Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[sfrench/cifs-2.6.git] / drivers / spi / spi_mpc8xxx.c
1 /*
2  * MPC8xxx SPI controller driver.
3  *
4  * Maintainer: Kumar Gala
5  *
6  * Copyright (C) 2006 Polycom, Inc.
7  *
8  * CPM SPI and QE buffer descriptors mode support:
9  * Copyright (c) 2009  MontaVista Software, Inc.
10  * Author: Anton Vorontsov <avorontsov@ru.mvista.com>
11  *
12  * This program is free software; you can redistribute  it and/or modify it
13  * under  the terms of  the GNU General  Public License as published by the
14  * Free Software Foundation;  either version 2 of the  License, or (at your
15  * option) any later version.
16  */
17 #include <linux/module.h>
18 #include <linux/init.h>
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/bug.h>
22 #include <linux/errno.h>
23 #include <linux/err.h>
24 #include <linux/io.h>
25 #include <linux/completion.h>
26 #include <linux/interrupt.h>
27 #include <linux/delay.h>
28 #include <linux/irq.h>
29 #include <linux/device.h>
30 #include <linux/spi/spi.h>
31 #include <linux/spi/spi_bitbang.h>
32 #include <linux/platform_device.h>
33 #include <linux/fsl_devices.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/mm.h>
36 #include <linux/mutex.h>
37 #include <linux/of.h>
38 #include <linux/of_platform.h>
39 #include <linux/gpio.h>
40 #include <linux/of_gpio.h>
41 #include <linux/of_spi.h>
42 #include <linux/slab.h>
43
44 #include <sysdev/fsl_soc.h>
45 #include <asm/cpm.h>
46 #include <asm/qe.h>
47 #include <asm/irq.h>
48
49 /* CPM1 and CPM2 are mutually exclusive. */
50 #ifdef CONFIG_CPM1
51 #include <asm/cpm1.h>
52 #define CPM_SPI_CMD mk_cr_cmd(CPM_CR_CH_SPI, 0)
53 #else
54 #include <asm/cpm2.h>
55 #define CPM_SPI_CMD mk_cr_cmd(CPM_CR_SPI_PAGE, CPM_CR_SPI_SBLOCK, 0, 0)
56 #endif
57
58 /* SPI Controller registers */
59 struct mpc8xxx_spi_reg {
60         u8 res1[0x20];
61         __be32 mode;
62         __be32 event;
63         __be32 mask;
64         __be32 command;
65         __be32 transmit;
66         __be32 receive;
67 };
68
69 /* SPI Controller mode register definitions */
70 #define SPMODE_LOOP             (1 << 30)
71 #define SPMODE_CI_INACTIVEHIGH  (1 << 29)
72 #define SPMODE_CP_BEGIN_EDGECLK (1 << 28)
73 #define SPMODE_DIV16            (1 << 27)
74 #define SPMODE_REV              (1 << 26)
75 #define SPMODE_MS               (1 << 25)
76 #define SPMODE_ENABLE           (1 << 24)
77 #define SPMODE_LEN(x)           ((x) << 20)
78 #define SPMODE_PM(x)            ((x) << 16)
79 #define SPMODE_OP               (1 << 14)
80 #define SPMODE_CG(x)            ((x) << 7)
81
82 /*
83  * Default for SPI Mode:
84  *      SPI MODE 0 (inactive low, phase middle, MSB, 8-bit length, slow clk
85  */
86 #define SPMODE_INIT_VAL (SPMODE_CI_INACTIVEHIGH | SPMODE_DIV16 | SPMODE_REV | \
87                          SPMODE_MS | SPMODE_LEN(7) | SPMODE_PM(0xf))
88
89 /* SPIE register values */
90 #define SPIE_NE         0x00000200      /* Not empty */
91 #define SPIE_NF         0x00000100      /* Not full */
92
93 /* SPIM register values */
94 #define SPIM_NE         0x00000200      /* Not empty */
95 #define SPIM_NF         0x00000100      /* Not full */
96
97 #define SPIE_TXB        0x00000200      /* Last char is written to tx fifo */
98 #define SPIE_RXB        0x00000100      /* Last char is written to rx buf */
99
100 /* SPCOM register values */
101 #define SPCOM_STR       (1 << 23)       /* Start transmit */
102
103 #define SPI_PRAM_SIZE   0x100
104 #define SPI_MRBLR       ((unsigned int)PAGE_SIZE)
105
106 /* SPI Controller driver's private data. */
107 struct mpc8xxx_spi {
108         struct device *dev;
109         struct mpc8xxx_spi_reg __iomem *base;
110
111         /* rx & tx bufs from the spi_transfer */
112         const void *tx;
113         void *rx;
114
115         int subblock;
116         struct spi_pram __iomem *pram;
117         struct cpm_buf_desc __iomem *tx_bd;
118         struct cpm_buf_desc __iomem *rx_bd;
119
120         struct spi_transfer *xfer_in_progress;
121
122         /* dma addresses for CPM transfers */
123         dma_addr_t tx_dma;
124         dma_addr_t rx_dma;
125         bool map_tx_dma;
126         bool map_rx_dma;
127
128         dma_addr_t dma_dummy_tx;
129         dma_addr_t dma_dummy_rx;
130
131         /* functions to deal with different sized buffers */
132         void (*get_rx) (u32 rx_data, struct mpc8xxx_spi *);
133         u32(*get_tx) (struct mpc8xxx_spi *);
134
135         unsigned int count;
136         unsigned int irq;
137
138         unsigned nsecs;         /* (clock cycle time)/2 */
139
140         u32 spibrg;             /* SPIBRG input clock */
141         u32 rx_shift;           /* RX data reg shift when in qe mode */
142         u32 tx_shift;           /* TX data reg shift when in qe mode */
143
144         unsigned int flags;
145
146         struct workqueue_struct *workqueue;
147         struct work_struct work;
148
149         struct list_head queue;
150         spinlock_t lock;
151
152         struct completion done;
153 };
154
155 static void *mpc8xxx_dummy_rx;
156 static DEFINE_MUTEX(mpc8xxx_dummy_rx_lock);
157 static int mpc8xxx_dummy_rx_refcnt;
158
159 struct spi_mpc8xxx_cs {
160         /* functions to deal with different sized buffers */
161         void (*get_rx) (u32 rx_data, struct mpc8xxx_spi *);
162         u32 (*get_tx) (struct mpc8xxx_spi *);
163         u32 rx_shift;           /* RX data reg shift when in qe mode */
164         u32 tx_shift;           /* TX data reg shift when in qe mode */
165         u32 hw_mode;            /* Holds HW mode register settings */
166 };
167
168 static inline void mpc8xxx_spi_write_reg(__be32 __iomem *reg, u32 val)
169 {
170         out_be32(reg, val);
171 }
172
173 static inline u32 mpc8xxx_spi_read_reg(__be32 __iomem *reg)
174 {
175         return in_be32(reg);
176 }
177
178 #define MPC83XX_SPI_RX_BUF(type)                                          \
179 static                                                                    \
180 void mpc8xxx_spi_rx_buf_##type(u32 data, struct mpc8xxx_spi *mpc8xxx_spi) \
181 {                                                                         \
182         type *rx = mpc8xxx_spi->rx;                                       \
183         *rx++ = (type)(data >> mpc8xxx_spi->rx_shift);                    \
184         mpc8xxx_spi->rx = rx;                                             \
185 }
186
187 #define MPC83XX_SPI_TX_BUF(type)                                \
188 static                                                          \
189 u32 mpc8xxx_spi_tx_buf_##type(struct mpc8xxx_spi *mpc8xxx_spi)  \
190 {                                                               \
191         u32 data;                                               \
192         const type *tx = mpc8xxx_spi->tx;                       \
193         if (!tx)                                                \
194                 return 0;                                       \
195         data = *tx++ << mpc8xxx_spi->tx_shift;                  \
196         mpc8xxx_spi->tx = tx;                                   \
197         return data;                                            \
198 }
199
200 MPC83XX_SPI_RX_BUF(u8)
201 MPC83XX_SPI_RX_BUF(u16)
202 MPC83XX_SPI_RX_BUF(u32)
203 MPC83XX_SPI_TX_BUF(u8)
204 MPC83XX_SPI_TX_BUF(u16)
205 MPC83XX_SPI_TX_BUF(u32)
206
207 static void mpc8xxx_spi_change_mode(struct spi_device *spi)
208 {
209         struct mpc8xxx_spi *mspi = spi_master_get_devdata(spi->master);
210         struct spi_mpc8xxx_cs *cs = spi->controller_state;
211         __be32 __iomem *mode = &mspi->base->mode;
212         unsigned long flags;
213
214         if (cs->hw_mode == mpc8xxx_spi_read_reg(mode))
215                 return;
216
217         /* Turn off IRQs locally to minimize time that SPI is disabled. */
218         local_irq_save(flags);
219
220         /* Turn off SPI unit prior changing mode */
221         mpc8xxx_spi_write_reg(mode, cs->hw_mode & ~SPMODE_ENABLE);
222
223         /* When in CPM mode, we need to reinit tx and rx. */
224         if (mspi->flags & SPI_CPM_MODE) {
225                 if (mspi->flags & SPI_QE) {
226                         qe_issue_cmd(QE_INIT_TX_RX, mspi->subblock,
227                                      QE_CR_PROTOCOL_UNSPECIFIED, 0);
228                 } else {
229                         cpm_command(CPM_SPI_CMD, CPM_CR_INIT_TRX);
230                         if (mspi->flags & SPI_CPM1) {
231                                 out_be16(&mspi->pram->rbptr,
232                                          in_be16(&mspi->pram->rbase));
233                                 out_be16(&mspi->pram->tbptr,
234                                          in_be16(&mspi->pram->tbase));
235                         }
236                 }
237         }
238         mpc8xxx_spi_write_reg(mode, cs->hw_mode);
239         local_irq_restore(flags);
240 }
241
242 static void mpc8xxx_spi_chipselect(struct spi_device *spi, int value)
243 {
244         struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(spi->master);
245         struct fsl_spi_platform_data *pdata = spi->dev.parent->platform_data;
246         bool pol = spi->mode & SPI_CS_HIGH;
247         struct spi_mpc8xxx_cs   *cs = spi->controller_state;
248
249         if (value == BITBANG_CS_INACTIVE) {
250                 if (pdata->cs_control)
251                         pdata->cs_control(spi, !pol);
252         }
253
254         if (value == BITBANG_CS_ACTIVE) {
255                 mpc8xxx_spi->rx_shift = cs->rx_shift;
256                 mpc8xxx_spi->tx_shift = cs->tx_shift;
257                 mpc8xxx_spi->get_rx = cs->get_rx;
258                 mpc8xxx_spi->get_tx = cs->get_tx;
259
260                 mpc8xxx_spi_change_mode(spi);
261
262                 if (pdata->cs_control)
263                         pdata->cs_control(spi, pol);
264         }
265 }
266
267 static int
268 mspi_apply_cpu_mode_quirks(struct spi_mpc8xxx_cs *cs,
269                            struct spi_device *spi,
270                            struct mpc8xxx_spi *mpc8xxx_spi,
271                            int bits_per_word)
272 {
273         cs->rx_shift = 0;
274         cs->tx_shift = 0;
275         if (bits_per_word <= 8) {
276                 cs->get_rx = mpc8xxx_spi_rx_buf_u8;
277                 cs->get_tx = mpc8xxx_spi_tx_buf_u8;
278                 if (mpc8xxx_spi->flags & SPI_QE_CPU_MODE) {
279                         cs->rx_shift = 16;
280                         cs->tx_shift = 24;
281                 }
282         } else if (bits_per_word <= 16) {
283                 cs->get_rx = mpc8xxx_spi_rx_buf_u16;
284                 cs->get_tx = mpc8xxx_spi_tx_buf_u16;
285                 if (mpc8xxx_spi->flags & SPI_QE_CPU_MODE) {
286                         cs->rx_shift = 16;
287                         cs->tx_shift = 16;
288                 }
289         } else if (bits_per_word <= 32) {
290                 cs->get_rx = mpc8xxx_spi_rx_buf_u32;
291                 cs->get_tx = mpc8xxx_spi_tx_buf_u32;
292         } else
293                 return -EINVAL;
294
295         if (mpc8xxx_spi->flags & SPI_QE_CPU_MODE &&
296             spi->mode & SPI_LSB_FIRST) {
297                 cs->tx_shift = 0;
298                 if (bits_per_word <= 8)
299                         cs->rx_shift = 8;
300                 else
301                         cs->rx_shift = 0;
302         }
303         mpc8xxx_spi->rx_shift = cs->rx_shift;
304         mpc8xxx_spi->tx_shift = cs->tx_shift;
305         mpc8xxx_spi->get_rx = cs->get_rx;
306         mpc8xxx_spi->get_tx = cs->get_tx;
307
308         return bits_per_word;
309 }
310
311 static int
312 mspi_apply_qe_mode_quirks(struct spi_mpc8xxx_cs *cs,
313                           struct spi_device *spi,
314                           int bits_per_word)
315 {
316         /* QE uses Little Endian for words > 8
317          * so transform all words > 8 into 8 bits
318          * Unfortnatly that doesn't work for LSB so
319          * reject these for now */
320         /* Note: 32 bits word, LSB works iff
321          * tfcr/rfcr is set to CPMFCR_GBL */
322         if (spi->mode & SPI_LSB_FIRST &&
323             bits_per_word > 8)
324                 return -EINVAL;
325         if (bits_per_word > 8)
326                 return 8; /* pretend its 8 bits */
327         return bits_per_word;
328 }
329
330 static
331 int mpc8xxx_spi_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
332 {
333         struct mpc8xxx_spi *mpc8xxx_spi;
334         int bits_per_word;
335         u8 pm;
336         u32 hz;
337         struct spi_mpc8xxx_cs   *cs = spi->controller_state;
338
339         mpc8xxx_spi = spi_master_get_devdata(spi->master);
340
341         if (t) {
342                 bits_per_word = t->bits_per_word;
343                 hz = t->speed_hz;
344         } else {
345                 bits_per_word = 0;
346                 hz = 0;
347         }
348
349         /* spi_transfer level calls that work per-word */
350         if (!bits_per_word)
351                 bits_per_word = spi->bits_per_word;
352
353         /* Make sure its a bit width we support [4..16, 32] */
354         if ((bits_per_word < 4)
355             || ((bits_per_word > 16) && (bits_per_word != 32)))
356                 return -EINVAL;
357
358         if (!hz)
359                 hz = spi->max_speed_hz;
360
361         if (!(mpc8xxx_spi->flags & SPI_CPM_MODE))
362                 bits_per_word = mspi_apply_cpu_mode_quirks(cs, spi,
363                                                            mpc8xxx_spi,
364                                                            bits_per_word);
365         else if (mpc8xxx_spi->flags & SPI_QE)
366                 bits_per_word = mspi_apply_qe_mode_quirks(cs, spi,
367                                                           bits_per_word);
368
369         if (bits_per_word < 0)
370                 return bits_per_word;
371
372         if (bits_per_word == 32)
373                 bits_per_word = 0;
374         else
375                 bits_per_word = bits_per_word - 1;
376
377         /* mask out bits we are going to set */
378         cs->hw_mode &= ~(SPMODE_LEN(0xF) | SPMODE_DIV16
379                                   | SPMODE_PM(0xF));
380
381         cs->hw_mode |= SPMODE_LEN(bits_per_word);
382
383         if ((mpc8xxx_spi->spibrg / hz) > 64) {
384                 cs->hw_mode |= SPMODE_DIV16;
385                 pm = (mpc8xxx_spi->spibrg - 1) / (hz * 64) + 1;
386
387                 WARN_ONCE(pm > 16, "%s: Requested speed is too low: %d Hz. "
388                           "Will use %d Hz instead.\n", dev_name(&spi->dev),
389                           hz, mpc8xxx_spi->spibrg / 1024);
390                 if (pm > 16)
391                         pm = 16;
392         } else
393                 pm = (mpc8xxx_spi->spibrg - 1) / (hz * 4) + 1;
394         if (pm)
395                 pm--;
396
397         cs->hw_mode |= SPMODE_PM(pm);
398
399         mpc8xxx_spi_change_mode(spi);
400         return 0;
401 }
402
403 static void mpc8xxx_spi_cpm_bufs_start(struct mpc8xxx_spi *mspi)
404 {
405         struct cpm_buf_desc __iomem *tx_bd = mspi->tx_bd;
406         struct cpm_buf_desc __iomem *rx_bd = mspi->rx_bd;
407         unsigned int xfer_len = min(mspi->count, SPI_MRBLR);
408         unsigned int xfer_ofs;
409
410         xfer_ofs = mspi->xfer_in_progress->len - mspi->count;
411
412         out_be32(&rx_bd->cbd_bufaddr, mspi->rx_dma + xfer_ofs);
413         out_be16(&rx_bd->cbd_datlen, 0);
414         out_be16(&rx_bd->cbd_sc, BD_SC_EMPTY | BD_SC_INTRPT | BD_SC_WRAP);
415
416         out_be32(&tx_bd->cbd_bufaddr, mspi->tx_dma + xfer_ofs);
417         out_be16(&tx_bd->cbd_datlen, xfer_len);
418         out_be16(&tx_bd->cbd_sc, BD_SC_READY | BD_SC_INTRPT | BD_SC_WRAP |
419                                  BD_SC_LAST);
420
421         /* start transfer */
422         mpc8xxx_spi_write_reg(&mspi->base->command, SPCOM_STR);
423 }
424
425 static int mpc8xxx_spi_cpm_bufs(struct mpc8xxx_spi *mspi,
426                                 struct spi_transfer *t, bool is_dma_mapped)
427 {
428         struct device *dev = mspi->dev;
429
430         if (is_dma_mapped) {
431                 mspi->map_tx_dma = 0;
432                 mspi->map_rx_dma = 0;
433         } else {
434                 mspi->map_tx_dma = 1;
435                 mspi->map_rx_dma = 1;
436         }
437
438         if (!t->tx_buf) {
439                 mspi->tx_dma = mspi->dma_dummy_tx;
440                 mspi->map_tx_dma = 0;
441         }
442
443         if (!t->rx_buf) {
444                 mspi->rx_dma = mspi->dma_dummy_rx;
445                 mspi->map_rx_dma = 0;
446         }
447
448         if (mspi->map_tx_dma) {
449                 void *nonconst_tx = (void *)mspi->tx; /* shut up gcc */
450
451                 mspi->tx_dma = dma_map_single(dev, nonconst_tx, t->len,
452                                               DMA_TO_DEVICE);
453                 if (dma_mapping_error(dev, mspi->tx_dma)) {
454                         dev_err(dev, "unable to map tx dma\n");
455                         return -ENOMEM;
456                 }
457         } else if (t->tx_buf) {
458                 mspi->tx_dma = t->tx_dma;
459         }
460
461         if (mspi->map_rx_dma) {
462                 mspi->rx_dma = dma_map_single(dev, mspi->rx, t->len,
463                                               DMA_FROM_DEVICE);
464                 if (dma_mapping_error(dev, mspi->rx_dma)) {
465                         dev_err(dev, "unable to map rx dma\n");
466                         goto err_rx_dma;
467                 }
468         } else if (t->rx_buf) {
469                 mspi->rx_dma = t->rx_dma;
470         }
471
472         /* enable rx ints */
473         mpc8xxx_spi_write_reg(&mspi->base->mask, SPIE_RXB);
474
475         mspi->xfer_in_progress = t;
476         mspi->count = t->len;
477
478         /* start CPM transfers */
479         mpc8xxx_spi_cpm_bufs_start(mspi);
480
481         return 0;
482
483 err_rx_dma:
484         if (mspi->map_tx_dma)
485                 dma_unmap_single(dev, mspi->tx_dma, t->len, DMA_TO_DEVICE);
486         return -ENOMEM;
487 }
488
489 static void mpc8xxx_spi_cpm_bufs_complete(struct mpc8xxx_spi *mspi)
490 {
491         struct device *dev = mspi->dev;
492         struct spi_transfer *t = mspi->xfer_in_progress;
493
494         if (mspi->map_tx_dma)
495                 dma_unmap_single(dev, mspi->tx_dma, t->len, DMA_TO_DEVICE);
496         if (mspi->map_rx_dma)
497                 dma_unmap_single(dev, mspi->rx_dma, t->len, DMA_FROM_DEVICE);
498         mspi->xfer_in_progress = NULL;
499 }
500
501 static int mpc8xxx_spi_cpu_bufs(struct mpc8xxx_spi *mspi,
502                                 struct spi_transfer *t, unsigned int len)
503 {
504         u32 word;
505
506         mspi->count = len;
507
508         /* enable rx ints */
509         mpc8xxx_spi_write_reg(&mspi->base->mask, SPIM_NE);
510
511         /* transmit word */
512         word = mspi->get_tx(mspi);
513         mpc8xxx_spi_write_reg(&mspi->base->transmit, word);
514
515         return 0;
516 }
517
518 static int mpc8xxx_spi_bufs(struct spi_device *spi, struct spi_transfer *t,
519                             bool is_dma_mapped)
520 {
521         struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(spi->master);
522         unsigned int len = t->len;
523         u8 bits_per_word;
524         int ret;
525
526         bits_per_word = spi->bits_per_word;
527         if (t->bits_per_word)
528                 bits_per_word = t->bits_per_word;
529
530         if (bits_per_word > 8) {
531                 /* invalid length? */
532                 if (len & 1)
533                         return -EINVAL;
534                 len /= 2;
535         }
536         if (bits_per_word > 16) {
537                 /* invalid length? */
538                 if (len & 1)
539                         return -EINVAL;
540                 len /= 2;
541         }
542
543         mpc8xxx_spi->tx = t->tx_buf;
544         mpc8xxx_spi->rx = t->rx_buf;
545
546         INIT_COMPLETION(mpc8xxx_spi->done);
547
548         if (mpc8xxx_spi->flags & SPI_CPM_MODE)
549                 ret = mpc8xxx_spi_cpm_bufs(mpc8xxx_spi, t, is_dma_mapped);
550         else
551                 ret = mpc8xxx_spi_cpu_bufs(mpc8xxx_spi, t, len);
552         if (ret)
553                 return ret;
554
555         wait_for_completion(&mpc8xxx_spi->done);
556
557         /* disable rx ints */
558         mpc8xxx_spi_write_reg(&mpc8xxx_spi->base->mask, 0);
559
560         if (mpc8xxx_spi->flags & SPI_CPM_MODE)
561                 mpc8xxx_spi_cpm_bufs_complete(mpc8xxx_spi);
562
563         return mpc8xxx_spi->count;
564 }
565
566 static void mpc8xxx_spi_do_one_msg(struct spi_message *m)
567 {
568         struct spi_device *spi = m->spi;
569         struct spi_transfer *t;
570         unsigned int cs_change;
571         const int nsecs = 50;
572         int status;
573
574         cs_change = 1;
575         status = 0;
576         list_for_each_entry(t, &m->transfers, transfer_list) {
577                 if (t->bits_per_word || t->speed_hz) {
578                         /* Don't allow changes if CS is active */
579                         status = -EINVAL;
580
581                         if (cs_change)
582                                 status = mpc8xxx_spi_setup_transfer(spi, t);
583                         if (status < 0)
584                                 break;
585                 }
586
587                 if (cs_change) {
588                         mpc8xxx_spi_chipselect(spi, BITBANG_CS_ACTIVE);
589                         ndelay(nsecs);
590                 }
591                 cs_change = t->cs_change;
592                 if (t->len)
593                         status = mpc8xxx_spi_bufs(spi, t, m->is_dma_mapped);
594                 if (status) {
595                         status = -EMSGSIZE;
596                         break;
597                 }
598                 m->actual_length += t->len;
599
600                 if (t->delay_usecs)
601                         udelay(t->delay_usecs);
602
603                 if (cs_change) {
604                         ndelay(nsecs);
605                         mpc8xxx_spi_chipselect(spi, BITBANG_CS_INACTIVE);
606                         ndelay(nsecs);
607                 }
608         }
609
610         m->status = status;
611         m->complete(m->context);
612
613         if (status || !cs_change) {
614                 ndelay(nsecs);
615                 mpc8xxx_spi_chipselect(spi, BITBANG_CS_INACTIVE);
616         }
617
618         mpc8xxx_spi_setup_transfer(spi, NULL);
619 }
620
621 static void mpc8xxx_spi_work(struct work_struct *work)
622 {
623         struct mpc8xxx_spi *mpc8xxx_spi = container_of(work, struct mpc8xxx_spi,
624                                                        work);
625
626         spin_lock_irq(&mpc8xxx_spi->lock);
627         while (!list_empty(&mpc8xxx_spi->queue)) {
628                 struct spi_message *m = container_of(mpc8xxx_spi->queue.next,
629                                                    struct spi_message, queue);
630
631                 list_del_init(&m->queue);
632                 spin_unlock_irq(&mpc8xxx_spi->lock);
633
634                 mpc8xxx_spi_do_one_msg(m);
635
636                 spin_lock_irq(&mpc8xxx_spi->lock);
637         }
638         spin_unlock_irq(&mpc8xxx_spi->lock);
639 }
640
641 static int mpc8xxx_spi_setup(struct spi_device *spi)
642 {
643         struct mpc8xxx_spi *mpc8xxx_spi;
644         int retval;
645         u32 hw_mode;
646         struct spi_mpc8xxx_cs   *cs = spi->controller_state;
647
648         if (!spi->max_speed_hz)
649                 return -EINVAL;
650
651         if (!cs) {
652                 cs = kzalloc(sizeof *cs, GFP_KERNEL);
653                 if (!cs)
654                         return -ENOMEM;
655                 spi->controller_state = cs;
656         }
657         mpc8xxx_spi = spi_master_get_devdata(spi->master);
658
659         hw_mode = cs->hw_mode; /* Save original settings */
660         cs->hw_mode = mpc8xxx_spi_read_reg(&mpc8xxx_spi->base->mode);
661         /* mask out bits we are going to set */
662         cs->hw_mode &= ~(SPMODE_CP_BEGIN_EDGECLK | SPMODE_CI_INACTIVEHIGH
663                          | SPMODE_REV | SPMODE_LOOP);
664
665         if (spi->mode & SPI_CPHA)
666                 cs->hw_mode |= SPMODE_CP_BEGIN_EDGECLK;
667         if (spi->mode & SPI_CPOL)
668                 cs->hw_mode |= SPMODE_CI_INACTIVEHIGH;
669         if (!(spi->mode & SPI_LSB_FIRST))
670                 cs->hw_mode |= SPMODE_REV;
671         if (spi->mode & SPI_LOOP)
672                 cs->hw_mode |= SPMODE_LOOP;
673
674         retval = mpc8xxx_spi_setup_transfer(spi, NULL);
675         if (retval < 0) {
676                 cs->hw_mode = hw_mode; /* Restore settings */
677                 return retval;
678         }
679         return 0;
680 }
681
682 static void mpc8xxx_spi_cpm_irq(struct mpc8xxx_spi *mspi, u32 events)
683 {
684         u16 len;
685
686         dev_dbg(mspi->dev, "%s: bd datlen %d, count %d\n", __func__,
687                 in_be16(&mspi->rx_bd->cbd_datlen), mspi->count);
688
689         len = in_be16(&mspi->rx_bd->cbd_datlen);
690         if (len > mspi->count) {
691                 WARN_ON(1);
692                 len = mspi->count;
693         }
694
695         /* Clear the events */
696         mpc8xxx_spi_write_reg(&mspi->base->event, events);
697
698         mspi->count -= len;
699         if (mspi->count)
700                 mpc8xxx_spi_cpm_bufs_start(mspi);
701         else
702                 complete(&mspi->done);
703 }
704
705 static void mpc8xxx_spi_cpu_irq(struct mpc8xxx_spi *mspi, u32 events)
706 {
707         /* We need handle RX first */
708         if (events & SPIE_NE) {
709                 u32 rx_data = mpc8xxx_spi_read_reg(&mspi->base->receive);
710
711                 if (mspi->rx)
712                         mspi->get_rx(rx_data, mspi);
713         }
714
715         if ((events & SPIE_NF) == 0)
716                 /* spin until TX is done */
717                 while (((events =
718                         mpc8xxx_spi_read_reg(&mspi->base->event)) &
719                                                 SPIE_NF) == 0)
720                         cpu_relax();
721
722         /* Clear the events */
723         mpc8xxx_spi_write_reg(&mspi->base->event, events);
724
725         mspi->count -= 1;
726         if (mspi->count) {
727                 u32 word = mspi->get_tx(mspi);
728
729                 mpc8xxx_spi_write_reg(&mspi->base->transmit, word);
730         } else {
731                 complete(&mspi->done);
732         }
733 }
734
735 static irqreturn_t mpc8xxx_spi_irq(s32 irq, void *context_data)
736 {
737         struct mpc8xxx_spi *mspi = context_data;
738         irqreturn_t ret = IRQ_NONE;
739         u32 events;
740
741         /* Get interrupt events(tx/rx) */
742         events = mpc8xxx_spi_read_reg(&mspi->base->event);
743         if (events)
744                 ret = IRQ_HANDLED;
745
746         dev_dbg(mspi->dev, "%s: events %x\n", __func__, events);
747
748         if (mspi->flags & SPI_CPM_MODE)
749                 mpc8xxx_spi_cpm_irq(mspi, events);
750         else
751                 mpc8xxx_spi_cpu_irq(mspi, events);
752
753         return ret;
754 }
755
756 static int mpc8xxx_spi_transfer(struct spi_device *spi,
757                                 struct spi_message *m)
758 {
759         struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(spi->master);
760         unsigned long flags;
761
762         m->actual_length = 0;
763         m->status = -EINPROGRESS;
764
765         spin_lock_irqsave(&mpc8xxx_spi->lock, flags);
766         list_add_tail(&m->queue, &mpc8xxx_spi->queue);
767         queue_work(mpc8xxx_spi->workqueue, &mpc8xxx_spi->work);
768         spin_unlock_irqrestore(&mpc8xxx_spi->lock, flags);
769
770         return 0;
771 }
772
773
774 static void mpc8xxx_spi_cleanup(struct spi_device *spi)
775 {
776         kfree(spi->controller_state);
777 }
778
779 static void *mpc8xxx_spi_alloc_dummy_rx(void)
780 {
781         mutex_lock(&mpc8xxx_dummy_rx_lock);
782
783         if (!mpc8xxx_dummy_rx)
784                 mpc8xxx_dummy_rx = kmalloc(SPI_MRBLR, GFP_KERNEL);
785         if (mpc8xxx_dummy_rx)
786                 mpc8xxx_dummy_rx_refcnt++;
787
788         mutex_unlock(&mpc8xxx_dummy_rx_lock);
789
790         return mpc8xxx_dummy_rx;
791 }
792
793 static void mpc8xxx_spi_free_dummy_rx(void)
794 {
795         mutex_lock(&mpc8xxx_dummy_rx_lock);
796
797         switch (mpc8xxx_dummy_rx_refcnt) {
798         case 0:
799                 WARN_ON(1);
800                 break;
801         case 1:
802                 kfree(mpc8xxx_dummy_rx);
803                 mpc8xxx_dummy_rx = NULL;
804                 /* fall through */
805         default:
806                 mpc8xxx_dummy_rx_refcnt--;
807                 break;
808         }
809
810         mutex_unlock(&mpc8xxx_dummy_rx_lock);
811 }
812
813 static unsigned long mpc8xxx_spi_cpm_get_pram(struct mpc8xxx_spi *mspi)
814 {
815         struct device *dev = mspi->dev;
816         struct device_node *np = dev->of_node;
817         const u32 *iprop;
818         int size;
819         unsigned long spi_base_ofs;
820         unsigned long pram_ofs = -ENOMEM;
821
822         /* Can't use of_address_to_resource(), QE muram isn't at 0. */
823         iprop = of_get_property(np, "reg", &size);
824
825         /* QE with a fixed pram location? */
826         if (mspi->flags & SPI_QE && iprop && size == sizeof(*iprop) * 4)
827                 return cpm_muram_alloc_fixed(iprop[2], SPI_PRAM_SIZE);
828
829         /* QE but with a dynamic pram location? */
830         if (mspi->flags & SPI_QE) {
831                 pram_ofs = cpm_muram_alloc(SPI_PRAM_SIZE, 64);
832                 qe_issue_cmd(QE_ASSIGN_PAGE_TO_DEVICE, mspi->subblock,
833                                 QE_CR_PROTOCOL_UNSPECIFIED, pram_ofs);
834                 return pram_ofs;
835         }
836
837         /* CPM1 and CPM2 pram must be at a fixed addr. */
838         if (!iprop || size != sizeof(*iprop) * 4)
839                 return -ENOMEM;
840
841         spi_base_ofs = cpm_muram_alloc_fixed(iprop[2], 2);
842         if (IS_ERR_VALUE(spi_base_ofs))
843                 return -ENOMEM;
844
845         if (mspi->flags & SPI_CPM2) {
846                 pram_ofs = cpm_muram_alloc(SPI_PRAM_SIZE, 64);
847                 if (!IS_ERR_VALUE(pram_ofs)) {
848                         u16 __iomem *spi_base = cpm_muram_addr(spi_base_ofs);
849
850                         out_be16(spi_base, pram_ofs);
851                 }
852         } else {
853                 struct spi_pram __iomem *pram = cpm_muram_addr(spi_base_ofs);
854                 u16 rpbase = in_be16(&pram->rpbase);
855
856                 /* Microcode relocation patch applied? */
857                 if (rpbase)
858                         pram_ofs = rpbase;
859                 else
860                         return spi_base_ofs;
861         }
862
863         cpm_muram_free(spi_base_ofs);
864         return pram_ofs;
865 }
866
867 static int mpc8xxx_spi_cpm_init(struct mpc8xxx_spi *mspi)
868 {
869         struct device *dev = mspi->dev;
870         struct device_node *np = dev->of_node;
871         const u32 *iprop;
872         int size;
873         unsigned long pram_ofs;
874         unsigned long bds_ofs;
875
876         if (!(mspi->flags & SPI_CPM_MODE))
877                 return 0;
878
879         if (!mpc8xxx_spi_alloc_dummy_rx())
880                 return -ENOMEM;
881
882         if (mspi->flags & SPI_QE) {
883                 iprop = of_get_property(np, "cell-index", &size);
884                 if (iprop && size == sizeof(*iprop))
885                         mspi->subblock = *iprop;
886
887                 switch (mspi->subblock) {
888                 default:
889                         dev_warn(dev, "cell-index unspecified, assuming SPI1");
890                         /* fall through */
891                 case 0:
892                         mspi->subblock = QE_CR_SUBBLOCK_SPI1;
893                         break;
894                 case 1:
895                         mspi->subblock = QE_CR_SUBBLOCK_SPI2;
896                         break;
897                 }
898         }
899
900         pram_ofs = mpc8xxx_spi_cpm_get_pram(mspi);
901         if (IS_ERR_VALUE(pram_ofs)) {
902                 dev_err(dev, "can't allocate spi parameter ram\n");
903                 goto err_pram;
904         }
905
906         bds_ofs = cpm_muram_alloc(sizeof(*mspi->tx_bd) +
907                                   sizeof(*mspi->rx_bd), 8);
908         if (IS_ERR_VALUE(bds_ofs)) {
909                 dev_err(dev, "can't allocate bds\n");
910                 goto err_bds;
911         }
912
913         mspi->dma_dummy_tx = dma_map_single(dev, empty_zero_page, PAGE_SIZE,
914                                             DMA_TO_DEVICE);
915         if (dma_mapping_error(dev, mspi->dma_dummy_tx)) {
916                 dev_err(dev, "unable to map dummy tx buffer\n");
917                 goto err_dummy_tx;
918         }
919
920         mspi->dma_dummy_rx = dma_map_single(dev, mpc8xxx_dummy_rx, SPI_MRBLR,
921                                             DMA_FROM_DEVICE);
922         if (dma_mapping_error(dev, mspi->dma_dummy_rx)) {
923                 dev_err(dev, "unable to map dummy rx buffer\n");
924                 goto err_dummy_rx;
925         }
926
927         mspi->pram = cpm_muram_addr(pram_ofs);
928
929         mspi->tx_bd = cpm_muram_addr(bds_ofs);
930         mspi->rx_bd = cpm_muram_addr(bds_ofs + sizeof(*mspi->tx_bd));
931
932         /* Initialize parameter ram. */
933         out_be16(&mspi->pram->tbase, cpm_muram_offset(mspi->tx_bd));
934         out_be16(&mspi->pram->rbase, cpm_muram_offset(mspi->rx_bd));
935         out_8(&mspi->pram->tfcr, CPMFCR_EB | CPMFCR_GBL);
936         out_8(&mspi->pram->rfcr, CPMFCR_EB | CPMFCR_GBL);
937         out_be16(&mspi->pram->mrblr, SPI_MRBLR);
938         out_be32(&mspi->pram->rstate, 0);
939         out_be32(&mspi->pram->rdp, 0);
940         out_be16(&mspi->pram->rbptr, 0);
941         out_be16(&mspi->pram->rbc, 0);
942         out_be32(&mspi->pram->rxtmp, 0);
943         out_be32(&mspi->pram->tstate, 0);
944         out_be32(&mspi->pram->tdp, 0);
945         out_be16(&mspi->pram->tbptr, 0);
946         out_be16(&mspi->pram->tbc, 0);
947         out_be32(&mspi->pram->txtmp, 0);
948
949         return 0;
950
951 err_dummy_rx:
952         dma_unmap_single(dev, mspi->dma_dummy_tx, PAGE_SIZE, DMA_TO_DEVICE);
953 err_dummy_tx:
954         cpm_muram_free(bds_ofs);
955 err_bds:
956         cpm_muram_free(pram_ofs);
957 err_pram:
958         mpc8xxx_spi_free_dummy_rx();
959         return -ENOMEM;
960 }
961
962 static void mpc8xxx_spi_cpm_free(struct mpc8xxx_spi *mspi)
963 {
964         struct device *dev = mspi->dev;
965
966         dma_unmap_single(dev, mspi->dma_dummy_rx, SPI_MRBLR, DMA_FROM_DEVICE);
967         dma_unmap_single(dev, mspi->dma_dummy_tx, PAGE_SIZE, DMA_TO_DEVICE);
968         cpm_muram_free(cpm_muram_offset(mspi->tx_bd));
969         cpm_muram_free(cpm_muram_offset(mspi->pram));
970         mpc8xxx_spi_free_dummy_rx();
971 }
972
973 static const char *mpc8xxx_spi_strmode(unsigned int flags)
974 {
975         if (flags & SPI_QE_CPU_MODE) {
976                 return "QE CPU";
977         } else if (flags & SPI_CPM_MODE) {
978                 if (flags & SPI_QE)
979                         return "QE";
980                 else if (flags & SPI_CPM2)
981                         return "CPM2";
982                 else
983                         return "CPM1";
984         }
985         return "CPU";
986 }
987
988 static struct spi_master * __devinit
989 mpc8xxx_spi_probe(struct device *dev, struct resource *mem, unsigned int irq)
990 {
991         struct fsl_spi_platform_data *pdata = dev->platform_data;
992         struct spi_master *master;
993         struct mpc8xxx_spi *mpc8xxx_spi;
994         u32 regval;
995         int ret = 0;
996
997         master = spi_alloc_master(dev, sizeof(struct mpc8xxx_spi));
998         if (master == NULL) {
999                 ret = -ENOMEM;
1000                 goto err;
1001         }
1002
1003         dev_set_drvdata(dev, master);
1004
1005         /* the spi->mode bits understood by this driver: */
1006         master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH
1007                         | SPI_LSB_FIRST | SPI_LOOP;
1008
1009         master->setup = mpc8xxx_spi_setup;
1010         master->transfer = mpc8xxx_spi_transfer;
1011         master->cleanup = mpc8xxx_spi_cleanup;
1012
1013         mpc8xxx_spi = spi_master_get_devdata(master);
1014         mpc8xxx_spi->dev = dev;
1015         mpc8xxx_spi->get_rx = mpc8xxx_spi_rx_buf_u8;
1016         mpc8xxx_spi->get_tx = mpc8xxx_spi_tx_buf_u8;
1017         mpc8xxx_spi->flags = pdata->flags;
1018         mpc8xxx_spi->spibrg = pdata->sysclk;
1019
1020         ret = mpc8xxx_spi_cpm_init(mpc8xxx_spi);
1021         if (ret)
1022                 goto err_cpm_init;
1023
1024         mpc8xxx_spi->rx_shift = 0;
1025         mpc8xxx_spi->tx_shift = 0;
1026         if (mpc8xxx_spi->flags & SPI_QE_CPU_MODE) {
1027                 mpc8xxx_spi->rx_shift = 16;
1028                 mpc8xxx_spi->tx_shift = 24;
1029         }
1030
1031         init_completion(&mpc8xxx_spi->done);
1032
1033         mpc8xxx_spi->base = ioremap(mem->start, resource_size(mem));
1034         if (mpc8xxx_spi->base == NULL) {
1035                 ret = -ENOMEM;
1036                 goto err_ioremap;
1037         }
1038
1039         mpc8xxx_spi->irq = irq;
1040
1041         /* Register for SPI Interrupt */
1042         ret = request_irq(mpc8xxx_spi->irq, mpc8xxx_spi_irq,
1043                           0, "mpc8xxx_spi", mpc8xxx_spi);
1044
1045         if (ret != 0)
1046                 goto unmap_io;
1047
1048         master->bus_num = pdata->bus_num;
1049         master->num_chipselect = pdata->max_chipselect;
1050
1051         /* SPI controller initializations */
1052         mpc8xxx_spi_write_reg(&mpc8xxx_spi->base->mode, 0);
1053         mpc8xxx_spi_write_reg(&mpc8xxx_spi->base->mask, 0);
1054         mpc8xxx_spi_write_reg(&mpc8xxx_spi->base->command, 0);
1055         mpc8xxx_spi_write_reg(&mpc8xxx_spi->base->event, 0xffffffff);
1056
1057         /* Enable SPI interface */
1058         regval = pdata->initial_spmode | SPMODE_INIT_VAL | SPMODE_ENABLE;
1059         if (mpc8xxx_spi->flags & SPI_QE_CPU_MODE)
1060                 regval |= SPMODE_OP;
1061
1062         mpc8xxx_spi_write_reg(&mpc8xxx_spi->base->mode, regval);
1063         spin_lock_init(&mpc8xxx_spi->lock);
1064         init_completion(&mpc8xxx_spi->done);
1065         INIT_WORK(&mpc8xxx_spi->work, mpc8xxx_spi_work);
1066         INIT_LIST_HEAD(&mpc8xxx_spi->queue);
1067
1068         mpc8xxx_spi->workqueue = create_singlethread_workqueue(
1069                 dev_name(master->dev.parent));
1070         if (mpc8xxx_spi->workqueue == NULL) {
1071                 ret = -EBUSY;
1072                 goto free_irq;
1073         }
1074
1075         ret = spi_register_master(master);
1076         if (ret < 0)
1077                 goto unreg_master;
1078
1079         dev_info(dev, "at 0x%p (irq = %d), %s mode\n", mpc8xxx_spi->base,
1080                  mpc8xxx_spi->irq, mpc8xxx_spi_strmode(mpc8xxx_spi->flags));
1081
1082         return master;
1083
1084 unreg_master:
1085         destroy_workqueue(mpc8xxx_spi->workqueue);
1086 free_irq:
1087         free_irq(mpc8xxx_spi->irq, mpc8xxx_spi);
1088 unmap_io:
1089         iounmap(mpc8xxx_spi->base);
1090 err_ioremap:
1091         mpc8xxx_spi_cpm_free(mpc8xxx_spi);
1092 err_cpm_init:
1093         spi_master_put(master);
1094 err:
1095         return ERR_PTR(ret);
1096 }
1097
1098 static int __devexit mpc8xxx_spi_remove(struct device *dev)
1099 {
1100         struct mpc8xxx_spi *mpc8xxx_spi;
1101         struct spi_master *master;
1102
1103         master = dev_get_drvdata(dev);
1104         mpc8xxx_spi = spi_master_get_devdata(master);
1105
1106         flush_workqueue(mpc8xxx_spi->workqueue);
1107         destroy_workqueue(mpc8xxx_spi->workqueue);
1108         spi_unregister_master(master);
1109
1110         free_irq(mpc8xxx_spi->irq, mpc8xxx_spi);
1111         iounmap(mpc8xxx_spi->base);
1112         mpc8xxx_spi_cpm_free(mpc8xxx_spi);
1113
1114         return 0;
1115 }
1116
1117 struct mpc8xxx_spi_probe_info {
1118         struct fsl_spi_platform_data pdata;
1119         int *gpios;
1120         bool *alow_flags;
1121 };
1122
1123 static struct mpc8xxx_spi_probe_info *
1124 to_of_pinfo(struct fsl_spi_platform_data *pdata)
1125 {
1126         return container_of(pdata, struct mpc8xxx_spi_probe_info, pdata);
1127 }
1128
1129 static void mpc8xxx_spi_cs_control(struct spi_device *spi, bool on)
1130 {
1131         struct device *dev = spi->dev.parent;
1132         struct mpc8xxx_spi_probe_info *pinfo = to_of_pinfo(dev->platform_data);
1133         u16 cs = spi->chip_select;
1134         int gpio = pinfo->gpios[cs];
1135         bool alow = pinfo->alow_flags[cs];
1136
1137         gpio_set_value(gpio, on ^ alow);
1138 }
1139
1140 static int of_mpc8xxx_spi_get_chipselects(struct device *dev)
1141 {
1142         struct device_node *np = dev->of_node;
1143         struct fsl_spi_platform_data *pdata = dev->platform_data;
1144         struct mpc8xxx_spi_probe_info *pinfo = to_of_pinfo(pdata);
1145         unsigned int ngpios;
1146         int i = 0;
1147         int ret;
1148
1149         ngpios = of_gpio_count(np);
1150         if (!ngpios) {
1151                 /*
1152                  * SPI w/o chip-select line. One SPI device is still permitted
1153                  * though.
1154                  */
1155                 pdata->max_chipselect = 1;
1156                 return 0;
1157         }
1158
1159         pinfo->gpios = kmalloc(ngpios * sizeof(*pinfo->gpios), GFP_KERNEL);
1160         if (!pinfo->gpios)
1161                 return -ENOMEM;
1162         memset(pinfo->gpios, -1, ngpios * sizeof(*pinfo->gpios));
1163
1164         pinfo->alow_flags = kzalloc(ngpios * sizeof(*pinfo->alow_flags),
1165                                     GFP_KERNEL);
1166         if (!pinfo->alow_flags) {
1167                 ret = -ENOMEM;
1168                 goto err_alloc_flags;
1169         }
1170
1171         for (; i < ngpios; i++) {
1172                 int gpio;
1173                 enum of_gpio_flags flags;
1174
1175                 gpio = of_get_gpio_flags(np, i, &flags);
1176                 if (!gpio_is_valid(gpio)) {
1177                         dev_err(dev, "invalid gpio #%d: %d\n", i, gpio);
1178                         ret = gpio;
1179                         goto err_loop;
1180                 }
1181
1182                 ret = gpio_request(gpio, dev_name(dev));
1183                 if (ret) {
1184                         dev_err(dev, "can't request gpio #%d: %d\n", i, ret);
1185                         goto err_loop;
1186                 }
1187
1188                 pinfo->gpios[i] = gpio;
1189                 pinfo->alow_flags[i] = flags & OF_GPIO_ACTIVE_LOW;
1190
1191                 ret = gpio_direction_output(pinfo->gpios[i],
1192                                             pinfo->alow_flags[i]);
1193                 if (ret) {
1194                         dev_err(dev, "can't set output direction for gpio "
1195                                 "#%d: %d\n", i, ret);
1196                         goto err_loop;
1197                 }
1198         }
1199
1200         pdata->max_chipselect = ngpios;
1201         pdata->cs_control = mpc8xxx_spi_cs_control;
1202
1203         return 0;
1204
1205 err_loop:
1206         while (i >= 0) {
1207                 if (gpio_is_valid(pinfo->gpios[i]))
1208                         gpio_free(pinfo->gpios[i]);
1209                 i--;
1210         }
1211
1212         kfree(pinfo->alow_flags);
1213         pinfo->alow_flags = NULL;
1214 err_alloc_flags:
1215         kfree(pinfo->gpios);
1216         pinfo->gpios = NULL;
1217         return ret;
1218 }
1219
1220 static int of_mpc8xxx_spi_free_chipselects(struct device *dev)
1221 {
1222         struct fsl_spi_platform_data *pdata = dev->platform_data;
1223         struct mpc8xxx_spi_probe_info *pinfo = to_of_pinfo(pdata);
1224         int i;
1225
1226         if (!pinfo->gpios)
1227                 return 0;
1228
1229         for (i = 0; i < pdata->max_chipselect; i++) {
1230                 if (gpio_is_valid(pinfo->gpios[i]))
1231                         gpio_free(pinfo->gpios[i]);
1232         }
1233
1234         kfree(pinfo->gpios);
1235         kfree(pinfo->alow_flags);
1236         return 0;
1237 }
1238
1239 static int __devinit of_mpc8xxx_spi_probe(struct of_device *ofdev,
1240                                           const struct of_device_id *ofid)
1241 {
1242         struct device *dev = &ofdev->dev;
1243         struct device_node *np = ofdev->dev.of_node;
1244         struct mpc8xxx_spi_probe_info *pinfo;
1245         struct fsl_spi_platform_data *pdata;
1246         struct spi_master *master;
1247         struct resource mem;
1248         struct resource irq;
1249         const void *prop;
1250         int ret = -ENOMEM;
1251
1252         pinfo = kzalloc(sizeof(*pinfo), GFP_KERNEL);
1253         if (!pinfo)
1254                 return -ENOMEM;
1255
1256         pdata = &pinfo->pdata;
1257         dev->platform_data = pdata;
1258
1259         /* Allocate bus num dynamically. */
1260         pdata->bus_num = -1;
1261
1262         /* SPI controller is either clocked from QE or SoC clock. */
1263         pdata->sysclk = get_brgfreq();
1264         if (pdata->sysclk == -1) {
1265                 pdata->sysclk = fsl_get_sys_freq();
1266                 if (pdata->sysclk == -1) {
1267                         ret = -ENODEV;
1268                         goto err_clk;
1269                 }
1270         }
1271
1272         prop = of_get_property(np, "mode", NULL);
1273         if (prop && !strcmp(prop, "cpu-qe"))
1274                 pdata->flags = SPI_QE_CPU_MODE;
1275         else if (prop && !strcmp(prop, "qe"))
1276                 pdata->flags = SPI_CPM_MODE | SPI_QE;
1277         else if (of_device_is_compatible(np, "fsl,cpm2-spi"))
1278                 pdata->flags = SPI_CPM_MODE | SPI_CPM2;
1279         else if (of_device_is_compatible(np, "fsl,cpm1-spi"))
1280                 pdata->flags = SPI_CPM_MODE | SPI_CPM1;
1281
1282         ret = of_mpc8xxx_spi_get_chipselects(dev);
1283         if (ret)
1284                 goto err;
1285
1286         ret = of_address_to_resource(np, 0, &mem);
1287         if (ret)
1288                 goto err;
1289
1290         ret = of_irq_to_resource(np, 0, &irq);
1291         if (!ret) {
1292                 ret = -EINVAL;
1293                 goto err;
1294         }
1295
1296         master = mpc8xxx_spi_probe(dev, &mem, irq.start);
1297         if (IS_ERR(master)) {
1298                 ret = PTR_ERR(master);
1299                 goto err;
1300         }
1301
1302         of_register_spi_devices(master, np);
1303
1304         return 0;
1305
1306 err:
1307         of_mpc8xxx_spi_free_chipselects(dev);
1308 err_clk:
1309         kfree(pinfo);
1310         return ret;
1311 }
1312
1313 static int __devexit of_mpc8xxx_spi_remove(struct of_device *ofdev)
1314 {
1315         int ret;
1316
1317         ret = mpc8xxx_spi_remove(&ofdev->dev);
1318         if (ret)
1319                 return ret;
1320         of_mpc8xxx_spi_free_chipselects(&ofdev->dev);
1321         return 0;
1322 }
1323
1324 static const struct of_device_id of_mpc8xxx_spi_match[] = {
1325         { .compatible = "fsl,spi" },
1326         {},
1327 };
1328 MODULE_DEVICE_TABLE(of, of_mpc8xxx_spi_match);
1329
1330 static struct of_platform_driver of_mpc8xxx_spi_driver = {
1331         .driver = {
1332                 .name = "mpc8xxx_spi",
1333                 .owner = THIS_MODULE,
1334                 .of_match_table = of_mpc8xxx_spi_match,
1335         },
1336         .probe          = of_mpc8xxx_spi_probe,
1337         .remove         = __devexit_p(of_mpc8xxx_spi_remove),
1338 };
1339
1340 #ifdef CONFIG_MPC832x_RDB
1341 /*
1342  *                              XXX XXX XXX
1343  * This is "legacy" platform driver, was used by the MPC8323E-RDB boards
1344  * only. The driver should go away soon, since newer MPC8323E-RDB's device
1345  * tree can work with OpenFirmware driver. But for now we support old trees
1346  * as well.
1347  */
1348 static int __devinit plat_mpc8xxx_spi_probe(struct platform_device *pdev)
1349 {
1350         struct resource *mem;
1351         int irq;
1352         struct spi_master *master;
1353
1354         if (!pdev->dev.platform_data)
1355                 return -EINVAL;
1356
1357         mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1358         if (!mem)
1359                 return -EINVAL;
1360
1361         irq = platform_get_irq(pdev, 0);
1362         if (irq <= 0)
1363                 return -EINVAL;
1364
1365         master = mpc8xxx_spi_probe(&pdev->dev, mem, irq);
1366         if (IS_ERR(master))
1367                 return PTR_ERR(master);
1368         return 0;
1369 }
1370
1371 static int __devexit plat_mpc8xxx_spi_remove(struct platform_device *pdev)
1372 {
1373         return mpc8xxx_spi_remove(&pdev->dev);
1374 }
1375
1376 MODULE_ALIAS("platform:mpc8xxx_spi");
1377 static struct platform_driver mpc8xxx_spi_driver = {
1378         .probe = plat_mpc8xxx_spi_probe,
1379         .remove = __devexit_p(plat_mpc8xxx_spi_remove),
1380         .driver = {
1381                 .name = "mpc8xxx_spi",
1382                 .owner = THIS_MODULE,
1383         },
1384 };
1385
1386 static bool legacy_driver_failed;
1387
1388 static void __init legacy_driver_register(void)
1389 {
1390         legacy_driver_failed = platform_driver_register(&mpc8xxx_spi_driver);
1391 }
1392
1393 static void __exit legacy_driver_unregister(void)
1394 {
1395         if (legacy_driver_failed)
1396                 return;
1397         platform_driver_unregister(&mpc8xxx_spi_driver);
1398 }
1399 #else
1400 static void __init legacy_driver_register(void) {}
1401 static void __exit legacy_driver_unregister(void) {}
1402 #endif /* CONFIG_MPC832x_RDB */
1403
1404 static int __init mpc8xxx_spi_init(void)
1405 {
1406         legacy_driver_register();
1407         return of_register_platform_driver(&of_mpc8xxx_spi_driver);
1408 }
1409
1410 static void __exit mpc8xxx_spi_exit(void)
1411 {
1412         of_unregister_platform_driver(&of_mpc8xxx_spi_driver);
1413         legacy_driver_unregister();
1414 }
1415
1416 module_init(mpc8xxx_spi_init);
1417 module_exit(mpc8xxx_spi_exit);
1418
1419 MODULE_AUTHOR("Kumar Gala");
1420 MODULE_DESCRIPTION("Simple MPC8xxx SPI Driver");
1421 MODULE_LICENSE("GPL");