ("GPL") as published by the Free Software
22  * Foundation; either version 2 of the License, or (at your option) any
23  * later version.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
26  * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
27  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
29  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36  */
37
38 /*
39  * This file contains the core HCD code, and implements the Linux hc_driver
40  * API
41  */
42 #include <linux/kernel.h>
43 #include <linux/module.h>
44 #include <linux/spinlock.h>
45 #include <linux/interrupt.h>
46 #include <linux/platform_device.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/delay.h>
49 #include <linux/io.h>
50 #include <linux/slab.h>
51 #include <linux/usb.h>
52
53 #include <linux/usb/hcd.h>
54 #include <linux/usb/ch11.h>
55
56 #include "core.h"
57 #include "hcd.h"
58
59 static void dwc2_port_resume(struct dwc2_hsotg *hsotg);
60
61 /*
62  * =========================================================================
63  *  Host Core Layer Functions
64  * =========================================================================
65  */
66
67 /**
68  * dwc2_enable_common_interrupts() - Initializes the commmon interrupts,
69  * used in both device and host modes
70  *
71  * @hsotg: Programming view of the DWC_otg controller
72  */
73 static void dwc2_enable_common_interrupts(struct dwc2_hsotg *hsotg)
74 {
75         u32 intmsk;
76
77         /* Clear any pending OTG Interrupts */
78         dwc2_writel(hsotg, 0xffffffff, GOTGINT);
79
80         /* Clear any pending interrupts */
81         dwc2_writel(hsotg, 0xffffffff, GINTSTS);
82
83         /* Enable the interrupts in the GINTMSK */
84         intmsk = GINTSTS_MODEMIS | GINTSTS_OTGINT;
85
86         if (!hsotg->params.host_dma)
87                 intmsk |= GINTSTS_RXFLVL;
88         if (!hsotg->params.external_id_pin_ctl)
89                 intmsk |= GINTSTS_CONIDSTSCHNG;
90
91         intmsk |= GINTSTS_WKUPINT | GINTSTS_USBSUSP |
92                   GINTSTS_SESSREQINT;
93
94         if (dwc2_is_device_mode(hsotg) && hsotg->params.lpm)
95                 intmsk |= GINTSTS_LPMTRANRCVD;
96
97         dwc2_writel(hsotg, intmsk, GINTMSK);
98 }
99
100 static int dwc2_gahbcfg_init(struct dwc2_hsotg *hsotg)
101 {
102         u32 ahbcfg = dwc2_readl(hsotg, GAHBCFG);
103
104         switch (hsotg->hw_params.arch) {
105         case GHWCFG2_EXT_DMA_ARCH:
106                 dev_err(hsotg->dev, "External DMA Mode not supported\n");
107                 return -EINVAL;
108
109         case GHWCFG2_INT_DMA_ARCH:
110                 dev_dbg(hsotg->dev, "Internal DMA Mode\n");
111                 if (hsotg->params.ahbcfg != -1) {
112                         ahbcfg &= GAHBCFG_CTRL_MASK;
113                         ahbcfg |= hsotg->params.ahbcfg &
114                                   ~GAHBCFG_CTRL_MASK;
115                 }
116                 break;
117
118         case GHWCFG2_SLAVE_ONLY_ARCH:
119         default:
120                 dev_dbg(hsotg->dev, "Slave Only Mode\n");
121                 break;
122         }
123
124         if (hsotg->params.host_dma)
125                 ahbcfg |= GAHBCFG_DMA_EN;
126         else
127                 hsotg->params.dma_desc_enable = false;
128
129         dwc2_writel(hsotg, ahbcfg, GAHBCFG);
130
131         return 0;
132 }
133
134 static void dwc2_gusbcfg_init(struct dwc2_hsotg *hsotg)
135 {
136         u32 usbcfg;
137
138         usbcfg = dwc2_readl(hsotg, GUSBCFG);
139         usbcfg &= ~(GUSBCFG_HNPCAP | GUSBCFG_SRPCAP);
140
141         switch (hsotg->hw_params.op_mode) {
142         case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
143                 if (hsotg->params.otg_cap ==
144                                 DWC2_CAP_PARAM_HNP_SRP_CAPABLE)
145                         usbcfg |= GUSBCFG_HNPCAP;
146                 if (hsotg->params.otg_cap !=
147                                 DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
148                         usbcfg |= GUSBCFG_SRPCAP;
149                 break;
150
151         case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
152         case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
153         case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
154                 if (hsotg->params.otg_cap !=
155                                 DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
156                         usbcfg |= GUSBCFG_SRPCAP;
157                 break;
158
159         case GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE:
160         case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE:
161         case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST:
162         default:
163                 break;
164         }
165
166         dwc2_writel(hsotg, usbcfg, GUSBCFG);
167 }
168
169 static int dwc2_vbus_supply_init(struct dwc2_hsotg *hsotg)
170 {
171         if (hsotg->vbus_supply)
172                 return regulator_enable(hsotg->vbus_supply);
173
174         return 0;
175 }
176
177 static int dwc2_vbus_supply_exit(struct dwc2_hsotg *hsotg)
178 {
179         if (hsotg->vbus_supply)
180                 return regulator_disable(hsotg->vbus_supply);
181
182         return 0;
183 }
184
185 /**
186  * dwc2_enable_host_interrupts() - Enables the Host mode interrupts
187  *
188  * @hsotg: Programming view of DWC_otg controller
189  */
190 static void dwc2_enable_host_interrupts(struct dwc2_hsotg *hsotg)
191 {
192         u32 intmsk;
193
194         dev_dbg(hsotg->dev, "%s()\n", __func__);
195
196         /* Disable all interrupts */
197         dwc2_writel(hsotg, 0, GINTMSK);
198         dwc2_writel(hsotg, 0, HAINTMSK);
199
200         /* Enable the common interrupts */
201         dwc2_enable_common_interrupts(hsotg);
202
203         /* Enable host mode interrupts without disturbing common interrupts */
204         intmsk = dwc2_readl(hsotg, GINTMSK);
205         intmsk |= GINTSTS_DISCONNINT | GINTSTS_PRTINT | GINTSTS_HCHINT;
206         dwc2_writel(hsotg, intmsk, GINTMSK);
207 }
208
209 /**
210  * dwc2_disable_host_interrupts() - Disables the Host Mode interrupts
211  *
212  * @hsotg: Programming view of DWC_otg controller
213  */
214 static void dwc2_disable_host_interrupts(struct dwc2_hsotg *hsotg)
215 {
216         u32 intmsk = dwc2_readl(hsotg, GINTMSK);
217
218         /* Disable host mode interrupts without disturbing common interrupts */
219         intmsk &= ~(GINTSTS_SOF | GINTSTS_PRTINT | GINTSTS_HCHINT |
220                     GINTSTS_PTXFEMP | GINTSTS_NPTXFEMP | GINTSTS_DISCONNINT);
221         dwc2_writel(hsotg, intmsk, GINTMSK);
222 }
223
224 /*
225  * dwc2_calculate_dynamic_fifo() - Calculates the default fifo size
226  * For system that have a total fifo depth that is smaller than the default
227  * RX + TX fifo size.
228  *
229  * @hsotg: Programming view of DWC_otg controller
230  */
231 static void dwc2_calculate_dynamic_fifo(struct dwc2_hsotg *hsotg)
232 {
233         struct dwc2_core_params *params = &hsotg->params;
234         struct dwc2_hw_params *hw = &hsotg->hw_params;
235         u32 rxfsiz, nptxfsiz, ptxfsiz, total_fifo_size;
236
237         total_fifo_size = hw->total_fifo_size;
238         rxfsiz = params->host_rx_fifo_size;
239         nptxfsiz = params->host_nperio_tx_fifo_size;
240         ptxfsiz = params->host_perio_tx_fifo_size;
241
242         /*
243          * Will use Method 2 defined in the DWC2 spec: minimum FIFO depth
244          * allocation with support for high bandwidth endpoints. Synopsys
245          * defines MPS(Max Packet size) for a periodic EP=1024, and for
246          * non-periodic as 512.
247          */
248         if (total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)) {
249                 /*
250                  * For Buffer DMA mode/Scatter Gather DMA mode
251                  * 2 * ((Largest Packet size / 4) + 1 + 1) + n
252                  * with n = number of host channel.
253                  * 2 * ((1024/4) + 2) = 516
254                  */
255                 rxfsiz = 516 + hw->host_channels;
256
257                 /*
258                  * min non-periodic tx fifo depth
259                  * 2 * (largest non-periodic USB packet used / 4)
260                  * 2 * (512/4) = 256
261                  */
262                 nptxfsiz = 256;
263
264                 /*
265                  * min periodic tx fifo depth
266                  * (largest packet size*MC)/4
267                  * (1024 * 3)/4 = 768
268                  */
269                 ptxfsiz = 768;
270
271                 params->host_rx_fifo_size = rxfsiz;
272                 params->host_nperio_tx_fifo_size = nptxfsiz;
273                 params->host_perio_tx_fifo_size = ptxfsiz;
274         }
275
276         /*
277          * If the summation of RX, NPTX and PTX fifo sizes is still
278          * bigger than the total_fifo_size, then we have a problem.
279          *
280          * We won't be able to allocate as many endpoints. Right now,
281          * we're just printing an error message, but ideally this FIFO
282          * allocation algorithm would be improved in the future.
283          *
284          * FIXME improve this FIFO allocation algorithm.
285          */
286         if (unlikely(total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)))
287                 dev_err(hsotg->dev, "invalid fifo sizes\n");
288 }
289
290 static void dwc2_config_fifos(struct dwc2_hsotg *hsotg)
291 {
292         struct dwc2_core_params *params = &hsotg->params;
293         u32 nptxfsiz, hptxfsiz, dfifocfg, grxfsiz;
294
295         if (!params->enable_dynamic_fifo)
296                 return;
297
298         dwc2_calculate_dynamic_fifo(hsotg);
299
300         /* Rx FIFO */
301         grxfsiz = dwc2_readl(hsotg, GRXFSIZ);
302         dev_dbg(hsotg->dev, "initial grxfsiz=%08x\n", grxfsiz);
303         grxfsiz &= ~GRXFSIZ_DEPTH_MASK;
304         grxfsiz |= params->host_rx_fifo_size <<
305                    GRXFSIZ_DEPTH_SHIFT & GRXFSIZ_DEPTH_MASK;
306         dwc2_writel(hsotg, grxfsiz, GRXFSIZ);
307         dev_dbg(hsotg->dev, "new grxfsiz=%08x\n",
308                 dwc2_readl(hsotg, GRXFSIZ));
309
310         /* Non-periodic Tx FIFO */
311         dev_dbg(hsotg->dev, "initial gnptxfsiz=%08x\n",
312                 dwc2_readl(hsotg, GNPTXFSIZ));
313         nptxfsiz = params->host_nperio_tx_fifo_size <<
314                    FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
315         nptxfsiz |= params->host_rx_fifo_size <<
316                     FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
317         dwc2_writel(hsotg, nptxfsiz, GNPTXFSIZ);
318         dev_dbg(hsotg->dev, "new gnptxfsiz=%08x\n",
319                 dwc2_readl(hsotg, GNPTXFSIZ));
320
321         /* Periodic Tx FIFO */
322         dev_dbg(hsotg->dev, "initial hptxfsiz=%08x\n",
323                 dwc2_readl(hsotg, HPTXFSIZ));
324         hptxfsiz = params->host_perio_tx_fifo_size <<
325                    FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
326         hptxfsiz |= (params->host_rx_fifo_size +
327                      params->host_nperio_tx_fifo_size) <<
328                     FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
329         dwc2_writel(hsotg, hptxfsiz, HPTXFSIZ);
330         dev_dbg(hsotg->dev, "new hptxfsiz=%08x\n",
331                 dwc2_readl(hsotg, HPTXFSIZ));
332
333         if (hsotg->params.en_multiple_tx_fifo &&
334             hsotg->hw_params.snpsid >= DWC2_CORE_REV_2_91a) {
335                 /*
336                  * This feature was implemented in 2.91a version
337                  * Global DFIFOCFG calculation for Host mode -
338                  * include RxFIFO, NPTXFIFO and HPTXFIFO
339                  */
340                 dfifocfg = dwc2_readl(hsotg, GDFIFOCFG);
341                 dfifocfg &= ~GDFIFOCFG_EPINFOBASE_MASK;
342                 dfifocfg |= (params->host_rx_fifo_size +
343                              params->host_nperio_tx_fifo_size +
344                              params->host_perio_tx_fifo_size) <<
345                             GDFIFOCFG_EPINFOBASE_SHIFT &
346                             GDFIFOCFG_EPINFOBASE_MASK;
347                 dwc2_writel(hsotg, dfifocfg, GDFIFOCFG);
348         }
349 }
350
351 /**
352  * dwc2_calc_frame_interval() - Calculates the correct frame Interval value for
353  * the HFIR register according to PHY type and speed
354  *
355  * @hsotg: Programming view of DWC_otg controller
356  *
357  * NOTE: The caller can modify the value of the HFIR register only after the
358  * Port Enable bit of the Host Port Control and Status register (HPRT.EnaPort)
359  * has been set
360  */
361 u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg)
362 {
363         u32 usbcfg;
364         u32 hprt0;
365         int clock = 60; /* default value */
366
367         usbcfg = dwc2_readl(hsotg, GUSBCFG);
368         hprt0 = dwc2_readl(hsotg, HPRT0);
369
370         if (!(usbcfg & GUSBCFG_PHYSEL) && (usbcfg & GUSBCFG_ULPI_UTMI_SEL) &&
371             !(usbcfg & GUSBCFG_PHYIF16))
372                 clock = 60;
373         if ((usbcfg & GUSBCFG_PHYSEL) && hsotg->hw_params.fs_phy_type ==
374             GHWCFG2_FS_PHY_TYPE_SHARED_ULPI)
375                 clock = 48;
376         if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
377             !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
378                 clock = 30;
379         if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
380             !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && !(usbcfg & GUSBCFG_PHYIF16))
381                 clock = 60;
382         if ((usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
383             !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
384                 clock = 48;
385         if ((usbcfg & GUSBCFG_PHYSEL) && !(usbcfg & GUSBCFG_PHYIF16) &&
386             hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_SHARED_UTMI)
387                 clock = 48;
388         if ((usbcfg & GUSBCFG_PHYSEL) &&
389             hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
390                 clock = 48;
391
392         if ((hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT == HPRT0_SPD_HIGH_SPEED)
393                 /* High speed case */
394                 return 125 * clock - 1;
395
396         /* FS/LS case */
397         return 1000 * clock - 1;
398 }
399
400 /**
401  * dwc2_read_packet() - Reads a packet from the Rx FIFO into the destination
402  * buffer
403  *
404  * @hsotg: Programming view of DWC_otg controller
405  * @dest:    Destination buffer for the packet
406  * @bytes:   Number of bytes to copy to the destination
407  */
408 void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes)
409 {
410         u32 *data_buf = (u32 *)dest;
411         int word_count = (bytes + 3) / 4;
412         int i;
413
414         /*
415          * Todo: Account for the case where dest is not dword aligned. This
416          * requires reading data from the FIFO into a u32 temp buffer, then
417          * moving it into the data buffer.
418          */
419
420         dev_vdbg(hsotg->dev, "%s(%p,%p,%d)\n", __func__, hsotg, dest, bytes);
421
422         for (i = 0; i < word_count; i++, data_buf++)
423                 *data_buf = dwc2_readl(hsotg, HCFIFO(0));
424 }
425
426 /**
427  * dwc2_dump_channel_info() - Prints the state of a host channel
428  *
429  * @hsotg: Programming view of DWC_otg controller
430  * @chan:  Pointer to the channel to dump
431  *
432  * Must be called with interrupt disabled and spinlock held
433  *
434  * NOTE: This function will be removed once the peripheral controller code
435  * is integrated and the driver is stable
436  */
437 static void dwc2_dump_channel_info(struct dwc2_hsotg *hsotg,
438                                    struct dwc2_host_chan *chan)
439 {
440 #ifdef VERBOSE_DEBUG
441         int num_channels = hsotg->params.host_channels;
442         struct dwc2_qh *qh;
443         u32 hcchar;
444         u32 hcsplt;
445         u32 hctsiz;
446         u32 hc_dma;
447         int i;
448
449         if (!chan)
450                 return;
451
452         hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
453         hcsplt = dwc2_readl(hsotg, HCSPLT(chan->hc_num));
454         hctsiz = dwc2_readl(hsotg, HCTSIZ(chan->hc_num));
455         hc_dma = dwc2_readl(hsotg, HCDMA(chan->hc_num));
456
457         dev_dbg(hsotg->dev, "  Assigned to channel %p:\n", chan);
458         dev_dbg(hsotg->dev, "    hcchar 0x%08x, hcsplt 0x%08x\n",
459                 hcchar, hcsplt);
460         dev_dbg(hsotg->dev, "    hctsiz 0x%08x, hc_dma 0x%08x\n",
461                 hctsiz, hc_dma);
462         dev_dbg(hsotg->dev, "    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
463                 chan->dev_addr, chan->ep_num, chan->ep_is_in);
464         dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
465         dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
466         dev_dbg(hsotg->dev, "    data_pid_start: %d\n", chan->data_pid_start);
467         dev_dbg(hsotg->dev, "    xfer_started: %d\n", chan->xfer_started);
468         dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
469         dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
470         dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
471                 (unsigned long)chan->xfer_dma);
472         dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
473         dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
474         dev_dbg(hsotg->dev, "  NP inactive sched:\n");
475         list_for_each_entry(qh, &hsotg->non_periodic_sched_inactive,
476                             qh_list_entry)
477                 dev_dbg(hsotg->dev, "    %p\n", qh);
478         dev_dbg(hsotg->dev, "  NP waiting sched:\n");
479         list_for_each_entry(qh, &hsotg->non_periodic_sched_waiting,
480                             qh_list_entry)
481                 dev_dbg(hsotg->dev, "    %p\n", qh);
482         dev_dbg(hsotg->dev, "  NP active sched:\n");
483         list_for_each_entry(qh, &hsotg->non_periodic_sched_active,
484                             qh_list_entry)
485                 dev_dbg(hsotg->dev, "    %p\n", qh);
486         dev_dbg(hsotg->dev, "  Channels:\n");
487         for (i = 0; i < num_channels; i++) {
488                 struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
489
490                 dev_dbg(hsotg->dev, "    %2d: %p\n", i, chan);
491         }
492 #endif /* VERBOSE_DEBUG */
493 }
494
495 static int _dwc2_hcd_start(struct usb_hcd *hcd);
496
497 static void dwc2_host_start(struct dwc2_hsotg *hsotg)
498 {
499         struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
500
501         hcd->self.is_b_host = dwc2_hcd_is_b_host(hsotg);
502         _dwc2_hcd_start(hcd);
503 }
504
505 static void dwc2_host_disconnect(struct dwc2_hsotg *hsotg)
506 {
507         struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
508
509         hcd->self.is_b_host = 0;
510 }
511
512 static void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
513                                int *hub_addr, int *hub_port)
514 {
515         struct urb *urb = context;
516
517         if (urb->dev->tt)
518                 *hub_addr = urb->dev->tt->hub->devnum;
519         else
520                 *hub_addr = 0;
521         *hub_port = urb->dev->ttport;
522 }
523
524 /*
525  * =========================================================================
526  *  Low Level Host Channel Access Functions
527  * =========================================================================
528  */
529
530 static void dwc2_hc_enable_slave_ints(struct dwc2_hsotg *hsotg,
531                                       struct dwc2_host_chan *chan)
532 {
533         u32 hcintmsk = HCINTMSK_CHHLTD;
534
535         switch (chan->ep_type) {
536         case USB_ENDPOINT_XFER_CONTROL:
537         case USB_ENDPOINT_XFER_BULK:
538                 dev_vdbg(hsotg->dev, "control/bulk\n");
539                 hcintmsk |= HCINTMSK_XFERCOMPL;
540                 hcintmsk |= HCINTMSK_STALL;
541                 hcintmsk |= HCINTMSK_XACTERR;
542                 hcintmsk |= HCINTMSK_DATATGLERR;
543                 if (chan->ep_is_in) {
544                         hcintmsk |= HCINTMSK_BBLERR;
545                 } else {
546                         hcintmsk |= HCINTMSK_NAK;
547                         hcintmsk |= HCINTMSK_NYET;
548                         if (chan->do_ping)
549                                 hcintmsk |= HCINTMSK_ACK;
550                 }
551
552                 if (chan->do_split) {
553                         hcintmsk |= HCINTMSK_NAK;
554                         if (chan->complete_split)
555                                 hcintmsk |= HCINTMSK_NYET;
556                         else
557                                 hcintmsk |= HCINTMSK_ACK;
558                 }
559
560                 if (chan->error_state)
561                         hcintmsk |= HCINTMSK_ACK;
562                 break;
563
564         case USB_ENDPOINT_XFER_INT:
565                 if (dbg_perio())
566                         dev_vdbg(hsotg->dev, "intr\n");
567                 hcintmsk |= HCINTMSK_XFERCOMPL;
568                 hcintmsk |= HCINTMSK_NAK;
569                 hcintmsk |= HCINTMSK_STALL;
570                 hcintmsk |= HCINTMSK_XACTERR;
571                 hcintmsk |= HCINTMSK_DATATGLERR;
572                 hcintmsk |= HCINTMSK_FRMOVRUN;
573
574                 if (chan->ep_is_in)
575                         hcintmsk |= HCINTMSK_BBLERR;
576                 if (chan->error_state)
577                         hcintmsk |= HCINTMSK_ACK;
578                 if (chan->do_split) {
579                         if (chan->complete_split)
580                                 hcintmsk |= HCINTMSK_NYET;
581                         else
582                                 hcintmsk |= HCINTMSK_ACK;
583                 }
584                 break;
585
586         case USB_ENDPOINT_XFER_ISOC:
587                 if (dbg_perio())
588                         dev_vdbg(hsotg->dev, "isoc\n");
589                 hcintmsk |= HCINTMSK_XFERCOMPL;
590                 hcintmsk |= HCINTMSK_FRMOVRUN;
591                 hcintmsk |= HCINTMSK_ACK;
592
593                 if (chan->ep_is_in) {
594                         hcintmsk |= HCINTMSK_XACTERR;
595                         hcintmsk |= HCINTMSK_BBLERR;
596                 }
597                 break;
598         default:
599                 dev_err(hsotg->dev, "## Unknown EP type ##\n");
600                 break;
601         }
602
603         dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
604         if (dbg_hc(chan))
605                 dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
606 }
607
608 static void dwc2_hc_enable_dma_ints(struct dwc2_hsotg *hsotg,
609                                     struct dwc2_host_chan *chan)
610 {
611         u32 hcintmsk = HCINTMSK_CHHLTD;
612
613         /*
614          * For Descriptor DMA mode core halts the channel on AHB error.
615          * Interrupt is not required.
616          */
617         if (!hsotg->params.dma_desc_enable) {
618                 if (dbg_hc(chan))
619                         dev_vdbg(hsotg->dev, "desc DMA disabled\n");
620                 hcintmsk |= HCINTMSK_AHBERR;
621         } else {
622                 if (dbg_hc(chan))
623                         dev_vdbg(hsotg->dev, "desc DMA enabled\n");
624                 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
625                         hcintmsk |= HCINTMSK_XFERCOMPL;
626         }
627
628         if (chan->error_state && !chan->do_split &&
629             chan->ep_type != USB_ENDPOINT_XFER_ISOC) {
630                 if (dbg_hc(chan))
631                         dev_vdbg(hsotg->dev, "setting ACK\n");
632                 hcintmsk |= HCINTMSK_ACK;
633                 if (chan->ep_is_in) {
634                         hcintmsk |= HCINTMSK_DATATGLERR;
635                         if (chan->ep_type != USB_ENDPOINT_XFER_INT)
636                                 hcintmsk |= HCINTMSK_NAK;
637                 }
638         }
639
640         dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
641         if (dbg_hc(chan))
642                 dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
643 }
644
645 static void dwc2_hc_enable_ints(struct dwc2_hsotg *hsotg,
646                                 struct dwc2_host_chan *chan)
647 {
648         u32 intmsk;
649
650         if (hsotg->params.host_dma) {
651                 if (dbg_hc(chan))
652                         dev_vdbg(hsotg->dev, "DMA enabled\n");
653                 dwc2_hc_enable_dma_ints(hsotg, chan);
654         } else {
655                 if (dbg_hc(chan))
656                         dev_vdbg(hsotg->dev, "DMA disabled\n");
657                 dwc2_hc_enable_slave_ints(hsotg, chan);
658         }
659
660         /* Enable the top level host channel interrupt */
661         intmsk = dwc2_readl(hsotg, HAINTMSK);
662         intmsk |= 1 << chan->hc_num;
663         dwc2_writel(hsotg, intmsk, HAINTMSK);
664         if (dbg_hc(chan))
665                 dev_vdbg(hsotg->dev, "set HAINTMSK to %08x\n", intmsk);
666
667         /* Make sure host channel interrupts are enabled */
668         intmsk = dwc2_readl(hsotg, GINTMSK);
669         intmsk |= GINTSTS_HCHINT;
670         dwc2_writel(hsotg, intmsk, GINTMSK);
671         if (dbg_hc(chan))
672                 dev_vdbg(hsotg->dev, "set GINTMSK to %08x\n", intmsk);
673 }
674
675 /**
676  * dwc2_hc_init() - Prepares a host channel for transferring packets to/from
677  * a specific endpoint
678  *
679  * @hsotg: Programming view of DWC_otg controller
680  * @chan:  Information needed to initialize the host channel
681  *
682  * The HCCHARn register is set up with the characteristics specified in chan.
683  * Host channel interrupts that may need to be serviced while this transfer is
684  * in progress are enabled.
685  */
686 static void dwc2_hc_init(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
687 {
688         u8 hc_num = chan->hc_num;
689         u32 hcintmsk;
690         u32 hcchar;
691         u32 hcsplt = 0;
692
693         if (dbg_hc(chan))
694                 dev_vdbg(hsotg->dev, "%s()\n", __func__);
695
696         /* Clear old interrupt conditions for this host channel */
697         hcintmsk = 0xffffffff;
698         hcintmsk &= ~HCINTMSK_RESERVED14_31;
699         dwc2_writel(hsotg, hcintmsk, HCINT(hc_num));
700
701         /* Enable channel interrupts required for this transfer */
702         dwc2_hc_enable_ints(hsotg, chan);
703
704         /*
705          * Program the HCCHARn register with the endpoint characteristics for
706          * the current transfer
707          */
708         hcchar = chan->dev_addr << HCCHAR_DEVADDR_SHIFT & HCCHAR_DEVADDR_MASK;
709         hcchar |= chan->ep_num << HCCHAR_EPNUM_SHIFT & HCCHAR_EPNUM_MASK;
710         if (chan->ep_is_in)
711                 hcchar |= HCCHAR_EPDIR;
712         if (chan->speed == USB_SPEED_LOW)
713                 hcchar |= HCCHAR_LSPDDEV;
714         hcchar |= chan->ep_type << HCCHAR_EPTYPE_SHIFT & HCCHAR_EPTYPE_MASK;
715         hcchar |= chan->max_packet << HCCHAR_MPS_SHIFT & HCCHAR_MPS_MASK;
716         dwc2_writel(hsotg, hcchar, HCCHAR(hc_num));
717         if (dbg_hc(chan)) {
718                 dev_vdbg(hsotg->dev, "set HCCHAR(%d) to %08x\n",
719                          hc_num, hcchar);
720
721                 dev_vdbg(hsotg->dev, "%s: Channel %d\n",
722                          __func__, hc_num);
723                 dev_vdbg(hsotg->dev, "   Dev Addr: %d\n",
724                          chan->dev_addr);
725                 dev_vdbg(hsotg->dev, "   Ep Num: %d\n",
726                          chan->ep_num);
727                 dev_vdbg(hsotg->dev, "   Is In: %d\n",
728                          chan->ep_is_in);
729                 dev_vdbg(hsotg->dev, "   Is Low Speed: %d\n",
730                          chan->speed == USB_SPEED_LOW);
731                 dev_vdbg(hsotg->dev, "   Ep Type: %d\n",
732                          chan->ep_type);
733                 dev_vdbg(hsotg->dev, "   Max Pkt: %d\n",
734                          chan->max_packet);
735         }
736
737         /* Program the HCSPLT register for SPLITs */
738         if (chan->do_split) {
739                 if (dbg_hc(chan))
740                         dev_vdbg(hsotg->dev,
741                                  "Programming HC %d with split --> %s\n",
742                                  hc_num,
743                                  chan->complete_split ? "CSPLIT" : "SSPLIT");
744                 if (chan->complete_split)
745                         hcsplt |= HCSPLT_COMPSPLT;
746                 hcsplt |= chan->xact_pos << HCSPLT_XACTPOS_SHIFT &
747                           HCSPLT_XACTPOS_MASK;
748                 hcsplt |= chan->hub_addr << HCSPLT_HUBADDR_SHIFT &
749                           HCSPLT_HUBADDR_MASK;
750                 hcsplt |= chan->hub_port << HCSPLT_PRTADDR_SHIFT &
751                           HCSPLT_PRTADDR_MASK;
752                 if (dbg_hc(chan)) {
753                         dev_vdbg(hsotg->dev, "    comp split %d\n",
754                                  chan->complete_split);
755                         dev_vdbg(hsotg->dev, "    xact pos %d\n",
756                                  chan->xact_pos);
757                         dev_vdbg(hsotg->dev, "    hub addr %d\n",
758                                  chan->hub_addr);
759                         dev_vdbg(hsotg->dev, "    hub port %d\n",
760                                  chan->hub_port);
761                         dev_vdbg(hsotg->dev, "    is_in %d\n",
762                                  chan->ep_is_in);
763                         dev_vdbg(hsotg->dev, "    Max Pkt %d\n",
764                                  chan->max_packet);
765                         dev_vdbg(hsotg->dev, "    xferlen %d\n",
766                                  chan->xfer_len);
767                 }
768         }
769
770         dwc2_writel(hsotg, hcsplt, HCSPLT(hc_num));
771 }
772
773 /**
774  * dwc2_hc_halt() - Attempts to halt a host channel
775  *
776  * @hsotg:       Controller register interface
777  * @chan:        Host channel to halt
778  * @halt_status: Reason for halting the channel
779  *
780  * This function should only be called in Slave mode or to abort a transfer in
781  * either Slave mode or DMA mode. Under normal circumstances in DMA mode, the
782  * controller halts the channel when the transfer is complete or a condition
783  * occurs that requires application intervention.
784  *
785  * In slave mode, checks for a free request queue entry, then sets the Channel
786  * Enable and Channel Disable bits of the Host Channel Characteristics
787  * register of the specified channel to intiate the halt. If there is no free
788  * request queue entry, sets only the Channel Disable bit of the HCCHARn
789  * register to flush requests for this channel. In the latter case, sets a
790  * flag to indicate that the host channel needs to be halted when a request
791  * queue slot is open.
792  *
793  * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
794  * HCCHARn register. The controller ensures there is space in the request
795  * queue before submitting the halt request.
796  *
797  * Some time may elapse before the core flushes any posted requests for this
798  * host channel and halts. The Channel Halted interrupt handler completes the
799  * deactivation of the host channel.
800  */
801 void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
802                   enum dwc2_halt_status halt_status)
803 {
804         u32 nptxsts, hptxsts, hcchar;
805
806         if (dbg_hc(chan))
807                 dev_vdbg(hsotg->dev, "%s()\n", __func__);
808
809         /*
810          * In buffer DMA or external DMA mode channel can't be halted
811          * for non-split periodic channels. At the end of the next
812          * uframe/frame (in the worst case), the core generates a channel
813          * halted and disables the channel automatically.
814          */
815         if ((hsotg->params.g_dma && !hsotg->params.g_dma_desc) ||
816             hsotg->hw_params.arch == GHWCFG2_EXT_DMA_ARCH) {
817                 if (!chan->do_split &&
818                     (chan->ep_type == USB_ENDPOINT_XFER_ISOC ||
819                      chan->ep_type == USB_ENDPOINT_XFER_INT)) {
820                         dev_err(hsotg->dev, "%s() Channel can't be halted\n",
821                                 __func__);
822                         return;
823                 }
824         }
825
826         if (halt_status == DWC2_HC_XFER_NO_HALT_STATUS)
827                 dev_err(hsotg->dev, "!!! halt_status = %d !!!\n", halt_status);
828
829         if (halt_status == DWC2_HC_XFER_URB_DEQUEUE ||
830             halt_status == DWC2_HC_XFER_AHB_ERR) {
831                 /*
832                  * Disable all channel interrupts except Ch Halted. The QTD
833                  * and QH state associated with this transfer has been cleared
834                  * (in the case of URB_DEQUEUE), so the channel needs to be
835                  * shut down carefully to prevent crashes.
836                  */
837                 u32 hcintmsk = HCINTMSK_CHHLTD;
838
839                 dev_vdbg(hsotg->dev, "dequeue/error\n");
840                 dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
841
842                 /*
843                  * Make sure no other interrupts besides halt are currently
844                  * pending. Handling another interrupt could cause a crash due
845                  * to the QTD and QH state.
846                  */
847                 dwc2_writel(hsotg, ~hcintmsk, HCINT(chan->hc_num));
848
849                 /*
850                  * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
851                  * even if the channel was already halted for some other
852                  * reason
853                  */
854                 chan->halt_status = halt_status;
855
856                 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
857                 if (!(hcchar & HCCHAR_CHENA)) {
858                         /*
859                          * The channel is either already halted or it hasn't
860                          * started yet. In DMA mode, the transfer may halt if
861                          * it finishes normally or a condition occurs that
862                          * requires driver intervention. Don't want to halt
863                          * the channel again. In either Slave or DMA mode,
864                          * it's possible that the transfer has been assigned
865                          * to a channel, but not started yet when an URB is
866                          * dequeued. Don't want to halt a channel that hasn't
867                          * started yet.
868                          */
869                         return;
870                 }
871         }
872         if (chan->halt_pending) {
873                 /*
874                  * A halt has already been issued for this channel. This might
875                  * happen when a transfer is aborted by a higher level in
876                  * the stack.
877                  */
878                 dev_vdbg(hsotg->dev,
879                          "*** %s: Channel %d, chan->halt_pending already set ***\n",
880                          __func__, chan->hc_num);
881                 return;
882         }
883
884         hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
885
886         /* No need to set the bit in DDMA for disabling the channel */
887         /* TODO check it everywhere channel is disabled */
888         if (!hsotg->params.dma_desc_enable) {
889                 if (dbg_hc(chan))
890                         dev_vdbg(hsotg->dev, "desc DMA disabled\n");
891                 hcchar |= HCCHAR_CHENA;
892         } else {
893                 if (dbg_hc(chan))
894                         dev_dbg(hsotg->dev, "desc DMA enabled\n");
895         }
896         hcchar |= HCCHAR_CHDIS;
897
898         if (!hsotg->params.host_dma) {
899                 if (dbg_hc(chan))
900                         dev_vdbg(hsotg->dev, "DMA not enabled\n");
901                 hcchar |= HCCHAR_CHENA;
902
903                 /* Check for space in the request queue to issue the halt */
904                 if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL ||
905                     chan->ep_type == USB_ENDPOINT_XFER_BULK) {
906                         dev_vdbg(hsotg->dev, "control/bulk\n");
907                         nptxsts = dwc2_readl(hsotg, GNPTXSTS);
908                         if ((nptxsts & TXSTS_QSPCAVAIL_MASK) == 0) {
909                                 dev_vdbg(hsotg->dev, "Disabling channel\n");
910                                 hcchar &= ~HCCHAR_CHENA;
911                         }
912                 } else {
913                         if (dbg_perio())
914                                 dev_vdbg(hsotg->dev, "isoc/intr\n");
915                         hptxsts = dwc2_readl(hsotg, HPTXSTS);
916                         if ((hptxsts & TXSTS_QSPCAVAIL_MASK) == 0 ||
917                             hsotg->queuing_high_bandwidth) {
918                                 if (dbg_perio())
919                                         dev_vdbg(hsotg->dev, "Disabling channel\n");
920                                 hcchar &= ~HCCHAR_CHENA;
921                         }
922                 }
923         } else {
924                 if (dbg_hc(chan))
925                         dev_vdbg(hsotg->dev, "DMA enabled\n");
926         }
927
928         dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
929         chan->halt_status = halt_status;
930
931         if (hcchar & HCCHAR_CHENA) {
932                 if (dbg_hc(chan))
933                         dev_vdbg(hsotg->dev, "Channel enabled\n");
934                 chan->halt_pending = 1;
935                 chan->halt_on_queue = 0;
936         } else {
937                 if (dbg_hc(chan))
938                         dev_vdbg(hsotg->dev, "Channel disabled\n");
939                 chan->halt_on_queue = 1;
940         }
941
942         if (dbg_hc(chan)) {
943                 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
944                          chan->hc_num);
945                 dev_vdbg(hsotg->dev, "   hcchar: 0x%08x\n",
946                          hcchar);
947                 dev_vdbg(hsotg->dev, "   halt_pending: %d\n",
948                          chan->halt_pending);
949                 dev_vdbg(hsotg->dev, "   halt_on_queue: %d\n",
950                          chan->halt_on_queue);
951                 dev_vdbg(hsotg->dev, "   halt_status: %d\n",
952                          chan->halt_status);
953         }
954 }
955
956 /**
957  * dwc2_hc_cleanup() - Clears the transfer state for a host channel
958  *
959  * @hsotg: Programming view of DWC_otg controller
960  * @chan:  Identifies the host channel to clean up
961  *
962  * This function is normally called after a transfer is done and the host
963  * channel is being released
964  */
965 void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
966 {
967         u32 hcintmsk;
968
969         chan->xfer_started = 0;
970
971         list_del_init(&chan->split_order_list_entry);
972
973         /*
974          * Clear channel interrupt enables and any unhandled channel interrupt
975          * conditions
976          */
977         dwc2_writel(hsotg, 0, HCINTMSK(chan->hc_num));
978         hcintmsk = 0xffffffff;
979         hcintmsk &= ~HCINTMSK_RESERVED14_31;
980         dwc2_writel(hsotg, hcintmsk, HCINT(chan->hc_num));
981 }
982
983 /**
984  * dwc2_hc_set_even_odd_frame() - Sets the channel property that indicates in
985  * which frame a periodic transfer should occur
986  *
987  * @hsotg:  Programming view of DWC_otg controller
988  * @chan:   Identifies the host channel to set up and its properties
989  * @hcchar: Current value of the HCCHAR register for the specified host channel
990  *
991  * This function has no effect on non-periodic transfers
992  */
993 static void dwc2_hc_set_even_odd_frame(struct dwc2_hsotg *hsotg,
994                                        struct dwc2_host_chan *chan, u32 *hcchar)
995 {
996         if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
997             chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
998                 int host_speed;
999                 int xfer_ns;
1000                 int xfer_us;
1001                 int bytes_in_fifo;
1002                 u16 fifo_space;
1003                 u16 frame_number;
1004                 u16 wire_frame;
1005
1006                 /*
1007                  * Try to figure out if we're an even or odd frame. If we set
1008                  * even and the current frame number is even the the transfer
1009                  * will happen immediately.  Similar if both are odd. If one is
1010                  * even and the other is odd then the transfer will happen when
1011                  * the frame number ticks.
1012                  *
1013                  * There's a bit of a balancing act to get this right.
1014                  * Sometimes we may want to send data in the current frame (AK
1015                  * right away).  We might want to do this if the frame number
1016                  * _just_ ticked, but we might also want to do this in order
1017                  * to continue a split transaction that happened late in a
1018                  * microframe (so we didn't know to queue the next transfer
1019                  * until the frame number had ticked).  The problem is that we
1020                  * need a lot of knowledge to know if there's actually still
1021                  * time to send things or if it would be better to wait until
1022                  * the next frame.
1023                  *
1024                  * We can look at how much time is left in the current frame
1025                  * and make a guess about whether we'll have time to transfer.
1026                  * We'll do that.
1027                  */
1028
1029                 /* Get speed host is running at */
1030                 host_speed = (chan->speed != USB_SPEED_HIGH &&
1031                               !chan->do_split) ? chan->speed : USB_SPEED_HIGH;
1032
1033                 /* See how many bytes are in the periodic FIFO right now */
1034                 fifo_space = (dwc2_readl(hsotg, HPTXSTS) &
1035                               TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT;
1036                 bytes_in_fifo = sizeof(u32) *
1037                                 (hsotg->params.host_perio_tx_fifo_size -
1038                                  fifo_space);
1039
1040                 /*
1041                  * Roughly estimate bus time for everything in the periodic
1042                  * queue + our new transfer.  This is "rough" because we're
1043                  * using a function that makes takes into account IN/OUT
1044                  * and INT/ISO and we're just slamming in one value for all
1045                  * transfers.  This should be an over-estimate and that should
1046                  * be OK, but we can probably tighten it.
1047                  */
1048                 xfer_ns = usb_calc_bus_time(host_speed, false, false,
1049                                             chan->xfer_len + bytes_in_fifo);
1050                 xfer_us = NS_TO_US(xfer_ns);
1051
1052                 /* See what frame number we'll be at by the time we finish */
1053                 frame_number = dwc2_hcd_get_future_frame_number(hsotg, xfer_us);
1054
1055                 /* This is when we were scheduled to be on the wire */
1056                 wire_frame = dwc2_frame_num_inc(chan->qh->next_active_frame, 1);
1057
1058                 /*
1059                  * If we'd finish _after_ the frame we're scheduled in then
1060                  * it's hopeless.  Just schedule right away and hope for the
1061                  * best.  Note that it _might_ be wise to call back into the
1062                  * scheduler to pick a better frame, but this is better than
1063                  * nothing.
1064                  */
1065                 if (dwc2_frame_num_gt(frame_number, wire_frame)) {
1066                         dwc2_sch_vdbg(hsotg,
1067                                       "QH=%p EO MISS fr=%04x=>%04x (%+d)\n",
1068                                       chan->qh, wire_frame, frame_number,
1069                                       dwc2_frame_num_dec(frame_number,
1070                                                          wire_frame));
1071                         wire_frame = frame_number;
1072
1073                         /*
1074                          * We picked a different frame number; communicate this
1075                          * back to the scheduler so it doesn't try to schedule
1076                          * another in the same frame.
1077                          *
1078                          * Remember that next_active_frame is 1 before the wire
1079                          * frame.
1080                          */
1081                         chan->qh->next_active_frame =
1082                                 dwc2_frame_num_dec(frame_number, 1);
1083                 }
1084
1085                 if (wire_frame & 1)
1086                         *hcchar |= HCCHAR_ODDFRM;
1087                 else
1088                         *hcchar &= ~HCCHAR_ODDFRM;
1089         }
1090 }
1091
1092 static void dwc2_set_pid_isoc(struct dwc2_host_chan *chan)
1093 {
1094         /* Set up the initial PID for the transfer */
1095         if (chan->speed == USB_SPEED_HIGH) {
1096                 if (chan->ep_is_in) {
1097                         if (chan->multi_count == 1)
1098                                 chan->data_pid_start = DWC2_HC_PID_DATA0;
1099                         else if (chan->multi_count == 2)
1100                                 chan->data_pid_start = DWC2_HC_PID_DATA1;
1101                         else
1102                                 chan->data_pid_start = DWC2_HC_PID_DATA2;
1103                 } else {
1104                         if (chan->multi_count == 1)
1105                                 chan->data_pid_start = DWC2_HC_PID_DATA0;
1106                         else
1107                                 chan->data_pid_start = DWC2_HC_PID_MDATA;
1108                 }
1109         } else {
1110                 chan->data_pid_start = DWC2_HC_PID_DATA0;
1111         }
1112 }
1113
1114 /**
1115  * dwc2_hc_write_packet() - Writes a packet into the Tx FIFO associated with
1116  * the Host Channel
1117  *
1118  * @hsotg: Programming view of DWC_otg controller
1119  * @chan:  Information needed to initialize the host channel
1120  *
1121  * This function should only be called in Slave mode. For a channel associated
1122  * with a non-periodic EP, the non-periodic Tx FIFO is written. For a channel
1123  * associated with a periodic EP, the periodic Tx FIFO is written.
1124  *
1125  * Upon return the xfer_buf and xfer_count fields in chan are incremented by
1126  * the number of bytes written to the Tx FIFO.
1127  */
1128 static void dwc2_hc_write_packet(struct dwc2_hsotg *hsotg,
1129                                  struct dwc2_host_chan *chan)
1130 {
1131         u32 i;
1132         u32 remaining_count;
1133         u32 byte_count;
1134         u32 dword_count;
1135         u32 *data_buf = (u32 *)chan->xfer_buf;
1136
1137         if (dbg_hc(chan))
1138                 dev_vdbg(hsotg->dev, "%s()\n", __func__);
1139
1140         remaining_count = chan->xfer_len - chan->xfer_count;
1141         if (remaining_count > chan->max_packet)
1142                 byte_count = chan->max_packet;
1143         else
1144                 byte_count = remaining_count;
1145
1146         dword_count = (byte_count + 3) / 4;
1147
1148         if (((unsigned long)data_buf & 0x3) == 0) {
1149                 /* xfer_buf is DWORD aligned */
1150                 for (i = 0; i < dword_count; i++, data_buf++)
1151                         dwc2_writel(hsotg, *data_buf, HCFIFO(chan->hc_num));
1152         } else {
1153                 /* xfer_buf is not DWORD aligned */
1154                 for (i = 0; i < dword_count; i++, data_buf++) {
1155                         u32 data = data_buf[0] | data_buf[1] << 8 |
1156                                    data_buf[2] << 16 | data_buf[3] << 24;
1157                         dwc2_writel(hsotg, data, HCFIFO(chan->hc_num));
1158                 }
1159         }
1160
1161         chan->xfer_count += byte_count;
1162         chan->xfer_buf += byte_count;
1163 }
1164
1165 /**
1166  * dwc2_hc_do_ping() - Starts a PING transfer
1167  *
1168  * @hsotg: Programming view of DWC_otg controller
1169  * @chan:  Information needed to initialize the host channel
1170  *
1171  * This function should only be called in Slave mode. The Do Ping bit is set in
1172  * the HCTSIZ register, then the channel is enabled.
1173  */
1174 static void dwc2_hc_do_ping(struct dwc2_hsotg *hsotg,
1175                             struct dwc2_host_chan *chan)
1176 {
1177         u32 hcchar;
1178         u32 hctsiz;
1179
1180         if (dbg_hc(chan))
1181                 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1182                          chan->hc_num);
1183
1184         hctsiz = TSIZ_DOPNG;
1185         hctsiz |= 1 << TSIZ_PKTCNT_SHIFT;
1186         dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1187
1188         hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1189         hcchar |= HCCHAR_CHENA;
1190         hcchar &= ~HCCHAR_CHDIS;
1191         dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1192 }
1193
1194 /**
1195  * dwc2_hc_start_transfer() - Does the setup for a data transfer for a host
1196  * channel and starts the transfer
1197  *
1198  * @hsotg: Programming view of DWC_otg controller
1199  * @chan:  Information needed to initialize the host channel. The xfer_len value
1200  *         may be reduced to accommodate the max widths of the XferSize and
1201  *         PktCnt fields in the HCTSIZn register. The multi_count value may be
1202  *         changed to reflect the final xfer_len value.
1203  *
1204  * This function may be called in either Slave mode or DMA mode. In Slave mode,
1205  * the caller must ensure that there is sufficient space in the request queue
1206  * and Tx Data FIFO.
1207  *
1208  * For an OUT transfer in Slave mode, it loads a data packet into the
1209  * appropriate FIFO. If necessary, additional data packets are loaded in the
1210  * Host ISR.
1211  *
1212  * For an IN transfer in Slave mode, a data packet is requested. The data
1213  * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
1214  * additional data packets are requested in the Host ISR.
1215  *
1216  * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
1217  * register along with a packet count of 1 and the channel is enabled. This
1218  * causes a single PING transaction to occur. Other fields in HCTSIZ are
1219  * simply set to 0 since no data transfer occurs in this case.
1220  *
1221  * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
1222  * all the information required to perform the subsequent data transfer. In
1223  * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
1224  * controller performs the entire PING protocol, then starts the data
1225  * transfer.
1226  */
1227 static void dwc2_hc_start_transfer(struct dwc2_hsotg *hsotg,
1228                                    struct dwc2_host_chan *chan)
1229 {
1230         u32 max_hc_xfer_size = hsotg->params.max_transfer_size;
1231         u16 max_hc_pkt_count = hsotg->params.max_packet_count;
1232         u32 hcchar;
1233         u32 hctsiz = 0;
1234         u16 num_packets;
1235         u32 ec_mc;
1236
1237         if (dbg_hc(chan))
1238                 dev_vdbg(hsotg->dev, "%s()\n", __func__);
1239
1240         if (chan->do_ping) {
1241                 if (!hsotg->params.host_dma) {
1242                         if (dbg_hc(chan))
1243                                 dev_vdbg(hsotg->dev, "ping, no DMA\n");
1244                         dwc2_hc_do_ping(hsotg, chan);
1245                         chan->xfer_started = 1;
1246                         return;
1247                 }
1248
1249                 if (dbg_hc(chan))
1250                         dev_vdbg(hsotg->dev, "ping, DMA\n");
1251
1252                 hctsiz |= TSIZ_DOPNG;
1253         }
1254
1255         if (chan->do_split) {
1256                 if (dbg_hc(chan))
1257                         dev_vdbg(hsotg->dev, "split\n");
1258                 num_packets = 1;
1259
1260                 if (chan->complete_split && !chan->ep_is_in)
1261                         /*
1262                          * For CSPLIT OUT Transfer, set the size to 0 so the
1263                          * core doesn't expect any data written to the FIFO
1264                          */
1265                         chan->xfer_len = 0;
1266                 else if (chan->ep_is_in || chan->xfer_len > chan->max_packet)
1267                         chan->xfer_len = chan->max_packet;
1268                 else if (!chan->ep_is_in && chan->xfer_len > 188)
1269                         chan->xfer_len = 188;
1270
1271                 hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1272                           TSIZ_XFERSIZE_MASK;
1273
1274                 /* For split set ec_mc for immediate retries */
1275                 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1276                     chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1277                         ec_mc = 3;
1278                 else
1279                         ec_mc = 1;
1280         } else {
1281                 if (dbg_hc(chan))
1282                         dev_vdbg(hsotg->dev, "no split\n");
1283                 /*
1284                  * Ensure that the transfer length and packet count will fit
1285                  * in the widths allocated for them in the HCTSIZn register
1286                  */
1287                 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1288                     chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1289                         /*
1290                          * Make sure the transfer size is no larger than one
1291                          * (micro)frame's worth of data. (A check was done
1292                          * when the periodic transfer was accepted to ensure
1293                          * that a (micro)frame's worth of data can be
1294                          * programmed into a channel.)
1295                          */
1296                         u32 max_periodic_len =
1297                                 chan->multi_count * chan->max_packet;
1298
1299                         if (chan->xfer_len > max_periodic_len)
1300                                 chan->xfer_len = max_periodic_len;
1301                 } else if (chan->xfer_len > max_hc_xfer_size) {
1302                         /*
1303                          * Make sure that xfer_len is a multiple of max packet
1304                          * size
1305                          */
1306                         chan->xfer_len =
1307                                 max_hc_xfer_size - chan->max_packet + 1;
1308                 }
1309
1310                 if (chan->xfer_len > 0) {
1311                         num_packets = (chan->xfer_len + chan->max_packet - 1) /
1312                                         chan->max_packet;
1313                         if (num_packets > max_hc_pkt_count) {
1314                                 num_packets = max_hc_pkt_count;
1315                                 chan->xfer_len = num_packets * chan->max_packet;
1316                         }
1317                 } else {
1318                         /* Need 1 packet for transfer length of 0 */
1319                         num_packets = 1;
1320                 }
1321
1322                 if (chan->ep_is_in)
1323                         /*
1324                          * Always program an integral # of max packets for IN
1325                          * transfers
1326                          */
1327                         chan->xfer_len = num_packets * chan->max_packet;
1328
1329                 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1330                     chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1331                         /*
1332                          * Make sure that the multi_count field matches the
1333                          * actual transfer length
1334                          */
1335                         chan->multi_count = num_packets;
1336
1337                 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1338                         dwc2_set_pid_isoc(chan);
1339
1340                 hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1341                           TSIZ_XFERSIZE_MASK;
1342
1343                 /* The ec_mc gets the multi_count for non-split */
1344                 ec_mc = chan->multi_count;
1345         }
1346
1347         chan->start_pkt_count = num_packets;
1348         hctsiz |= num_packets << TSIZ_PKTCNT_SHIFT & TSIZ_PKTCNT_MASK;
1349         hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1350                   TSIZ_SC_MC_PID_MASK;
1351         dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1352         if (dbg_hc(chan)) {
1353                 dev_vdbg(hsotg->dev, "Wrote %08x to HCTSIZ(%d)\n",
1354                          hctsiz, chan->hc_num);
1355
1356                 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1357                          chan->hc_num);
1358                 dev_vdbg(hsotg->dev, "   Xfer Size: %d\n",
1359                          (hctsiz & TSIZ_XFERSIZE_MASK) >>
1360                          TSIZ_XFERSIZE_SHIFT);
1361                 dev_vdbg(hsotg->dev, "   Num Pkts: %d\n",
1362                          (hctsiz & TSIZ_PKTCNT_MASK) >>
1363                          TSIZ_PKTCNT_SHIFT);
1364                 dev_vdbg(hsotg->dev, "   Start PID: %d\n",
1365                          (hctsiz & TSIZ_SC_MC_PID_MASK) >>
1366                          TSIZ_SC_MC_PID_SHIFT);
1367         }
1368
1369         if (hsotg->params.host_dma) {
1370                 dma_addr_t dma_addr;
1371
1372                 if (chan->align_buf) {
1373                         if (dbg_hc(chan))
1374                                 dev_vdbg(hsotg->dev, "align_buf\n");
1375                         dma_addr = chan->align_buf;
1376                 } else {
1377                         dma_addr = chan->xfer_dma;
1378                 }
1379                 dwc2_writel(hsotg, (u32)dma_addr, HCDMA(chan->hc_num));
1380
1381                 if (dbg_hc(chan))
1382                         dev_vdbg(hsotg->dev, "Wrote %08lx to HCDMA(%d)\n",
1383                                  (unsigned long)dma_addr, chan->hc_num);
1384         }
1385
1386         /* Start the split */
1387         if (chan->do_split) {
1388                 u32 hcsplt = dwc2_readl(hsotg, HCSPLT(chan->hc_num));
1389
1390                 hcsplt |= HCSPLT_SPLTENA;
1391                 dwc2_writel(hsotg, hcsplt, HCSPLT(chan->hc_num));
1392         }
1393
1394         hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1395         hcchar &= ~HCCHAR_MULTICNT_MASK;
1396         hcchar |= (ec_mc << HCCHAR_MULTICNT_SHIFT) & HCCHAR_MULTICNT_MASK;
1397         dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1398
1399         if (hcchar & HCCHAR_CHDIS)
1400                 dev_warn(hsotg->dev,
1401                          "%s: chdis set, channel %d, hcchar 0x%08x\n",
1402                          __func__, chan->hc_num, hcchar);
1403
1404         /* Set host channel enable after all other setup is complete */
1405         hcchar |= HCCHAR_CHENA;
1406         hcchar &= ~HCCHAR_CHDIS;
1407
1408         if (dbg_hc(chan))
1409                 dev_vdbg(hsotg->dev, "   Multi Cnt: %d\n",
1410                          (hcchar & HCCHAR_MULTICNT_MASK) >>
1411                          HCCHAR_MULTICNT_SHIFT);
1412
1413         dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1414         if (dbg_hc(chan))
1415                 dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1416                          chan->hc_num);
1417
1418         chan->xfer_started = 1;
1419         chan->requests++;
1420
1421         if (!hsotg->params.host_dma &&
1422             !chan->ep_is_in && chan->xfer_len > 0)
1423                 /* Load OUT packet into the appropriate Tx FIFO */
1424                 dwc2_hc_write_packet(hsotg, chan);
1425 }
1426
1427 /**
1428  * dwc2_hc_start_transfer_ddma() - Does the setup for a data transfer for a
1429  * host channel and starts the transfer in Descriptor DMA mode
1430  *
1431  * @hsotg: Programming view of DWC_otg controller
1432  * @chan:  Information needed to initialize the host channel
1433  *
1434  * Initializes HCTSIZ register. For a PING transfer the Do Ping bit is set.
1435  * Sets PID and NTD values. For periodic transfers initializes SCHED_INFO field
1436  * with micro-frame bitmap.
1437  *
1438  * Initializes HCDMA register with descriptor list address and CTD value then
1439  * starts the transfer via enabling the channel.
1440  */
1441 void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
1442                                  struct dwc2_host_chan *chan)
1443 {
1444         u32 hcchar;
1445         u32 hctsiz = 0;
1446
1447         if (chan->do_ping)
1448                 hctsiz |= TSIZ_DOPNG;
1449
1450         if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1451                 dwc2_set_pid_isoc(chan);
1452
1453         /* Packet Count and Xfer Size are not used in Descriptor DMA mode */
1454         hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1455                   TSIZ_SC_MC_PID_MASK;
1456
1457         /* 0 - 1 descriptor, 1 - 2 descriptors, etc */
1458         hctsiz |= (chan->ntd - 1) << TSIZ_NTD_SHIFT & TSIZ_NTD_MASK;
1459
1460         /* Non-zero only for high-speed interrupt endpoints */
1461         hctsiz |= chan->schinfo << TSIZ_SCHINFO_SHIFT & TSIZ_SCHINFO_MASK;
1462
1463         if (dbg_hc(chan)) {
1464                 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1465                          chan->hc_num);
1466                 dev_vdbg(hsotg->dev, "   Start PID: %d\n",
1467                          chan->data_pid_start);
1468                 dev_vdbg(hsotg->dev, "   NTD: %d\n", chan->ntd - 1);
1469         }
1470
1471         dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1472
1473         dma_sync_single_for_device(hsotg->dev, chan->desc_list_addr,
1474                                    chan->desc_list_sz, DMA_TO_DEVICE);
1475
1476         dwc2_writel(hsotg, chan->desc_list_addr, HCDMA(chan->hc_num));
1477
1478         if (dbg_hc(chan))
1479                 dev_vdbg(hsotg->dev, "Wrote %pad to HCDMA(%d)\n",
1480                          &chan->desc_list_addr, chan->hc_num);
1481
1482         hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1483         hcchar &= ~HCCHAR_MULTICNT_MASK;
1484         hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT &
1485                   HCCHAR_MULTICNT_MASK;
1486
1487         if (hcchar & HCCHAR_CHDIS)
1488                 dev_warn(hsotg->dev,
1489                          "%s: chdis set, channel %d, hcchar 0x%08x\n",
1490                          __func__, chan->hc_num, hcchar);
1491
1492         /* Set host channel enable after all other setup is complete */
1493         hcchar |= HCCHAR_CHENA;
1494         hcchar &= ~HCCHAR_CHDIS;
1495
1496         if (dbg_hc(chan))
1497                 dev_vdbg(hsotg->dev, "   Multi Cnt: %d\n",
1498                          (hcchar & HCCHAR_MULTICNT_MASK) >>
1499                          HCCHAR_MULTICNT_SHIFT);
1500
1501         dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1502         if (dbg_hc(chan))
1503                 dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1504                          chan->hc_num);
1505
1506         chan->xfer_started = 1;
1507         chan->requests++;
1508 }
1509
1510 /**
1511  * dwc2_hc_continue_transfer() - Continues a data transfer that was started by
1512  * a previous call to dwc2_hc_start_transfer()
1513  *
1514  * @hsotg: Programming view of DWC_otg controller
1515  * @chan:  Information needed to initialize the host channel
1516  *
1517  * The caller must ensure there is sufficient space in the request queue and Tx
1518  * Data FIFO. This function should only be called in Slave mode. In DMA mode,
1519  * the controller acts autonomously to complete transfers programmed to a host
1520  * channel.
1521  *
1522  * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
1523  * if there is any data remaining to be queued. For an IN transfer, another
1524  * data packet is always requested. For the SETUP phase of a control transfer,
1525  * this function does nothing.
1526  *
1527  * Return: 1 if a new request is queued, 0 if no more requests are required
1528  * for this transfer
1529  */
1530 static int dwc2_hc_continue_transfer(struct dwc2_hsotg *hsotg,
1531                                      struct dwc2_host_chan *chan)
1532 {
1533         if (dbg_hc(chan))
1534                 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1535                          chan->hc_num);
1536
1537         if (chan->do_split)
1538                 /* SPLITs always queue just once per channel */
1539                 return 0;
1540
1541         if (chan->data_pid_start == DWC2_HC_PID_SETUP)
1542                 /* SETUPs are queued only once since they can't be NAK'd */
1543                 return 0;
1544
1545         if (chan->ep_is_in) {
1546                 /*
1547                  * Always queue another request for other IN transfers. If
1548                  * back-to-back INs are issued and NAKs are received for both,
1549                  * the driver may still be processing the first NAK when the
1550                  * second NAK is received. When the interrupt handler clears
1551                  * the NAK interrupt for the first NAK, the second NAK will
1552                  * not be seen. So we can't depend on the NAK interrupt
1553                  * handler to requeue a NAK'd request. Instead, IN requests
1554                  * are issued each time this function is called. When the
1555                  * transfer completes, the extra requests for the channel will
1556                  * be flushed.
1557                  */
1558                 u32 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1559
1560                 dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1561                 hcchar |= HCCHAR_CHENA;
1562                 hcchar &= ~HCCHAR_CHDIS;
1563                 if (dbg_hc(chan))
1564                         dev_vdbg(hsotg->dev, "   IN xfer: hcchar = 0x%08x\n",
1565                                  hcchar);
1566                 dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1567                 chan->requests++;
1568                 return 1;
1569         }
1570
1571         /* OUT transfers */
1572
1573         if (chan->xfer_count < chan->xfer_len) {
1574                 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1575                     chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1576                         u32 hcchar = dwc2_readl(hsotg,
1577                                                 HCCHAR(chan->hc_num));
1578
1579                         dwc2_hc_set_even_odd_frame(hsotg, chan,
1580                                                    &hcchar);
1581                 }
1582
1583                 /* Load OUT packet into the appropriate Tx FIFO */
1584                 dwc2_hc_write_packet(hsotg, chan);
1585                 chan->requests++;
1586                 return 1;
1587         }
1588
1589         return 0;
1590 }
1591
1592 /*
1593  * =========================================================================
1594  *  HCD
1595  * =========================================================================
1596  */
1597
1598 /*
1599  * Processes all the URBs in a single list of QHs. Completes them with
1600  * -ETIMEDOUT and frees the QTD.
1601  *
1602  * Must be called with interrupt disabled and spinlock held
1603  */
1604 static void dwc2_kill_urbs_in_qh_list(struct dwc2_hsotg *hsotg,
1605                                       struct list_head *qh_list)
1606 {
1607         struct dwc2_qh *qh, *qh_tmp;
1608         struct dwc2_qtd *qtd, *qtd_tmp;
1609
1610         list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1611                 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1612                                          qtd_list_entry) {
1613                         dwc2_host_complete(hsotg, qtd, -ECONNRESET);
1614                         dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1615                 }
1616         }
1617 }
1618
1619 static void dwc2_qh_list_free(struct dwc2_hsotg *hsotg,
1620                               struct list_head *qh_list)
1621 {
1622         struct dwc2_qtd *qtd, *qtd_tmp;
1623         struct dwc2_qh *qh, *qh_tmp;
1624         unsigned long flags;
1625
1626         if (!qh_list->next)
1627                 /* The list hasn't been initialized yet */
1628                 return;
1629
1630         spin_lock_irqsave(&hsotg->lock, flags);
1631
1632         /* Ensure there are no QTDs or URBs left */
1633         dwc2_kill_urbs_in_qh_list(hsotg, qh_list);
1634
1635         list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1636                 dwc2_hcd_qh_unlink(hsotg, qh);
1637
1638                 /* Free each QTD in the QH's QTD list */
1639                 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1640                                          qtd_list_entry)
1641                         dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1642
1643                 if (qh->channel && qh->channel->qh == qh)
1644                         qh->channel->qh = NULL;
1645
1646                 spin_unlock_irqrestore(&hsotg->lock, flags);
1647                 dwc2_hcd_qh_free(hsotg, qh);
1648                 spin_lock_irqsave(&hsotg->lock, flags);
1649         }
1650
1651         spin_unlock_irqrestore(&hsotg->lock, flags);
1652 }
1653
1654 /*
1655  * Responds with an error status of -ETIMEDOUT to all URBs in the non-periodic
1656  * and periodic schedules. The QTD associated with each URB is removed from
1657  * the schedule and freed. This function may be called when a disconnect is
1658  * detected or when the HCD is being stopped.
1659  *
1660  * Must be called with interrupt disabled and spinlock held
1661  */
1662 static void dwc2_kill_all_urbs(struct dwc2_hsotg *hsotg)
1663 {
1664         dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_inactive);
1665         dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_waiting);
1666         dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_active);
1667         dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_inactive);
1668         dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_ready);
1669         dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_assigned);
1670         dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_queued);
1671 }
1672
1673 /**
1674  * dwc2_hcd_start() - Starts the HCD when switching to Host mode
1675  *
1676  * @hsotg: Pointer to struct dwc2_hsotg
1677  */
1678 void dwc2_hcd_start(struct dwc2_hsotg *hsotg)
1679 {
1680         u32 hprt0;
1681
1682         if (hsotg->op_state == OTG_STATE_B_HOST) {
1683                 /*
1684                  * Reset the port. During a HNP mode switch the reset
1685                  * needs to occur within 1ms and have a duration of at
1686                  * least 50ms.
1687                  */
1688                 hprt0 = dwc2_read_hprt0(hsotg);
1689                 hprt0 |= HPRT0_RST;
1690                 dwc2_writel(hsotg, hprt0, HPRT0);
1691         }
1692
1693         queue_delayed_work(hsotg->wq_otg, &hsotg->start_work,
1694                            msecs_to_jiffies(50));
1695 }
1696
1697 /* Must be called with interrupt disabled and spinlock held */
1698 static void dwc2_hcd_cleanup_channels(struct dwc2_hsotg *hsotg)
1699 {
1700         int num_channels = hsotg->params.host_channels;
1701         struct dwc2_host_chan *channel;
1702         u32 hcchar;
1703         int i;
1704
1705         if (!hsotg->params.host_dma) {
1706                 /* Flush out any channel requests in slave mode */
1707                 for (i = 0; i < num_channels; i++) {
1708                         channel = hsotg->hc_ptr_array[i];
1709                         if (!list_empty(&channel->hc_list_entry))
1710                                 continue;
1711                         hcchar = dwc2_readl(hsotg, HCCHAR(i));
1712                         if (hcchar & HCCHAR_CHENA) {
1713                                 hcchar &= ~(HCCHAR_CHENA | HCCHAR_EPDIR);
1714                                 hcchar |= HCCHAR_CHDIS;
1715                                 dwc2_writel(hsotg, hcchar, HCCHAR(i));
1716                         }
1717                 }
1718         }
1719
1720         for (i = 0; i < num_channels; i++) {
1721                 channel = hsotg->hc_ptr_array[i];
1722                 if (!list_empty(&channel->hc_list_entry))
1723                         continue;
1724                 hcchar = dwc2_readl(hsotg, HCCHAR(i));
1725                 if (hcchar & HCCHAR_CHENA) {
1726                         /* Halt the channel */
1727                         hcchar |= HCCHAR_CHDIS;
1728                         dwc2_writel(hsotg, hcchar, HCCHAR(i));
1729                 }
1730
1731                 dwc2_hc_cleanup(hsotg, channel);
1732                 list_add_tail(&channel->hc_list_entry, &hsotg->free_hc_list);
1733                 /*
1734                  * Added for Descriptor DMA to prevent channel double cleanup in
1735                  * release_channel_ddma(), which is called from ep_disable when
1736                  * device disconnects
1737                  */
1738                 channel->qh = NULL;
1739         }
1740         /* All channels have been freed, mark them available */
1741         if (hsotg->params.uframe_sched) {
1742                 hsotg->available_host_channels =
1743                         hsotg->params.host_channels;
1744         } else {
1745                 hsotg->non_periodic_channels = 0;
1746                 hsotg->periodic_channels = 0;
1747         }
1748 }
1749
1750 /**
1751  * dwc2_hcd_connect() - Handles connect of the HCD
1752  *
1753  * @hsotg: Pointer to struct dwc2_hsotg
1754  *
1755  * Must be called with interrupt disabled and spinlock held
1756  */
1757 void dwc2_hcd_connect(struct dwc2_hsotg *hsotg)
1758 {
1759         if (hsotg->lx_state != DWC2_L0)
1760                 usb_hcd_resume_root_hub(hsotg->priv);
1761
1762         hsotg->flags.b.port_connect_status_change = 1;
1763         hsotg->flags.b.port_connect_status = 1;
1764 }
1765
1766 /**
1767  * dwc2_hcd_disconnect() - Handles disconnect of the HCD
1768  *
1769  * @hsotg: Pointer to struct dwc2_hsotg
1770  * @force: If true, we won't try to reconnect even if we see device connected.
1771  *
1772  * Must be called with interrupt disabled and spinlock held
1773  */
1774 void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force)
1775 {
1776         u32 intr;
1777         u32 hprt0;
1778
1779         /* Set status flags for the hub driver */
1780         hsotg->flags.b.port_connect_status_change = 1;
1781         hsotg->flags.b.port_connect_status = 0;
1782
1783         /*
1784          * Shutdown any transfers in process by clearing the Tx FIFO Empty
1785          * interrupt mask and status bits and disabling subsequent host
1786          * channel interrupts.
1787          */
1788         intr = dwc2_readl(hsotg, GINTMSK);
1789         intr &= ~(GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT);
1790         dwc2_writel(hsotg, intr, GINTMSK);
1791         intr = GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT;
1792         dwc2_writel(hsotg, intr, GINTSTS);
1793
1794         /*
1795          * Turn off the vbus power only if the core has transitioned to device
1796          * mode. If still in host mode, need to keep power on to detect a
1797          * reconnection.
1798          */
1799         if (dwc2_is_device_mode(hsotg)) {
1800                 if (hsotg->op_state != OTG_STATE_A_SUSPEND) {
1801                         dev_dbg(hsotg->dev, "Disconnect: PortPower off\n");
1802                         dwc2_writel(hsotg, 0, HPRT0);
1803                 }
1804
1805                 dwc2_disable_host_interrupts(hsotg);
1806         }
1807
1808         /* Respond with an error status to all URBs in the schedule */
1809         dwc2_kill_all_urbs(hsotg);
1810
1811         if (dwc2_is_host_mode(hsotg))
1812                 /* Clean up any host channels that were in use */
1813                 dwc2_hcd_cleanup_channels(hsotg);
1814
1815         dwc2_host_disconnect(hsotg);
1816
1817         /*
1818          * Add an extra check here to see if we're actually connected but
1819          * we don't have a detection interrupt pending.  This can happen if:
1820          *   1. hardware sees connect
1821          *   2. hardware sees disconnect
1822          *   3. hardware sees connect
1823          *   4. dwc2_port_intr() - clears connect interrupt
1824          *   5. dwc2_handle_common_intr() - calls here
1825          *
1826          * Without the extra check here we will end calling disconnect
1827          * and won't get any future interrupts to handle the connect.
1828          */
1829         if (!force) {
1830                 hprt0 = dwc2_readl(hsotg, HPRT0);
1831                 if (!(hprt0 & HPRT0_CONNDET) && (hprt0 & HPRT0_CONNSTS))
1832                         dwc2_hcd_connect(hsotg);
1833         }
1834 }
1835
1836 /**
1837  * dwc2_hcd_rem_wakeup() - Handles Remote Wakeup
1838  *
1839  * @hsotg: Pointer to struct dwc2_hsotg
1840  */
1841 static void dwc2_hcd_rem_wakeup(struct dwc2_hsotg *hsotg)
1842 {
1843         if (hsotg->bus_suspended) {
1844                 hsotg->flags.b.port_suspend_change = 1;
1845                 usb_hcd_resume_root_hub(hsotg->priv);
1846         }
1847
1848         if (hsotg->lx_state == DWC2_L1)
1849                 hsotg->flags.b.port_l1_change = 1;
1850 }
1851
1852 /**
1853  * dwc2_hcd_stop() - Halts the DWC_otg host mode operations in a clean manner
1854  *
1855  * @hsotg: Pointer to struct dwc2_hsotg
1856  *
1857  * Must be called with interrupt disabled and spinlock held
1858  */
1859 void dwc2_hcd_stop(struct dwc2_hsotg *hsotg)
1860 {
1861         dev_dbg(hsotg->dev, "DWC OTG HCD STOP\n");
1862
1863         /*
1864          * The root hub should be disconnected before this function is called.
1865          * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
1866          * and the QH lists (via ..._hcd_endpoint_disable).
1867          */
1868
1869         /* Turn off all host-specific interrupts */
1870         dwc2_disable_host_interrupts(hsotg);
1871
1872         /* Turn off the vbus power */
1873         dev_dbg(hsotg->dev, "PortPower off\n");
1874         dwc2_writel(hsotg, 0, HPRT0);
1875 }
1876
1877 /* Caller must hold driver lock */
1878 static int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *hsotg,
1879                                 struct dwc2_hcd_urb *urb, struct dwc2_qh *qh,
1880                                 struct dwc2_qtd *qtd)
1881 {
1882         u32 intr_mask;
1883         int retval;
1884         int dev_speed;
1885
1886         if (!hsotg->flags.b.port_connect_status) {
1887                 /* No longer connected */
1888                 dev_err(hsotg->dev, "Not connected\n");
1889                 return -ENODEV;
1890         }
1891
1892         dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
1893
1894         /* Some configurations cannot support LS traffic on a FS root port */
1895         if ((dev_speed == USB_SPEED_LOW) &&
1896             (hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED) &&
1897             (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI)) {
1898                 u32 hprt0 = dwc2_readl(hsotg, HPRT0);
1899                 u32 prtspd = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
1900
1901                 if (prtspd == HPRT0_SPD_FULL_SPEED)
1902                         return -ENODEV;
1903         }
1904
1905         if (!qtd)
1906                 return -EINVAL;
1907
1908         dwc2_hcd_qtd_init(qtd, urb);
1909         retval = dwc2_hcd_qtd_add(hsotg, qtd, qh);
1910         if (retval) {
1911                 dev_err(hsotg->dev,
1912                         "DWC OTG HCD URB Enqueue failed adding QTD. Error status %d\n",
1913                         retval);
1914                 return retval;
1915         }
1916
1917         intr_mask = dwc2_readl(hsotg, GINTMSK);
1918         if (!(intr_mask & GINTSTS_SOF)) {
1919                 enum dwc2_transaction_type tr_type;
1920
1921                 if (qtd->qh->ep_type == USB_ENDPOINT_XFER_BULK &&
1922                     !(qtd->urb->flags & URB_GIVEBACK_ASAP))
1923                         /*
1924                          * Do not schedule SG transactions until qtd has
1925                          * URB_GIVEBACK_ASAP set
1926                          */
1927                         return 0;
1928
1929                 tr_type = dwc2_hcd_select_transactions(hsotg);
1930                 if (tr_type != DWC2_TRANSACTION_NONE)
1931                         dwc2_hcd_queue_transactions(hsotg, tr_type);
1932         }
1933
1934         return 0;
1935 }
1936
1937 /* Must be called with interrupt disabled and spinlock held */
1938 static int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *hsotg,
1939                                 struct dwc2_hcd_urb *urb)
1940 {
1941         struct dwc2_qh *qh;
1942         struct dwc2_qtd *urb_qtd;
1943
1944         urb_qtd = urb->qtd;
1945         if (!urb_qtd) {
1946                 dev_dbg(hsotg->dev, "## Urb QTD is NULL ##\n");
1947                 return -EINVAL;
1948         }
1949
1950         qh = urb_qtd->qh;
1951         if (!qh) {
1952                 dev_dbg(hsotg->dev, "## Urb QTD QH is NULL ##\n");
1953                 return -EINVAL;
1954         }
1955
1956         urb->priv = NULL;
1957
1958         if (urb_qtd->in_process && qh->channel) {
1959                 dwc2_dump_channel_info(hsotg, qh->channel);
1960
1961                 /* The QTD is in process (it has been assigned to a channel) */
1962                 if (hsotg->flags.b.port_connect_status)
1963                         /*
1964                          * If still connected (i.e. in host mode), halt the
1965                          * channel so it can be used for other transfers. If
1966                          * no longer connected, the host registers can't be
1967                          * written to halt the channel since the core is in
1968                          * device mode.
1969                          */
1970                         dwc2_hc_halt(hsotg, qh->channel,
1971                                      DWC2_HC_XFER_URB_DEQUEUE);
1972         }
1973
1974         /*
1975          * Free the QTD and clean up the associated QH. Leave the QH in the
1976          * schedule if it has any remaining QTDs.
1977          */
1978         if (!hsotg->params.dma_desc_enable) {
1979                 u8 in_process = urb_qtd->in_process;
1980
1981                 dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
1982                 if (in_process) {
1983                         dwc2_hcd_qh_deactivate(hsotg, qh, 0);
1984                         qh->channel = NULL;
1985                 } else if (list_empty(&qh->qtd_list)) {
1986                         dwc2_hcd_qh_unlink(hsotg, qh);
1987                 }
1988         } else {
1989                 dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
1990         }
1991
1992         return 0;
1993 }
1994
1995 /* Must NOT be called with interrupt disabled or spinlock held */
1996 static int dwc2_hcd_endpoint_disable(struct dwc2_hsotg *hsotg,
1997                                      struct usb_host_endpoint *ep, int retry)
1998 {
1999         struct dwc2_qtd *qtd, *qtd_tmp;
2000         struct dwc2_qh *qh;
2001         unsigned long flags;
2002         int rc;
2003
2004         spin_lock_irqsave(&hsotg->lock, flags);
2005
2006         qh = ep->hcpriv;
2007         if (!qh) {
2008                 rc = -EINVAL;
2009                 goto err;
2010         }
2011
2012         while (!list_empty(&qh->qtd_list) && retry--) {
2013                 if (retry == 0) {
2014                         dev_err(hsotg->dev,
2015                                 "## timeout in dwc2_hcd_endpoint_disable() ##\n");
2016                         rc = -EBUSY;
2017                         goto err;
2018                 }
2019
2020                 spin_unlock_irqrestore(&hsotg->lock, flags);
2021                 msleep(20);
2022                 spin_lock_irqsave(&hsotg->lock, flags);
2023                 qh = ep->hcpriv;
2024                 if (!qh) {
2025                         rc = -EINVAL;
2026                         goto err;
2027                 }
2028         }
2029
2030         dwc2_hcd_qh_unlink(hsotg, qh);
2031
2032         /* Free each QTD in the QH's QTD list */
2033         list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry)
2034                 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
2035
2036         ep->hcpriv = NULL;
2037
2038         if (qh->channel && qh->channel->qh == qh)
2039                 qh->channel->qh = NULL;
2040
2041         spin_unlock_irqrestore(&hsotg->lock, flags);
2042
2043         dwc2_hcd_qh_free(hsotg, qh);
2044
2045         return 0;
2046
2047 err:
2048         ep->hcpriv = NULL;
2049         spin_unlock_irqrestore(&hsotg->lock, flags);
2050
2051         return rc;
2052 }
2053
2054 /* Must be called with interrupt disabled and spinlock held */
2055 static int dwc2_hcd_endpoint_reset(struct dwc2_hsotg *hsotg,
2056                                    struct usb_host_endpoint *ep)
2057 {
2058         struct dwc2_qh *qh = ep->hcpriv;
2059
2060         if (!qh)
2061                 return -EINVAL;
2062
2063         qh->data_toggle = DWC2_HC_PID_DATA0;
2064
2065         return 0;
2066 }
2067
2068 /**
2069  * dwc2_core_init() - Initializes the DWC_otg controller registers and
2070  * prepares the core for device mode or host mode operation
2071  *
2072  * @hsotg:         Programming view of the DWC_otg controller
2073  * @initial_setup: If true then this is the first init for this instance.
2074  */
2075 int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
2076 {
2077         u32 usbcfg, otgctl;
2078         int retval;
2079
2080         dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2081
2082         usbcfg = dwc2_readl(hsotg, GUSBCFG);
2083
2084         /* Set ULPI External VBUS bit if needed */
2085         usbcfg &= ~GUSBCFG_ULPI_EXT_VBUS_DRV;
2086         if (hsotg->params.phy_ulpi_ext_vbus)
2087                 usbcfg |= GUSBCFG_ULPI_EXT_VBUS_DRV;
2088
2089         /* Set external TS Dline pulsing bit if needed */
2090         usbcfg &= ~GUSBCFG_TERMSELDLPULSE;
2091         if (hsotg->params.ts_dline)
2092                 usbcfg |= GUSBCFG_TERMSELDLPULSE;
2093
2094         dwc2_writel(hsotg, usbcfg, GUSBCFG);
2095
2096         /*
2097          * Reset the Controller
2098          *
2099          * We only need to reset the controller if this is a re-init.
2100          * For the first init we know for sure that earlier code reset us (it
2101          * needed to in order to properly detect various parameters).
2102          */
2103         if (!initial_setup) {
2104                 retval = dwc2_core_reset(hsotg, false);
2105                 if (retval) {
2106                         dev_err(hsotg->dev, "%s(): Reset failed, aborting\n",
2107                                 __func__);
2108                         return retval;
2109                 }
2110         }
2111
2112         /*
2113          * This needs to happen in FS mode before any other programming occurs
2114          */
2115         retval = dwc2_phy_init(hsotg, initial_setup);
2116         if (retval)
2117                 return retval;
2118
2119         /* Program the GAHBCFG Register */
2120         retval = dwc2_gahbcfg_init(hsotg);
2121         if (retval)
2122                 return retval;
2123
2124         /* Program the GUSBCFG register */
2125         dwc2_gusbcfg_init(hsotg);
2126
2127         /* Program the GOTGCTL register */
2128         otgctl = dwc2_readl(hsotg, GOTGCTL);
2129         otgctl &= ~GOTGCTL_OTGVER;
2130         dwc2_writel(hsotg, otgctl, GOTGCTL);
2131
2132         /* Clear the SRP success bit for FS-I2c */
2133         hsotg->srp_success = 0;
2134
2135         /* Enable common interrupts */
2136         dwc2_enable_common_interrupts(hsotg);
2137
2138         /*
2139          * Do device or host initialization based on mode during PCD and
2140          * HCD initialization
2141          */
2142         if (dwc2_is_host_mode(hsotg)) {
2143                 dev_dbg(hsotg->dev, "Host Mode\n");
2144                 hsotg->op_state = OTG_STATE_A_HOST;
2145         } else {
2146                 dev_dbg(hsotg->dev, "Device Mode\n");
2147                 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
2148         }
2149
2150         return 0;
2151 }
2152
2153 /**
2154  * dwc2_core_host_init() - Initializes the DWC_otg controller registers for
2155  * Host mode
2156  *
2157  * @hsotg: Programming view of DWC_otg controller
2158  *
2159  * This function flushes the Tx and Rx FIFOs and flushes any entries in the
2160  * request queues. Host channels are reset to ensure that they are ready for
2161  * performing transfers.
2162  */
2163 static void dwc2_core_host_init(struct dwc2_hsotg *hsotg)
2164 {
2165         u32 hcfg, hfir, otgctl, usbcfg;
2166
2167         dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2168
2169         /* Set HS/FS Timeout Calibration to 7 (max available value).
2170          * The number of PHY clocks that the application programs in
2171          * this field is added to the high/full speed interpacket timeout
2172          * duration in the core to account for any additional delays
2173          * introduced by the PHY. This can be required, because the delay
2174          * introduced by the PHY in generating the linestate condition
2175          * can vary from one PHY to another.
2176          */
2177         usbcfg = dwc2_readl(hsotg, GUSBCFG);
2178         usbcfg |= GUSBCFG_TOUTCAL(7);
2179         dwc2_writel(hsotg, usbcfg, GUSBCFG);
2180
2181         /* Restart the Phy Clock */
2182         dwc2_writel(hsotg, 0, PCGCTL);
2183
2184         /* Initialize Host Configuration Register */
2185         dwc2_init_fs_ls_pclk_sel(hsotg);
2186         if (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
2187             hsotg->params.speed == DWC2_SPEED_PARAM_LOW) {
2188                 hcfg = dwc2_readl(hsotg, HCFG);
2189                 hcfg |= HCFG_FSLSSUPP;
2190                 dwc2_writel(hsotg, hcfg, HCFG);
2191         }
2192
2193         /*
2194          * This bit allows dynamic reloading of the HFIR register during
2195          * runtime. This bit needs to be programmed during initial configuration
2196          * and its value must not be changed during runtime.
2197          */
2198         if (hsotg->params.reload_ctl) {
2199                 hfir = dwc2_readl(hsotg, HFIR);
2200                 hfir |= HFIR_RLDCTRL;
2201                 dwc2_writel(hsotg, hfir, HFIR);
2202         }
2203
2204         if (hsotg->params.dma_desc_enable) {
2205                 u32 op_mode = hsotg->hw_params.op_mode;
2206
2207                 if (hsotg->hw_params.snpsid < DWC2_CORE_REV_2_90a ||
2208                     !hsotg->hw_params.dma_desc_enable ||
2209                     op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE ||
2210                     op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE ||
2211                     op_mode == GHWCFG2_OP_MODE_UNDEFINED) {
2212                         dev_err(hsotg->dev,
2213                                 "Hardware does not support descriptor DMA mode -\n");
2214                         dev_err(hsotg->dev,
2215                                 "falling back to buffer DMA mode.\n");
2216                         hsotg->params.dma_desc_enable = false;
2217                 } else {
2218                         hcfg = dwc2_readl(hsotg, HCFG);
2219                         hcfg |= HCFG_DESCDMA;
2220                         dwc2_writel(hsotg, hcfg, HCFG);
2221                 }
2222         }
2223
2224         /* Configure data FIFO sizes */
2225         dwc2_config_fifos(hsotg);
2226
2227         /* TODO - check this */
2228         /* Clear Host Set HNP Enable in the OTG Control Register */
2229         otgctl = dwc2_readl(hsotg, GOTGCTL);
2230         otgctl &= ~GOTGCTL_HSTSETHNPEN;
2231         dwc2_writel(hsotg, otgctl, GOTGCTL);
2232
2233         /* Make sure the FIFOs are flushed */
2234         dwc2_flush_tx_fifo(hsotg, 0x10 /* all TX FIFOs */);
2235         dwc2_flush_rx_fifo(hsotg);
2236
2237         /* Clear Host Set HNP Enable in the OTG Control Register */
2238         otgctl = dwc2_readl(hsotg, GOTGCTL);
2239         otgctl &= ~GOTGCTL_HSTSETHNPEN;
2240         dwc2_writel(hsotg, otgctl, GOTGCTL);
2241
2242         if (!hsotg->params.dma_desc_enable) {
2243                 int num_channels, i;
2244                 u32 hcchar;
2245
2246                 /* Flush out any leftover queued requests */
2247                 num_channels = hsotg->params.host_channels;
2248                 for (i = 0; i < num_channels; i++) {
2249                         hcchar = dwc2_readl(hsotg, HCCHAR(i));
2250                         if (hcchar & HCCHAR_CHENA) {
2251                                 hcchar &= ~HCCHAR_CHENA;
2252                                 hcchar |= HCCHAR_CHDIS;
2253                                 hcchar &= ~HCCHAR_EPDIR;
2254                                 dwc2_writel(hsotg, hcchar, HCCHAR(i));
2255                         }
2256                 }
2257
2258                 /* Halt all channels to put them into a known state */
2259                 for (i = 0; i < num_channels; i++) {
2260                         hcchar = dwc2_readl(hsotg, HCCHAR(i));
2261                         if (hcchar & HCCHAR_CHENA) {
2262                                 hcchar |= HCCHAR_CHENA | HCCHAR_CHDIS;
2263                                 hcchar &= ~HCCHAR_EPDIR;
2264                                 dwc2_writel(hsotg, hcchar, HCCHAR(i));
2265                                 dev_dbg(hsotg->dev, "%s: Halt channel %d\n",
2266                                         __func__, i);
2267
2268                                 if (dwc2_hsotg_wait_bit_clear(hsotg, HCCHAR(i),
2269                                                               HCCHAR_CHENA,
2270                                                               1000)) {
2271                                         dev_warn(hsotg->dev,
2272                                                  "Unable to clear enable on channel %d\n",
2273                                                  i);
2274                                 }
2275                         }
2276                 }
2277         }
2278
2279         /* Enable ACG feature in host mode, if supported */
2280         dwc2_enable_acg(hsotg);
2281
2282         /* Turn on the vbus power */
2283         dev_dbg(hsotg->dev, "Init: Port Power? op_state=%d\n", hsotg->op_state);
2284         if (hsotg->op_state == OTG_STATE_A_HOST) {
2285                 u32 hprt0 = dwc2_read_hprt0(hsotg);
2286
2287                 dev_dbg(hsotg->dev, "Init: Power Port (%d)\n",
2288                         !!(hprt0 & HPRT0_PWR));
2289                 if (!(hprt0 & HPRT0_PWR)) {
2290                         hprt0 |= HPRT0_PWR;
2291                         dwc2_writel(hsotg, hprt0, HPRT0);
2292                 }
2293         }
2294
2295         dwc2_enable_host_interrupts(hsotg);
2296 }
2297
2298 /*
2299  * Initializes dynamic portions of the DWC_otg HCD state
2300  *
2301  * Must be called with interrupt disabled and spinlock held
2302  */
2303 static void dwc2_hcd_reinit(struct dwc2_hsotg *hsotg)
2304 {
2305         struct dwc2_host_chan *chan, *chan_tmp;
2306         int num_channels;
2307         int i;
2308
2309         hsotg->flags.d32 = 0;
2310         hsotg->non_periodic_qh_ptr = &hsotg->non_periodic_sched_active;
2311
2312         if (hsotg->params.uframe_sched) {
2313                 hsotg->available_host_channels =
2314                         hsotg->params.host_channels;
2315         } else {
2316                 hsotg->non_periodic_channels = 0;
2317                 hsotg->periodic_channels = 0;
2318         }
2319
2320         /*
2321          * Put all channels in the free channel list and clean up channel
2322          * states
2323          */
2324         list_for_each_entry_safe(chan, chan_tmp, &hsotg->free_hc_list,
2325                                  hc_list_entry)
2326                 list_del_init(&chan->hc_list_entry);
2327
2328         num_channels = hsotg->params.host_channels;
2329         for (i = 0; i < num_channels; i++) {
2330                 chan = hsotg->hc_ptr_array[i];
2331                 list_add_tail(&chan->hc_list_entry, &hsotg->free_hc_list);
2332                 dwc2_hc_cleanup(hsotg, chan);
2333         }
2334
2335         /* Initialize the DWC core for host mode operation */
2336         dwc2_core_host_init(hsotg);
2337 }
2338
2339 static void dwc2_hc_init_split(struct dwc2_hsotg *hsotg,
2340                                struct dwc2_host_chan *chan,
2341                                struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
2342 {
2343         int hub_addr, hub_port;
2344
2345         chan->do_split = 1;
2346         chan->xact_pos = qtd->isoc_split_pos;
2347         chan->complete_split = qtd->complete_split;
2348         dwc2_host_hub_info(hsotg, urb->priv, &hub_addr, &hub_port);
2349         chan->hub_addr = (u8)hub_addr;
2350         chan->hub_port = (u8)hub_port;
2351 }
2352
2353 static void dwc2_hc_init_xfer(struct dwc2_hsotg *hsotg,
2354                               struct dwc2_host_chan *chan,
2355                               struct dwc2_qtd *qtd)
2356 {
2357         struct dwc2_hcd_urb *urb = qtd->urb;
2358         struct dwc2_hcd_iso_packet_desc *frame_desc;
2359
2360         switch (dwc2_hcd_get_pipe_type(&urb->pipe_info)) {
2361         case USB_ENDPOINT_XFER_CONTROL:
2362                 chan->ep_type = USB_ENDPOINT_XFER_CONTROL;
2363
2364                 switch (qtd->control_phase) {
2365                 case DWC2_CONTROL_SETUP:
2366                         dev_vdbg(hsotg->dev, "  Control setup transaction\n");
2367                         chan->do_ping = 0;
2368                         chan->ep_is_in = 0;
2369                         chan->data_pid_start = DWC2_HC_PID_SETUP;
2370                         if (hsotg->params.host_dma)
2371                                 chan->xfer_dma = urb->setup_dma;
2372                         else
2373                                 chan->xfer_buf = urb->setup_packet;
2374                         chan->xfer_len = 8;
2375                         break;
2376
2377                 case DWC2_CONTROL_DATA:
2378                         dev_vdbg(hsotg->dev, "  Control data transaction\n");
2379                         chan->data_pid_start = qtd->data_toggle;
2380                         break;
2381
2382                 case DWC2_CONTROL_STATUS:
2383                         /*
2384                          * Direction is opposite of data direction or IN if no
2385                          * data
2386                          */
2387                         dev_vdbg(hsotg->dev, "  Control status transaction\n");
2388                         if (urb->length == 0)
2389                                 chan->ep_is_in = 1;
2390                         else
2391                                 chan->ep_is_in =
2392                                         dwc2_hcd_is_pipe_out(&urb->pipe_info);
2393                         if (chan->ep_is_in)
2394                                 chan->do_ping = 0;
2395                         chan->data_pid_start = DWC2_HC_PID_DATA1;
2396                         chan->xfer_len = 0;
2397                         if (hsotg->params.host_dma)
2398                                 chan->xfer_dma = hsotg->status_buf_dma;
2399                         else
2400                                 chan->xfer_buf = hsotg->status_buf;
2401                         break;
2402                 }
2403                 break;
2404
2405         case USB_ENDPOINT_XFER_BULK:
2406                 chan->ep_type = USB_ENDPOINT_XFER_BULK;
2407                 break;
2408
2409         case USB_ENDPOINT_XFER_INT:
2410                 chan->ep_type = USB_ENDPOINT_XFER_INT;
2411                 break;
2412
2413         case USB_ENDPOINT_XFER_ISOC:
2414                 chan->ep_type = USB_ENDPOINT_XFER_ISOC;
2415                 if (hsotg->params.dma_desc_enable)
2416                         break;
2417
2418                 frame_desc = &urb->iso_descs[qtd->isoc_frame_index];
2419                 frame_desc->status = 0;
2420
2421                 if (hsotg->params.host_dma) {
2422                         chan->xfer_dma = urb->dma;
2423                         chan->xfer_dma += frame_desc->offset +
2424                                         qtd->isoc_split_offset;
2425                 } else {
2426                         chan->xfer_buf = urb->buf;
2427                         chan->xfer_buf += frame_desc->offset +
2428                                         qtd->isoc_split_offset;
2429                 }
2430
2431                 chan->xfer_len = frame_desc->length - qtd->isoc_split_offset;
2432
2433                 if (chan->xact_pos == DWC2_HCSPLT_XACTPOS_ALL) {
2434                         if (chan->xfer_len <= 188)
2435                                 chan->xact_pos = DWC2_HCSPLT_XACTPOS_ALL;
2436                         else
2437                                 chan->xact_pos = DWC2_HCSPLT_XACTPOS_BEGIN;
2438                 }
2439                 break;
2440         }
2441 }
2442
2443 static int dwc2_alloc_split_dma_aligned_buf(struct dwc2_hsotg *hsotg,
2444                                             struct dwc2_qh *qh,
2445                                             struct dwc2_host_chan *chan)
2446 {
2447         if (!hsotg->unaligned_cache ||
2448             chan->max_packet > DWC2_KMEM_UNALIGNED_BUF_SIZE)
2449                 return -ENOMEM;
2450
2451         if (!qh->dw_align_buf) {
2452                 qh->dw_align_buf = kmem_cache_alloc(hsotg->unaligned_cache,
2453                                                     GFP_ATOMIC | GFP_DMA);
2454                 if (!qh->dw_align_buf)
2455                         return -ENOMEM;
2456         }
2457
2458         qh->dw_align_buf_dma = dma_map_single(hsotg->dev, qh->dw_align_buf,
2459                                               DWC2_KMEM_UNALIGNED_BUF_SIZE,
2460                                               DMA_FROM_DEVICE);
2461
2462         if (dma_mapping_error(hsotg->dev, qh->dw_align_buf_dma)) {
2463                 dev_err(hsotg->dev, "can't map align_buf\n");
2464                 chan->align_buf = 0;
2465                 return -EINVAL;
2466         }
2467
2468         chan->align_buf = qh->dw_align_buf_dma;
2469         return 0;
2470 }
2471
2472 #define DWC2_USB_DMA_ALIGN 4
2473
2474 static void dwc2_free_dma_aligned_buffer(struct urb *urb)
2475 {
2476         void *stored_xfer_buffer;
2477         size_t length;
2478
2479         if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER))
2480                 return;
2481
2482         /* Restore urb->transfer_buffer from the end of the allocated area */
2483         memcpy(&stored_xfer_buffer,
2484                PTR_ALIGN(urb->transfer_buffer + urb->transfer_buffer_length,
2485                          dma_get_cache_alignment()),
2486                sizeof(urb->transfer_buffer));
2487
2488         if (usb_urb_dir_in(urb)) {
2489                 if (usb_pipeisoc(urb->pipe))
2490                         length = urb->transfer_buffer_length;
2491                 else
2492                         length = urb->actual_length;
2493
2494                 memcpy(stored_xfer_buffer, urb->transfer_buffer, length);
2495         }
2496         kfree(urb->transfer_buffer);
2497         urb->transfer_buffer = stored_xfer_buffer;
2498
2499         urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER;
2500 }
2501
2502 static int dwc2_alloc_dma_aligned_buffer(struct urb *urb, gfp_t mem_flags)
2503 {
2504         void *kmalloc_ptr;
2505         size_t kmalloc_size;
2506
2507         if (urb->num_sgs || urb->sg ||
2508             urb->transfer_buffer_length == 0 ||
2509             !((uintptr_t)urb->transfer_buffer & (DWC2_USB_DMA_ALIGN - 1)))
2510                 return 0;
2511
2512         /*
2513          * Allocate a buffer with enough padding for original transfer_buffer
2514          * pointer. This allocation is guaranteed to be aligned properly for
2515          * DMA
2516          */
2517         kmalloc_size = urb->transfer_buffer_length +
2518                 (dma_get_cache_alignment() - 1) +
2519                 sizeof(urb->transfer_buffer);
2520
2521         kmalloc_ptr = kmalloc(kmalloc_size, mem_flags);
2522         if (!kmalloc_ptr)
2523                 return -ENOMEM;
2524
2525         /*
2526          * Position value of original urb->transfer_buffer pointer to the end
2527          * of allocation for later referencing
2528          */
2529         memcpy(PTR_ALIGN(kmalloc_ptr + urb->transfer_buffer_length,
2530                          dma_get_cache_alignment()),
2531                &urb->transfer_buffer, sizeof(urb->transfer_buffer));
2532
2533         if (usb_urb_dir_out(urb))
2534                 memcpy(kmalloc_ptr, urb->transfer_buffer,
2535                        urb->transfer_buffer_length);
2536         urb->transfer_buffer = kmalloc_ptr;
2537
2538         urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER;
2539
2540         return 0;
2541 }
2542
2543 static int dwc2_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
2544                                 gfp_t mem_flags)
2545 {
2546         int ret;
2547
2548         /* We assume setup_dma is always aligned; warn if not */
2549         WARN_ON_ONCE(urb->setup_dma &&
2550                      (urb->setup_dma & (DWC2_USB_DMA_ALIGN - 1)));
2551
2552         ret = dwc2_alloc_dma_aligned_buffer(urb, mem_flags);
2553         if (ret)
2554                 return ret;
2555
2556         ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
2557         if (ret)
2558                 dwc2_free_dma_aligned_buffer(urb);
2559
2560         return ret;
2561 }
2562
2563 static void dwc2_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
2564 {
2565         usb_hcd_unmap_urb_for_dma(hcd, urb);
2566         dwc2_free_dma_aligned_buffer(urb);
2567 }
2568
2569 /**
2570  * dwc2_assign_and_init_hc() - Assigns transactions from a QTD to a free host
2571  * channel and initializes the host channel to perform the transactions. The
2572  * host channel is removed from the free list.
2573  *
2574  * @hsotg: The HCD state structure
2575  * @qh:    Transactions from the first QTD for this QH are selected and assigned
2576  *         to a free host channel
2577  */
2578 static int dwc2_assign_and_init_hc(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
2579 {
2580         struct dwc2_host_chan *chan;
2581         struct dwc2_hcd_urb *urb;
2582         struct dwc2_qtd *qtd;
2583
2584         if (dbg_qh(qh))
2585                 dev_vdbg(hsotg->dev, "%s(%p,%p)\n", __func__, hsotg, qh);
2586
2587         if (list_empty(&qh->qtd_list)) {
2588                 dev_dbg(hsotg->dev, "No QTDs in QH list\n");
2589                 return -ENOMEM;
2590         }
2591
2592         if (list_empty(&hsotg->free_hc_list)) {
2593                 dev_dbg(hsotg->dev, "No free channel to assign\n");
2594                 return -ENOMEM;
2595         }
2596
2597         chan = list_first_entry(&hsotg->free_hc_list, struct dwc2_host_chan,
2598                                 hc_list_entry);
2599
2600         /* Remove host channel from free list */
2601         list_del_init(&chan->hc_list_entry);
2602
2603         qtd = list_first_entry(&qh->qtd_list, struct dwc2_qtd, qtd_list_entry);
2604         urb = qtd->urb;
2605         qh->channel = chan;
2606         qtd->in_process = 1;
2607
2608         /*
2609          * Use usb_pipedevice to determine device address. This address is
2610          * 0 before the SET_ADDRESS command and the correct address afterward.
2611          */
2612         chan->dev_addr = dwc2_hcd_get_dev_addr(&urb->pipe_info);
2613         chan->ep_num = dwc2_hcd_get_ep_num(&urb->pipe_info);
2614         chan->speed = qh->dev_speed;
2615         chan->max_packet = qh->maxp;
2616
2617         chan->xfer_started = 0;
2618         chan->halt_status = DWC2_HC_XFER_NO_HALT_STATUS;
2619         chan->error_state = (qtd->error_count > 0);
2620         chan->halt_on_queue = 0;
2621         chan->halt_pending = 0;
2622         chan->requests = 0;
2623
2624         /*
2625          * The following values may be modified in the transfer type section
2626          * below. The xfer_len value may be reduced when the transfer is
2627          * started to accommodate the max widths of the XferSize and PktCnt
2628          * fields in the HCTSIZn register.
2629          */
2630
2631         chan->ep_is_in = (dwc2_hcd_is_pipe_in(&urb->pipe_info) != 0);
2632         if (chan->ep_is_in)
2633                 chan->do_ping = 0;
2634         else
2635                 chan->do_ping = qh->ping_state;
2636
2637         chan->data_pid_start = qh->data_toggle;
2638         chan->multi_count = 1;
2639
2640         if (urb->actual_length > urb->length &&
2641             !dwc2_hcd_is_pipe_in(&urb->pipe_info))
2642                 urb->actual_length = urb->length;
2643
2644         if (hsotg->params.host_dma)
2645                 chan->xfer_dma = urb->dma + urb->actual_length;
2646         else
2647                 chan->xfer_buf = (u8 *)urb->buf + urb->actual_length;
2648
2649         chan->xfer_len = urb->length - urb->actual_length;
2650         chan->xfer_count = 0;
2651
2652         /* Set the split attributes if required */
2653         if (qh->do_split)
2654                 dwc2_hc_init_split(hsotg, chan, qtd, urb);
2655         else
2656                 chan->do_split = 0;
2657
2658         /* Set the transfer attributes */
2659         dwc2_hc_init_xfer(hsotg, chan, qtd);
2660
2661         /* For non-dword aligned buffers */
2662         if (hsotg->params.host_dma && qh->do_split &&
2663             chan->ep_is_in && (chan->xfer_dma & 0x3)) {
2664                 dev_vdbg(hsotg->dev, "Non-aligned buffer\n");
2665                 if (dwc2_alloc_split_dma_aligned_buf(hsotg, qh, chan)) {
2666                         dev_err(hsotg->dev,
2667                                 "Failed to allocate memory to handle non-aligned buffer\n");
2668                         /* Add channel back to free list */
2669                         chan->align_buf = 0;
2670                         chan->multi_count = 0;
2671                         list_add_tail(&chan->hc_list_entry,
2672                                       &hsotg->free_hc_list);
2673                         qtd->in_process = 0;
2674                         qh->channel = NULL;
2675                         return -ENOMEM;
2676                 }
2677         } else {
2678                 /*
2679                  * We assume that DMA is always aligned in non-split
2680                  * case or split out case. Warn if not.
2681                  */
2682                 WARN_ON_ONCE(hsotg->params.host_dma &&
2683                              (chan->xfer_dma & 0x3));
2684                 chan->align_buf = 0;
2685         }
2686
2687         if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
2688             chan->ep_type == USB_ENDPOINT_XFER_ISOC)
2689                 /*
2690                  * This value may be modified when the transfer is started
2691                  * to reflect the actual transfer length
2692                  */
2693                 chan->multi_count = qh->maxp_mult;
2694
2695         if (hsotg->params.dma_desc_enable) {
2696                 chan->desc_list_addr = qh->desc_list_dma;
2697                 chan->desc_list_sz = qh->desc_list_sz;
2698         }
2699
2700         dwc2_hc_init(hsotg, chan);
2701         chan->qh = qh;
2702
2703         return 0;
2704 }
2705
2706 /**
2707  * dwc2_hcd_select_transactions() - Selects transactions from the HCD transfer
2708  * schedule and assigns them to available host channels. Called from the HCD
2709  * interrupt handler functions.
2710  *
2711  * @hsotg: The HCD state structure
2712  *
2713  * Return: The types of new transactions that were assigned to host channels
2714  */
2715 enum dwc2_transaction_type dwc2_hcd_select_transactions(
2716                 struct dwc2_hsotg *hsotg)
2717 {
2718         enum dwc2_transaction_type ret_val = DWC2_TRANSACTION_NONE;
2719         struct list_head *qh_ptr;
2720         struct dwc2_qh *qh;
2721         int num_channels;
2722
2723 #ifdef DWC2_DEBUG_SOF
2724         dev_vdbg(hsotg->dev, "  Select Transactions\n");
2725 #endif
2726
2727         /* Process entries in the periodic ready list */
2728         qh_ptr = hsotg->periodic_sched_ready.next;
2729         while (qh_ptr != &hsotg->periodic_sched_ready) {
2730                 if (list_empty(&hsotg->free_hc_list))
2731                         break;
2732                 if (hsotg->params.uframe_sched) {
2733                         if (hsotg->available_host_channels <= 1)
2734                                 break;
2735                         hsotg->available_host_channels--;
2736                 }
2737                 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2738                 if (dwc2_assign_and_init_hc(hsotg, qh))
2739                         break;
2740
2741                 /*
2742                  * Move the QH from the periodic ready schedule to the
2743                  * periodic assigned schedule
2744                  */
2745                 qh_ptr = qh_ptr->next;
2746                 list_move_tail(&qh->qh_list_entry,
2747                                &hsotg->periodic_sched_assigned);
2748                 ret_val = DWC2_TRANSACTION_PERIODIC;
2749         }
2750
2751         /*
2752          * Process entries in the inactive portion of the non-periodic
2753          * schedule. Some free host channels may not be used if they are
2754          * reserved for periodic transfers.
2755          */
2756         num_channels = hsotg->params.host_channels;
2757         qh_ptr = hsotg->non_periodic_sched_inactive.next;
2758         while (qh_ptr != &hsotg->non_periodic_sched_inactive) {
2759                 if (!hsotg->params.uframe_sched &&
2760                     hsotg->non_periodic_channels >= num_channels -
2761                                                 hsotg->periodic_channels)
2762                         break;
2763                 if (list_empty(&hsotg->free_hc_list))
2764                         break;
2765                 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2766                 if (hsotg->params.uframe_sched) {
2767                         if (hsotg->available_host_channels < 1)
2768                                 break;
2769                         hsotg->available_host_channels--;
2770                 }
2771
2772                 if (dwc2_assign_and_init_hc(hsotg, qh))
2773                         break;
2774
2775                 /*
2776                  * Move the QH from the non-periodic inactive schedule to the
2777                  * non-periodic active schedule
2778                  */
2779                 qh_ptr = qh_ptr->next;
2780                 list_move_tail(&qh->qh_list_entry,
2781                                &hsotg->non_periodic_sched_active);
2782
2783                 if (ret_val == DWC2_TRANSACTION_NONE)
2784                         ret_val = DWC2_TRANSACTION_NON_PERIODIC;
2785                 else
2786                         ret_val = DWC2_TRANSACTION_ALL;
2787
2788                 if (!hsotg->params.uframe_sched)
2789                         hsotg->non_periodic_channels++;
2790         }
2791
2792         return ret_val;
2793 }
2794
2795 /**
2796  * dwc2_queue_transaction() - Attempts to queue a single transaction request for
2797  * a host channel associated with either a periodic or non-periodic transfer
2798  *
2799  * @hsotg: The HCD state structure
2800  * @chan:  Host channel descriptor associated with either a periodic or
2801  *         non-periodic transfer
2802  * @fifo_dwords_avail: Number of DWORDs available in the periodic Tx FIFO
2803  *                     for periodic transfers or the non-periodic Tx FIFO
2804  *                     for non-periodic transfers
2805  *
2806  * Return: 1 if a request is queued and more requests may be needed to
2807  * complete the transfer, 0 if no more requests are required for this
2808  * transfer, -1 if there is insufficient space in the Tx FIFO
2809  *
2810  * This function assumes that there is space available in the appropriate
2811  * request queue. For an OUT transfer or SETUP transaction in Slave mode,
2812  * it checks whether space is available in the appropriate Tx FIFO.
2813  *
2814  * Must be called with interrupt disabled and spinlock held
2815  */
2816 static int dwc2_queue_transaction(struct dwc2_hsotg *hsotg,
2817                                   struct dwc2_host_chan *chan,
2818                                   u16 fifo_dwords_avail)
2819 {
2820         int retval = 0;
2821
2822         if (chan->do_split)
2823                 /* Put ourselves on the list to keep order straight */
2824                 list_move_tail(&chan->split_order_list_entry,
2825                                &hsotg->split_order);
2826
2827         if (hsotg->params.host_dma) {
2828                 if (hsotg->params.dma_desc_enable) {
2829                         if (!chan->xfer_started ||
2830                             chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
2831                                 dwc2_hcd_start_xfer_ddma(hsotg, chan->qh);
2832                                 chan->qh->ping_state = 0;
2833                         }
2834                 } else if (!chan->xfer_started) {
2835                         dwc2_hc_start_transfer(hsotg, chan);
2836                         chan->qh->ping_state = 0;
2837                 }
2838         } else if (chan->halt_pending) {
2839                 /* Don't queue a request if the channel has been halted */
2840         } else if (chan->halt_on_queue) {
2841                 dwc2_hc_halt(hsotg, chan, chan->halt_status);
2842         } else if (chan->do_ping) {
2843                 if (!chan->xfer_started)
2844                         dwc2_hc_start_transfer(hsotg, chan);
2845         } else if (!chan->ep_is_in ||
2846                    chan->data_pid_start == DWC2_HC_PID_SETUP) {
2847                 if ((fifo_dwords_avail * 4) >= chan->max_packet) {
2848                         if (!chan->xfer_started) {
2849                                 dwc2_hc_start_transfer(hsotg, chan);
2850                                 retval = 1;
2851                         } else {
2852                                 retval = dwc2_hc_continue_transfer(hsotg, chan);
2853                         }
2854                 } else {
2855                         retval = -1;
2856                 }
2857         } else {
2858                 if (!chan->xfer_started) {
2859                         dwc2_hc_start_transfer(hsotg, chan);
2860                         retval = 1;
2861                 } else {
2862                         retval = dwc2_hc_continue_transfer(hsotg, chan);
2863                 }
2864         }
2865
2866         return retval;
2867 }
2868
2869 /*
2870  * Processes periodic channels for the next frame and queues transactions for
2871  * these channels to the DWC_otg controller. After queueing transactions, the
2872  * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
2873  * to queue as Periodic Tx FIFO or request queue space becomes available.
2874  * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
2875  *
2876  * Must be called with interrupt disabled and spinlock held
2877  */
2878 static void dwc2_process_periodic_channels(struct dwc2_hsotg *hsotg)
2879 {
2880         struct list_head *qh_ptr;
2881         struct dwc2_qh *qh;
2882         u32 tx_status;
2883         u32 fspcavail;
2884         u32 gintmsk;
2885         int status;
2886         bool no_queue_space = false;
2887         bool no_fifo_space = false;
2888         u32 qspcavail;
2889
2890         /* If empty list then just adjust interrupt enables */
2891         if (list_empty(&hsotg->periodic_sched_assigned))
2892                 goto exit;
2893
2894         if (dbg_perio())
2895                 dev_vdbg(hsotg->dev, "Queue periodic transactions\n");
2896
2897         tx_status = dwc2_readl(hsotg, HPTXSTS);
2898         qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2899                     TXSTS_QSPCAVAIL_SHIFT;
2900         fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2901                     TXSTS_FSPCAVAIL_SHIFT;
2902
2903         if (dbg_perio()) {
2904                 dev_vdbg(hsotg->dev, "  P Tx Req Queue Space Avail (before queue): %d\n",
2905                          qspcavail);
2906                 dev_vdbg(hsotg->dev, "  P Tx FIFO Space Avail (before queue): %d\n",
2907                          fspcavail);
2908         }
2909
2910         qh_ptr = hsotg->periodic_sched_assigned.next;
2911         while (qh_ptr != &hsotg->periodic_sched_assigned) {
2912                 tx_status = dwc2_readl(hsotg, HPTXSTS);
2913                 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2914                             TXSTS_QSPCAVAIL_SHIFT;
2915                 if (qspcavail == 0) {
2916                         no_queue_space = true;
2917                         break;
2918                 }
2919
2920                 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2921                 if (!qh->channel) {
2922                         qh_ptr = qh_ptr->next;
2923                         continue;
2924                 }
2925
2926                 /* Make sure EP's TT buffer is clean before queueing qtds */
2927                 if (qh->tt_buffer_dirty) {
2928                         qh_ptr = qh_ptr->next;
2929                         continue;
2930                 }
2931
2932                 /*
2933                  * Set a flag if we're queuing high-bandwidth in slave mode.
2934                  * The flag prevents any halts to get into the request queue in
2935                  * the middle of multiple high-bandwidth packets getting queued.
2936                  */
2937                 if (!hsotg->params.host_dma &&
2938                     qh->channel->multi_count > 1)
2939                         hsotg->queuing_high_bandwidth = 1;
2940
2941                 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2942                             TXSTS_FSPCAVAIL_SHIFT;
2943                 status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
2944                 if (status < 0) {
2945                         no_fifo_space = true;
2946                         break;
2947                 }
2948
2949                 /*
2950                  * In Slave mode, stay on the current transfer until there is
2951                  * nothing more to do or the high-bandwidth request count is
2952                  * reached. In DMA mode, only need to queue one request. The
2953                  * controller automatically handles multiple packets for
2954                  * high-bandwidth transfers.
2955                  */
2956                 if (hsotg->params.host_dma || status == 0 ||
2957                     qh->channel->requests == qh->channel->multi_count) {
2958                         qh_ptr = qh_ptr->next;
2959                         /*
2960                          * Move the QH from the periodic assigned schedule to
2961                          * the periodic queued schedule
2962                          */
2963                         list_move_tail(&qh->qh_list_entry,
2964                                        &hsotg->periodic_sched_queued);
2965
2966                         /* done queuing high bandwidth */
2967                         hsotg->queuing_high_bandwidth = 0;
2968                 }
2969         }
2970
2971 exit:
2972         if (no_queue_space || no_fifo_space ||
2973             (!hsotg->params.host_dma &&
2974              !list_empty(&hsotg->periodic_sched_assigned))) {
2975                 /*
2976                  * May need to queue more transactions as the request
2977                  * queue or Tx FIFO empties. Enable the periodic Tx
2978                  * FIFO empty interrupt. (Always use the half-empty
2979                  * level to ensure that new requests are loaded as
2980                  * soon as possible.)
2981                  */
2982                 gintmsk = dwc2_readl(hsotg, GINTMSK);
2983                 if (!(gintmsk & GINTSTS_PTXFEMP)) {
2984                         gintmsk |= GINTSTS_PTXFEMP;
2985                         dwc2_writel(hsotg, gintmsk, GINTMSK);
2986                 }
2987         } else {
2988                 /*
2989                  * Disable the Tx FIFO empty interrupt since there are
2990                  * no more transactions that need to be queued right
2991                  * now. This function is called from interrupt
2992                  * handlers to queue more transactions as transfer
2993                  * states change.
2994                  */
2995                 gintmsk = dwc2_readl(hsotg, GINTMSK);
2996                 if (gintmsk & GINTSTS_PTXFEMP) {
2997                         gintmsk &= ~GINTSTS_PTXFEMP;
2998                         dwc2_writel(hsotg, gintmsk, GINTMSK);
2999                 }
3000         }
3001 }
3002
3003 /*
3004  * Processes active non-periodic channels and queues transactions for these
3005  * channels to the DWC_otg controller. After queueing transactions, the NP Tx
3006  * FIFO Empty interrupt is enabled if there are more transactions to queue as
3007  * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
3008  * FIFO Empty interrupt is disabled.
3009  *
3010  * Must be called with interrupt disabled and spinlock held
3011  */
3012 static void dwc2_process_non_periodic_channels(struct dwc2_hsotg *hsotg)
3013 {
3014         struct list_head *orig_qh_ptr;
3015         struct dwc2_qh *qh;
3016         u32 tx_status;
3017         u32 qspcavail;
3018         u32 fspcavail;
3019         u32 gintmsk;
3020         int status;
3021         int no_queue_space = 0;
3022         int no_fifo_space = 0;
3023         int more_to_do = 0;
3024
3025         dev_vdbg(hsotg->dev, "Queue non-periodic transactions\n");
3026
3027         tx_status = dwc2_readl(hsotg, GNPTXSTS);
3028         qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3029                     TXSTS_QSPCAVAIL_SHIFT;
3030         fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3031                     TXSTS_FSPCAVAIL_SHIFT;
3032         dev_vdbg(hsotg->dev, "  NP Tx Req Queue Space Avail (before queue): %d\n",
3033                  qspcavail);
3034         dev_vdbg(hsotg->dev, "  NP Tx FIFO Space Avail (before queue): %d\n",
3035                  fspcavail);
3036
3037         /*
3038          * Keep track of the starting point. Skip over the start-of-list
3039          * entry.
3040          */
3041         if (hsotg->non_periodic_qh_ptr == &hsotg->non_periodic_sched_active)
3042                 hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3043         orig_qh_ptr = hsotg->non_periodic_qh_ptr;
3044
3045         /*
3046          * Process once through the active list or until no more space is
3047          * available in the request queue or the Tx FIFO
3048          */
3049         do {
3050                 tx_status = dwc2_readl(hsotg, GNPTXSTS);
3051                 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3052                             TXSTS_QSPCAVAIL_SHIFT;
3053                 if (!hsotg->params.host_dma && qspcavail == 0) {
3054                         no_queue_space = 1;
3055                         break;
3056                 }
3057
3058                 qh = list_entry(hsotg->non_periodic_qh_ptr, struct dwc2_qh,
3059                                 qh_list_entry);
3060                 if (!qh->channel)
3061                         goto next;
3062
3063                 /* Make sure EP's TT buffer is clean before queueing qtds */
3064                 if (qh->tt_buffer_dirty)
3065                         goto next;
3066
3067                 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3068                             TXSTS_FSPCAVAIL_SHIFT;
3069                 status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
3070
3071                 if (status > 0) {
3072                         more_to_do = 1;
3073                 } else if (status < 0) {
3074                         no_fifo_space = 1;
3075                         break;
3076                 }
3077 next:
3078                 /* Advance to next QH, skipping start-of-list entry */
3079                 hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3080                 if (hsotg->non_periodic_qh_ptr ==
3081                                 &hsotg->non_periodic_sched_active)
3082                         hsotg->non_periodic_qh_ptr =
3083                                         hsotg->non_periodic_qh_ptr->next;
3084         } while (hsotg->non_periodic_qh_ptr != orig_qh_ptr);
3085
3086         if (!hsotg->params.host_dma) {
3087                 tx_status = dwc2_readl(hsotg, GNPTXSTS);
3088                 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3089                             TXSTS_QSPCAVAIL_SHIFT;
3090                 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3091                             TXSTS_FSPCAVAIL_SHIFT;
3092                 dev_vdbg(hsotg->dev,
3093                          "  NP Tx Req Queue Space Avail (after queue): %d\n",
3094                          qspcavail);
3095                 dev_vdbg(hsotg->dev,
3096                          "  NP Tx FIFO Space Avail (after queue): %d\n",
3097                          fspcavail);
3098
3099                 if (more_to_do || no_queue_space || no_fifo_space) {
3100                         /*
3101                          * May need to queue more transactions as the request
3102                          * queue or Tx FIFO empties. Enable the non-periodic
3103                          * Tx FIFO empty interrupt. (Always use the half-empty
3104                          * level to ensure that new requests are loaded as
3105                          * soon as possible.)
3106                          */
3107                         gintmsk = dwc2_readl(hsotg, GINTMSK);
3108                         gintmsk |= GINTSTS_NPTXFEMP;
3109                         dwc2_writel(hsotg, gintmsk, GINTMSK);
3110                 } else {
3111                         /*
3112                          * Disable the Tx FIFO empty interrupt since there are
3113                          * no more transactions that need to be queued right
3114                          * now. This function is called from interrupt
3115                          * handlers to queue more transactions as transfer
3116                          * states change.
3117                          */
3118                         gintmsk = dwc2_readl(hsotg, GINTMSK);
3119                         gintmsk &= ~GINTSTS_NPTXFEMP;
3120                         dwc2_writel(hsotg, gintmsk, GINTMSK);
3121                 }
3122         }
3123 }
3124
3125 /**
3126  * dwc2_hcd_queue_transactions() - Processes the currently active host channels
3127  * and queues transactions for these channels to the DWC_otg controller. Called
3128  * from the HCD interrupt handler functions.
3129  *
3130  * @hsotg:   The HCD state structure
3131  * @tr_type: The type(s) of transactions to queue (non-periodic, periodic,
3132  *           or both)
3133  *
3134  * Must be called with interrupt disabled and spinlock held
3135  */
3136 void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
3137                                  enum dwc2_transaction_type tr_type)
3138 {
3139 #ifdef DWC2_DEBUG_SOF
3140         dev_vdbg(hsotg->dev, "Queue Transactions\n");
3141 #endif
3142         /* Process host channels associated with periodic transfers */
3143         if (tr_type == DWC2_TRANSACTION_PERIODIC ||
3144             tr_type == DWC2_TRANSACTION_ALL)
3145                 dwc2_process_periodic_channels(hsotg);
3146
3147         /* Process host channels associated with non-periodic transfers */
3148         if (tr_type == DWC2_TRANSACTION_NON_PERIODIC ||
3149             tr_type == DWC2_TRANSACTION_ALL) {
3150                 if (!list_empty(&hsotg->non_periodic_sched_active)) {
3151                         dwc2_process_non_periodic_channels(hsotg);
3152                 } else {
3153                         /*
3154                          * Ensure NP Tx FIFO empty interrupt is disabled when
3155                          * there are no non-periodic transfers to process
3156                          */
3157                         u32 gintmsk = dwc2_readl(hsotg, GINTMSK);
3158
3159                         gintmsk &= ~GINTSTS_NPTXFEMP;
3160                         dwc2_writel(hsotg, gintmsk, GINTMSK);
3161                 }
3162         }
3163 }
3164
3165 static void dwc2_conn_id_status_change(struct work_struct *work)
3166 {
3167         struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
3168                                                 wf_otg);
3169         u32 count = 0;
3170         u32 gotgctl;
3171         unsigned long flags;
3172
3173         dev_dbg(hsotg->dev, "%s()\n", __func__);
3174
3175         gotgctl = dwc2_readl(hsotg, GOTGCTL);
3176         dev_dbg(hsotg->dev, "gotgctl=%0x\n", gotgctl);
3177         dev_dbg(hsotg->dev, "gotgctl.b.conidsts=%d\n",
3178                 !!(gotgctl & GOTGCTL_CONID_B));
3179
3180         /* B-Device connector (Device Mode) */
3181         if (gotgctl & GOTGCTL_CONID_B) {
3182                 dwc2_vbus_supply_exit(hsotg);
3183                 /* Wait for switch to device mode */
3184                 dev_dbg(hsotg->dev, "connId B\n");
3185                 if (hsotg->bus_suspended) {
3186                         dev_info(hsotg->dev,
3187                                  "Do port resume before switching to device mode\n");
3188                         dwc2_port_resume(hsotg);
3189                 }
3190                 while (!dwc2_is_device_mode(hsotg)) {
3191                         dev_info(hsotg->dev,
3192                                  "Waiting for Peripheral Mode, Mode=%s\n",
3193                                  dwc2_is_host_mode(hsotg) ? "Host" :
3194                                  "Peripheral");
3195                         msleep(20);
3196                         /*
3197                          * Sometimes the initial GOTGCTRL read is wrong, so
3198                          * check it again and jump to host mode if that was
3199                          * the case.
3200                          */
3201                         gotgctl = dwc2_readl(hsotg, GOTGCTL);
3202                         if (!(gotgctl & GOTGCTL_CONID_B))
3203                                 goto host;
3204                         if (++count > 250)
3205                                 break;
3206                 }
3207                 if (count > 250)
3208                         dev_err(hsotg->dev,
3209                                 "Connection id status change timed out\n");
3210                 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3211                 dwc2_core_init(hsotg, false);
3212                 dwc2_enable_global_interrupts(hsotg);
3213                 spin_lock_irqsave(&hsotg->lock, flags);
3214                 dwc2_hsotg_core_init_disconnected(hsotg, false);
3215                 spin_unlock_irqrestore(&hsotg->lock, flags);
3216                 /* Enable ACG feature in device mode,if supported */
3217                 dwc2_enable_acg(hsotg);
3218                 dwc2_hsotg_core_connect(hsotg);
3219         } else {
3220 host:
3221                 /* A-Device connector (Host Mode) */
3222                 dev_dbg(hsotg->dev, "connId A\n");
3223                 while (!dwc2_is_host_mode(hsotg)) {
3224                         dev_info(hsotg->dev, "Waiting for Host Mode, Mode=%s\n",
3225                                  dwc2_is_host_mode(hsotg) ?
3226                                  "Host" : "Peripheral");
3227                         msleep(20);
3228                         if (++count > 250)
3229                                 break;
3230                 }
3231                 if (count > 250)
3232                         dev_err(hsotg->dev,
3233                                 "Connection id status change timed out\n");
3234
3235                 spin_lock_irqsave(&hsotg->lock, flags);
3236                 dwc2_hsotg_disconnect(hsotg);
3237                 spin_unlock_irqrestore(&hsotg->lock, flags);
3238
3239                 hsotg->op_state = OTG_STATE_A_HOST;
3240                 /* Initialize the Core for Host mode */
3241                 dwc2_core_init(hsotg, false);
3242                 dwc2_enable_global_interrupts(hsotg);
3243                 dwc2_hcd_start(hsotg);
3244         }
3245 }
3246
3247 static void dwc2_wakeup_detected(struct timer_list *t)
3248 {
3249         struct dwc2_hsotg *hsotg = from_timer(hsotg, t, wkp_timer);
3250         u32 hprt0;
3251
3252         dev_dbg(hsotg->dev, "%s()\n", __func__);
3253
3254         /*
3255          * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
3256          * so that OPT tests pass with all PHYs.)
3257          */
3258         hprt0 = dwc2_read_hprt0(hsotg);
3259         dev_dbg(hsotg->dev, "Resume: HPRT0=%0x\n", hprt0);
3260         hprt0 &= ~HPRT0_RES;
3261         dwc2_writel(hsotg, hprt0, HPRT0);
3262         dev_dbg(hsotg->dev, "Clear Resume: HPRT0=%0x\n",
3263                 dwc2_readl(hsotg, HPRT0));
3264
3265         dwc2_hcd_rem_wakeup(hsotg);
3266         hsotg->bus_suspended = false;
3267
3268         /* Change to L0 state */
3269         hsotg->lx_state = DWC2_L0;
3270 }
3271
3272 static int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *hsotg)
3273 {
3274         struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
3275
3276         return hcd->self.b_hnp_enable;
3277 }
3278
3279 /* Must NOT be called with interrupt disabled or spinlock held */
3280 static void dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex)
3281 {
3282         unsigned long flags;
3283         u32 hprt0;
3284         u32 pcgctl;
3285         u32 gotgctl;
3286
3287         dev_dbg(hsotg->dev, "%s()\n", __func__);
3288
3289         spin_lock_irqsave(&hsotg->lock, flags);
3290
3291         if (windex == hsotg->otg_port && dwc2_host_is_b_hnp_enabled(hsotg)) {
3292                 gotgctl = dwc2_readl(hsotg, GOTGCTL);
3293                 gotgctl |= GOTGCTL_HSTSETHNPEN;
3294                 dwc2_writel(hsotg, gotgctl, GOTGCTL);
3295                 hsotg->op_state = OTG_STATE_A_SUSPEND;
3296         }
3297
3298         hprt0 = dwc2_read_hprt0(hsotg);
3299         hprt0 |= HPRT0_SUSP;
3300         dwc2_writel(hsotg, hprt0, HPRT0);
3301
3302         hsotg->bus_suspended = true;
3303
3304         /*
3305          * If power_down is supported, Phy clock will be suspended
3306          * after registers are backuped.
3307          */
3308         if (!hsotg->params.power_down) {
3309                 /* Suspend the Phy Clock */
3310                 pcgctl = dwc2_readl(hsotg, PCGCTL);
3311                 pcgctl |= PCGCTL_STOPPCLK;
3312                 dwc2_writel(hsotg, pcgctl, PCGCTL);
3313                 udelay(10);
3314         }
3315
3316         /* For HNP the bus must be suspended for at least 200ms */
3317         if (dwc2_host_is_b_hnp_enabled(hsotg)) {
3318                 pcgctl = dwc2_readl(hsotg, PCGCTL);
3319                 pcgctl &= ~PCGCTL_STOPPCLK;
3320                 dwc2_writel(hsotg, pcgctl, PCGCTL);
3321
3322                 spin_unlock_irqrestore(&hsotg->lock, flags);
3323
3324                 msleep(200);
3325         } else {
3326                 spin_unlock_irqrestore(&hsotg->lock, flags);
3327         }
3328 }
3329
3330 /* Must NOT be called with interrupt disabled or spinlock held */
3331 static void dwc2_port_resume(struct dwc2_hsotg *hsotg)
3332 {
3333         unsigned long flags;
3334         u32 hprt0;
3335         u32 pcgctl;
3336
3337         spin_lock_irqsave(&hsotg->lock, flags);
3338
3339         /*
3340          * If power_down is supported, Phy clock is already resumed
3341          * after registers restore.
3342          */
3343         if (!hsotg->params.power_down) {
3344                 pcgctl = dwc2_readl(hsotg, PCGCTL);
3345                 pcgctl &= ~PCGCTL_STOPPCLK;
3346                 dwc2_writel(hsotg, pcgctl, PCGCTL);
3347                 spin_unlock_irqrestore(&hsotg->lock, flags);
3348                 msleep(20);
3349                 spin_lock_irqsave(&hsotg->lock, flags);
3350         }
3351
3352         hprt0 = dwc2_read_hprt0(hsotg);
3353         hprt0 |= HPRT0_RES;
3354         hprt0 &= ~HPRT0_SUSP;
3355         dwc2_writel(hsotg, hprt0, HPRT0);
3356         spin_unlock_irqrestore(&hsotg->lock, flags);
3357
3358         msleep(USB_RESUME_TIMEOUT);
3359
3360         spin_lock_irqsave(&hsotg->lock, flags);
3361         hprt0 = dwc2_read_hprt0(hsotg);
3362         hprt0 &= ~(HPRT0_RES | HPRT0_SUSP);
3363         dwc2_writel(hsotg, hprt0, HPRT0);
3364         hsotg->bus_suspended = false;
3365         spin_unlock_irqrestore(&hsotg->lock, flags);
3366 }
3367
3368 /* Handles hub class-specific requests */
3369 static int dwc2_hcd_hub_control(struct dwc2_hsotg *hsotg, u16 typereq,
3370                                 u16 wvalue, u16 windex, char *buf, u16 wlength)
3371 {
3372         struct usb_hub_descriptor *hub_desc;
3373         int retval = 0;
3374         u32 hprt0;
3375         u32 port_status;
3376         u32 speed;
3377         u32 pcgctl;
3378         u32 pwr;
3379
3380         switch (typereq) {
3381         case ClearHubFeature:
3382                 dev_dbg(hsotg->dev, "ClearHubFeature %1xh\n", wvalue);
3383
3384                 switch (wvalue) {
3385                 case C_HUB_LOCAL_POWER:
3386                 case C_HUB_OVER_CURRENT:
3387                         /* Nothing required here */
3388                         break;
3389
3390                 default:
3391                         retval = -EINVAL;
3392                         dev_err(hsotg->dev,
3393                                 "ClearHubFeature request %1xh unknown\n",
3394                                 wvalue);
3395                 }
3396                 break;
3397
3398         case ClearPortFeature:
3399                 if (wvalue != USB_PORT_FEAT_L1)
3400                         if (!windex || windex > 1)
3401                                 goto error;
3402                 switch (wvalue) {
3403                 case USB_PORT_FEAT_ENABLE:
3404                         dev_dbg(hsotg->dev,
3405                                 "ClearPortFeature USB_PORT_FEAT_ENABLE\n");
3406                         hprt0 = dwc2_read_hprt0(hsotg);
3407                         hprt0 |= HPRT0_ENA;
3408                         dwc2_writel(hsotg, hprt0, HPRT0);
3409                         break;
3410
3411                 case USB_PORT_FEAT_SUSPEND:
3412                         dev_dbg(hsotg->dev,
3413                                 "ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
3414
3415                         if (hsotg->bus_suspended) {
3416                                 if (hsotg->hibernated)
3417                                         dwc2_exit_hibernation(hsotg, 0, 0, 1);
3418                                 else
3419                                         dwc2_port_resume(hsotg);
3420                         }
3421                         break;
3422
3423                 case USB_PORT_FEAT_POWER:
3424                         dev_dbg(hsotg->dev,
3425                                 "ClearPortFeature USB_PORT_FEAT_POWER\n");
3426                         hprt0 = dwc2_read_hprt0(hsotg);
3427                         pwr = hprt0 & HPRT0_PWR;
3428                         hprt0 &= ~HPRT0_PWR;
3429                         dwc2_writel(hsotg, hprt0, HPRT0);
3430                         if (pwr)
3431                                 dwc2_vbus_supply_exit(hsotg);
3432                         break;
3433
3434                 case USB_PORT_FEAT_INDICATOR:
3435                         dev_dbg(hsotg->dev,
3436                                 "ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
3437                         /* Port indicator not supported */
3438                         break;
3439
3440                 case USB_PORT_FEAT_C_CONNECTION:
3441                         /*
3442                          * Clears driver's internal Connect Status Change flag
3443                          */
3444                         dev_dbg(hsotg->dev,
3445                                 "ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
3446                         hsotg->flags.b.port_connect_status_change = 0;
3447                         break;
3448
3449                 case USB_PORT_FEAT_C_RESET:
3450                         /* Clears driver's internal Port Reset Change flag */
3451                         dev_dbg(hsotg->dev,
3452                                 "ClearPortFeature USB_PORT_FEAT_C_RESET\n");
3453                         hsotg->flags.b.port_reset_change = 0;
3454                         break;
3455
3456                 case USB_PORT_FEAT_C_ENABLE:
3457                         /*
3458                          * Clears the driver's internal Port Enable/Disable
3459                          * Change flag
3460                          */
3461                         dev_dbg(hsotg->dev,
3462                                 "ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
3463                         hsotg->flags.b.port_enable_change = 0;
3464                         break;
3465
3466                 case USB_PORT_FEAT_C_SUSPEND:
3467                         /*
3468                          * Clears the driver's internal Port Suspend Change
3469                          * flag, which is set when resume signaling on the host
3470                          * port is complete
3471                          */
3472                         dev_dbg(hsotg->dev,
3473                                 "ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
3474                         hsotg->flags.b.port_suspend_change = 0;
3475                         break;
3476
3477                 case USB_PORT_FEAT_C_PORT_L1:
3478                         dev_dbg(hsotg->dev,
3479                                 "ClearPortFeature USB_PORT_FEAT_C_PORT_L1\n");
3480                         hsotg->flags.b.port_l1_change = 0;
3481                         break;
3482
3483                 case USB_PORT_FEAT_C_OVER_CURRENT:
3484                         dev_dbg(hsotg->dev,
3485                                 "ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
3486                         hsotg->flags.b.port_over_current_change = 0;
3487                         break;
3488
3489                 default:
3490                         retval = -EINVAL;
3491                         dev_err(hsotg->dev,
3492                                 "ClearPortFeature request %1xh unknown or unsupported\n",
3493                                 wvalue);
3494                 }
3495                 break;
3496
3497         case GetHubDescriptor:
3498                 dev_dbg(hsotg->dev, "GetHubDescriptor\n");
3499                 hub_desc = (struct usb_hub_descriptor *)buf;
3500                 hub_desc->bDescLength = 9;
3501                 hub_desc->bDescriptorType = USB_DT_HUB;
3502                 hub_desc->bNbrPorts = 1;
3503                 hub_desc->wHubCharacteristics =
3504                         cpu_to_le16(HUB_CHAR_COMMON_LPSM |
3505                                     HUB_CHAR_INDV_PORT_OCPM);
3506                 hub_desc->bPwrOn2PwrGood = 1;
3507                 hub_desc->bHubContrCurrent = 0;
3508                 hub_desc->u.hs.DeviceRemovable[0] = 0;
3509                 hub_desc->u.hs.DeviceRemovable[1] = 0xff;
3510                 break;
3511
3512         case GetHubStatus:
3513                 dev_dbg(hsotg->dev, "GetHubStatus\n");
3514                 memset(buf, 0, 4);
3515                 break;
3516
3517         case GetPortStatus:
3518                 dev_vdbg(hsotg->dev,
3519                          "GetPortStatus wIndex=0x%04x flags=0x%08x\n", windex,
3520                          hsotg->flags.d32);
3521                 if (!windex || windex > 1)
3522                         goto error;
3523
3524                 port_status = 0;
3525                 if (hsotg->flags.b.port_connect_status_change)
3526                         port_status |= USB_PORT_STAT_C_CONNECTION << 16;
3527                 if (hsotg->flags.b.port_enable_change)
3528                         port_status |= USB_PORT_STAT_C_ENABLE << 16;
3529                 if (hsotg->flags.b.port_suspend_change)
3530                         port_status |= USB_PORT_STAT_C_SUSPEND << 16;
3531                 if (hsotg->flags.b.port_l1_change)
3532                         port_status |= USB_PORT_STAT_C_L1 << 16;
3533                 if (hsotg->flags.b.port_reset_change)
3534                         port_status |= USB_PORT_STAT_C_RESET << 16;
3535                 if (hsotg->flags.b.port_over_current_change) {
3536                         dev_warn(hsotg->dev, "Overcurrent change detected\n");
3537                         port_status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3538                 }
3539
3540                 if (!hsotg->flags.b.port_connect_status) {
3541                         /*
3542                          * The port is disconnected, which means the core is
3543                          * either in device mode or it soon will be. Just
3544                          * return 0's for the remainder of the port status
3545                          * since the port register can't be read if the core
3546                          * is in device mode.
3547                          */
3548                         *(__le32 *)buf = cpu_to_le32(port_status);
3549                         break;
3550                 }
3551
3552                 hprt0 = dwc2_readl(hsotg, HPRT0);
3553                 dev_vdbg(hsotg->dev, "  HPRT0: 0x%08x\n", hprt0);
3554
3555                 if (hprt0 & HPRT0_CONNSTS)
3556                         port_status |= USB_PORT_STAT_CONNECTION;
3557                 if (hprt0 & HPRT0_ENA)
3558                         port_status |= USB_PORT_STAT_ENABLE;
3559                 if (hprt0 & HPRT0_SUSP)
3560                         port_status |= USB_PORT_STAT_SUSPEND;
3561                 if (hprt0 & HPRT0_OVRCURRACT)
3562                         port_status |= USB_PORT_STAT_OVERCURRENT;
3563                 if (hprt0 & HPRT0_RST)
3564                         port_status |= USB_PORT_STAT_RESET;
3565                 if (hprt0 & HPRT0_PWR)
3566                         port_status |= USB_PORT_STAT_POWER;
3567
3568                 speed = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
3569                 if (speed == HPRT0_SPD_HIGH_SPEED)
3570                         port_status |= USB_PORT_STAT_HIGH_SPEED;
3571                 else if (speed == HPRT0_SPD_LOW_SPEED)
3572                         port_status |= USB_PORT_STAT_LOW_SPEED;
3573
3574                 if (hprt0 & HPRT0_TSTCTL_MASK)
3575                         port_status |= USB_PORT_STAT_TEST;
3576                 /* USB_PORT_FEAT_INDICATOR unsupported always 0 */
3577
3578                 if (hsotg->params.dma_desc_fs_enable) {
3579                         /*
3580                          * Enable descriptor DMA only if a full speed
3581                          * device is connected.
3582                          */
3583                         if (hsotg->new_connection &&
3584                             ((port_status &
3585                               (USB_PORT_STAT_CONNECTION |
3586                                USB_PORT_STAT_HIGH_SPEED |
3587                                USB_PORT_STAT_LOW_SPEED)) ==
3588                                USB_PORT_STAT_CONNECTION)) {
3589                                 u32 hcfg;
3590
3591                                 dev_info(hsotg->dev, "Enabling descriptor DMA mode\n");
3592                                 hsotg->params.dma_desc_enable = true;
3593                                 hcfg = dwc2_readl(hsotg, HCFG);
3594                                 hcfg |= HCFG_DESCDMA;
3595                                 dwc2_writel(hsotg, hcfg, HCFG);
3596                                 hsotg->new_connection = false;
3597                         }
3598                 }
3599
3600                 dev_vdbg(hsotg->dev, "port_status=%08x\n", port_status);
3601                 *(__le32 *)buf = cpu_to_le32(port_status);
3602                 break;
3603
3604         case SetHubFeature:
3605                 dev_dbg(hsotg->dev, "SetHubFeature\n");
3606                 /* No HUB features supported */
3607                 break;
3608
3609         case SetPortFeature:
3610                 dev_dbg(hsotg->dev, "SetPortFeature\n");
3611                 if (wvalue != USB_PORT_FEAT_TEST && (!windex || windex > 1))
3612                         goto error;
3613
3614                 if (!hsotg->flags.b.port_connect_status) {
3615                         /*
3616                          * The port is disconnected, which means the core is
3617                          * either in device mode or it soon will be. Just
3618                          * return without doing anything since the port
3619                          * register can't be written if the core is in device
3620                          * mode.
3621                          */
3622                         break;
3623                 }
3624
3625                 switch (wvalue) {
3626                 case USB_PORT_FEAT_SUSPEND:
3627                         dev_dbg(hsotg->dev,
3628                                 "SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
3629                         if (windex != hsotg->otg_port)
3630                                 goto error;
3631                         if (hsotg->params.power_down == 2)
3632                                 dwc2_enter_hibernation(hsotg, 1);
3633                         else
3634                                 dwc2_port_suspend(hsotg, windex);
3635                         break;
3636
3637                 case USB_PORT_FEAT_POWER:
3638                         dev_dbg(hsotg->dev,
3639                                 "SetPortFeature - USB_PORT_FEAT_POWER\n");
3640                         hprt0 = dwc2_read_hprt0(hsotg);
3641                         pwr = hprt0 & HPRT0_PWR;
3642                         hprt0 |= HPRT0_PWR;
3643                         dwc2_writel(hsotg, hprt0, HPRT0);
3644                         if (!pwr)
3645                                 dwc2_vbus_supply_init(hsotg);
3646                         break;
3647
3648                 case USB_PORT_FEAT_RESET:
3649                         if (hsotg->params.power_down == 2 &&
3650                             hsotg->hibernated)
3651                                 dwc2_exit_hibernation(hsotg, 0, 1, 1);
3652                         hprt0 = dwc2_read_hprt0(hsotg);
3653                         dev_dbg(hsotg->dev,
3654                                 "SetPortFeature - USB_PORT_FEAT_RESET\n");
3655                         pcgctl = dwc2_readl(hsotg, PCGCTL);
3656                         pcgctl &= ~(PCGCTL_ENBL_SLEEP_GATING | PCGCTL_STOPPCLK);
3657                         dwc2_writel(hsotg, pcgctl, PCGCTL);
3658                         /* ??? Original driver does this */
3659                         dwc2_writel(hsotg, 0, PCGCTL);
3660
3661                         hprt0 = dwc2_read_hprt0(hsotg);
3662                         pwr = hprt0 & HPRT0_PWR;
3663                         /* Clear suspend bit if resetting from suspend state */
3664                         hprt0 &= ~HPRT0_SUSP;
3665
3666                         /*
3667                          * When B-Host the Port reset bit is set in the Start
3668                          * HCD Callback function, so that the reset is started
3669                          * within 1ms of the HNP success interrupt
3670                          */
3671                         if (!dwc2_hcd_is_b_host(hsotg)) {
3672                                 hprt0 |= HPRT0_PWR | HPRT0_RST;
3673                                 dev_dbg(hsotg->dev,
3674                                         "In host mode, hprt0=%08x\n", hprt0);
3675                                 dwc2_writel(hsotg, hprt0, HPRT0);
3676                                 if (!pwr)
3677                                         dwc2_vbus_supply_init(hsotg);
3678                         }
3679
3680                         /* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
3681                         msleep(50);
3682                         hprt0 &= ~HPRT0_RST;
3683                         dwc2_writel(hsotg, hprt0, HPRT0);
3684                         hsotg->lx_state = DWC2_L0; /* Now back to On state */
3685                         break;
3686
3687                 case USB_PORT_FEAT_INDICATOR:
3688                         dev_dbg(hsotg->dev,
3689                                 "SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
3690                         /* Not supported */
3691                         break;
3692
3693                 case USB_PORT_FEAT_TEST:
3694                         hprt0 = dwc2_read_hprt0(hsotg);
3695                         dev_dbg(hsotg->dev,
3696                                 "SetPortFeature - USB_PORT_FEAT_TEST\n");
3697                         hprt0 &= ~HPRT0_TSTCTL_MASK;
3698                         hprt0 |= (windex >> 8) << HPRT0_TSTCTL_SHIFT;
3699                         dwc2_writel(hsotg, hprt0, HPRT0);
3700                         break;
3701
3702                 default:
3703                         retval = -EINVAL;
3704                         dev_err(hsotg->dev,
3705                                 "SetPortFeature %1xh unknown or unsupported\n",
3706                                 wvalue);
3707                         break;
3708                 }
3709                 break;
3710
3711         default:
3712 error:
3713                 retval = -EINVAL;
3714                 dev_dbg(hsotg->dev,
3715                         "Unknown hub control request: %1xh wIndex: %1xh wValue: %1xh\n",
3716                         typereq, windex, wvalue);
3717                 break;
3718         }
3719
3720         return retval;
3721 }
3722
3723 static int dwc2_hcd_is_status_changed(struct dwc2_hsotg *hsotg, int port)
3724 {
3725         int retval;
3726
3727         if (port != 1)
3728                 return -EINVAL;
3729
3730         retval = (hsotg->flags.b.port_connect_status_change ||
3731                   hsotg->flags.b.port_reset_change ||
3732                   hsotg->flags.b.port_enable_change ||
3733                   hsotg->flags.b.port_suspend_change ||
3734                   hsotg->flags.b.port_over_current_change);
3735
3736         if (retval) {
3737                 dev_dbg(hsotg->dev,
3738                         "DWC OTG HCD HUB STATUS DATA: Root port status changed\n");
3739                 dev_dbg(hsotg->dev, "  port_connect_status_change: %d\n",
3740                         hsotg->flags.b.port_connect_status_change);
3741                 dev_dbg(hsotg->dev, "  port_reset_change: %d\n",
3742                         hsotg->flags.b.port_reset_change);
3743                 dev_dbg(hsotg->dev, "  port_enable_change: %d\n",
3744                         hsotg->flags.b.port_enable_change);
3745                 dev_dbg(hsotg->dev, "  port_suspend_change: %d\n",
3746                         hsotg->flags.b.port_suspend_change);
3747                 dev_dbg(hsotg->dev, "  port_over_current_change: %d\n",
3748                         hsotg->flags.b.port_over_current_change);
3749         }
3750
3751         return retval;
3752 }
3753
3754 int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
3755 {
3756         u32 hfnum = dwc2_readl(hsotg, HFNUM);
3757
3758 #ifdef DWC2_DEBUG_SOF
3759         dev_vdbg(hsotg->dev, "DWC OTG HCD GET FRAME NUMBER %d\n",
3760                  (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT);
3761 #endif
3762         return (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3763 }
3764
3765 int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us)
3766 {
3767         u32 hprt = dwc2_readl(hsotg, HPRT0);
3768         u32 hfir = dwc2_readl(hsotg, HFIR);
3769         u32 hfnum = dwc2_readl(hsotg, HFNUM);
3770         unsigned int us_per_frame;
3771         unsigned int frame_number;
3772         unsigned int remaining;
3773         unsigned int interval;
3774         unsigned int phy_clks;
3775
3776         /* High speed has 125 us per (micro) frame; others are 1 ms per */
3777         us_per_frame = (hprt & HPRT0_SPD_MASK) ? 1000 : 125;
3778
3779         /* Extract fields */
3780         frame_number = (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3781         remaining = (hfnum & HFNUM_FRREM_MASK) >> HFNUM_FRREM_SHIFT;
3782         interval = (hfir & HFIR_FRINT_MASK) >> HFIR_FRINT_SHIFT;
3783
3784         /*
3785          * Number of phy clocks since the last tick of the frame number after
3786          * "us" has passed.
3787          */
3788         phy_clks = (interval - remaining) +
3789                    DIV_ROUND_UP(interval * us, us_per_frame);
3790
3791         return dwc2_frame_num_inc(frame_number, phy_clks / interval);
3792 }
3793
3794 int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg)
3795 {
3796         return hsotg->op_state == OTG_STATE_B_HOST;
3797 }
3798
3799 static struct dwc2_hcd_urb *dwc2_hcd_urb_alloc(struct dwc2_hsotg *hsotg,
3800                                                int iso_desc_count,
3801                                                gfp_t mem_flags)
3802 {
3803         struct dwc2_hcd_urb *urb;
3804
3805         urb = kzalloc(struct_size(urb, iso_descs, iso_desc_count), mem_flags);
3806         if (urb)
3807                 urb->packet_count = iso_desc_count;
3808         return urb;
3809 }
3810
3811 static void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *hsotg,
3812                                       struct dwc2_hcd_urb *urb, u8 dev_addr,
3813                                       u8 ep_num, u8 ep_type, u8 ep_dir,
3814                                       u16 maxp, u16 maxp_mult)
3815 {
3816         if (dbg_perio() ||
3817             ep_type == USB_ENDPOINT_XFER_BULK ||
3818             ep_type == USB_ENDPOINT_XFER_CONTROL)
3819                 dev_vdbg(hsotg->dev,
3820                          "addr=%d, ep_num=%d, ep_dir=%1x, ep_type=%1x, maxp=%d (%d mult)\n",
3821                          dev_addr, ep_num, ep_dir, ep_type, maxp, maxp_mult);
3822         urb->pipe_info.dev_addr = dev_addr;
3823         urb->pipe_info.ep_num = ep_num;
3824         urb->pipe_info.pipe_type = ep_type;
3825         urb->pipe_info.pipe_dir = ep_dir;
3826         urb->pipe_info.maxp = maxp;
3827         urb->pipe_info.maxp_mult = maxp_mult;
3828 }
3829
3830 /*
3831  * NOTE: This function will be removed once the peripheral controller code
3832  * is integrated and the driver is stable
3833  */
3834 void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg)
3835 {
3836 #ifdef DEBUG
3837         struct dwc2_host_chan *chan;
3838         struct dwc2_hcd_urb *urb;
3839         struct dwc2_qtd *qtd;
3840         int num_channels;
3841         u32 np_tx_status;
3842         u32 p_tx_status;
3843         int i;
3844
3845         num_channels = hsotg->params.host_channels;
3846         dev_dbg(hsotg->dev, "\n");
3847         dev_dbg(hsotg->dev,
3848                 "************************************************************\n");
3849         dev_dbg(hsotg->dev, "HCD State:\n");
3850         dev_dbg(hsotg->dev, "  Num channels: %d\n", num_channels);
3851
3852         for (i = 0; i < num_channels; i++) {
3853                 chan = hsotg->hc_ptr_array[i];
3854                 dev_dbg(hsotg->dev, "  Channel %d:\n", i);
3855                 dev_dbg(hsotg->dev,
3856                         "    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
3857                         chan->dev_addr, chan->ep_num, chan->ep_is_in);
3858                 dev_dbg(hsotg->dev, "    speed: %d\n", chan->speed);
3859                 dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
3860                 dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
3861                 dev_dbg(hsotg->dev, "    data_pid_start: %d\n",
3862                         chan->data_pid_start);
3863                 dev_dbg(hsotg->dev, "    multi_count: %d\n", chan->multi_count);
3864                 dev_dbg(hsotg->dev, "    xfer_started: %d\n",
3865                         chan->xfer_started);
3866                 dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
3867                 dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
3868                         (unsigned long)chan->xfer_dma);
3869                 dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
3870                 dev_dbg(hsotg->dev, "    xfer_count: %d\n", chan->xfer_count);
3871                 dev_dbg(hsotg->dev, "    halt_on_queue: %d\n",
3872                         chan->halt_on_queue);
3873                 dev_dbg(hsotg->dev, "    halt_pending: %d\n",
3874                         chan->halt_pending);
3875                 dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
3876                 dev_dbg(hsotg->dev, "    do_split: %d\n", chan->do_split);
3877                 dev_dbg(hsotg->dev, "    complete_split: %d\n",
3878                         chan->complete_split);
3879                 dev_dbg(hsotg->dev, "    hub_addr: %d\n", chan->hub_addr);
3880                 dev_dbg(hsotg->dev, "    hub_port: %d\n", chan->hub_port);
3881                 dev_dbg(hsotg->dev, "    xact_pos: %d\n", chan->xact_pos);
3882                 dev_dbg(hsotg->dev, "    requests: %d\n", chan->requests);
3883                 dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
3884
3885                 if (chan->xfer_started) {
3886                         u32 hfnum, hcchar, hctsiz, hcint, hcintmsk;
3887
3888                         hfnum = dwc2_readl(hsotg, HFNUM);
3889                         hcchar = dwc2_readl(hsotg, HCCHAR(i));
3890                         hctsiz = dwc2_readl(hsotg, HCTSIZ(i));
3891                         hcint = dwc2_readl(hsotg, HCINT(i));
3892                         hcintmsk = dwc2_readl(hsotg, HCINTMSK(i));
3893                         dev_dbg(hsotg->dev, "    hfnum: 0x%08x\n", hfnum);
3894                         dev_dbg(hsotg->dev, "    hcchar: 0x%08x\n", hcchar);
3895                         dev_dbg(hsotg->dev, "    hctsiz: 0x%08x\n", hctsiz);
3896                         dev_dbg(hsotg->dev, "    hcint: 0x%08x\n", hcint);
3897                         dev_dbg(hsotg->dev, "    hcintmsk: 0x%08x\n", hcintmsk);
3898                 }
3899
3900                 if (!(chan->xfer_started && chan->qh))
3901                         continue;
3902
3903                 list_for_each_entry(qtd, &chan->qh->qtd_list, qtd_list_entry) {
3904                         if (!qtd->in_process)
3905                                 break;
3906                         urb = qtd->urb;
3907                         dev_dbg(hsotg->dev, "    URB Info:\n");
3908                         dev_dbg(hsotg->dev, "      qtd: %p, urb: %p\n",
3909                                 qtd, urb);
3910                         if (urb) {
3911                                 dev_dbg(hsotg->dev,
3912                                         "      Dev: %d, EP: %d %s\n",
3913                                         dwc2_hcd_get_dev_addr(&urb->pipe_info),
3914                                         dwc2_hcd_get_ep_num(&urb->pipe_info),
3915                                         dwc2_hcd_is_pipe_in(&urb->pipe_info) ?
3916                                         "IN" : "OUT");
3917                                 dev_dbg(hsotg->dev,
3918                                         "      Max packet size: %d (%d mult)\n",
3919                                         dwc2_hcd_get_maxp(&urb->pipe_info),
3920                                         dwc2_hcd_get_maxp_mult(&urb->pipe_info));
3921                                 dev_dbg(hsotg->dev,
3922                                         "      transfer_buffer: %p\n",
3923                                         urb->buf);
3924                                 dev_dbg(hsotg->dev,
3925                                         "      transfer_dma: %08lx\n",
3926                                         (unsigned long)urb->dma);
3927                                 dev_dbg(hsotg->dev,
3928                                         "      transfer_buffer_length: %d\n",
3929                                         urb->length);
3930                                 dev_dbg(hsotg->dev, "      actual_length: %d\n",
3931                                         urb->actual_length);
3932                         }
3933                 }
3934         }
3935
3936         dev_dbg(hsotg->dev, "  non_periodic_channels: %d\n",
3937                 hsotg->non_periodic_channels);
3938         dev_dbg(hsotg->dev, "  periodic_channels: %d\n",
3939                 hsotg->periodic_channels);
3940         dev_dbg(hsotg->dev, "  periodic_usecs: %d\n", hsotg->periodic_usecs);
3941         np_tx_status = dwc2_readl(hsotg, GNPTXSTS);
3942         dev_dbg(hsotg->dev, "  NP Tx Req Queue Space Avail: %d\n",
3943                 (np_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
3944         dev_dbg(hsotg->dev, "  NP Tx FIFO Space Avail: %d\n",
3945                 (np_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
3946         p_tx_status = dwc2_readl(hsotg, HPTXSTS);
3947         dev_dbg(hsotg->dev, "  P Tx Req Queue Space Avail: %d\n",
3948                 (p_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
3949         dev_dbg(hsotg->dev, "  P Tx FIFO Space Avail: %d\n",
3950                 (p_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
3951         dwc2_dump_global_registers(hsotg);
3952         dwc2_dump_host_registers(hsotg);
3953         dev_dbg(hsotg->dev,
3954                 "************************************************************\n");
3955         dev_dbg(hsotg->dev, "\n");
3956 #endif
3957 }
3958
3959 struct wrapper_priv_data {
3960         struct dwc2_hsotg *hsotg;
3961 };
3962
3963 /* Gets the dwc2_hsotg from a usb_hcd */
3964 static struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *hcd)
3965 {
3966         struct wrapper_priv_data *p;
3967
3968         p = (struct wrapper_priv_data *)&hcd->hcd_priv;
3969         return p->hsotg;
3970 }
3971
3972 /**
3973  * dwc2_host_get_tt_info() - Get the dwc2_tt associated with context
3974  *
3975  * This will get the dwc2_tt structure (and ttport) associated with the given
3976  * context (which is really just a struct urb pointer).
3977  *
3978  * The first time this is called for a given TT we allocate memory for our
3979  * structure.  When everyone is done and has called dwc2_host_put_tt_info()
3980  * then the refcount for the structure will go to 0 and we'll free it.
3981  *
3982  * @hsotg:     The HCD state structure for the DWC OTG controller.
3983  * @context:   The priv pointer from a struct dwc2_hcd_urb.
3984  * @mem_flags: Flags for allocating memory.
3985  * @ttport:    We'll return this device's port number here.  That's used to
3986  *             reference into the bitmap if we're on a multi_tt hub.
3987  *
3988  * Return: a pointer to a struct dwc2_tt.  Don't forget to call
3989  *         dwc2_host_put_tt_info()!  Returns NULL upon memory alloc failure.
3990  */
3991
3992 struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg, void *context,
3993                                       gfp_t mem_flags, int *ttport)
3994 {
3995         struct urb *urb = context;
3996         struct dwc2_tt *dwc_tt = NULL;
3997
3998         if (urb->dev->tt) {
3999                 *ttport = urb->dev->ttport;
4000
4001                 dwc_tt = urb->dev->tt->hcpriv;
4002                 if (!dwc_tt) {
4003                         size_t bitmap_size;
4004
4005                         /*
4006                          * For single_tt we need one schedule.  For multi_tt
4007                          * we need one per port.
4008                          */
4009                         bitmap_size = DWC2_ELEMENTS_PER_LS_BITMAP *
4010                                       sizeof(dwc_tt->periodic_bitmaps[0]);
4011                         if (urb->dev->tt->multi)
4012                                 bitmap_size *= urb->dev->tt->hub->maxchild;
4013
4014                         dwc_tt = kzalloc(sizeof(*dwc_tt) + bitmap_size,
4015                                          mem_flags);
4016                         if (!dwc_tt)
4017                                 return NULL;
4018
4019                         dwc_tt->usb_tt = urb->dev->tt;
4020                         dwc_tt->usb_tt->hcpriv = dwc_tt;
4021                 }
4022
4023                 dwc_tt->refcount++;
4024         }
4025
4026         return dwc_tt;
4027 }
4028
4029 /**
4030  * dwc2_host_put_tt_info() - Put the dwc2_tt from dwc2_host_get_tt_info()
4031  *
4032  * Frees resources allocated by dwc2_host_get_tt_info() if all current holders
4033  * of the structure are done.
4034  *
4035  * It's OK to call this with NULL.
4036  *
4037  * @hsotg:     The HCD state structure for the DWC OTG controller.
4038  * @dwc_tt:    The pointer returned by dwc2_host_get_tt_info.
4039  */
4040 void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg, struct dwc2_tt *dwc_tt)
4041 {
4042         /* Model kfree and make put of NULL a no-op */
4043         if (!dwc_tt)
4044                 return;
4045
4046         WARN_ON(dwc_tt->refcount < 1);
4047
4048         dwc_tt->refcount--;
4049         if (!dwc_tt->refcount) {
4050                 dwc_tt->usb_tt->hcpriv = NULL;
4051                 kfree(dwc_tt);
4052         }
4053 }
4054
4055 int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context)
4056 {
4057         struct urb *urb = context;
4058
4059         return urb->dev->speed;
4060 }
4061
4062 static void dwc2_allocate_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4063                                         struct urb *urb)
4064 {
4065         struct usb_bus *bus = hcd_to_bus(hcd);
4066
4067         if (urb->interval)
4068                 bus->bandwidth_allocated += bw / urb->interval;
4069         if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4070                 bus->bandwidth_isoc_reqs++;
4071         else
4072                 bus->bandwidth_int_reqs++;
4073 }
4074
4075 static void dwc2_free_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4076                                     struct urb *urb)
4077 {
4078         struct usb_bus *bus = hcd_to_bus(hcd);
4079
4080         if (urb->interval)
4081                 bus->bandwidth_allocated -= bw / urb->interval;
4082         if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4083                 bus->bandwidth_isoc_reqs--;
4084         else
4085                 bus->bandwidth_int_reqs--;
4086 }
4087
4088 /*
4089  * Sets the final status of an URB and returns it to the upper layer. Any
4090  * required cleanup of the URB is performed.
4091  *
4092  * Must be called with interrupt disabled and spinlock held
4093  */
4094 void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
4095                         int status)
4096 {
4097         struct urb *urb;
4098         int i;
4099
4100         if (!qtd) {
4101                 dev_dbg(hsotg->dev, "## %s: qtd is NULL ##\n", __func__);
4102                 return;
4103         }
4104
4105         if (!qtd->urb) {
4106                 dev_dbg(hsotg->dev, "## %s: qtd->urb is NULL ##\n", __func__);
4107                 return;
4108         }
4109
4110         urb = qtd->urb->priv;
4111         if (!urb) {
4112                 dev_dbg(hsotg->dev, "## %s: urb->priv is NULL ##\n", __func__);
4113                 return;
4114         }
4115
4116         urb->actual_length = dwc2_hcd_urb_get_actual_length(qtd->urb);
4117
4118         if (dbg_urb(urb))
4119                 dev_vdbg(hsotg->dev,
4120                          "%s: urb %p device %d ep %d-%s status %d actual %d\n",
4121                          __func__, urb, usb_pipedevice(urb->pipe),
4122                          usb_pipeendpoint(urb->pipe),
4123                          usb_pipein(urb->pipe) ? "IN" : "OUT", status,
4124                          urb->actual_length);
4125
4126         if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4127                 urb->error_count = dwc2_hcd_urb_get_error_count(qtd->urb);
4128                 for (i = 0; i < urb->number_of_packets; ++i) {
4129                         urb->iso_frame_desc[i].actual_length =
4130                                 dwc2_hcd_urb_get_iso_desc_actual_length(
4131                                                 qtd->urb, i);
4132                         urb->iso_frame_desc[i].status =
4133                                 dwc2_hcd_urb_get_iso_desc_status(qtd->urb, i);
4134                 }
4135         }
4136
4137         if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS && dbg_perio()) {
4138                 for (i = 0; i < urb->number_of_packets; i++)
4139                         dev_vdbg(hsotg->dev, " ISO Desc %d status %d\n",
4140                                  i, urb->iso_frame_desc[i].status);
4141         }
4142
4143         urb->status = status;
4144         if (!status) {
4145                 if ((urb->transfer_flags & URB_SHORT_NOT_OK) &&
4146                     urb->actual_length < urb->transfer_buffer_length)
4147                         urb->status = -EREMOTEIO;
4148         }
4149
4150         if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4151             usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4152                 struct usb_host_endpoint *ep = urb->ep;
4153
4154                 if (ep)
4155                         dwc2_free_bus_bandwidth(dwc2_hsotg_to_hcd(hsotg),
4156                                         dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4157                                         urb);
4158         }
4159
4160         usb_hcd_unlink_urb_from_ep(dwc2_hsotg_to_hcd(hsotg), urb);
4161         urb->hcpriv = NULL;
4162         kfree(qtd->urb);
4163         qtd->urb = NULL;
4164
4165         usb_hcd_giveback_urb(dwc2_hsotg_to_hcd(hsotg), urb, status);
4166 }
4167
4168 /*
4169  * Work queue function for starting the HCD when A-Cable is connected
4170  */
4171 static void dwc2_hcd_start_func(struct work_struct *work)
4172 {
4173         struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4174                                                 start_work.work);
4175
4176         dev_dbg(hsotg->dev, "%s() %p\n", __func__, hsotg);
4177         dwc2_host_start(hsotg);
4178 }
4179
4180 /*
4181  * Reset work queue function
4182  */
4183 static void dwc2_hcd_reset_func(struct work_struct *work)
4184 {
4185         struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4186                                                 reset_work.work);
4187         unsigned long flags;
4188         u32 hprt0;
4189
4190         dev_dbg(hsotg->dev, "USB RESET function called\n");
4191
4192         spin_lock_irqsave(&hsotg->lock, flags);
4193
4194         hprt0 = dwc2_read_hprt0(hsotg);
4195         hprt0 &= ~HPRT0_RST;
4196         dwc2_writel(hsotg, hprt0, HPRT0);
4197         hsotg->flags.b.port_reset_change = 1;
4198
4199         spin_unlock_irqrestore(&hsotg->lock, flags);
4200 }
4201
4202 static void dwc2_hcd_phy_reset_func(struct work_struct *work)
4203 {
4204         struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4205                                                 phy_reset_work);
4206         int ret;
4207
4208         ret = phy_reset(hsotg->phy);
4209         if (ret)
4210                 dev_warn(hsotg->dev, "PHY reset failed\n");
4211 }
4212
4213 /*
4214  * =========================================================================
4215  *  Linux HC Driver Functions
4216  * =========================================================================
4217  */
4218
4219 /*
4220  * Initializes the DWC_otg controller and its root hub and prepares it for host
4221  * mode operation. Activates the root port. Returns 0 on success and a negative
4222  * error code on failure.
4223  */
4224 static int _dwc2_hcd_start(struct usb_hcd *hcd)
4225 {
4226         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4227         struct usb_bus *bus = hcd_to_bus(hcd);
4228         unsigned long flags;
4229         u32 hprt0;
4230         int ret;
4231
4232         dev_dbg(hsotg->dev, "DWC OTG HCD START\n");
4233
4234         spin_lock_irqsave(&hsotg->lock, flags);
4235         hsotg->lx_state = DWC2_L0;
4236         hcd->state = HC_STATE_RUNNING;
4237         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4238
4239         if (dwc2_is_device_mode(hsotg)) {
4240                 spin_unlock_irqrestore(&hsotg->lock, flags);
4241                 return 0;       /* why 0 ?? */
4242         }
4243
4244         dwc2_hcd_reinit(hsotg);
4245
4246         hprt0 = dwc2_read_hprt0(hsotg);
4247         /* Has vbus power been turned on in dwc2_core_host_init ? */
4248         if (hprt0 & HPRT0_PWR) {
4249                 /* Enable external vbus supply before resuming root hub */
4250                 spin_unlock_irqrestore(&hsotg->lock, flags);
4251                 ret = dwc2_vbus_supply_init(hsotg);
4252                 if (ret)
4253                         return ret;
4254                 spin_lock_irqsave(&hsotg->lock, flags);
4255         }
4256
4257         /* Initialize and connect root hub if one is not already attached */
4258         if (bus->root_hub) {
4259                 dev_dbg(hsotg->dev, "DWC OTG HCD Has Root Hub\n");
4260                 /* Inform the HUB driver to resume */
4261                 usb_hcd_resume_root_hub(hcd);
4262         }
4263
4264         spin_unlock_irqrestore(&hsotg->lock, flags);
4265
4266         return 0;
4267 }
4268
4269 /*
4270  * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
4271  * stopped.
4272  */
4273 static void _dwc2_hcd_stop(struct usb_hcd *hcd)
4274 {
4275         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4276         unsigned long flags;
4277         u32 hprt0;
4278
4279         /* Turn off all host-specific interrupts */
4280         dwc2_disable_host_interrupts(hsotg);
4281
4282         /* Wait for interrupt processing to finish */
4283         synchronize_irq(hcd->irq);
4284
4285         spin_lock_irqsave(&hsotg->lock, flags);
4286         hprt0 = dwc2_read_hprt0(hsotg);
4287         /* Ensure hcd is disconnected */
4288         dwc2_hcd_disconnect(hsotg, true);
4289         dwc2_hcd_stop(hsotg);
4290         hsotg->lx_state = DWC2_L3;
4291         hcd->state = HC_STATE_HALT;
4292         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4293         spin_unlock_irqrestore(&hsotg->lock, flags);
4294
4295         /* keep balanced supply init/exit by checking HPRT0_PWR */
4296         if (hprt0 & HPRT0_PWR)
4297                 dwc2_vbus_supply_exit(hsotg);
4298
4299         usleep_range(1000, 3000);
4300 }
4301
4302 static int _dwc2_hcd_suspend(struct usb_hcd *hcd)
4303 {
4304         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4305         unsigned long flags;
4306         int ret = 0;
4307         u32 hprt0;
4308         u32 pcgctl;
4309
4310         spin_lock_irqsave(&hsotg->lock, flags);
4311
4312         if (dwc2_is_device_mode(hsotg))
4313                 goto unlock;
4314
4315         if (hsotg->lx_state != DWC2_L0)
4316                 goto unlock;
4317
4318         if (!HCD_HW_ACCESSIBLE(hcd))
4319                 goto unlock;
4320
4321         if (hsotg->op_state == OTG_STATE_B_PERIPHERAL)
4322                 goto unlock;
4323
4324         if (hsotg->params.power_down > DWC2_POWER_DOWN_PARAM_PARTIAL)
4325                 goto skip_power_saving;
4326
4327         /*
4328          * Drive USB suspend and disable port Power
4329          * if usb bus is not suspended.
4330          */
4331         if (!hsotg->bus_suspended) {
4332                 hprt0 = dwc2_read_hprt0(hsotg);
4333                 if (hprt0 & HPRT0_CONNSTS) {
4334                         hprt0 |= HPRT0_SUSP;
4335                         if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_PARTIAL)
4336                                 hprt0 &= ~HPRT0_PWR;
4337                         dwc2_writel(hsotg, hprt0, HPRT0);
4338                 }
4339                 if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_PARTIAL) {
4340                         spin_unlock_irqrestore(&hsotg->lock, flags);
4341                         dwc2_vbus_supply_exit(hsotg);
4342                         spin_lock_irqsave(&hsotg->lock, flags);
4343                 } else {
4344                         pcgctl = readl(hsotg->regs + PCGCTL);
4345                         pcgctl |= PCGCTL_STOPPCLK;
4346                         writel(pcgctl, hsotg->regs + PCGCTL);
4347                 }
4348         }
4349
4350         if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_PARTIAL) {
4351                 /* Enter partial_power_down */
4352                 ret = dwc2_enter_partial_power_down(hsotg);
4353                 if (ret) {
4354                         if (ret != -ENOTSUPP)
4355                                 dev_err(hsotg->dev,
4356                                         "enter partial_power_down failed\n");
4357                         goto skip_power_saving;
4358                 }
4359
4360                 /* After entering partial_power_down, hardware is no more accessible */
4361                 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4362         }
4363
4364         /* Ask phy to be suspended */
4365         if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4366                 spin_unlock_irqrestore(&hsotg->lock, flags);
4367                 usb_phy_set_suspend(hsotg->uphy, true);
4368                 spin_lock_irqsave(&hsotg->lock, flags);
4369         }
4370
4371 skip_power_saving:
4372         hsotg->lx_state = DWC2_L2;
4373 unlock:
4374         spin_unlock_irqrestore(&hsotg->lock, flags);
4375
4376         return ret;
4377 }
4378
4379 static int _dwc2_hcd_resume(struct usb_hcd *hcd)
4380 {
4381         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4382         unsigned long flags;
4383         u32 pcgctl;
4384         int ret = 0;
4385
4386         spin_lock_irqsave(&hsotg->lock, flags);
4387
4388         if (dwc2_is_device_mode(hsotg))
4389                 goto unlock;
4390
4391         if (hsotg->lx_state != DWC2_L2)
4392                 goto unlock;
4393
4394         if (hsotg->params.power_down > DWC2_POWER_DOWN_PARAM_PARTIAL) {
4395                 hsotg->lx_state = DWC2_L0;
4396                 goto unlock;
4397         }
4398
4399         /*
4400          * Enable power if not already done.
4401          * This must not be spinlocked since duration
4402          * of this call is unknown.
4403          */
4404         if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4405                 spin_unlock_irqrestore(&hsotg->lock, flags);
4406                 usb_phy_set_suspend(hsotg->uphy, false);
4407                 spin_lock_irqsave(&hsotg->lock, flags);
4408         }
4409
4410         if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_PARTIAL) {
4411                 /*
4412                  * Set HW accessible bit before powering on the controller
4413                  * since an interrupt may rise.
4414                  */
4415                 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4416
4417
4418                 /* Exit partial_power_down */
4419                 ret = dwc2_exit_partial_power_down(hsotg, true);
4420                 if (ret && (ret != -ENOTSUPP))
4421                         dev_err(hsotg->dev, "exit partial_power_down failed\n");
4422         } else {
4423                 pcgctl = readl(hsotg->regs + PCGCTL);
4424                 pcgctl &= ~PCGCTL_STOPPCLK;
4425                 writel(pcgctl, hsotg->regs + PCGCTL);
4426         }
4427
4428         hsotg->lx_state = DWC2_L0;
4429
4430         spin_unlock_irqrestore(&hsotg->lock, flags);
4431
4432         if (hsotg->bus_suspended) {
4433                 spin_lock_irqsave(&hsotg->lock, flags);
4434                 hsotg->flags.b.port_suspend_change = 1;
4435                 spin_unlock_irqrestore(&hsotg->lock, flags);
4436                 dwc2_port_resume(hsotg);
4437         } else {
4438                 if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_PARTIAL) {
4439                         dwc2_vbus_supply_init(hsotg);
4440
4441                         /* Wait for controller to correctly update D+/D- level */
4442                         usleep_range(3000, 5000);
4443                 }
4444
4445                 /*
4446                  * Clear Port Enable and Port Status changes.
4447                  * Enable Port Power.
4448                  */
4449                 dwc2_writel(hsotg, HPRT0_PWR | HPRT0_CONNDET |
4450                                 HPRT0_ENACHG, HPRT0);
4451                 /* Wait for controller to detect Port Connect */
4452                 usleep_range(5000, 7000);
4453         }
4454
4455         return ret;
4456 unlock:
4457         spin_unlock_irqrestore(&hsotg->lock, flags);
4458
4459         return ret;
4460 }
4461
4462 /* Returns the current frame number */
4463 static int _dwc2_hcd_get_frame_number(struct usb_hcd *hcd)
4464 {
4465         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4466
4467         return dwc2_hcd_get_frame_number(hsotg);
4468 }
4469
4470 static void dwc2_dump_urb_info(struct usb_hcd *hcd, struct urb *urb,
4471                                char *fn_name)
4472 {
4473 #ifdef VERBOSE_DEBUG
4474         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4475         char *pipetype = NULL;
4476         char *speed = NULL;
4477
4478         dev_vdbg(hsotg->dev, "%s, urb %p\n", fn_name, urb);
4479         dev_vdbg(hsotg->dev, "  Device address: %d\n",
4480                  usb_pipedevice(urb->pipe));
4481         dev_vdbg(hsotg->dev, "  Endpoint: %d, %s\n",
4482                  usb_pipeendpoint(urb->pipe),
4483                  usb_pipein(urb->pipe) ? "IN" : "OUT");
4484
4485         switch (usb_pipetype(urb->pipe)) {
4486         case PIPE_CONTROL:
4487                 pipetype = "CONTROL";
4488                 break;
4489         case PIPE_BULK:
4490                 pipetype = "BULK";
4491                 break;
4492         case PIPE_INTERRUPT:
4493                 pipetype = "INTERRUPT";
4494                 break;
4495         case PIPE_ISOCHRONOUS:
4496                 pipetype = "ISOCHRONOUS";
4497                 break;
4498         }
4499
4500         dev_vdbg(hsotg->dev, "  Endpoint type: %s %s (%s)\n", pipetype,
4501                  usb_urb_dir_in(urb) ? "IN" : "OUT", usb_pipein(urb->pipe) ?
4502                  "IN" : "OUT");
4503
4504         switch (urb->dev->speed) {
4505         case USB_SPEED_HIGH:
4506                 speed = "HIGH";
4507                 break;
4508         case USB_SPEED_FULL:
4509                 speed = "FULL";
4510                 break;
4511         case USB_SPEED_LOW:
4512                 speed = "LOW";
4513                 break;
4514         default:
4515                 speed = "UNKNOWN";
4516                 break;
4517         }
4518
4519         dev_vdbg(hsotg->dev, "  Speed: %s\n", speed);
4520         dev_vdbg(hsotg->dev, "  Max packet size: %d (%d mult)\n",
4521                  usb_endpoint_maxp(&urb->ep->desc),
4522                  usb_endpoint_maxp_mult(&urb->ep->desc));
4523
4524         dev_vdbg(hsotg->dev, "  Data buffer length: %d\n",
4525                  urb->transfer_buffer_length);
4526         dev_vdbg(hsotg->dev, "  Transfer buffer: %p, Transfer DMA: %08lx\n",
4527                  urb->transfer_buffer, (unsigned long)urb->transfer_dma);
4528         dev_vdbg(hsotg->dev, "  Setup buffer: %p, Setup DMA: %08lx\n",
4529                  urb->setup_packet, (unsigned long)urb->setup_dma);
4530         dev_vdbg(hsotg->dev, "  Interval: %d\n", urb->interval);
4531
4532         if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4533                 int i;
4534
4535                 for (i = 0; i < urb->number_of_packets; i++) {
4536                         dev_vdbg(hsotg->dev, "  ISO Desc %d:\n", i);
4537                         dev_vdbg(hsotg->dev, "    offset: %d, length %d\n",
4538                                  urb->iso_frame_desc[i].offset,
4539                                  urb->iso_frame_desc[i].length);
4540                 }
4541         }
4542 #endif
4543 }
4544
4545 /*
4546  * Starts processing a USB transfer request specified by a USB Request Block
4547  * (URB). mem_flags indicates the type of memory allocation to use while
4548  * processing this URB.
4549  */
4550 static int _dwc2_hcd_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
4551                                  gfp_t mem_flags)
4552 {
4553         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4554         struct usb_host_endpoint *ep = urb->ep;
4555         struct dwc2_hcd_urb *dwc2_urb;
4556         int i;
4557         int retval;
4558         int alloc_bandwidth = 0;
4559         u8 ep_type = 0;
4560         u32 tflags = 0;
4561         void *buf;
4562         unsigned long flags;
4563         struct dwc2_qh *qh;
4564         bool qh_allocated = false;
4565         struct dwc2_qtd *qtd;
4566
4567         if (dbg_urb(urb)) {
4568                 dev_vdbg(hsotg->dev, "DWC OTG HCD URB Enqueue\n");
4569                 dwc2_dump_urb_info(hcd, urb, "urb_enqueue");
4570         }
4571
4572         if (!ep)
4573                 return -EINVAL;
4574
4575         if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4576             usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4577                 spin_lock_irqsave(&hsotg->lock, flags);
4578                 if (!dwc2_hcd_is_bandwidth_allocated(hsotg, ep))
4579                         alloc_bandwidth = 1;
4580                 spin_unlock_irqrestore(&hsotg->lock, flags);
4581         }
4582
4583         switch (usb_pipetype(urb->pipe)) {
4584         case PIPE_CONTROL:
4585                 ep_type = USB_ENDPOINT_XFER_CONTROL;
4586                 break;
4587         case PIPE_ISOCHRONOUS:
4588                 ep_type = USB_ENDPOINT_XFER_ISOC;
4589                 break;
4590         case PIPE_BULK:
4591                 ep_type = USB_ENDPOINT_XFER_BULK;
4592                 break;
4593         case PIPE_INTERRUPT:
4594                 ep_type = USB_ENDPOINT_XFER_INT;
4595                 break;
4596         }
4597
4598         dwc2_urb = dwc2_hcd_urb_alloc(hsotg, urb->number_of_packets,
4599                                       mem_flags);
4600         if (!dwc2_urb)
4601                 return -ENOMEM;
4602
4603         dwc2_hcd_urb_set_pipeinfo(hsotg, dwc2_urb, usb_pipedevice(urb->pipe),
4604                                   usb_pipeendpoint(urb->pipe), ep_type,
4605                                   usb_pipein(urb->pipe),
4606                                   usb_endpoint_maxp(&ep->desc),
4607                                   usb_endpoint_maxp_mult(&ep->desc));
4608
4609         buf = urb->transfer_buffer;
4610
4611         if (hcd_uses_dma(hcd)) {
4612                 if (!buf && (urb->transfer_dma & 3)) {
4613                         dev_err(hsotg->dev,
4614                                 "%s: unaligned transfer with no transfer_buffer",
4615                                 __func__);
4616                         retval = -EINVAL;
4617                         goto fail0;
4618                 }
4619         }
4620
4621         if (!(urb->transfer_flags & URB_NO_INTERRUPT))
4622                 tflags |= URB_GIVEBACK_ASAP;
4623         if (urb->transfer_flags & URB_ZERO_PACKET)
4624                 tflags |= URB_SEND_ZERO_PACKET;
4625
4626         dwc2_urb->priv = urb;
4627         dwc2_urb->buf = buf;
4628         dwc2_urb->dma = urb->transfer_dma;
4629         dwc2_urb->length = urb->transfer_buffer_length;
4630         dwc2_urb->setup_packet = urb->setup_packet;
4631         dwc2_urb->setup_dma = urb->setup_dma;
4632         dwc2_urb->flags = tflags;
4633         dwc2_urb->interval = urb->interval;
4634         dwc2_urb->status = -EINPROGRESS;
4635
4636         for (i = 0; i < urb->number_of_packets; ++i)
4637                 dwc2_hcd_urb_set_iso_desc_params(dwc2_urb, i,
4638                                                  urb->iso_frame_desc[i].offset,
4639                                                  urb->iso_frame_desc[i].length);
4640
4641         urb->hcpriv = dwc2_urb;
4642         qh = (struct dwc2_qh *)ep->hcpriv;
4643         /* Create QH for the endpoint if it doesn't exist */
4644         if (!qh) {
4645                 qh = dwc2_hcd_qh_create(hsotg, dwc2_urb, mem_flags);
4646                 if (!qh) {
4647                         retval = -ENOMEM;
4648                         goto fail0;
4649                 }
4650                 ep->hcpriv = qh;
4651                 qh_allocated = true;
4652         }
4653
4654         qtd = kzalloc(sizeof(*qtd), mem_flags);
4655         if (!qtd) {
4656                 retval = -ENOMEM;
4657                 goto fail1;
4658         }
4659
4660         spin_lock_irqsave(&hsotg->lock, flags);
4661         retval = usb_hcd_link_urb_to_ep(hcd, urb);
4662         if (retval)
4663                 goto fail2;
4664
4665         retval = dwc2_hcd_urb_enqueue(hsotg, dwc2_urb, qh, qtd);
4666         if (retval)
4667                 goto fail3;
4668
4669         if (alloc_bandwidth) {
4670                 dwc2_allocate_bus_bandwidth(hcd,
4671                                 dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4672                                 urb);
4673         }
4674
4675         spin_unlock_irqrestore(&hsotg->lock, flags);
4676
4677         return 0;
4678
4679 fail3:
4680         dwc2_urb->priv = NULL;
4681         usb_hcd_unlink_urb_from_ep(hcd, urb);
4682         if (qh_allocated && qh->channel && qh->channel->qh == qh)
4683                 qh->channel->qh = NULL;
4684 fail2:
4685         spin_unlock_irqrestore(&hsotg->lock, flags);
4686         urb->hcpriv = NULL;
4687         kfree(qtd);
4688 fail1:
4689         if (qh_allocated) {
4690                 struct dwc2_qtd *qtd2, *qtd2_tmp;
4691
4692                 ep->hcpriv = NULL;
4693                 dwc2_hcd_qh_unlink(hsotg, qh);
4694                 /* Free each QTD in the QH's QTD list */
4695                 list_for_each_entry_safe(qtd2, qtd2_tmp, &qh->qtd_list,
4696                                          qtd_list_entry)
4697                         dwc2_hcd_qtd_unlink_and_free(hsotg, qtd2, qh);
4698                 dwc2_hcd_qh_free(hsotg, qh);
4699         }
4700 fail0:
4701         kfree(dwc2_urb);
4702
4703         return retval;
4704 }
4705
4706 /*
4707  * Aborts/cancels a USB transfer request. Always returns 0 to indicate success.
4708  */
4709 static int _dwc2_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb,
4710                                  int status)
4711 {
4712         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4713         int rc;
4714         unsigned long flags;
4715
4716         dev_dbg(hsotg->dev, "DWC OTG HCD URB Dequeue\n");
4717         dwc2_dump_urb_info(hcd, urb, "urb_dequeue");
4718
4719         spin_lock_irqsave(&hsotg->lock, flags);
4720
4721         rc = usb_hcd_check_unlink_urb(hcd, urb, status);
4722         if (rc)
4723                 goto out;
4724
4725         if (!urb->hcpriv) {
4726                 dev_dbg(hsotg->dev, "## urb->hcpriv is NULL ##\n");
4727                 goto out;
4728         }
4729
4730         rc = dwc2_hcd_urb_dequeue(hsotg, urb->hcpriv);
4731
4732         usb_hcd_unlink_urb_from_ep(hcd, urb);
4733
4734         kfree(urb->hcpriv);
4735         urb->hcpriv = NULL;
4736
4737         /* Higher layer software sets URB status */
4738         spin_unlock(&hsotg->lock);
4739         usb_hcd_giveback_urb(hcd, urb, status);
4740         spin_lock(&hsotg->lock);
4741
4742         dev_dbg(hsotg->dev, "Called usb_hcd_giveback_urb()\n");
4743         dev_dbg(hsotg->dev, "  urb->status = %d\n", urb->status);
4744 out:
4745         spin_unlock_irqrestore(&hsotg->lock, flags);
4746
4747         return rc;
4748 }
4749
4750 /*
4751  * Frees resources in the DWC_otg controller related to a given endpoint. Also
4752  * clears state in the HCD related to the endpoint. Any URBs for the endpoint
4753  * must already be dequeued.
4754  */
4755 static void _dwc2_hcd_endpoint_disable(struct usb_hcd *hcd,
4756                                        struct usb_host_endpoint *ep)
4757 {
4758         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4759
4760         dev_dbg(hsotg->dev,
4761                 "DWC OTG HCD EP DISABLE: bEndpointAddress=0x%02x, ep->hcpriv=%p\n",
4762                 ep->desc.bEndpointAddress, ep->hcpriv);
4763         dwc2_hcd_endpoint_disable(hsotg, ep, 250);
4764 }
4765
4766 /*
4767  * Resets endpoint specific parameter values, in current version used to reset
4768  * the data toggle (as a WA). This function can be called from usb_clear_halt
4769  * routine.
4770  */
4771 static void _dwc2_hcd_endpoint_reset(struct usb_hcd *hcd,
4772                                      struct usb_host_endpoint *ep)
4773 {
4774         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4775         unsigned long flags;
4776
4777         dev_dbg(hsotg->dev,
4778                 "DWC OTG HCD EP RESET: bEndpointAddress=0x%02x\n",
4779                 ep->desc.bEndpointAddress);
4780
4781         spin_lock_irqsave(&hsotg->lock, flags);
4782         dwc2_hcd_endpoint_reset(hsotg, ep);
4783         spin_unlock_irqrestore(&hsotg->lock, flags);
4784 }
4785
4786 /*
4787  * Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
4788  * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
4789  * interrupt.
4790  *
4791  * This function is called by the USB core when an interrupt occurs
4792  */
4793 static irqreturn_t _dwc2_hcd_irq(struct usb_hcd *hcd)
4794 {
4795         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4796
4797         return dwc2_handle_hcd_intr(hsotg);
4798 }
4799
4800 /*
4801  * Creates Status Change bitmap for the root hub and root port. The bitmap is
4802  * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
4803  * is the status change indicator for the single root port. Returns 1 if either
4804  * change indicator is 1, otherwise returns 0.
4805  */
4806 static int _dwc2_hcd_hub_status_data(struct usb_hcd *hcd, char *buf)
4807 {
4808         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4809
4810         buf[0] = dwc2_hcd_is_status_changed(hsotg, 1) << 1;
4811         return buf[0] != 0;
4812 }
4813
4814 /* Handles hub class-specific requests */
4815 static int _dwc2_hcd_hub_control(struct usb_hcd *hcd, u16 typereq, u16 wvalue,
4816                                  u16 windex, char *buf, u16 wlength)
4817 {
4818         int retval = dwc2_hcd_hub_control(dwc2_hcd_to_hsotg(hcd), typereq,
4819                                           wvalue, windex, buf, wlength);
4820         return retval;
4821 }
4822
4823 /* Handles hub TT buffer clear completions */
4824 static void _dwc2_hcd_clear_tt_buffer_complete(struct usb_hcd *hcd,
4825                                                struct usb_host_endpoint *ep)
4826 {
4827         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4828         struct dwc2_qh *qh;
4829         unsigned long flags;
4830
4831         qh = ep->hcpriv;
4832         if (!qh)
4833                 return;
4834
4835         spin_lock_irqsave(&hsotg->lock, flags);
4836         qh->tt_buffer_dirty = 0;
4837
4838         if (hsotg->flags.b.port_connect_status)
4839                 dwc2_hcd_queue_transactions(hsotg, DWC2_TRANSACTION_ALL);
4840
4841         spin_unlock_irqrestore(&hsotg->lock, flags);
4842 }
4843
4844 /*
4845  * HPRT0_SPD_HIGH_SPEED: high speed
4846  * HPRT0_SPD_FULL_SPEED: full speed
4847  */
4848 static void dwc2_change_bus_speed(struct usb_hcd *hcd, int speed)
4849 {
4850         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4851
4852         if (hsotg->params.speed == speed)
4853                 return;
4854
4855         hsotg->params.speed = speed;
4856         queue_work(hsotg->wq_otg, &hsotg->wf_otg);
4857 }
4858
4859 static void dwc2_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
4860 {
4861         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4862
4863         if (!hsotg->params.change_speed_quirk)
4864                 return;
4865
4866         /*
4867          * On removal, set speed to default high-speed.
4868          */
4869         if (udev->parent && udev->parent->speed > USB_SPEED_UNKNOWN &&
4870             udev->parent->speed < USB_SPEED_HIGH) {
4871                 dev_info(hsotg->dev, "Set speed to default high-speed\n");
4872                 dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
4873         }
4874 }
4875
4876 static int dwc2_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
4877 {
4878         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4879
4880         if (!hsotg->params.change_speed_quirk)
4881                 return 0;
4882
4883         if (udev->speed == USB_SPEED_HIGH) {
4884                 dev_info(hsotg->dev, "Set speed to high-speed\n");
4885                 dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
4886         } else if ((udev->speed == USB_SPEED_FULL ||
4887                                 udev->speed == USB_SPEED_LOW)) {
4888                 /*
4889                  * Change speed setting to full-speed if there's
4890                  * a full-speed or low-speed device plugged in.
4891                  */
4892                 dev_info(hsotg->dev, "Set speed to full-speed\n");
4893                 dwc2_change_bus_speed(hcd, HPRT0_SPD_FULL_SPEED);
4894         }
4895
4896         return 0;
4897 }
4898
4899 static struct hc_driver dwc2_hc_driver = {
4900         .description = "dwc2_hsotg",
4901         .product_desc = "DWC OTG Controller",
4902         .hcd_priv_size = sizeof(struct wrapper_priv_data),
4903
4904         .irq = _dwc2_hcd_irq,
4905         .flags = HCD_MEMORY | HCD_USB2 | HCD_BH,
4906
4907         .start = _dwc2_hcd_start,
4908         .stop = _dwc2_hcd_stop,
4909         .urb_enqueue = _dwc2_hcd_urb_enqueue,
4910         .urb_dequeue = _dwc2_hcd_urb_dequeue,
4911         .endpoint_disable = _dwc2_hcd_endpoint_disable,
4912         .endpoint_reset = _dwc2_hcd_endpoint_reset,
4913         .get_frame_number = _dwc2_hcd_get_frame_number,
4914
4915         .hub_status_data = _dwc2_hcd_hub_status_data,
4916         .hub_control = _dwc2_hcd_hub_control,
4917         .clear_tt_buffer_complete = _dwc2_hcd_clear_tt_buffer_complete,
4918
4919         .bus_suspend = _dwc2_hcd_suspend,
4920         .bus_resume = _dwc2_hcd_resume,
4921
4922         .map_urb_for_dma        = dwc2_map_urb_for_dma,
4923         .unmap_urb_for_dma      = dwc2_unmap_urb_for_dma,
4924 };
4925
4926 /*
4927  * Frees secondary storage associated with the dwc2_hsotg structure contained
4928  * in the struct usb_hcd field
4929  */
4930 static void dwc2_hcd_free(struct dwc2_hsotg *hsotg)
4931 {
4932         u32 ahbcfg;
4933         u32 dctl;
4934         int i;
4935
4936         dev_dbg(hsotg->dev, "DWC OTG HCD FREE\n");
4937
4938         /* Free memory for QH/QTD lists */
4939         dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_inactive);
4940         dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_waiting);
4941         dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_active);
4942         dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_inactive);
4943         dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_ready);
4944         dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_assigned);
4945         dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_queued);
4946
4947         /* Free memory for the host channels */
4948         for (i = 0; i < MAX_EPS_CHANNELS; i++) {
4949                 struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
4950
4951                 if (chan) {
4952                         dev_dbg(hsotg->dev, "HCD Free channel #%i, chan=%p\n",
4953                                 i, chan);
4954                         hsotg->hc_ptr_array[i] = NULL;
4955                         kfree(chan);
4956                 }
4957         }
4958
4959         if (hsotg->params.host_dma) {
4960                 if (hsotg->status_buf) {
4961                         dma_free_coherent(hsotg->dev, DWC2_HCD_STATUS_BUF_SIZE,
4962                                           hsotg->status_buf,
4963                                           hsotg->status_buf_dma);
4964                         hsotg->status_buf = NULL;
4965                 }
4966         } else {
4967                 kfree(hsotg->status_buf);
4968                 hsotg->status_buf = NULL;
4969         }
4970
4971         ahbcfg = dwc2_readl(hsotg, GAHBCFG);
4972
4973         /* Disable all interrupts */
4974         ahbcfg &= ~GAHBCFG_GLBL_INTR_EN;
4975         dwc2_writel(hsotg, ahbcfg, GAHBCFG);
4976         dwc2_writel(hsotg, 0, GINTMSK);
4977
4978         if (hsotg->hw_params.snpsid >= DWC2_CORE_REV_3_00a) {
4979                 dctl = dwc2_readl(hsotg, DCTL);
4980                 dctl |= DCTL_SFTDISCON;
4981                 dwc2_writel(hsotg, dctl, DCTL);
4982         }
4983
4984         if (hsotg->wq_otg) {
4985                 if (!cancel_work_sync(&hsotg->wf_otg))
4986                         flush_workqueue(hsotg->wq_otg);
4987                 destroy_workqueue(hsotg->wq_otg);
4988         }
4989
4990         cancel_work_sync(&hsotg->phy_reset_work);
4991
4992         del_timer(&hsotg->wkp_timer);
4993 }
4994
4995 static void dwc2_hcd_release(struct dwc2_hsotg *hsotg)
4996 {
4997         /* Turn off all host-specific interrupts */
4998         dwc2_disable_host_interrupts(hsotg);
4999
5000         dwc2_hcd_free(hsotg);
5001 }
5002
5003 /*
5004  * Initializes the HCD. This function allocates memory for and initializes the
5005  * static parts of the usb_hcd and dwc2_hsotg structures. It also registers the
5006  * USB bus with the core and calls the hc_driver->start() function. It returns
5007  * a negative error on failure.
5008  */
5009 int dwc2_hcd_init(struct dwc2_hsotg *hsotg)
5010 {
5011         struct platform_device *pdev = to_platform_device(hsotg->dev);
5012         struct resource *res;
5013         struct usb_hcd *hcd;
5014         struct dwc2_host_chan *channel;
5015         u32 hcfg;
5016         int i, num_channels;
5017         int retval;
5018
5019         if (usb_disabled())
5020                 return -ENODEV;
5021
5022         dev_dbg(hsotg->dev, "DWC OTG HCD INIT\n");
5023
5024         retval = -ENOMEM;
5025
5026         hcfg = dwc2_readl(hsotg, HCFG);
5027         dev_dbg(hsotg->dev, "hcfg=%08x\n", hcfg);
5028
5029 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5030         hsotg->frame_num_array = kcalloc(FRAME_NUM_ARRAY_SIZE,
5031                                          sizeof(*hsotg->frame_num_array),
5032                                          GFP_KERNEL);
5033         if (!hsotg->frame_num_array)
5034                 goto error1;
5035         hsotg->last_frame_num_array =
5036                 kcalloc(FRAME_NUM_ARRAY_SIZE,
5037                         sizeof(*hsotg->last_frame_num_array), GFP_KERNEL);
5038         if (!hsotg->last_frame_num_array)
5039                 goto error1;
5040 #endif
5041         hsotg->last_frame_num = HFNUM_MAX_FRNUM;
5042
5043         /* Check if the bus driver or platform code has setup a dma_mask */
5044         if (hsotg->params.host_dma &&
5045             !hsotg->dev->dma_mask) {
5046                 dev_warn(hsotg->dev,
5047                          "dma_mask not set, disabling DMA\n");
5048                 hsotg->params.host_dma = false;
5049                 hsotg->params.dma_desc_enable = false;
5050         }
5051
5052         /* Set device flags indicating whether the HCD supports DMA */
5053         if (hsotg->params.host_dma) {
5054                 if (dma_set_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5055                         dev_warn(hsotg->dev, "can't set DMA mask\n");
5056                 if (dma_set_coherent_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5057                         dev_warn(hsotg->dev, "can't set coherent DMA mask\n");
5058         }
5059
5060         if (hsotg->params.change_speed_quirk) {
5061                 dwc2_hc_driver.free_dev = dwc2_free_dev;
5062                 dwc2_hc_driver.reset_device = dwc2_reset_device;
5063         }
5064
5065         hcd = usb_create_hcd(&dwc2_hc_driver, hsotg->dev, dev_name(hsotg->dev));
5066         if (!hcd)
5067                 goto error1;
5068
5069         if (!hsotg->params.host_dma)
5070                 hcd->self.uses_dma = 0;
5071
5072         hcd->has_tt = 1;
5073
5074         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5075         hcd->rsrc_start = res->start;
5076         hcd->rsrc_len = resource_size(res);
5077
5078         ((struct wrapper_priv_data *)&hcd->hcd_priv)->hsotg = hsotg;
5079         hsotg->priv = hcd;
5080
5081         /*
5082          * Disable the global interrupt until all the interrupt handlers are
5083          * installed
5084          */
5085         dwc2_disable_global_interrupts(hsotg);
5086
5087         /* Initialize the DWC_otg core, and select the Phy type */
5088         retval = dwc2_core_init(hsotg, true);
5089         if (retval)
5090                 goto error2;
5091
5092         /* Create new workqueue and init work */
5093         retval = -ENOMEM;
5094         hsotg->wq_otg = alloc_ordered_workqueue("dwc2", 0);
5095         if (!hsotg->wq_otg) {
5096                 dev_err(hsotg->dev, "Failed to create workqueue\n");
5097                 goto error2;
5098         }
5099         INIT_WORK(&hsotg->wf_otg, dwc2_conn_id_status_change);
5100
5101         timer_setup(&hsotg->wkp_timer, dwc2_wakeup_detected, 0);
5102
5103         /* Initialize the non-periodic schedule */
5104         INIT_LIST_HEAD(&hsotg->non_periodic_sched_inactive);
5105         INIT_LIST_HEAD(&hsotg->non_periodic_sched_waiting);
5106         INIT_LIST_HEAD(&hsotg->non_periodic_sched_active);
5107
5108         /* Initialize the periodic schedule */
5109         INIT_LIST_HEAD(&hsotg->periodic_sched_inactive);
5110         INIT_LIST_HEAD(&hsotg->periodic_sched_ready);
5111         INIT_LIST_HEAD(&hsotg->periodic_sched_assigned);
5112         INIT_LIST_HEAD(&hsotg->periodic_sched_queued);
5113
5114         INIT_LIST_HEAD(&hsotg->split_order);
5115
5116         /*
5117          * Create a host channel descriptor for each host channel implemented
5118          * in the controller. Initialize the channel descriptor array.
5119          */
5120         INIT_LIST_HEAD(&hsotg->free_hc_list);
5121         num_channels = hsotg->params.host_channels;
5122         memset(&hsotg->hc_ptr_array[0], 0, sizeof(hsotg->hc_ptr_array));
5123
5124         for (i = 0; i < num_channels; i++) {
5125                 channel = kzalloc(sizeof(*channel), GFP_KERNEL);
5126                 if (!channel)
5127                         goto error3;
5128                 channel->hc_num = i;
5129                 INIT_LIST_HEAD(&channel->split_order_list_entry);
5130                 hsotg->hc_ptr_array[i] = channel;
5131         }
5132
5133         /* Initialize work */
5134         INIT_DELAYED_WORK(&hsotg->start_work, dwc2_hcd_start_func);
5135         INIT_DELAYED_WORK(&hsotg->reset_work, dwc2_hcd_reset_func);
5136         INIT_WORK(&hsotg->phy_reset_work, dwc2_hcd_phy_reset_func);
5137
5138         /*
5139          * Allocate space for storing data on status transactions. Normally no
5140          * data is sent, but this space acts as a bit bucket. This must be
5141          * done after usb_add_hcd since that function allocates the DMA buffer
5142          * pool.
5143          */
5144         if (hsotg->params.host_dma)
5145                 hsotg->status_buf = dma_alloc_coherent(hsotg->dev,
5146                                         DWC2_HCD_STATUS_BUF_SIZE,
5147                                         &hsotg->status_buf_dma, GFP_KERNEL);
5148         else
5149                 hsotg->status_buf = kzalloc(DWC2_HCD_STATUS_BUF_SIZE,
5150                                           GFP_KERNEL);
5151
5152         if (!hsotg->status_buf)
5153                 goto error3;
5154
5155         /*
5156          * Create kmem caches to handle descriptor buffers in descriptor
5157          * DMA mode.
5158          * Alignment must be set to 512 bytes.
5159          */
5160         if (hsotg->params.dma_desc_enable ||
5161             hsotg->params.dma_desc_fs_enable) {
5162                 hsotg->desc_gen_cache = kmem_cache_create("dwc2-gen-desc",
5163                                 sizeof(struct dwc2_dma_desc) *
5164                                 MAX_DMA_DESC_NUM_GENERIC, 512, SLAB_CACHE_DMA,
5165                                 NULL);
5166                 if (!hsotg->desc_gen_cache) {
5167                         dev_err(hsotg->dev,
5168                                 "unable to create dwc2 generic desc cache\n");
5169
5170                         /*
5171                          * Disable descriptor dma mode since it will not be
5172                          * usable.
5173                          */
5174                         hsotg->params.dma_desc_enable = false;
5175                         hsotg->params.dma_desc_fs_enable = false;
5176                 }
5177
5178                 hsotg->desc_hsisoc_cache = kmem_cache_create("dwc2-hsisoc-desc",
5179                                 sizeof(struct dwc2_dma_desc) *
5180                                 MAX_DMA_DESC_NUM_HS_ISOC, 512, 0, NULL);
5181                 if (!hsotg->desc_hsisoc_cache) {
5182                         dev_err(hsotg->dev,
5183                                 "unable to create dwc2 hs isoc desc cache\n");
5184
5185                         kmem_cache_destroy(hsotg->desc_gen_cache);
5186
5187                         /*
5188                          * Disable descriptor dma mode since it will not be
5189                          * usable.
5190                          */
5191                         hsotg->params.dma_desc_enable = false;
5192                         hsotg->params.dma_desc_fs_enable = false;
5193                 }
5194         }
5195
5196         if (hsotg->params.host_dma) {
5197                 /*
5198                  * Create kmem caches to handle non-aligned buffer
5199                  * in Buffer DMA mode.
5200                  */
5201                 hsotg->unaligned_cache = kmem_cache_create("dwc2-unaligned-dma",
5202                                                 DWC2_KMEM_UNALIGNED_BUF_SIZE, 4,
5203                                                 SLAB_CACHE_DMA, NULL);
5204                 if (!hsotg->unaligned_cache)
5205                         dev_err(hsotg->dev,
5206                                 "unable to create dwc2 unaligned cache\n");
5207         }
5208
5209         hsotg->otg_port = 1;
5210         hsotg->frame_list = NULL;
5211         hsotg->frame_list_dma = 0;
5212         hsotg->periodic_qh_count = 0;
5213
5214         /* Initiate lx_state to L3 disconnected state */
5215         hsotg->lx_state = DWC2_L3;
5216
5217         hcd->self.otg_port = hsotg->otg_port;
5218
5219         /* Don't support SG list at this point */
5220         hcd->self.sg_tablesize = 0;
5221
5222         if (!IS_ERR_OR_NULL(hsotg->uphy))
5223                 otg_set_host(hsotg->uphy->otg, &hcd->self);
5224
5225         /*
5226          * Finish generic HCD initialization and start the HCD. This function
5227          * allocates the DMA buffer pool, registers the USB bus, requests the
5228          * IRQ line, and calls hcd_start method.
5229          */
5230         retval = usb_add_hcd(hcd, hsotg->irq, IRQF_SHARED);
5231         if (retval < 0)
5232                 goto error4;
5233
5234         device_wakeup_enable(hcd->self.controller);
5235
5236         dwc2_hcd_dump_state(hsotg);
5237
5238         dwc2_enable_global_interrupts(hsotg);
5239
5240         return 0;
5241
5242 error4:
5243         kmem_cache_destroy(hsotg->unaligned_cache);
5244         kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5245         kmem_cache_destroy(hsotg->desc_gen_cache);
5246 error3:
5247         dwc2_hcd_release(hsotg);
5248 error2:
5249         usb_put_hcd(hcd);
5250 error1:
5251
5252 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5253         kfree(hsotg->last_frame_num_array);
5254         kfree(hsotg->frame_num_array);
5255 #endif
5256
5257         dev_err(hsotg->dev, "%s() FAILED, returning %d\n", __func__, retval);
5258         return retval;
5259 }
5260
5261 /*
5262  * Removes the HCD.
5263  * Frees memory and resources associated with the HCD and deregisters the bus.
5264  */
5265 void dwc2_hcd_remove(struct dwc2_hsotg *hsotg)
5266 {
5267         struct usb_hcd *hcd;
5268
5269         dev_dbg(hsotg->dev, "DWC OTG HCD REMOVE\n");
5270
5271         hcd = dwc2_hsotg_to_hcd(hsotg);
5272         dev_dbg(hsotg->dev, "hsotg->hcd = %p\n", hcd);
5273
5274         if (!hcd) {
5275                 dev_dbg(hsotg->dev, "%s: dwc2_hsotg_to_hcd(hsotg) NULL!\n",
5276                         __func__);
5277                 return;
5278         }
5279
5280         if (!IS_ERR_OR_NULL(hsotg->uphy))
5281                 otg_set_host(hsotg->uphy->otg, NULL);
5282
5283         usb_remove_hcd(hcd);
5284         hsotg->priv = NULL;
5285
5286         kmem_cache_destroy(hsotg->unaligned_cache);
5287         kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5288         kmem_cache_destroy(hsotg->desc_gen_cache);
5289
5290         dwc2_hcd_release(hsotg);
5291         usb_put_hcd(hcd);
5292
5293 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5294         kfree(hsotg->last_frame_num_array);
5295         kfree(hsotg->frame_num_array);
5296 #endif
5297 }
5298
5299 /**
5300  * dwc2_backup_host_registers() - Backup controller host registers.
5301  * When suspending usb bus, registers needs to be backuped
5302  * if controller power is disabled once suspended.
5303  *
5304  * @hsotg: Programming view of the DWC_otg controller
5305  */
5306 int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
5307 {
5308         struct dwc2_hregs_backup *hr;
5309         int i;
5310
5311         dev_dbg(hsotg->dev, "%s\n", __func__);
5312
5313         /* Backup Host regs */
5314         hr = &hsotg->hr_backup;
5315         hr->hcfg = dwc2_readl(hsotg, HCFG);
5316         hr->haintmsk = dwc2_readl(hsotg, HAINTMSK);
5317         for (i = 0; i < hsotg->params.host_channels; ++i)
5318                 hr->hcintmsk[i] = dwc2_readl(hsotg, HCINTMSK(i));
5319
5320         hr->hprt0 = dwc2_read_hprt0(hsotg);
5321         hr->hfir = dwc2_readl(hsotg, HFIR);
5322         hr->hptxfsiz = dwc2_readl(hsotg, HPTXFSIZ);
5323         hr->valid = true;
5324
5325         return 0;
5326 }
5327
5328 /**
5329  * dwc2_restore_host_registers() - Restore controller host registers.
5330  * When resuming usb bus, device registers needs to be restored
5331  * if controller power were disabled.
5332  *
5333  * @hsotg: Programming view of the DWC_otg controller
5334  */
5335 int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
5336 {
5337         struct dwc2_hregs_backup *hr;
5338         int i;
5339
5340         dev_dbg(hsotg->dev, "%s\n", __func__);
5341
5342         /* Restore host regs */
5343         hr = &hsotg->hr_backup;
5344         if (!hr->valid) {
5345                 dev_err(hsotg->dev, "%s: no host registers to restore\n",
5346                         __func__);
5347                 return -EINVAL;
5348         }
5349         hr->valid = false;
5350
5351         dwc2_writel(hsotg, hr->hcfg, HCFG);
5352         dwc2_writel(hsotg, hr->haintmsk, HAINTMSK);
5353
5354         for (i = 0; i < hsotg->params.host_channels; ++i)
5355                 dwc2_writel(hsotg, hr->hcintmsk[i], HCINTMSK(i));
5356
5357         dwc2_writel(hsotg, hr->hprt0, HPRT0);
5358         dwc2_writel(hsotg, hr->hfir, HFIR);
5359         dwc2_writel(hsotg, hr->hptxfsiz, HPTXFSIZ);
5360         hsotg->frame_number = 0;
5361
5362         return 0;
5363 }
5364
5365 /**
5366  * dwc2_host_enter_hibernation() - Put controller in Hibernation.
5367  *
5368  * @hsotg: Programming view of the DWC_otg controller
5369  */
5370 int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg)
5371 {
5372         unsigned long flags;
5373         int ret = 0;
5374         u32 hprt0;
5375         u32 pcgcctl;
5376         u32 gusbcfg;
5377         u32 gpwrdn;
5378
5379         dev_dbg(hsotg->dev, "Preparing host for hibernation\n");
5380         ret = dwc2_backup_global_registers(hsotg);
5381         if (ret) {
5382                 dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5383                         __func__);
5384                 return ret;
5385         }
5386         ret = dwc2_backup_host_registers(hsotg);
5387         if (ret) {
5388                 dev_err(hsotg->dev, "%s: failed to backup host registers\n",
5389                         __func__);
5390                 return ret;
5391         }
5392
5393         /* Enter USB Suspend Mode */
5394         hprt0 = dwc2_readl(hsotg, HPRT0);
5395         hprt0 |= HPRT0_SUSP;
5396         hprt0 &= ~HPRT0_ENA;
5397         dwc2_writel(hsotg, hprt0, HPRT0);
5398
5399         /* Wait for the HPRT0.PrtSusp register field to be set */
5400         if (dwc2_hsotg_wait_bit_set(hsotg, HPRT0, HPRT0_SUSP, 3000))
5401                 dev_warn(hsotg->dev, "Suspend wasn't generated\n");
5402
5403         /*
5404          * We need to disable interrupts to prevent servicing of any IRQ
5405          * during going to hibernation
5406          */
5407         spin_lock_irqsave(&hsotg->lock, flags);
5408         hsotg->lx_state = DWC2_L2;
5409
5410         gusbcfg = dwc2_readl(hsotg, GUSBCFG);
5411         if (gusbcfg & GUSBCFG_ULPI_UTMI_SEL) {
5412                 /* ULPI interface */
5413                 /* Suspend the Phy Clock */
5414                 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5415                 pcgcctl |= PCGCTL_STOPPCLK;
5416                 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5417                 udelay(10);
5418
5419                 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5420                 gpwrdn |= GPWRDN_PMUACTV;
5421                 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5422                 udelay(10);
5423         } else {
5424                 /* UTMI+ Interface */
5425                 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5426                 gpwrdn |= GPWRDN_PMUACTV;
5427                 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5428                 udelay(10);
5429
5430                 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5431                 pcgcctl |= PCGCTL_STOPPCLK;
5432                 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5433                 udelay(10);
5434         }
5435
5436         /* Enable interrupts from wake up logic */
5437         gpwrdn = dwc2_readl(hsotg, GPWRDN);
5438         gpwrdn |= GPWRDN_PMUINTSEL;
5439         dwc2_writel(hsotg, gpwrdn, GPWRDN);
5440         udelay(10);
5441
5442         /* Unmask host mode interrupts in GPWRDN */
5443         gpwrdn = dwc2_readl(hsotg, GPWRDN);
5444         gpwrdn |= GPWRDN_DISCONN_DET_MSK;
5445         gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5446         gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5447         dwc2_writel(hsotg, gpwrdn, GPWRDN);
5448         udelay(10);
5449
5450         /* Enable Power Down Clamp */
5451         gpwrdn = dwc2_readl(hsotg, GPWRDN);
5452         gpwrdn |= GPWRDN_PWRDNCLMP;
5453         dwc2_writel(hsotg, gpwrdn, GPWRDN);
5454         udelay(10);
5455
5456         /* Switch off VDD */
5457         gpwrdn = dwc2_readl(hsotg, GPWRDN);
5458         gpwrdn |= GPWRDN_PWRDNSWTCH;
5459         dwc2_writel(hsotg, gpwrdn, GPWRDN);
5460
5461         hsotg->hibernated = 1;
5462         hsotg->bus_suspended = 1;
5463         dev_dbg(hsotg->dev, "Host hibernation completed\n");
5464         spin_unlock_irqrestore(&hsotg->lock, flags);
5465         return ret;
5466 }
5467
5468 /*
5469  * dwc2_host_exit_hibernation()
5470  *
5471  * @hsotg: Programming view of the DWC_otg controller
5472  * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5473  * @param reset: indicates whether resume is initiated by Reset.
5474  *
5475  * Return: non-zero if failed to enter to hibernation.
5476  *
5477  * This function is for exiting from Host mode hibernation by
5478  * Host Initiated Resume/Reset and Device Initiated Remote-Wakeup.
5479  */
5480 int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg, int rem_wakeup,
5481                                int reset)
5482 {
5483         u32 gpwrdn;
5484         u32 hprt0;
5485         int ret = 0;
5486         struct dwc2_gregs_backup *gr;
5487         struct dwc2_hregs_backup *hr;
5488
5489         gr = &hsotg->gr_backup;
5490         hr = &hsotg->hr_backup;
5491
5492         dev_dbg(hsotg->dev,
5493                 "%s: called with rem_wakeup = %d reset = %d\n",
5494                 __func__, rem_wakeup, reset);
5495
5496         dwc2_hib_restore_common(hsotg, rem_wakeup, 1);
5497         hsotg->hibernated = 0;
5498
5499         /*
5500          * This step is not described in functional spec but if not wait for
5501          * this delay, mismatch interrupts occurred because just after restore
5502          * core is in Device mode(gintsts.curmode == 0)
5503          */
5504         mdelay(100);
5505
5506         /* Clear all pending interupts */
5507         dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5508
5509         /* De-assert Restore */
5510         gpwrdn = dwc2_readl(hsotg, GPWRDN);
5511         gpwrdn &= ~GPWRDN_RESTORE;
5512         dwc2_writel(hsotg, gpwrdn, GPWRDN);
5513         udelay(10);
5514
5515         /* Restore GUSBCFG, HCFG */
5516         dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG);
5517         dwc2_writel(hsotg, hr->hcfg, HCFG);
5518
5519         /* De-assert Wakeup Logic */
5520         gpwrdn = dwc2_readl(hsotg, GPWRDN);
5521         gpwrdn &= ~GPWRDN_PMUACTV;
5522         dwc2_writel(hsotg, gpwrdn, GPWRDN);
5523         udelay(10);
5524
5525         hprt0 = hr->hprt0;
5526         hprt0 |= HPRT0_PWR;
5527         hprt0 &= ~HPRT0_ENA;
5528         hprt0 &= ~HPRT0_SUSP;
5529         dwc2_writel(hsotg, hprt0, HPRT0);
5530
5531         hprt0 = hr->hprt0;
5532         hprt0 |= HPRT0_PWR;
5533         hprt0 &= ~HPRT0_ENA;
5534         hprt0 &= ~HPRT0_SUSP;
5535
5536         if (reset) {
5537                 hprt0 |= HPRT0_RST;
5538                 dwc2_writel(hsotg, hprt0, HPRT0);
5539
5540                 /* Wait for Resume time and then program HPRT again */
5541                 mdelay(60);
5542                 hprt0 &= ~HPRT0_RST;
5543                 dwc2_writel(hsotg, hprt0, HPRT0);
5544         } else {
5545                 hprt0 |= HPRT0_RES;
5546                 dwc2_writel(hsotg, hprt0, HPRT0);
5547
5548                 /* Wait for Resume time and then program HPRT again */
5549                 mdelay(100);
5550                 hprt0 &= ~HPRT0_RES;
5551                 dwc2_writel(hsotg, hprt0, HPRT0);
5552         }
5553         /* Clear all interrupt status */
5554         hprt0 = dwc2_readl(hsotg, HPRT0);
5555         hprt0 |= HPRT0_CONNDET;
5556         hprt0 |= HPRT0_ENACHG;
5557         hprt0 &= ~HPRT0_ENA;
5558         dwc2_writel(hsotg, hprt0, HPRT0);
5559
5560         hprt0 = dwc2_readl(hsotg, HPRT0);
5561
5562         /* Clear all pending interupts */
5563         dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5564
5565         /* Restore global registers */
5566         ret = dwc2_restore_global_registers(hsotg);
5567         if (ret) {
5568                 dev_err(hsotg->dev, "%s: failed to restore registers\n",
5569                         __func__);
5570                 return ret;
5571         }
5572
5573         /* Restore host registers */
5574         ret = dwc2_restore_host_registers(hsotg);
5575         if (ret) {
5576                 dev_err(hsotg->dev, "%s: failed to restore host registers\n",
5577                         __func__);
5578                 return ret;
5579         }
5580
5581         dwc2_hcd_rem_wakeup(hsotg);
5582
5583         hsotg->hibernated = 0;
5584         hsotg->bus_suspended = 0;
5585         hsotg->lx_state = DWC2_L0;
5586         dev_dbg(hsotg->dev, "Host hibernation restore complete\n");
5587         return ret;
5588 }
5589
5590 bool dwc2_host_can_poweroff_phy(struct dwc2_hsotg *dwc2)
5591 {
5592         struct usb_device *root_hub = dwc2_hsotg_to_hcd(dwc2)->self.root_hub;
5593
5594         /* If the controller isn't allowed to wakeup then we can power off. */
5595         if (!device_may_wakeup(dwc2->dev))
5596                 return true;
5597
5598         /*
5599          * We don't want to power off the PHY if something under the
5600          * root hub has wakeup enabled.
5601          */
5602         if (usb_wakeup_enabled_descendants(root_hub))
5603                 return false;
5604
5605         /* No reason to keep the PHY powered, so allow poweroff */
5606         return true;
5607 }