Merge remote-tracking branch 'spi/fix/locking' into spi-next
[sfrench/cifs-2.6.git] / drivers / spi / spi.c
1 /*
2  * SPI init/core code
3  *
4  * Copyright (C) 2005 David Brownell
5  * Copyright (C) 2008 Secret Lab Technologies Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  */
17
18 #include <linux/kernel.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/cache.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mutex.h>
25 #include <linux/of_device.h>
26 #include <linux/of_irq.h>
27 #include <linux/clk/clk-conf.h>
28 #include <linux/slab.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/spi/spi.h>
31 #include <linux/of_gpio.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/pm_domain.h>
34 #include <linux/export.h>
35 #include <linux/sched/rt.h>
36 #include <linux/delay.h>
37 #include <linux/kthread.h>
38 #include <linux/ioport.h>
39 #include <linux/acpi.h>
40
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/spi.h>
43
44 static void spidev_release(struct device *dev)
45 {
46         struct spi_device       *spi = to_spi_device(dev);
47
48         /* spi masters may cleanup for released devices */
49         if (spi->master->cleanup)
50                 spi->master->cleanup(spi);
51
52         spi_master_put(spi->master);
53         kfree(spi);
54 }
55
56 static ssize_t
57 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
58 {
59         const struct spi_device *spi = to_spi_device(dev);
60         int len;
61
62         len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
63         if (len != -ENODEV)
64                 return len;
65
66         return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
67 }
68 static DEVICE_ATTR_RO(modalias);
69
70 #define SPI_STATISTICS_ATTRS(field, file)                               \
71 static ssize_t spi_master_##field##_show(struct device *dev,            \
72                                          struct device_attribute *attr, \
73                                          char *buf)                     \
74 {                                                                       \
75         struct spi_master *master = container_of(dev,                   \
76                                                  struct spi_master, dev); \
77         return spi_statistics_##field##_show(&master->statistics, buf); \
78 }                                                                       \
79 static struct device_attribute dev_attr_spi_master_##field = {          \
80         .attr = { .name = file, .mode = S_IRUGO },                      \
81         .show = spi_master_##field##_show,                              \
82 };                                                                      \
83 static ssize_t spi_device_##field##_show(struct device *dev,            \
84                                          struct device_attribute *attr, \
85                                         char *buf)                      \
86 {                                                                       \
87         struct spi_device *spi = to_spi_device(dev);                    \
88         return spi_statistics_##field##_show(&spi->statistics, buf);    \
89 }                                                                       \
90 static struct device_attribute dev_attr_spi_device_##field = {          \
91         .attr = { .name = file, .mode = S_IRUGO },                      \
92         .show = spi_device_##field##_show,                              \
93 }
94
95 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)      \
96 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
97                                             char *buf)                  \
98 {                                                                       \
99         unsigned long flags;                                            \
100         ssize_t len;                                                    \
101         spin_lock_irqsave(&stat->lock, flags);                          \
102         len = sprintf(buf, format_string, stat->field);                 \
103         spin_unlock_irqrestore(&stat->lock, flags);                     \
104         return len;                                                     \
105 }                                                                       \
106 SPI_STATISTICS_ATTRS(name, file)
107
108 #define SPI_STATISTICS_SHOW(field, format_string)                       \
109         SPI_STATISTICS_SHOW_NAME(field, __stringify(field),             \
110                                  field, format_string)
111
112 SPI_STATISTICS_SHOW(messages, "%lu");
113 SPI_STATISTICS_SHOW(transfers, "%lu");
114 SPI_STATISTICS_SHOW(errors, "%lu");
115 SPI_STATISTICS_SHOW(timedout, "%lu");
116
117 SPI_STATISTICS_SHOW(spi_sync, "%lu");
118 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
119 SPI_STATISTICS_SHOW(spi_async, "%lu");
120
121 SPI_STATISTICS_SHOW(bytes, "%llu");
122 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
123 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
124
125 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)              \
126         SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,           \
127                                  "transfer_bytes_histo_" number,        \
128                                  transfer_bytes_histo[index],  "%lu")
129 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
130 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
131 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
132 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
133 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
134 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
135 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
136 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
137 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
138 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
139 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
140 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
141 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
142 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
143 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
144 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
145 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
146
147 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
148
149 static struct attribute *spi_dev_attrs[] = {
150         &dev_attr_modalias.attr,
151         NULL,
152 };
153
154 static const struct attribute_group spi_dev_group = {
155         .attrs  = spi_dev_attrs,
156 };
157
158 static struct attribute *spi_device_statistics_attrs[] = {
159         &dev_attr_spi_device_messages.attr,
160         &dev_attr_spi_device_transfers.attr,
161         &dev_attr_spi_device_errors.attr,
162         &dev_attr_spi_device_timedout.attr,
163         &dev_attr_spi_device_spi_sync.attr,
164         &dev_attr_spi_device_spi_sync_immediate.attr,
165         &dev_attr_spi_device_spi_async.attr,
166         &dev_attr_spi_device_bytes.attr,
167         &dev_attr_spi_device_bytes_rx.attr,
168         &dev_attr_spi_device_bytes_tx.attr,
169         &dev_attr_spi_device_transfer_bytes_histo0.attr,
170         &dev_attr_spi_device_transfer_bytes_histo1.attr,
171         &dev_attr_spi_device_transfer_bytes_histo2.attr,
172         &dev_attr_spi_device_transfer_bytes_histo3.attr,
173         &dev_attr_spi_device_transfer_bytes_histo4.attr,
174         &dev_attr_spi_device_transfer_bytes_histo5.attr,
175         &dev_attr_spi_device_transfer_bytes_histo6.attr,
176         &dev_attr_spi_device_transfer_bytes_histo7.attr,
177         &dev_attr_spi_device_transfer_bytes_histo8.attr,
178         &dev_attr_spi_device_transfer_bytes_histo9.attr,
179         &dev_attr_spi_device_transfer_bytes_histo10.attr,
180         &dev_attr_spi_device_transfer_bytes_histo11.attr,
181         &dev_attr_spi_device_transfer_bytes_histo12.attr,
182         &dev_attr_spi_device_transfer_bytes_histo13.attr,
183         &dev_attr_spi_device_transfer_bytes_histo14.attr,
184         &dev_attr_spi_device_transfer_bytes_histo15.attr,
185         &dev_attr_spi_device_transfer_bytes_histo16.attr,
186         &dev_attr_spi_device_transfers_split_maxsize.attr,
187         NULL,
188 };
189
190 static const struct attribute_group spi_device_statistics_group = {
191         .name  = "statistics",
192         .attrs  = spi_device_statistics_attrs,
193 };
194
195 static const struct attribute_group *spi_dev_groups[] = {
196         &spi_dev_group,
197         &spi_device_statistics_group,
198         NULL,
199 };
200
201 static struct attribute *spi_master_statistics_attrs[] = {
202         &dev_attr_spi_master_messages.attr,
203         &dev_attr_spi_master_transfers.attr,
204         &dev_attr_spi_master_errors.attr,
205         &dev_attr_spi_master_timedout.attr,
206         &dev_attr_spi_master_spi_sync.attr,
207         &dev_attr_spi_master_spi_sync_immediate.attr,
208         &dev_attr_spi_master_spi_async.attr,
209         &dev_attr_spi_master_bytes.attr,
210         &dev_attr_spi_master_bytes_rx.attr,
211         &dev_attr_spi_master_bytes_tx.attr,
212         &dev_attr_spi_master_transfer_bytes_histo0.attr,
213         &dev_attr_spi_master_transfer_bytes_histo1.attr,
214         &dev_attr_spi_master_transfer_bytes_histo2.attr,
215         &dev_attr_spi_master_transfer_bytes_histo3.attr,
216         &dev_attr_spi_master_transfer_bytes_histo4.attr,
217         &dev_attr_spi_master_transfer_bytes_histo5.attr,
218         &dev_attr_spi_master_transfer_bytes_histo6.attr,
219         &dev_attr_spi_master_transfer_bytes_histo7.attr,
220         &dev_attr_spi_master_transfer_bytes_histo8.attr,
221         &dev_attr_spi_master_transfer_bytes_histo9.attr,
222         &dev_attr_spi_master_transfer_bytes_histo10.attr,
223         &dev_attr_spi_master_transfer_bytes_histo11.attr,
224         &dev_attr_spi_master_transfer_bytes_histo12.attr,
225         &dev_attr_spi_master_transfer_bytes_histo13.attr,
226         &dev_attr_spi_master_transfer_bytes_histo14.attr,
227         &dev_attr_spi_master_transfer_bytes_histo15.attr,
228         &dev_attr_spi_master_transfer_bytes_histo16.attr,
229         &dev_attr_spi_master_transfers_split_maxsize.attr,
230         NULL,
231 };
232
233 static const struct attribute_group spi_master_statistics_group = {
234         .name  = "statistics",
235         .attrs  = spi_master_statistics_attrs,
236 };
237
238 static const struct attribute_group *spi_master_groups[] = {
239         &spi_master_statistics_group,
240         NULL,
241 };
242
243 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
244                                        struct spi_transfer *xfer,
245                                        struct spi_master *master)
246 {
247         unsigned long flags;
248         int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
249
250         if (l2len < 0)
251                 l2len = 0;
252
253         spin_lock_irqsave(&stats->lock, flags);
254
255         stats->transfers++;
256         stats->transfer_bytes_histo[l2len]++;
257
258         stats->bytes += xfer->len;
259         if ((xfer->tx_buf) &&
260             (xfer->tx_buf != master->dummy_tx))
261                 stats->bytes_tx += xfer->len;
262         if ((xfer->rx_buf) &&
263             (xfer->rx_buf != master->dummy_rx))
264                 stats->bytes_rx += xfer->len;
265
266         spin_unlock_irqrestore(&stats->lock, flags);
267 }
268 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
269
270 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
271  * and the sysfs version makes coldplug work too.
272  */
273
274 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
275                                                 const struct spi_device *sdev)
276 {
277         while (id->name[0]) {
278                 if (!strcmp(sdev->modalias, id->name))
279                         return id;
280                 id++;
281         }
282         return NULL;
283 }
284
285 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
286 {
287         const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
288
289         return spi_match_id(sdrv->id_table, sdev);
290 }
291 EXPORT_SYMBOL_GPL(spi_get_device_id);
292
293 static int spi_match_device(struct device *dev, struct device_driver *drv)
294 {
295         const struct spi_device *spi = to_spi_device(dev);
296         const struct spi_driver *sdrv = to_spi_driver(drv);
297
298         /* Attempt an OF style match */
299         if (of_driver_match_device(dev, drv))
300                 return 1;
301
302         /* Then try ACPI */
303         if (acpi_driver_match_device(dev, drv))
304                 return 1;
305
306         if (sdrv->id_table)
307                 return !!spi_match_id(sdrv->id_table, spi);
308
309         return strcmp(spi->modalias, drv->name) == 0;
310 }
311
312 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
313 {
314         const struct spi_device         *spi = to_spi_device(dev);
315         int rc;
316
317         rc = acpi_device_uevent_modalias(dev, env);
318         if (rc != -ENODEV)
319                 return rc;
320
321         add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
322         return 0;
323 }
324
325 struct bus_type spi_bus_type = {
326         .name           = "spi",
327         .dev_groups     = spi_dev_groups,
328         .match          = spi_match_device,
329         .uevent         = spi_uevent,
330 };
331 EXPORT_SYMBOL_GPL(spi_bus_type);
332
333
334 static int spi_drv_probe(struct device *dev)
335 {
336         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
337         struct spi_device               *spi = to_spi_device(dev);
338         int ret;
339
340         ret = of_clk_set_defaults(dev->of_node, false);
341         if (ret)
342                 return ret;
343
344         if (dev->of_node) {
345                 spi->irq = of_irq_get(dev->of_node, 0);
346                 if (spi->irq == -EPROBE_DEFER)
347                         return -EPROBE_DEFER;
348                 if (spi->irq < 0)
349                         spi->irq = 0;
350         }
351
352         ret = dev_pm_domain_attach(dev, true);
353         if (ret != -EPROBE_DEFER) {
354                 ret = sdrv->probe(spi);
355                 if (ret)
356                         dev_pm_domain_detach(dev, true);
357         }
358
359         return ret;
360 }
361
362 static int spi_drv_remove(struct device *dev)
363 {
364         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
365         int ret;
366
367         ret = sdrv->remove(to_spi_device(dev));
368         dev_pm_domain_detach(dev, true);
369
370         return ret;
371 }
372
373 static void spi_drv_shutdown(struct device *dev)
374 {
375         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
376
377         sdrv->shutdown(to_spi_device(dev));
378 }
379
380 /**
381  * __spi_register_driver - register a SPI driver
382  * @owner: owner module of the driver to register
383  * @sdrv: the driver to register
384  * Context: can sleep
385  *
386  * Return: zero on success, else a negative error code.
387  */
388 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
389 {
390         sdrv->driver.owner = owner;
391         sdrv->driver.bus = &spi_bus_type;
392         if (sdrv->probe)
393                 sdrv->driver.probe = spi_drv_probe;
394         if (sdrv->remove)
395                 sdrv->driver.remove = spi_drv_remove;
396         if (sdrv->shutdown)
397                 sdrv->driver.shutdown = spi_drv_shutdown;
398         return driver_register(&sdrv->driver);
399 }
400 EXPORT_SYMBOL_GPL(__spi_register_driver);
401
402 /*-------------------------------------------------------------------------*/
403
404 /* SPI devices should normally not be created by SPI device drivers; that
405  * would make them board-specific.  Similarly with SPI master drivers.
406  * Device registration normally goes into like arch/.../mach.../board-YYY.c
407  * with other readonly (flashable) information about mainboard devices.
408  */
409
410 struct boardinfo {
411         struct list_head        list;
412         struct spi_board_info   board_info;
413 };
414
415 static LIST_HEAD(board_list);
416 static LIST_HEAD(spi_master_list);
417
418 /*
419  * Used to protect add/del opertion for board_info list and
420  * spi_master list, and their matching process
421  */
422 static DEFINE_MUTEX(board_lock);
423
424 /**
425  * spi_alloc_device - Allocate a new SPI device
426  * @master: Controller to which device is connected
427  * Context: can sleep
428  *
429  * Allows a driver to allocate and initialize a spi_device without
430  * registering it immediately.  This allows a driver to directly
431  * fill the spi_device with device parameters before calling
432  * spi_add_device() on it.
433  *
434  * Caller is responsible to call spi_add_device() on the returned
435  * spi_device structure to add it to the SPI master.  If the caller
436  * needs to discard the spi_device without adding it, then it should
437  * call spi_dev_put() on it.
438  *
439  * Return: a pointer to the new device, or NULL.
440  */
441 struct spi_device *spi_alloc_device(struct spi_master *master)
442 {
443         struct spi_device       *spi;
444
445         if (!spi_master_get(master))
446                 return NULL;
447
448         spi = kzalloc(sizeof(*spi), GFP_KERNEL);
449         if (!spi) {
450                 spi_master_put(master);
451                 return NULL;
452         }
453
454         spi->master = master;
455         spi->dev.parent = &master->dev;
456         spi->dev.bus = &spi_bus_type;
457         spi->dev.release = spidev_release;
458         spi->cs_gpio = -ENOENT;
459
460         spin_lock_init(&spi->statistics.lock);
461
462         device_initialize(&spi->dev);
463         return spi;
464 }
465 EXPORT_SYMBOL_GPL(spi_alloc_device);
466
467 static void spi_dev_set_name(struct spi_device *spi)
468 {
469         struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
470
471         if (adev) {
472                 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
473                 return;
474         }
475
476         dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
477                      spi->chip_select);
478 }
479
480 static int spi_dev_check(struct device *dev, void *data)
481 {
482         struct spi_device *spi = to_spi_device(dev);
483         struct spi_device *new_spi = data;
484
485         if (spi->master == new_spi->master &&
486             spi->chip_select == new_spi->chip_select)
487                 return -EBUSY;
488         return 0;
489 }
490
491 /**
492  * spi_add_device - Add spi_device allocated with spi_alloc_device
493  * @spi: spi_device to register
494  *
495  * Companion function to spi_alloc_device.  Devices allocated with
496  * spi_alloc_device can be added onto the spi bus with this function.
497  *
498  * Return: 0 on success; negative errno on failure
499  */
500 int spi_add_device(struct spi_device *spi)
501 {
502         static DEFINE_MUTEX(spi_add_lock);
503         struct spi_master *master = spi->master;
504         struct device *dev = master->dev.parent;
505         int status;
506
507         /* Chipselects are numbered 0..max; validate. */
508         if (spi->chip_select >= master->num_chipselect) {
509                 dev_err(dev, "cs%d >= max %d\n",
510                         spi->chip_select,
511                         master->num_chipselect);
512                 return -EINVAL;
513         }
514
515         /* Set the bus ID string */
516         spi_dev_set_name(spi);
517
518         /* We need to make sure there's no other device with this
519          * chipselect **BEFORE** we call setup(), else we'll trash
520          * its configuration.  Lock against concurrent add() calls.
521          */
522         mutex_lock(&spi_add_lock);
523
524         status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
525         if (status) {
526                 dev_err(dev, "chipselect %d already in use\n",
527                                 spi->chip_select);
528                 goto done;
529         }
530
531         if (master->cs_gpios)
532                 spi->cs_gpio = master->cs_gpios[spi->chip_select];
533
534         /* Drivers may modify this initial i/o setup, but will
535          * normally rely on the device being setup.  Devices
536          * using SPI_CS_HIGH can't coexist well otherwise...
537          */
538         status = spi_setup(spi);
539         if (status < 0) {
540                 dev_err(dev, "can't setup %s, status %d\n",
541                                 dev_name(&spi->dev), status);
542                 goto done;
543         }
544
545         /* Device may be bound to an active driver when this returns */
546         status = device_add(&spi->dev);
547         if (status < 0)
548                 dev_err(dev, "can't add %s, status %d\n",
549                                 dev_name(&spi->dev), status);
550         else
551                 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
552
553 done:
554         mutex_unlock(&spi_add_lock);
555         return status;
556 }
557 EXPORT_SYMBOL_GPL(spi_add_device);
558
559 /**
560  * spi_new_device - instantiate one new SPI device
561  * @master: Controller to which device is connected
562  * @chip: Describes the SPI device
563  * Context: can sleep
564  *
565  * On typical mainboards, this is purely internal; and it's not needed
566  * after board init creates the hard-wired devices.  Some development
567  * platforms may not be able to use spi_register_board_info though, and
568  * this is exported so that for example a USB or parport based adapter
569  * driver could add devices (which it would learn about out-of-band).
570  *
571  * Return: the new device, or NULL.
572  */
573 struct spi_device *spi_new_device(struct spi_master *master,
574                                   struct spi_board_info *chip)
575 {
576         struct spi_device       *proxy;
577         int                     status;
578
579         /* NOTE:  caller did any chip->bus_num checks necessary.
580          *
581          * Also, unless we change the return value convention to use
582          * error-or-pointer (not NULL-or-pointer), troubleshootability
583          * suggests syslogged diagnostics are best here (ugh).
584          */
585
586         proxy = spi_alloc_device(master);
587         if (!proxy)
588                 return NULL;
589
590         WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
591
592         proxy->chip_select = chip->chip_select;
593         proxy->max_speed_hz = chip->max_speed_hz;
594         proxy->mode = chip->mode;
595         proxy->irq = chip->irq;
596         strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
597         proxy->dev.platform_data = (void *) chip->platform_data;
598         proxy->controller_data = chip->controller_data;
599         proxy->controller_state = NULL;
600
601         status = spi_add_device(proxy);
602         if (status < 0) {
603                 spi_dev_put(proxy);
604                 return NULL;
605         }
606
607         return proxy;
608 }
609 EXPORT_SYMBOL_GPL(spi_new_device);
610
611 /**
612  * spi_unregister_device - unregister a single SPI device
613  * @spi: spi_device to unregister
614  *
615  * Start making the passed SPI device vanish. Normally this would be handled
616  * by spi_unregister_master().
617  */
618 void spi_unregister_device(struct spi_device *spi)
619 {
620         if (!spi)
621                 return;
622
623         if (spi->dev.of_node)
624                 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
625         device_unregister(&spi->dev);
626 }
627 EXPORT_SYMBOL_GPL(spi_unregister_device);
628
629 static void spi_match_master_to_boardinfo(struct spi_master *master,
630                                 struct spi_board_info *bi)
631 {
632         struct spi_device *dev;
633
634         if (master->bus_num != bi->bus_num)
635                 return;
636
637         dev = spi_new_device(master, bi);
638         if (!dev)
639                 dev_err(master->dev.parent, "can't create new device for %s\n",
640                         bi->modalias);
641 }
642
643 /**
644  * spi_register_board_info - register SPI devices for a given board
645  * @info: array of chip descriptors
646  * @n: how many descriptors are provided
647  * Context: can sleep
648  *
649  * Board-specific early init code calls this (probably during arch_initcall)
650  * with segments of the SPI device table.  Any device nodes are created later,
651  * after the relevant parent SPI controller (bus_num) is defined.  We keep
652  * this table of devices forever, so that reloading a controller driver will
653  * not make Linux forget about these hard-wired devices.
654  *
655  * Other code can also call this, e.g. a particular add-on board might provide
656  * SPI devices through its expansion connector, so code initializing that board
657  * would naturally declare its SPI devices.
658  *
659  * The board info passed can safely be __initdata ... but be careful of
660  * any embedded pointers (platform_data, etc), they're copied as-is.
661  *
662  * Return: zero on success, else a negative error code.
663  */
664 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
665 {
666         struct boardinfo *bi;
667         int i;
668
669         if (!n)
670                 return -EINVAL;
671
672         bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
673         if (!bi)
674                 return -ENOMEM;
675
676         for (i = 0; i < n; i++, bi++, info++) {
677                 struct spi_master *master;
678
679                 memcpy(&bi->board_info, info, sizeof(*info));
680                 mutex_lock(&board_lock);
681                 list_add_tail(&bi->list, &board_list);
682                 list_for_each_entry(master, &spi_master_list, list)
683                         spi_match_master_to_boardinfo(master, &bi->board_info);
684                 mutex_unlock(&board_lock);
685         }
686
687         return 0;
688 }
689
690 /*-------------------------------------------------------------------------*/
691
692 static void spi_set_cs(struct spi_device *spi, bool enable)
693 {
694         if (spi->mode & SPI_CS_HIGH)
695                 enable = !enable;
696
697         if (gpio_is_valid(spi->cs_gpio))
698                 gpio_set_value(spi->cs_gpio, !enable);
699         else if (spi->master->set_cs)
700                 spi->master->set_cs(spi, !enable);
701 }
702
703 #ifdef CONFIG_HAS_DMA
704 static int spi_map_buf(struct spi_master *master, struct device *dev,
705                        struct sg_table *sgt, void *buf, size_t len,
706                        enum dma_data_direction dir)
707 {
708         const bool vmalloced_buf = is_vmalloc_addr(buf);
709         unsigned int max_seg_size = dma_get_max_seg_size(dev);
710         int desc_len;
711         int sgs;
712         struct page *vm_page;
713         void *sg_buf;
714         size_t min;
715         int i, ret;
716
717         if (vmalloced_buf) {
718                 desc_len = min_t(int, max_seg_size, PAGE_SIZE);
719                 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
720         } else if (virt_addr_valid(buf)) {
721                 desc_len = min_t(int, max_seg_size, master->max_dma_len);
722                 sgs = DIV_ROUND_UP(len, desc_len);
723         } else {
724                 return -EINVAL;
725         }
726
727         ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
728         if (ret != 0)
729                 return ret;
730
731         for (i = 0; i < sgs; i++) {
732
733                 if (vmalloced_buf) {
734                         min = min_t(size_t,
735                                     len, desc_len - offset_in_page(buf));
736                         vm_page = vmalloc_to_page(buf);
737                         if (!vm_page) {
738                                 sg_free_table(sgt);
739                                 return -ENOMEM;
740                         }
741                         sg_set_page(&sgt->sgl[i], vm_page,
742                                     min, offset_in_page(buf));
743                 } else {
744                         min = min_t(size_t, len, desc_len);
745                         sg_buf = buf;
746                         sg_set_buf(&sgt->sgl[i], sg_buf, min);
747                 }
748
749                 buf += min;
750                 len -= min;
751         }
752
753         ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
754         if (!ret)
755                 ret = -ENOMEM;
756         if (ret < 0) {
757                 sg_free_table(sgt);
758                 return ret;
759         }
760
761         sgt->nents = ret;
762
763         return 0;
764 }
765
766 static void spi_unmap_buf(struct spi_master *master, struct device *dev,
767                           struct sg_table *sgt, enum dma_data_direction dir)
768 {
769         if (sgt->orig_nents) {
770                 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
771                 sg_free_table(sgt);
772         }
773 }
774
775 static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
776 {
777         struct device *tx_dev, *rx_dev;
778         struct spi_transfer *xfer;
779         int ret;
780
781         if (!master->can_dma)
782                 return 0;
783
784         if (master->dma_tx)
785                 tx_dev = master->dma_tx->device->dev;
786         else
787                 tx_dev = &master->dev;
788
789         if (master->dma_rx)
790                 rx_dev = master->dma_rx->device->dev;
791         else
792                 rx_dev = &master->dev;
793
794         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
795                 if (!master->can_dma(master, msg->spi, xfer))
796                         continue;
797
798                 if (xfer->tx_buf != NULL) {
799                         ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
800                                           (void *)xfer->tx_buf, xfer->len,
801                                           DMA_TO_DEVICE);
802                         if (ret != 0)
803                                 return ret;
804                 }
805
806                 if (xfer->rx_buf != NULL) {
807                         ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
808                                           xfer->rx_buf, xfer->len,
809                                           DMA_FROM_DEVICE);
810                         if (ret != 0) {
811                                 spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
812                                               DMA_TO_DEVICE);
813                                 return ret;
814                         }
815                 }
816         }
817
818         master->cur_msg_mapped = true;
819
820         return 0;
821 }
822
823 static int __spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
824 {
825         struct spi_transfer *xfer;
826         struct device *tx_dev, *rx_dev;
827
828         if (!master->cur_msg_mapped || !master->can_dma)
829                 return 0;
830
831         if (master->dma_tx)
832                 tx_dev = master->dma_tx->device->dev;
833         else
834                 tx_dev = &master->dev;
835
836         if (master->dma_rx)
837                 rx_dev = master->dma_rx->device->dev;
838         else
839                 rx_dev = &master->dev;
840
841         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
842                 if (!master->can_dma(master, msg->spi, xfer))
843                         continue;
844
845                 spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
846                 spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
847         }
848
849         return 0;
850 }
851 #else /* !CONFIG_HAS_DMA */
852 static inline int spi_map_buf(struct spi_master *master,
853                               struct device *dev, struct sg_table *sgt,
854                               void *buf, size_t len,
855                               enum dma_data_direction dir)
856 {
857         return -EINVAL;
858 }
859
860 static inline void spi_unmap_buf(struct spi_master *master,
861                                  struct device *dev, struct sg_table *sgt,
862                                  enum dma_data_direction dir)
863 {
864 }
865
866 static inline int __spi_map_msg(struct spi_master *master,
867                                 struct spi_message *msg)
868 {
869         return 0;
870 }
871
872 static inline int __spi_unmap_msg(struct spi_master *master,
873                                   struct spi_message *msg)
874 {
875         return 0;
876 }
877 #endif /* !CONFIG_HAS_DMA */
878
879 static inline int spi_unmap_msg(struct spi_master *master,
880                                 struct spi_message *msg)
881 {
882         struct spi_transfer *xfer;
883
884         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
885                 /*
886                  * Restore the original value of tx_buf or rx_buf if they are
887                  * NULL.
888                  */
889                 if (xfer->tx_buf == master->dummy_tx)
890                         xfer->tx_buf = NULL;
891                 if (xfer->rx_buf == master->dummy_rx)
892                         xfer->rx_buf = NULL;
893         }
894
895         return __spi_unmap_msg(master, msg);
896 }
897
898 static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
899 {
900         struct spi_transfer *xfer;
901         void *tmp;
902         unsigned int max_tx, max_rx;
903
904         if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
905                 max_tx = 0;
906                 max_rx = 0;
907
908                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
909                         if ((master->flags & SPI_MASTER_MUST_TX) &&
910                             !xfer->tx_buf)
911                                 max_tx = max(xfer->len, max_tx);
912                         if ((master->flags & SPI_MASTER_MUST_RX) &&
913                             !xfer->rx_buf)
914                                 max_rx = max(xfer->len, max_rx);
915                 }
916
917                 if (max_tx) {
918                         tmp = krealloc(master->dummy_tx, max_tx,
919                                        GFP_KERNEL | GFP_DMA);
920                         if (!tmp)
921                                 return -ENOMEM;
922                         master->dummy_tx = tmp;
923                         memset(tmp, 0, max_tx);
924                 }
925
926                 if (max_rx) {
927                         tmp = krealloc(master->dummy_rx, max_rx,
928                                        GFP_KERNEL | GFP_DMA);
929                         if (!tmp)
930                                 return -ENOMEM;
931                         master->dummy_rx = tmp;
932                 }
933
934                 if (max_tx || max_rx) {
935                         list_for_each_entry(xfer, &msg->transfers,
936                                             transfer_list) {
937                                 if (!xfer->tx_buf)
938                                         xfer->tx_buf = master->dummy_tx;
939                                 if (!xfer->rx_buf)
940                                         xfer->rx_buf = master->dummy_rx;
941                         }
942                 }
943         }
944
945         return __spi_map_msg(master, msg);
946 }
947
948 /*
949  * spi_transfer_one_message - Default implementation of transfer_one_message()
950  *
951  * This is a standard implementation of transfer_one_message() for
952  * drivers which implement a transfer_one() operation.  It provides
953  * standard handling of delays and chip select management.
954  */
955 static int spi_transfer_one_message(struct spi_master *master,
956                                     struct spi_message *msg)
957 {
958         struct spi_transfer *xfer;
959         bool keep_cs = false;
960         int ret = 0;
961         unsigned long ms = 1;
962         struct spi_statistics *statm = &master->statistics;
963         struct spi_statistics *stats = &msg->spi->statistics;
964
965         spi_set_cs(msg->spi, true);
966
967         SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
968         SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
969
970         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
971                 trace_spi_transfer_start(msg, xfer);
972
973                 spi_statistics_add_transfer_stats(statm, xfer, master);
974                 spi_statistics_add_transfer_stats(stats, xfer, master);
975
976                 if (xfer->tx_buf || xfer->rx_buf) {
977                         reinit_completion(&master->xfer_completion);
978
979                         ret = master->transfer_one(master, msg->spi, xfer);
980                         if (ret < 0) {
981                                 SPI_STATISTICS_INCREMENT_FIELD(statm,
982                                                                errors);
983                                 SPI_STATISTICS_INCREMENT_FIELD(stats,
984                                                                errors);
985                                 dev_err(&msg->spi->dev,
986                                         "SPI transfer failed: %d\n", ret);
987                                 goto out;
988                         }
989
990                         if (ret > 0) {
991                                 ret = 0;
992                                 ms = xfer->len * 8 * 1000 / xfer->speed_hz;
993                                 ms += ms + 100; /* some tolerance */
994
995                                 ms = wait_for_completion_timeout(&master->xfer_completion,
996                                                                  msecs_to_jiffies(ms));
997                         }
998
999                         if (ms == 0) {
1000                                 SPI_STATISTICS_INCREMENT_FIELD(statm,
1001                                                                timedout);
1002                                 SPI_STATISTICS_INCREMENT_FIELD(stats,
1003                                                                timedout);
1004                                 dev_err(&msg->spi->dev,
1005                                         "SPI transfer timed out\n");
1006                                 msg->status = -ETIMEDOUT;
1007                         }
1008                 } else {
1009                         if (xfer->len)
1010                                 dev_err(&msg->spi->dev,
1011                                         "Bufferless transfer has length %u\n",
1012                                         xfer->len);
1013                 }
1014
1015                 trace_spi_transfer_stop(msg, xfer);
1016
1017                 if (msg->status != -EINPROGRESS)
1018                         goto out;
1019
1020                 if (xfer->delay_usecs)
1021                         udelay(xfer->delay_usecs);
1022
1023                 if (xfer->cs_change) {
1024                         if (list_is_last(&xfer->transfer_list,
1025                                          &msg->transfers)) {
1026                                 keep_cs = true;
1027                         } else {
1028                                 spi_set_cs(msg->spi, false);
1029                                 udelay(10);
1030                                 spi_set_cs(msg->spi, true);
1031                         }
1032                 }
1033
1034                 msg->actual_length += xfer->len;
1035         }
1036
1037 out:
1038         if (ret != 0 || !keep_cs)
1039                 spi_set_cs(msg->spi, false);
1040
1041         if (msg->status == -EINPROGRESS)
1042                 msg->status = ret;
1043
1044         if (msg->status && master->handle_err)
1045                 master->handle_err(master, msg);
1046
1047         spi_res_release(master, msg);
1048
1049         spi_finalize_current_message(master);
1050
1051         return ret;
1052 }
1053
1054 /**
1055  * spi_finalize_current_transfer - report completion of a transfer
1056  * @master: the master reporting completion
1057  *
1058  * Called by SPI drivers using the core transfer_one_message()
1059  * implementation to notify it that the current interrupt driven
1060  * transfer has finished and the next one may be scheduled.
1061  */
1062 void spi_finalize_current_transfer(struct spi_master *master)
1063 {
1064         complete(&master->xfer_completion);
1065 }
1066 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1067
1068 /**
1069  * __spi_pump_messages - function which processes spi message queue
1070  * @master: master to process queue for
1071  * @in_kthread: true if we are in the context of the message pump thread
1072  *
1073  * This function checks if there is any spi message in the queue that
1074  * needs processing and if so call out to the driver to initialize hardware
1075  * and transfer each message.
1076  *
1077  * Note that it is called both from the kthread itself and also from
1078  * inside spi_sync(); the queue extraction handling at the top of the
1079  * function should deal with this safely.
1080  */
1081 static void __spi_pump_messages(struct spi_master *master, bool in_kthread)
1082 {
1083         unsigned long flags;
1084         bool was_busy = false;
1085         int ret;
1086
1087         /* Lock queue */
1088         spin_lock_irqsave(&master->queue_lock, flags);
1089
1090         /* Make sure we are not already running a message */
1091         if (master->cur_msg) {
1092                 spin_unlock_irqrestore(&master->queue_lock, flags);
1093                 return;
1094         }
1095
1096         /* If another context is idling the device then defer */
1097         if (master->idling) {
1098                 queue_kthread_work(&master->kworker, &master->pump_messages);
1099                 spin_unlock_irqrestore(&master->queue_lock, flags);
1100                 return;
1101         }
1102
1103         /* Check if the queue is idle */
1104         if (list_empty(&master->queue) || !master->running) {
1105                 if (!master->busy) {
1106                         spin_unlock_irqrestore(&master->queue_lock, flags);
1107                         return;
1108                 }
1109
1110                 /* Only do teardown in the thread */
1111                 if (!in_kthread) {
1112                         queue_kthread_work(&master->kworker,
1113                                            &master->pump_messages);
1114                         spin_unlock_irqrestore(&master->queue_lock, flags);
1115                         return;
1116                 }
1117
1118                 master->busy = false;
1119                 master->idling = true;
1120                 spin_unlock_irqrestore(&master->queue_lock, flags);
1121
1122                 kfree(master->dummy_rx);
1123                 master->dummy_rx = NULL;
1124                 kfree(master->dummy_tx);
1125                 master->dummy_tx = NULL;
1126                 if (master->unprepare_transfer_hardware &&
1127                     master->unprepare_transfer_hardware(master))
1128                         dev_err(&master->dev,
1129                                 "failed to unprepare transfer hardware\n");
1130                 if (master->auto_runtime_pm) {
1131                         pm_runtime_mark_last_busy(master->dev.parent);
1132                         pm_runtime_put_autosuspend(master->dev.parent);
1133                 }
1134                 trace_spi_master_idle(master);
1135
1136                 spin_lock_irqsave(&master->queue_lock, flags);
1137                 master->idling = false;
1138                 spin_unlock_irqrestore(&master->queue_lock, flags);
1139                 return;
1140         }
1141
1142         /* Extract head of queue */
1143         master->cur_msg =
1144                 list_first_entry(&master->queue, struct spi_message, queue);
1145
1146         list_del_init(&master->cur_msg->queue);
1147         if (master->busy)
1148                 was_busy = true;
1149         else
1150                 master->busy = true;
1151         spin_unlock_irqrestore(&master->queue_lock, flags);
1152
1153         mutex_lock(&master->io_mutex);
1154
1155         if (!was_busy && master->auto_runtime_pm) {
1156                 ret = pm_runtime_get_sync(master->dev.parent);
1157                 if (ret < 0) {
1158                         dev_err(&master->dev, "Failed to power device: %d\n",
1159                                 ret);
1160                         return;
1161                 }
1162         }
1163
1164         if (!was_busy)
1165                 trace_spi_master_busy(master);
1166
1167         if (!was_busy && master->prepare_transfer_hardware) {
1168                 ret = master->prepare_transfer_hardware(master);
1169                 if (ret) {
1170                         dev_err(&master->dev,
1171                                 "failed to prepare transfer hardware\n");
1172
1173                         if (master->auto_runtime_pm)
1174                                 pm_runtime_put(master->dev.parent);
1175                         return;
1176                 }
1177         }
1178
1179         trace_spi_message_start(master->cur_msg);
1180
1181         if (master->prepare_message) {
1182                 ret = master->prepare_message(master, master->cur_msg);
1183                 if (ret) {
1184                         dev_err(&master->dev,
1185                                 "failed to prepare message: %d\n", ret);
1186                         master->cur_msg->status = ret;
1187                         spi_finalize_current_message(master);
1188                         goto out;
1189                 }
1190                 master->cur_msg_prepared = true;
1191         }
1192
1193         ret = spi_map_msg(master, master->cur_msg);
1194         if (ret) {
1195                 master->cur_msg->status = ret;
1196                 spi_finalize_current_message(master);
1197                 goto out;
1198         }
1199
1200         ret = master->transfer_one_message(master, master->cur_msg);
1201         if (ret) {
1202                 dev_err(&master->dev,
1203                         "failed to transfer one message from queue\n");
1204                 goto out;
1205         }
1206
1207 out:
1208         mutex_unlock(&master->io_mutex);
1209
1210         /* Prod the scheduler in case transfer_one() was busy waiting */
1211         if (!ret)
1212                 cond_resched();
1213 }
1214
1215 /**
1216  * spi_pump_messages - kthread work function which processes spi message queue
1217  * @work: pointer to kthread work struct contained in the master struct
1218  */
1219 static void spi_pump_messages(struct kthread_work *work)
1220 {
1221         struct spi_master *master =
1222                 container_of(work, struct spi_master, pump_messages);
1223
1224         __spi_pump_messages(master, true);
1225 }
1226
1227 static int spi_init_queue(struct spi_master *master)
1228 {
1229         struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1230
1231         master->running = false;
1232         master->busy = false;
1233
1234         init_kthread_worker(&master->kworker);
1235         master->kworker_task = kthread_run(kthread_worker_fn,
1236                                            &master->kworker, "%s",
1237                                            dev_name(&master->dev));
1238         if (IS_ERR(master->kworker_task)) {
1239                 dev_err(&master->dev, "failed to create message pump task\n");
1240                 return PTR_ERR(master->kworker_task);
1241         }
1242         init_kthread_work(&master->pump_messages, spi_pump_messages);
1243
1244         /*
1245          * Master config will indicate if this controller should run the
1246          * message pump with high (realtime) priority to reduce the transfer
1247          * latency on the bus by minimising the delay between a transfer
1248          * request and the scheduling of the message pump thread. Without this
1249          * setting the message pump thread will remain at default priority.
1250          */
1251         if (master->rt) {
1252                 dev_info(&master->dev,
1253                         "will run message pump with realtime priority\n");
1254                 sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
1255         }
1256
1257         return 0;
1258 }
1259
1260 /**
1261  * spi_get_next_queued_message() - called by driver to check for queued
1262  * messages
1263  * @master: the master to check for queued messages
1264  *
1265  * If there are more messages in the queue, the next message is returned from
1266  * this call.
1267  *
1268  * Return: the next message in the queue, else NULL if the queue is empty.
1269  */
1270 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
1271 {
1272         struct spi_message *next;
1273         unsigned long flags;
1274
1275         /* get a pointer to the next message, if any */
1276         spin_lock_irqsave(&master->queue_lock, flags);
1277         next = list_first_entry_or_null(&master->queue, struct spi_message,
1278                                         queue);
1279         spin_unlock_irqrestore(&master->queue_lock, flags);
1280
1281         return next;
1282 }
1283 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1284
1285 /**
1286  * spi_finalize_current_message() - the current message is complete
1287  * @master: the master to return the message to
1288  *
1289  * Called by the driver to notify the core that the message in the front of the
1290  * queue is complete and can be removed from the queue.
1291  */
1292 void spi_finalize_current_message(struct spi_master *master)
1293 {
1294         struct spi_message *mesg;
1295         unsigned long flags;
1296         int ret;
1297
1298         spin_lock_irqsave(&master->queue_lock, flags);
1299         mesg = master->cur_msg;
1300         spin_unlock_irqrestore(&master->queue_lock, flags);
1301
1302         spi_unmap_msg(master, mesg);
1303
1304         if (master->cur_msg_prepared && master->unprepare_message) {
1305                 ret = master->unprepare_message(master, mesg);
1306                 if (ret) {
1307                         dev_err(&master->dev,
1308                                 "failed to unprepare message: %d\n", ret);
1309                 }
1310         }
1311
1312         spin_lock_irqsave(&master->queue_lock, flags);
1313         master->cur_msg = NULL;
1314         master->cur_msg_prepared = false;
1315         queue_kthread_work(&master->kworker, &master->pump_messages);
1316         spin_unlock_irqrestore(&master->queue_lock, flags);
1317
1318         trace_spi_message_done(mesg);
1319
1320         mesg->state = NULL;
1321         if (mesg->complete)
1322                 mesg->complete(mesg->context);
1323 }
1324 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1325
1326 static int spi_start_queue(struct spi_master *master)
1327 {
1328         unsigned long flags;
1329
1330         spin_lock_irqsave(&master->queue_lock, flags);
1331
1332         if (master->running || master->busy) {
1333                 spin_unlock_irqrestore(&master->queue_lock, flags);
1334                 return -EBUSY;
1335         }
1336
1337         master->running = true;
1338         master->cur_msg = NULL;
1339         spin_unlock_irqrestore(&master->queue_lock, flags);
1340
1341         queue_kthread_work(&master->kworker, &master->pump_messages);
1342
1343         return 0;
1344 }
1345
1346 static int spi_stop_queue(struct spi_master *master)
1347 {
1348         unsigned long flags;
1349         unsigned limit = 500;
1350         int ret = 0;
1351
1352         spin_lock_irqsave(&master->queue_lock, flags);
1353
1354         /*
1355          * This is a bit lame, but is optimized for the common execution path.
1356          * A wait_queue on the master->busy could be used, but then the common
1357          * execution path (pump_messages) would be required to call wake_up or
1358          * friends on every SPI message. Do this instead.
1359          */
1360         while ((!list_empty(&master->queue) || master->busy) && limit--) {
1361                 spin_unlock_irqrestore(&master->queue_lock, flags);
1362                 usleep_range(10000, 11000);
1363                 spin_lock_irqsave(&master->queue_lock, flags);
1364         }
1365
1366         if (!list_empty(&master->queue) || master->busy)
1367                 ret = -EBUSY;
1368         else
1369                 master->running = false;
1370
1371         spin_unlock_irqrestore(&master->queue_lock, flags);
1372
1373         if (ret) {
1374                 dev_warn(&master->dev,
1375                          "could not stop message queue\n");
1376                 return ret;
1377         }
1378         return ret;
1379 }
1380
1381 static int spi_destroy_queue(struct spi_master *master)
1382 {
1383         int ret;
1384
1385         ret = spi_stop_queue(master);
1386
1387         /*
1388          * flush_kthread_worker will block until all work is done.
1389          * If the reason that stop_queue timed out is that the work will never
1390          * finish, then it does no good to call flush/stop thread, so
1391          * return anyway.
1392          */
1393         if (ret) {
1394                 dev_err(&master->dev, "problem destroying queue\n");
1395                 return ret;
1396         }
1397
1398         flush_kthread_worker(&master->kworker);
1399         kthread_stop(master->kworker_task);
1400
1401         return 0;
1402 }
1403
1404 static int __spi_queued_transfer(struct spi_device *spi,
1405                                  struct spi_message *msg,
1406                                  bool need_pump)
1407 {
1408         struct spi_master *master = spi->master;
1409         unsigned long flags;
1410
1411         spin_lock_irqsave(&master->queue_lock, flags);
1412
1413         if (!master->running) {
1414                 spin_unlock_irqrestore(&master->queue_lock, flags);
1415                 return -ESHUTDOWN;
1416         }
1417         msg->actual_length = 0;
1418         msg->status = -EINPROGRESS;
1419
1420         list_add_tail(&msg->queue, &master->queue);
1421         if (!master->busy && need_pump)
1422                 queue_kthread_work(&master->kworker, &master->pump_messages);
1423
1424         spin_unlock_irqrestore(&master->queue_lock, flags);
1425         return 0;
1426 }
1427
1428 /**
1429  * spi_queued_transfer - transfer function for queued transfers
1430  * @spi: spi device which is requesting transfer
1431  * @msg: spi message which is to handled is queued to driver queue
1432  *
1433  * Return: zero on success, else a negative error code.
1434  */
1435 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1436 {
1437         return __spi_queued_transfer(spi, msg, true);
1438 }
1439
1440 static int spi_master_initialize_queue(struct spi_master *master)
1441 {
1442         int ret;
1443
1444         master->transfer = spi_queued_transfer;
1445         if (!master->transfer_one_message)
1446                 master->transfer_one_message = spi_transfer_one_message;
1447
1448         /* Initialize and start queue */
1449         ret = spi_init_queue(master);
1450         if (ret) {
1451                 dev_err(&master->dev, "problem initializing queue\n");
1452                 goto err_init_queue;
1453         }
1454         master->queued = true;
1455         ret = spi_start_queue(master);
1456         if (ret) {
1457                 dev_err(&master->dev, "problem starting queue\n");
1458                 goto err_start_queue;
1459         }
1460
1461         return 0;
1462
1463 err_start_queue:
1464         spi_destroy_queue(master);
1465 err_init_queue:
1466         return ret;
1467 }
1468
1469 /*-------------------------------------------------------------------------*/
1470
1471 #if defined(CONFIG_OF)
1472 static struct spi_device *
1473 of_register_spi_device(struct spi_master *master, struct device_node *nc)
1474 {
1475         struct spi_device *spi;
1476         int rc;
1477         u32 value;
1478
1479         /* Alloc an spi_device */
1480         spi = spi_alloc_device(master);
1481         if (!spi) {
1482                 dev_err(&master->dev, "spi_device alloc error for %s\n",
1483                         nc->full_name);
1484                 rc = -ENOMEM;
1485                 goto err_out;
1486         }
1487
1488         /* Select device driver */
1489         rc = of_modalias_node(nc, spi->modalias,
1490                                 sizeof(spi->modalias));
1491         if (rc < 0) {
1492                 dev_err(&master->dev, "cannot find modalias for %s\n",
1493                         nc->full_name);
1494                 goto err_out;
1495         }
1496
1497         /* Device address */
1498         rc = of_property_read_u32(nc, "reg", &value);
1499         if (rc) {
1500                 dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1501                         nc->full_name, rc);
1502                 goto err_out;
1503         }
1504         spi->chip_select = value;
1505
1506         /* Mode (clock phase/polarity/etc.) */
1507         if (of_find_property(nc, "spi-cpha", NULL))
1508                 spi->mode |= SPI_CPHA;
1509         if (of_find_property(nc, "spi-cpol", NULL))
1510                 spi->mode |= SPI_CPOL;
1511         if (of_find_property(nc, "spi-cs-high", NULL))
1512                 spi->mode |= SPI_CS_HIGH;
1513         if (of_find_property(nc, "spi-3wire", NULL))
1514                 spi->mode |= SPI_3WIRE;
1515         if (of_find_property(nc, "spi-lsb-first", NULL))
1516                 spi->mode |= SPI_LSB_FIRST;
1517
1518         /* Device DUAL/QUAD mode */
1519         if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1520                 switch (value) {
1521                 case 1:
1522                         break;
1523                 case 2:
1524                         spi->mode |= SPI_TX_DUAL;
1525                         break;
1526                 case 4:
1527                         spi->mode |= SPI_TX_QUAD;
1528                         break;
1529                 default:
1530                         dev_warn(&master->dev,
1531                                 "spi-tx-bus-width %d not supported\n",
1532                                 value);
1533                         break;
1534                 }
1535         }
1536
1537         if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1538                 switch (value) {
1539                 case 1:
1540                         break;
1541                 case 2:
1542                         spi->mode |= SPI_RX_DUAL;
1543                         break;
1544                 case 4:
1545                         spi->mode |= SPI_RX_QUAD;
1546                         break;
1547                 default:
1548                         dev_warn(&master->dev,
1549                                 "spi-rx-bus-width %d not supported\n",
1550                                 value);
1551                         break;
1552                 }
1553         }
1554
1555         /* Device speed */
1556         rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1557         if (rc) {
1558                 dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1559                         nc->full_name, rc);
1560                 goto err_out;
1561         }
1562         spi->max_speed_hz = value;
1563
1564         /* Store a pointer to the node in the device structure */
1565         of_node_get(nc);
1566         spi->dev.of_node = nc;
1567
1568         /* Register the new device */
1569         rc = spi_add_device(spi);
1570         if (rc) {
1571                 dev_err(&master->dev, "spi_device register error %s\n",
1572                         nc->full_name);
1573                 goto err_out;
1574         }
1575
1576         return spi;
1577
1578 err_out:
1579         spi_dev_put(spi);
1580         return ERR_PTR(rc);
1581 }
1582
1583 /**
1584  * of_register_spi_devices() - Register child devices onto the SPI bus
1585  * @master:     Pointer to spi_master device
1586  *
1587  * Registers an spi_device for each child node of master node which has a 'reg'
1588  * property.
1589  */
1590 static void of_register_spi_devices(struct spi_master *master)
1591 {
1592         struct spi_device *spi;
1593         struct device_node *nc;
1594
1595         if (!master->dev.of_node)
1596                 return;
1597
1598         for_each_available_child_of_node(master->dev.of_node, nc) {
1599                 if (of_node_test_and_set_flag(nc, OF_POPULATED))
1600                         continue;
1601                 spi = of_register_spi_device(master, nc);
1602                 if (IS_ERR(spi))
1603                         dev_warn(&master->dev, "Failed to create SPI device for %s\n",
1604                                 nc->full_name);
1605         }
1606 }
1607 #else
1608 static void of_register_spi_devices(struct spi_master *master) { }
1609 #endif
1610
1611 #ifdef CONFIG_ACPI
1612 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1613 {
1614         struct spi_device *spi = data;
1615         struct spi_master *master = spi->master;
1616
1617         if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1618                 struct acpi_resource_spi_serialbus *sb;
1619
1620                 sb = &ares->data.spi_serial_bus;
1621                 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1622                         /*
1623                          * ACPI DeviceSelection numbering is handled by the
1624                          * host controller driver in Windows and can vary
1625                          * from driver to driver. In Linux we always expect
1626                          * 0 .. max - 1 so we need to ask the driver to
1627                          * translate between the two schemes.
1628                          */
1629                         if (master->fw_translate_cs) {
1630                                 int cs = master->fw_translate_cs(master,
1631                                                 sb->device_selection);
1632                                 if (cs < 0)
1633                                         return cs;
1634                                 spi->chip_select = cs;
1635                         } else {
1636                                 spi->chip_select = sb->device_selection;
1637                         }
1638
1639                         spi->max_speed_hz = sb->connection_speed;
1640
1641                         if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1642                                 spi->mode |= SPI_CPHA;
1643                         if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1644                                 spi->mode |= SPI_CPOL;
1645                         if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1646                                 spi->mode |= SPI_CS_HIGH;
1647                 }
1648         } else if (spi->irq < 0) {
1649                 struct resource r;
1650
1651                 if (acpi_dev_resource_interrupt(ares, 0, &r))
1652                         spi->irq = r.start;
1653         }
1654
1655         /* Always tell the ACPI core to skip this resource */
1656         return 1;
1657 }
1658
1659 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1660                                        void *data, void **return_value)
1661 {
1662         struct spi_master *master = data;
1663         struct list_head resource_list;
1664         struct acpi_device *adev;
1665         struct spi_device *spi;
1666         int ret;
1667
1668         if (acpi_bus_get_device(handle, &adev))
1669                 return AE_OK;
1670         if (acpi_bus_get_status(adev) || !adev->status.present)
1671                 return AE_OK;
1672
1673         spi = spi_alloc_device(master);
1674         if (!spi) {
1675                 dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1676                         dev_name(&adev->dev));
1677                 return AE_NO_MEMORY;
1678         }
1679
1680         ACPI_COMPANION_SET(&spi->dev, adev);
1681         spi->irq = -1;
1682
1683         INIT_LIST_HEAD(&resource_list);
1684         ret = acpi_dev_get_resources(adev, &resource_list,
1685                                      acpi_spi_add_resource, spi);
1686         acpi_dev_free_resource_list(&resource_list);
1687
1688         if (ret < 0 || !spi->max_speed_hz) {
1689                 spi_dev_put(spi);
1690                 return AE_OK;
1691         }
1692
1693         if (spi->irq < 0)
1694                 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
1695
1696         adev->power.flags.ignore_parent = true;
1697         strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1698         if (spi_add_device(spi)) {
1699                 adev->power.flags.ignore_parent = false;
1700                 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1701                         dev_name(&adev->dev));
1702                 spi_dev_put(spi);
1703         }
1704
1705         return AE_OK;
1706 }
1707
1708 static void acpi_register_spi_devices(struct spi_master *master)
1709 {
1710         acpi_status status;
1711         acpi_handle handle;
1712
1713         handle = ACPI_HANDLE(master->dev.parent);
1714         if (!handle)
1715                 return;
1716
1717         status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1718                                      acpi_spi_add_device, NULL,
1719                                      master, NULL);
1720         if (ACPI_FAILURE(status))
1721                 dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1722 }
1723 #else
1724 static inline void acpi_register_spi_devices(struct spi_master *master) {}
1725 #endif /* CONFIG_ACPI */
1726
1727 static void spi_master_release(struct device *dev)
1728 {
1729         struct spi_master *master;
1730
1731         master = container_of(dev, struct spi_master, dev);
1732         kfree(master);
1733 }
1734
1735 static struct class spi_master_class = {
1736         .name           = "spi_master",
1737         .owner          = THIS_MODULE,
1738         .dev_release    = spi_master_release,
1739         .dev_groups     = spi_master_groups,
1740 };
1741
1742
1743 /**
1744  * spi_alloc_master - allocate SPI master controller
1745  * @dev: the controller, possibly using the platform_bus
1746  * @size: how much zeroed driver-private data to allocate; the pointer to this
1747  *      memory is in the driver_data field of the returned device,
1748  *      accessible with spi_master_get_devdata().
1749  * Context: can sleep
1750  *
1751  * This call is used only by SPI master controller drivers, which are the
1752  * only ones directly touching chip registers.  It's how they allocate
1753  * an spi_master structure, prior to calling spi_register_master().
1754  *
1755  * This must be called from context that can sleep.
1756  *
1757  * The caller is responsible for assigning the bus number and initializing
1758  * the master's methods before calling spi_register_master(); and (after errors
1759  * adding the device) calling spi_master_put() to prevent a memory leak.
1760  *
1761  * Return: the SPI master structure on success, else NULL.
1762  */
1763 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1764 {
1765         struct spi_master       *master;
1766
1767         if (!dev)
1768                 return NULL;
1769
1770         master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1771         if (!master)
1772                 return NULL;
1773
1774         device_initialize(&master->dev);
1775         master->bus_num = -1;
1776         master->num_chipselect = 1;
1777         master->dev.class = &spi_master_class;
1778         master->dev.parent = dev;
1779         pm_suspend_ignore_children(&master->dev, true);
1780         spi_master_set_devdata(master, &master[1]);
1781
1782         return master;
1783 }
1784 EXPORT_SYMBOL_GPL(spi_alloc_master);
1785
1786 #ifdef CONFIG_OF
1787 static int of_spi_register_master(struct spi_master *master)
1788 {
1789         int nb, i, *cs;
1790         struct device_node *np = master->dev.of_node;
1791
1792         if (!np)
1793                 return 0;
1794
1795         nb = of_gpio_named_count(np, "cs-gpios");
1796         master->num_chipselect = max_t(int, nb, master->num_chipselect);
1797
1798         /* Return error only for an incorrectly formed cs-gpios property */
1799         if (nb == 0 || nb == -ENOENT)
1800                 return 0;
1801         else if (nb < 0)
1802                 return nb;
1803
1804         cs = devm_kzalloc(&master->dev,
1805                           sizeof(int) * master->num_chipselect,
1806                           GFP_KERNEL);
1807         master->cs_gpios = cs;
1808
1809         if (!master->cs_gpios)
1810                 return -ENOMEM;
1811
1812         for (i = 0; i < master->num_chipselect; i++)
1813                 cs[i] = -ENOENT;
1814
1815         for (i = 0; i < nb; i++)
1816                 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1817
1818         return 0;
1819 }
1820 #else
1821 static int of_spi_register_master(struct spi_master *master)
1822 {
1823         return 0;
1824 }
1825 #endif
1826
1827 /**
1828  * spi_register_master - register SPI master controller
1829  * @master: initialized master, originally from spi_alloc_master()
1830  * Context: can sleep
1831  *
1832  * SPI master controllers connect to their drivers using some non-SPI bus,
1833  * such as the platform bus.  The final stage of probe() in that code
1834  * includes calling spi_register_master() to hook up to this SPI bus glue.
1835  *
1836  * SPI controllers use board specific (often SOC specific) bus numbers,
1837  * and board-specific addressing for SPI devices combines those numbers
1838  * with chip select numbers.  Since SPI does not directly support dynamic
1839  * device identification, boards need configuration tables telling which
1840  * chip is at which address.
1841  *
1842  * This must be called from context that can sleep.  It returns zero on
1843  * success, else a negative error code (dropping the master's refcount).
1844  * After a successful return, the caller is responsible for calling
1845  * spi_unregister_master().
1846  *
1847  * Return: zero on success, else a negative error code.
1848  */
1849 int spi_register_master(struct spi_master *master)
1850 {
1851         static atomic_t         dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1852         struct device           *dev = master->dev.parent;
1853         struct boardinfo        *bi;
1854         int                     status = -ENODEV;
1855         int                     dynamic = 0;
1856
1857         if (!dev)
1858                 return -ENODEV;
1859
1860         status = of_spi_register_master(master);
1861         if (status)
1862                 return status;
1863
1864         /* even if it's just one always-selected device, there must
1865          * be at least one chipselect
1866          */
1867         if (master->num_chipselect == 0)
1868                 return -EINVAL;
1869
1870         if ((master->bus_num < 0) && master->dev.of_node)
1871                 master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1872
1873         /* convention:  dynamically assigned bus IDs count down from the max */
1874         if (master->bus_num < 0) {
1875                 /* FIXME switch to an IDR based scheme, something like
1876                  * I2C now uses, so we can't run out of "dynamic" IDs
1877                  */
1878                 master->bus_num = atomic_dec_return(&dyn_bus_id);
1879                 dynamic = 1;
1880         }
1881
1882         INIT_LIST_HEAD(&master->queue);
1883         spin_lock_init(&master->queue_lock);
1884         spin_lock_init(&master->bus_lock_spinlock);
1885         mutex_init(&master->bus_lock_mutex);
1886         mutex_init(&master->io_mutex);
1887         master->bus_lock_flag = 0;
1888         init_completion(&master->xfer_completion);
1889         if (!master->max_dma_len)
1890                 master->max_dma_len = INT_MAX;
1891
1892         /* register the device, then userspace will see it.
1893          * registration fails if the bus ID is in use.
1894          */
1895         dev_set_name(&master->dev, "spi%u", master->bus_num);
1896         status = device_add(&master->dev);
1897         if (status < 0)
1898                 goto done;
1899         dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1900                         dynamic ? " (dynamic)" : "");
1901
1902         /* If we're using a queued driver, start the queue */
1903         if (master->transfer)
1904                 dev_info(dev, "master is unqueued, this is deprecated\n");
1905         else {
1906                 status = spi_master_initialize_queue(master);
1907                 if (status) {
1908                         device_del(&master->dev);
1909                         goto done;
1910                 }
1911         }
1912         /* add statistics */
1913         spin_lock_init(&master->statistics.lock);
1914
1915         mutex_lock(&board_lock);
1916         list_add_tail(&master->list, &spi_master_list);
1917         list_for_each_entry(bi, &board_list, list)
1918                 spi_match_master_to_boardinfo(master, &bi->board_info);
1919         mutex_unlock(&board_lock);
1920
1921         /* Register devices from the device tree and ACPI */
1922         of_register_spi_devices(master);
1923         acpi_register_spi_devices(master);
1924 done:
1925         return status;
1926 }
1927 EXPORT_SYMBOL_GPL(spi_register_master);
1928
1929 static void devm_spi_unregister(struct device *dev, void *res)
1930 {
1931         spi_unregister_master(*(struct spi_master **)res);
1932 }
1933
1934 /**
1935  * dev_spi_register_master - register managed SPI master controller
1936  * @dev:    device managing SPI master
1937  * @master: initialized master, originally from spi_alloc_master()
1938  * Context: can sleep
1939  *
1940  * Register a SPI device as with spi_register_master() which will
1941  * automatically be unregister
1942  *
1943  * Return: zero on success, else a negative error code.
1944  */
1945 int devm_spi_register_master(struct device *dev, struct spi_master *master)
1946 {
1947         struct spi_master **ptr;
1948         int ret;
1949
1950         ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1951         if (!ptr)
1952                 return -ENOMEM;
1953
1954         ret = spi_register_master(master);
1955         if (!ret) {
1956                 *ptr = master;
1957                 devres_add(dev, ptr);
1958         } else {
1959                 devres_free(ptr);
1960         }
1961
1962         return ret;
1963 }
1964 EXPORT_SYMBOL_GPL(devm_spi_register_master);
1965
1966 static int __unregister(struct device *dev, void *null)
1967 {
1968         spi_unregister_device(to_spi_device(dev));
1969         return 0;
1970 }
1971
1972 /**
1973  * spi_unregister_master - unregister SPI master controller
1974  * @master: the master being unregistered
1975  * Context: can sleep
1976  *
1977  * This call is used only by SPI master controller drivers, which are the
1978  * only ones directly touching chip registers.
1979  *
1980  * This must be called from context that can sleep.
1981  */
1982 void spi_unregister_master(struct spi_master *master)
1983 {
1984         int dummy;
1985
1986         if (master->queued) {
1987                 if (spi_destroy_queue(master))
1988                         dev_err(&master->dev, "queue remove failed\n");
1989         }
1990
1991         mutex_lock(&board_lock);
1992         list_del(&master->list);
1993         mutex_unlock(&board_lock);
1994
1995         dummy = device_for_each_child(&master->dev, NULL, __unregister);
1996         device_unregister(&master->dev);
1997 }
1998 EXPORT_SYMBOL_GPL(spi_unregister_master);
1999
2000 int spi_master_suspend(struct spi_master *master)
2001 {
2002         int ret;
2003
2004         /* Basically no-ops for non-queued masters */
2005         if (!master->queued)
2006                 return 0;
2007
2008         ret = spi_stop_queue(master);
2009         if (ret)
2010                 dev_err(&master->dev, "queue stop failed\n");
2011
2012         return ret;
2013 }
2014 EXPORT_SYMBOL_GPL(spi_master_suspend);
2015
2016 int spi_master_resume(struct spi_master *master)
2017 {
2018         int ret;
2019
2020         if (!master->queued)
2021                 return 0;
2022
2023         ret = spi_start_queue(master);
2024         if (ret)
2025                 dev_err(&master->dev, "queue restart failed\n");
2026
2027         return ret;
2028 }
2029 EXPORT_SYMBOL_GPL(spi_master_resume);
2030
2031 static int __spi_master_match(struct device *dev, const void *data)
2032 {
2033         struct spi_master *m;
2034         const u16 *bus_num = data;
2035
2036         m = container_of(dev, struct spi_master, dev);
2037         return m->bus_num == *bus_num;
2038 }
2039
2040 /**
2041  * spi_busnum_to_master - look up master associated with bus_num
2042  * @bus_num: the master's bus number
2043  * Context: can sleep
2044  *
2045  * This call may be used with devices that are registered after
2046  * arch init time.  It returns a refcounted pointer to the relevant
2047  * spi_master (which the caller must release), or NULL if there is
2048  * no such master registered.
2049  *
2050  * Return: the SPI master structure on success, else NULL.
2051  */
2052 struct spi_master *spi_busnum_to_master(u16 bus_num)
2053 {
2054         struct device           *dev;
2055         struct spi_master       *master = NULL;
2056
2057         dev = class_find_device(&spi_master_class, NULL, &bus_num,
2058                                 __spi_master_match);
2059         if (dev)
2060                 master = container_of(dev, struct spi_master, dev);
2061         /* reference got in class_find_device */
2062         return master;
2063 }
2064 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2065
2066 /*-------------------------------------------------------------------------*/
2067
2068 /* Core methods for SPI resource management */
2069
2070 /**
2071  * spi_res_alloc - allocate a spi resource that is life-cycle managed
2072  *                 during the processing of a spi_message while using
2073  *                 spi_transfer_one
2074  * @spi:     the spi device for which we allocate memory
2075  * @release: the release code to execute for this resource
2076  * @size:    size to alloc and return
2077  * @gfp:     GFP allocation flags
2078  *
2079  * Return: the pointer to the allocated data
2080  *
2081  * This may get enhanced in the future to allocate from a memory pool
2082  * of the @spi_device or @spi_master to avoid repeated allocations.
2083  */
2084 void *spi_res_alloc(struct spi_device *spi,
2085                     spi_res_release_t release,
2086                     size_t size, gfp_t gfp)
2087 {
2088         struct spi_res *sres;
2089
2090         sres = kzalloc(sizeof(*sres) + size, gfp);
2091         if (!sres)
2092                 return NULL;
2093
2094         INIT_LIST_HEAD(&sres->entry);
2095         sres->release = release;
2096
2097         return sres->data;
2098 }
2099 EXPORT_SYMBOL_GPL(spi_res_alloc);
2100
2101 /**
2102  * spi_res_free - free an spi resource
2103  * @res: pointer to the custom data of a resource
2104  *
2105  */
2106 void spi_res_free(void *res)
2107 {
2108         struct spi_res *sres = container_of(res, struct spi_res, data);
2109
2110         if (!res)
2111                 return;
2112
2113         WARN_ON(!list_empty(&sres->entry));
2114         kfree(sres);
2115 }
2116 EXPORT_SYMBOL_GPL(spi_res_free);
2117
2118 /**
2119  * spi_res_add - add a spi_res to the spi_message
2120  * @message: the spi message
2121  * @res:     the spi_resource
2122  */
2123 void spi_res_add(struct spi_message *message, void *res)
2124 {
2125         struct spi_res *sres = container_of(res, struct spi_res, data);
2126
2127         WARN_ON(!list_empty(&sres->entry));
2128         list_add_tail(&sres->entry, &message->resources);
2129 }
2130 EXPORT_SYMBOL_GPL(spi_res_add);
2131
2132 /**
2133  * spi_res_release - release all spi resources for this message
2134  * @master:  the @spi_master
2135  * @message: the @spi_message
2136  */
2137 void spi_res_release(struct spi_master *master,
2138                      struct spi_message *message)
2139 {
2140         struct spi_res *res;
2141
2142         while (!list_empty(&message->resources)) {
2143                 res = list_last_entry(&message->resources,
2144                                       struct spi_res, entry);
2145
2146                 if (res->release)
2147                         res->release(master, message, res->data);
2148
2149                 list_del(&res->entry);
2150
2151                 kfree(res);
2152         }
2153 }
2154 EXPORT_SYMBOL_GPL(spi_res_release);
2155
2156 /*-------------------------------------------------------------------------*/
2157
2158 /* Core methods for spi_message alterations */
2159
2160 static void __spi_replace_transfers_release(struct spi_master *master,
2161                                             struct spi_message *msg,
2162                                             void *res)
2163 {
2164         struct spi_replaced_transfers *rxfer = res;
2165         size_t i;
2166
2167         /* call extra callback if requested */
2168         if (rxfer->release)
2169                 rxfer->release(master, msg, res);
2170
2171         /* insert replaced transfers back into the message */
2172         list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2173
2174         /* remove the formerly inserted entries */
2175         for (i = 0; i < rxfer->inserted; i++)
2176                 list_del(&rxfer->inserted_transfers[i].transfer_list);
2177 }
2178
2179 /**
2180  * spi_replace_transfers - replace transfers with several transfers
2181  *                         and register change with spi_message.resources
2182  * @msg:           the spi_message we work upon
2183  * @xfer_first:    the first spi_transfer we want to replace
2184  * @remove:        number of transfers to remove
2185  * @insert:        the number of transfers we want to insert instead
2186  * @release:       extra release code necessary in some circumstances
2187  * @extradatasize: extra data to allocate (with alignment guarantees
2188  *                 of struct @spi_transfer)
2189  * @gfp:           gfp flags
2190  *
2191  * Returns: pointer to @spi_replaced_transfers,
2192  *          PTR_ERR(...) in case of errors.
2193  */
2194 struct spi_replaced_transfers *spi_replace_transfers(
2195         struct spi_message *msg,
2196         struct spi_transfer *xfer_first,
2197         size_t remove,
2198         size_t insert,
2199         spi_replaced_release_t release,
2200         size_t extradatasize,
2201         gfp_t gfp)
2202 {
2203         struct spi_replaced_transfers *rxfer;
2204         struct spi_transfer *xfer;
2205         size_t i;
2206
2207         /* allocate the structure using spi_res */
2208         rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2209                               insert * sizeof(struct spi_transfer)
2210                               + sizeof(struct spi_replaced_transfers)
2211                               + extradatasize,
2212                               gfp);
2213         if (!rxfer)
2214                 return ERR_PTR(-ENOMEM);
2215
2216         /* the release code to invoke before running the generic release */
2217         rxfer->release = release;
2218
2219         /* assign extradata */
2220         if (extradatasize)
2221                 rxfer->extradata =
2222                         &rxfer->inserted_transfers[insert];
2223
2224         /* init the replaced_transfers list */
2225         INIT_LIST_HEAD(&rxfer->replaced_transfers);
2226
2227         /* assign the list_entry after which we should reinsert
2228          * the @replaced_transfers - it may be spi_message.messages!
2229          */
2230         rxfer->replaced_after = xfer_first->transfer_list.prev;
2231
2232         /* remove the requested number of transfers */
2233         for (i = 0; i < remove; i++) {
2234                 /* if the entry after replaced_after it is msg->transfers
2235                  * then we have been requested to remove more transfers
2236                  * than are in the list
2237                  */
2238                 if (rxfer->replaced_after->next == &msg->transfers) {
2239                         dev_err(&msg->spi->dev,
2240                                 "requested to remove more spi_transfers than are available\n");
2241                         /* insert replaced transfers back into the message */
2242                         list_splice(&rxfer->replaced_transfers,
2243                                     rxfer->replaced_after);
2244
2245                         /* free the spi_replace_transfer structure */
2246                         spi_res_free(rxfer);
2247
2248                         /* and return with an error */
2249                         return ERR_PTR(-EINVAL);
2250                 }
2251
2252                 /* remove the entry after replaced_after from list of
2253                  * transfers and add it to list of replaced_transfers
2254                  */
2255                 list_move_tail(rxfer->replaced_after->next,
2256                                &rxfer->replaced_transfers);
2257         }
2258
2259         /* create copy of the given xfer with identical settings
2260          * based on the first transfer to get removed
2261          */
2262         for (i = 0; i < insert; i++) {
2263                 /* we need to run in reverse order */
2264                 xfer = &rxfer->inserted_transfers[insert - 1 - i];
2265
2266                 /* copy all spi_transfer data */
2267                 memcpy(xfer, xfer_first, sizeof(*xfer));
2268
2269                 /* add to list */
2270                 list_add(&xfer->transfer_list, rxfer->replaced_after);
2271
2272                 /* clear cs_change and delay_usecs for all but the last */
2273                 if (i) {
2274                         xfer->cs_change = false;
2275                         xfer->delay_usecs = 0;
2276                 }
2277         }
2278
2279         /* set up inserted */
2280         rxfer->inserted = insert;
2281
2282         /* and register it with spi_res/spi_message */
2283         spi_res_add(msg, rxfer);
2284
2285         return rxfer;
2286 }
2287 EXPORT_SYMBOL_GPL(spi_replace_transfers);
2288
2289 static int __spi_split_transfer_maxsize(struct spi_master *master,
2290                                         struct spi_message *msg,
2291                                         struct spi_transfer **xferp,
2292                                         size_t maxsize,
2293                                         gfp_t gfp)
2294 {
2295         struct spi_transfer *xfer = *xferp, *xfers;
2296         struct spi_replaced_transfers *srt;
2297         size_t offset;
2298         size_t count, i;
2299
2300         /* warn once about this fact that we are splitting a transfer */
2301         dev_warn_once(&msg->spi->dev,
2302                       "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
2303                       xfer->len, maxsize);
2304
2305         /* calculate how many we have to replace */
2306         count = DIV_ROUND_UP(xfer->len, maxsize);
2307
2308         /* create replacement */
2309         srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2310         if (IS_ERR(srt))
2311                 return PTR_ERR(srt);
2312         xfers = srt->inserted_transfers;
2313
2314         /* now handle each of those newly inserted spi_transfers
2315          * note that the replacements spi_transfers all are preset
2316          * to the same values as *xferp, so tx_buf, rx_buf and len
2317          * are all identical (as well as most others)
2318          * so we just have to fix up len and the pointers.
2319          *
2320          * this also includes support for the depreciated
2321          * spi_message.is_dma_mapped interface
2322          */
2323
2324         /* the first transfer just needs the length modified, so we
2325          * run it outside the loop
2326          */
2327         xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2328
2329         /* all the others need rx_buf/tx_buf also set */
2330         for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2331                 /* update rx_buf, tx_buf and dma */
2332                 if (xfers[i].rx_buf)
2333                         xfers[i].rx_buf += offset;
2334                 if (xfers[i].rx_dma)
2335                         xfers[i].rx_dma += offset;
2336                 if (xfers[i].tx_buf)
2337                         xfers[i].tx_buf += offset;
2338                 if (xfers[i].tx_dma)
2339                         xfers[i].tx_dma += offset;
2340
2341                 /* update length */
2342                 xfers[i].len = min(maxsize, xfers[i].len - offset);
2343         }
2344
2345         /* we set up xferp to the last entry we have inserted,
2346          * so that we skip those already split transfers
2347          */
2348         *xferp = &xfers[count - 1];
2349
2350         /* increment statistics counters */
2351         SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2352                                        transfers_split_maxsize);
2353         SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2354                                        transfers_split_maxsize);
2355
2356         return 0;
2357 }
2358
2359 /**
2360  * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2361  *                              when an individual transfer exceeds a
2362  *                              certain size
2363  * @master:    the @spi_master for this transfer
2364  * @msg:   the @spi_message to transform
2365  * @maxsize:  the maximum when to apply this
2366  * @gfp: GFP allocation flags
2367  *
2368  * Return: status of transformation
2369  */
2370 int spi_split_transfers_maxsize(struct spi_master *master,
2371                                 struct spi_message *msg,
2372                                 size_t maxsize,
2373                                 gfp_t gfp)
2374 {
2375         struct spi_transfer *xfer;
2376         int ret;
2377
2378         /* iterate over the transfer_list,
2379          * but note that xfer is advanced to the last transfer inserted
2380          * to avoid checking sizes again unnecessarily (also xfer does
2381          * potentiall belong to a different list by the time the
2382          * replacement has happened
2383          */
2384         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2385                 if (xfer->len > maxsize) {
2386                         ret = __spi_split_transfer_maxsize(
2387                                 master, msg, &xfer, maxsize, gfp);
2388                         if (ret)
2389                                 return ret;
2390                 }
2391         }
2392
2393         return 0;
2394 }
2395 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2396
2397 /*-------------------------------------------------------------------------*/
2398
2399 /* Core methods for SPI master protocol drivers.  Some of the
2400  * other core methods are currently defined as inline functions.
2401  */
2402
2403 static int __spi_validate_bits_per_word(struct spi_master *master, u8 bits_per_word)
2404 {
2405         if (master->bits_per_word_mask) {
2406                 /* Only 32 bits fit in the mask */
2407                 if (bits_per_word > 32)
2408                         return -EINVAL;
2409                 if (!(master->bits_per_word_mask &
2410                                 SPI_BPW_MASK(bits_per_word)))
2411                         return -EINVAL;
2412         }
2413
2414         return 0;
2415 }
2416
2417 /**
2418  * spi_setup - setup SPI mode and clock rate
2419  * @spi: the device whose settings are being modified
2420  * Context: can sleep, and no requests are queued to the device
2421  *
2422  * SPI protocol drivers may need to update the transfer mode if the
2423  * device doesn't work with its default.  They may likewise need
2424  * to update clock rates or word sizes from initial values.  This function
2425  * changes those settings, and must be called from a context that can sleep.
2426  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2427  * effect the next time the device is selected and data is transferred to
2428  * or from it.  When this function returns, the spi device is deselected.
2429  *
2430  * Note that this call will fail if the protocol driver specifies an option
2431  * that the underlying controller or its driver does not support.  For
2432  * example, not all hardware supports wire transfers using nine bit words,
2433  * LSB-first wire encoding, or active-high chipselects.
2434  *
2435  * Return: zero on success, else a negative error code.
2436  */
2437 int spi_setup(struct spi_device *spi)
2438 {
2439         unsigned        bad_bits, ugly_bits;
2440         int             status;
2441
2442         /* check mode to prevent that DUAL and QUAD set at the same time
2443          */
2444         if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2445                 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2446                 dev_err(&spi->dev,
2447                 "setup: can not select dual and quad at the same time\n");
2448                 return -EINVAL;
2449         }
2450         /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2451          */
2452         if ((spi->mode & SPI_3WIRE) && (spi->mode &
2453                 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
2454                 return -EINVAL;
2455         /* help drivers fail *cleanly* when they need options
2456          * that aren't supported with their current master
2457          */
2458         bad_bits = spi->mode & ~spi->master->mode_bits;
2459         ugly_bits = bad_bits &
2460                     (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
2461         if (ugly_bits) {
2462                 dev_warn(&spi->dev,
2463                          "setup: ignoring unsupported mode bits %x\n",
2464                          ugly_bits);
2465                 spi->mode &= ~ugly_bits;
2466                 bad_bits &= ~ugly_bits;
2467         }
2468         if (bad_bits) {
2469                 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2470                         bad_bits);
2471                 return -EINVAL;
2472         }
2473
2474         if (!spi->bits_per_word)
2475                 spi->bits_per_word = 8;
2476
2477         status = __spi_validate_bits_per_word(spi->master, spi->bits_per_word);
2478         if (status)
2479                 return status;
2480
2481         if (!spi->max_speed_hz)
2482                 spi->max_speed_hz = spi->master->max_speed_hz;
2483
2484         if (spi->master->setup)
2485                 status = spi->master->setup(spi);
2486
2487         spi_set_cs(spi, false);
2488
2489         dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2490                         (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2491                         (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2492                         (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2493                         (spi->mode & SPI_3WIRE) ? "3wire, " : "",
2494                         (spi->mode & SPI_LOOP) ? "loopback, " : "",
2495                         spi->bits_per_word, spi->max_speed_hz,
2496                         status);
2497
2498         return status;
2499 }
2500 EXPORT_SYMBOL_GPL(spi_setup);
2501
2502 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2503 {
2504         struct spi_master *master = spi->master;
2505         struct spi_transfer *xfer;
2506         int w_size;
2507
2508         if (list_empty(&message->transfers))
2509                 return -EINVAL;
2510
2511         /* Half-duplex links include original MicroWire, and ones with
2512          * only one data pin like SPI_3WIRE (switches direction) or where
2513          * either MOSI or MISO is missing.  They can also be caused by
2514          * software limitations.
2515          */
2516         if ((master->flags & SPI_MASTER_HALF_DUPLEX)
2517                         || (spi->mode & SPI_3WIRE)) {
2518                 unsigned flags = master->flags;
2519
2520                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
2521                         if (xfer->rx_buf && xfer->tx_buf)
2522                                 return -EINVAL;
2523                         if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
2524                                 return -EINVAL;
2525                         if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
2526                                 return -EINVAL;
2527                 }
2528         }
2529
2530         /**
2531          * Set transfer bits_per_word and max speed as spi device default if
2532          * it is not set for this transfer.
2533          * Set transfer tx_nbits and rx_nbits as single transfer default
2534          * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2535          */
2536         message->frame_length = 0;
2537         list_for_each_entry(xfer, &message->transfers, transfer_list) {
2538                 message->frame_length += xfer->len;
2539                 if (!xfer->bits_per_word)
2540                         xfer->bits_per_word = spi->bits_per_word;
2541
2542                 if (!xfer->speed_hz)
2543                         xfer->speed_hz = spi->max_speed_hz;
2544                 if (!xfer->speed_hz)
2545                         xfer->speed_hz = master->max_speed_hz;
2546
2547                 if (master->max_speed_hz &&
2548                     xfer->speed_hz > master->max_speed_hz)
2549                         xfer->speed_hz = master->max_speed_hz;
2550
2551                 if (__spi_validate_bits_per_word(master, xfer->bits_per_word))
2552                         return -EINVAL;
2553
2554                 /*
2555                  * SPI transfer length should be multiple of SPI word size
2556                  * where SPI word size should be power-of-two multiple
2557                  */
2558                 if (xfer->bits_per_word <= 8)
2559                         w_size = 1;
2560                 else if (xfer->bits_per_word <= 16)
2561                         w_size = 2;
2562                 else
2563                         w_size = 4;
2564
2565                 /* No partial transfers accepted */
2566                 if (xfer->len % w_size)
2567                         return -EINVAL;
2568
2569                 if (xfer->speed_hz && master->min_speed_hz &&
2570                     xfer->speed_hz < master->min_speed_hz)
2571                         return -EINVAL;
2572
2573                 if (xfer->tx_buf && !xfer->tx_nbits)
2574                         xfer->tx_nbits = SPI_NBITS_SINGLE;
2575                 if (xfer->rx_buf && !xfer->rx_nbits)
2576                         xfer->rx_nbits = SPI_NBITS_SINGLE;
2577                 /* check transfer tx/rx_nbits:
2578                  * 1. check the value matches one of single, dual and quad
2579                  * 2. check tx/rx_nbits match the mode in spi_device
2580                  */
2581                 if (xfer->tx_buf) {
2582                         if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2583                                 xfer->tx_nbits != SPI_NBITS_DUAL &&
2584                                 xfer->tx_nbits != SPI_NBITS_QUAD)
2585                                 return -EINVAL;
2586                         if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2587                                 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2588                                 return -EINVAL;
2589                         if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2590                                 !(spi->mode & SPI_TX_QUAD))
2591                                 return -EINVAL;
2592                 }
2593                 /* check transfer rx_nbits */
2594                 if (xfer->rx_buf) {
2595                         if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2596                                 xfer->rx_nbits != SPI_NBITS_DUAL &&
2597                                 xfer->rx_nbits != SPI_NBITS_QUAD)
2598                                 return -EINVAL;
2599                         if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2600                                 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2601                                 return -EINVAL;
2602                         if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2603                                 !(spi->mode & SPI_RX_QUAD))
2604                                 return -EINVAL;
2605                 }
2606         }
2607
2608         message->status = -EINPROGRESS;
2609
2610         return 0;
2611 }
2612
2613 static int __spi_async(struct spi_device *spi, struct spi_message *message)
2614 {
2615         struct spi_master *master = spi->master;
2616
2617         message->spi = spi;
2618
2619         SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_async);
2620         SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2621
2622         trace_spi_message_submit(message);
2623
2624         return master->transfer(spi, message);
2625 }
2626
2627 /**
2628  * spi_async - asynchronous SPI transfer
2629  * @spi: device with which data will be exchanged
2630  * @message: describes the data transfers, including completion callback
2631  * Context: any (irqs may be blocked, etc)
2632  *
2633  * This call may be used in_irq and other contexts which can't sleep,
2634  * as well as from task contexts which can sleep.
2635  *
2636  * The completion callback is invoked in a context which can't sleep.
2637  * Before that invocation, the value of message->status is undefined.
2638  * When the callback is issued, message->status holds either zero (to
2639  * indicate complete success) or a negative error code.  After that
2640  * callback returns, the driver which issued the transfer request may
2641  * deallocate the associated memory; it's no longer in use by any SPI
2642  * core or controller driver code.
2643  *
2644  * Note that although all messages to a spi_device are handled in
2645  * FIFO order, messages may go to different devices in other orders.
2646  * Some device might be higher priority, or have various "hard" access
2647  * time requirements, for example.
2648  *
2649  * On detection of any fault during the transfer, processing of
2650  * the entire message is aborted, and the device is deselected.
2651  * Until returning from the associated message completion callback,
2652  * no other spi_message queued to that device will be processed.
2653  * (This rule applies equally to all the synchronous transfer calls,
2654  * which are wrappers around this core asynchronous primitive.)
2655  *
2656  * Return: zero on success, else a negative error code.
2657  */
2658 int spi_async(struct spi_device *spi, struct spi_message *message)
2659 {
2660         struct spi_master *master = spi->master;
2661         int ret;
2662         unsigned long flags;
2663
2664         ret = __spi_validate(spi, message);
2665         if (ret != 0)
2666                 return ret;
2667
2668         spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2669
2670         if (master->bus_lock_flag)
2671                 ret = -EBUSY;
2672         else
2673                 ret = __spi_async(spi, message);
2674
2675         spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2676
2677         return ret;
2678 }
2679 EXPORT_SYMBOL_GPL(spi_async);
2680
2681 /**
2682  * spi_async_locked - version of spi_async with exclusive bus usage
2683  * @spi: device with which data will be exchanged
2684  * @message: describes the data transfers, including completion callback
2685  * Context: any (irqs may be blocked, etc)
2686  *
2687  * This call may be used in_irq and other contexts which can't sleep,
2688  * as well as from task contexts which can sleep.
2689  *
2690  * The completion callback is invoked in a context which can't sleep.
2691  * Before that invocation, the value of message->status is undefined.
2692  * When the callback is issued, message->status holds either zero (to
2693  * indicate complete success) or a negative error code.  After that
2694  * callback returns, the driver which issued the transfer request may
2695  * deallocate the associated memory; it's no longer in use by any SPI
2696  * core or controller driver code.
2697  *
2698  * Note that although all messages to a spi_device are handled in
2699  * FIFO order, messages may go to different devices in other orders.
2700  * Some device might be higher priority, or have various "hard" access
2701  * time requirements, for example.
2702  *
2703  * On detection of any fault during the transfer, processing of
2704  * the entire message is aborted, and the device is deselected.
2705  * Until returning from the associated message completion callback,
2706  * no other spi_message queued to that device will be processed.
2707  * (This rule applies equally to all the synchronous transfer calls,
2708  * which are wrappers around this core asynchronous primitive.)
2709  *
2710  * Return: zero on success, else a negative error code.
2711  */
2712 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2713 {
2714         struct spi_master *master = spi->master;
2715         int ret;
2716         unsigned long flags;
2717
2718         ret = __spi_validate(spi, message);
2719         if (ret != 0)
2720                 return ret;
2721
2722         spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2723
2724         ret = __spi_async(spi, message);
2725
2726         spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2727
2728         return ret;
2729
2730 }
2731 EXPORT_SYMBOL_GPL(spi_async_locked);
2732
2733
2734 int spi_flash_read(struct spi_device *spi,
2735                    struct spi_flash_read_message *msg)
2736
2737 {
2738         struct spi_master *master = spi->master;
2739         struct device *rx_dev = NULL;
2740         int ret;
2741
2742         if ((msg->opcode_nbits == SPI_NBITS_DUAL ||
2743              msg->addr_nbits == SPI_NBITS_DUAL) &&
2744             !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2745                 return -EINVAL;
2746         if ((msg->opcode_nbits == SPI_NBITS_QUAD ||
2747              msg->addr_nbits == SPI_NBITS_QUAD) &&
2748             !(spi->mode & SPI_TX_QUAD))
2749                 return -EINVAL;
2750         if (msg->data_nbits == SPI_NBITS_DUAL &&
2751             !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2752                 return -EINVAL;
2753         if (msg->data_nbits == SPI_NBITS_QUAD &&
2754             !(spi->mode &  SPI_RX_QUAD))
2755                 return -EINVAL;
2756
2757         if (master->auto_runtime_pm) {
2758                 ret = pm_runtime_get_sync(master->dev.parent);
2759                 if (ret < 0) {
2760                         dev_err(&master->dev, "Failed to power device: %d\n",
2761                                 ret);
2762                         return ret;
2763                 }
2764         }
2765
2766         mutex_lock(&master->bus_lock_mutex);
2767         mutex_lock(&master->io_mutex);
2768         if (master->dma_rx) {
2769                 rx_dev = master->dma_rx->device->dev;
2770                 ret = spi_map_buf(master, rx_dev, &msg->rx_sg,
2771                                   msg->buf, msg->len,
2772                                   DMA_FROM_DEVICE);
2773                 if (!ret)
2774                         msg->cur_msg_mapped = true;
2775         }
2776         ret = master->spi_flash_read(spi, msg);
2777         if (msg->cur_msg_mapped)
2778                 spi_unmap_buf(master, rx_dev, &msg->rx_sg,
2779                               DMA_FROM_DEVICE);
2780         mutex_unlock(&master->io_mutex);
2781         mutex_unlock(&master->bus_lock_mutex);
2782
2783         if (master->auto_runtime_pm)
2784                 pm_runtime_put(master->dev.parent);
2785
2786         return ret;
2787 }
2788 EXPORT_SYMBOL_GPL(spi_flash_read);
2789
2790 /*-------------------------------------------------------------------------*/
2791
2792 /* Utility methods for SPI master protocol drivers, layered on
2793  * top of the core.  Some other utility methods are defined as
2794  * inline functions.
2795  */
2796
2797 static void spi_complete(void *arg)
2798 {
2799         complete(arg);
2800 }
2801
2802 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
2803 {
2804         DECLARE_COMPLETION_ONSTACK(done);
2805         int status;
2806         struct spi_master *master = spi->master;
2807         unsigned long flags;
2808
2809         status = __spi_validate(spi, message);
2810         if (status != 0)
2811                 return status;
2812
2813         message->complete = spi_complete;
2814         message->context = &done;
2815         message->spi = spi;
2816
2817         SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_sync);
2818         SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
2819
2820         /* If we're not using the legacy transfer method then we will
2821          * try to transfer in the calling context so special case.
2822          * This code would be less tricky if we could remove the
2823          * support for driver implemented message queues.
2824          */
2825         if (master->transfer == spi_queued_transfer) {
2826                 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2827
2828                 trace_spi_message_submit(message);
2829
2830                 status = __spi_queued_transfer(spi, message, false);
2831
2832                 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2833         } else {
2834                 status = spi_async_locked(spi, message);
2835         }
2836
2837         if (status == 0) {
2838                 /* Push out the messages in the calling context if we
2839                  * can.
2840                  */
2841                 if (master->transfer == spi_queued_transfer) {
2842                         SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2843                                                        spi_sync_immediate);
2844                         SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
2845                                                        spi_sync_immediate);
2846                         __spi_pump_messages(master, false);
2847                 }
2848
2849                 wait_for_completion(&done);
2850                 status = message->status;
2851         }
2852         message->context = NULL;
2853         return status;
2854 }
2855
2856 /**
2857  * spi_sync - blocking/synchronous SPI data transfers
2858  * @spi: device with which data will be exchanged
2859  * @message: describes the data transfers
2860  * Context: can sleep
2861  *
2862  * This call may only be used from a context that may sleep.  The sleep
2863  * is non-interruptible, and has no timeout.  Low-overhead controller
2864  * drivers may DMA directly into and out of the message buffers.
2865  *
2866  * Note that the SPI device's chip select is active during the message,
2867  * and then is normally disabled between messages.  Drivers for some
2868  * frequently-used devices may want to minimize costs of selecting a chip,
2869  * by leaving it selected in anticipation that the next message will go
2870  * to the same chip.  (That may increase power usage.)
2871  *
2872  * Also, the caller is guaranteeing that the memory associated with the
2873  * message will not be freed before this call returns.
2874  *
2875  * Return: zero on success, else a negative error code.
2876  */
2877 int spi_sync(struct spi_device *spi, struct spi_message *message)
2878 {
2879         int ret;
2880
2881         mutex_lock(&spi->master->bus_lock_mutex);
2882         ret = __spi_sync(spi, message);
2883         mutex_unlock(&spi->master->bus_lock_mutex);
2884
2885         return ret;
2886 }
2887 EXPORT_SYMBOL_GPL(spi_sync);
2888
2889 /**
2890  * spi_sync_locked - version of spi_sync with exclusive bus usage
2891  * @spi: device with which data will be exchanged
2892  * @message: describes the data transfers
2893  * Context: can sleep
2894  *
2895  * This call may only be used from a context that may sleep.  The sleep
2896  * is non-interruptible, and has no timeout.  Low-overhead controller
2897  * drivers may DMA directly into and out of the message buffers.
2898  *
2899  * This call should be used by drivers that require exclusive access to the
2900  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2901  * be released by a spi_bus_unlock call when the exclusive access is over.
2902  *
2903  * Return: zero on success, else a negative error code.
2904  */
2905 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2906 {
2907         return __spi_sync(spi, message);
2908 }
2909 EXPORT_SYMBOL_GPL(spi_sync_locked);
2910
2911 /**
2912  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2913  * @master: SPI bus master that should be locked for exclusive bus access
2914  * Context: can sleep
2915  *
2916  * This call may only be used from a context that may sleep.  The sleep
2917  * is non-interruptible, and has no timeout.
2918  *
2919  * This call should be used by drivers that require exclusive access to the
2920  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2921  * exclusive access is over. Data transfer must be done by spi_sync_locked
2922  * and spi_async_locked calls when the SPI bus lock is held.
2923  *
2924  * Return: always zero.
2925  */
2926 int spi_bus_lock(struct spi_master *master)
2927 {
2928         unsigned long flags;
2929
2930         mutex_lock(&master->bus_lock_mutex);
2931
2932         spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2933         master->bus_lock_flag = 1;
2934         spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2935
2936         /* mutex remains locked until spi_bus_unlock is called */
2937
2938         return 0;
2939 }
2940 EXPORT_SYMBOL_GPL(spi_bus_lock);
2941
2942 /**
2943  * spi_bus_unlock - release the lock for exclusive SPI bus usage
2944  * @master: SPI bus master that was locked for exclusive bus access
2945  * Context: can sleep
2946  *
2947  * This call may only be used from a context that may sleep.  The sleep
2948  * is non-interruptible, and has no timeout.
2949  *
2950  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2951  * call.
2952  *
2953  * Return: always zero.
2954  */
2955 int spi_bus_unlock(struct spi_master *master)
2956 {
2957         master->bus_lock_flag = 0;
2958
2959         mutex_unlock(&master->bus_lock_mutex);
2960
2961         return 0;
2962 }
2963 EXPORT_SYMBOL_GPL(spi_bus_unlock);
2964
2965 /* portable code must never pass more than 32 bytes */
2966 #define SPI_BUFSIZ      max(32, SMP_CACHE_BYTES)
2967
2968 static u8       *buf;
2969
2970 /**
2971  * spi_write_then_read - SPI synchronous write followed by read
2972  * @spi: device with which data will be exchanged
2973  * @txbuf: data to be written (need not be dma-safe)
2974  * @n_tx: size of txbuf, in bytes
2975  * @rxbuf: buffer into which data will be read (need not be dma-safe)
2976  * @n_rx: size of rxbuf, in bytes
2977  * Context: can sleep
2978  *
2979  * This performs a half duplex MicroWire style transaction with the
2980  * device, sending txbuf and then reading rxbuf.  The return value
2981  * is zero for success, else a negative errno status code.
2982  * This call may only be used from a context that may sleep.
2983  *
2984  * Parameters to this routine are always copied using a small buffer;
2985  * portable code should never use this for more than 32 bytes.
2986  * Performance-sensitive or bulk transfer code should instead use
2987  * spi_{async,sync}() calls with dma-safe buffers.
2988  *
2989  * Return: zero on success, else a negative error code.
2990  */
2991 int spi_write_then_read(struct spi_device *spi,
2992                 const void *txbuf, unsigned n_tx,
2993                 void *rxbuf, unsigned n_rx)
2994 {
2995         static DEFINE_MUTEX(lock);
2996
2997         int                     status;
2998         struct spi_message      message;
2999         struct spi_transfer     x[2];
3000         u8                      *local_buf;
3001
3002         /* Use preallocated DMA-safe buffer if we can.  We can't avoid
3003          * copying here, (as a pure convenience thing), but we can
3004          * keep heap costs out of the hot path unless someone else is
3005          * using the pre-allocated buffer or the transfer is too large.
3006          */
3007         if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3008                 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3009                                     GFP_KERNEL | GFP_DMA);
3010                 if (!local_buf)
3011                         return -ENOMEM;
3012         } else {
3013                 local_buf = buf;
3014         }
3015
3016         spi_message_init(&message);
3017         memset(x, 0, sizeof(x));
3018         if (n_tx) {
3019                 x[0].len = n_tx;
3020                 spi_message_add_tail(&x[0], &message);
3021         }
3022         if (n_rx) {
3023                 x[1].len = n_rx;
3024                 spi_message_add_tail(&x[1], &message);
3025         }
3026
3027         memcpy(local_buf, txbuf, n_tx);
3028         x[0].tx_buf = local_buf;
3029         x[1].rx_buf = local_buf + n_tx;
3030
3031         /* do the i/o */
3032         status = spi_sync(spi, &message);
3033         if (status == 0)
3034                 memcpy(rxbuf, x[1].rx_buf, n_rx);
3035
3036         if (x[0].tx_buf == buf)
3037                 mutex_unlock(&lock);
3038         else
3039                 kfree(local_buf);
3040
3041         return status;
3042 }
3043 EXPORT_SYMBOL_GPL(spi_write_then_read);
3044
3045 /*-------------------------------------------------------------------------*/
3046
3047 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
3048 static int __spi_of_device_match(struct device *dev, void *data)
3049 {
3050         return dev->of_node == data;
3051 }
3052
3053 /* must call put_device() when done with returned spi_device device */
3054 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3055 {
3056         struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
3057                                                 __spi_of_device_match);
3058         return dev ? to_spi_device(dev) : NULL;
3059 }
3060
3061 static int __spi_of_master_match(struct device *dev, const void *data)
3062 {
3063         return dev->of_node == data;
3064 }
3065
3066 /* the spi masters are not using spi_bus, so we find it with another way */
3067 static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
3068 {
3069         struct device *dev;
3070
3071         dev = class_find_device(&spi_master_class, NULL, node,
3072                                 __spi_of_master_match);
3073         if (!dev)
3074                 return NULL;
3075
3076         /* reference got in class_find_device */
3077         return container_of(dev, struct spi_master, dev);
3078 }
3079
3080 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3081                          void *arg)
3082 {
3083         struct of_reconfig_data *rd = arg;
3084         struct spi_master *master;
3085         struct spi_device *spi;
3086
3087         switch (of_reconfig_get_state_change(action, arg)) {
3088         case OF_RECONFIG_CHANGE_ADD:
3089                 master = of_find_spi_master_by_node(rd->dn->parent);
3090                 if (master == NULL)
3091                         return NOTIFY_OK;       /* not for us */
3092
3093                 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3094                         put_device(&master->dev);
3095                         return NOTIFY_OK;
3096                 }
3097
3098                 spi = of_register_spi_device(master, rd->dn);
3099                 put_device(&master->dev);
3100
3101                 if (IS_ERR(spi)) {
3102                         pr_err("%s: failed to create for '%s'\n",
3103                                         __func__, rd->dn->full_name);
3104                         return notifier_from_errno(PTR_ERR(spi));
3105                 }
3106                 break;
3107
3108         case OF_RECONFIG_CHANGE_REMOVE:
3109                 /* already depopulated? */
3110                 if (!of_node_check_flag(rd->dn, OF_POPULATED))
3111                         return NOTIFY_OK;
3112
3113                 /* find our device by node */
3114                 spi = of_find_spi_device_by_node(rd->dn);
3115                 if (spi == NULL)
3116                         return NOTIFY_OK;       /* no? not meant for us */
3117
3118                 /* unregister takes one ref away */
3119                 spi_unregister_device(spi);
3120
3121                 /* and put the reference of the find */
3122                 put_device(&spi->dev);
3123                 break;
3124         }
3125
3126         return NOTIFY_OK;
3127 }
3128
3129 static struct notifier_block spi_of_notifier = {
3130         .notifier_call = of_spi_notify,
3131 };
3132 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3133 extern struct notifier_block spi_of_notifier;
3134 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3135
3136 static int __init spi_init(void)
3137 {
3138         int     status;
3139
3140         buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3141         if (!buf) {
3142                 status = -ENOMEM;
3143                 goto err0;
3144         }
3145
3146         status = bus_register(&spi_bus_type);
3147         if (status < 0)
3148                 goto err1;
3149
3150         status = class_register(&spi_master_class);
3151         if (status < 0)
3152                 goto err2;
3153
3154         if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3155                 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3156
3157         return 0;
3158
3159 err2:
3160         bus_unregister(&spi_bus_type);
3161 err1:
3162         kfree(buf);
3163         buf = NULL;
3164 err0:
3165         return status;
3166 }
3167
3168 /* board_info is normally registered in arch_initcall(),
3169  * but even essential drivers wait till later
3170  *
3171  * REVISIT only boardinfo really needs static linking. the rest (device and
3172  * driver registration) _could_ be dynamically linked (modular) ... costs
3173  * include needing to have boardinfo data structures be much more public.
3174  */
3175 postcore_initcall(spi_init);
3176