Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc
[sfrench/cifs-2.6.git] / drivers / tty / serial / ifx6x60.c
1 // SPDX-License-Identifier: GPL-2.0
2 /****************************************************************************
3  *
4  * Driver for the IFX 6x60 spi modem.
5  *
6  * Copyright (C) 2008 Option International
7  * Copyright (C) 2008 Filip Aben <f.aben@option.com>
8  *                    Denis Joseph Barrow <d.barow@option.com>
9  *                    Jan Dumon <j.dumon@option.com>
10  *
11  * Copyright (C) 2009, 2010 Intel Corp
12  * Russ Gorby <russ.gorby@intel.com>
13  *
14  * Driver modified by Intel from Option gtm501l_spi.c
15  *
16  * Notes
17  * o    The driver currently assumes a single device only. If you need to
18  *      change this then look for saved_ifx_dev and add a device lookup
19  * o    The driver is intended to be big-endian safe but has never been
20  *      tested that way (no suitable hardware). There are a couple of FIXME
21  *      notes by areas that may need addressing
22  * o    Some of the GPIO naming/setup assumptions may need revisiting if
23  *      you need to use this driver for another platform.
24  *
25  *****************************************************************************/
26 #include <linux/dma-mapping.h>
27 #include <linux/module.h>
28 #include <linux/termios.h>
29 #include <linux/tty.h>
30 #include <linux/device.h>
31 #include <linux/spi/spi.h>
32 #include <linux/kfifo.h>
33 #include <linux/tty_flip.h>
34 #include <linux/timer.h>
35 #include <linux/serial.h>
36 #include <linux/interrupt.h>
37 #include <linux/irq.h>
38 #include <linux/rfkill.h>
39 #include <linux/fs.h>
40 #include <linux/ip.h>
41 #include <linux/dmapool.h>
42 #include <linux/gpio.h>
43 #include <linux/sched.h>
44 #include <linux/time.h>
45 #include <linux/wait.h>
46 #include <linux/pm.h>
47 #include <linux/pm_runtime.h>
48 #include <linux/spi/ifx_modem.h>
49 #include <linux/delay.h>
50 #include <linux/reboot.h>
51
52 #include "ifx6x60.h"
53
54 #define IFX_SPI_MORE_MASK               0x10
55 #define IFX_SPI_MORE_BIT                4       /* bit position in u8 */
56 #define IFX_SPI_CTS_BIT                 6       /* bit position in u8 */
57 #define IFX_SPI_MODE                    SPI_MODE_1
58 #define IFX_SPI_TTY_ID                  0
59 #define IFX_SPI_TIMEOUT_SEC             2
60 #define IFX_SPI_HEADER_0                (-1)
61 #define IFX_SPI_HEADER_F                (-2)
62
63 #define PO_POST_DELAY           200
64 #define IFX_MDM_RST_PMU 4
65
66 /* forward reference */
67 static void ifx_spi_handle_srdy(struct ifx_spi_device *ifx_dev);
68 static int ifx_modem_reboot_callback(struct notifier_block *nfb,
69                                 unsigned long event, void *data);
70 static int ifx_modem_power_off(struct ifx_spi_device *ifx_dev);
71
72 /* local variables */
73 static int spi_bpw = 16;                /* 8, 16 or 32 bit word length */
74 static struct tty_driver *tty_drv;
75 static struct ifx_spi_device *saved_ifx_dev;
76 static struct lock_class_key ifx_spi_key;
77
78 static struct notifier_block ifx_modem_reboot_notifier_block = {
79         .notifier_call = ifx_modem_reboot_callback,
80 };
81
82 static int ifx_modem_power_off(struct ifx_spi_device *ifx_dev)
83 {
84         gpio_set_value(IFX_MDM_RST_PMU, 1);
85         msleep(PO_POST_DELAY);
86
87         return 0;
88 }
89
90 static int ifx_modem_reboot_callback(struct notifier_block *nfb,
91                                  unsigned long event, void *data)
92 {
93         if (saved_ifx_dev)
94                 ifx_modem_power_off(saved_ifx_dev);
95         else
96                 pr_warn("no ifx modem active;\n");
97
98         return NOTIFY_OK;
99 }
100
101 /* GPIO/GPE settings */
102
103 /**
104  *      mrdy_set_high           -       set MRDY GPIO
105  *      @ifx: device we are controlling
106  *
107  */
108 static inline void mrdy_set_high(struct ifx_spi_device *ifx)
109 {
110         gpio_set_value(ifx->gpio.mrdy, 1);
111 }
112
113 /**
114  *      mrdy_set_low            -       clear MRDY GPIO
115  *      @ifx: device we are controlling
116  *
117  */
118 static inline void mrdy_set_low(struct ifx_spi_device *ifx)
119 {
120         gpio_set_value(ifx->gpio.mrdy, 0);
121 }
122
123 /**
124  *      ifx_spi_power_state_set
125  *      @ifx_dev: our SPI device
126  *      @val: bits to set
127  *
128  *      Set bit in power status and signal power system if status becomes non-0
129  */
130 static void
131 ifx_spi_power_state_set(struct ifx_spi_device *ifx_dev, unsigned char val)
132 {
133         unsigned long flags;
134
135         spin_lock_irqsave(&ifx_dev->power_lock, flags);
136
137         /*
138          * if power status is already non-0, just update, else
139          * tell power system
140          */
141         if (!ifx_dev->power_status)
142                 pm_runtime_get(&ifx_dev->spi_dev->dev);
143         ifx_dev->power_status |= val;
144
145         spin_unlock_irqrestore(&ifx_dev->power_lock, flags);
146 }
147
148 /**
149  *      ifx_spi_power_state_clear       -       clear power bit
150  *      @ifx_dev: our SPI device
151  *      @val: bits to clear
152  *
153  *      clear bit in power status and signal power system if status becomes 0
154  */
155 static void
156 ifx_spi_power_state_clear(struct ifx_spi_device *ifx_dev, unsigned char val)
157 {
158         unsigned long flags;
159
160         spin_lock_irqsave(&ifx_dev->power_lock, flags);
161
162         if (ifx_dev->power_status) {
163                 ifx_dev->power_status &= ~val;
164                 if (!ifx_dev->power_status)
165                         pm_runtime_put(&ifx_dev->spi_dev->dev);
166         }
167
168         spin_unlock_irqrestore(&ifx_dev->power_lock, flags);
169 }
170
171 /**
172  *      swap_buf_8
173  *      @buf: our buffer
174  *      @len : number of bytes (not words) in the buffer
175  *      @end: end of buffer
176  *
177  *      Swap the contents of a buffer into big endian format
178  */
179 static inline void swap_buf_8(unsigned char *buf, int len, void *end)
180 {
181         /* don't swap buffer if SPI word width is 8 bits */
182         return;
183 }
184
185 /**
186  *      swap_buf_16
187  *      @buf: our buffer
188  *      @len : number of bytes (not words) in the buffer
189  *      @end: end of buffer
190  *
191  *      Swap the contents of a buffer into big endian format
192  */
193 static inline void swap_buf_16(unsigned char *buf, int len, void *end)
194 {
195         int n;
196
197         u16 *buf_16 = (u16 *)buf;
198         len = ((len + 1) >> 1);
199         if ((void *)&buf_16[len] > end) {
200                 pr_err("swap_buf_16: swap exceeds boundary (%p > %p)!",
201                        &buf_16[len], end);
202                 return;
203         }
204         for (n = 0; n < len; n++) {
205                 *buf_16 = cpu_to_be16(*buf_16);
206                 buf_16++;
207         }
208 }
209
210 /**
211  *      swap_buf_32
212  *      @buf: our buffer
213  *      @len : number of bytes (not words) in the buffer
214  *      @end: end of buffer
215  *
216  *      Swap the contents of a buffer into big endian format
217  */
218 static inline void swap_buf_32(unsigned char *buf, int len, void *end)
219 {
220         int n;
221
222         u32 *buf_32 = (u32 *)buf;
223         len = (len + 3) >> 2;
224
225         if ((void *)&buf_32[len] > end) {
226                 pr_err("swap_buf_32: swap exceeds boundary (%p > %p)!\n",
227                        &buf_32[len], end);
228                 return;
229         }
230         for (n = 0; n < len; n++) {
231                 *buf_32 = cpu_to_be32(*buf_32);
232                 buf_32++;
233         }
234 }
235
236 /**
237  *      mrdy_assert             -       assert MRDY line
238  *      @ifx_dev: our SPI device
239  *
240  *      Assert mrdy and set timer to wait for SRDY interrupt, if SRDY is low
241  *      now.
242  *
243  *      FIXME: Can SRDY even go high as we are running this code ?
244  */
245 static void mrdy_assert(struct ifx_spi_device *ifx_dev)
246 {
247         int val = gpio_get_value(ifx_dev->gpio.srdy);
248         if (!val) {
249                 if (!test_and_set_bit(IFX_SPI_STATE_TIMER_PENDING,
250                                       &ifx_dev->flags)) {
251                         mod_timer(&ifx_dev->spi_timer,jiffies + IFX_SPI_TIMEOUT_SEC*HZ);
252
253                 }
254         }
255         ifx_spi_power_state_set(ifx_dev, IFX_SPI_POWER_DATA_PENDING);
256         mrdy_set_high(ifx_dev);
257 }
258
259 /**
260  *      ifx_spi_timeout         -       SPI timeout
261  *      @arg: our SPI device
262  *
263  *      The SPI has timed out: hang up the tty. Users will then see a hangup
264  *      and error events.
265  */
266 static void ifx_spi_timeout(struct timer_list *t)
267 {
268         struct ifx_spi_device *ifx_dev = from_timer(ifx_dev, t, spi_timer);
269
270         dev_warn(&ifx_dev->spi_dev->dev, "*** SPI Timeout ***");
271         tty_port_tty_hangup(&ifx_dev->tty_port, false);
272         mrdy_set_low(ifx_dev);
273         clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
274 }
275
276 /* char/tty operations */
277
278 /**
279  *      ifx_spi_tiocmget        -       get modem lines
280  *      @tty: our tty device
281  *      @filp: file handle issuing the request
282  *
283  *      Map the signal state into Linux modem flags and report the value
284  *      in Linux terms
285  */
286 static int ifx_spi_tiocmget(struct tty_struct *tty)
287 {
288         unsigned int value;
289         struct ifx_spi_device *ifx_dev = tty->driver_data;
290
291         value =
292         (test_bit(IFX_SPI_RTS, &ifx_dev->signal_state) ? TIOCM_RTS : 0) |
293         (test_bit(IFX_SPI_DTR, &ifx_dev->signal_state) ? TIOCM_DTR : 0) |
294         (test_bit(IFX_SPI_CTS, &ifx_dev->signal_state) ? TIOCM_CTS : 0) |
295         (test_bit(IFX_SPI_DSR, &ifx_dev->signal_state) ? TIOCM_DSR : 0) |
296         (test_bit(IFX_SPI_DCD, &ifx_dev->signal_state) ? TIOCM_CAR : 0) |
297         (test_bit(IFX_SPI_RI, &ifx_dev->signal_state) ? TIOCM_RNG : 0);
298         return value;
299 }
300
301 /**
302  *      ifx_spi_tiocmset        -       set modem bits
303  *      @tty: the tty structure
304  *      @set: bits to set
305  *      @clear: bits to clear
306  *
307  *      The IFX6x60 only supports DTR and RTS. Set them accordingly
308  *      and flag that an update to the modem is needed.
309  *
310  *      FIXME: do we need to kick the tranfers when we do this ?
311  */
312 static int ifx_spi_tiocmset(struct tty_struct *tty,
313                             unsigned int set, unsigned int clear)
314 {
315         struct ifx_spi_device *ifx_dev = tty->driver_data;
316
317         if (set & TIOCM_RTS)
318                 set_bit(IFX_SPI_RTS, &ifx_dev->signal_state);
319         if (set & TIOCM_DTR)
320                 set_bit(IFX_SPI_DTR, &ifx_dev->signal_state);
321         if (clear & TIOCM_RTS)
322                 clear_bit(IFX_SPI_RTS, &ifx_dev->signal_state);
323         if (clear & TIOCM_DTR)
324                 clear_bit(IFX_SPI_DTR, &ifx_dev->signal_state);
325
326         set_bit(IFX_SPI_UPDATE, &ifx_dev->signal_state);
327         return 0;
328 }
329
330 /**
331  *      ifx_spi_open    -       called on tty open
332  *      @tty: our tty device
333  *      @filp: file handle being associated with the tty
334  *
335  *      Open the tty interface. We let the tty_port layer do all the work
336  *      for us.
337  *
338  *      FIXME: Remove single device assumption and saved_ifx_dev
339  */
340 static int ifx_spi_open(struct tty_struct *tty, struct file *filp)
341 {
342         return tty_port_open(&saved_ifx_dev->tty_port, tty, filp);
343 }
344
345 /**
346  *      ifx_spi_close   -       called when our tty closes
347  *      @tty: the tty being closed
348  *      @filp: the file handle being closed
349  *
350  *      Perform the close of the tty. We use the tty_port layer to do all
351  *      our hard work.
352  */
353 static void ifx_spi_close(struct tty_struct *tty, struct file *filp)
354 {
355         struct ifx_spi_device *ifx_dev = tty->driver_data;
356         tty_port_close(&ifx_dev->tty_port, tty, filp);
357         /* FIXME: should we do an ifx_spi_reset here ? */
358 }
359
360 /**
361  *      ifx_decode_spi_header   -       decode received header
362  *      @buffer: the received data
363  *      @length: decoded length
364  *      @more: decoded more flag
365  *      @received_cts: status of cts we received
366  *
367  *      Note how received_cts is handled -- if header is all F it is left
368  *      the same as it was, if header is all 0 it is set to 0 otherwise it is
369  *      taken from the incoming header.
370  *
371  *      FIXME: endianness
372  */
373 static int ifx_spi_decode_spi_header(unsigned char *buffer, int *length,
374                         unsigned char *more, unsigned char *received_cts)
375 {
376         u16 h1;
377         u16 h2;
378         u16 *in_buffer = (u16 *)buffer;
379
380         h1 = *in_buffer;
381         h2 = *(in_buffer+1);
382
383         if (h1 == 0 && h2 == 0) {
384                 *received_cts = 0;
385                 *more = 0;
386                 return IFX_SPI_HEADER_0;
387         } else if (h1 == 0xffff && h2 == 0xffff) {
388                 *more = 0;
389                 /* spi_slave_cts remains as it was */
390                 return IFX_SPI_HEADER_F;
391         }
392
393         *length = h1 & 0xfff;   /* upper bits of byte are flags */
394         *more = (buffer[1] >> IFX_SPI_MORE_BIT) & 1;
395         *received_cts = (buffer[3] >> IFX_SPI_CTS_BIT) & 1;
396         return 0;
397 }
398
399 /**
400  *      ifx_setup_spi_header    -       set header fields
401  *      @txbuffer: pointer to start of SPI buffer
402  *      @tx_count: bytes
403  *      @more: indicate if more to follow
404  *
405  *      Format up an SPI header for a transfer
406  *
407  *      FIXME: endianness?
408  */
409 static void ifx_spi_setup_spi_header(unsigned char *txbuffer, int tx_count,
410                                         unsigned char more)
411 {
412         *(u16 *)(txbuffer) = tx_count;
413         *(u16 *)(txbuffer+2) = IFX_SPI_PAYLOAD_SIZE;
414         txbuffer[1] |= (more << IFX_SPI_MORE_BIT) & IFX_SPI_MORE_MASK;
415 }
416
417 /**
418  *      ifx_spi_prepare_tx_buffer       -       prepare transmit frame
419  *      @ifx_dev: our SPI device
420  *
421  *      The transmit buffr needs a header and various other bits of
422  *      information followed by as much data as we can pull from the FIFO
423  *      and transfer. This function formats up a suitable buffer in the
424  *      ifx_dev->tx_buffer
425  *
426  *      FIXME: performance - should we wake the tty when the queue is half
427  *                           empty ?
428  */
429 static int ifx_spi_prepare_tx_buffer(struct ifx_spi_device *ifx_dev)
430 {
431         int temp_count;
432         int queue_length;
433         int tx_count;
434         unsigned char *tx_buffer;
435
436         tx_buffer = ifx_dev->tx_buffer;
437
438         /* make room for required SPI header */
439         tx_buffer += IFX_SPI_HEADER_OVERHEAD;
440         tx_count = IFX_SPI_HEADER_OVERHEAD;
441
442         /* clear to signal no more data if this turns out to be the
443          * last buffer sent in a sequence */
444         ifx_dev->spi_more = 0;
445
446         /* if modem cts is set, just send empty buffer */
447         if (!ifx_dev->spi_slave_cts) {
448                 /* see if there's tx data */
449                 queue_length = kfifo_len(&ifx_dev->tx_fifo);
450                 if (queue_length != 0) {
451                         /* data to mux -- see if there's room for it */
452                         temp_count = min(queue_length, IFX_SPI_PAYLOAD_SIZE);
453                         temp_count = kfifo_out_locked(&ifx_dev->tx_fifo,
454                                         tx_buffer, temp_count,
455                                         &ifx_dev->fifo_lock);
456
457                         /* update buffer pointer and data count in message */
458                         tx_buffer += temp_count;
459                         tx_count += temp_count;
460                         if (temp_count == queue_length)
461                                 /* poke port to get more data */
462                                 tty_port_tty_wakeup(&ifx_dev->tty_port);
463                         else /* more data in port, use next SPI message */
464                                 ifx_dev->spi_more = 1;
465                 }
466         }
467         /* have data and info for header -- set up SPI header in buffer */
468         /* spi header needs payload size, not entire buffer size */
469         ifx_spi_setup_spi_header(ifx_dev->tx_buffer,
470                                         tx_count-IFX_SPI_HEADER_OVERHEAD,
471                                         ifx_dev->spi_more);
472         /* swap actual data in the buffer */
473         ifx_dev->swap_buf((ifx_dev->tx_buffer), tx_count,
474                 &ifx_dev->tx_buffer[IFX_SPI_TRANSFER_SIZE]);
475         return tx_count;
476 }
477
478 /**
479  *      ifx_spi_write           -       line discipline write
480  *      @tty: our tty device
481  *      @buf: pointer to buffer to write (kernel space)
482  *      @count: size of buffer
483  *
484  *      Write the characters we have been given into the FIFO. If the device
485  *      is not active then activate it, when the SRDY line is asserted back
486  *      this will commence I/O
487  */
488 static int ifx_spi_write(struct tty_struct *tty, const unsigned char *buf,
489                          int count)
490 {
491         struct ifx_spi_device *ifx_dev = tty->driver_data;
492         unsigned char *tmp_buf = (unsigned char *)buf;
493         unsigned long flags;
494         bool is_fifo_empty;
495         int tx_count;
496
497         spin_lock_irqsave(&ifx_dev->fifo_lock, flags);
498         is_fifo_empty = kfifo_is_empty(&ifx_dev->tx_fifo);
499         tx_count = kfifo_in(&ifx_dev->tx_fifo, tmp_buf, count);
500         spin_unlock_irqrestore(&ifx_dev->fifo_lock, flags);
501         if (is_fifo_empty)
502                 mrdy_assert(ifx_dev);
503
504         return tx_count;
505 }
506
507 /**
508  *      ifx_spi_chars_in_buffer -       line discipline helper
509  *      @tty: our tty device
510  *
511  *      Report how much data we can accept before we drop bytes. As we use
512  *      a simple FIFO this is nice and easy.
513  */
514 static int ifx_spi_write_room(struct tty_struct *tty)
515 {
516         struct ifx_spi_device *ifx_dev = tty->driver_data;
517         return IFX_SPI_FIFO_SIZE - kfifo_len(&ifx_dev->tx_fifo);
518 }
519
520 /**
521  *      ifx_spi_chars_in_buffer -       line discipline helper
522  *      @tty: our tty device
523  *
524  *      Report how many characters we have buffered. In our case this is the
525  *      number of bytes sitting in our transmit FIFO.
526  */
527 static int ifx_spi_chars_in_buffer(struct tty_struct *tty)
528 {
529         struct ifx_spi_device *ifx_dev = tty->driver_data;
530         return kfifo_len(&ifx_dev->tx_fifo);
531 }
532
533 /**
534  *      ifx_port_hangup
535  *      @port: our tty port
536  *
537  *      tty port hang up. Called when tty_hangup processing is invoked either
538  *      by loss of carrier, or by software (eg vhangup). Serialized against
539  *      activate/shutdown by the tty layer.
540  */
541 static void ifx_spi_hangup(struct tty_struct *tty)
542 {
543         struct ifx_spi_device *ifx_dev = tty->driver_data;
544         tty_port_hangup(&ifx_dev->tty_port);
545 }
546
547 /**
548  *      ifx_port_activate
549  *      @port: our tty port
550  *
551  *      tty port activate method - called for first open. Serialized
552  *      with hangup and shutdown by the tty layer.
553  */
554 static int ifx_port_activate(struct tty_port *port, struct tty_struct *tty)
555 {
556         struct ifx_spi_device *ifx_dev =
557                 container_of(port, struct ifx_spi_device, tty_port);
558
559         /* clear any old data; can't do this in 'close' */
560         kfifo_reset(&ifx_dev->tx_fifo);
561
562         /* clear any flag which may be set in port shutdown procedure */
563         clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags);
564         clear_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags);
565
566         /* put port data into this tty */
567         tty->driver_data = ifx_dev;
568
569         /* allows flip string push from int context */
570         port->low_latency = 1;
571
572         /* set flag to allows data transfer */
573         set_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags);
574
575         return 0;
576 }
577
578 /**
579  *      ifx_port_shutdown
580  *      @port: our tty port
581  *
582  *      tty port shutdown method - called for last port close. Serialized
583  *      with hangup and activate by the tty layer.
584  */
585 static void ifx_port_shutdown(struct tty_port *port)
586 {
587         struct ifx_spi_device *ifx_dev =
588                 container_of(port, struct ifx_spi_device, tty_port);
589
590         clear_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags);
591         mrdy_set_low(ifx_dev);
592         del_timer(&ifx_dev->spi_timer);
593         clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
594         tasklet_kill(&ifx_dev->io_work_tasklet);
595 }
596
597 static const struct tty_port_operations ifx_tty_port_ops = {
598         .activate = ifx_port_activate,
599         .shutdown = ifx_port_shutdown,
600 };
601
602 static const struct tty_operations ifx_spi_serial_ops = {
603         .open = ifx_spi_open,
604         .close = ifx_spi_close,
605         .write = ifx_spi_write,
606         .hangup = ifx_spi_hangup,
607         .write_room = ifx_spi_write_room,
608         .chars_in_buffer = ifx_spi_chars_in_buffer,
609         .tiocmget = ifx_spi_tiocmget,
610         .tiocmset = ifx_spi_tiocmset,
611 };
612
613 /**
614  *      ifx_spi_insert_fip_string       -       queue received data
615  *      @ifx_ser: our SPI device
616  *      @chars: buffer we have received
617  *      @size: number of chars reeived
618  *
619  *      Queue bytes to the tty assuming the tty side is currently open. If
620  *      not the discard the data.
621  */
622 static void ifx_spi_insert_flip_string(struct ifx_spi_device *ifx_dev,
623                                     unsigned char *chars, size_t size)
624 {
625         tty_insert_flip_string(&ifx_dev->tty_port, chars, size);
626         tty_flip_buffer_push(&ifx_dev->tty_port);
627 }
628
629 /**
630  *      ifx_spi_complete        -       SPI transfer completed
631  *      @ctx: our SPI device
632  *
633  *      An SPI transfer has completed. Process any received data and kick off
634  *      any further transmits we can commence.
635  */
636 static void ifx_spi_complete(void *ctx)
637 {
638         struct ifx_spi_device *ifx_dev = ctx;
639         int length;
640         int actual_length;
641         unsigned char more = 0;
642         unsigned char cts;
643         int local_write_pending = 0;
644         int queue_length;
645         int srdy;
646         int decode_result;
647
648         mrdy_set_low(ifx_dev);
649
650         if (!ifx_dev->spi_msg.status) {
651                 /* check header validity, get comm flags */
652                 ifx_dev->swap_buf(ifx_dev->rx_buffer, IFX_SPI_HEADER_OVERHEAD,
653                         &ifx_dev->rx_buffer[IFX_SPI_HEADER_OVERHEAD]);
654                 decode_result = ifx_spi_decode_spi_header(ifx_dev->rx_buffer,
655                                 &length, &more, &cts);
656                 if (decode_result == IFX_SPI_HEADER_0) {
657                         dev_dbg(&ifx_dev->spi_dev->dev,
658                                 "ignore input: invalid header 0");
659                         ifx_dev->spi_slave_cts = 0;
660                         goto complete_exit;
661                 } else if (decode_result == IFX_SPI_HEADER_F) {
662                         dev_dbg(&ifx_dev->spi_dev->dev,
663                                 "ignore input: invalid header F");
664                         goto complete_exit;
665                 }
666
667                 ifx_dev->spi_slave_cts = cts;
668
669                 actual_length = min((unsigned int)length,
670                                         ifx_dev->spi_msg.actual_length);
671                 ifx_dev->swap_buf(
672                         (ifx_dev->rx_buffer + IFX_SPI_HEADER_OVERHEAD),
673                          actual_length,
674                          &ifx_dev->rx_buffer[IFX_SPI_TRANSFER_SIZE]);
675                 ifx_spi_insert_flip_string(
676                         ifx_dev,
677                         ifx_dev->rx_buffer + IFX_SPI_HEADER_OVERHEAD,
678                         (size_t)actual_length);
679         } else {
680                 more = 0;
681                 dev_dbg(&ifx_dev->spi_dev->dev, "SPI transfer error %d",
682                        ifx_dev->spi_msg.status);
683         }
684
685 complete_exit:
686         if (ifx_dev->write_pending) {
687                 ifx_dev->write_pending = 0;
688                 local_write_pending = 1;
689         }
690
691         clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &(ifx_dev->flags));
692
693         queue_length = kfifo_len(&ifx_dev->tx_fifo);
694         srdy = gpio_get_value(ifx_dev->gpio.srdy);
695         if (!srdy)
696                 ifx_spi_power_state_clear(ifx_dev, IFX_SPI_POWER_SRDY);
697
698         /* schedule output if there is more to do */
699         if (test_and_clear_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags))
700                 tasklet_schedule(&ifx_dev->io_work_tasklet);
701         else {
702                 if (more || ifx_dev->spi_more || queue_length > 0 ||
703                         local_write_pending) {
704                         if (ifx_dev->spi_slave_cts) {
705                                 if (more)
706                                         mrdy_assert(ifx_dev);
707                         } else
708                                 mrdy_assert(ifx_dev);
709                 } else {
710                         /*
711                          * poke line discipline driver if any for more data
712                          * may or may not get more data to write
713                          * for now, say not busy
714                          */
715                         ifx_spi_power_state_clear(ifx_dev,
716                                                   IFX_SPI_POWER_DATA_PENDING);
717                         tty_port_tty_wakeup(&ifx_dev->tty_port);
718                 }
719         }
720 }
721
722 /**
723  *      ifx_spio_io             -       I/O tasklet
724  *      @data: our SPI device
725  *
726  *      Queue data for transmission if possible and then kick off the
727  *      transfer.
728  */
729 static void ifx_spi_io(unsigned long data)
730 {
731         int retval;
732         struct ifx_spi_device *ifx_dev = (struct ifx_spi_device *) data;
733
734         if (!test_and_set_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags) &&
735                 test_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags)) {
736                 if (ifx_dev->gpio.unack_srdy_int_nb > 0)
737                         ifx_dev->gpio.unack_srdy_int_nb--;
738
739                 ifx_spi_prepare_tx_buffer(ifx_dev);
740
741                 spi_message_init(&ifx_dev->spi_msg);
742                 INIT_LIST_HEAD(&ifx_dev->spi_msg.queue);
743
744                 ifx_dev->spi_msg.context = ifx_dev;
745                 ifx_dev->spi_msg.complete = ifx_spi_complete;
746
747                 /* set up our spi transfer */
748                 /* note len is BYTES, not transfers */
749                 ifx_dev->spi_xfer.len = IFX_SPI_TRANSFER_SIZE;
750                 ifx_dev->spi_xfer.cs_change = 0;
751                 ifx_dev->spi_xfer.speed_hz = ifx_dev->spi_dev->max_speed_hz;
752                 /* ifx_dev->spi_xfer.speed_hz = 390625; */
753                 ifx_dev->spi_xfer.bits_per_word =
754                         ifx_dev->spi_dev->bits_per_word;
755
756                 ifx_dev->spi_xfer.tx_buf = ifx_dev->tx_buffer;
757                 ifx_dev->spi_xfer.rx_buf = ifx_dev->rx_buffer;
758
759                 /*
760                  * setup dma pointers
761                  */
762                 if (ifx_dev->use_dma) {
763                         ifx_dev->spi_msg.is_dma_mapped = 1;
764                         ifx_dev->tx_dma = ifx_dev->tx_bus;
765                         ifx_dev->rx_dma = ifx_dev->rx_bus;
766                         ifx_dev->spi_xfer.tx_dma = ifx_dev->tx_dma;
767                         ifx_dev->spi_xfer.rx_dma = ifx_dev->rx_dma;
768                 } else {
769                         ifx_dev->spi_msg.is_dma_mapped = 0;
770                         ifx_dev->tx_dma = (dma_addr_t)0;
771                         ifx_dev->rx_dma = (dma_addr_t)0;
772                         ifx_dev->spi_xfer.tx_dma = (dma_addr_t)0;
773                         ifx_dev->spi_xfer.rx_dma = (dma_addr_t)0;
774                 }
775
776                 spi_message_add_tail(&ifx_dev->spi_xfer, &ifx_dev->spi_msg);
777
778                 /* Assert MRDY. This may have already been done by the write
779                  * routine.
780                  */
781                 mrdy_assert(ifx_dev);
782
783                 retval = spi_async(ifx_dev->spi_dev, &ifx_dev->spi_msg);
784                 if (retval) {
785                         clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS,
786                                   &ifx_dev->flags);
787                         tasklet_schedule(&ifx_dev->io_work_tasklet);
788                         return;
789                 }
790         } else
791                 ifx_dev->write_pending = 1;
792 }
793
794 /**
795  *      ifx_spi_free_port       -       free up the tty side
796  *      @ifx_dev: IFX device going away
797  *
798  *      Unregister and free up a port when the device goes away
799  */
800 static void ifx_spi_free_port(struct ifx_spi_device *ifx_dev)
801 {
802         if (ifx_dev->tty_dev)
803                 tty_unregister_device(tty_drv, ifx_dev->minor);
804         tty_port_destroy(&ifx_dev->tty_port);
805         kfifo_free(&ifx_dev->tx_fifo);
806 }
807
808 /**
809  *      ifx_spi_create_port     -       create a new port
810  *      @ifx_dev: our spi device
811  *
812  *      Allocate and initialise the tty port that goes with this interface
813  *      and add it to the tty layer so that it can be opened.
814  */
815 static int ifx_spi_create_port(struct ifx_spi_device *ifx_dev)
816 {
817         int ret = 0;
818         struct tty_port *pport = &ifx_dev->tty_port;
819
820         spin_lock_init(&ifx_dev->fifo_lock);
821         lockdep_set_class_and_subclass(&ifx_dev->fifo_lock,
822                 &ifx_spi_key, 0);
823
824         if (kfifo_alloc(&ifx_dev->tx_fifo, IFX_SPI_FIFO_SIZE, GFP_KERNEL)) {
825                 ret = -ENOMEM;
826                 goto error_ret;
827         }
828
829         tty_port_init(pport);
830         pport->ops = &ifx_tty_port_ops;
831         ifx_dev->minor = IFX_SPI_TTY_ID;
832         ifx_dev->tty_dev = tty_port_register_device(pport, tty_drv,
833                         ifx_dev->minor, &ifx_dev->spi_dev->dev);
834         if (IS_ERR(ifx_dev->tty_dev)) {
835                 dev_dbg(&ifx_dev->spi_dev->dev,
836                         "%s: registering tty device failed", __func__);
837                 ret = PTR_ERR(ifx_dev->tty_dev);
838                 goto error_port;
839         }
840         return 0;
841
842 error_port:
843         tty_port_destroy(pport);
844 error_ret:
845         ifx_spi_free_port(ifx_dev);
846         return ret;
847 }
848
849 /**
850  *      ifx_spi_handle_srdy             -       handle SRDY
851  *      @ifx_dev: device asserting SRDY
852  *
853  *      Check our device state and see what we need to kick off when SRDY
854  *      is asserted. This usually means killing the timer and firing off the
855  *      I/O processing.
856  */
857 static void ifx_spi_handle_srdy(struct ifx_spi_device *ifx_dev)
858 {
859         if (test_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags)) {
860                 del_timer(&ifx_dev->spi_timer);
861                 clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
862         }
863
864         ifx_spi_power_state_set(ifx_dev, IFX_SPI_POWER_SRDY);
865
866         if (!test_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags))
867                 tasklet_schedule(&ifx_dev->io_work_tasklet);
868         else
869                 set_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags);
870 }
871
872 /**
873  *      ifx_spi_srdy_interrupt  -       SRDY asserted
874  *      @irq: our IRQ number
875  *      @dev: our ifx device
876  *
877  *      The modem asserted SRDY. Handle the srdy event
878  */
879 static irqreturn_t ifx_spi_srdy_interrupt(int irq, void *dev)
880 {
881         struct ifx_spi_device *ifx_dev = dev;
882         ifx_dev->gpio.unack_srdy_int_nb++;
883         ifx_spi_handle_srdy(ifx_dev);
884         return IRQ_HANDLED;
885 }
886
887 /**
888  *      ifx_spi_reset_interrupt -       Modem has changed reset state
889  *      @irq: interrupt number
890  *      @dev: our device pointer
891  *
892  *      The modem has either entered or left reset state. Check the GPIO
893  *      line to see which.
894  *
895  *      FIXME: review locking on MR_INPROGRESS versus
896  *      parallel unsolicited reset/solicited reset
897  */
898 static irqreturn_t ifx_spi_reset_interrupt(int irq, void *dev)
899 {
900         struct ifx_spi_device *ifx_dev = dev;
901         int val = gpio_get_value(ifx_dev->gpio.reset_out);
902         int solreset = test_bit(MR_START, &ifx_dev->mdm_reset_state);
903
904         if (val == 0) {
905                 /* entered reset */
906                 set_bit(MR_INPROGRESS, &ifx_dev->mdm_reset_state);
907                 if (!solreset) {
908                         /* unsolicited reset  */
909                         tty_port_tty_hangup(&ifx_dev->tty_port, false);
910                 }
911         } else {
912                 /* exited reset */
913                 clear_bit(MR_INPROGRESS, &ifx_dev->mdm_reset_state);
914                 if (solreset) {
915                         set_bit(MR_COMPLETE, &ifx_dev->mdm_reset_state);
916                         wake_up(&ifx_dev->mdm_reset_wait);
917                 }
918         }
919         return IRQ_HANDLED;
920 }
921
922 /**
923  *      ifx_spi_free_device - free device
924  *      @ifx_dev: device to free
925  *
926  *      Free the IFX device
927  */
928 static void ifx_spi_free_device(struct ifx_spi_device *ifx_dev)
929 {
930         ifx_spi_free_port(ifx_dev);
931         dma_free_coherent(&ifx_dev->spi_dev->dev,
932                                 IFX_SPI_TRANSFER_SIZE,
933                                 ifx_dev->tx_buffer,
934                                 ifx_dev->tx_bus);
935         dma_free_coherent(&ifx_dev->spi_dev->dev,
936                                 IFX_SPI_TRANSFER_SIZE,
937                                 ifx_dev->rx_buffer,
938                                 ifx_dev->rx_bus);
939 }
940
941 /**
942  *      ifx_spi_reset   -       reset modem
943  *      @ifx_dev: modem to reset
944  *
945  *      Perform a reset on the modem
946  */
947 static int ifx_spi_reset(struct ifx_spi_device *ifx_dev)
948 {
949         int ret;
950         /*
951          * set up modem power, reset
952          *
953          * delays are required on some platforms for the modem
954          * to reset properly
955          */
956         set_bit(MR_START, &ifx_dev->mdm_reset_state);
957         gpio_set_value(ifx_dev->gpio.po, 0);
958         gpio_set_value(ifx_dev->gpio.reset, 0);
959         msleep(25);
960         gpio_set_value(ifx_dev->gpio.reset, 1);
961         msleep(1);
962         gpio_set_value(ifx_dev->gpio.po, 1);
963         msleep(1);
964         gpio_set_value(ifx_dev->gpio.po, 0);
965         ret = wait_event_timeout(ifx_dev->mdm_reset_wait,
966                                  test_bit(MR_COMPLETE,
967                                           &ifx_dev->mdm_reset_state),
968                                  IFX_RESET_TIMEOUT);
969         if (!ret)
970                 dev_warn(&ifx_dev->spi_dev->dev, "Modem reset timeout: (state:%lx)",
971                          ifx_dev->mdm_reset_state);
972
973         ifx_dev->mdm_reset_state = 0;
974         return ret;
975 }
976
977 /**
978  *      ifx_spi_spi_probe       -       probe callback
979  *      @spi: our possible matching SPI device
980  *
981  *      Probe for a 6x60 modem on SPI bus. Perform any needed device and
982  *      GPIO setup.
983  *
984  *      FIXME:
985  *      -       Support for multiple devices
986  *      -       Split out MID specific GPIO handling eventually
987  */
988
989 static int ifx_spi_spi_probe(struct spi_device *spi)
990 {
991         int ret;
992         int srdy;
993         struct ifx_modem_platform_data *pl_data;
994         struct ifx_spi_device *ifx_dev;
995
996         if (saved_ifx_dev) {
997                 dev_dbg(&spi->dev, "ignoring subsequent detection");
998                 return -ENODEV;
999         }
1000
1001         pl_data = dev_get_platdata(&spi->dev);
1002         if (!pl_data) {
1003                 dev_err(&spi->dev, "missing platform data!");
1004                 return -ENODEV;
1005         }
1006
1007         /* initialize structure to hold our device variables */
1008         ifx_dev = kzalloc(sizeof(struct ifx_spi_device), GFP_KERNEL);
1009         if (!ifx_dev) {
1010                 dev_err(&spi->dev, "spi device allocation failed");
1011                 return -ENOMEM;
1012         }
1013         saved_ifx_dev = ifx_dev;
1014         ifx_dev->spi_dev = spi;
1015         clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags);
1016         spin_lock_init(&ifx_dev->write_lock);
1017         spin_lock_init(&ifx_dev->power_lock);
1018         ifx_dev->power_status = 0;
1019         timer_setup(&ifx_dev->spi_timer, ifx_spi_timeout, 0);
1020         ifx_dev->modem = pl_data->modem_type;
1021         ifx_dev->use_dma = pl_data->use_dma;
1022         ifx_dev->max_hz = pl_data->max_hz;
1023         /* initialize spi mode, etc */
1024         spi->max_speed_hz = ifx_dev->max_hz;
1025         spi->mode = IFX_SPI_MODE | (SPI_LOOP & spi->mode);
1026         spi->bits_per_word = spi_bpw;
1027         ret = spi_setup(spi);
1028         if (ret) {
1029                 dev_err(&spi->dev, "SPI setup wasn't successful %d", ret);
1030                 kfree(ifx_dev);
1031                 return -ENODEV;
1032         }
1033
1034         /* init swap_buf function according to word width configuration */
1035         if (spi->bits_per_word == 32)
1036                 ifx_dev->swap_buf = swap_buf_32;
1037         else if (spi->bits_per_word == 16)
1038                 ifx_dev->swap_buf = swap_buf_16;
1039         else
1040                 ifx_dev->swap_buf = swap_buf_8;
1041
1042         /* ensure SPI protocol flags are initialized to enable transfer */
1043         ifx_dev->spi_more = 0;
1044         ifx_dev->spi_slave_cts = 0;
1045
1046         /*initialize transfer and dma buffers */
1047         ifx_dev->tx_buffer = dma_alloc_coherent(ifx_dev->spi_dev->dev.parent,
1048                                 IFX_SPI_TRANSFER_SIZE,
1049                                 &ifx_dev->tx_bus,
1050                                 GFP_KERNEL);
1051         if (!ifx_dev->tx_buffer) {
1052                 dev_err(&spi->dev, "DMA-TX buffer allocation failed");
1053                 ret = -ENOMEM;
1054                 goto error_ret;
1055         }
1056         ifx_dev->rx_buffer = dma_alloc_coherent(ifx_dev->spi_dev->dev.parent,
1057                                 IFX_SPI_TRANSFER_SIZE,
1058                                 &ifx_dev->rx_bus,
1059                                 GFP_KERNEL);
1060         if (!ifx_dev->rx_buffer) {
1061                 dev_err(&spi->dev, "DMA-RX buffer allocation failed");
1062                 ret = -ENOMEM;
1063                 goto error_ret;
1064         }
1065
1066         /* initialize waitq for modem reset */
1067         init_waitqueue_head(&ifx_dev->mdm_reset_wait);
1068
1069         spi_set_drvdata(spi, ifx_dev);
1070         tasklet_init(&ifx_dev->io_work_tasklet, ifx_spi_io,
1071                                                 (unsigned long)ifx_dev);
1072
1073         set_bit(IFX_SPI_STATE_PRESENT, &ifx_dev->flags);
1074
1075         /* create our tty port */
1076         ret = ifx_spi_create_port(ifx_dev);
1077         if (ret != 0) {
1078                 dev_err(&spi->dev, "create default tty port failed");
1079                 goto error_ret;
1080         }
1081
1082         ifx_dev->gpio.reset = pl_data->rst_pmu;
1083         ifx_dev->gpio.po = pl_data->pwr_on;
1084         ifx_dev->gpio.mrdy = pl_data->mrdy;
1085         ifx_dev->gpio.srdy = pl_data->srdy;
1086         ifx_dev->gpio.reset_out = pl_data->rst_out;
1087
1088         dev_info(&spi->dev, "gpios %d, %d, %d, %d, %d",
1089                  ifx_dev->gpio.reset, ifx_dev->gpio.po, ifx_dev->gpio.mrdy,
1090                  ifx_dev->gpio.srdy, ifx_dev->gpio.reset_out);
1091
1092         /* Configure gpios */
1093         ret = gpio_request(ifx_dev->gpio.reset, "ifxModem");
1094         if (ret < 0) {
1095                 dev_err(&spi->dev, "Unable to allocate GPIO%d (RESET)",
1096                         ifx_dev->gpio.reset);
1097                 goto error_ret;
1098         }
1099         ret += gpio_direction_output(ifx_dev->gpio.reset, 0);
1100         ret += gpio_export(ifx_dev->gpio.reset, 1);
1101         if (ret) {
1102                 dev_err(&spi->dev, "Unable to configure GPIO%d (RESET)",
1103                         ifx_dev->gpio.reset);
1104                 ret = -EBUSY;
1105                 goto error_ret2;
1106         }
1107
1108         ret = gpio_request(ifx_dev->gpio.po, "ifxModem");
1109         ret += gpio_direction_output(ifx_dev->gpio.po, 0);
1110         ret += gpio_export(ifx_dev->gpio.po, 1);
1111         if (ret) {
1112                 dev_err(&spi->dev, "Unable to configure GPIO%d (ON)",
1113                         ifx_dev->gpio.po);
1114                 ret = -EBUSY;
1115                 goto error_ret3;
1116         }
1117
1118         ret = gpio_request(ifx_dev->gpio.mrdy, "ifxModem");
1119         if (ret < 0) {
1120                 dev_err(&spi->dev, "Unable to allocate GPIO%d (MRDY)",
1121                         ifx_dev->gpio.mrdy);
1122                 goto error_ret3;
1123         }
1124         ret += gpio_export(ifx_dev->gpio.mrdy, 1);
1125         ret += gpio_direction_output(ifx_dev->gpio.mrdy, 0);
1126         if (ret) {
1127                 dev_err(&spi->dev, "Unable to configure GPIO%d (MRDY)",
1128                         ifx_dev->gpio.mrdy);
1129                 ret = -EBUSY;
1130                 goto error_ret4;
1131         }
1132
1133         ret = gpio_request(ifx_dev->gpio.srdy, "ifxModem");
1134         if (ret < 0) {
1135                 dev_err(&spi->dev, "Unable to allocate GPIO%d (SRDY)",
1136                         ifx_dev->gpio.srdy);
1137                 ret = -EBUSY;
1138                 goto error_ret4;
1139         }
1140         ret += gpio_export(ifx_dev->gpio.srdy, 1);
1141         ret += gpio_direction_input(ifx_dev->gpio.srdy);
1142         if (ret) {
1143                 dev_err(&spi->dev, "Unable to configure GPIO%d (SRDY)",
1144                         ifx_dev->gpio.srdy);
1145                 ret = -EBUSY;
1146                 goto error_ret5;
1147         }
1148
1149         ret = gpio_request(ifx_dev->gpio.reset_out, "ifxModem");
1150         if (ret < 0) {
1151                 dev_err(&spi->dev, "Unable to allocate GPIO%d (RESET_OUT)",
1152                         ifx_dev->gpio.reset_out);
1153                 goto error_ret5;
1154         }
1155         ret += gpio_export(ifx_dev->gpio.reset_out, 1);
1156         ret += gpio_direction_input(ifx_dev->gpio.reset_out);
1157         if (ret) {
1158                 dev_err(&spi->dev, "Unable to configure GPIO%d (RESET_OUT)",
1159                         ifx_dev->gpio.reset_out);
1160                 ret = -EBUSY;
1161                 goto error_ret6;
1162         }
1163
1164         ret = request_irq(gpio_to_irq(ifx_dev->gpio.reset_out),
1165                           ifx_spi_reset_interrupt,
1166                           IRQF_TRIGGER_RISING|IRQF_TRIGGER_FALLING, DRVNAME,
1167                           ifx_dev);
1168         if (ret) {
1169                 dev_err(&spi->dev, "Unable to get irq %x\n",
1170                         gpio_to_irq(ifx_dev->gpio.reset_out));
1171                 goto error_ret6;
1172         }
1173
1174         ret = ifx_spi_reset(ifx_dev);
1175
1176         ret = request_irq(gpio_to_irq(ifx_dev->gpio.srdy),
1177                           ifx_spi_srdy_interrupt, IRQF_TRIGGER_RISING, DRVNAME,
1178                           ifx_dev);
1179         if (ret) {
1180                 dev_err(&spi->dev, "Unable to get irq %x",
1181                         gpio_to_irq(ifx_dev->gpio.srdy));
1182                 goto error_ret7;
1183         }
1184
1185         /* set pm runtime power state and register with power system */
1186         pm_runtime_set_active(&spi->dev);
1187         pm_runtime_enable(&spi->dev);
1188
1189         /* handle case that modem is already signaling SRDY */
1190         /* no outgoing tty open at this point, this just satisfies the
1191          * modem's read and should reset communication properly
1192          */
1193         srdy = gpio_get_value(ifx_dev->gpio.srdy);
1194
1195         if (srdy) {
1196                 mrdy_assert(ifx_dev);
1197                 ifx_spi_handle_srdy(ifx_dev);
1198         } else
1199                 mrdy_set_low(ifx_dev);
1200         return 0;
1201
1202 error_ret7:
1203         free_irq(gpio_to_irq(ifx_dev->gpio.reset_out), ifx_dev);
1204 error_ret6:
1205         gpio_free(ifx_dev->gpio.srdy);
1206 error_ret5:
1207         gpio_free(ifx_dev->gpio.mrdy);
1208 error_ret4:
1209         gpio_free(ifx_dev->gpio.reset);
1210 error_ret3:
1211         gpio_free(ifx_dev->gpio.po);
1212 error_ret2:
1213         gpio_free(ifx_dev->gpio.reset_out);
1214 error_ret:
1215         ifx_spi_free_device(ifx_dev);
1216         saved_ifx_dev = NULL;
1217         return ret;
1218 }
1219
1220 /**
1221  *      ifx_spi_spi_remove      -       SPI device was removed
1222  *      @spi: SPI device
1223  *
1224  *      FIXME: We should be shutting the device down here not in
1225  *      the module unload path.
1226  */
1227
1228 static int ifx_spi_spi_remove(struct spi_device *spi)
1229 {
1230         struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1231         /* stop activity */
1232         tasklet_kill(&ifx_dev->io_work_tasklet);
1233         /* free irq */
1234         free_irq(gpio_to_irq(ifx_dev->gpio.reset_out), ifx_dev);
1235         free_irq(gpio_to_irq(ifx_dev->gpio.srdy), ifx_dev);
1236
1237         gpio_free(ifx_dev->gpio.srdy);
1238         gpio_free(ifx_dev->gpio.mrdy);
1239         gpio_free(ifx_dev->gpio.reset);
1240         gpio_free(ifx_dev->gpio.po);
1241         gpio_free(ifx_dev->gpio.reset_out);
1242
1243         /* free allocations */
1244         ifx_spi_free_device(ifx_dev);
1245
1246         saved_ifx_dev = NULL;
1247         return 0;
1248 }
1249
1250 /**
1251  *      ifx_spi_spi_shutdown    -       called on SPI shutdown
1252  *      @spi: SPI device
1253  *
1254  *      No action needs to be taken here
1255  */
1256
1257 static void ifx_spi_spi_shutdown(struct spi_device *spi)
1258 {
1259         struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1260
1261         ifx_modem_power_off(ifx_dev);
1262 }
1263
1264 /*
1265  * various suspends and resumes have nothing to do
1266  * no hardware to save state for
1267  */
1268
1269 /**
1270  *      ifx_spi_pm_suspend      -       suspend modem on system suspend
1271  *      @dev: device being suspended
1272  *
1273  *      Suspend the modem. No action needed on Intel MID platforms, may
1274  *      need extending for other systems.
1275  */
1276 static int ifx_spi_pm_suspend(struct device *dev)
1277 {
1278         return 0;
1279 }
1280
1281 /**
1282  *      ifx_spi_pm_resume       -       resume modem on system resume
1283  *      @dev: device being suspended
1284  *
1285  *      Allow the modem to resume. No action needed.
1286  *
1287  *      FIXME: do we need to reset anything here ?
1288  */
1289 static int ifx_spi_pm_resume(struct device *dev)
1290 {
1291         return 0;
1292 }
1293
1294 /**
1295  *      ifx_spi_pm_runtime_resume       -       suspend modem
1296  *      @dev: device being suspended
1297  *
1298  *      Allow the modem to resume. No action needed.
1299  */
1300 static int ifx_spi_pm_runtime_resume(struct device *dev)
1301 {
1302         return 0;
1303 }
1304
1305 /**
1306  *      ifx_spi_pm_runtime_suspend      -       suspend modem
1307  *      @dev: device being suspended
1308  *
1309  *      Allow the modem to suspend and thus suspend to continue up the
1310  *      device tree.
1311  */
1312 static int ifx_spi_pm_runtime_suspend(struct device *dev)
1313 {
1314         return 0;
1315 }
1316
1317 /**
1318  *      ifx_spi_pm_runtime_idle         -       check if modem idle
1319  *      @dev: our device
1320  *
1321  *      Check conditions and queue runtime suspend if idle.
1322  */
1323 static int ifx_spi_pm_runtime_idle(struct device *dev)
1324 {
1325         struct spi_device *spi = to_spi_device(dev);
1326         struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1327
1328         if (!ifx_dev->power_status)
1329                 pm_runtime_suspend(dev);
1330
1331         return 0;
1332 }
1333
1334 static const struct dev_pm_ops ifx_spi_pm = {
1335         .resume = ifx_spi_pm_resume,
1336         .suspend = ifx_spi_pm_suspend,
1337         .runtime_resume = ifx_spi_pm_runtime_resume,
1338         .runtime_suspend = ifx_spi_pm_runtime_suspend,
1339         .runtime_idle = ifx_spi_pm_runtime_idle
1340 };
1341
1342 static const struct spi_device_id ifx_id_table[] = {
1343         {"ifx6160", 0},
1344         {"ifx6260", 0},
1345         { }
1346 };
1347 MODULE_DEVICE_TABLE(spi, ifx_id_table);
1348
1349 /* spi operations */
1350 static struct spi_driver ifx_spi_driver = {
1351         .driver = {
1352                 .name = DRVNAME,
1353                 .pm = &ifx_spi_pm,
1354         },
1355         .probe = ifx_spi_spi_probe,
1356         .shutdown = ifx_spi_spi_shutdown,
1357         .remove = ifx_spi_spi_remove,
1358         .id_table = ifx_id_table
1359 };
1360
1361 /**
1362  *      ifx_spi_exit    -       module exit
1363  *
1364  *      Unload the module.
1365  */
1366
1367 static void __exit ifx_spi_exit(void)
1368 {
1369         /* unregister */
1370         spi_unregister_driver(&ifx_spi_driver);
1371         tty_unregister_driver(tty_drv);
1372         put_tty_driver(tty_drv);
1373         unregister_reboot_notifier(&ifx_modem_reboot_notifier_block);
1374 }
1375
1376 /**
1377  *      ifx_spi_init            -       module entry point
1378  *
1379  *      Initialise the SPI and tty interfaces for the IFX SPI driver
1380  *      We need to initialize upper-edge spi driver after the tty
1381  *      driver because otherwise the spi probe will race
1382  */
1383
1384 static int __init ifx_spi_init(void)
1385 {
1386         int result;
1387
1388         tty_drv = alloc_tty_driver(1);
1389         if (!tty_drv) {
1390                 pr_err("%s: alloc_tty_driver failed", DRVNAME);
1391                 return -ENOMEM;
1392         }
1393
1394         tty_drv->driver_name = DRVNAME;
1395         tty_drv->name = TTYNAME;
1396         tty_drv->minor_start = IFX_SPI_TTY_ID;
1397         tty_drv->type = TTY_DRIVER_TYPE_SERIAL;
1398         tty_drv->subtype = SERIAL_TYPE_NORMAL;
1399         tty_drv->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
1400         tty_drv->init_termios = tty_std_termios;
1401
1402         tty_set_operations(tty_drv, &ifx_spi_serial_ops);
1403
1404         result = tty_register_driver(tty_drv);
1405         if (result) {
1406                 pr_err("%s: tty_register_driver failed(%d)",
1407                         DRVNAME, result);
1408                 goto err_free_tty;
1409         }
1410
1411         result = spi_register_driver(&ifx_spi_driver);
1412         if (result) {
1413                 pr_err("%s: spi_register_driver failed(%d)",
1414                         DRVNAME, result);
1415                 goto err_unreg_tty;
1416         }
1417
1418         result = register_reboot_notifier(&ifx_modem_reboot_notifier_block);
1419         if (result) {
1420                 pr_err("%s: register ifx modem reboot notifier failed(%d)",
1421                         DRVNAME, result);
1422                 goto err_unreg_spi;
1423         }
1424
1425         return 0;
1426 err_unreg_spi:
1427         spi_unregister_driver(&ifx_spi_driver);
1428 err_unreg_tty:
1429         tty_unregister_driver(tty_drv);
1430 err_free_tty:
1431         put_tty_driver(tty_drv);
1432
1433         return result;
1434 }
1435
1436 module_init(ifx_spi_init);
1437 module_exit(ifx_spi_exit);
1438
1439 MODULE_AUTHOR("Intel");
1440 MODULE_DESCRIPTION("IFX6x60 spi driver");
1441 MODULE_LICENSE("GPL");
1442 MODULE_INFO(Version, "0.1-IFX6x60");