Merge git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf
[sfrench/cifs-2.6.git] / drivers / staging / media / atomisp / i2c / atomisp-mt9m114.c
1 /*
2  * Support for mt9m114 Camera Sensor.
3  *
4  * Copyright (c) 2010 Intel Corporation. All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License version
8  * 2 as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  *
16  */
17
18 #include <linux/module.h>
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/mm.h>
22 #include <linux/string.h>
23 #include <linux/errno.h>
24 #include <linux/init.h>
25 #include <linux/kmod.h>
26 #include <linux/device.h>
27 #include <linux/fs.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/i2c.h>
31 #include <linux/acpi.h>
32 #include "../include/linux/atomisp_gmin_platform.h"
33 #include <media/v4l2-device.h>
34
35 #include "mt9m114.h"
36
37 #define to_mt9m114_sensor(sd) container_of(sd, struct mt9m114_device, sd)
38
39 /*
40  * TODO: use debug parameter to actually define when debug messages should
41  * be printed.
42  */
43 static int debug;
44 static int aaalock;
45 module_param(debug, int, 0644);
46 MODULE_PARM_DESC(debug, "Debug level (0-1)");
47
48 static int mt9m114_t_vflip(struct v4l2_subdev *sd, int value);
49 static int mt9m114_t_hflip(struct v4l2_subdev *sd, int value);
50 static int mt9m114_wait_state(struct i2c_client *client, int timeout);
51
52 static int
53 mt9m114_read_reg(struct i2c_client *client, u16 data_length, u32 reg, u32 *val)
54 {
55         int err;
56         struct i2c_msg msg[2];
57         unsigned char data[4];
58
59         if (!client->adapter) {
60                 v4l2_err(client, "%s error, no client->adapter\n", __func__);
61                 return -ENODEV;
62         }
63
64         if (data_length != MISENSOR_8BIT && data_length != MISENSOR_16BIT
65                                          && data_length != MISENSOR_32BIT) {
66                 v4l2_err(client, "%s error, invalid data length\n", __func__);
67                 return -EINVAL;
68         }
69
70         msg[0].addr = client->addr;
71         msg[0].flags = 0;
72         msg[0].len = MSG_LEN_OFFSET;
73         msg[0].buf = data;
74
75         /* high byte goes out first */
76         data[0] = (u16) (reg >> 8);
77         data[1] = (u16) (reg & 0xff);
78
79         msg[1].addr = client->addr;
80         msg[1].len = data_length;
81         msg[1].flags = I2C_M_RD;
82         msg[1].buf = data;
83
84         err = i2c_transfer(client->adapter, msg, 2);
85
86         if (err >= 0) {
87                 *val = 0;
88                 /* high byte comes first */
89                 if (data_length == MISENSOR_8BIT)
90                         *val = data[0];
91                 else if (data_length == MISENSOR_16BIT)
92                         *val = data[1] + (data[0] << 8);
93                 else
94                         *val = data[3] + (data[2] << 8) +
95                             (data[1] << 16) + (data[0] << 24);
96
97                 return 0;
98         }
99
100         dev_err(&client->dev, "read from offset 0x%x error %d", reg, err);
101         return err;
102 }
103
104 static int
105 mt9m114_write_reg(struct i2c_client *client, u16 data_length, u16 reg, u32 val)
106 {
107         int num_msg;
108         struct i2c_msg msg;
109         unsigned char data[6] = {0};
110         u16 *wreg;
111         int retry = 0;
112
113         if (!client->adapter) {
114                 v4l2_err(client, "%s error, no client->adapter\n", __func__);
115                 return -ENODEV;
116         }
117
118         if (data_length != MISENSOR_8BIT && data_length != MISENSOR_16BIT
119                                          && data_length != MISENSOR_32BIT) {
120                 v4l2_err(client, "%s error, invalid data_length\n", __func__);
121                 return -EINVAL;
122         }
123
124         memset(&msg, 0, sizeof(msg));
125
126 again:
127         msg.addr = client->addr;
128         msg.flags = 0;
129         msg.len = 2 + data_length;
130         msg.buf = data;
131
132         /* high byte goes out first */
133         wreg = (u16 *)data;
134         *wreg = cpu_to_be16(reg);
135
136         if (data_length == MISENSOR_8BIT) {
137                 data[2] = (u8)(val);
138         } else if (data_length == MISENSOR_16BIT) {
139                 u16 *wdata = (u16 *)&data[2];
140                 *wdata = be16_to_cpu((u16)val);
141         } else {
142                 /* MISENSOR_32BIT */
143                 u32 *wdata = (u32 *)&data[2];
144                 *wdata = be32_to_cpu(val);
145         }
146
147         num_msg = i2c_transfer(client->adapter, &msg, 1);
148
149         /*
150          * HACK: Need some delay here for Rev 2 sensors otherwise some
151          * registers do not seem to load correctly.
152          */
153         mdelay(1);
154
155         if (num_msg >= 0)
156                 return 0;
157
158         dev_err(&client->dev, "write error: wrote 0x%x to offset 0x%x error %d",
159                 val, reg, num_msg);
160         if (retry <= I2C_RETRY_COUNT) {
161                 dev_dbg(&client->dev, "retrying... %d", retry);
162                 retry++;
163                 msleep(20);
164                 goto again;
165         }
166
167         return num_msg;
168 }
169
170 /**
171  * misensor_rmw_reg - Read/Modify/Write a value to a register in the sensor
172  * device
173  * @client: i2c driver client structure
174  * @data_length: 8/16/32-bits length
175  * @reg: register address
176  * @mask: masked out bits
177  * @set: bits set
178  *
179  * Read/modify/write a value to a register in the  sensor device.
180  * Returns zero if successful, or non-zero otherwise.
181  */
182 static int
183 misensor_rmw_reg(struct i2c_client *client, u16 data_length, u16 reg,
184                      u32 mask, u32 set)
185 {
186         int err;
187         u32 val;
188
189         /* Exit when no mask */
190         if (mask == 0)
191                 return 0;
192
193         /* @mask must not exceed data length */
194         switch (data_length) {
195         case MISENSOR_8BIT:
196                 if (mask & ~0xff)
197                         return -EINVAL;
198                 break;
199         case MISENSOR_16BIT:
200                 if (mask & ~0xffff)
201                         return -EINVAL;
202                 break;
203         case MISENSOR_32BIT:
204                 break;
205         default:
206                 /* Wrong @data_length */
207                 return -EINVAL;
208         }
209
210         err = mt9m114_read_reg(client, data_length, reg, &val);
211         if (err) {
212                 v4l2_err(client, "misensor_rmw_reg error exit, read failed\n");
213                 return -EINVAL;
214         }
215
216         val &= ~mask;
217
218         /*
219          * Perform the OR function if the @set exists.
220          * Shift @set value to target bit location. @set should set only
221          * bits included in @mask.
222          *
223          * REVISIT: This function expects @set to be non-shifted. Its shift
224          * value is then defined to be equal to mask's LSB position.
225          * How about to inform values in their right offset position and avoid
226          * this unneeded shift operation?
227          */
228         set <<= ffs(mask) - 1;
229         val |= set & mask;
230
231         err = mt9m114_write_reg(client, data_length, reg, val);
232         if (err) {
233                 v4l2_err(client, "misensor_rmw_reg error exit, write failed\n");
234                 return -EINVAL;
235         }
236
237         return 0;
238 }
239
240
241 static int __mt9m114_flush_reg_array(struct i2c_client *client,
242                                      struct mt9m114_write_ctrl *ctrl)
243 {
244         struct i2c_msg msg;
245         const int num_msg = 1;
246         int ret;
247         int retry = 0;
248
249         if (ctrl->index == 0)
250                 return 0;
251
252 again:
253         msg.addr = client->addr;
254         msg.flags = 0;
255         msg.len = 2 + ctrl->index;
256         ctrl->buffer.addr = cpu_to_be16(ctrl->buffer.addr);
257         msg.buf = (u8 *)&ctrl->buffer;
258
259         ret = i2c_transfer(client->adapter, &msg, num_msg);
260         if (ret != num_msg) {
261                 if (++retry <= I2C_RETRY_COUNT) {
262                         dev_dbg(&client->dev, "retrying... %d\n", retry);
263                         msleep(20);
264                         goto again;
265                 }
266                 dev_err(&client->dev, "%s: i2c transfer error\n", __func__);
267                 return -EIO;
268         }
269
270         ctrl->index = 0;
271
272         /*
273          * REVISIT: Previously we had a delay after writing data to sensor.
274          * But it was removed as our tests have shown it is not necessary
275          * anymore.
276          */
277
278         return 0;
279 }
280
281 static int __mt9m114_buf_reg_array(struct i2c_client *client,
282                                    struct mt9m114_write_ctrl *ctrl,
283                                    const struct misensor_reg *next)
284 {
285         u16 *data16;
286         u32 *data32;
287         int err;
288
289         /* Insufficient buffer? Let's flush and get more free space. */
290         if (ctrl->index + next->length >= MT9M114_MAX_WRITE_BUF_SIZE) {
291                 err = __mt9m114_flush_reg_array(client, ctrl);
292                 if (err)
293                         return err;
294         }
295
296         switch (next->length) {
297         case MISENSOR_8BIT:
298                 ctrl->buffer.data[ctrl->index] = (u8)next->val;
299                 break;
300         case MISENSOR_16BIT:
301                 data16 = (u16 *)&ctrl->buffer.data[ctrl->index];
302                 *data16 = cpu_to_be16((u16)next->val);
303                 break;
304         case MISENSOR_32BIT:
305                 data32 = (u32 *)&ctrl->buffer.data[ctrl->index];
306                 *data32 = cpu_to_be32(next->val);
307                 break;
308         default:
309                 return -EINVAL;
310         }
311
312         /* When first item is added, we need to store its starting address */
313         if (ctrl->index == 0)
314                 ctrl->buffer.addr = next->reg;
315
316         ctrl->index += next->length;
317
318         return 0;
319 }
320
321 static int
322 __mt9m114_write_reg_is_consecutive(struct i2c_client *client,
323                                    struct mt9m114_write_ctrl *ctrl,
324                                    const struct misensor_reg *next)
325 {
326         if (ctrl->index == 0)
327                 return 1;
328
329         return ctrl->buffer.addr + ctrl->index == next->reg;
330 }
331
332 /*
333  * mt9m114_write_reg_array - Initializes a list of mt9m114 registers
334  * @client: i2c driver client structure
335  * @reglist: list of registers to be written
336  * @poll: completion polling requirement
337  * This function initializes a list of registers. When consecutive addresses
338  * are found in a row on the list, this function creates a buffer and sends
339  * consecutive data in a single i2c_transfer().
340  *
341  * __mt9m114_flush_reg_array, __mt9m114_buf_reg_array() and
342  * __mt9m114_write_reg_is_consecutive() are internal functions to
343  * mt9m114_write_reg_array() and should be not used anywhere else.
344  *
345  */
346 static int mt9m114_write_reg_array(struct i2c_client *client,
347                                 const struct misensor_reg *reglist,
348                                 int poll)
349 {
350         const struct misensor_reg *next = reglist;
351         struct mt9m114_write_ctrl ctrl;
352         int err;
353
354         if (poll == PRE_POLLING) {
355                 err = mt9m114_wait_state(client, MT9M114_WAIT_STAT_TIMEOUT);
356                 if (err)
357                         return err;
358         }
359
360         ctrl.index = 0;
361         for (; next->length != MISENSOR_TOK_TERM; next++) {
362                 switch (next->length & MISENSOR_TOK_MASK) {
363                 case MISENSOR_TOK_DELAY:
364                         err = __mt9m114_flush_reg_array(client, &ctrl);
365                         if (err)
366                                 return err;
367                         msleep(next->val);
368                         break;
369                 case MISENSOR_TOK_RMW:
370                         err = __mt9m114_flush_reg_array(client, &ctrl);
371                         err |= misensor_rmw_reg(client,
372                                                 next->length &
373                                                         ~MISENSOR_TOK_RMW,
374                                                 next->reg, next->val,
375                                                 next->val2);
376                         if (err) {
377                                 dev_err(&client->dev, "%s read err. aborted\n",
378                                         __func__);
379                                 return -EINVAL;
380                         }
381                         break;
382                 default:
383                         /*
384                          * If next address is not consecutive, data needs to be
385                          * flushed before proceed.
386                          */
387                         if (!__mt9m114_write_reg_is_consecutive(client, &ctrl,
388                                                                 next)) {
389                                 err = __mt9m114_flush_reg_array(client, &ctrl);
390                                 if (err)
391                                         return err;
392                         }
393                         err = __mt9m114_buf_reg_array(client, &ctrl, next);
394                         if (err) {
395                                 v4l2_err(client, "%s: write error, aborted\n",
396                                          __func__);
397                                 return err;
398                         }
399                         break;
400                 }
401         }
402
403         err = __mt9m114_flush_reg_array(client, &ctrl);
404         if (err)
405                 return err;
406
407         if (poll == POST_POLLING)
408                 return mt9m114_wait_state(client, MT9M114_WAIT_STAT_TIMEOUT);
409
410         return 0;
411 }
412
413 static int mt9m114_wait_state(struct i2c_client *client, int timeout)
414 {
415         int ret;
416         unsigned int val;
417
418         while (timeout-- > 0) {
419                 ret = mt9m114_read_reg(client, MISENSOR_16BIT, 0x0080, &val);
420                 if (ret)
421                         return ret;
422                 if ((val & 0x2) == 0)
423                         return 0;
424                 msleep(20);
425         }
426
427         return -EINVAL;
428
429 }
430
431 static int mt9m114_set_suspend(struct v4l2_subdev *sd)
432 {
433         struct i2c_client *client = v4l2_get_subdevdata(sd);
434         return mt9m114_write_reg_array(client,
435                         mt9m114_standby_reg, POST_POLLING);
436 }
437
438 static int mt9m114_init_common(struct v4l2_subdev *sd)
439 {
440         struct i2c_client *client = v4l2_get_subdevdata(sd);
441
442         return mt9m114_write_reg_array(client, mt9m114_common, PRE_POLLING);
443 }
444
445 static int power_ctrl(struct v4l2_subdev *sd, bool flag)
446 {
447         int ret;
448         struct mt9m114_device *dev = to_mt9m114_sensor(sd);
449
450         if (!dev || !dev->platform_data)
451                 return -ENODEV;
452
453         if (flag) {
454                 ret = dev->platform_data->v2p8_ctrl(sd, 1);
455                 if (ret == 0) {
456                         ret = dev->platform_data->v1p8_ctrl(sd, 1);
457                         if (ret)
458                                 ret = dev->platform_data->v2p8_ctrl(sd, 0);
459                 }
460         } else {
461                 ret = dev->platform_data->v2p8_ctrl(sd, 0);
462                 ret = dev->platform_data->v1p8_ctrl(sd, 0);
463         }
464         return ret;
465 }
466
467 static int gpio_ctrl(struct v4l2_subdev *sd, bool flag)
468 {
469         int ret;
470         struct mt9m114_device *dev = to_mt9m114_sensor(sd);
471
472         if (!dev || !dev->platform_data)
473                 return -ENODEV;
474
475         /* Note: current modules wire only one GPIO signal (RESET#),
476          * but the schematic wires up two to the connector.  BIOS
477          * versions have been unfortunately inconsistent with which
478          * ACPI index RESET# is on, so hit both */
479
480         if (flag) {
481                 ret = dev->platform_data->gpio0_ctrl(sd, 0);
482                 ret = dev->platform_data->gpio1_ctrl(sd, 0);
483                 msleep(60);
484                 ret |= dev->platform_data->gpio0_ctrl(sd, 1);
485                 ret |= dev->platform_data->gpio1_ctrl(sd, 1);
486         } else {
487                 ret = dev->platform_data->gpio0_ctrl(sd, 0);
488                 ret = dev->platform_data->gpio1_ctrl(sd, 0);
489         }
490         return ret;
491 }
492
493 static int power_up(struct v4l2_subdev *sd)
494 {
495         struct mt9m114_device *dev = to_mt9m114_sensor(sd);
496         struct i2c_client *client = v4l2_get_subdevdata(sd);
497         int ret;
498
499         if (NULL == dev->platform_data) {
500                 dev_err(&client->dev, "no camera_sensor_platform_data");
501                 return -ENODEV;
502         }
503
504         /* power control */
505         ret = power_ctrl(sd, 1);
506         if (ret)
507                 goto fail_power;
508
509         /* flis clock control */
510         ret = dev->platform_data->flisclk_ctrl(sd, 1);
511         if (ret)
512                 goto fail_clk;
513
514         /* gpio ctrl */
515         ret = gpio_ctrl(sd, 1);
516         if (ret)
517                 dev_err(&client->dev, "gpio failed 1\n");
518         /*
519          * according to DS, 44ms is needed between power up and first i2c
520          * commend
521          */
522         msleep(50);
523
524         return 0;
525
526 fail_clk:
527         dev->platform_data->flisclk_ctrl(sd, 0);
528 fail_power:
529         power_ctrl(sd, 0);
530         dev_err(&client->dev, "sensor power-up failed\n");
531
532         return ret;
533 }
534
535 static int power_down(struct v4l2_subdev *sd)
536 {
537         struct mt9m114_device *dev = to_mt9m114_sensor(sd);
538         struct i2c_client *client = v4l2_get_subdevdata(sd);
539         int ret;
540
541         if (NULL == dev->platform_data) {
542                 dev_err(&client->dev, "no camera_sensor_platform_data");
543                 return -ENODEV;
544         }
545
546         ret = dev->platform_data->flisclk_ctrl(sd, 0);
547         if (ret)
548                 dev_err(&client->dev, "flisclk failed\n");
549
550         /* gpio ctrl */
551         ret = gpio_ctrl(sd, 0);
552         if (ret)
553                 dev_err(&client->dev, "gpio failed 1\n");
554
555         /* power control */
556         ret = power_ctrl(sd, 0);
557         if (ret)
558                 dev_err(&client->dev, "vprog failed.\n");
559
560         /*according to DS, 20ms is needed after power down*/
561         msleep(20);
562
563         return ret;
564 }
565
566 static int mt9m114_s_power(struct v4l2_subdev *sd, int power)
567 {
568         if (power == 0)
569                 return power_down(sd);
570         else {
571                 if (power_up(sd))
572                         return -EINVAL;
573
574                 return mt9m114_init_common(sd);
575         }
576 }
577
578 /*
579  * distance - calculate the distance
580  * @res: resolution
581  * @w: width
582  * @h: height
583  *
584  * Get the gap between resolution and w/h.
585  * res->width/height smaller than w/h wouldn't be considered.
586  * Returns the value of gap or -1 if fail.
587  */
588 #define LARGEST_ALLOWED_RATIO_MISMATCH 600
589 static int distance(struct mt9m114_res_struct const *res, u32 w, u32 h)
590 {
591         unsigned int w_ratio;
592         unsigned int h_ratio;
593         int match;
594
595         if (w == 0)
596                 return -1;
597         w_ratio = (res->width << 13) / w;
598         if (h == 0)
599                 return -1;
600         h_ratio = (res->height << 13) / h;
601         if (h_ratio == 0)
602                 return -1;
603         match   = abs(((w_ratio << 13) / h_ratio) - 8192);
604
605         if ((w_ratio < 8192) || (h_ratio < 8192) ||
606             (match > LARGEST_ALLOWED_RATIO_MISMATCH))
607                 return -1;
608
609         return w_ratio + h_ratio;
610 }
611
612 /* Return the nearest higher resolution index */
613 static int nearest_resolution_index(int w, int h)
614 {
615         int i;
616         int idx = -1;
617         int dist;
618         int min_dist = INT_MAX;
619         const struct mt9m114_res_struct *tmp_res = NULL;
620
621         for (i = 0; i < ARRAY_SIZE(mt9m114_res); i++) {
622                 tmp_res = &mt9m114_res[i];
623                 dist = distance(tmp_res, w, h);
624                 if (dist == -1)
625                         continue;
626                 if (dist < min_dist) {
627                         min_dist = dist;
628                         idx = i;
629                 }
630         }
631
632         return idx;
633 }
634
635 static int mt9m114_try_res(u32 *w, u32 *h)
636 {
637         int idx = 0;
638
639         if ((*w > MT9M114_RES_960P_SIZE_H)
640                 || (*h > MT9M114_RES_960P_SIZE_V)) {
641                 *w = MT9M114_RES_960P_SIZE_H;
642                 *h = MT9M114_RES_960P_SIZE_V;
643         } else {
644                 idx = nearest_resolution_index(*w, *h);
645
646                 /*
647                  * nearest_resolution_index() doesn't return smaller
648                  *  resolutions. If it fails, it means the requested
649                  *  resolution is higher than wecan support. Fallback
650                  *  to highest possible resolution in this case.
651                  */
652                 if (idx == -1)
653                         idx = ARRAY_SIZE(mt9m114_res) - 1;
654
655                 *w = mt9m114_res[idx].width;
656                 *h = mt9m114_res[idx].height;
657         }
658
659         return 0;
660 }
661
662 static struct mt9m114_res_struct *mt9m114_to_res(u32 w, u32 h)
663 {
664         int  index;
665
666         for (index = 0; index < N_RES; index++) {
667                 if ((mt9m114_res[index].width == w) &&
668                     (mt9m114_res[index].height == h))
669                         break;
670         }
671
672         /* No mode found */
673         if (index >= N_RES)
674                 return NULL;
675
676         return &mt9m114_res[index];
677 }
678
679 static int mt9m114_res2size(struct v4l2_subdev *sd, int *h_size, int *v_size)
680 {
681         struct mt9m114_device *dev = to_mt9m114_sensor(sd);
682         unsigned short hsize;
683         unsigned short vsize;
684
685         switch (dev->res) {
686         case MT9M114_RES_736P:
687                 hsize = MT9M114_RES_736P_SIZE_H;
688                 vsize = MT9M114_RES_736P_SIZE_V;
689                 break;
690         case MT9M114_RES_864P:
691                 hsize = MT9M114_RES_864P_SIZE_H;
692                 vsize = MT9M114_RES_864P_SIZE_V;
693                 break;
694         case MT9M114_RES_960P:
695                 hsize = MT9M114_RES_960P_SIZE_H;
696                 vsize = MT9M114_RES_960P_SIZE_V;
697                 break;
698         default:
699                 v4l2_err(sd, "%s: Resolution 0x%08x unknown\n", __func__,
700                          dev->res);
701                 return -EINVAL;
702         }
703
704         if (h_size != NULL)
705                 *h_size = hsize;
706         if (v_size != NULL)
707                 *v_size = vsize;
708
709         return 0;
710 }
711
712 static int mt9m114_get_intg_factor(struct i2c_client *client,
713                                 struct camera_mipi_info *info,
714                                 const struct mt9m114_res_struct *res)
715 {
716         struct atomisp_sensor_mode_data *buf = &info->data;
717         u32 reg_val;
718         int ret;
719
720         if (info == NULL)
721                 return -EINVAL;
722
723         ret =  mt9m114_read_reg(client, MISENSOR_32BIT,
724                                         REG_PIXEL_CLK, &reg_val);
725         if (ret)
726                 return ret;
727         buf->vt_pix_clk_freq_mhz = reg_val;
728
729         /* get integration time */
730         buf->coarse_integration_time_min = MT9M114_COARSE_INTG_TIME_MIN;
731         buf->coarse_integration_time_max_margin =
732                                         MT9M114_COARSE_INTG_TIME_MAX_MARGIN;
733
734         buf->fine_integration_time_min = MT9M114_FINE_INTG_TIME_MIN;
735         buf->fine_integration_time_max_margin =
736                                         MT9M114_FINE_INTG_TIME_MAX_MARGIN;
737
738         buf->fine_integration_time_def = MT9M114_FINE_INTG_TIME_MIN;
739
740         buf->frame_length_lines = res->lines_per_frame;
741         buf->line_length_pck = res->pixels_per_line;
742         buf->read_mode = res->bin_mode;
743
744         /* get the cropping and output resolution to ISP for this mode. */
745         ret =  mt9m114_read_reg(client, MISENSOR_16BIT,
746                                         REG_H_START, &reg_val);
747         if (ret)
748                 return ret;
749         buf->crop_horizontal_start = reg_val;
750
751         ret =  mt9m114_read_reg(client, MISENSOR_16BIT,
752                                         REG_V_START, &reg_val);
753         if (ret)
754                 return ret;
755         buf->crop_vertical_start = reg_val;
756
757         ret = mt9m114_read_reg(client, MISENSOR_16BIT,
758                                         REG_H_END, &reg_val);
759         if (ret)
760                 return ret;
761         buf->crop_horizontal_end = reg_val;
762
763         ret = mt9m114_read_reg(client, MISENSOR_16BIT,
764                                         REG_V_END, &reg_val);
765         if (ret)
766                 return ret;
767         buf->crop_vertical_end = reg_val;
768
769         ret = mt9m114_read_reg(client, MISENSOR_16BIT,
770                                         REG_WIDTH, &reg_val);
771         if (ret)
772                 return ret;
773         buf->output_width = reg_val;
774
775         ret = mt9m114_read_reg(client, MISENSOR_16BIT,
776                                         REG_HEIGHT, &reg_val);
777         if (ret)
778                 return ret;
779         buf->output_height = reg_val;
780
781         ret = mt9m114_read_reg(client, MISENSOR_16BIT,
782                                         REG_TIMING_HTS, &reg_val);
783         if (ret)
784                 return ret;
785         buf->line_length_pck = reg_val;
786
787         ret = mt9m114_read_reg(client, MISENSOR_16BIT,
788                                         REG_TIMING_VTS, &reg_val);
789         if (ret)
790                 return ret;
791         buf->frame_length_lines = reg_val;
792
793         buf->binning_factor_x = res->bin_factor_x ?
794                                         res->bin_factor_x : 1;
795         buf->binning_factor_y = res->bin_factor_y ?
796                                         res->bin_factor_y : 1;
797         return 0;
798 }
799
800 static int mt9m114_get_fmt(struct v4l2_subdev *sd,
801                                 struct v4l2_subdev_pad_config *cfg,
802                                 struct v4l2_subdev_format *format)
803 {
804         struct v4l2_mbus_framefmt *fmt = &format->format;
805         int width, height;
806         int ret;
807         if (format->pad)
808                 return -EINVAL;
809         fmt->code = MEDIA_BUS_FMT_SGRBG10_1X10;
810
811         ret = mt9m114_res2size(sd, &width, &height);
812         if (ret)
813                 return ret;
814         fmt->width = width;
815         fmt->height = height;
816
817         return 0;
818 }
819
820 static int mt9m114_set_fmt(struct v4l2_subdev *sd,
821                            struct v4l2_subdev_pad_config *cfg,
822                            struct v4l2_subdev_format *format)
823 {
824         struct v4l2_mbus_framefmt *fmt = &format->format;
825         struct i2c_client *c = v4l2_get_subdevdata(sd);
826         struct mt9m114_device *dev = to_mt9m114_sensor(sd);
827         struct mt9m114_res_struct *res_index;
828         u32 width = fmt->width;
829         u32 height = fmt->height;
830         struct camera_mipi_info *mt9m114_info = NULL;
831
832         int ret;
833         if (format->pad)
834                 return -EINVAL;
835         dev->streamon = 0;
836         dev->first_exp = MT9M114_DEFAULT_FIRST_EXP;
837
838         mt9m114_info = v4l2_get_subdev_hostdata(sd);
839         if (mt9m114_info == NULL)
840                 return -EINVAL;
841
842         mt9m114_try_res(&width, &height);
843         if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
844                 cfg->try_fmt = *fmt;
845                 return 0;
846         }
847         res_index = mt9m114_to_res(width, height);
848
849         /* Sanity check */
850         if (unlikely(!res_index)) {
851                 WARN_ON(1);
852                 return -EINVAL;
853         }
854
855         switch (res_index->res) {
856         case MT9M114_RES_736P:
857                 ret = mt9m114_write_reg_array(c, mt9m114_736P_init, NO_POLLING);
858                 ret += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
859                                 MISENSOR_R_MODE_MASK, MISENSOR_NORMAL_SET);
860                 break;
861         case MT9M114_RES_864P:
862                 ret = mt9m114_write_reg_array(c, mt9m114_864P_init, NO_POLLING);
863                 ret += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
864                                 MISENSOR_R_MODE_MASK, MISENSOR_NORMAL_SET);
865                 break;
866         case MT9M114_RES_960P:
867                 ret = mt9m114_write_reg_array(c, mt9m114_976P_init, NO_POLLING);
868                 /* set sensor read_mode to Normal */
869                 ret += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
870                                 MISENSOR_R_MODE_MASK, MISENSOR_NORMAL_SET);
871                 break;
872         default:
873                 v4l2_err(sd, "set resolution: %d failed!\n", res_index->res);
874                 return -EINVAL;
875         }
876
877         if (ret)
878                 return -EINVAL;
879
880         ret = mt9m114_write_reg_array(c, mt9m114_chgstat_reg, POST_POLLING);
881         if (ret < 0)
882                 return ret;
883
884         if (mt9m114_set_suspend(sd))
885                 return -EINVAL;
886
887         if (dev->res != res_index->res) {
888                 int index;
889
890                 /* Switch to different size */
891                 if (width <= 640) {
892                         dev->nctx = 0x00; /* Set for context A */
893                 } else {
894                         /*
895                          * Context B is used for resolutions larger than 640x480
896                          * Using YUV for Context B.
897                          */
898                         dev->nctx = 0x01; /* set for context B */
899                 }
900
901                 /*
902                  * Marked current sensor res as being "used"
903                  *
904                  * REVISIT: We don't need to use an "used" field on each mode
905                  * list entry to know which mode is selected. If this
906                  * information is really necessary, how about to use a single
907                  * variable on sensor dev struct?
908                  */
909                 for (index = 0; index < N_RES; index++) {
910                         if ((width == mt9m114_res[index].width) &&
911                             (height == mt9m114_res[index].height)) {
912                                 mt9m114_res[index].used = true;
913                                 continue;
914                         }
915                         mt9m114_res[index].used = false;
916                 }
917         }
918         ret = mt9m114_get_intg_factor(c, mt9m114_info,
919                                         &mt9m114_res[res_index->res]);
920         if (ret) {
921                 dev_err(&c->dev, "failed to get integration_factor\n");
922                 return -EINVAL;
923         }
924         /*
925          * mt9m114 - we don't poll for context switch
926          * because it does not happen with streaming disabled.
927          */
928         dev->res = res_index->res;
929
930         fmt->width = width;
931         fmt->height = height;
932         fmt->code = MEDIA_BUS_FMT_SGRBG10_1X10;
933         return 0;
934 }
935
936 /* TODO: Update to SOC functions, remove exposure and gain */
937 static int mt9m114_g_focal(struct v4l2_subdev *sd, s32 *val)
938 {
939         *val = (MT9M114_FOCAL_LENGTH_NUM << 16) | MT9M114_FOCAL_LENGTH_DEM;
940         return 0;
941 }
942
943 static int mt9m114_g_fnumber(struct v4l2_subdev *sd, s32 *val)
944 {
945         /*const f number for mt9m114*/
946         *val = (MT9M114_F_NUMBER_DEFAULT_NUM << 16) | MT9M114_F_NUMBER_DEM;
947         return 0;
948 }
949
950 static int mt9m114_g_fnumber_range(struct v4l2_subdev *sd, s32 *val)
951 {
952         *val = (MT9M114_F_NUMBER_DEFAULT_NUM << 24) |
953                 (MT9M114_F_NUMBER_DEM << 16) |
954                 (MT9M114_F_NUMBER_DEFAULT_NUM << 8) | MT9M114_F_NUMBER_DEM;
955         return 0;
956 }
957
958 /* Horizontal flip the image. */
959 static int mt9m114_g_hflip(struct v4l2_subdev *sd, s32 *val)
960 {
961         struct i2c_client *c = v4l2_get_subdevdata(sd);
962         int ret;
963         u32 data;
964         ret = mt9m114_read_reg(c, MISENSOR_16BIT,
965                         (u32)MISENSOR_READ_MODE, &data);
966         if (ret)
967                 return ret;
968         *val = !!(data & MISENSOR_HFLIP_MASK);
969
970         return 0;
971 }
972
973 static int mt9m114_g_vflip(struct v4l2_subdev *sd, s32 *val)
974 {
975         struct i2c_client *c = v4l2_get_subdevdata(sd);
976         int ret;
977         u32 data;
978
979         ret = mt9m114_read_reg(c, MISENSOR_16BIT,
980                         (u32)MISENSOR_READ_MODE, &data);
981         if (ret)
982                 return ret;
983         *val = !!(data & MISENSOR_VFLIP_MASK);
984
985         return 0;
986 }
987
988 static long mt9m114_s_exposure(struct v4l2_subdev *sd,
989                                struct atomisp_exposure *exposure)
990 {
991         struct i2c_client *client = v4l2_get_subdevdata(sd);
992         struct mt9m114_device *dev = to_mt9m114_sensor(sd);
993         int ret = 0;
994         unsigned int coarse_integration = 0;
995         unsigned int fine_integration = 0;
996         unsigned int FLines = 0;
997         unsigned int FrameLengthLines = 0; /* ExposureTime.FrameLengthLines; */
998         unsigned int AnalogGain, DigitalGain;
999         u32 AnalogGainToWrite = 0;
1000         u16 exposure_local[3];
1001
1002         dev_dbg(&client->dev, "%s(0x%X 0x%X 0x%X)\n", __func__,
1003                     exposure->integration_time[0], exposure->gain[0],
1004                     exposure->gain[1]);
1005
1006         coarse_integration = exposure->integration_time[0];
1007         /* fine_integration = ExposureTime.FineIntegrationTime; */
1008         /* FrameLengthLines = ExposureTime.FrameLengthLines; */
1009         FLines = mt9m114_res[dev->res].lines_per_frame;
1010         AnalogGain = exposure->gain[0];
1011         DigitalGain = exposure->gain[1];
1012         if (!dev->streamon) {
1013                 /*Save the first exposure values while stream is off*/
1014                 dev->first_exp = coarse_integration;
1015                 dev->first_gain = AnalogGain;
1016                 dev->first_diggain = DigitalGain;
1017         }
1018         /* DigitalGain = 0x400 * (((u16) DigitalGain) >> 8) +
1019         ((unsigned int)(0x400 * (((u16) DigitalGain) & 0xFF)) >>8); */
1020
1021         /* set frame length */
1022         if (FLines < coarse_integration + 6)
1023                 FLines = coarse_integration + 6;
1024         if (FLines < FrameLengthLines)
1025                 FLines = FrameLengthLines;
1026         ret = mt9m114_write_reg(client, MISENSOR_16BIT, 0x300A, FLines);
1027         if (ret) {
1028                 v4l2_err(client, "%s: fail to set FLines\n", __func__);
1029                 return -EINVAL;
1030         }
1031
1032         /* set coarse/fine integration */
1033         exposure_local[0] = REG_EXPO_COARSE;
1034         exposure_local[1] = (u16)coarse_integration;
1035         exposure_local[2] = (u16)fine_integration;
1036         /* 3A provide real exposure time.
1037                 should not translate to any value here. */
1038         ret = mt9m114_write_reg(client, MISENSOR_16BIT,
1039                         REG_EXPO_COARSE, (u16)(coarse_integration));
1040         if (ret) {
1041                 v4l2_err(client, "%s: fail to set exposure time\n", __func__);
1042                 return -EINVAL;
1043         }
1044
1045         /*
1046         // set analog/digital gain
1047         switch(AnalogGain)
1048         {
1049         case 0:
1050           AnalogGainToWrite = 0x0;
1051           break;
1052         case 1:
1053           AnalogGainToWrite = 0x20;
1054           break;
1055         case 2:
1056           AnalogGainToWrite = 0x60;
1057           break;
1058         case 4:
1059           AnalogGainToWrite = 0xA0;
1060           break;
1061         case 8:
1062           AnalogGainToWrite = 0xE0;
1063           break;
1064         default:
1065           AnalogGainToWrite = 0x20;
1066           break;
1067         }
1068         */
1069         if (DigitalGain >= 16 || DigitalGain <= 1)
1070                 DigitalGain = 1;
1071         /* AnalogGainToWrite =
1072                 (u16)((DigitalGain << 12) | AnalogGainToWrite); */
1073         AnalogGainToWrite = (u16)((DigitalGain << 12) | (u16)AnalogGain);
1074         ret = mt9m114_write_reg(client, MISENSOR_16BIT,
1075                                         REG_GAIN, AnalogGainToWrite);
1076         if (ret) {
1077                 v4l2_err(client, "%s: fail to set AnalogGainToWrite\n",
1078                         __func__);
1079                 return -EINVAL;
1080         }
1081
1082         return ret;
1083 }
1084
1085 static long mt9m114_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg)
1086 {
1087
1088         switch (cmd) {
1089         case ATOMISP_IOC_S_EXPOSURE:
1090                 return mt9m114_s_exposure(sd, arg);
1091         default:
1092                 return -EINVAL;
1093         }
1094
1095         return 0;
1096 }
1097
1098 /* This returns the exposure time being used. This should only be used
1099    for filling in EXIF data, not for actual image processing. */
1100 static int mt9m114_g_exposure(struct v4l2_subdev *sd, s32 *value)
1101 {
1102         struct i2c_client *client = v4l2_get_subdevdata(sd);
1103         u32 coarse;
1104         int ret;
1105
1106         /* the fine integration time is currently not calculated */
1107         ret = mt9m114_read_reg(client, MISENSOR_16BIT,
1108                                REG_EXPO_COARSE, &coarse);
1109         if (ret)
1110                 return ret;
1111
1112         *value = coarse;
1113         return 0;
1114 }
1115 #ifndef CSS15
1116 /*
1117  * This function will return the sensor supported max exposure zone number.
1118  * the sensor which supports max exposure zone number is 1.
1119  */
1120 static int mt9m114_g_exposure_zone_num(struct v4l2_subdev *sd, s32 *val)
1121 {
1122         *val = 1;
1123
1124         return 0;
1125 }
1126
1127 /*
1128  * set exposure metering, average/center_weighted/spot/matrix.
1129  */
1130 static int mt9m114_s_exposure_metering(struct v4l2_subdev *sd, s32 val)
1131 {
1132         struct i2c_client *client = v4l2_get_subdevdata(sd);
1133         int ret;
1134
1135         switch (val) {
1136         case V4L2_EXPOSURE_METERING_SPOT:
1137                 ret = mt9m114_write_reg_array(client, mt9m114_exp_average,
1138                                                 NO_POLLING);
1139                 if (ret) {
1140                         dev_err(&client->dev, "write exp_average reg err.\n");
1141                         return ret;
1142                 }
1143                 break;
1144         case V4L2_EXPOSURE_METERING_CENTER_WEIGHTED:
1145         default:
1146                 ret = mt9m114_write_reg_array(client, mt9m114_exp_center,
1147                                                 NO_POLLING);
1148                 if (ret) {
1149                         dev_err(&client->dev, "write exp_default reg err");
1150                         return ret;
1151                 }
1152         }
1153
1154         return 0;
1155 }
1156
1157 /*
1158  * This function is for touch exposure feature.
1159  */
1160 static int mt9m114_s_exposure_selection(struct v4l2_subdev *sd,
1161                                         struct v4l2_subdev_pad_config *cfg,
1162                                         struct v4l2_subdev_selection *sel)
1163 {
1164         struct i2c_client *client = v4l2_get_subdevdata(sd);
1165         struct misensor_reg exp_reg;
1166         int width, height;
1167         int grid_width, grid_height;
1168         int grid_left, grid_top, grid_right, grid_bottom;
1169         int win_left, win_top, win_right, win_bottom;
1170         int i, j;
1171         int ret;
1172
1173         if (sel->which != V4L2_SUBDEV_FORMAT_TRY &&
1174             sel->which != V4L2_SUBDEV_FORMAT_ACTIVE)
1175                 return -EINVAL;
1176
1177         grid_left = sel->r.left;
1178         grid_top = sel->r.top;
1179         grid_right = sel->r.left + sel->r.width - 1;
1180         grid_bottom = sel->r.top + sel->r.height - 1;
1181
1182         ret = mt9m114_res2size(sd, &width, &height);
1183         if (ret)
1184                 return ret;
1185
1186         grid_width = width / 5;
1187         grid_height = height / 5;
1188
1189         if (grid_width && grid_height) {
1190                 win_left = grid_left / grid_width;
1191                 win_top = grid_top / grid_height;
1192                 win_right = grid_right / grid_width;
1193                 win_bottom = grid_bottom / grid_height;
1194         } else {
1195                 dev_err(&client->dev, "Incorrect exp grid.\n");
1196                 return -EINVAL;
1197         }
1198
1199         win_left   = clamp_t(int, win_left, 0, 4);
1200         win_top    = clamp_t(int, win_top, 0, 4);
1201         win_right  = clamp_t(int, win_right, 0, 4);
1202         win_bottom = clamp_t(int, win_bottom, 0, 4);
1203
1204         ret = mt9m114_write_reg_array(client, mt9m114_exp_average, NO_POLLING);
1205         if (ret) {
1206                 dev_err(&client->dev, "write exp_average reg err.\n");
1207                 return ret;
1208         }
1209
1210         for (i = win_top; i <= win_bottom; i++) {
1211                 for (j = win_left; j <= win_right; j++) {
1212                         exp_reg = mt9m114_exp_win[i][j];
1213
1214                         ret = mt9m114_write_reg(client, exp_reg.length,
1215                                                 exp_reg.reg, exp_reg.val);
1216                         if (ret) {
1217                                 dev_err(&client->dev, "write exp_reg err.\n");
1218                                 return ret;
1219                         }
1220                 }
1221         }
1222
1223         return 0;
1224 }
1225 #endif
1226
1227 static int mt9m114_g_bin_factor_x(struct v4l2_subdev *sd, s32 *val)
1228 {
1229         struct mt9m114_device *dev = to_mt9m114_sensor(sd);
1230
1231         *val = mt9m114_res[dev->res].bin_factor_x;
1232
1233         return 0;
1234 }
1235
1236 static int mt9m114_g_bin_factor_y(struct v4l2_subdev *sd, s32 *val)
1237 {
1238         struct mt9m114_device *dev = to_mt9m114_sensor(sd);
1239
1240         *val = mt9m114_res[dev->res].bin_factor_y;
1241
1242         return 0;
1243 }
1244
1245 static int mt9m114_s_ev(struct v4l2_subdev *sd, s32 val)
1246 {
1247         struct i2c_client *c = v4l2_get_subdevdata(sd);
1248         s32 luma = 0x37;
1249         int err;
1250
1251         /* EV value only support -2 to 2
1252          * 0: 0x37, 1:0x47, 2:0x57, -1:0x27, -2:0x17
1253          */
1254         if (val < -2 || val > 2)
1255                 return -EINVAL;
1256         luma += 0x10 * val;
1257         dev_dbg(&c->dev, "%s val:%d luma:0x%x\n", __func__, val, luma);
1258         err = mt9m114_write_reg(c, MISENSOR_16BIT, 0x098E, 0xC87A);
1259         if (err) {
1260                 dev_err(&c->dev, "%s logic addr access error\n", __func__);
1261                 return err;
1262         }
1263         err = mt9m114_write_reg(c, MISENSOR_8BIT, 0xC87A, (u32)luma);
1264         if (err) {
1265                 dev_err(&c->dev, "%s write target_average_luma failed\n",
1266                         __func__);
1267                 return err;
1268         }
1269         udelay(10);
1270
1271         return 0;
1272 }
1273
1274 static int mt9m114_g_ev(struct v4l2_subdev *sd, s32 *val)
1275 {
1276         struct i2c_client *c = v4l2_get_subdevdata(sd);
1277         int err;
1278         u32 luma;
1279
1280         err = mt9m114_write_reg(c, MISENSOR_16BIT, 0x098E, 0xC87A);
1281         if (err) {
1282                 dev_err(&c->dev, "%s logic addr access error\n", __func__);
1283                 return err;
1284         }
1285         err = mt9m114_read_reg(c, MISENSOR_8BIT, 0xC87A, &luma);
1286         if (err) {
1287                 dev_err(&c->dev, "%s read target_average_luma failed\n",
1288                         __func__);
1289                 return err;
1290         }
1291         luma -= 0x17;
1292         luma /= 0x10;
1293         *val = (s32)luma - 2;
1294         dev_dbg(&c->dev, "%s val:%d\n", __func__, *val);
1295
1296         return 0;
1297 }
1298
1299 /* Fake interface
1300  * mt9m114 now can not support 3a_lock
1301 */
1302 static int mt9m114_s_3a_lock(struct v4l2_subdev *sd, s32 val)
1303 {
1304         aaalock = val;
1305         return 0;
1306 }
1307
1308 static int mt9m114_g_3a_lock(struct v4l2_subdev *sd, s32 *val)
1309 {
1310         if (aaalock)
1311                 return V4L2_LOCK_EXPOSURE | V4L2_LOCK_WHITE_BALANCE
1312                         | V4L2_LOCK_FOCUS;
1313         return 0;
1314 }
1315
1316 static int mt9m114_s_ctrl(struct v4l2_ctrl *ctrl)
1317 {
1318         struct mt9m114_device *dev =
1319             container_of(ctrl->handler, struct mt9m114_device, ctrl_handler);
1320         struct i2c_client *client = v4l2_get_subdevdata(&dev->sd);
1321         int ret = 0;
1322
1323         switch (ctrl->id) {
1324         case V4L2_CID_VFLIP:
1325                 dev_dbg(&client->dev, "%s: CID_VFLIP:%d.\n",
1326                         __func__, ctrl->val);
1327                 ret = mt9m114_t_vflip(&dev->sd, ctrl->val);
1328                 break;
1329         case V4L2_CID_HFLIP:
1330                 dev_dbg(&client->dev, "%s: CID_HFLIP:%d.\n",
1331                         __func__, ctrl->val);
1332                 ret = mt9m114_t_hflip(&dev->sd, ctrl->val);
1333                 break;
1334 #ifndef CSS15
1335         case V4L2_CID_EXPOSURE_METERING:
1336                 ret = mt9m114_s_exposure_metering(&dev->sd, ctrl->val);
1337                 break;
1338 #endif
1339         case V4L2_CID_EXPOSURE:
1340                 ret = mt9m114_s_ev(&dev->sd, ctrl->val);
1341                 break;
1342         case V4L2_CID_3A_LOCK:
1343                 ret = mt9m114_s_3a_lock(&dev->sd, ctrl->val);
1344                 break;
1345         default:
1346                 ret = -EINVAL;
1347         }
1348         return ret;
1349 }
1350
1351 static int mt9m114_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
1352 {
1353         struct mt9m114_device *dev =
1354             container_of(ctrl->handler, struct mt9m114_device, ctrl_handler);
1355         int ret = 0;
1356
1357         switch (ctrl->id) {
1358         case V4L2_CID_VFLIP:
1359                 ret = mt9m114_g_vflip(&dev->sd, &ctrl->val);
1360                 break;
1361         case V4L2_CID_HFLIP:
1362                 ret = mt9m114_g_hflip(&dev->sd, &ctrl->val);
1363                 break;
1364         case V4L2_CID_FOCAL_ABSOLUTE:
1365                 ret = mt9m114_g_focal(&dev->sd, &ctrl->val);
1366                 break;
1367         case V4L2_CID_FNUMBER_ABSOLUTE:
1368                 ret = mt9m114_g_fnumber(&dev->sd, &ctrl->val);
1369                 break;
1370         case V4L2_CID_FNUMBER_RANGE:
1371                 ret = mt9m114_g_fnumber_range(&dev->sd, &ctrl->val);
1372                 break;
1373         case V4L2_CID_EXPOSURE_ABSOLUTE:
1374                 ret = mt9m114_g_exposure(&dev->sd, &ctrl->val);
1375                 break;
1376 #ifndef CSS15
1377         case V4L2_CID_EXPOSURE_ZONE_NUM:
1378                 ret = mt9m114_g_exposure_zone_num(&dev->sd, &ctrl->val);
1379                 break;
1380 #endif
1381         case V4L2_CID_BIN_FACTOR_HORZ:
1382                 ret = mt9m114_g_bin_factor_x(&dev->sd, &ctrl->val);
1383                 break;
1384         case V4L2_CID_BIN_FACTOR_VERT:
1385                 ret = mt9m114_g_bin_factor_y(&dev->sd, &ctrl->val);
1386                 break;
1387         case V4L2_CID_EXPOSURE:
1388                 ret = mt9m114_g_ev(&dev->sd, &ctrl->val);
1389                 break;
1390         case V4L2_CID_3A_LOCK:
1391                 ret = mt9m114_g_3a_lock(&dev->sd, &ctrl->val);
1392                 break;
1393         default:
1394                 ret = -EINVAL;
1395         }
1396
1397         return ret;
1398 }
1399
1400 static const struct v4l2_ctrl_ops ctrl_ops = {
1401         .s_ctrl = mt9m114_s_ctrl,
1402         .g_volatile_ctrl = mt9m114_g_volatile_ctrl
1403 };
1404
1405 static struct v4l2_ctrl_config mt9m114_controls[] = {
1406         {
1407          .ops = &ctrl_ops,
1408          .id = V4L2_CID_VFLIP,
1409          .name = "Image v-Flip",
1410          .type = V4L2_CTRL_TYPE_INTEGER,
1411          .min = 0,
1412          .max = 1,
1413          .step = 1,
1414          .def = 0,
1415          },
1416         {
1417          .ops = &ctrl_ops,
1418          .id = V4L2_CID_HFLIP,
1419          .name = "Image h-Flip",
1420          .type = V4L2_CTRL_TYPE_INTEGER,
1421          .min = 0,
1422          .max = 1,
1423          .step = 1,
1424          .def = 0,
1425          },
1426         {
1427          .ops = &ctrl_ops,
1428          .id = V4L2_CID_FOCAL_ABSOLUTE,
1429          .name = "focal length",
1430          .type = V4L2_CTRL_TYPE_INTEGER,
1431          .min = MT9M114_FOCAL_LENGTH_DEFAULT,
1432          .max = MT9M114_FOCAL_LENGTH_DEFAULT,
1433          .step = 1,
1434          .def = MT9M114_FOCAL_LENGTH_DEFAULT,
1435          .flags = 0,
1436          },
1437         {
1438          .ops = &ctrl_ops,
1439          .id = V4L2_CID_FNUMBER_ABSOLUTE,
1440          .name = "f-number",
1441          .type = V4L2_CTRL_TYPE_INTEGER,
1442          .min = MT9M114_F_NUMBER_DEFAULT,
1443          .max = MT9M114_F_NUMBER_DEFAULT,
1444          .step = 1,
1445          .def = MT9M114_F_NUMBER_DEFAULT,
1446          .flags = 0,
1447          },
1448         {
1449          .ops = &ctrl_ops,
1450          .id = V4L2_CID_FNUMBER_RANGE,
1451          .name = "f-number range",
1452          .type = V4L2_CTRL_TYPE_INTEGER,
1453          .min = MT9M114_F_NUMBER_RANGE,
1454          .max = MT9M114_F_NUMBER_RANGE,
1455          .step = 1,
1456          .def = MT9M114_F_NUMBER_RANGE,
1457          .flags = 0,
1458          },
1459         {
1460          .ops = &ctrl_ops,
1461          .id = V4L2_CID_EXPOSURE_ABSOLUTE,
1462          .name = "exposure",
1463          .type = V4L2_CTRL_TYPE_INTEGER,
1464          .min = 0,
1465          .max = 0xffff,
1466          .step = 1,
1467          .def = 0,
1468          .flags = 0,
1469          },
1470 #ifndef CSS15
1471         {
1472          .ops = &ctrl_ops,
1473          .id = V4L2_CID_EXPOSURE_ZONE_NUM,
1474          .name = "one-time exposure zone number",
1475          .type = V4L2_CTRL_TYPE_INTEGER,
1476          .min = 0,
1477          .max = 0xffff,
1478          .step = 1,
1479          .def = 0,
1480          .flags = 0,
1481          },
1482         {
1483          .ops = &ctrl_ops,
1484          .id = V4L2_CID_EXPOSURE_METERING,
1485          .name = "metering",
1486          .type = V4L2_CTRL_TYPE_MENU,
1487          .min = 0,
1488          .max = 3,
1489          .step = 0,
1490          .def = 1,
1491          .flags = 0,
1492          },
1493 #endif
1494         {
1495          .ops = &ctrl_ops,
1496          .id = V4L2_CID_BIN_FACTOR_HORZ,
1497          .name = "horizontal binning factor",
1498          .type = V4L2_CTRL_TYPE_INTEGER,
1499          .min = 0,
1500          .max = MT9M114_BIN_FACTOR_MAX,
1501          .step = 1,
1502          .def = 0,
1503          .flags = 0,
1504          },
1505         {
1506          .ops = &ctrl_ops,
1507          .id = V4L2_CID_BIN_FACTOR_VERT,
1508          .name = "vertical binning factor",
1509          .type = V4L2_CTRL_TYPE_INTEGER,
1510          .min = 0,
1511          .max = MT9M114_BIN_FACTOR_MAX,
1512          .step = 1,
1513          .def = 0,
1514          .flags = 0,
1515          },
1516         {
1517          .ops = &ctrl_ops,
1518          .id = V4L2_CID_EXPOSURE,
1519          .name = "exposure biasx",
1520          .type = V4L2_CTRL_TYPE_INTEGER,
1521          .min = -2,
1522          .max = 2,
1523          .step = 1,
1524          .def = 0,
1525          .flags = 0,
1526          },
1527         {
1528          .ops = &ctrl_ops,
1529          .id = V4L2_CID_3A_LOCK,
1530          .name = "3a lock",
1531          .type = V4L2_CTRL_TYPE_BITMASK,
1532          .min = 0,
1533          .max = V4L2_LOCK_EXPOSURE | V4L2_LOCK_WHITE_BALANCE | V4L2_LOCK_FOCUS,
1534          .step = 1,
1535          .def = 0,
1536          .flags = 0,
1537          },
1538 };
1539
1540 static int mt9m114_detect(struct mt9m114_device *dev, struct i2c_client *client)
1541 {
1542         struct i2c_adapter *adapter = client->adapter;
1543         u32 retvalue;
1544
1545         if (!i2c_check_functionality(adapter, I2C_FUNC_I2C)) {
1546                 dev_err(&client->dev, "%s: i2c error", __func__);
1547                 return -ENODEV;
1548         }
1549         mt9m114_read_reg(client, MISENSOR_16BIT, (u32)MT9M114_PID, &retvalue);
1550         dev->real_model_id = retvalue;
1551
1552         if (retvalue != MT9M114_MOD_ID) {
1553                 dev_err(&client->dev, "%s: failed: client->addr = %x\n",
1554                         __func__, client->addr);
1555                 return -ENODEV;
1556         }
1557
1558         return 0;
1559 }
1560
1561 static int
1562 mt9m114_s_config(struct v4l2_subdev *sd, int irq, void *platform_data)
1563 {
1564         struct mt9m114_device *dev = to_mt9m114_sensor(sd);
1565         struct i2c_client *client = v4l2_get_subdevdata(sd);
1566         int ret;
1567
1568         if (NULL == platform_data)
1569                 return -ENODEV;
1570
1571         dev->platform_data =
1572             (struct camera_sensor_platform_data *)platform_data;
1573
1574         ret = power_up(sd);
1575         if (ret) {
1576                 v4l2_err(client, "mt9m114 power-up err");
1577                 return ret;
1578         }
1579
1580         /* config & detect sensor */
1581         ret = mt9m114_detect(dev, client);
1582         if (ret) {
1583                 v4l2_err(client, "mt9m114_detect err s_config.\n");
1584                 goto fail_detect;
1585         }
1586
1587         ret = dev->platform_data->csi_cfg(sd, 1);
1588         if (ret)
1589                 goto fail_csi_cfg;
1590
1591         ret = mt9m114_set_suspend(sd);
1592         if (ret) {
1593                 v4l2_err(client, "mt9m114 suspend err");
1594                 return ret;
1595         }
1596
1597         ret = power_down(sd);
1598         if (ret) {
1599                 v4l2_err(client, "mt9m114 power down err");
1600                 return ret;
1601         }
1602
1603         return ret;
1604
1605 fail_csi_cfg:
1606         dev->platform_data->csi_cfg(sd, 0);
1607 fail_detect:
1608         power_down(sd);
1609         dev_err(&client->dev, "sensor power-gating failed\n");
1610         return ret;
1611 }
1612
1613 /* Horizontal flip the image. */
1614 static int mt9m114_t_hflip(struct v4l2_subdev *sd, int value)
1615 {
1616         struct i2c_client *c = v4l2_get_subdevdata(sd);
1617         struct mt9m114_device *dev = to_mt9m114_sensor(sd);
1618         int err;
1619         /* set for direct mode */
1620         err = mt9m114_write_reg(c, MISENSOR_16BIT, 0x098E, 0xC850);
1621         if (value) {
1622                 /* enable H flip ctx A */
1623                 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC850, 0x01, 0x01);
1624                 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC851, 0x01, 0x01);
1625                 /* ctx B */
1626                 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC888, 0x01, 0x01);
1627                 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC889, 0x01, 0x01);
1628
1629                 err += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
1630                                         MISENSOR_HFLIP_MASK, MISENSOR_FLIP_EN);
1631
1632                 dev->bpat = MT9M114_BPAT_GRGRBGBG;
1633         } else {
1634                 /* disable H flip ctx A */
1635                 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC850, 0x01, 0x00);
1636                 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC851, 0x01, 0x00);
1637                 /* ctx B */
1638                 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC888, 0x01, 0x00);
1639                 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC889, 0x01, 0x00);
1640
1641                 err += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
1642                                         MISENSOR_HFLIP_MASK, MISENSOR_FLIP_DIS);
1643
1644                 dev->bpat = MT9M114_BPAT_BGBGGRGR;
1645         }
1646
1647         err += mt9m114_write_reg(c, MISENSOR_8BIT, 0x8404, 0x06);
1648         udelay(10);
1649
1650         return !!err;
1651 }
1652
1653 /* Vertically flip the image */
1654 static int mt9m114_t_vflip(struct v4l2_subdev *sd, int value)
1655 {
1656         struct i2c_client *c = v4l2_get_subdevdata(sd);
1657         int err;
1658         /* set for direct mode */
1659         err = mt9m114_write_reg(c, MISENSOR_16BIT, 0x098E, 0xC850);
1660         if (value >= 1) {
1661                 /* enable H flip - ctx A */
1662                 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC850, 0x02, 0x01);
1663                 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC851, 0x02, 0x01);
1664                 /* ctx B */
1665                 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC888, 0x02, 0x01);
1666                 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC889, 0x02, 0x01);
1667
1668                 err += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
1669                                         MISENSOR_VFLIP_MASK, MISENSOR_FLIP_EN);
1670         } else {
1671                 /* disable H flip - ctx A */
1672                 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC850, 0x02, 0x00);
1673                 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC851, 0x02, 0x00);
1674                 /* ctx B */
1675                 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC888, 0x02, 0x00);
1676                 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC889, 0x02, 0x00);
1677
1678                 err += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
1679                                         MISENSOR_VFLIP_MASK, MISENSOR_FLIP_DIS);
1680         }
1681
1682         err += mt9m114_write_reg(c, MISENSOR_8BIT, 0x8404, 0x06);
1683         udelay(10);
1684
1685         return !!err;
1686 }
1687 static int mt9m114_s_parm(struct v4l2_subdev *sd,
1688                         struct v4l2_streamparm *param)
1689 {
1690         return 0;
1691 }
1692
1693 static int mt9m114_g_frame_interval(struct v4l2_subdev *sd,
1694                                    struct v4l2_subdev_frame_interval *interval)
1695 {
1696         struct mt9m114_device *dev = to_mt9m114_sensor(sd);
1697
1698         interval->interval.numerator = 1;
1699         interval->interval.denominator = mt9m114_res[dev->res].fps;
1700
1701         return 0;
1702 }
1703
1704 static int mt9m114_s_stream(struct v4l2_subdev *sd, int enable)
1705 {
1706         int ret;
1707         struct i2c_client *c = v4l2_get_subdevdata(sd);
1708         struct mt9m114_device *dev = to_mt9m114_sensor(sd);
1709         struct atomisp_exposure exposure;
1710
1711         if (enable) {
1712                 ret = mt9m114_write_reg_array(c, mt9m114_chgstat_reg,
1713                                         POST_POLLING);
1714                 if (ret < 0)
1715                         return ret;
1716
1717                 if (dev->first_exp > MT9M114_MAX_FIRST_EXP) {
1718                         exposure.integration_time[0] = dev->first_exp;
1719                         exposure.gain[0] = dev->first_gain;
1720                         exposure.gain[1] = dev->first_diggain;
1721                         mt9m114_s_exposure(sd, &exposure);
1722                 }
1723                 dev->streamon = 1;
1724
1725         } else {
1726                 dev->streamon = 0;
1727                 ret = mt9m114_set_suspend(sd);
1728         }
1729
1730         return ret;
1731 }
1732
1733 static int mt9m114_enum_mbus_code(struct v4l2_subdev *sd,
1734                                   struct v4l2_subdev_pad_config *cfg,
1735                                   struct v4l2_subdev_mbus_code_enum *code)
1736 {
1737         if (code->index)
1738                 return -EINVAL;
1739         code->code = MEDIA_BUS_FMT_SGRBG10_1X10;
1740
1741         return 0;
1742 }
1743
1744 static int mt9m114_enum_frame_size(struct v4l2_subdev *sd,
1745                                    struct v4l2_subdev_pad_config *cfg,
1746                                    struct v4l2_subdev_frame_size_enum *fse)
1747 {
1748
1749         unsigned int index = fse->index;
1750
1751         if (index >= N_RES)
1752                 return -EINVAL;
1753
1754         fse->min_width = mt9m114_res[index].width;
1755         fse->min_height = mt9m114_res[index].height;
1756         fse->max_width = mt9m114_res[index].width;
1757         fse->max_height = mt9m114_res[index].height;
1758
1759         return 0;
1760 }
1761
1762 static int mt9m114_g_skip_frames(struct v4l2_subdev *sd, u32 *frames)
1763 {
1764         int index;
1765         struct mt9m114_device *snr = to_mt9m114_sensor(sd);
1766
1767         if (frames == NULL)
1768                 return -EINVAL;
1769
1770         for (index = 0; index < N_RES; index++) {
1771                 if (mt9m114_res[index].res == snr->res)
1772                         break;
1773         }
1774
1775         if (index >= N_RES)
1776                 return -EINVAL;
1777
1778         *frames = mt9m114_res[index].skip_frames;
1779
1780         return 0;
1781 }
1782
1783 static const struct v4l2_subdev_video_ops mt9m114_video_ops = {
1784         .s_parm = mt9m114_s_parm,
1785         .s_stream = mt9m114_s_stream,
1786         .g_frame_interval = mt9m114_g_frame_interval,
1787 };
1788
1789 static const struct v4l2_subdev_sensor_ops mt9m114_sensor_ops = {
1790         .g_skip_frames  = mt9m114_g_skip_frames,
1791 };
1792
1793 static const struct v4l2_subdev_core_ops mt9m114_core_ops = {
1794         .s_power = mt9m114_s_power,
1795         .ioctl = mt9m114_ioctl,
1796 };
1797
1798 /* REVISIT: Do we need pad operations? */
1799 static const struct v4l2_subdev_pad_ops mt9m114_pad_ops = {
1800         .enum_mbus_code = mt9m114_enum_mbus_code,
1801         .enum_frame_size = mt9m114_enum_frame_size,
1802         .get_fmt = mt9m114_get_fmt,
1803         .set_fmt = mt9m114_set_fmt,
1804 #ifndef CSS15
1805         .set_selection = mt9m114_s_exposure_selection,
1806 #endif
1807 };
1808
1809 static const struct v4l2_subdev_ops mt9m114_ops = {
1810         .core = &mt9m114_core_ops,
1811         .video = &mt9m114_video_ops,
1812         .pad = &mt9m114_pad_ops,
1813         .sensor = &mt9m114_sensor_ops,
1814 };
1815
1816 static const struct media_entity_operations mt9m114_entity_ops = {
1817         .link_setup = NULL,
1818 };
1819
1820 static int mt9m114_remove(struct i2c_client *client)
1821 {
1822         struct mt9m114_device *dev;
1823         struct v4l2_subdev *sd = i2c_get_clientdata(client);
1824
1825         dev = container_of(sd, struct mt9m114_device, sd);
1826         dev->platform_data->csi_cfg(sd, 0);
1827         v4l2_device_unregister_subdev(sd);
1828         media_entity_cleanup(&dev->sd.entity);
1829         v4l2_ctrl_handler_free(&dev->ctrl_handler);
1830         kfree(dev);
1831         return 0;
1832 }
1833
1834 static int mt9m114_probe(struct i2c_client *client)
1835 {
1836         struct mt9m114_device *dev;
1837         int ret = 0;
1838         unsigned int i;
1839         void *pdata;
1840
1841         /* Setup sensor configuration structure */
1842         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1843         if (!dev)
1844                 return -ENOMEM;
1845
1846         v4l2_i2c_subdev_init(&dev->sd, client, &mt9m114_ops);
1847         pdata = gmin_camera_platform_data(&dev->sd,
1848                                           ATOMISP_INPUT_FORMAT_RAW_10,
1849                                           atomisp_bayer_order_grbg);
1850         if (pdata)
1851                 ret = mt9m114_s_config(&dev->sd, client->irq, pdata);
1852         if (!pdata || ret) {
1853                 v4l2_device_unregister_subdev(&dev->sd);
1854                 kfree(dev);
1855                 return ret;
1856         }
1857
1858         ret = atomisp_register_i2c_module(&dev->sd, pdata, RAW_CAMERA);
1859         if (ret) {
1860                 v4l2_device_unregister_subdev(&dev->sd);
1861                 kfree(dev);
1862                 /* Coverity CID 298095 - return on error */
1863                 return ret;
1864         }
1865
1866         /*TODO add format code here*/
1867         dev->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
1868         dev->pad.flags = MEDIA_PAD_FL_SOURCE;
1869         dev->format.code = MEDIA_BUS_FMT_SGRBG10_1X10;
1870         dev->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR;
1871
1872         ret =
1873             v4l2_ctrl_handler_init(&dev->ctrl_handler,
1874                                    ARRAY_SIZE(mt9m114_controls));
1875         if (ret) {
1876                 mt9m114_remove(client);
1877                 return ret;
1878         }
1879
1880         for (i = 0; i < ARRAY_SIZE(mt9m114_controls); i++)
1881                 v4l2_ctrl_new_custom(&dev->ctrl_handler, &mt9m114_controls[i],
1882                                      NULL);
1883
1884         if (dev->ctrl_handler.error) {
1885                 mt9m114_remove(client);
1886                 return dev->ctrl_handler.error;
1887         }
1888
1889         /* Use same lock for controls as for everything else. */
1890         dev->ctrl_handler.lock = &dev->input_lock;
1891         dev->sd.ctrl_handler = &dev->ctrl_handler;
1892
1893         /* REVISIT: Do we need media controller? */
1894         ret = media_entity_pads_init(&dev->sd.entity, 1, &dev->pad);
1895         if (ret) {
1896                 mt9m114_remove(client);
1897                 return ret;
1898         }
1899         return 0;
1900 }
1901
1902 static const struct acpi_device_id mt9m114_acpi_match[] = {
1903         { "INT33F0" },
1904         { "CRMT1040" },
1905         {},
1906 };
1907 MODULE_DEVICE_TABLE(acpi, mt9m114_acpi_match);
1908
1909 static struct i2c_driver mt9m114_driver = {
1910         .driver = {
1911                 .name = "mt9m114",
1912                 .acpi_match_table = mt9m114_acpi_match,
1913         },
1914         .probe_new = mt9m114_probe,
1915         .remove = mt9m114_remove,
1916 };
1917 module_i2c_driver(mt9m114_driver);
1918
1919 MODULE_AUTHOR("Shuguang Gong <Shuguang.gong@intel.com>");
1920 MODULE_LICENSE("GPL");