Merge remote-tracking branch 'asoc/fix/rt5645' into asoc-linus
[sfrench/cifs-2.6.git] / drivers / thermal / intel_powerclamp.c
1 /*
2  * intel_powerclamp.c - package c-state idle injection
3  *
4  * Copyright (c) 2012, Intel Corporation.
5  *
6  * Authors:
7  *     Arjan van de Ven <arjan@linux.intel.com>
8  *     Jacob Pan <jacob.jun.pan@linux.intel.com>
9  *
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms and conditions of the GNU General Public License,
12  * version 2, as published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope it will be useful, but WITHOUT
15  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
17  * more details.
18  *
19  * You should have received a copy of the GNU General Public License along with
20  * this program; if not, write to the Free Software Foundation, Inc.,
21  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
22  *
23  *
24  *      TODO:
25  *           1. better handle wakeup from external interrupts, currently a fixed
26  *              compensation is added to clamping duration when excessive amount
27  *              of wakeups are observed during idle time. the reason is that in
28  *              case of external interrupts without need for ack, clamping down
29  *              cpu in non-irq context does not reduce irq. for majority of the
30  *              cases, clamping down cpu does help reduce irq as well, we should
31  *              be able to differenciate the two cases and give a quantitative
32  *              solution for the irqs that we can control. perhaps based on
33  *              get_cpu_iowait_time_us()
34  *
35  *           2. synchronization with other hw blocks
36  *
37  *
38  */
39
40 #define pr_fmt(fmt)     KBUILD_MODNAME ": " fmt
41
42 #include <linux/module.h>
43 #include <linux/kernel.h>
44 #include <linux/delay.h>
45 #include <linux/kthread.h>
46 #include <linux/freezer.h>
47 #include <linux/cpu.h>
48 #include <linux/thermal.h>
49 #include <linux/slab.h>
50 #include <linux/tick.h>
51 #include <linux/debugfs.h>
52 #include <linux/seq_file.h>
53 #include <linux/sched/rt.h>
54
55 #include <asm/nmi.h>
56 #include <asm/msr.h>
57 #include <asm/mwait.h>
58 #include <asm/cpu_device_id.h>
59 #include <asm/idle.h>
60 #include <asm/hardirq.h>
61
62 #define MAX_TARGET_RATIO (50U)
63 /* For each undisturbed clamping period (no extra wake ups during idle time),
64  * we increment the confidence counter for the given target ratio.
65  * CONFIDENCE_OK defines the level where runtime calibration results are
66  * valid.
67  */
68 #define CONFIDENCE_OK (3)
69 /* Default idle injection duration, driver adjust sleep time to meet target
70  * idle ratio. Similar to frequency modulation.
71  */
72 #define DEFAULT_DURATION_JIFFIES (6)
73
74 static unsigned int target_mwait;
75 static struct dentry *debug_dir;
76
77 /* user selected target */
78 static unsigned int set_target_ratio;
79 static unsigned int current_ratio;
80 static bool should_skip;
81 static bool reduce_irq;
82 static atomic_t idle_wakeup_counter;
83 static unsigned int control_cpu; /* The cpu assigned to collect stat and update
84                                   * control parameters. default to BSP but BSP
85                                   * can be offlined.
86                                   */
87 static bool clamping;
88
89
90 static struct task_struct * __percpu *powerclamp_thread;
91 static struct thermal_cooling_device *cooling_dev;
92 static unsigned long *cpu_clamping_mask;  /* bit map for tracking per cpu
93                                            * clamping thread
94                                            */
95
96 static unsigned int duration;
97 static unsigned int pkg_cstate_ratio_cur;
98 static unsigned int window_size;
99
100 static int duration_set(const char *arg, const struct kernel_param *kp)
101 {
102         int ret = 0;
103         unsigned long new_duration;
104
105         ret = kstrtoul(arg, 10, &new_duration);
106         if (ret)
107                 goto exit;
108         if (new_duration > 25 || new_duration < 6) {
109                 pr_err("Out of recommended range %lu, between 6-25ms\n",
110                         new_duration);
111                 ret = -EINVAL;
112         }
113
114         duration = clamp(new_duration, 6ul, 25ul);
115         smp_mb();
116
117 exit:
118
119         return ret;
120 }
121
122 static struct kernel_param_ops duration_ops = {
123         .set = duration_set,
124         .get = param_get_int,
125 };
126
127
128 module_param_cb(duration, &duration_ops, &duration, 0644);
129 MODULE_PARM_DESC(duration, "forced idle time for each attempt in msec.");
130
131 struct powerclamp_calibration_data {
132         unsigned long confidence;  /* used for calibration, basically a counter
133                                     * gets incremented each time a clamping
134                                     * period is completed without extra wakeups
135                                     * once that counter is reached given level,
136                                     * compensation is deemed usable.
137                                     */
138         unsigned long steady_comp; /* steady state compensation used when
139                                     * no extra wakeups occurred.
140                                     */
141         unsigned long dynamic_comp; /* compensate excessive wakeup from idle
142                                      * mostly from external interrupts.
143                                      */
144 };
145
146 static struct powerclamp_calibration_data cal_data[MAX_TARGET_RATIO];
147
148 static int window_size_set(const char *arg, const struct kernel_param *kp)
149 {
150         int ret = 0;
151         unsigned long new_window_size;
152
153         ret = kstrtoul(arg, 10, &new_window_size);
154         if (ret)
155                 goto exit_win;
156         if (new_window_size > 10 || new_window_size < 2) {
157                 pr_err("Out of recommended window size %lu, between 2-10\n",
158                         new_window_size);
159                 ret = -EINVAL;
160         }
161
162         window_size = clamp(new_window_size, 2ul, 10ul);
163         smp_mb();
164
165 exit_win:
166
167         return ret;
168 }
169
170 static struct kernel_param_ops window_size_ops = {
171         .set = window_size_set,
172         .get = param_get_int,
173 };
174
175 module_param_cb(window_size, &window_size_ops, &window_size, 0644);
176 MODULE_PARM_DESC(window_size, "sliding window in number of clamping cycles\n"
177         "\tpowerclamp controls idle ratio within this window. larger\n"
178         "\twindow size results in slower response time but more smooth\n"
179         "\tclamping results. default to 2.");
180
181 static void find_target_mwait(void)
182 {
183         unsigned int eax, ebx, ecx, edx;
184         unsigned int highest_cstate = 0;
185         unsigned int highest_subcstate = 0;
186         int i;
187
188         if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
189                 return;
190
191         cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
192
193         if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
194             !(ecx & CPUID5_ECX_INTERRUPT_BREAK))
195                 return;
196
197         edx >>= MWAIT_SUBSTATE_SIZE;
198         for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
199                 if (edx & MWAIT_SUBSTATE_MASK) {
200                         highest_cstate = i;
201                         highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
202                 }
203         }
204         target_mwait = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
205                 (highest_subcstate - 1);
206
207 }
208
209 static bool has_pkg_state_counter(void)
210 {
211         u64 tmp;
212         return !rdmsrl_safe(MSR_PKG_C2_RESIDENCY, &tmp) ||
213                !rdmsrl_safe(MSR_PKG_C3_RESIDENCY, &tmp) ||
214                !rdmsrl_safe(MSR_PKG_C6_RESIDENCY, &tmp) ||
215                !rdmsrl_safe(MSR_PKG_C7_RESIDENCY, &tmp);
216 }
217
218 static u64 pkg_state_counter(void)
219 {
220         u64 val;
221         u64 count = 0;
222
223         static bool skip_c2;
224         static bool skip_c3;
225         static bool skip_c6;
226         static bool skip_c7;
227
228         if (!skip_c2) {
229                 if (!rdmsrl_safe(MSR_PKG_C2_RESIDENCY, &val))
230                         count += val;
231                 else
232                         skip_c2 = true;
233         }
234
235         if (!skip_c3) {
236                 if (!rdmsrl_safe(MSR_PKG_C3_RESIDENCY, &val))
237                         count += val;
238                 else
239                         skip_c3 = true;
240         }
241
242         if (!skip_c6) {
243                 if (!rdmsrl_safe(MSR_PKG_C6_RESIDENCY, &val))
244                         count += val;
245                 else
246                         skip_c6 = true;
247         }
248
249         if (!skip_c7) {
250                 if (!rdmsrl_safe(MSR_PKG_C7_RESIDENCY, &val))
251                         count += val;
252                 else
253                         skip_c7 = true;
254         }
255
256         return count;
257 }
258
259 static void noop_timer(unsigned long foo)
260 {
261         /* empty... just the fact that we get the interrupt wakes us up */
262 }
263
264 static unsigned int get_compensation(int ratio)
265 {
266         unsigned int comp = 0;
267
268         /* we only use compensation if all adjacent ones are good */
269         if (ratio == 1 &&
270                 cal_data[ratio].confidence >= CONFIDENCE_OK &&
271                 cal_data[ratio + 1].confidence >= CONFIDENCE_OK &&
272                 cal_data[ratio + 2].confidence >= CONFIDENCE_OK) {
273                 comp = (cal_data[ratio].steady_comp +
274                         cal_data[ratio + 1].steady_comp +
275                         cal_data[ratio + 2].steady_comp) / 3;
276         } else if (ratio == MAX_TARGET_RATIO - 1 &&
277                 cal_data[ratio].confidence >= CONFIDENCE_OK &&
278                 cal_data[ratio - 1].confidence >= CONFIDENCE_OK &&
279                 cal_data[ratio - 2].confidence >= CONFIDENCE_OK) {
280                 comp = (cal_data[ratio].steady_comp +
281                         cal_data[ratio - 1].steady_comp +
282                         cal_data[ratio - 2].steady_comp) / 3;
283         } else if (cal_data[ratio].confidence >= CONFIDENCE_OK &&
284                 cal_data[ratio - 1].confidence >= CONFIDENCE_OK &&
285                 cal_data[ratio + 1].confidence >= CONFIDENCE_OK) {
286                 comp = (cal_data[ratio].steady_comp +
287                         cal_data[ratio - 1].steady_comp +
288                         cal_data[ratio + 1].steady_comp) / 3;
289         }
290
291         /* REVISIT: simple penalty of double idle injection */
292         if (reduce_irq)
293                 comp = ratio;
294         /* do not exceed limit */
295         if (comp + ratio >= MAX_TARGET_RATIO)
296                 comp = MAX_TARGET_RATIO - ratio - 1;
297
298         return comp;
299 }
300
301 static void adjust_compensation(int target_ratio, unsigned int win)
302 {
303         int delta;
304         struct powerclamp_calibration_data *d = &cal_data[target_ratio];
305
306         /*
307          * adjust compensations if confidence level has not been reached or
308          * there are too many wakeups during the last idle injection period, we
309          * cannot trust the data for compensation.
310          */
311         if (d->confidence >= CONFIDENCE_OK ||
312                 atomic_read(&idle_wakeup_counter) >
313                 win * num_online_cpus())
314                 return;
315
316         delta = set_target_ratio - current_ratio;
317         /* filter out bad data */
318         if (delta >= 0 && delta <= (1+target_ratio/10)) {
319                 if (d->steady_comp)
320                         d->steady_comp =
321                                 roundup(delta+d->steady_comp, 2)/2;
322                 else
323                         d->steady_comp = delta;
324                 d->confidence++;
325         }
326 }
327
328 static bool powerclamp_adjust_controls(unsigned int target_ratio,
329                                 unsigned int guard, unsigned int win)
330 {
331         static u64 msr_last, tsc_last;
332         u64 msr_now, tsc_now;
333         u64 val64;
334
335         /* check result for the last window */
336         msr_now = pkg_state_counter();
337         rdtscll(tsc_now);
338
339         /* calculate pkg cstate vs tsc ratio */
340         if (!msr_last || !tsc_last)
341                 current_ratio = 1;
342         else if (tsc_now-tsc_last) {
343                 val64 = 100*(msr_now-msr_last);
344                 do_div(val64, (tsc_now-tsc_last));
345                 current_ratio = val64;
346         }
347
348         /* update record */
349         msr_last = msr_now;
350         tsc_last = tsc_now;
351
352         adjust_compensation(target_ratio, win);
353         /*
354          * too many external interrupts, set flag such
355          * that we can take measure later.
356          */
357         reduce_irq = atomic_read(&idle_wakeup_counter) >=
358                 2 * win * num_online_cpus();
359
360         atomic_set(&idle_wakeup_counter, 0);
361         /* if we are above target+guard, skip */
362         return set_target_ratio + guard <= current_ratio;
363 }
364
365 static int clamp_thread(void *arg)
366 {
367         int cpunr = (unsigned long)arg;
368         DEFINE_TIMER(wakeup_timer, noop_timer, 0, 0);
369         static const struct sched_param param = {
370                 .sched_priority = MAX_USER_RT_PRIO/2,
371         };
372         unsigned int count = 0;
373         unsigned int target_ratio;
374
375         set_bit(cpunr, cpu_clamping_mask);
376         set_freezable();
377         init_timer_on_stack(&wakeup_timer);
378         sched_setscheduler(current, SCHED_FIFO, &param);
379
380         while (true == clamping && !kthread_should_stop() &&
381                 cpu_online(cpunr)) {
382                 int sleeptime;
383                 unsigned long target_jiffies;
384                 unsigned int guard;
385                 unsigned int compensation = 0;
386                 int interval; /* jiffies to sleep for each attempt */
387                 unsigned int duration_jiffies = msecs_to_jiffies(duration);
388                 unsigned int window_size_now;
389
390                 try_to_freeze();
391                 /*
392                  * make sure user selected ratio does not take effect until
393                  * the next round. adjust target_ratio if user has changed
394                  * target such that we can converge quickly.
395                  */
396                 target_ratio = set_target_ratio;
397                 guard = 1 + target_ratio/20;
398                 window_size_now = window_size;
399                 count++;
400
401                 /*
402                  * systems may have different ability to enter package level
403                  * c-states, thus we need to compensate the injected idle ratio
404                  * to achieve the actual target reported by the HW.
405                  */
406                 compensation = get_compensation(target_ratio);
407                 interval = duration_jiffies*100/(target_ratio+compensation);
408
409                 /* align idle time */
410                 target_jiffies = roundup(jiffies, interval);
411                 sleeptime = target_jiffies - jiffies;
412                 if (sleeptime <= 0)
413                         sleeptime = 1;
414                 schedule_timeout_interruptible(sleeptime);
415                 /*
416                  * only elected controlling cpu can collect stats and update
417                  * control parameters.
418                  */
419                 if (cpunr == control_cpu && !(count%window_size_now)) {
420                         should_skip =
421                                 powerclamp_adjust_controls(target_ratio,
422                                                         guard, window_size_now);
423                         smp_mb();
424                 }
425
426                 if (should_skip)
427                         continue;
428
429                 target_jiffies = jiffies + duration_jiffies;
430                 mod_timer(&wakeup_timer, target_jiffies);
431                 if (unlikely(local_softirq_pending()))
432                         continue;
433                 /*
434                  * stop tick sched during idle time, interrupts are still
435                  * allowed. thus jiffies are updated properly.
436                  */
437                 preempt_disable();
438                 /* mwait until target jiffies is reached */
439                 while (time_before(jiffies, target_jiffies)) {
440                         unsigned long ecx = 1;
441                         unsigned long eax = target_mwait;
442
443                         /*
444                          * REVISIT: may call enter_idle() to notify drivers who
445                          * can save power during cpu idle. same for exit_idle()
446                          */
447                         local_touch_nmi();
448                         stop_critical_timings();
449                         mwait_idle_with_hints(eax, ecx);
450                         start_critical_timings();
451                         atomic_inc(&idle_wakeup_counter);
452                 }
453                 preempt_enable();
454         }
455         del_timer_sync(&wakeup_timer);
456         clear_bit(cpunr, cpu_clamping_mask);
457
458         return 0;
459 }
460
461 /*
462  * 1 HZ polling while clamping is active, useful for userspace
463  * to monitor actual idle ratio.
464  */
465 static void poll_pkg_cstate(struct work_struct *dummy);
466 static DECLARE_DELAYED_WORK(poll_pkg_cstate_work, poll_pkg_cstate);
467 static void poll_pkg_cstate(struct work_struct *dummy)
468 {
469         static u64 msr_last;
470         static u64 tsc_last;
471         static unsigned long jiffies_last;
472
473         u64 msr_now;
474         unsigned long jiffies_now;
475         u64 tsc_now;
476         u64 val64;
477
478         msr_now = pkg_state_counter();
479         rdtscll(tsc_now);
480         jiffies_now = jiffies;
481
482         /* calculate pkg cstate vs tsc ratio */
483         if (!msr_last || !tsc_last)
484                 pkg_cstate_ratio_cur = 1;
485         else {
486                 if (tsc_now - tsc_last) {
487                         val64 = 100 * (msr_now - msr_last);
488                         do_div(val64, (tsc_now - tsc_last));
489                         pkg_cstate_ratio_cur = val64;
490                 }
491         }
492
493         /* update record */
494         msr_last = msr_now;
495         jiffies_last = jiffies_now;
496         tsc_last = tsc_now;
497
498         if (true == clamping)
499                 schedule_delayed_work(&poll_pkg_cstate_work, HZ);
500 }
501
502 static int start_power_clamp(void)
503 {
504         unsigned long cpu;
505         struct task_struct *thread;
506
507         /* check if pkg cstate counter is completely 0, abort in this case */
508         if (!has_pkg_state_counter()) {
509                 pr_err("pkg cstate counter not functional, abort\n");
510                 return -EINVAL;
511         }
512
513         set_target_ratio = clamp(set_target_ratio, 0U, MAX_TARGET_RATIO - 1);
514         /* prevent cpu hotplug */
515         get_online_cpus();
516
517         /* prefer BSP */
518         control_cpu = 0;
519         if (!cpu_online(control_cpu))
520                 control_cpu = smp_processor_id();
521
522         clamping = true;
523         schedule_delayed_work(&poll_pkg_cstate_work, 0);
524
525         /* start one thread per online cpu */
526         for_each_online_cpu(cpu) {
527                 struct task_struct **p =
528                         per_cpu_ptr(powerclamp_thread, cpu);
529
530                 thread = kthread_create_on_node(clamp_thread,
531                                                 (void *) cpu,
532                                                 cpu_to_node(cpu),
533                                                 "kidle_inject/%ld", cpu);
534                 /* bind to cpu here */
535                 if (likely(!IS_ERR(thread))) {
536                         kthread_bind(thread, cpu);
537                         wake_up_process(thread);
538                         *p = thread;
539                 }
540
541         }
542         put_online_cpus();
543
544         return 0;
545 }
546
547 static void end_power_clamp(void)
548 {
549         int i;
550         struct task_struct *thread;
551
552         clamping = false;
553         /*
554          * make clamping visible to other cpus and give per cpu clamping threads
555          * sometime to exit, or gets killed later.
556          */
557         smp_mb();
558         msleep(20);
559         if (bitmap_weight(cpu_clamping_mask, num_possible_cpus())) {
560                 for_each_set_bit(i, cpu_clamping_mask, num_possible_cpus()) {
561                         pr_debug("clamping thread for cpu %d alive, kill\n", i);
562                         thread = *per_cpu_ptr(powerclamp_thread, i);
563                         kthread_stop(thread);
564                 }
565         }
566 }
567
568 static int powerclamp_cpu_callback(struct notifier_block *nfb,
569                                 unsigned long action, void *hcpu)
570 {
571         unsigned long cpu = (unsigned long)hcpu;
572         struct task_struct *thread;
573         struct task_struct **percpu_thread =
574                 per_cpu_ptr(powerclamp_thread, cpu);
575
576         if (false == clamping)
577                 goto exit_ok;
578
579         switch (action) {
580         case CPU_ONLINE:
581                 thread = kthread_create_on_node(clamp_thread,
582                                                 (void *) cpu,
583                                                 cpu_to_node(cpu),
584                                                 "kidle_inject/%lu", cpu);
585                 if (likely(!IS_ERR(thread))) {
586                         kthread_bind(thread, cpu);
587                         wake_up_process(thread);
588                         *percpu_thread = thread;
589                 }
590                 /* prefer BSP as controlling CPU */
591                 if (cpu == 0) {
592                         control_cpu = 0;
593                         smp_mb();
594                 }
595                 break;
596         case CPU_DEAD:
597                 if (test_bit(cpu, cpu_clamping_mask)) {
598                         pr_err("cpu %lu dead but powerclamping thread is not\n",
599                                 cpu);
600                         kthread_stop(*percpu_thread);
601                 }
602                 if (cpu == control_cpu) {
603                         control_cpu = smp_processor_id();
604                         smp_mb();
605                 }
606         }
607
608 exit_ok:
609         return NOTIFY_OK;
610 }
611
612 static struct notifier_block powerclamp_cpu_notifier = {
613         .notifier_call = powerclamp_cpu_callback,
614 };
615
616 static int powerclamp_get_max_state(struct thermal_cooling_device *cdev,
617                                  unsigned long *state)
618 {
619         *state = MAX_TARGET_RATIO;
620
621         return 0;
622 }
623
624 static int powerclamp_get_cur_state(struct thermal_cooling_device *cdev,
625                                  unsigned long *state)
626 {
627         if (true == clamping)
628                 *state = pkg_cstate_ratio_cur;
629         else
630                 /* to save power, do not poll idle ratio while not clamping */
631                 *state = -1; /* indicates invalid state */
632
633         return 0;
634 }
635
636 static int powerclamp_set_cur_state(struct thermal_cooling_device *cdev,
637                                  unsigned long new_target_ratio)
638 {
639         int ret = 0;
640
641         new_target_ratio = clamp(new_target_ratio, 0UL,
642                                 (unsigned long) (MAX_TARGET_RATIO-1));
643         if (set_target_ratio == 0 && new_target_ratio > 0) {
644                 pr_info("Start idle injection to reduce power\n");
645                 set_target_ratio = new_target_ratio;
646                 ret = start_power_clamp();
647                 goto exit_set;
648         } else  if (set_target_ratio > 0 && new_target_ratio == 0) {
649                 pr_info("Stop forced idle injection\n");
650                 set_target_ratio = 0;
651                 end_power_clamp();
652         } else  /* adjust currently running */ {
653                 set_target_ratio = new_target_ratio;
654                 /* make new set_target_ratio visible to other cpus */
655                 smp_mb();
656         }
657
658 exit_set:
659         return ret;
660 }
661
662 /* bind to generic thermal layer as cooling device*/
663 static struct thermal_cooling_device_ops powerclamp_cooling_ops = {
664         .get_max_state = powerclamp_get_max_state,
665         .get_cur_state = powerclamp_get_cur_state,
666         .set_cur_state = powerclamp_set_cur_state,
667 };
668
669 /* runs on Nehalem and later */
670 static const struct x86_cpu_id intel_powerclamp_ids[] = {
671         { X86_VENDOR_INTEL, 6, 0x1a},
672         { X86_VENDOR_INTEL, 6, 0x1c},
673         { X86_VENDOR_INTEL, 6, 0x1e},
674         { X86_VENDOR_INTEL, 6, 0x1f},
675         { X86_VENDOR_INTEL, 6, 0x25},
676         { X86_VENDOR_INTEL, 6, 0x26},
677         { X86_VENDOR_INTEL, 6, 0x2a},
678         { X86_VENDOR_INTEL, 6, 0x2c},
679         { X86_VENDOR_INTEL, 6, 0x2d},
680         { X86_VENDOR_INTEL, 6, 0x2e},
681         { X86_VENDOR_INTEL, 6, 0x2f},
682         { X86_VENDOR_INTEL, 6, 0x37},
683         { X86_VENDOR_INTEL, 6, 0x3a},
684         { X86_VENDOR_INTEL, 6, 0x3c},
685         { X86_VENDOR_INTEL, 6, 0x3d},
686         { X86_VENDOR_INTEL, 6, 0x3e},
687         { X86_VENDOR_INTEL, 6, 0x3f},
688         { X86_VENDOR_INTEL, 6, 0x45},
689         { X86_VENDOR_INTEL, 6, 0x46},
690         { X86_VENDOR_INTEL, 6, 0x4c},
691         { X86_VENDOR_INTEL, 6, 0x4d},
692         { X86_VENDOR_INTEL, 6, 0x56},
693         {}
694 };
695 MODULE_DEVICE_TABLE(x86cpu, intel_powerclamp_ids);
696
697 static int powerclamp_probe(void)
698 {
699         if (!x86_match_cpu(intel_powerclamp_ids)) {
700                 pr_err("Intel powerclamp does not run on family %d model %d\n",
701                                 boot_cpu_data.x86, boot_cpu_data.x86_model);
702                 return -ENODEV;
703         }
704         if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
705                 !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) ||
706                 !boot_cpu_has(X86_FEATURE_MWAIT) ||
707                 !boot_cpu_has(X86_FEATURE_ARAT))
708                 return -ENODEV;
709
710         /* find the deepest mwait value */
711         find_target_mwait();
712
713         return 0;
714 }
715
716 static int powerclamp_debug_show(struct seq_file *m, void *unused)
717 {
718         int i = 0;
719
720         seq_printf(m, "controlling cpu: %d\n", control_cpu);
721         seq_printf(m, "pct confidence steady dynamic (compensation)\n");
722         for (i = 0; i < MAX_TARGET_RATIO; i++) {
723                 seq_printf(m, "%d\t%lu\t%lu\t%lu\n",
724                         i,
725                         cal_data[i].confidence,
726                         cal_data[i].steady_comp,
727                         cal_data[i].dynamic_comp);
728         }
729
730         return 0;
731 }
732
733 static int powerclamp_debug_open(struct inode *inode,
734                         struct file *file)
735 {
736         return single_open(file, powerclamp_debug_show, inode->i_private);
737 }
738
739 static const struct file_operations powerclamp_debug_fops = {
740         .open           = powerclamp_debug_open,
741         .read           = seq_read,
742         .llseek         = seq_lseek,
743         .release        = single_release,
744         .owner          = THIS_MODULE,
745 };
746
747 static inline void powerclamp_create_debug_files(void)
748 {
749         debug_dir = debugfs_create_dir("intel_powerclamp", NULL);
750         if (!debug_dir)
751                 return;
752
753         if (!debugfs_create_file("powerclamp_calib", S_IRUGO, debug_dir,
754                                         cal_data, &powerclamp_debug_fops))
755                 goto file_error;
756
757         return;
758
759 file_error:
760         debugfs_remove_recursive(debug_dir);
761 }
762
763 static int powerclamp_init(void)
764 {
765         int retval;
766         int bitmap_size;
767
768         bitmap_size = BITS_TO_LONGS(num_possible_cpus()) * sizeof(long);
769         cpu_clamping_mask = kzalloc(bitmap_size, GFP_KERNEL);
770         if (!cpu_clamping_mask)
771                 return -ENOMEM;
772
773         /* probe cpu features and ids here */
774         retval = powerclamp_probe();
775         if (retval)
776                 goto exit_free;
777
778         /* set default limit, maybe adjusted during runtime based on feedback */
779         window_size = 2;
780         register_hotcpu_notifier(&powerclamp_cpu_notifier);
781
782         powerclamp_thread = alloc_percpu(struct task_struct *);
783         if (!powerclamp_thread) {
784                 retval = -ENOMEM;
785                 goto exit_unregister;
786         }
787
788         cooling_dev = thermal_cooling_device_register("intel_powerclamp", NULL,
789                                                 &powerclamp_cooling_ops);
790         if (IS_ERR(cooling_dev)) {
791                 retval = -ENODEV;
792                 goto exit_free_thread;
793         }
794
795         if (!duration)
796                 duration = jiffies_to_msecs(DEFAULT_DURATION_JIFFIES);
797
798         powerclamp_create_debug_files();
799
800         return 0;
801
802 exit_free_thread:
803         free_percpu(powerclamp_thread);
804 exit_unregister:
805         unregister_hotcpu_notifier(&powerclamp_cpu_notifier);
806 exit_free:
807         kfree(cpu_clamping_mask);
808         return retval;
809 }
810 module_init(powerclamp_init);
811
812 static void powerclamp_exit(void)
813 {
814         unregister_hotcpu_notifier(&powerclamp_cpu_notifier);
815         end_power_clamp();
816         free_percpu(powerclamp_thread);
817         thermal_cooling_device_unregister(cooling_dev);
818         kfree(cpu_clamping_mask);
819
820         cancel_delayed_work_sync(&poll_pkg_cstate_work);
821         debugfs_remove_recursive(debug_dir);
822 }
823 module_exit(powerclamp_exit);
824
825 MODULE_LICENSE("GPL");
826 MODULE_AUTHOR("Arjan van de Ven <arjan@linux.intel.com>");
827 MODULE_AUTHOR("Jacob Pan <jacob.jun.pan@linux.intel.com>");
828 MODULE_DESCRIPTION("Package Level C-state Idle Injection for Intel CPUs");