Merge branch 'next-spi' of git://git.secretlab.ca/git/linux-2.6
[sfrench/cifs-2.6.git] / drivers / spi / spi_mpc8xxx.c
1 /*
2  * MPC8xxx SPI controller driver.
3  *
4  * Maintainer: Kumar Gala
5  *
6  * Copyright (C) 2006 Polycom, Inc.
7  *
8  * CPM SPI and QE buffer descriptors mode support:
9  * Copyright (c) 2009  MontaVista Software, Inc.
10  * Author: Anton Vorontsov <avorontsov@ru.mvista.com>
11  *
12  * This program is free software; you can redistribute  it and/or modify it
13  * under  the terms of  the GNU General  Public License as published by the
14  * Free Software Foundation;  either version 2 of the  License, or (at your
15  * option) any later version.
16  */
17 #include <linux/module.h>
18 #include <linux/init.h>
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/bug.h>
22 #include <linux/errno.h>
23 #include <linux/err.h>
24 #include <linux/io.h>
25 #include <linux/completion.h>
26 #include <linux/interrupt.h>
27 #include <linux/delay.h>
28 #include <linux/irq.h>
29 #include <linux/device.h>
30 #include <linux/spi/spi.h>
31 #include <linux/spi/spi_bitbang.h>
32 #include <linux/platform_device.h>
33 #include <linux/fsl_devices.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/mm.h>
36 #include <linux/mutex.h>
37 #include <linux/of.h>
38 #include <linux/of_platform.h>
39 #include <linux/gpio.h>
40 #include <linux/of_gpio.h>
41 #include <linux/of_spi.h>
42 #include <linux/slab.h>
43
44 #include <sysdev/fsl_soc.h>
45 #include <asm/cpm.h>
46 #include <asm/qe.h>
47 #include <asm/irq.h>
48
49 /* CPM1 and CPM2 are mutually exclusive. */
50 #ifdef CONFIG_CPM1
51 #include <asm/cpm1.h>
52 #define CPM_SPI_CMD mk_cr_cmd(CPM_CR_CH_SPI, 0)
53 #else
54 #include <asm/cpm2.h>
55 #define CPM_SPI_CMD mk_cr_cmd(CPM_CR_SPI_PAGE, CPM_CR_SPI_SBLOCK, 0, 0)
56 #endif
57
58 /* SPI Controller registers */
59 struct mpc8xxx_spi_reg {
60         u8 res1[0x20];
61         __be32 mode;
62         __be32 event;
63         __be32 mask;
64         __be32 command;
65         __be32 transmit;
66         __be32 receive;
67 };
68
69 /* SPI Parameter RAM */
70 struct spi_pram {
71         __be16  rbase;  /* Rx Buffer descriptor base address */
72         __be16  tbase;  /* Tx Buffer descriptor base address */
73         u8      rfcr;   /* Rx function code */
74         u8      tfcr;   /* Tx function code */
75         __be16  mrblr;  /* Max receive buffer length */
76         __be32  rstate; /* Internal */
77         __be32  rdp;    /* Internal */
78         __be16  rbptr;  /* Internal */
79         __be16  rbc;    /* Internal */
80         __be32  rxtmp;  /* Internal */
81         __be32  tstate; /* Internal */
82         __be32  tdp;    /* Internal */
83         __be16  tbptr;  /* Internal */
84         __be16  tbc;    /* Internal */
85         __be32  txtmp;  /* Internal */
86         __be32  res;    /* Tx temp. */
87         __be16  rpbase; /* Relocation pointer (CPM1 only) */
88         __be16  res1;   /* Reserved */
89 };
90
91 /* SPI Controller mode register definitions */
92 #define SPMODE_LOOP             (1 << 30)
93 #define SPMODE_CI_INACTIVEHIGH  (1 << 29)
94 #define SPMODE_CP_BEGIN_EDGECLK (1 << 28)
95 #define SPMODE_DIV16            (1 << 27)
96 #define SPMODE_REV              (1 << 26)
97 #define SPMODE_MS               (1 << 25)
98 #define SPMODE_ENABLE           (1 << 24)
99 #define SPMODE_LEN(x)           ((x) << 20)
100 #define SPMODE_PM(x)            ((x) << 16)
101 #define SPMODE_OP               (1 << 14)
102 #define SPMODE_CG(x)            ((x) << 7)
103
104 /*
105  * Default for SPI Mode:
106  *      SPI MODE 0 (inactive low, phase middle, MSB, 8-bit length, slow clk
107  */
108 #define SPMODE_INIT_VAL (SPMODE_CI_INACTIVEHIGH | SPMODE_DIV16 | SPMODE_REV | \
109                          SPMODE_MS | SPMODE_LEN(7) | SPMODE_PM(0xf))
110
111 /* SPIE register values */
112 #define SPIE_NE         0x00000200      /* Not empty */
113 #define SPIE_NF         0x00000100      /* Not full */
114
115 /* SPIM register values */
116 #define SPIM_NE         0x00000200      /* Not empty */
117 #define SPIM_NF         0x00000100      /* Not full */
118
119 #define SPIE_TXB        0x00000200      /* Last char is written to tx fifo */
120 #define SPIE_RXB        0x00000100      /* Last char is written to rx buf */
121
122 /* SPCOM register values */
123 #define SPCOM_STR       (1 << 23)       /* Start transmit */
124
125 #define SPI_PRAM_SIZE   0x100
126 #define SPI_MRBLR       ((unsigned int)PAGE_SIZE)
127
128 /* SPI Controller driver's private data. */
129 struct mpc8xxx_spi {
130         struct device *dev;
131         struct mpc8xxx_spi_reg __iomem *base;
132
133         /* rx & tx bufs from the spi_transfer */
134         const void *tx;
135         void *rx;
136
137         int subblock;
138         struct spi_pram __iomem *pram;
139         struct cpm_buf_desc __iomem *tx_bd;
140         struct cpm_buf_desc __iomem *rx_bd;
141
142         struct spi_transfer *xfer_in_progress;
143
144         /* dma addresses for CPM transfers */
145         dma_addr_t tx_dma;
146         dma_addr_t rx_dma;
147         bool map_tx_dma;
148         bool map_rx_dma;
149
150         dma_addr_t dma_dummy_tx;
151         dma_addr_t dma_dummy_rx;
152
153         /* functions to deal with different sized buffers */
154         void (*get_rx) (u32 rx_data, struct mpc8xxx_spi *);
155         u32(*get_tx) (struct mpc8xxx_spi *);
156
157         unsigned int count;
158         unsigned int irq;
159
160         unsigned nsecs;         /* (clock cycle time)/2 */
161
162         u32 spibrg;             /* SPIBRG input clock */
163         u32 rx_shift;           /* RX data reg shift when in qe mode */
164         u32 tx_shift;           /* TX data reg shift when in qe mode */
165
166         unsigned int flags;
167
168         struct workqueue_struct *workqueue;
169         struct work_struct work;
170
171         struct list_head queue;
172         spinlock_t lock;
173
174         struct completion done;
175 };
176
177 static void *mpc8xxx_dummy_rx;
178 static DEFINE_MUTEX(mpc8xxx_dummy_rx_lock);
179 static int mpc8xxx_dummy_rx_refcnt;
180
181 struct spi_mpc8xxx_cs {
182         /* functions to deal with different sized buffers */
183         void (*get_rx) (u32 rx_data, struct mpc8xxx_spi *);
184         u32 (*get_tx) (struct mpc8xxx_spi *);
185         u32 rx_shift;           /* RX data reg shift when in qe mode */
186         u32 tx_shift;           /* TX data reg shift when in qe mode */
187         u32 hw_mode;            /* Holds HW mode register settings */
188 };
189
190 static inline void mpc8xxx_spi_write_reg(__be32 __iomem *reg, u32 val)
191 {
192         out_be32(reg, val);
193 }
194
195 static inline u32 mpc8xxx_spi_read_reg(__be32 __iomem *reg)
196 {
197         return in_be32(reg);
198 }
199
200 #define MPC83XX_SPI_RX_BUF(type)                                          \
201 static                                                                    \
202 void mpc8xxx_spi_rx_buf_##type(u32 data, struct mpc8xxx_spi *mpc8xxx_spi) \
203 {                                                                         \
204         type *rx = mpc8xxx_spi->rx;                                       \
205         *rx++ = (type)(data >> mpc8xxx_spi->rx_shift);                    \
206         mpc8xxx_spi->rx = rx;                                             \
207 }
208
209 #define MPC83XX_SPI_TX_BUF(type)                                \
210 static                                                          \
211 u32 mpc8xxx_spi_tx_buf_##type(struct mpc8xxx_spi *mpc8xxx_spi)  \
212 {                                                               \
213         u32 data;                                               \
214         const type *tx = mpc8xxx_spi->tx;                       \
215         if (!tx)                                                \
216                 return 0;                                       \
217         data = *tx++ << mpc8xxx_spi->tx_shift;                  \
218         mpc8xxx_spi->tx = tx;                                   \
219         return data;                                            \
220 }
221
222 MPC83XX_SPI_RX_BUF(u8)
223 MPC83XX_SPI_RX_BUF(u16)
224 MPC83XX_SPI_RX_BUF(u32)
225 MPC83XX_SPI_TX_BUF(u8)
226 MPC83XX_SPI_TX_BUF(u16)
227 MPC83XX_SPI_TX_BUF(u32)
228
229 static void mpc8xxx_spi_change_mode(struct spi_device *spi)
230 {
231         struct mpc8xxx_spi *mspi = spi_master_get_devdata(spi->master);
232         struct spi_mpc8xxx_cs *cs = spi->controller_state;
233         __be32 __iomem *mode = &mspi->base->mode;
234         unsigned long flags;
235
236         if (cs->hw_mode == mpc8xxx_spi_read_reg(mode))
237                 return;
238
239         /* Turn off IRQs locally to minimize time that SPI is disabled. */
240         local_irq_save(flags);
241
242         /* Turn off SPI unit prior changing mode */
243         mpc8xxx_spi_write_reg(mode, cs->hw_mode & ~SPMODE_ENABLE);
244
245         /* When in CPM mode, we need to reinit tx and rx. */
246         if (mspi->flags & SPI_CPM_MODE) {
247                 if (mspi->flags & SPI_QE) {
248                         qe_issue_cmd(QE_INIT_TX_RX, mspi->subblock,
249                                      QE_CR_PROTOCOL_UNSPECIFIED, 0);
250                 } else {
251                         cpm_command(CPM_SPI_CMD, CPM_CR_INIT_TRX);
252                         if (mspi->flags & SPI_CPM1) {
253                                 out_be16(&mspi->pram->rbptr,
254                                          in_be16(&mspi->pram->rbase));
255                                 out_be16(&mspi->pram->tbptr,
256                                          in_be16(&mspi->pram->tbase));
257                         }
258                 }
259         }
260         mpc8xxx_spi_write_reg(mode, cs->hw_mode);
261         local_irq_restore(flags);
262 }
263
264 static void mpc8xxx_spi_chipselect(struct spi_device *spi, int value)
265 {
266         struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(spi->master);
267         struct fsl_spi_platform_data *pdata = spi->dev.parent->platform_data;
268         bool pol = spi->mode & SPI_CS_HIGH;
269         struct spi_mpc8xxx_cs   *cs = spi->controller_state;
270
271         if (value == BITBANG_CS_INACTIVE) {
272                 if (pdata->cs_control)
273                         pdata->cs_control(spi, !pol);
274         }
275
276         if (value == BITBANG_CS_ACTIVE) {
277                 mpc8xxx_spi->rx_shift = cs->rx_shift;
278                 mpc8xxx_spi->tx_shift = cs->tx_shift;
279                 mpc8xxx_spi->get_rx = cs->get_rx;
280                 mpc8xxx_spi->get_tx = cs->get_tx;
281
282                 mpc8xxx_spi_change_mode(spi);
283
284                 if (pdata->cs_control)
285                         pdata->cs_control(spi, pol);
286         }
287 }
288
289 static int
290 mspi_apply_cpu_mode_quirks(struct spi_mpc8xxx_cs *cs,
291                            struct spi_device *spi,
292                            struct mpc8xxx_spi *mpc8xxx_spi,
293                            int bits_per_word)
294 {
295         cs->rx_shift = 0;
296         cs->tx_shift = 0;
297         if (bits_per_word <= 8) {
298                 cs->get_rx = mpc8xxx_spi_rx_buf_u8;
299                 cs->get_tx = mpc8xxx_spi_tx_buf_u8;
300                 if (mpc8xxx_spi->flags & SPI_QE_CPU_MODE) {
301                         cs->rx_shift = 16;
302                         cs->tx_shift = 24;
303                 }
304         } else if (bits_per_word <= 16) {
305                 cs->get_rx = mpc8xxx_spi_rx_buf_u16;
306                 cs->get_tx = mpc8xxx_spi_tx_buf_u16;
307                 if (mpc8xxx_spi->flags & SPI_QE_CPU_MODE) {
308                         cs->rx_shift = 16;
309                         cs->tx_shift = 16;
310                 }
311         } else if (bits_per_word <= 32) {
312                 cs->get_rx = mpc8xxx_spi_rx_buf_u32;
313                 cs->get_tx = mpc8xxx_spi_tx_buf_u32;
314         } else
315                 return -EINVAL;
316
317         if (mpc8xxx_spi->flags & SPI_QE_CPU_MODE &&
318             spi->mode & SPI_LSB_FIRST) {
319                 cs->tx_shift = 0;
320                 if (bits_per_word <= 8)
321                         cs->rx_shift = 8;
322                 else
323                         cs->rx_shift = 0;
324         }
325         mpc8xxx_spi->rx_shift = cs->rx_shift;
326         mpc8xxx_spi->tx_shift = cs->tx_shift;
327         mpc8xxx_spi->get_rx = cs->get_rx;
328         mpc8xxx_spi->get_tx = cs->get_tx;
329
330         return bits_per_word;
331 }
332
333 static int
334 mspi_apply_qe_mode_quirks(struct spi_mpc8xxx_cs *cs,
335                           struct spi_device *spi,
336                           int bits_per_word)
337 {
338         /* QE uses Little Endian for words > 8
339          * so transform all words > 8 into 8 bits
340          * Unfortnatly that doesn't work for LSB so
341          * reject these for now */
342         /* Note: 32 bits word, LSB works iff
343          * tfcr/rfcr is set to CPMFCR_GBL */
344         if (spi->mode & SPI_LSB_FIRST &&
345             bits_per_word > 8)
346                 return -EINVAL;
347         if (bits_per_word > 8)
348                 return 8; /* pretend its 8 bits */
349         return bits_per_word;
350 }
351
352 static
353 int mpc8xxx_spi_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
354 {
355         struct mpc8xxx_spi *mpc8xxx_spi;
356         int bits_per_word;
357         u8 pm;
358         u32 hz;
359         struct spi_mpc8xxx_cs   *cs = spi->controller_state;
360
361         mpc8xxx_spi = spi_master_get_devdata(spi->master);
362
363         if (t) {
364                 bits_per_word = t->bits_per_word;
365                 hz = t->speed_hz;
366         } else {
367                 bits_per_word = 0;
368                 hz = 0;
369         }
370
371         /* spi_transfer level calls that work per-word */
372         if (!bits_per_word)
373                 bits_per_word = spi->bits_per_word;
374
375         /* Make sure its a bit width we support [4..16, 32] */
376         if ((bits_per_word < 4)
377             || ((bits_per_word > 16) && (bits_per_word != 32)))
378                 return -EINVAL;
379
380         if (!hz)
381                 hz = spi->max_speed_hz;
382
383         if (!(mpc8xxx_spi->flags & SPI_CPM_MODE))
384                 bits_per_word = mspi_apply_cpu_mode_quirks(cs, spi,
385                                                            mpc8xxx_spi,
386                                                            bits_per_word);
387         else if (mpc8xxx_spi->flags & SPI_QE)
388                 bits_per_word = mspi_apply_qe_mode_quirks(cs, spi,
389                                                           bits_per_word);
390
391         if (bits_per_word < 0)
392                 return bits_per_word;
393
394         if (bits_per_word == 32)
395                 bits_per_word = 0;
396         else
397                 bits_per_word = bits_per_word - 1;
398
399         /* mask out bits we are going to set */
400         cs->hw_mode &= ~(SPMODE_LEN(0xF) | SPMODE_DIV16
401                                   | SPMODE_PM(0xF));
402
403         cs->hw_mode |= SPMODE_LEN(bits_per_word);
404
405         if ((mpc8xxx_spi->spibrg / hz) > 64) {
406                 cs->hw_mode |= SPMODE_DIV16;
407                 pm = (mpc8xxx_spi->spibrg - 1) / (hz * 64) + 1;
408
409                 WARN_ONCE(pm > 16, "%s: Requested speed is too low: %d Hz. "
410                           "Will use %d Hz instead.\n", dev_name(&spi->dev),
411                           hz, mpc8xxx_spi->spibrg / 1024);
412                 if (pm > 16)
413                         pm = 16;
414         } else
415                 pm = (mpc8xxx_spi->spibrg - 1) / (hz * 4) + 1;
416         if (pm)
417                 pm--;
418
419         cs->hw_mode |= SPMODE_PM(pm);
420
421         mpc8xxx_spi_change_mode(spi);
422         return 0;
423 }
424
425 static void mpc8xxx_spi_cpm_bufs_start(struct mpc8xxx_spi *mspi)
426 {
427         struct cpm_buf_desc __iomem *tx_bd = mspi->tx_bd;
428         struct cpm_buf_desc __iomem *rx_bd = mspi->rx_bd;
429         unsigned int xfer_len = min(mspi->count, SPI_MRBLR);
430         unsigned int xfer_ofs;
431
432         xfer_ofs = mspi->xfer_in_progress->len - mspi->count;
433
434         out_be32(&rx_bd->cbd_bufaddr, mspi->rx_dma + xfer_ofs);
435         out_be16(&rx_bd->cbd_datlen, 0);
436         out_be16(&rx_bd->cbd_sc, BD_SC_EMPTY | BD_SC_INTRPT | BD_SC_WRAP);
437
438         out_be32(&tx_bd->cbd_bufaddr, mspi->tx_dma + xfer_ofs);
439         out_be16(&tx_bd->cbd_datlen, xfer_len);
440         out_be16(&tx_bd->cbd_sc, BD_SC_READY | BD_SC_INTRPT | BD_SC_WRAP |
441                                  BD_SC_LAST);
442
443         /* start transfer */
444         mpc8xxx_spi_write_reg(&mspi->base->command, SPCOM_STR);
445 }
446
447 static int mpc8xxx_spi_cpm_bufs(struct mpc8xxx_spi *mspi,
448                                 struct spi_transfer *t, bool is_dma_mapped)
449 {
450         struct device *dev = mspi->dev;
451
452         if (is_dma_mapped) {
453                 mspi->map_tx_dma = 0;
454                 mspi->map_rx_dma = 0;
455         } else {
456                 mspi->map_tx_dma = 1;
457                 mspi->map_rx_dma = 1;
458         }
459
460         if (!t->tx_buf) {
461                 mspi->tx_dma = mspi->dma_dummy_tx;
462                 mspi->map_tx_dma = 0;
463         }
464
465         if (!t->rx_buf) {
466                 mspi->rx_dma = mspi->dma_dummy_rx;
467                 mspi->map_rx_dma = 0;
468         }
469
470         if (mspi->map_tx_dma) {
471                 void *nonconst_tx = (void *)mspi->tx; /* shut up gcc */
472
473                 mspi->tx_dma = dma_map_single(dev, nonconst_tx, t->len,
474                                               DMA_TO_DEVICE);
475                 if (dma_mapping_error(dev, mspi->tx_dma)) {
476                         dev_err(dev, "unable to map tx dma\n");
477                         return -ENOMEM;
478                 }
479         } else if (t->tx_buf) {
480                 mspi->tx_dma = t->tx_dma;
481         }
482
483         if (mspi->map_rx_dma) {
484                 mspi->rx_dma = dma_map_single(dev, mspi->rx, t->len,
485                                               DMA_FROM_DEVICE);
486                 if (dma_mapping_error(dev, mspi->rx_dma)) {
487                         dev_err(dev, "unable to map rx dma\n");
488                         goto err_rx_dma;
489                 }
490         } else if (t->rx_buf) {
491                 mspi->rx_dma = t->rx_dma;
492         }
493
494         /* enable rx ints */
495         mpc8xxx_spi_write_reg(&mspi->base->mask, SPIE_RXB);
496
497         mspi->xfer_in_progress = t;
498         mspi->count = t->len;
499
500         /* start CPM transfers */
501         mpc8xxx_spi_cpm_bufs_start(mspi);
502
503         return 0;
504
505 err_rx_dma:
506         if (mspi->map_tx_dma)
507                 dma_unmap_single(dev, mspi->tx_dma, t->len, DMA_TO_DEVICE);
508         return -ENOMEM;
509 }
510
511 static void mpc8xxx_spi_cpm_bufs_complete(struct mpc8xxx_spi *mspi)
512 {
513         struct device *dev = mspi->dev;
514         struct spi_transfer *t = mspi->xfer_in_progress;
515
516         if (mspi->map_tx_dma)
517                 dma_unmap_single(dev, mspi->tx_dma, t->len, DMA_TO_DEVICE);
518         if (mspi->map_rx_dma)
519                 dma_unmap_single(dev, mspi->rx_dma, t->len, DMA_FROM_DEVICE);
520         mspi->xfer_in_progress = NULL;
521 }
522
523 static int mpc8xxx_spi_cpu_bufs(struct mpc8xxx_spi *mspi,
524                                 struct spi_transfer *t, unsigned int len)
525 {
526         u32 word;
527
528         mspi->count = len;
529
530         /* enable rx ints */
531         mpc8xxx_spi_write_reg(&mspi->base->mask, SPIM_NE);
532
533         /* transmit word */
534         word = mspi->get_tx(mspi);
535         mpc8xxx_spi_write_reg(&mspi->base->transmit, word);
536
537         return 0;
538 }
539
540 static int mpc8xxx_spi_bufs(struct spi_device *spi, struct spi_transfer *t,
541                             bool is_dma_mapped)
542 {
543         struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(spi->master);
544         unsigned int len = t->len;
545         u8 bits_per_word;
546         int ret;
547
548         bits_per_word = spi->bits_per_word;
549         if (t->bits_per_word)
550                 bits_per_word = t->bits_per_word;
551
552         if (bits_per_word > 8) {
553                 /* invalid length? */
554                 if (len & 1)
555                         return -EINVAL;
556                 len /= 2;
557         }
558         if (bits_per_word > 16) {
559                 /* invalid length? */
560                 if (len & 1)
561                         return -EINVAL;
562                 len /= 2;
563         }
564
565         mpc8xxx_spi->tx = t->tx_buf;
566         mpc8xxx_spi->rx = t->rx_buf;
567
568         INIT_COMPLETION(mpc8xxx_spi->done);
569
570         if (mpc8xxx_spi->flags & SPI_CPM_MODE)
571                 ret = mpc8xxx_spi_cpm_bufs(mpc8xxx_spi, t, is_dma_mapped);
572         else
573                 ret = mpc8xxx_spi_cpu_bufs(mpc8xxx_spi, t, len);
574         if (ret)
575                 return ret;
576
577         wait_for_completion(&mpc8xxx_spi->done);
578
579         /* disable rx ints */
580         mpc8xxx_spi_write_reg(&mpc8xxx_spi->base->mask, 0);
581
582         if (mpc8xxx_spi->flags & SPI_CPM_MODE)
583                 mpc8xxx_spi_cpm_bufs_complete(mpc8xxx_spi);
584
585         return mpc8xxx_spi->count;
586 }
587
588 static void mpc8xxx_spi_do_one_msg(struct spi_message *m)
589 {
590         struct spi_device *spi = m->spi;
591         struct spi_transfer *t;
592         unsigned int cs_change;
593         const int nsecs = 50;
594         int status;
595
596         cs_change = 1;
597         status = 0;
598         list_for_each_entry(t, &m->transfers, transfer_list) {
599                 if (t->bits_per_word || t->speed_hz) {
600                         /* Don't allow changes if CS is active */
601                         status = -EINVAL;
602
603                         if (cs_change)
604                                 status = mpc8xxx_spi_setup_transfer(spi, t);
605                         if (status < 0)
606                                 break;
607                 }
608
609                 if (cs_change) {
610                         mpc8xxx_spi_chipselect(spi, BITBANG_CS_ACTIVE);
611                         ndelay(nsecs);
612                 }
613                 cs_change = t->cs_change;
614                 if (t->len)
615                         status = mpc8xxx_spi_bufs(spi, t, m->is_dma_mapped);
616                 if (status) {
617                         status = -EMSGSIZE;
618                         break;
619                 }
620                 m->actual_length += t->len;
621
622                 if (t->delay_usecs)
623                         udelay(t->delay_usecs);
624
625                 if (cs_change) {
626                         ndelay(nsecs);
627                         mpc8xxx_spi_chipselect(spi, BITBANG_CS_INACTIVE);
628                         ndelay(nsecs);
629                 }
630         }
631
632         m->status = status;
633         m->complete(m->context);
634
635         if (status || !cs_change) {
636                 ndelay(nsecs);
637                 mpc8xxx_spi_chipselect(spi, BITBANG_CS_INACTIVE);
638         }
639
640         mpc8xxx_spi_setup_transfer(spi, NULL);
641 }
642
643 static void mpc8xxx_spi_work(struct work_struct *work)
644 {
645         struct mpc8xxx_spi *mpc8xxx_spi = container_of(work, struct mpc8xxx_spi,
646                                                        work);
647
648         spin_lock_irq(&mpc8xxx_spi->lock);
649         while (!list_empty(&mpc8xxx_spi->queue)) {
650                 struct spi_message *m = container_of(mpc8xxx_spi->queue.next,
651                                                    struct spi_message, queue);
652
653                 list_del_init(&m->queue);
654                 spin_unlock_irq(&mpc8xxx_spi->lock);
655
656                 mpc8xxx_spi_do_one_msg(m);
657
658                 spin_lock_irq(&mpc8xxx_spi->lock);
659         }
660         spin_unlock_irq(&mpc8xxx_spi->lock);
661 }
662
663 static int mpc8xxx_spi_setup(struct spi_device *spi)
664 {
665         struct mpc8xxx_spi *mpc8xxx_spi;
666         int retval;
667         u32 hw_mode;
668         struct spi_mpc8xxx_cs   *cs = spi->controller_state;
669
670         if (!spi->max_speed_hz)
671                 return -EINVAL;
672
673         if (!cs) {
674                 cs = kzalloc(sizeof *cs, GFP_KERNEL);
675                 if (!cs)
676                         return -ENOMEM;
677                 spi->controller_state = cs;
678         }
679         mpc8xxx_spi = spi_master_get_devdata(spi->master);
680
681         hw_mode = cs->hw_mode; /* Save original settings */
682         cs->hw_mode = mpc8xxx_spi_read_reg(&mpc8xxx_spi->base->mode);
683         /* mask out bits we are going to set */
684         cs->hw_mode &= ~(SPMODE_CP_BEGIN_EDGECLK | SPMODE_CI_INACTIVEHIGH
685                          | SPMODE_REV | SPMODE_LOOP);
686
687         if (spi->mode & SPI_CPHA)
688                 cs->hw_mode |= SPMODE_CP_BEGIN_EDGECLK;
689         if (spi->mode & SPI_CPOL)
690                 cs->hw_mode |= SPMODE_CI_INACTIVEHIGH;
691         if (!(spi->mode & SPI_LSB_FIRST))
692                 cs->hw_mode |= SPMODE_REV;
693         if (spi->mode & SPI_LOOP)
694                 cs->hw_mode |= SPMODE_LOOP;
695
696         retval = mpc8xxx_spi_setup_transfer(spi, NULL);
697         if (retval < 0) {
698                 cs->hw_mode = hw_mode; /* Restore settings */
699                 return retval;
700         }
701         return 0;
702 }
703
704 static void mpc8xxx_spi_cpm_irq(struct mpc8xxx_spi *mspi, u32 events)
705 {
706         u16 len;
707
708         dev_dbg(mspi->dev, "%s: bd datlen %d, count %d\n", __func__,
709                 in_be16(&mspi->rx_bd->cbd_datlen), mspi->count);
710
711         len = in_be16(&mspi->rx_bd->cbd_datlen);
712         if (len > mspi->count) {
713                 WARN_ON(1);
714                 len = mspi->count;
715         }
716
717         /* Clear the events */
718         mpc8xxx_spi_write_reg(&mspi->base->event, events);
719
720         mspi->count -= len;
721         if (mspi->count)
722                 mpc8xxx_spi_cpm_bufs_start(mspi);
723         else
724                 complete(&mspi->done);
725 }
726
727 static void mpc8xxx_spi_cpu_irq(struct mpc8xxx_spi *mspi, u32 events)
728 {
729         /* We need handle RX first */
730         if (events & SPIE_NE) {
731                 u32 rx_data = mpc8xxx_spi_read_reg(&mspi->base->receive);
732
733                 if (mspi->rx)
734                         mspi->get_rx(rx_data, mspi);
735         }
736
737         if ((events & SPIE_NF) == 0)
738                 /* spin until TX is done */
739                 while (((events =
740                         mpc8xxx_spi_read_reg(&mspi->base->event)) &
741                                                 SPIE_NF) == 0)
742                         cpu_relax();
743
744         /* Clear the events */
745         mpc8xxx_spi_write_reg(&mspi->base->event, events);
746
747         mspi->count -= 1;
748         if (mspi->count) {
749                 u32 word = mspi->get_tx(mspi);
750
751                 mpc8xxx_spi_write_reg(&mspi->base->transmit, word);
752         } else {
753                 complete(&mspi->done);
754         }
755 }
756
757 static irqreturn_t mpc8xxx_spi_irq(s32 irq, void *context_data)
758 {
759         struct mpc8xxx_spi *mspi = context_data;
760         irqreturn_t ret = IRQ_NONE;
761         u32 events;
762
763         /* Get interrupt events(tx/rx) */
764         events = mpc8xxx_spi_read_reg(&mspi->base->event);
765         if (events)
766                 ret = IRQ_HANDLED;
767
768         dev_dbg(mspi->dev, "%s: events %x\n", __func__, events);
769
770         if (mspi->flags & SPI_CPM_MODE)
771                 mpc8xxx_spi_cpm_irq(mspi, events);
772         else
773                 mpc8xxx_spi_cpu_irq(mspi, events);
774
775         return ret;
776 }
777
778 static int mpc8xxx_spi_transfer(struct spi_device *spi,
779                                 struct spi_message *m)
780 {
781         struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(spi->master);
782         unsigned long flags;
783
784         m->actual_length = 0;
785         m->status = -EINPROGRESS;
786
787         spin_lock_irqsave(&mpc8xxx_spi->lock, flags);
788         list_add_tail(&m->queue, &mpc8xxx_spi->queue);
789         queue_work(mpc8xxx_spi->workqueue, &mpc8xxx_spi->work);
790         spin_unlock_irqrestore(&mpc8xxx_spi->lock, flags);
791
792         return 0;
793 }
794
795
796 static void mpc8xxx_spi_cleanup(struct spi_device *spi)
797 {
798         kfree(spi->controller_state);
799 }
800
801 static void *mpc8xxx_spi_alloc_dummy_rx(void)
802 {
803         mutex_lock(&mpc8xxx_dummy_rx_lock);
804
805         if (!mpc8xxx_dummy_rx)
806                 mpc8xxx_dummy_rx = kmalloc(SPI_MRBLR, GFP_KERNEL);
807         if (mpc8xxx_dummy_rx)
808                 mpc8xxx_dummy_rx_refcnt++;
809
810         mutex_unlock(&mpc8xxx_dummy_rx_lock);
811
812         return mpc8xxx_dummy_rx;
813 }
814
815 static void mpc8xxx_spi_free_dummy_rx(void)
816 {
817         mutex_lock(&mpc8xxx_dummy_rx_lock);
818
819         switch (mpc8xxx_dummy_rx_refcnt) {
820         case 0:
821                 WARN_ON(1);
822                 break;
823         case 1:
824                 kfree(mpc8xxx_dummy_rx);
825                 mpc8xxx_dummy_rx = NULL;
826                 /* fall through */
827         default:
828                 mpc8xxx_dummy_rx_refcnt--;
829                 break;
830         }
831
832         mutex_unlock(&mpc8xxx_dummy_rx_lock);
833 }
834
835 static unsigned long mpc8xxx_spi_cpm_get_pram(struct mpc8xxx_spi *mspi)
836 {
837         struct device *dev = mspi->dev;
838         struct device_node *np = dev->of_node;
839         const u32 *iprop;
840         int size;
841         unsigned long spi_base_ofs;
842         unsigned long pram_ofs = -ENOMEM;
843
844         /* Can't use of_address_to_resource(), QE muram isn't at 0. */
845         iprop = of_get_property(np, "reg", &size);
846
847         /* QE with a fixed pram location? */
848         if (mspi->flags & SPI_QE && iprop && size == sizeof(*iprop) * 4)
849                 return cpm_muram_alloc_fixed(iprop[2], SPI_PRAM_SIZE);
850
851         /* QE but with a dynamic pram location? */
852         if (mspi->flags & SPI_QE) {
853                 pram_ofs = cpm_muram_alloc(SPI_PRAM_SIZE, 64);
854                 qe_issue_cmd(QE_ASSIGN_PAGE_TO_DEVICE, mspi->subblock,
855                                 QE_CR_PROTOCOL_UNSPECIFIED, pram_ofs);
856                 return pram_ofs;
857         }
858
859         /* CPM1 and CPM2 pram must be at a fixed addr. */
860         if (!iprop || size != sizeof(*iprop) * 4)
861                 return -ENOMEM;
862
863         spi_base_ofs = cpm_muram_alloc_fixed(iprop[2], 2);
864         if (IS_ERR_VALUE(spi_base_ofs))
865                 return -ENOMEM;
866
867         if (mspi->flags & SPI_CPM2) {
868                 pram_ofs = cpm_muram_alloc(SPI_PRAM_SIZE, 64);
869                 if (!IS_ERR_VALUE(pram_ofs)) {
870                         u16 __iomem *spi_base = cpm_muram_addr(spi_base_ofs);
871
872                         out_be16(spi_base, pram_ofs);
873                 }
874         } else {
875                 struct spi_pram __iomem *pram = cpm_muram_addr(spi_base_ofs);
876                 u16 rpbase = in_be16(&pram->rpbase);
877
878                 /* Microcode relocation patch applied? */
879                 if (rpbase)
880                         pram_ofs = rpbase;
881                 else
882                         return spi_base_ofs;
883         }
884
885         cpm_muram_free(spi_base_ofs);
886         return pram_ofs;
887 }
888
889 static int mpc8xxx_spi_cpm_init(struct mpc8xxx_spi *mspi)
890 {
891         struct device *dev = mspi->dev;
892         struct device_node *np = dev->of_node;
893         const u32 *iprop;
894         int size;
895         unsigned long pram_ofs;
896         unsigned long bds_ofs;
897
898         if (!(mspi->flags & SPI_CPM_MODE))
899                 return 0;
900
901         if (!mpc8xxx_spi_alloc_dummy_rx())
902                 return -ENOMEM;
903
904         if (mspi->flags & SPI_QE) {
905                 iprop = of_get_property(np, "cell-index", &size);
906                 if (iprop && size == sizeof(*iprop))
907                         mspi->subblock = *iprop;
908
909                 switch (mspi->subblock) {
910                 default:
911                         dev_warn(dev, "cell-index unspecified, assuming SPI1");
912                         /* fall through */
913                 case 0:
914                         mspi->subblock = QE_CR_SUBBLOCK_SPI1;
915                         break;
916                 case 1:
917                         mspi->subblock = QE_CR_SUBBLOCK_SPI2;
918                         break;
919                 }
920         }
921
922         pram_ofs = mpc8xxx_spi_cpm_get_pram(mspi);
923         if (IS_ERR_VALUE(pram_ofs)) {
924                 dev_err(dev, "can't allocate spi parameter ram\n");
925                 goto err_pram;
926         }
927
928         bds_ofs = cpm_muram_alloc(sizeof(*mspi->tx_bd) +
929                                   sizeof(*mspi->rx_bd), 8);
930         if (IS_ERR_VALUE(bds_ofs)) {
931                 dev_err(dev, "can't allocate bds\n");
932                 goto err_bds;
933         }
934
935         mspi->dma_dummy_tx = dma_map_single(dev, empty_zero_page, PAGE_SIZE,
936                                             DMA_TO_DEVICE);
937         if (dma_mapping_error(dev, mspi->dma_dummy_tx)) {
938                 dev_err(dev, "unable to map dummy tx buffer\n");
939                 goto err_dummy_tx;
940         }
941
942         mspi->dma_dummy_rx = dma_map_single(dev, mpc8xxx_dummy_rx, SPI_MRBLR,
943                                             DMA_FROM_DEVICE);
944         if (dma_mapping_error(dev, mspi->dma_dummy_rx)) {
945                 dev_err(dev, "unable to map dummy rx buffer\n");
946                 goto err_dummy_rx;
947         }
948
949         mspi->pram = cpm_muram_addr(pram_ofs);
950
951         mspi->tx_bd = cpm_muram_addr(bds_ofs);
952         mspi->rx_bd = cpm_muram_addr(bds_ofs + sizeof(*mspi->tx_bd));
953
954         /* Initialize parameter ram. */
955         out_be16(&mspi->pram->tbase, cpm_muram_offset(mspi->tx_bd));
956         out_be16(&mspi->pram->rbase, cpm_muram_offset(mspi->rx_bd));
957         out_8(&mspi->pram->tfcr, CPMFCR_EB | CPMFCR_GBL);
958         out_8(&mspi->pram->rfcr, CPMFCR_EB | CPMFCR_GBL);
959         out_be16(&mspi->pram->mrblr, SPI_MRBLR);
960         out_be32(&mspi->pram->rstate, 0);
961         out_be32(&mspi->pram->rdp, 0);
962         out_be16(&mspi->pram->rbptr, 0);
963         out_be16(&mspi->pram->rbc, 0);
964         out_be32(&mspi->pram->rxtmp, 0);
965         out_be32(&mspi->pram->tstate, 0);
966         out_be32(&mspi->pram->tdp, 0);
967         out_be16(&mspi->pram->tbptr, 0);
968         out_be16(&mspi->pram->tbc, 0);
969         out_be32(&mspi->pram->txtmp, 0);
970
971         return 0;
972
973 err_dummy_rx:
974         dma_unmap_single(dev, mspi->dma_dummy_tx, PAGE_SIZE, DMA_TO_DEVICE);
975 err_dummy_tx:
976         cpm_muram_free(bds_ofs);
977 err_bds:
978         cpm_muram_free(pram_ofs);
979 err_pram:
980         mpc8xxx_spi_free_dummy_rx();
981         return -ENOMEM;
982 }
983
984 static void mpc8xxx_spi_cpm_free(struct mpc8xxx_spi *mspi)
985 {
986         struct device *dev = mspi->dev;
987
988         dma_unmap_single(dev, mspi->dma_dummy_rx, SPI_MRBLR, DMA_FROM_DEVICE);
989         dma_unmap_single(dev, mspi->dma_dummy_tx, PAGE_SIZE, DMA_TO_DEVICE);
990         cpm_muram_free(cpm_muram_offset(mspi->tx_bd));
991         cpm_muram_free(cpm_muram_offset(mspi->pram));
992         mpc8xxx_spi_free_dummy_rx();
993 }
994
995 static const char *mpc8xxx_spi_strmode(unsigned int flags)
996 {
997         if (flags & SPI_QE_CPU_MODE) {
998                 return "QE CPU";
999         } else if (flags & SPI_CPM_MODE) {
1000                 if (flags & SPI_QE)
1001                         return "QE";
1002                 else if (flags & SPI_CPM2)
1003                         return "CPM2";
1004                 else
1005                         return "CPM1";
1006         }
1007         return "CPU";
1008 }
1009
1010 static struct spi_master * __devinit
1011 mpc8xxx_spi_probe(struct device *dev, struct resource *mem, unsigned int irq)
1012 {
1013         struct fsl_spi_platform_data *pdata = dev->platform_data;
1014         struct spi_master *master;
1015         struct mpc8xxx_spi *mpc8xxx_spi;
1016         u32 regval;
1017         int ret = 0;
1018
1019         master = spi_alloc_master(dev, sizeof(struct mpc8xxx_spi));
1020         if (master == NULL) {
1021                 ret = -ENOMEM;
1022                 goto err;
1023         }
1024
1025         dev_set_drvdata(dev, master);
1026
1027         /* the spi->mode bits understood by this driver: */
1028         master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH
1029                         | SPI_LSB_FIRST | SPI_LOOP;
1030
1031         master->setup = mpc8xxx_spi_setup;
1032         master->transfer = mpc8xxx_spi_transfer;
1033         master->cleanup = mpc8xxx_spi_cleanup;
1034
1035         mpc8xxx_spi = spi_master_get_devdata(master);
1036         mpc8xxx_spi->dev = dev;
1037         mpc8xxx_spi->get_rx = mpc8xxx_spi_rx_buf_u8;
1038         mpc8xxx_spi->get_tx = mpc8xxx_spi_tx_buf_u8;
1039         mpc8xxx_spi->flags = pdata->flags;
1040         mpc8xxx_spi->spibrg = pdata->sysclk;
1041
1042         ret = mpc8xxx_spi_cpm_init(mpc8xxx_spi);
1043         if (ret)
1044                 goto err_cpm_init;
1045
1046         mpc8xxx_spi->rx_shift = 0;
1047         mpc8xxx_spi->tx_shift = 0;
1048         if (mpc8xxx_spi->flags & SPI_QE_CPU_MODE) {
1049                 mpc8xxx_spi->rx_shift = 16;
1050                 mpc8xxx_spi->tx_shift = 24;
1051         }
1052
1053         init_completion(&mpc8xxx_spi->done);
1054
1055         mpc8xxx_spi->base = ioremap(mem->start, resource_size(mem));
1056         if (mpc8xxx_spi->base == NULL) {
1057                 ret = -ENOMEM;
1058                 goto err_ioremap;
1059         }
1060
1061         mpc8xxx_spi->irq = irq;
1062
1063         /* Register for SPI Interrupt */
1064         ret = request_irq(mpc8xxx_spi->irq, mpc8xxx_spi_irq,
1065                           0, "mpc8xxx_spi", mpc8xxx_spi);
1066
1067         if (ret != 0)
1068                 goto unmap_io;
1069
1070         master->bus_num = pdata->bus_num;
1071         master->num_chipselect = pdata->max_chipselect;
1072
1073         /* SPI controller initializations */
1074         mpc8xxx_spi_write_reg(&mpc8xxx_spi->base->mode, 0);
1075         mpc8xxx_spi_write_reg(&mpc8xxx_spi->base->mask, 0);
1076         mpc8xxx_spi_write_reg(&mpc8xxx_spi->base->command, 0);
1077         mpc8xxx_spi_write_reg(&mpc8xxx_spi->base->event, 0xffffffff);
1078
1079         /* Enable SPI interface */
1080         regval = pdata->initial_spmode | SPMODE_INIT_VAL | SPMODE_ENABLE;
1081         if (mpc8xxx_spi->flags & SPI_QE_CPU_MODE)
1082                 regval |= SPMODE_OP;
1083
1084         mpc8xxx_spi_write_reg(&mpc8xxx_spi->base->mode, regval);
1085         spin_lock_init(&mpc8xxx_spi->lock);
1086         init_completion(&mpc8xxx_spi->done);
1087         INIT_WORK(&mpc8xxx_spi->work, mpc8xxx_spi_work);
1088         INIT_LIST_HEAD(&mpc8xxx_spi->queue);
1089
1090         mpc8xxx_spi->workqueue = create_singlethread_workqueue(
1091                 dev_name(master->dev.parent));
1092         if (mpc8xxx_spi->workqueue == NULL) {
1093                 ret = -EBUSY;
1094                 goto free_irq;
1095         }
1096
1097         ret = spi_register_master(master);
1098         if (ret < 0)
1099                 goto unreg_master;
1100
1101         dev_info(dev, "at 0x%p (irq = %d), %s mode\n", mpc8xxx_spi->base,
1102                  mpc8xxx_spi->irq, mpc8xxx_spi_strmode(mpc8xxx_spi->flags));
1103
1104         return master;
1105
1106 unreg_master:
1107         destroy_workqueue(mpc8xxx_spi->workqueue);
1108 free_irq:
1109         free_irq(mpc8xxx_spi->irq, mpc8xxx_spi);
1110 unmap_io:
1111         iounmap(mpc8xxx_spi->base);
1112 err_ioremap:
1113         mpc8xxx_spi_cpm_free(mpc8xxx_spi);
1114 err_cpm_init:
1115         spi_master_put(master);
1116 err:
1117         return ERR_PTR(ret);
1118 }
1119
1120 static int __devexit mpc8xxx_spi_remove(struct device *dev)
1121 {
1122         struct mpc8xxx_spi *mpc8xxx_spi;
1123         struct spi_master *master;
1124
1125         master = dev_get_drvdata(dev);
1126         mpc8xxx_spi = spi_master_get_devdata(master);
1127
1128         flush_workqueue(mpc8xxx_spi->workqueue);
1129         destroy_workqueue(mpc8xxx_spi->workqueue);
1130         spi_unregister_master(master);
1131
1132         free_irq(mpc8xxx_spi->irq, mpc8xxx_spi);
1133         iounmap(mpc8xxx_spi->base);
1134         mpc8xxx_spi_cpm_free(mpc8xxx_spi);
1135
1136         return 0;
1137 }
1138
1139 struct mpc8xxx_spi_probe_info {
1140         struct fsl_spi_platform_data pdata;
1141         int *gpios;
1142         bool *alow_flags;
1143 };
1144
1145 static struct mpc8xxx_spi_probe_info *
1146 to_of_pinfo(struct fsl_spi_platform_data *pdata)
1147 {
1148         return container_of(pdata, struct mpc8xxx_spi_probe_info, pdata);
1149 }
1150
1151 static void mpc8xxx_spi_cs_control(struct spi_device *spi, bool on)
1152 {
1153         struct device *dev = spi->dev.parent;
1154         struct mpc8xxx_spi_probe_info *pinfo = to_of_pinfo(dev->platform_data);
1155         u16 cs = spi->chip_select;
1156         int gpio = pinfo->gpios[cs];
1157         bool alow = pinfo->alow_flags[cs];
1158
1159         gpio_set_value(gpio, on ^ alow);
1160 }
1161
1162 static int of_mpc8xxx_spi_get_chipselects(struct device *dev)
1163 {
1164         struct device_node *np = dev->of_node;
1165         struct fsl_spi_platform_data *pdata = dev->platform_data;
1166         struct mpc8xxx_spi_probe_info *pinfo = to_of_pinfo(pdata);
1167         unsigned int ngpios;
1168         int i = 0;
1169         int ret;
1170
1171         ngpios = of_gpio_count(np);
1172         if (!ngpios) {
1173                 /*
1174                  * SPI w/o chip-select line. One SPI device is still permitted
1175                  * though.
1176                  */
1177                 pdata->max_chipselect = 1;
1178                 return 0;
1179         }
1180
1181         pinfo->gpios = kmalloc(ngpios * sizeof(*pinfo->gpios), GFP_KERNEL);
1182         if (!pinfo->gpios)
1183                 return -ENOMEM;
1184         memset(pinfo->gpios, -1, ngpios * sizeof(*pinfo->gpios));
1185
1186         pinfo->alow_flags = kzalloc(ngpios * sizeof(*pinfo->alow_flags),
1187                                     GFP_KERNEL);
1188         if (!pinfo->alow_flags) {
1189                 ret = -ENOMEM;
1190                 goto err_alloc_flags;
1191         }
1192
1193         for (; i < ngpios; i++) {
1194                 int gpio;
1195                 enum of_gpio_flags flags;
1196
1197                 gpio = of_get_gpio_flags(np, i, &flags);
1198                 if (!gpio_is_valid(gpio)) {
1199                         dev_err(dev, "invalid gpio #%d: %d\n", i, gpio);
1200                         ret = gpio;
1201                         goto err_loop;
1202                 }
1203
1204                 ret = gpio_request(gpio, dev_name(dev));
1205                 if (ret) {
1206                         dev_err(dev, "can't request gpio #%d: %d\n", i, ret);
1207                         goto err_loop;
1208                 }
1209
1210                 pinfo->gpios[i] = gpio;
1211                 pinfo->alow_flags[i] = flags & OF_GPIO_ACTIVE_LOW;
1212
1213                 ret = gpio_direction_output(pinfo->gpios[i],
1214                                             pinfo->alow_flags[i]);
1215                 if (ret) {
1216                         dev_err(dev, "can't set output direction for gpio "
1217                                 "#%d: %d\n", i, ret);
1218                         goto err_loop;
1219                 }
1220         }
1221
1222         pdata->max_chipselect = ngpios;
1223         pdata->cs_control = mpc8xxx_spi_cs_control;
1224
1225         return 0;
1226
1227 err_loop:
1228         while (i >= 0) {
1229                 if (gpio_is_valid(pinfo->gpios[i]))
1230                         gpio_free(pinfo->gpios[i]);
1231                 i--;
1232         }
1233
1234         kfree(pinfo->alow_flags);
1235         pinfo->alow_flags = NULL;
1236 err_alloc_flags:
1237         kfree(pinfo->gpios);
1238         pinfo->gpios = NULL;
1239         return ret;
1240 }
1241
1242 static int of_mpc8xxx_spi_free_chipselects(struct device *dev)
1243 {
1244         struct fsl_spi_platform_data *pdata = dev->platform_data;
1245         struct mpc8xxx_spi_probe_info *pinfo = to_of_pinfo(pdata);
1246         int i;
1247
1248         if (!pinfo->gpios)
1249                 return 0;
1250
1251         for (i = 0; i < pdata->max_chipselect; i++) {
1252                 if (gpio_is_valid(pinfo->gpios[i]))
1253                         gpio_free(pinfo->gpios[i]);
1254         }
1255
1256         kfree(pinfo->gpios);
1257         kfree(pinfo->alow_flags);
1258         return 0;
1259 }
1260
1261 static int __devinit of_mpc8xxx_spi_probe(struct of_device *ofdev,
1262                                           const struct of_device_id *ofid)
1263 {
1264         struct device *dev = &ofdev->dev;
1265         struct device_node *np = ofdev->dev.of_node;
1266         struct mpc8xxx_spi_probe_info *pinfo;
1267         struct fsl_spi_platform_data *pdata;
1268         struct spi_master *master;
1269         struct resource mem;
1270         struct resource irq;
1271         const void *prop;
1272         int ret = -ENOMEM;
1273
1274         pinfo = kzalloc(sizeof(*pinfo), GFP_KERNEL);
1275         if (!pinfo)
1276                 return -ENOMEM;
1277
1278         pdata = &pinfo->pdata;
1279         dev->platform_data = pdata;
1280
1281         /* Allocate bus num dynamically. */
1282         pdata->bus_num = -1;
1283
1284         /* SPI controller is either clocked from QE or SoC clock. */
1285         pdata->sysclk = get_brgfreq();
1286         if (pdata->sysclk == -1) {
1287                 pdata->sysclk = fsl_get_sys_freq();
1288                 if (pdata->sysclk == -1) {
1289                         ret = -ENODEV;
1290                         goto err_clk;
1291                 }
1292         }
1293
1294         prop = of_get_property(np, "mode", NULL);
1295         if (prop && !strcmp(prop, "cpu-qe"))
1296                 pdata->flags = SPI_QE_CPU_MODE;
1297         else if (prop && !strcmp(prop, "qe"))
1298                 pdata->flags = SPI_CPM_MODE | SPI_QE;
1299         else if (of_device_is_compatible(np, "fsl,cpm2-spi"))
1300                 pdata->flags = SPI_CPM_MODE | SPI_CPM2;
1301         else if (of_device_is_compatible(np, "fsl,cpm1-spi"))
1302                 pdata->flags = SPI_CPM_MODE | SPI_CPM1;
1303
1304         ret = of_mpc8xxx_spi_get_chipselects(dev);
1305         if (ret)
1306                 goto err;
1307
1308         ret = of_address_to_resource(np, 0, &mem);
1309         if (ret)
1310                 goto err;
1311
1312         ret = of_irq_to_resource(np, 0, &irq);
1313         if (!ret) {
1314                 ret = -EINVAL;
1315                 goto err;
1316         }
1317
1318         master = mpc8xxx_spi_probe(dev, &mem, irq.start);
1319         if (IS_ERR(master)) {
1320                 ret = PTR_ERR(master);
1321                 goto err;
1322         }
1323
1324         of_register_spi_devices(master, np);
1325
1326         return 0;
1327
1328 err:
1329         of_mpc8xxx_spi_free_chipselects(dev);
1330 err_clk:
1331         kfree(pinfo);
1332         return ret;
1333 }
1334
1335 static int __devexit of_mpc8xxx_spi_remove(struct of_device *ofdev)
1336 {
1337         int ret;
1338
1339         ret = mpc8xxx_spi_remove(&ofdev->dev);
1340         if (ret)
1341                 return ret;
1342         of_mpc8xxx_spi_free_chipselects(&ofdev->dev);
1343         return 0;
1344 }
1345
1346 static const struct of_device_id of_mpc8xxx_spi_match[] = {
1347         { .compatible = "fsl,spi" },
1348         {},
1349 };
1350 MODULE_DEVICE_TABLE(of, of_mpc8xxx_spi_match);
1351
1352 static struct of_platform_driver of_mpc8xxx_spi_driver = {
1353         .driver = {
1354                 .name = "mpc8xxx_spi",
1355                 .owner = THIS_MODULE,
1356                 .of_match_table = of_mpc8xxx_spi_match,
1357         },
1358         .probe          = of_mpc8xxx_spi_probe,
1359         .remove         = __devexit_p(of_mpc8xxx_spi_remove),
1360 };
1361
1362 #ifdef CONFIG_MPC832x_RDB
1363 /*
1364  *                              XXX XXX XXX
1365  * This is "legacy" platform driver, was used by the MPC8323E-RDB boards
1366  * only. The driver should go away soon, since newer MPC8323E-RDB's device
1367  * tree can work with OpenFirmware driver. But for now we support old trees
1368  * as well.
1369  */
1370 static int __devinit plat_mpc8xxx_spi_probe(struct platform_device *pdev)
1371 {
1372         struct resource *mem;
1373         int irq;
1374         struct spi_master *master;
1375
1376         if (!pdev->dev.platform_data)
1377                 return -EINVAL;
1378
1379         mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1380         if (!mem)
1381                 return -EINVAL;
1382
1383         irq = platform_get_irq(pdev, 0);
1384         if (irq <= 0)
1385                 return -EINVAL;
1386
1387         master = mpc8xxx_spi_probe(&pdev->dev, mem, irq);
1388         if (IS_ERR(master))
1389                 return PTR_ERR(master);
1390         return 0;
1391 }
1392
1393 static int __devexit plat_mpc8xxx_spi_remove(struct platform_device *pdev)
1394 {
1395         return mpc8xxx_spi_remove(&pdev->dev);
1396 }
1397
1398 MODULE_ALIAS("platform:mpc8xxx_spi");
1399 static struct platform_driver mpc8xxx_spi_driver = {
1400         .probe = plat_mpc8xxx_spi_probe,
1401         .remove = __devexit_p(plat_mpc8xxx_spi_remove),
1402         .driver = {
1403                 .name = "mpc8xxx_spi",
1404                 .owner = THIS_MODULE,
1405         },
1406 };
1407
1408 static bool legacy_driver_failed;
1409
1410 static void __init legacy_driver_register(void)
1411 {
1412         legacy_driver_failed = platform_driver_register(&mpc8xxx_spi_driver);
1413 }
1414
1415 static void __exit legacy_driver_unregister(void)
1416 {
1417         if (legacy_driver_failed)
1418                 return;
1419         platform_driver_unregister(&mpc8xxx_spi_driver);
1420 }
1421 #else
1422 static void __init legacy_driver_register(void) {}
1423 static void __exit legacy_driver_unregister(void) {}
1424 #endif /* CONFIG_MPC832x_RDB */
1425
1426 static int __init mpc8xxx_spi_init(void)
1427 {
1428         legacy_driver_register();
1429         return of_register_platform_driver(&of_mpc8xxx_spi_driver);
1430 }
1431
1432 static void __exit mpc8xxx_spi_exit(void)
1433 {
1434         of_unregister_platform_driver(&of_mpc8xxx_spi_driver);
1435         legacy_driver_unregister();
1436 }
1437
1438 module_init(mpc8xxx_spi_init);
1439 module_exit(mpc8xxx_spi_exit);
1440
1441 MODULE_AUTHOR("Kumar Gala");
1442 MODULE_DESCRIPTION("Simple MPC8xxx SPI Driver");
1443 MODULE_LICENSE("GPL");