Merge tag 'mac80211-for-davem-2016-07-06' of git://git.kernel.org/pub/scm/linux/kerne...
[sfrench/cifs-2.6.git] / drivers / spi / spi.c
1 /*
2  * SPI init/core code
3  *
4  * Copyright (C) 2005 David Brownell
5  * Copyright (C) 2008 Secret Lab Technologies Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  */
17
18 #include <linux/kernel.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/cache.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mutex.h>
25 #include <linux/of_device.h>
26 #include <linux/of_irq.h>
27 #include <linux/clk/clk-conf.h>
28 #include <linux/slab.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/spi/spi.h>
31 #include <linux/of_gpio.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/pm_domain.h>
34 #include <linux/export.h>
35 #include <linux/sched/rt.h>
36 #include <linux/delay.h>
37 #include <linux/kthread.h>
38 #include <linux/ioport.h>
39 #include <linux/acpi.h>
40
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/spi.h>
43
44 static void spidev_release(struct device *dev)
45 {
46         struct spi_device       *spi = to_spi_device(dev);
47
48         /* spi masters may cleanup for released devices */
49         if (spi->master->cleanup)
50                 spi->master->cleanup(spi);
51
52         spi_master_put(spi->master);
53         kfree(spi);
54 }
55
56 static ssize_t
57 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
58 {
59         const struct spi_device *spi = to_spi_device(dev);
60         int len;
61
62         len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
63         if (len != -ENODEV)
64                 return len;
65
66         return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
67 }
68 static DEVICE_ATTR_RO(modalias);
69
70 #define SPI_STATISTICS_ATTRS(field, file)                               \
71 static ssize_t spi_master_##field##_show(struct device *dev,            \
72                                          struct device_attribute *attr, \
73                                          char *buf)                     \
74 {                                                                       \
75         struct spi_master *master = container_of(dev,                   \
76                                                  struct spi_master, dev); \
77         return spi_statistics_##field##_show(&master->statistics, buf); \
78 }                                                                       \
79 static struct device_attribute dev_attr_spi_master_##field = {          \
80         .attr = { .name = file, .mode = S_IRUGO },                      \
81         .show = spi_master_##field##_show,                              \
82 };                                                                      \
83 static ssize_t spi_device_##field##_show(struct device *dev,            \
84                                          struct device_attribute *attr, \
85                                         char *buf)                      \
86 {                                                                       \
87         struct spi_device *spi = to_spi_device(dev);                    \
88         return spi_statistics_##field##_show(&spi->statistics, buf);    \
89 }                                                                       \
90 static struct device_attribute dev_attr_spi_device_##field = {          \
91         .attr = { .name = file, .mode = S_IRUGO },                      \
92         .show = spi_device_##field##_show,                              \
93 }
94
95 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)      \
96 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
97                                             char *buf)                  \
98 {                                                                       \
99         unsigned long flags;                                            \
100         ssize_t len;                                                    \
101         spin_lock_irqsave(&stat->lock, flags);                          \
102         len = sprintf(buf, format_string, stat->field);                 \
103         spin_unlock_irqrestore(&stat->lock, flags);                     \
104         return len;                                                     \
105 }                                                                       \
106 SPI_STATISTICS_ATTRS(name, file)
107
108 #define SPI_STATISTICS_SHOW(field, format_string)                       \
109         SPI_STATISTICS_SHOW_NAME(field, __stringify(field),             \
110                                  field, format_string)
111
112 SPI_STATISTICS_SHOW(messages, "%lu");
113 SPI_STATISTICS_SHOW(transfers, "%lu");
114 SPI_STATISTICS_SHOW(errors, "%lu");
115 SPI_STATISTICS_SHOW(timedout, "%lu");
116
117 SPI_STATISTICS_SHOW(spi_sync, "%lu");
118 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
119 SPI_STATISTICS_SHOW(spi_async, "%lu");
120
121 SPI_STATISTICS_SHOW(bytes, "%llu");
122 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
123 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
124
125 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)              \
126         SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,           \
127                                  "transfer_bytes_histo_" number,        \
128                                  transfer_bytes_histo[index],  "%lu")
129 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
130 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
131 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
132 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
133 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
134 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
135 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
136 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
137 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
138 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
139 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
140 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
141 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
142 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
143 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
144 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
145 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
146
147 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
148
149 static struct attribute *spi_dev_attrs[] = {
150         &dev_attr_modalias.attr,
151         NULL,
152 };
153
154 static const struct attribute_group spi_dev_group = {
155         .attrs  = spi_dev_attrs,
156 };
157
158 static struct attribute *spi_device_statistics_attrs[] = {
159         &dev_attr_spi_device_messages.attr,
160         &dev_attr_spi_device_transfers.attr,
161         &dev_attr_spi_device_errors.attr,
162         &dev_attr_spi_device_timedout.attr,
163         &dev_attr_spi_device_spi_sync.attr,
164         &dev_attr_spi_device_spi_sync_immediate.attr,
165         &dev_attr_spi_device_spi_async.attr,
166         &dev_attr_spi_device_bytes.attr,
167         &dev_attr_spi_device_bytes_rx.attr,
168         &dev_attr_spi_device_bytes_tx.attr,
169         &dev_attr_spi_device_transfer_bytes_histo0.attr,
170         &dev_attr_spi_device_transfer_bytes_histo1.attr,
171         &dev_attr_spi_device_transfer_bytes_histo2.attr,
172         &dev_attr_spi_device_transfer_bytes_histo3.attr,
173         &dev_attr_spi_device_transfer_bytes_histo4.attr,
174         &dev_attr_spi_device_transfer_bytes_histo5.attr,
175         &dev_attr_spi_device_transfer_bytes_histo6.attr,
176         &dev_attr_spi_device_transfer_bytes_histo7.attr,
177         &dev_attr_spi_device_transfer_bytes_histo8.attr,
178         &dev_attr_spi_device_transfer_bytes_histo9.attr,
179         &dev_attr_spi_device_transfer_bytes_histo10.attr,
180         &dev_attr_spi_device_transfer_bytes_histo11.attr,
181         &dev_attr_spi_device_transfer_bytes_histo12.attr,
182         &dev_attr_spi_device_transfer_bytes_histo13.attr,
183         &dev_attr_spi_device_transfer_bytes_histo14.attr,
184         &dev_attr_spi_device_transfer_bytes_histo15.attr,
185         &dev_attr_spi_device_transfer_bytes_histo16.attr,
186         &dev_attr_spi_device_transfers_split_maxsize.attr,
187         NULL,
188 };
189
190 static const struct attribute_group spi_device_statistics_group = {
191         .name  = "statistics",
192         .attrs  = spi_device_statistics_attrs,
193 };
194
195 static const struct attribute_group *spi_dev_groups[] = {
196         &spi_dev_group,
197         &spi_device_statistics_group,
198         NULL,
199 };
200
201 static struct attribute *spi_master_statistics_attrs[] = {
202         &dev_attr_spi_master_messages.attr,
203         &dev_attr_spi_master_transfers.attr,
204         &dev_attr_spi_master_errors.attr,
205         &dev_attr_spi_master_timedout.attr,
206         &dev_attr_spi_master_spi_sync.attr,
207         &dev_attr_spi_master_spi_sync_immediate.attr,
208         &dev_attr_spi_master_spi_async.attr,
209         &dev_attr_spi_master_bytes.attr,
210         &dev_attr_spi_master_bytes_rx.attr,
211         &dev_attr_spi_master_bytes_tx.attr,
212         &dev_attr_spi_master_transfer_bytes_histo0.attr,
213         &dev_attr_spi_master_transfer_bytes_histo1.attr,
214         &dev_attr_spi_master_transfer_bytes_histo2.attr,
215         &dev_attr_spi_master_transfer_bytes_histo3.attr,
216         &dev_attr_spi_master_transfer_bytes_histo4.attr,
217         &dev_attr_spi_master_transfer_bytes_histo5.attr,
218         &dev_attr_spi_master_transfer_bytes_histo6.attr,
219         &dev_attr_spi_master_transfer_bytes_histo7.attr,
220         &dev_attr_spi_master_transfer_bytes_histo8.attr,
221         &dev_attr_spi_master_transfer_bytes_histo9.attr,
222         &dev_attr_spi_master_transfer_bytes_histo10.attr,
223         &dev_attr_spi_master_transfer_bytes_histo11.attr,
224         &dev_attr_spi_master_transfer_bytes_histo12.attr,
225         &dev_attr_spi_master_transfer_bytes_histo13.attr,
226         &dev_attr_spi_master_transfer_bytes_histo14.attr,
227         &dev_attr_spi_master_transfer_bytes_histo15.attr,
228         &dev_attr_spi_master_transfer_bytes_histo16.attr,
229         &dev_attr_spi_master_transfers_split_maxsize.attr,
230         NULL,
231 };
232
233 static const struct attribute_group spi_master_statistics_group = {
234         .name  = "statistics",
235         .attrs  = spi_master_statistics_attrs,
236 };
237
238 static const struct attribute_group *spi_master_groups[] = {
239         &spi_master_statistics_group,
240         NULL,
241 };
242
243 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
244                                        struct spi_transfer *xfer,
245                                        struct spi_master *master)
246 {
247         unsigned long flags;
248         int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
249
250         if (l2len < 0)
251                 l2len = 0;
252
253         spin_lock_irqsave(&stats->lock, flags);
254
255         stats->transfers++;
256         stats->transfer_bytes_histo[l2len]++;
257
258         stats->bytes += xfer->len;
259         if ((xfer->tx_buf) &&
260             (xfer->tx_buf != master->dummy_tx))
261                 stats->bytes_tx += xfer->len;
262         if ((xfer->rx_buf) &&
263             (xfer->rx_buf != master->dummy_rx))
264                 stats->bytes_rx += xfer->len;
265
266         spin_unlock_irqrestore(&stats->lock, flags);
267 }
268 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
269
270 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
271  * and the sysfs version makes coldplug work too.
272  */
273
274 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
275                                                 const struct spi_device *sdev)
276 {
277         while (id->name[0]) {
278                 if (!strcmp(sdev->modalias, id->name))
279                         return id;
280                 id++;
281         }
282         return NULL;
283 }
284
285 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
286 {
287         const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
288
289         return spi_match_id(sdrv->id_table, sdev);
290 }
291 EXPORT_SYMBOL_GPL(spi_get_device_id);
292
293 static int spi_match_device(struct device *dev, struct device_driver *drv)
294 {
295         const struct spi_device *spi = to_spi_device(dev);
296         const struct spi_driver *sdrv = to_spi_driver(drv);
297
298         /* Attempt an OF style match */
299         if (of_driver_match_device(dev, drv))
300                 return 1;
301
302         /* Then try ACPI */
303         if (acpi_driver_match_device(dev, drv))
304                 return 1;
305
306         if (sdrv->id_table)
307                 return !!spi_match_id(sdrv->id_table, spi);
308
309         return strcmp(spi->modalias, drv->name) == 0;
310 }
311
312 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
313 {
314         const struct spi_device         *spi = to_spi_device(dev);
315         int rc;
316
317         rc = acpi_device_uevent_modalias(dev, env);
318         if (rc != -ENODEV)
319                 return rc;
320
321         add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
322         return 0;
323 }
324
325 struct bus_type spi_bus_type = {
326         .name           = "spi",
327         .dev_groups     = spi_dev_groups,
328         .match          = spi_match_device,
329         .uevent         = spi_uevent,
330 };
331 EXPORT_SYMBOL_GPL(spi_bus_type);
332
333
334 static int spi_drv_probe(struct device *dev)
335 {
336         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
337         struct spi_device               *spi = to_spi_device(dev);
338         int ret;
339
340         ret = of_clk_set_defaults(dev->of_node, false);
341         if (ret)
342                 return ret;
343
344         if (dev->of_node) {
345                 spi->irq = of_irq_get(dev->of_node, 0);
346                 if (spi->irq == -EPROBE_DEFER)
347                         return -EPROBE_DEFER;
348                 if (spi->irq < 0)
349                         spi->irq = 0;
350         }
351
352         ret = dev_pm_domain_attach(dev, true);
353         if (ret != -EPROBE_DEFER) {
354                 ret = sdrv->probe(spi);
355                 if (ret)
356                         dev_pm_domain_detach(dev, true);
357         }
358
359         return ret;
360 }
361
362 static int spi_drv_remove(struct device *dev)
363 {
364         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
365         int ret;
366
367         ret = sdrv->remove(to_spi_device(dev));
368         dev_pm_domain_detach(dev, true);
369
370         return ret;
371 }
372
373 static void spi_drv_shutdown(struct device *dev)
374 {
375         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
376
377         sdrv->shutdown(to_spi_device(dev));
378 }
379
380 /**
381  * __spi_register_driver - register a SPI driver
382  * @owner: owner module of the driver to register
383  * @sdrv: the driver to register
384  * Context: can sleep
385  *
386  * Return: zero on success, else a negative error code.
387  */
388 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
389 {
390         sdrv->driver.owner = owner;
391         sdrv->driver.bus = &spi_bus_type;
392         if (sdrv->probe)
393                 sdrv->driver.probe = spi_drv_probe;
394         if (sdrv->remove)
395                 sdrv->driver.remove = spi_drv_remove;
396         if (sdrv->shutdown)
397                 sdrv->driver.shutdown = spi_drv_shutdown;
398         return driver_register(&sdrv->driver);
399 }
400 EXPORT_SYMBOL_GPL(__spi_register_driver);
401
402 /*-------------------------------------------------------------------------*/
403
404 /* SPI devices should normally not be created by SPI device drivers; that
405  * would make them board-specific.  Similarly with SPI master drivers.
406  * Device registration normally goes into like arch/.../mach.../board-YYY.c
407  * with other readonly (flashable) information about mainboard devices.
408  */
409
410 struct boardinfo {
411         struct list_head        list;
412         struct spi_board_info   board_info;
413 };
414
415 static LIST_HEAD(board_list);
416 static LIST_HEAD(spi_master_list);
417
418 /*
419  * Used to protect add/del opertion for board_info list and
420  * spi_master list, and their matching process
421  */
422 static DEFINE_MUTEX(board_lock);
423
424 /**
425  * spi_alloc_device - Allocate a new SPI device
426  * @master: Controller to which device is connected
427  * Context: can sleep
428  *
429  * Allows a driver to allocate and initialize a spi_device without
430  * registering it immediately.  This allows a driver to directly
431  * fill the spi_device with device parameters before calling
432  * spi_add_device() on it.
433  *
434  * Caller is responsible to call spi_add_device() on the returned
435  * spi_device structure to add it to the SPI master.  If the caller
436  * needs to discard the spi_device without adding it, then it should
437  * call spi_dev_put() on it.
438  *
439  * Return: a pointer to the new device, or NULL.
440  */
441 struct spi_device *spi_alloc_device(struct spi_master *master)
442 {
443         struct spi_device       *spi;
444
445         if (!spi_master_get(master))
446                 return NULL;
447
448         spi = kzalloc(sizeof(*spi), GFP_KERNEL);
449         if (!spi) {
450                 spi_master_put(master);
451                 return NULL;
452         }
453
454         spi->master = master;
455         spi->dev.parent = &master->dev;
456         spi->dev.bus = &spi_bus_type;
457         spi->dev.release = spidev_release;
458         spi->cs_gpio = -ENOENT;
459
460         spin_lock_init(&spi->statistics.lock);
461
462         device_initialize(&spi->dev);
463         return spi;
464 }
465 EXPORT_SYMBOL_GPL(spi_alloc_device);
466
467 static void spi_dev_set_name(struct spi_device *spi)
468 {
469         struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
470
471         if (adev) {
472                 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
473                 return;
474         }
475
476         dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
477                      spi->chip_select);
478 }
479
480 static int spi_dev_check(struct device *dev, void *data)
481 {
482         struct spi_device *spi = to_spi_device(dev);
483         struct spi_device *new_spi = data;
484
485         if (spi->master == new_spi->master &&
486             spi->chip_select == new_spi->chip_select)
487                 return -EBUSY;
488         return 0;
489 }
490
491 /**
492  * spi_add_device - Add spi_device allocated with spi_alloc_device
493  * @spi: spi_device to register
494  *
495  * Companion function to spi_alloc_device.  Devices allocated with
496  * spi_alloc_device can be added onto the spi bus with this function.
497  *
498  * Return: 0 on success; negative errno on failure
499  */
500 int spi_add_device(struct spi_device *spi)
501 {
502         static DEFINE_MUTEX(spi_add_lock);
503         struct spi_master *master = spi->master;
504         struct device *dev = master->dev.parent;
505         int status;
506
507         /* Chipselects are numbered 0..max; validate. */
508         if (spi->chip_select >= master->num_chipselect) {
509                 dev_err(dev, "cs%d >= max %d\n",
510                         spi->chip_select,
511                         master->num_chipselect);
512                 return -EINVAL;
513         }
514
515         /* Set the bus ID string */
516         spi_dev_set_name(spi);
517
518         /* We need to make sure there's no other device with this
519          * chipselect **BEFORE** we call setup(), else we'll trash
520          * its configuration.  Lock against concurrent add() calls.
521          */
522         mutex_lock(&spi_add_lock);
523
524         status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
525         if (status) {
526                 dev_err(dev, "chipselect %d already in use\n",
527                                 spi->chip_select);
528                 goto done;
529         }
530
531         if (master->cs_gpios)
532                 spi->cs_gpio = master->cs_gpios[spi->chip_select];
533
534         /* Drivers may modify this initial i/o setup, but will
535          * normally rely on the device being setup.  Devices
536          * using SPI_CS_HIGH can't coexist well otherwise...
537          */
538         status = spi_setup(spi);
539         if (status < 0) {
540                 dev_err(dev, "can't setup %s, status %d\n",
541                                 dev_name(&spi->dev), status);
542                 goto done;
543         }
544
545         /* Device may be bound to an active driver when this returns */
546         status = device_add(&spi->dev);
547         if (status < 0)
548                 dev_err(dev, "can't add %s, status %d\n",
549                                 dev_name(&spi->dev), status);
550         else
551                 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
552
553 done:
554         mutex_unlock(&spi_add_lock);
555         return status;
556 }
557 EXPORT_SYMBOL_GPL(spi_add_device);
558
559 /**
560  * spi_new_device - instantiate one new SPI device
561  * @master: Controller to which device is connected
562  * @chip: Describes the SPI device
563  * Context: can sleep
564  *
565  * On typical mainboards, this is purely internal; and it's not needed
566  * after board init creates the hard-wired devices.  Some development
567  * platforms may not be able to use spi_register_board_info though, and
568  * this is exported so that for example a USB or parport based adapter
569  * driver could add devices (which it would learn about out-of-band).
570  *
571  * Return: the new device, or NULL.
572  */
573 struct spi_device *spi_new_device(struct spi_master *master,
574                                   struct spi_board_info *chip)
575 {
576         struct spi_device       *proxy;
577         int                     status;
578
579         /* NOTE:  caller did any chip->bus_num checks necessary.
580          *
581          * Also, unless we change the return value convention to use
582          * error-or-pointer (not NULL-or-pointer), troubleshootability
583          * suggests syslogged diagnostics are best here (ugh).
584          */
585
586         proxy = spi_alloc_device(master);
587         if (!proxy)
588                 return NULL;
589
590         WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
591
592         proxy->chip_select = chip->chip_select;
593         proxy->max_speed_hz = chip->max_speed_hz;
594         proxy->mode = chip->mode;
595         proxy->irq = chip->irq;
596         strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
597         proxy->dev.platform_data = (void *) chip->platform_data;
598         proxy->controller_data = chip->controller_data;
599         proxy->controller_state = NULL;
600
601         status = spi_add_device(proxy);
602         if (status < 0) {
603                 spi_dev_put(proxy);
604                 return NULL;
605         }
606
607         return proxy;
608 }
609 EXPORT_SYMBOL_GPL(spi_new_device);
610
611 /**
612  * spi_unregister_device - unregister a single SPI device
613  * @spi: spi_device to unregister
614  *
615  * Start making the passed SPI device vanish. Normally this would be handled
616  * by spi_unregister_master().
617  */
618 void spi_unregister_device(struct spi_device *spi)
619 {
620         if (!spi)
621                 return;
622
623         if (spi->dev.of_node)
624                 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
625         device_unregister(&spi->dev);
626 }
627 EXPORT_SYMBOL_GPL(spi_unregister_device);
628
629 static void spi_match_master_to_boardinfo(struct spi_master *master,
630                                 struct spi_board_info *bi)
631 {
632         struct spi_device *dev;
633
634         if (master->bus_num != bi->bus_num)
635                 return;
636
637         dev = spi_new_device(master, bi);
638         if (!dev)
639                 dev_err(master->dev.parent, "can't create new device for %s\n",
640                         bi->modalias);
641 }
642
643 /**
644  * spi_register_board_info - register SPI devices for a given board
645  * @info: array of chip descriptors
646  * @n: how many descriptors are provided
647  * Context: can sleep
648  *
649  * Board-specific early init code calls this (probably during arch_initcall)
650  * with segments of the SPI device table.  Any device nodes are created later,
651  * after the relevant parent SPI controller (bus_num) is defined.  We keep
652  * this table of devices forever, so that reloading a controller driver will
653  * not make Linux forget about these hard-wired devices.
654  *
655  * Other code can also call this, e.g. a particular add-on board might provide
656  * SPI devices through its expansion connector, so code initializing that board
657  * would naturally declare its SPI devices.
658  *
659  * The board info passed can safely be __initdata ... but be careful of
660  * any embedded pointers (platform_data, etc), they're copied as-is.
661  *
662  * Return: zero on success, else a negative error code.
663  */
664 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
665 {
666         struct boardinfo *bi;
667         int i;
668
669         if (!n)
670                 return -EINVAL;
671
672         bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
673         if (!bi)
674                 return -ENOMEM;
675
676         for (i = 0; i < n; i++, bi++, info++) {
677                 struct spi_master *master;
678
679                 memcpy(&bi->board_info, info, sizeof(*info));
680                 mutex_lock(&board_lock);
681                 list_add_tail(&bi->list, &board_list);
682                 list_for_each_entry(master, &spi_master_list, list)
683                         spi_match_master_to_boardinfo(master, &bi->board_info);
684                 mutex_unlock(&board_lock);
685         }
686
687         return 0;
688 }
689
690 /*-------------------------------------------------------------------------*/
691
692 static void spi_set_cs(struct spi_device *spi, bool enable)
693 {
694         if (spi->mode & SPI_CS_HIGH)
695                 enable = !enable;
696
697         if (gpio_is_valid(spi->cs_gpio))
698                 gpio_set_value(spi->cs_gpio, !enable);
699         else if (spi->master->set_cs)
700                 spi->master->set_cs(spi, !enable);
701 }
702
703 #ifdef CONFIG_HAS_DMA
704 static int spi_map_buf(struct spi_master *master, struct device *dev,
705                        struct sg_table *sgt, void *buf, size_t len,
706                        enum dma_data_direction dir)
707 {
708         const bool vmalloced_buf = is_vmalloc_addr(buf);
709         unsigned int max_seg_size = dma_get_max_seg_size(dev);
710         int desc_len;
711         int sgs;
712         struct page *vm_page;
713         void *sg_buf;
714         size_t min;
715         int i, ret;
716
717         if (vmalloced_buf) {
718                 desc_len = min_t(int, max_seg_size, PAGE_SIZE);
719                 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
720         } else if (virt_addr_valid(buf)) {
721                 desc_len = min_t(int, max_seg_size, master->max_dma_len);
722                 sgs = DIV_ROUND_UP(len, desc_len);
723         } else {
724                 return -EINVAL;
725         }
726
727         ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
728         if (ret != 0)
729                 return ret;
730
731         for (i = 0; i < sgs; i++) {
732
733                 if (vmalloced_buf) {
734                         min = min_t(size_t,
735                                     len, desc_len - offset_in_page(buf));
736                         vm_page = vmalloc_to_page(buf);
737                         if (!vm_page) {
738                                 sg_free_table(sgt);
739                                 return -ENOMEM;
740                         }
741                         sg_set_page(&sgt->sgl[i], vm_page,
742                                     min, offset_in_page(buf));
743                 } else {
744                         min = min_t(size_t, len, desc_len);
745                         sg_buf = buf;
746                         sg_set_buf(&sgt->sgl[i], sg_buf, min);
747                 }
748
749                 buf += min;
750                 len -= min;
751         }
752
753         ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
754         if (!ret)
755                 ret = -ENOMEM;
756         if (ret < 0) {
757                 sg_free_table(sgt);
758                 return ret;
759         }
760
761         sgt->nents = ret;
762
763         return 0;
764 }
765
766 static void spi_unmap_buf(struct spi_master *master, struct device *dev,
767                           struct sg_table *sgt, enum dma_data_direction dir)
768 {
769         if (sgt->orig_nents) {
770                 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
771                 sg_free_table(sgt);
772         }
773 }
774
775 static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
776 {
777         struct device *tx_dev, *rx_dev;
778         struct spi_transfer *xfer;
779         int ret;
780
781         if (!master->can_dma)
782                 return 0;
783
784         if (master->dma_tx)
785                 tx_dev = master->dma_tx->device->dev;
786         else
787                 tx_dev = &master->dev;
788
789         if (master->dma_rx)
790                 rx_dev = master->dma_rx->device->dev;
791         else
792                 rx_dev = &master->dev;
793
794         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
795                 if (!master->can_dma(master, msg->spi, xfer))
796                         continue;
797
798                 if (xfer->tx_buf != NULL) {
799                         ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
800                                           (void *)xfer->tx_buf, xfer->len,
801                                           DMA_TO_DEVICE);
802                         if (ret != 0)
803                                 return ret;
804                 }
805
806                 if (xfer->rx_buf != NULL) {
807                         ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
808                                           xfer->rx_buf, xfer->len,
809                                           DMA_FROM_DEVICE);
810                         if (ret != 0) {
811                                 spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
812                                               DMA_TO_DEVICE);
813                                 return ret;
814                         }
815                 }
816         }
817
818         master->cur_msg_mapped = true;
819
820         return 0;
821 }
822
823 static int __spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
824 {
825         struct spi_transfer *xfer;
826         struct device *tx_dev, *rx_dev;
827
828         if (!master->cur_msg_mapped || !master->can_dma)
829                 return 0;
830
831         if (master->dma_tx)
832                 tx_dev = master->dma_tx->device->dev;
833         else
834                 tx_dev = &master->dev;
835
836         if (master->dma_rx)
837                 rx_dev = master->dma_rx->device->dev;
838         else
839                 rx_dev = &master->dev;
840
841         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
842                 if (!master->can_dma(master, msg->spi, xfer))
843                         continue;
844
845                 spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
846                 spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
847         }
848
849         return 0;
850 }
851 #else /* !CONFIG_HAS_DMA */
852 static inline int __spi_map_msg(struct spi_master *master,
853                                 struct spi_message *msg)
854 {
855         return 0;
856 }
857
858 static inline int __spi_unmap_msg(struct spi_master *master,
859                                   struct spi_message *msg)
860 {
861         return 0;
862 }
863 #endif /* !CONFIG_HAS_DMA */
864
865 static inline int spi_unmap_msg(struct spi_master *master,
866                                 struct spi_message *msg)
867 {
868         struct spi_transfer *xfer;
869
870         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
871                 /*
872                  * Restore the original value of tx_buf or rx_buf if they are
873                  * NULL.
874                  */
875                 if (xfer->tx_buf == master->dummy_tx)
876                         xfer->tx_buf = NULL;
877                 if (xfer->rx_buf == master->dummy_rx)
878                         xfer->rx_buf = NULL;
879         }
880
881         return __spi_unmap_msg(master, msg);
882 }
883
884 static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
885 {
886         struct spi_transfer *xfer;
887         void *tmp;
888         unsigned int max_tx, max_rx;
889
890         if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
891                 max_tx = 0;
892                 max_rx = 0;
893
894                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
895                         if ((master->flags & SPI_MASTER_MUST_TX) &&
896                             !xfer->tx_buf)
897                                 max_tx = max(xfer->len, max_tx);
898                         if ((master->flags & SPI_MASTER_MUST_RX) &&
899                             !xfer->rx_buf)
900                                 max_rx = max(xfer->len, max_rx);
901                 }
902
903                 if (max_tx) {
904                         tmp = krealloc(master->dummy_tx, max_tx,
905                                        GFP_KERNEL | GFP_DMA);
906                         if (!tmp)
907                                 return -ENOMEM;
908                         master->dummy_tx = tmp;
909                         memset(tmp, 0, max_tx);
910                 }
911
912                 if (max_rx) {
913                         tmp = krealloc(master->dummy_rx, max_rx,
914                                        GFP_KERNEL | GFP_DMA);
915                         if (!tmp)
916                                 return -ENOMEM;
917                         master->dummy_rx = tmp;
918                 }
919
920                 if (max_tx || max_rx) {
921                         list_for_each_entry(xfer, &msg->transfers,
922                                             transfer_list) {
923                                 if (!xfer->tx_buf)
924                                         xfer->tx_buf = master->dummy_tx;
925                                 if (!xfer->rx_buf)
926                                         xfer->rx_buf = master->dummy_rx;
927                         }
928                 }
929         }
930
931         return __spi_map_msg(master, msg);
932 }
933
934 /*
935  * spi_transfer_one_message - Default implementation of transfer_one_message()
936  *
937  * This is a standard implementation of transfer_one_message() for
938  * drivers which implement a transfer_one() operation.  It provides
939  * standard handling of delays and chip select management.
940  */
941 static int spi_transfer_one_message(struct spi_master *master,
942                                     struct spi_message *msg)
943 {
944         struct spi_transfer *xfer;
945         bool keep_cs = false;
946         int ret = 0;
947         unsigned long ms = 1;
948         struct spi_statistics *statm = &master->statistics;
949         struct spi_statistics *stats = &msg->spi->statistics;
950
951         spi_set_cs(msg->spi, true);
952
953         SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
954         SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
955
956         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
957                 trace_spi_transfer_start(msg, xfer);
958
959                 spi_statistics_add_transfer_stats(statm, xfer, master);
960                 spi_statistics_add_transfer_stats(stats, xfer, master);
961
962                 if (xfer->tx_buf || xfer->rx_buf) {
963                         reinit_completion(&master->xfer_completion);
964
965                         ret = master->transfer_one(master, msg->spi, xfer);
966                         if (ret < 0) {
967                                 SPI_STATISTICS_INCREMENT_FIELD(statm,
968                                                                errors);
969                                 SPI_STATISTICS_INCREMENT_FIELD(stats,
970                                                                errors);
971                                 dev_err(&msg->spi->dev,
972                                         "SPI transfer failed: %d\n", ret);
973                                 goto out;
974                         }
975
976                         if (ret > 0) {
977                                 ret = 0;
978                                 ms = xfer->len * 8 * 1000 / xfer->speed_hz;
979                                 ms += ms + 100; /* some tolerance */
980
981                                 ms = wait_for_completion_timeout(&master->xfer_completion,
982                                                                  msecs_to_jiffies(ms));
983                         }
984
985                         if (ms == 0) {
986                                 SPI_STATISTICS_INCREMENT_FIELD(statm,
987                                                                timedout);
988                                 SPI_STATISTICS_INCREMENT_FIELD(stats,
989                                                                timedout);
990                                 dev_err(&msg->spi->dev,
991                                         "SPI transfer timed out\n");
992                                 msg->status = -ETIMEDOUT;
993                         }
994                 } else {
995                         if (xfer->len)
996                                 dev_err(&msg->spi->dev,
997                                         "Bufferless transfer has length %u\n",
998                                         xfer->len);
999                 }
1000
1001                 trace_spi_transfer_stop(msg, xfer);
1002
1003                 if (msg->status != -EINPROGRESS)
1004                         goto out;
1005
1006                 if (xfer->delay_usecs)
1007                         udelay(xfer->delay_usecs);
1008
1009                 if (xfer->cs_change) {
1010                         if (list_is_last(&xfer->transfer_list,
1011                                          &msg->transfers)) {
1012                                 keep_cs = true;
1013                         } else {
1014                                 spi_set_cs(msg->spi, false);
1015                                 udelay(10);
1016                                 spi_set_cs(msg->spi, true);
1017                         }
1018                 }
1019
1020                 msg->actual_length += xfer->len;
1021         }
1022
1023 out:
1024         if (ret != 0 || !keep_cs)
1025                 spi_set_cs(msg->spi, false);
1026
1027         if (msg->status == -EINPROGRESS)
1028                 msg->status = ret;
1029
1030         if (msg->status && master->handle_err)
1031                 master->handle_err(master, msg);
1032
1033         spi_res_release(master, msg);
1034
1035         spi_finalize_current_message(master);
1036
1037         return ret;
1038 }
1039
1040 /**
1041  * spi_finalize_current_transfer - report completion of a transfer
1042  * @master: the master reporting completion
1043  *
1044  * Called by SPI drivers using the core transfer_one_message()
1045  * implementation to notify it that the current interrupt driven
1046  * transfer has finished and the next one may be scheduled.
1047  */
1048 void spi_finalize_current_transfer(struct spi_master *master)
1049 {
1050         complete(&master->xfer_completion);
1051 }
1052 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1053
1054 /**
1055  * __spi_pump_messages - function which processes spi message queue
1056  * @master: master to process queue for
1057  * @in_kthread: true if we are in the context of the message pump thread
1058  * @bus_locked: true if the bus mutex is held when calling this function
1059  *
1060  * This function checks if there is any spi message in the queue that
1061  * needs processing and if so call out to the driver to initialize hardware
1062  * and transfer each message.
1063  *
1064  * Note that it is called both from the kthread itself and also from
1065  * inside spi_sync(); the queue extraction handling at the top of the
1066  * function should deal with this safely.
1067  */
1068 static void __spi_pump_messages(struct spi_master *master, bool in_kthread,
1069                                 bool bus_locked)
1070 {
1071         unsigned long flags;
1072         bool was_busy = false;
1073         int ret;
1074
1075         /* Lock queue */
1076         spin_lock_irqsave(&master->queue_lock, flags);
1077
1078         /* Make sure we are not already running a message */
1079         if (master->cur_msg) {
1080                 spin_unlock_irqrestore(&master->queue_lock, flags);
1081                 return;
1082         }
1083
1084         /* If another context is idling the device then defer */
1085         if (master->idling) {
1086                 queue_kthread_work(&master->kworker, &master->pump_messages);
1087                 spin_unlock_irqrestore(&master->queue_lock, flags);
1088                 return;
1089         }
1090
1091         /* Check if the queue is idle */
1092         if (list_empty(&master->queue) || !master->running) {
1093                 if (!master->busy) {
1094                         spin_unlock_irqrestore(&master->queue_lock, flags);
1095                         return;
1096                 }
1097
1098                 /* Only do teardown in the thread */
1099                 if (!in_kthread) {
1100                         queue_kthread_work(&master->kworker,
1101                                            &master->pump_messages);
1102                         spin_unlock_irqrestore(&master->queue_lock, flags);
1103                         return;
1104                 }
1105
1106                 master->busy = false;
1107                 master->idling = true;
1108                 spin_unlock_irqrestore(&master->queue_lock, flags);
1109
1110                 kfree(master->dummy_rx);
1111                 master->dummy_rx = NULL;
1112                 kfree(master->dummy_tx);
1113                 master->dummy_tx = NULL;
1114                 if (master->unprepare_transfer_hardware &&
1115                     master->unprepare_transfer_hardware(master))
1116                         dev_err(&master->dev,
1117                                 "failed to unprepare transfer hardware\n");
1118                 if (master->auto_runtime_pm) {
1119                         pm_runtime_mark_last_busy(master->dev.parent);
1120                         pm_runtime_put_autosuspend(master->dev.parent);
1121                 }
1122                 trace_spi_master_idle(master);
1123
1124                 spin_lock_irqsave(&master->queue_lock, flags);
1125                 master->idling = false;
1126                 spin_unlock_irqrestore(&master->queue_lock, flags);
1127                 return;
1128         }
1129
1130         /* Extract head of queue */
1131         master->cur_msg =
1132                 list_first_entry(&master->queue, struct spi_message, queue);
1133
1134         list_del_init(&master->cur_msg->queue);
1135         if (master->busy)
1136                 was_busy = true;
1137         else
1138                 master->busy = true;
1139         spin_unlock_irqrestore(&master->queue_lock, flags);
1140
1141         if (!was_busy && master->auto_runtime_pm) {
1142                 ret = pm_runtime_get_sync(master->dev.parent);
1143                 if (ret < 0) {
1144                         dev_err(&master->dev, "Failed to power device: %d\n",
1145                                 ret);
1146                         return;
1147                 }
1148         }
1149
1150         if (!was_busy)
1151                 trace_spi_master_busy(master);
1152
1153         if (!was_busy && master->prepare_transfer_hardware) {
1154                 ret = master->prepare_transfer_hardware(master);
1155                 if (ret) {
1156                         dev_err(&master->dev,
1157                                 "failed to prepare transfer hardware\n");
1158
1159                         if (master->auto_runtime_pm)
1160                                 pm_runtime_put(master->dev.parent);
1161                         return;
1162                 }
1163         }
1164
1165         if (!bus_locked)
1166                 mutex_lock(&master->bus_lock_mutex);
1167
1168         trace_spi_message_start(master->cur_msg);
1169
1170         if (master->prepare_message) {
1171                 ret = master->prepare_message(master, master->cur_msg);
1172                 if (ret) {
1173                         dev_err(&master->dev,
1174                                 "failed to prepare message: %d\n", ret);
1175                         master->cur_msg->status = ret;
1176                         spi_finalize_current_message(master);
1177                         goto out;
1178                 }
1179                 master->cur_msg_prepared = true;
1180         }
1181
1182         ret = spi_map_msg(master, master->cur_msg);
1183         if (ret) {
1184                 master->cur_msg->status = ret;
1185                 spi_finalize_current_message(master);
1186                 goto out;
1187         }
1188
1189         ret = master->transfer_one_message(master, master->cur_msg);
1190         if (ret) {
1191                 dev_err(&master->dev,
1192                         "failed to transfer one message from queue\n");
1193                 goto out;
1194         }
1195
1196 out:
1197         if (!bus_locked)
1198                 mutex_unlock(&master->bus_lock_mutex);
1199
1200         /* Prod the scheduler in case transfer_one() was busy waiting */
1201         if (!ret)
1202                 cond_resched();
1203 }
1204
1205 /**
1206  * spi_pump_messages - kthread work function which processes spi message queue
1207  * @work: pointer to kthread work struct contained in the master struct
1208  */
1209 static void spi_pump_messages(struct kthread_work *work)
1210 {
1211         struct spi_master *master =
1212                 container_of(work, struct spi_master, pump_messages);
1213
1214         __spi_pump_messages(master, true, master->bus_lock_flag);
1215 }
1216
1217 static int spi_init_queue(struct spi_master *master)
1218 {
1219         struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1220
1221         master->running = false;
1222         master->busy = false;
1223
1224         init_kthread_worker(&master->kworker);
1225         master->kworker_task = kthread_run(kthread_worker_fn,
1226                                            &master->kworker, "%s",
1227                                            dev_name(&master->dev));
1228         if (IS_ERR(master->kworker_task)) {
1229                 dev_err(&master->dev, "failed to create message pump task\n");
1230                 return PTR_ERR(master->kworker_task);
1231         }
1232         init_kthread_work(&master->pump_messages, spi_pump_messages);
1233
1234         /*
1235          * Master config will indicate if this controller should run the
1236          * message pump with high (realtime) priority to reduce the transfer
1237          * latency on the bus by minimising the delay between a transfer
1238          * request and the scheduling of the message pump thread. Without this
1239          * setting the message pump thread will remain at default priority.
1240          */
1241         if (master->rt) {
1242                 dev_info(&master->dev,
1243                         "will run message pump with realtime priority\n");
1244                 sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
1245         }
1246
1247         return 0;
1248 }
1249
1250 /**
1251  * spi_get_next_queued_message() - called by driver to check for queued
1252  * messages
1253  * @master: the master to check for queued messages
1254  *
1255  * If there are more messages in the queue, the next message is returned from
1256  * this call.
1257  *
1258  * Return: the next message in the queue, else NULL if the queue is empty.
1259  */
1260 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
1261 {
1262         struct spi_message *next;
1263         unsigned long flags;
1264
1265         /* get a pointer to the next message, if any */
1266         spin_lock_irqsave(&master->queue_lock, flags);
1267         next = list_first_entry_or_null(&master->queue, struct spi_message,
1268                                         queue);
1269         spin_unlock_irqrestore(&master->queue_lock, flags);
1270
1271         return next;
1272 }
1273 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1274
1275 /**
1276  * spi_finalize_current_message() - the current message is complete
1277  * @master: the master to return the message to
1278  *
1279  * Called by the driver to notify the core that the message in the front of the
1280  * queue is complete and can be removed from the queue.
1281  */
1282 void spi_finalize_current_message(struct spi_master *master)
1283 {
1284         struct spi_message *mesg;
1285         unsigned long flags;
1286         int ret;
1287
1288         spin_lock_irqsave(&master->queue_lock, flags);
1289         mesg = master->cur_msg;
1290         spin_unlock_irqrestore(&master->queue_lock, flags);
1291
1292         spi_unmap_msg(master, mesg);
1293
1294         if (master->cur_msg_prepared && master->unprepare_message) {
1295                 ret = master->unprepare_message(master, mesg);
1296                 if (ret) {
1297                         dev_err(&master->dev,
1298                                 "failed to unprepare message: %d\n", ret);
1299                 }
1300         }
1301
1302         spin_lock_irqsave(&master->queue_lock, flags);
1303         master->cur_msg = NULL;
1304         master->cur_msg_prepared = false;
1305         queue_kthread_work(&master->kworker, &master->pump_messages);
1306         spin_unlock_irqrestore(&master->queue_lock, flags);
1307
1308         trace_spi_message_done(mesg);
1309
1310         mesg->state = NULL;
1311         if (mesg->complete)
1312                 mesg->complete(mesg->context);
1313 }
1314 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1315
1316 static int spi_start_queue(struct spi_master *master)
1317 {
1318         unsigned long flags;
1319
1320         spin_lock_irqsave(&master->queue_lock, flags);
1321
1322         if (master->running || master->busy) {
1323                 spin_unlock_irqrestore(&master->queue_lock, flags);
1324                 return -EBUSY;
1325         }
1326
1327         master->running = true;
1328         master->cur_msg = NULL;
1329         spin_unlock_irqrestore(&master->queue_lock, flags);
1330
1331         queue_kthread_work(&master->kworker, &master->pump_messages);
1332
1333         return 0;
1334 }
1335
1336 static int spi_stop_queue(struct spi_master *master)
1337 {
1338         unsigned long flags;
1339         unsigned limit = 500;
1340         int ret = 0;
1341
1342         spin_lock_irqsave(&master->queue_lock, flags);
1343
1344         /*
1345          * This is a bit lame, but is optimized for the common execution path.
1346          * A wait_queue on the master->busy could be used, but then the common
1347          * execution path (pump_messages) would be required to call wake_up or
1348          * friends on every SPI message. Do this instead.
1349          */
1350         while ((!list_empty(&master->queue) || master->busy) && limit--) {
1351                 spin_unlock_irqrestore(&master->queue_lock, flags);
1352                 usleep_range(10000, 11000);
1353                 spin_lock_irqsave(&master->queue_lock, flags);
1354         }
1355
1356         if (!list_empty(&master->queue) || master->busy)
1357                 ret = -EBUSY;
1358         else
1359                 master->running = false;
1360
1361         spin_unlock_irqrestore(&master->queue_lock, flags);
1362
1363         if (ret) {
1364                 dev_warn(&master->dev,
1365                          "could not stop message queue\n");
1366                 return ret;
1367         }
1368         return ret;
1369 }
1370
1371 static int spi_destroy_queue(struct spi_master *master)
1372 {
1373         int ret;
1374
1375         ret = spi_stop_queue(master);
1376
1377         /*
1378          * flush_kthread_worker will block until all work is done.
1379          * If the reason that stop_queue timed out is that the work will never
1380          * finish, then it does no good to call flush/stop thread, so
1381          * return anyway.
1382          */
1383         if (ret) {
1384                 dev_err(&master->dev, "problem destroying queue\n");
1385                 return ret;
1386         }
1387
1388         flush_kthread_worker(&master->kworker);
1389         kthread_stop(master->kworker_task);
1390
1391         return 0;
1392 }
1393
1394 static int __spi_queued_transfer(struct spi_device *spi,
1395                                  struct spi_message *msg,
1396                                  bool need_pump)
1397 {
1398         struct spi_master *master = spi->master;
1399         unsigned long flags;
1400
1401         spin_lock_irqsave(&master->queue_lock, flags);
1402
1403         if (!master->running) {
1404                 spin_unlock_irqrestore(&master->queue_lock, flags);
1405                 return -ESHUTDOWN;
1406         }
1407         msg->actual_length = 0;
1408         msg->status = -EINPROGRESS;
1409
1410         list_add_tail(&msg->queue, &master->queue);
1411         if (!master->busy && need_pump)
1412                 queue_kthread_work(&master->kworker, &master->pump_messages);
1413
1414         spin_unlock_irqrestore(&master->queue_lock, flags);
1415         return 0;
1416 }
1417
1418 /**
1419  * spi_queued_transfer - transfer function for queued transfers
1420  * @spi: spi device which is requesting transfer
1421  * @msg: spi message which is to handled is queued to driver queue
1422  *
1423  * Return: zero on success, else a negative error code.
1424  */
1425 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1426 {
1427         return __spi_queued_transfer(spi, msg, true);
1428 }
1429
1430 static int spi_master_initialize_queue(struct spi_master *master)
1431 {
1432         int ret;
1433
1434         master->transfer = spi_queued_transfer;
1435         if (!master->transfer_one_message)
1436                 master->transfer_one_message = spi_transfer_one_message;
1437
1438         /* Initialize and start queue */
1439         ret = spi_init_queue(master);
1440         if (ret) {
1441                 dev_err(&master->dev, "problem initializing queue\n");
1442                 goto err_init_queue;
1443         }
1444         master->queued = true;
1445         ret = spi_start_queue(master);
1446         if (ret) {
1447                 dev_err(&master->dev, "problem starting queue\n");
1448                 goto err_start_queue;
1449         }
1450
1451         return 0;
1452
1453 err_start_queue:
1454         spi_destroy_queue(master);
1455 err_init_queue:
1456         return ret;
1457 }
1458
1459 /*-------------------------------------------------------------------------*/
1460
1461 #if defined(CONFIG_OF)
1462 static struct spi_device *
1463 of_register_spi_device(struct spi_master *master, struct device_node *nc)
1464 {
1465         struct spi_device *spi;
1466         int rc;
1467         u32 value;
1468
1469         /* Alloc an spi_device */
1470         spi = spi_alloc_device(master);
1471         if (!spi) {
1472                 dev_err(&master->dev, "spi_device alloc error for %s\n",
1473                         nc->full_name);
1474                 rc = -ENOMEM;
1475                 goto err_out;
1476         }
1477
1478         /* Select device driver */
1479         rc = of_modalias_node(nc, spi->modalias,
1480                                 sizeof(spi->modalias));
1481         if (rc < 0) {
1482                 dev_err(&master->dev, "cannot find modalias for %s\n",
1483                         nc->full_name);
1484                 goto err_out;
1485         }
1486
1487         /* Device address */
1488         rc = of_property_read_u32(nc, "reg", &value);
1489         if (rc) {
1490                 dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1491                         nc->full_name, rc);
1492                 goto err_out;
1493         }
1494         spi->chip_select = value;
1495
1496         /* Mode (clock phase/polarity/etc.) */
1497         if (of_find_property(nc, "spi-cpha", NULL))
1498                 spi->mode |= SPI_CPHA;
1499         if (of_find_property(nc, "spi-cpol", NULL))
1500                 spi->mode |= SPI_CPOL;
1501         if (of_find_property(nc, "spi-cs-high", NULL))
1502                 spi->mode |= SPI_CS_HIGH;
1503         if (of_find_property(nc, "spi-3wire", NULL))
1504                 spi->mode |= SPI_3WIRE;
1505         if (of_find_property(nc, "spi-lsb-first", NULL))
1506                 spi->mode |= SPI_LSB_FIRST;
1507
1508         /* Device DUAL/QUAD mode */
1509         if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1510                 switch (value) {
1511                 case 1:
1512                         break;
1513                 case 2:
1514                         spi->mode |= SPI_TX_DUAL;
1515                         break;
1516                 case 4:
1517                         spi->mode |= SPI_TX_QUAD;
1518                         break;
1519                 default:
1520                         dev_warn(&master->dev,
1521                                 "spi-tx-bus-width %d not supported\n",
1522                                 value);
1523                         break;
1524                 }
1525         }
1526
1527         if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1528                 switch (value) {
1529                 case 1:
1530                         break;
1531                 case 2:
1532                         spi->mode |= SPI_RX_DUAL;
1533                         break;
1534                 case 4:
1535                         spi->mode |= SPI_RX_QUAD;
1536                         break;
1537                 default:
1538                         dev_warn(&master->dev,
1539                                 "spi-rx-bus-width %d not supported\n",
1540                                 value);
1541                         break;
1542                 }
1543         }
1544
1545         /* Device speed */
1546         rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1547         if (rc) {
1548                 dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1549                         nc->full_name, rc);
1550                 goto err_out;
1551         }
1552         spi->max_speed_hz = value;
1553
1554         /* Store a pointer to the node in the device structure */
1555         of_node_get(nc);
1556         spi->dev.of_node = nc;
1557
1558         /* Register the new device */
1559         rc = spi_add_device(spi);
1560         if (rc) {
1561                 dev_err(&master->dev, "spi_device register error %s\n",
1562                         nc->full_name);
1563                 goto err_out;
1564         }
1565
1566         return spi;
1567
1568 err_out:
1569         spi_dev_put(spi);
1570         return ERR_PTR(rc);
1571 }
1572
1573 /**
1574  * of_register_spi_devices() - Register child devices onto the SPI bus
1575  * @master:     Pointer to spi_master device
1576  *
1577  * Registers an spi_device for each child node of master node which has a 'reg'
1578  * property.
1579  */
1580 static void of_register_spi_devices(struct spi_master *master)
1581 {
1582         struct spi_device *spi;
1583         struct device_node *nc;
1584
1585         if (!master->dev.of_node)
1586                 return;
1587
1588         for_each_available_child_of_node(master->dev.of_node, nc) {
1589                 if (of_node_test_and_set_flag(nc, OF_POPULATED))
1590                         continue;
1591                 spi = of_register_spi_device(master, nc);
1592                 if (IS_ERR(spi))
1593                         dev_warn(&master->dev, "Failed to create SPI device for %s\n",
1594                                 nc->full_name);
1595         }
1596 }
1597 #else
1598 static void of_register_spi_devices(struct spi_master *master) { }
1599 #endif
1600
1601 #ifdef CONFIG_ACPI
1602 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1603 {
1604         struct spi_device *spi = data;
1605         struct spi_master *master = spi->master;
1606
1607         if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1608                 struct acpi_resource_spi_serialbus *sb;
1609
1610                 sb = &ares->data.spi_serial_bus;
1611                 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1612                         /*
1613                          * ACPI DeviceSelection numbering is handled by the
1614                          * host controller driver in Windows and can vary
1615                          * from driver to driver. In Linux we always expect
1616                          * 0 .. max - 1 so we need to ask the driver to
1617                          * translate between the two schemes.
1618                          */
1619                         if (master->fw_translate_cs) {
1620                                 int cs = master->fw_translate_cs(master,
1621                                                 sb->device_selection);
1622                                 if (cs < 0)
1623                                         return cs;
1624                                 spi->chip_select = cs;
1625                         } else {
1626                                 spi->chip_select = sb->device_selection;
1627                         }
1628
1629                         spi->max_speed_hz = sb->connection_speed;
1630
1631                         if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1632                                 spi->mode |= SPI_CPHA;
1633                         if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1634                                 spi->mode |= SPI_CPOL;
1635                         if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1636                                 spi->mode |= SPI_CS_HIGH;
1637                 }
1638         } else if (spi->irq < 0) {
1639                 struct resource r;
1640
1641                 if (acpi_dev_resource_interrupt(ares, 0, &r))
1642                         spi->irq = r.start;
1643         }
1644
1645         /* Always tell the ACPI core to skip this resource */
1646         return 1;
1647 }
1648
1649 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1650                                        void *data, void **return_value)
1651 {
1652         struct spi_master *master = data;
1653         struct list_head resource_list;
1654         struct acpi_device *adev;
1655         struct spi_device *spi;
1656         int ret;
1657
1658         if (acpi_bus_get_device(handle, &adev))
1659                 return AE_OK;
1660         if (acpi_bus_get_status(adev) || !adev->status.present)
1661                 return AE_OK;
1662
1663         spi = spi_alloc_device(master);
1664         if (!spi) {
1665                 dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1666                         dev_name(&adev->dev));
1667                 return AE_NO_MEMORY;
1668         }
1669
1670         ACPI_COMPANION_SET(&spi->dev, adev);
1671         spi->irq = -1;
1672
1673         INIT_LIST_HEAD(&resource_list);
1674         ret = acpi_dev_get_resources(adev, &resource_list,
1675                                      acpi_spi_add_resource, spi);
1676         acpi_dev_free_resource_list(&resource_list);
1677
1678         if (ret < 0 || !spi->max_speed_hz) {
1679                 spi_dev_put(spi);
1680                 return AE_OK;
1681         }
1682
1683         if (spi->irq < 0)
1684                 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
1685
1686         adev->power.flags.ignore_parent = true;
1687         strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1688         if (spi_add_device(spi)) {
1689                 adev->power.flags.ignore_parent = false;
1690                 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1691                         dev_name(&adev->dev));
1692                 spi_dev_put(spi);
1693         }
1694
1695         return AE_OK;
1696 }
1697
1698 static void acpi_register_spi_devices(struct spi_master *master)
1699 {
1700         acpi_status status;
1701         acpi_handle handle;
1702
1703         handle = ACPI_HANDLE(master->dev.parent);
1704         if (!handle)
1705                 return;
1706
1707         status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1708                                      acpi_spi_add_device, NULL,
1709                                      master, NULL);
1710         if (ACPI_FAILURE(status))
1711                 dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1712 }
1713 #else
1714 static inline void acpi_register_spi_devices(struct spi_master *master) {}
1715 #endif /* CONFIG_ACPI */
1716
1717 static void spi_master_release(struct device *dev)
1718 {
1719         struct spi_master *master;
1720
1721         master = container_of(dev, struct spi_master, dev);
1722         kfree(master);
1723 }
1724
1725 static struct class spi_master_class = {
1726         .name           = "spi_master",
1727         .owner          = THIS_MODULE,
1728         .dev_release    = spi_master_release,
1729         .dev_groups     = spi_master_groups,
1730 };
1731
1732
1733 /**
1734  * spi_alloc_master - allocate SPI master controller
1735  * @dev: the controller, possibly using the platform_bus
1736  * @size: how much zeroed driver-private data to allocate; the pointer to this
1737  *      memory is in the driver_data field of the returned device,
1738  *      accessible with spi_master_get_devdata().
1739  * Context: can sleep
1740  *
1741  * This call is used only by SPI master controller drivers, which are the
1742  * only ones directly touching chip registers.  It's how they allocate
1743  * an spi_master structure, prior to calling spi_register_master().
1744  *
1745  * This must be called from context that can sleep.
1746  *
1747  * The caller is responsible for assigning the bus number and initializing
1748  * the master's methods before calling spi_register_master(); and (after errors
1749  * adding the device) calling spi_master_put() to prevent a memory leak.
1750  *
1751  * Return: the SPI master structure on success, else NULL.
1752  */
1753 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1754 {
1755         struct spi_master       *master;
1756
1757         if (!dev)
1758                 return NULL;
1759
1760         master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1761         if (!master)
1762                 return NULL;
1763
1764         device_initialize(&master->dev);
1765         master->bus_num = -1;
1766         master->num_chipselect = 1;
1767         master->dev.class = &spi_master_class;
1768         master->dev.parent = dev;
1769         pm_suspend_ignore_children(&master->dev, true);
1770         spi_master_set_devdata(master, &master[1]);
1771
1772         return master;
1773 }
1774 EXPORT_SYMBOL_GPL(spi_alloc_master);
1775
1776 #ifdef CONFIG_OF
1777 static int of_spi_register_master(struct spi_master *master)
1778 {
1779         int nb, i, *cs;
1780         struct device_node *np = master->dev.of_node;
1781
1782         if (!np)
1783                 return 0;
1784
1785         nb = of_gpio_named_count(np, "cs-gpios");
1786         master->num_chipselect = max_t(int, nb, master->num_chipselect);
1787
1788         /* Return error only for an incorrectly formed cs-gpios property */
1789         if (nb == 0 || nb == -ENOENT)
1790                 return 0;
1791         else if (nb < 0)
1792                 return nb;
1793
1794         cs = devm_kzalloc(&master->dev,
1795                           sizeof(int) * master->num_chipselect,
1796                           GFP_KERNEL);
1797         master->cs_gpios = cs;
1798
1799         if (!master->cs_gpios)
1800                 return -ENOMEM;
1801
1802         for (i = 0; i < master->num_chipselect; i++)
1803                 cs[i] = -ENOENT;
1804
1805         for (i = 0; i < nb; i++)
1806                 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1807
1808         return 0;
1809 }
1810 #else
1811 static int of_spi_register_master(struct spi_master *master)
1812 {
1813         return 0;
1814 }
1815 #endif
1816
1817 /**
1818  * spi_register_master - register SPI master controller
1819  * @master: initialized master, originally from spi_alloc_master()
1820  * Context: can sleep
1821  *
1822  * SPI master controllers connect to their drivers using some non-SPI bus,
1823  * such as the platform bus.  The final stage of probe() in that code
1824  * includes calling spi_register_master() to hook up to this SPI bus glue.
1825  *
1826  * SPI controllers use board specific (often SOC specific) bus numbers,
1827  * and board-specific addressing for SPI devices combines those numbers
1828  * with chip select numbers.  Since SPI does not directly support dynamic
1829  * device identification, boards need configuration tables telling which
1830  * chip is at which address.
1831  *
1832  * This must be called from context that can sleep.  It returns zero on
1833  * success, else a negative error code (dropping the master's refcount).
1834  * After a successful return, the caller is responsible for calling
1835  * spi_unregister_master().
1836  *
1837  * Return: zero on success, else a negative error code.
1838  */
1839 int spi_register_master(struct spi_master *master)
1840 {
1841         static atomic_t         dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1842         struct device           *dev = master->dev.parent;
1843         struct boardinfo        *bi;
1844         int                     status = -ENODEV;
1845         int                     dynamic = 0;
1846
1847         if (!dev)
1848                 return -ENODEV;
1849
1850         status = of_spi_register_master(master);
1851         if (status)
1852                 return status;
1853
1854         /* even if it's just one always-selected device, there must
1855          * be at least one chipselect
1856          */
1857         if (master->num_chipselect == 0)
1858                 return -EINVAL;
1859
1860         if ((master->bus_num < 0) && master->dev.of_node)
1861                 master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1862
1863         /* convention:  dynamically assigned bus IDs count down from the max */
1864         if (master->bus_num < 0) {
1865                 /* FIXME switch to an IDR based scheme, something like
1866                  * I2C now uses, so we can't run out of "dynamic" IDs
1867                  */
1868                 master->bus_num = atomic_dec_return(&dyn_bus_id);
1869                 dynamic = 1;
1870         }
1871
1872         INIT_LIST_HEAD(&master->queue);
1873         spin_lock_init(&master->queue_lock);
1874         spin_lock_init(&master->bus_lock_spinlock);
1875         mutex_init(&master->bus_lock_mutex);
1876         master->bus_lock_flag = 0;
1877         init_completion(&master->xfer_completion);
1878         if (!master->max_dma_len)
1879                 master->max_dma_len = INT_MAX;
1880
1881         /* register the device, then userspace will see it.
1882          * registration fails if the bus ID is in use.
1883          */
1884         dev_set_name(&master->dev, "spi%u", master->bus_num);
1885         status = device_add(&master->dev);
1886         if (status < 0)
1887                 goto done;
1888         dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1889                         dynamic ? " (dynamic)" : "");
1890
1891         /* If we're using a queued driver, start the queue */
1892         if (master->transfer)
1893                 dev_info(dev, "master is unqueued, this is deprecated\n");
1894         else {
1895                 status = spi_master_initialize_queue(master);
1896                 if (status) {
1897                         device_del(&master->dev);
1898                         goto done;
1899                 }
1900         }
1901         /* add statistics */
1902         spin_lock_init(&master->statistics.lock);
1903
1904         mutex_lock(&board_lock);
1905         list_add_tail(&master->list, &spi_master_list);
1906         list_for_each_entry(bi, &board_list, list)
1907                 spi_match_master_to_boardinfo(master, &bi->board_info);
1908         mutex_unlock(&board_lock);
1909
1910         /* Register devices from the device tree and ACPI */
1911         of_register_spi_devices(master);
1912         acpi_register_spi_devices(master);
1913 done:
1914         return status;
1915 }
1916 EXPORT_SYMBOL_GPL(spi_register_master);
1917
1918 static void devm_spi_unregister(struct device *dev, void *res)
1919 {
1920         spi_unregister_master(*(struct spi_master **)res);
1921 }
1922
1923 /**
1924  * dev_spi_register_master - register managed SPI master controller
1925  * @dev:    device managing SPI master
1926  * @master: initialized master, originally from spi_alloc_master()
1927  * Context: can sleep
1928  *
1929  * Register a SPI device as with spi_register_master() which will
1930  * automatically be unregister
1931  *
1932  * Return: zero on success, else a negative error code.
1933  */
1934 int devm_spi_register_master(struct device *dev, struct spi_master *master)
1935 {
1936         struct spi_master **ptr;
1937         int ret;
1938
1939         ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1940         if (!ptr)
1941                 return -ENOMEM;
1942
1943         ret = spi_register_master(master);
1944         if (!ret) {
1945                 *ptr = master;
1946                 devres_add(dev, ptr);
1947         } else {
1948                 devres_free(ptr);
1949         }
1950
1951         return ret;
1952 }
1953 EXPORT_SYMBOL_GPL(devm_spi_register_master);
1954
1955 static int __unregister(struct device *dev, void *null)
1956 {
1957         spi_unregister_device(to_spi_device(dev));
1958         return 0;
1959 }
1960
1961 /**
1962  * spi_unregister_master - unregister SPI master controller
1963  * @master: the master being unregistered
1964  * Context: can sleep
1965  *
1966  * This call is used only by SPI master controller drivers, which are the
1967  * only ones directly touching chip registers.
1968  *
1969  * This must be called from context that can sleep.
1970  */
1971 void spi_unregister_master(struct spi_master *master)
1972 {
1973         int dummy;
1974
1975         if (master->queued) {
1976                 if (spi_destroy_queue(master))
1977                         dev_err(&master->dev, "queue remove failed\n");
1978         }
1979
1980         mutex_lock(&board_lock);
1981         list_del(&master->list);
1982         mutex_unlock(&board_lock);
1983
1984         dummy = device_for_each_child(&master->dev, NULL, __unregister);
1985         device_unregister(&master->dev);
1986 }
1987 EXPORT_SYMBOL_GPL(spi_unregister_master);
1988
1989 int spi_master_suspend(struct spi_master *master)
1990 {
1991         int ret;
1992
1993         /* Basically no-ops for non-queued masters */
1994         if (!master->queued)
1995                 return 0;
1996
1997         ret = spi_stop_queue(master);
1998         if (ret)
1999                 dev_err(&master->dev, "queue stop failed\n");
2000
2001         return ret;
2002 }
2003 EXPORT_SYMBOL_GPL(spi_master_suspend);
2004
2005 int spi_master_resume(struct spi_master *master)
2006 {
2007         int ret;
2008
2009         if (!master->queued)
2010                 return 0;
2011
2012         ret = spi_start_queue(master);
2013         if (ret)
2014                 dev_err(&master->dev, "queue restart failed\n");
2015
2016         return ret;
2017 }
2018 EXPORT_SYMBOL_GPL(spi_master_resume);
2019
2020 static int __spi_master_match(struct device *dev, const void *data)
2021 {
2022         struct spi_master *m;
2023         const u16 *bus_num = data;
2024
2025         m = container_of(dev, struct spi_master, dev);
2026         return m->bus_num == *bus_num;
2027 }
2028
2029 /**
2030  * spi_busnum_to_master - look up master associated with bus_num
2031  * @bus_num: the master's bus number
2032  * Context: can sleep
2033  *
2034  * This call may be used with devices that are registered after
2035  * arch init time.  It returns a refcounted pointer to the relevant
2036  * spi_master (which the caller must release), or NULL if there is
2037  * no such master registered.
2038  *
2039  * Return: the SPI master structure on success, else NULL.
2040  */
2041 struct spi_master *spi_busnum_to_master(u16 bus_num)
2042 {
2043         struct device           *dev;
2044         struct spi_master       *master = NULL;
2045
2046         dev = class_find_device(&spi_master_class, NULL, &bus_num,
2047                                 __spi_master_match);
2048         if (dev)
2049                 master = container_of(dev, struct spi_master, dev);
2050         /* reference got in class_find_device */
2051         return master;
2052 }
2053 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2054
2055 /*-------------------------------------------------------------------------*/
2056
2057 /* Core methods for SPI resource management */
2058
2059 /**
2060  * spi_res_alloc - allocate a spi resource that is life-cycle managed
2061  *                 during the processing of a spi_message while using
2062  *                 spi_transfer_one
2063  * @spi:     the spi device for which we allocate memory
2064  * @release: the release code to execute for this resource
2065  * @size:    size to alloc and return
2066  * @gfp:     GFP allocation flags
2067  *
2068  * Return: the pointer to the allocated data
2069  *
2070  * This may get enhanced in the future to allocate from a memory pool
2071  * of the @spi_device or @spi_master to avoid repeated allocations.
2072  */
2073 void *spi_res_alloc(struct spi_device *spi,
2074                     spi_res_release_t release,
2075                     size_t size, gfp_t gfp)
2076 {
2077         struct spi_res *sres;
2078
2079         sres = kzalloc(sizeof(*sres) + size, gfp);
2080         if (!sres)
2081                 return NULL;
2082
2083         INIT_LIST_HEAD(&sres->entry);
2084         sres->release = release;
2085
2086         return sres->data;
2087 }
2088 EXPORT_SYMBOL_GPL(spi_res_alloc);
2089
2090 /**
2091  * spi_res_free - free an spi resource
2092  * @res: pointer to the custom data of a resource
2093  *
2094  */
2095 void spi_res_free(void *res)
2096 {
2097         struct spi_res *sres = container_of(res, struct spi_res, data);
2098
2099         if (!res)
2100                 return;
2101
2102         WARN_ON(!list_empty(&sres->entry));
2103         kfree(sres);
2104 }
2105 EXPORT_SYMBOL_GPL(spi_res_free);
2106
2107 /**
2108  * spi_res_add - add a spi_res to the spi_message
2109  * @message: the spi message
2110  * @res:     the spi_resource
2111  */
2112 void spi_res_add(struct spi_message *message, void *res)
2113 {
2114         struct spi_res *sres = container_of(res, struct spi_res, data);
2115
2116         WARN_ON(!list_empty(&sres->entry));
2117         list_add_tail(&sres->entry, &message->resources);
2118 }
2119 EXPORT_SYMBOL_GPL(spi_res_add);
2120
2121 /**
2122  * spi_res_release - release all spi resources for this message
2123  * @master:  the @spi_master
2124  * @message: the @spi_message
2125  */
2126 void spi_res_release(struct spi_master *master,
2127                      struct spi_message *message)
2128 {
2129         struct spi_res *res;
2130
2131         while (!list_empty(&message->resources)) {
2132                 res = list_last_entry(&message->resources,
2133                                       struct spi_res, entry);
2134
2135                 if (res->release)
2136                         res->release(master, message, res->data);
2137
2138                 list_del(&res->entry);
2139
2140                 kfree(res);
2141         }
2142 }
2143 EXPORT_SYMBOL_GPL(spi_res_release);
2144
2145 /*-------------------------------------------------------------------------*/
2146
2147 /* Core methods for spi_message alterations */
2148
2149 static void __spi_replace_transfers_release(struct spi_master *master,
2150                                             struct spi_message *msg,
2151                                             void *res)
2152 {
2153         struct spi_replaced_transfers *rxfer = res;
2154         size_t i;
2155
2156         /* call extra callback if requested */
2157         if (rxfer->release)
2158                 rxfer->release(master, msg, res);
2159
2160         /* insert replaced transfers back into the message */
2161         list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2162
2163         /* remove the formerly inserted entries */
2164         for (i = 0; i < rxfer->inserted; i++)
2165                 list_del(&rxfer->inserted_transfers[i].transfer_list);
2166 }
2167
2168 /**
2169  * spi_replace_transfers - replace transfers with several transfers
2170  *                         and register change with spi_message.resources
2171  * @msg:           the spi_message we work upon
2172  * @xfer_first:    the first spi_transfer we want to replace
2173  * @remove:        number of transfers to remove
2174  * @insert:        the number of transfers we want to insert instead
2175  * @release:       extra release code necessary in some circumstances
2176  * @extradatasize: extra data to allocate (with alignment guarantees
2177  *                 of struct @spi_transfer)
2178  * @gfp:           gfp flags
2179  *
2180  * Returns: pointer to @spi_replaced_transfers,
2181  *          PTR_ERR(...) in case of errors.
2182  */
2183 struct spi_replaced_transfers *spi_replace_transfers(
2184         struct spi_message *msg,
2185         struct spi_transfer *xfer_first,
2186         size_t remove,
2187         size_t insert,
2188         spi_replaced_release_t release,
2189         size_t extradatasize,
2190         gfp_t gfp)
2191 {
2192         struct spi_replaced_transfers *rxfer;
2193         struct spi_transfer *xfer;
2194         size_t i;
2195
2196         /* allocate the structure using spi_res */
2197         rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2198                               insert * sizeof(struct spi_transfer)
2199                               + sizeof(struct spi_replaced_transfers)
2200                               + extradatasize,
2201                               gfp);
2202         if (!rxfer)
2203                 return ERR_PTR(-ENOMEM);
2204
2205         /* the release code to invoke before running the generic release */
2206         rxfer->release = release;
2207
2208         /* assign extradata */
2209         if (extradatasize)
2210                 rxfer->extradata =
2211                         &rxfer->inserted_transfers[insert];
2212
2213         /* init the replaced_transfers list */
2214         INIT_LIST_HEAD(&rxfer->replaced_transfers);
2215
2216         /* assign the list_entry after which we should reinsert
2217          * the @replaced_transfers - it may be spi_message.messages!
2218          */
2219         rxfer->replaced_after = xfer_first->transfer_list.prev;
2220
2221         /* remove the requested number of transfers */
2222         for (i = 0; i < remove; i++) {
2223                 /* if the entry after replaced_after it is msg->transfers
2224                  * then we have been requested to remove more transfers
2225                  * than are in the list
2226                  */
2227                 if (rxfer->replaced_after->next == &msg->transfers) {
2228                         dev_err(&msg->spi->dev,
2229                                 "requested to remove more spi_transfers than are available\n");
2230                         /* insert replaced transfers back into the message */
2231                         list_splice(&rxfer->replaced_transfers,
2232                                     rxfer->replaced_after);
2233
2234                         /* free the spi_replace_transfer structure */
2235                         spi_res_free(rxfer);
2236
2237                         /* and return with an error */
2238                         return ERR_PTR(-EINVAL);
2239                 }
2240
2241                 /* remove the entry after replaced_after from list of
2242                  * transfers and add it to list of replaced_transfers
2243                  */
2244                 list_move_tail(rxfer->replaced_after->next,
2245                                &rxfer->replaced_transfers);
2246         }
2247
2248         /* create copy of the given xfer with identical settings
2249          * based on the first transfer to get removed
2250          */
2251         for (i = 0; i < insert; i++) {
2252                 /* we need to run in reverse order */
2253                 xfer = &rxfer->inserted_transfers[insert - 1 - i];
2254
2255                 /* copy all spi_transfer data */
2256                 memcpy(xfer, xfer_first, sizeof(*xfer));
2257
2258                 /* add to list */
2259                 list_add(&xfer->transfer_list, rxfer->replaced_after);
2260
2261                 /* clear cs_change and delay_usecs for all but the last */
2262                 if (i) {
2263                         xfer->cs_change = false;
2264                         xfer->delay_usecs = 0;
2265                 }
2266         }
2267
2268         /* set up inserted */
2269         rxfer->inserted = insert;
2270
2271         /* and register it with spi_res/spi_message */
2272         spi_res_add(msg, rxfer);
2273
2274         return rxfer;
2275 }
2276 EXPORT_SYMBOL_GPL(spi_replace_transfers);
2277
2278 static int __spi_split_transfer_maxsize(struct spi_master *master,
2279                                         struct spi_message *msg,
2280                                         struct spi_transfer **xferp,
2281                                         size_t maxsize,
2282                                         gfp_t gfp)
2283 {
2284         struct spi_transfer *xfer = *xferp, *xfers;
2285         struct spi_replaced_transfers *srt;
2286         size_t offset;
2287         size_t count, i;
2288
2289         /* warn once about this fact that we are splitting a transfer */
2290         dev_warn_once(&msg->spi->dev,
2291                       "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
2292                       xfer->len, maxsize);
2293
2294         /* calculate how many we have to replace */
2295         count = DIV_ROUND_UP(xfer->len, maxsize);
2296
2297         /* create replacement */
2298         srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2299         if (IS_ERR(srt))
2300                 return PTR_ERR(srt);
2301         xfers = srt->inserted_transfers;
2302
2303         /* now handle each of those newly inserted spi_transfers
2304          * note that the replacements spi_transfers all are preset
2305          * to the same values as *xferp, so tx_buf, rx_buf and len
2306          * are all identical (as well as most others)
2307          * so we just have to fix up len and the pointers.
2308          *
2309          * this also includes support for the depreciated
2310          * spi_message.is_dma_mapped interface
2311          */
2312
2313         /* the first transfer just needs the length modified, so we
2314          * run it outside the loop
2315          */
2316         xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2317
2318         /* all the others need rx_buf/tx_buf also set */
2319         for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2320                 /* update rx_buf, tx_buf and dma */
2321                 if (xfers[i].rx_buf)
2322                         xfers[i].rx_buf += offset;
2323                 if (xfers[i].rx_dma)
2324                         xfers[i].rx_dma += offset;
2325                 if (xfers[i].tx_buf)
2326                         xfers[i].tx_buf += offset;
2327                 if (xfers[i].tx_dma)
2328                         xfers[i].tx_dma += offset;
2329
2330                 /* update length */
2331                 xfers[i].len = min(maxsize, xfers[i].len - offset);
2332         }
2333
2334         /* we set up xferp to the last entry we have inserted,
2335          * so that we skip those already split transfers
2336          */
2337         *xferp = &xfers[count - 1];
2338
2339         /* increment statistics counters */
2340         SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2341                                        transfers_split_maxsize);
2342         SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2343                                        transfers_split_maxsize);
2344
2345         return 0;
2346 }
2347
2348 /**
2349  * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2350  *                              when an individual transfer exceeds a
2351  *                              certain size
2352  * @master:    the @spi_master for this transfer
2353  * @msg:   the @spi_message to transform
2354  * @maxsize:  the maximum when to apply this
2355  * @gfp: GFP allocation flags
2356  *
2357  * Return: status of transformation
2358  */
2359 int spi_split_transfers_maxsize(struct spi_master *master,
2360                                 struct spi_message *msg,
2361                                 size_t maxsize,
2362                                 gfp_t gfp)
2363 {
2364         struct spi_transfer *xfer;
2365         int ret;
2366
2367         /* iterate over the transfer_list,
2368          * but note that xfer is advanced to the last transfer inserted
2369          * to avoid checking sizes again unnecessarily (also xfer does
2370          * potentiall belong to a different list by the time the
2371          * replacement has happened
2372          */
2373         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2374                 if (xfer->len > maxsize) {
2375                         ret = __spi_split_transfer_maxsize(
2376                                 master, msg, &xfer, maxsize, gfp);
2377                         if (ret)
2378                                 return ret;
2379                 }
2380         }
2381
2382         return 0;
2383 }
2384 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2385
2386 /*-------------------------------------------------------------------------*/
2387
2388 /* Core methods for SPI master protocol drivers.  Some of the
2389  * other core methods are currently defined as inline functions.
2390  */
2391
2392 static int __spi_validate_bits_per_word(struct spi_master *master, u8 bits_per_word)
2393 {
2394         if (master->bits_per_word_mask) {
2395                 /* Only 32 bits fit in the mask */
2396                 if (bits_per_word > 32)
2397                         return -EINVAL;
2398                 if (!(master->bits_per_word_mask &
2399                                 SPI_BPW_MASK(bits_per_word)))
2400                         return -EINVAL;
2401         }
2402
2403         return 0;
2404 }
2405
2406 /**
2407  * spi_setup - setup SPI mode and clock rate
2408  * @spi: the device whose settings are being modified
2409  * Context: can sleep, and no requests are queued to the device
2410  *
2411  * SPI protocol drivers may need to update the transfer mode if the
2412  * device doesn't work with its default.  They may likewise need
2413  * to update clock rates or word sizes from initial values.  This function
2414  * changes those settings, and must be called from a context that can sleep.
2415  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2416  * effect the next time the device is selected and data is transferred to
2417  * or from it.  When this function returns, the spi device is deselected.
2418  *
2419  * Note that this call will fail if the protocol driver specifies an option
2420  * that the underlying controller or its driver does not support.  For
2421  * example, not all hardware supports wire transfers using nine bit words,
2422  * LSB-first wire encoding, or active-high chipselects.
2423  *
2424  * Return: zero on success, else a negative error code.
2425  */
2426 int spi_setup(struct spi_device *spi)
2427 {
2428         unsigned        bad_bits, ugly_bits;
2429         int             status;
2430
2431         /* check mode to prevent that DUAL and QUAD set at the same time
2432          */
2433         if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2434                 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2435                 dev_err(&spi->dev,
2436                 "setup: can not select dual and quad at the same time\n");
2437                 return -EINVAL;
2438         }
2439         /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2440          */
2441         if ((spi->mode & SPI_3WIRE) && (spi->mode &
2442                 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
2443                 return -EINVAL;
2444         /* help drivers fail *cleanly* when they need options
2445          * that aren't supported with their current master
2446          */
2447         bad_bits = spi->mode & ~spi->master->mode_bits;
2448         ugly_bits = bad_bits &
2449                     (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
2450         if (ugly_bits) {
2451                 dev_warn(&spi->dev,
2452                          "setup: ignoring unsupported mode bits %x\n",
2453                          ugly_bits);
2454                 spi->mode &= ~ugly_bits;
2455                 bad_bits &= ~ugly_bits;
2456         }
2457         if (bad_bits) {
2458                 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2459                         bad_bits);
2460                 return -EINVAL;
2461         }
2462
2463         if (!spi->bits_per_word)
2464                 spi->bits_per_word = 8;
2465
2466         status = __spi_validate_bits_per_word(spi->master, spi->bits_per_word);
2467         if (status)
2468                 return status;
2469
2470         if (!spi->max_speed_hz)
2471                 spi->max_speed_hz = spi->master->max_speed_hz;
2472
2473         if (spi->master->setup)
2474                 status = spi->master->setup(spi);
2475
2476         spi_set_cs(spi, false);
2477
2478         dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2479                         (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2480                         (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2481                         (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2482                         (spi->mode & SPI_3WIRE) ? "3wire, " : "",
2483                         (spi->mode & SPI_LOOP) ? "loopback, " : "",
2484                         spi->bits_per_word, spi->max_speed_hz,
2485                         status);
2486
2487         return status;
2488 }
2489 EXPORT_SYMBOL_GPL(spi_setup);
2490
2491 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2492 {
2493         struct spi_master *master = spi->master;
2494         struct spi_transfer *xfer;
2495         int w_size;
2496
2497         if (list_empty(&message->transfers))
2498                 return -EINVAL;
2499
2500         /* Half-duplex links include original MicroWire, and ones with
2501          * only one data pin like SPI_3WIRE (switches direction) or where
2502          * either MOSI or MISO is missing.  They can also be caused by
2503          * software limitations.
2504          */
2505         if ((master->flags & SPI_MASTER_HALF_DUPLEX)
2506                         || (spi->mode & SPI_3WIRE)) {
2507                 unsigned flags = master->flags;
2508
2509                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
2510                         if (xfer->rx_buf && xfer->tx_buf)
2511                                 return -EINVAL;
2512                         if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
2513                                 return -EINVAL;
2514                         if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
2515                                 return -EINVAL;
2516                 }
2517         }
2518
2519         /**
2520          * Set transfer bits_per_word and max speed as spi device default if
2521          * it is not set for this transfer.
2522          * Set transfer tx_nbits and rx_nbits as single transfer default
2523          * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2524          */
2525         message->frame_length = 0;
2526         list_for_each_entry(xfer, &message->transfers, transfer_list) {
2527                 message->frame_length += xfer->len;
2528                 if (!xfer->bits_per_word)
2529                         xfer->bits_per_word = spi->bits_per_word;
2530
2531                 if (!xfer->speed_hz)
2532                         xfer->speed_hz = spi->max_speed_hz;
2533                 if (!xfer->speed_hz)
2534                         xfer->speed_hz = master->max_speed_hz;
2535
2536                 if (master->max_speed_hz &&
2537                     xfer->speed_hz > master->max_speed_hz)
2538                         xfer->speed_hz = master->max_speed_hz;
2539
2540                 if (__spi_validate_bits_per_word(master, xfer->bits_per_word))
2541                         return -EINVAL;
2542
2543                 /*
2544                  * SPI transfer length should be multiple of SPI word size
2545                  * where SPI word size should be power-of-two multiple
2546                  */
2547                 if (xfer->bits_per_word <= 8)
2548                         w_size = 1;
2549                 else if (xfer->bits_per_word <= 16)
2550                         w_size = 2;
2551                 else
2552                         w_size = 4;
2553
2554                 /* No partial transfers accepted */
2555                 if (xfer->len % w_size)
2556                         return -EINVAL;
2557
2558                 if (xfer->speed_hz && master->min_speed_hz &&
2559                     xfer->speed_hz < master->min_speed_hz)
2560                         return -EINVAL;
2561
2562                 if (xfer->tx_buf && !xfer->tx_nbits)
2563                         xfer->tx_nbits = SPI_NBITS_SINGLE;
2564                 if (xfer->rx_buf && !xfer->rx_nbits)
2565                         xfer->rx_nbits = SPI_NBITS_SINGLE;
2566                 /* check transfer tx/rx_nbits:
2567                  * 1. check the value matches one of single, dual and quad
2568                  * 2. check tx/rx_nbits match the mode in spi_device
2569                  */
2570                 if (xfer->tx_buf) {
2571                         if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2572                                 xfer->tx_nbits != SPI_NBITS_DUAL &&
2573                                 xfer->tx_nbits != SPI_NBITS_QUAD)
2574                                 return -EINVAL;
2575                         if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2576                                 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2577                                 return -EINVAL;
2578                         if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2579                                 !(spi->mode & SPI_TX_QUAD))
2580                                 return -EINVAL;
2581                 }
2582                 /* check transfer rx_nbits */
2583                 if (xfer->rx_buf) {
2584                         if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2585                                 xfer->rx_nbits != SPI_NBITS_DUAL &&
2586                                 xfer->rx_nbits != SPI_NBITS_QUAD)
2587                                 return -EINVAL;
2588                         if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2589                                 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2590                                 return -EINVAL;
2591                         if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2592                                 !(spi->mode & SPI_RX_QUAD))
2593                                 return -EINVAL;
2594                 }
2595         }
2596
2597         message->status = -EINPROGRESS;
2598
2599         return 0;
2600 }
2601
2602 static int __spi_async(struct spi_device *spi, struct spi_message *message)
2603 {
2604         struct spi_master *master = spi->master;
2605
2606         message->spi = spi;
2607
2608         SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_async);
2609         SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2610
2611         trace_spi_message_submit(message);
2612
2613         return master->transfer(spi, message);
2614 }
2615
2616 /**
2617  * spi_async - asynchronous SPI transfer
2618  * @spi: device with which data will be exchanged
2619  * @message: describes the data transfers, including completion callback
2620  * Context: any (irqs may be blocked, etc)
2621  *
2622  * This call may be used in_irq and other contexts which can't sleep,
2623  * as well as from task contexts which can sleep.
2624  *
2625  * The completion callback is invoked in a context which can't sleep.
2626  * Before that invocation, the value of message->status is undefined.
2627  * When the callback is issued, message->status holds either zero (to
2628  * indicate complete success) or a negative error code.  After that
2629  * callback returns, the driver which issued the transfer request may
2630  * deallocate the associated memory; it's no longer in use by any SPI
2631  * core or controller driver code.
2632  *
2633  * Note that although all messages to a spi_device are handled in
2634  * FIFO order, messages may go to different devices in other orders.
2635  * Some device might be higher priority, or have various "hard" access
2636  * time requirements, for example.
2637  *
2638  * On detection of any fault during the transfer, processing of
2639  * the entire message is aborted, and the device is deselected.
2640  * Until returning from the associated message completion callback,
2641  * no other spi_message queued to that device will be processed.
2642  * (This rule applies equally to all the synchronous transfer calls,
2643  * which are wrappers around this core asynchronous primitive.)
2644  *
2645  * Return: zero on success, else a negative error code.
2646  */
2647 int spi_async(struct spi_device *spi, struct spi_message *message)
2648 {
2649         struct spi_master *master = spi->master;
2650         int ret;
2651         unsigned long flags;
2652
2653         ret = __spi_validate(spi, message);
2654         if (ret != 0)
2655                 return ret;
2656
2657         spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2658
2659         if (master->bus_lock_flag)
2660                 ret = -EBUSY;
2661         else
2662                 ret = __spi_async(spi, message);
2663
2664         spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2665
2666         return ret;
2667 }
2668 EXPORT_SYMBOL_GPL(spi_async);
2669
2670 /**
2671  * spi_async_locked - version of spi_async with exclusive bus usage
2672  * @spi: device with which data will be exchanged
2673  * @message: describes the data transfers, including completion callback
2674  * Context: any (irqs may be blocked, etc)
2675  *
2676  * This call may be used in_irq and other contexts which can't sleep,
2677  * as well as from task contexts which can sleep.
2678  *
2679  * The completion callback is invoked in a context which can't sleep.
2680  * Before that invocation, the value of message->status is undefined.
2681  * When the callback is issued, message->status holds either zero (to
2682  * indicate complete success) or a negative error code.  After that
2683  * callback returns, the driver which issued the transfer request may
2684  * deallocate the associated memory; it's no longer in use by any SPI
2685  * core or controller driver code.
2686  *
2687  * Note that although all messages to a spi_device are handled in
2688  * FIFO order, messages may go to different devices in other orders.
2689  * Some device might be higher priority, or have various "hard" access
2690  * time requirements, for example.
2691  *
2692  * On detection of any fault during the transfer, processing of
2693  * the entire message is aborted, and the device is deselected.
2694  * Until returning from the associated message completion callback,
2695  * no other spi_message queued to that device will be processed.
2696  * (This rule applies equally to all the synchronous transfer calls,
2697  * which are wrappers around this core asynchronous primitive.)
2698  *
2699  * Return: zero on success, else a negative error code.
2700  */
2701 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2702 {
2703         struct spi_master *master = spi->master;
2704         int ret;
2705         unsigned long flags;
2706
2707         ret = __spi_validate(spi, message);
2708         if (ret != 0)
2709                 return ret;
2710
2711         spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2712
2713         ret = __spi_async(spi, message);
2714
2715         spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2716
2717         return ret;
2718
2719 }
2720 EXPORT_SYMBOL_GPL(spi_async_locked);
2721
2722
2723 int spi_flash_read(struct spi_device *spi,
2724                    struct spi_flash_read_message *msg)
2725
2726 {
2727         struct spi_master *master = spi->master;
2728         int ret;
2729
2730         if ((msg->opcode_nbits == SPI_NBITS_DUAL ||
2731              msg->addr_nbits == SPI_NBITS_DUAL) &&
2732             !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2733                 return -EINVAL;
2734         if ((msg->opcode_nbits == SPI_NBITS_QUAD ||
2735              msg->addr_nbits == SPI_NBITS_QUAD) &&
2736             !(spi->mode & SPI_TX_QUAD))
2737                 return -EINVAL;
2738         if (msg->data_nbits == SPI_NBITS_DUAL &&
2739             !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2740                 return -EINVAL;
2741         if (msg->data_nbits == SPI_NBITS_QUAD &&
2742             !(spi->mode &  SPI_RX_QUAD))
2743                 return -EINVAL;
2744
2745         if (master->auto_runtime_pm) {
2746                 ret = pm_runtime_get_sync(master->dev.parent);
2747                 if (ret < 0) {
2748                         dev_err(&master->dev, "Failed to power device: %d\n",
2749                                 ret);
2750                         return ret;
2751                 }
2752         }
2753         mutex_lock(&master->bus_lock_mutex);
2754         ret = master->spi_flash_read(spi, msg);
2755         mutex_unlock(&master->bus_lock_mutex);
2756         if (master->auto_runtime_pm)
2757                 pm_runtime_put(master->dev.parent);
2758
2759         return ret;
2760 }
2761 EXPORT_SYMBOL_GPL(spi_flash_read);
2762
2763 /*-------------------------------------------------------------------------*/
2764
2765 /* Utility methods for SPI master protocol drivers, layered on
2766  * top of the core.  Some other utility methods are defined as
2767  * inline functions.
2768  */
2769
2770 static void spi_complete(void *arg)
2771 {
2772         complete(arg);
2773 }
2774
2775 static int __spi_sync(struct spi_device *spi, struct spi_message *message,
2776                       int bus_locked)
2777 {
2778         DECLARE_COMPLETION_ONSTACK(done);
2779         int status;
2780         struct spi_master *master = spi->master;
2781         unsigned long flags;
2782
2783         status = __spi_validate(spi, message);
2784         if (status != 0)
2785                 return status;
2786
2787         message->complete = spi_complete;
2788         message->context = &done;
2789         message->spi = spi;
2790
2791         SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_sync);
2792         SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
2793
2794         if (!bus_locked)
2795                 mutex_lock(&master->bus_lock_mutex);
2796
2797         /* If we're not using the legacy transfer method then we will
2798          * try to transfer in the calling context so special case.
2799          * This code would be less tricky if we could remove the
2800          * support for driver implemented message queues.
2801          */
2802         if (master->transfer == spi_queued_transfer) {
2803                 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2804
2805                 trace_spi_message_submit(message);
2806
2807                 status = __spi_queued_transfer(spi, message, false);
2808
2809                 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2810         } else {
2811                 status = spi_async_locked(spi, message);
2812         }
2813
2814         if (!bus_locked)
2815                 mutex_unlock(&master->bus_lock_mutex);
2816
2817         if (status == 0) {
2818                 /* Push out the messages in the calling context if we
2819                  * can.
2820                  */
2821                 if (master->transfer == spi_queued_transfer) {
2822                         SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2823                                                        spi_sync_immediate);
2824                         SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
2825                                                        spi_sync_immediate);
2826                         __spi_pump_messages(master, false, bus_locked);
2827                 }
2828
2829                 wait_for_completion(&done);
2830                 status = message->status;
2831         }
2832         message->context = NULL;
2833         return status;
2834 }
2835
2836 /**
2837  * spi_sync - blocking/synchronous SPI data transfers
2838  * @spi: device with which data will be exchanged
2839  * @message: describes the data transfers
2840  * Context: can sleep
2841  *
2842  * This call may only be used from a context that may sleep.  The sleep
2843  * is non-interruptible, and has no timeout.  Low-overhead controller
2844  * drivers may DMA directly into and out of the message buffers.
2845  *
2846  * Note that the SPI device's chip select is active during the message,
2847  * and then is normally disabled between messages.  Drivers for some
2848  * frequently-used devices may want to minimize costs of selecting a chip,
2849  * by leaving it selected in anticipation that the next message will go
2850  * to the same chip.  (That may increase power usage.)
2851  *
2852  * Also, the caller is guaranteeing that the memory associated with the
2853  * message will not be freed before this call returns.
2854  *
2855  * Return: zero on success, else a negative error code.
2856  */
2857 int spi_sync(struct spi_device *spi, struct spi_message *message)
2858 {
2859         return __spi_sync(spi, message, spi->master->bus_lock_flag);
2860 }
2861 EXPORT_SYMBOL_GPL(spi_sync);
2862
2863 /**
2864  * spi_sync_locked - version of spi_sync with exclusive bus usage
2865  * @spi: device with which data will be exchanged
2866  * @message: describes the data transfers
2867  * Context: can sleep
2868  *
2869  * This call may only be used from a context that may sleep.  The sleep
2870  * is non-interruptible, and has no timeout.  Low-overhead controller
2871  * drivers may DMA directly into and out of the message buffers.
2872  *
2873  * This call should be used by drivers that require exclusive access to the
2874  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2875  * be released by a spi_bus_unlock call when the exclusive access is over.
2876  *
2877  * Return: zero on success, else a negative error code.
2878  */
2879 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2880 {
2881         return __spi_sync(spi, message, 1);
2882 }
2883 EXPORT_SYMBOL_GPL(spi_sync_locked);
2884
2885 /**
2886  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2887  * @master: SPI bus master that should be locked for exclusive bus access
2888  * Context: can sleep
2889  *
2890  * This call may only be used from a context that may sleep.  The sleep
2891  * is non-interruptible, and has no timeout.
2892  *
2893  * This call should be used by drivers that require exclusive access to the
2894  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2895  * exclusive access is over. Data transfer must be done by spi_sync_locked
2896  * and spi_async_locked calls when the SPI bus lock is held.
2897  *
2898  * Return: always zero.
2899  */
2900 int spi_bus_lock(struct spi_master *master)
2901 {
2902         unsigned long flags;
2903
2904         mutex_lock(&master->bus_lock_mutex);
2905
2906         spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2907         master->bus_lock_flag = 1;
2908         spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2909
2910         /* mutex remains locked until spi_bus_unlock is called */
2911
2912         return 0;
2913 }
2914 EXPORT_SYMBOL_GPL(spi_bus_lock);
2915
2916 /**
2917  * spi_bus_unlock - release the lock for exclusive SPI bus usage
2918  * @master: SPI bus master that was locked for exclusive bus access
2919  * Context: can sleep
2920  *
2921  * This call may only be used from a context that may sleep.  The sleep
2922  * is non-interruptible, and has no timeout.
2923  *
2924  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2925  * call.
2926  *
2927  * Return: always zero.
2928  */
2929 int spi_bus_unlock(struct spi_master *master)
2930 {
2931         master->bus_lock_flag = 0;
2932
2933         mutex_unlock(&master->bus_lock_mutex);
2934
2935         return 0;
2936 }
2937 EXPORT_SYMBOL_GPL(spi_bus_unlock);
2938
2939 /* portable code must never pass more than 32 bytes */
2940 #define SPI_BUFSIZ      max(32, SMP_CACHE_BYTES)
2941
2942 static u8       *buf;
2943
2944 /**
2945  * spi_write_then_read - SPI synchronous write followed by read
2946  * @spi: device with which data will be exchanged
2947  * @txbuf: data to be written (need not be dma-safe)
2948  * @n_tx: size of txbuf, in bytes
2949  * @rxbuf: buffer into which data will be read (need not be dma-safe)
2950  * @n_rx: size of rxbuf, in bytes
2951  * Context: can sleep
2952  *
2953  * This performs a half duplex MicroWire style transaction with the
2954  * device, sending txbuf and then reading rxbuf.  The return value
2955  * is zero for success, else a negative errno status code.
2956  * This call may only be used from a context that may sleep.
2957  *
2958  * Parameters to this routine are always copied using a small buffer;
2959  * portable code should never use this for more than 32 bytes.
2960  * Performance-sensitive or bulk transfer code should instead use
2961  * spi_{async,sync}() calls with dma-safe buffers.
2962  *
2963  * Return: zero on success, else a negative error code.
2964  */
2965 int spi_write_then_read(struct spi_device *spi,
2966                 const void *txbuf, unsigned n_tx,
2967                 void *rxbuf, unsigned n_rx)
2968 {
2969         static DEFINE_MUTEX(lock);
2970
2971         int                     status;
2972         struct spi_message      message;
2973         struct spi_transfer     x[2];
2974         u8                      *local_buf;
2975
2976         /* Use preallocated DMA-safe buffer if we can.  We can't avoid
2977          * copying here, (as a pure convenience thing), but we can
2978          * keep heap costs out of the hot path unless someone else is
2979          * using the pre-allocated buffer or the transfer is too large.
2980          */
2981         if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2982                 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
2983                                     GFP_KERNEL | GFP_DMA);
2984                 if (!local_buf)
2985                         return -ENOMEM;
2986         } else {
2987                 local_buf = buf;
2988         }
2989
2990         spi_message_init(&message);
2991         memset(x, 0, sizeof(x));
2992         if (n_tx) {
2993                 x[0].len = n_tx;
2994                 spi_message_add_tail(&x[0], &message);
2995         }
2996         if (n_rx) {
2997                 x[1].len = n_rx;
2998                 spi_message_add_tail(&x[1], &message);
2999         }
3000
3001         memcpy(local_buf, txbuf, n_tx);
3002         x[0].tx_buf = local_buf;
3003         x[1].rx_buf = local_buf + n_tx;
3004
3005         /* do the i/o */
3006         status = spi_sync(spi, &message);
3007         if (status == 0)
3008                 memcpy(rxbuf, x[1].rx_buf, n_rx);
3009
3010         if (x[0].tx_buf == buf)
3011                 mutex_unlock(&lock);
3012         else
3013                 kfree(local_buf);
3014
3015         return status;
3016 }
3017 EXPORT_SYMBOL_GPL(spi_write_then_read);
3018
3019 /*-------------------------------------------------------------------------*/
3020
3021 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
3022 static int __spi_of_device_match(struct device *dev, void *data)
3023 {
3024         return dev->of_node == data;
3025 }
3026
3027 /* must call put_device() when done with returned spi_device device */
3028 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3029 {
3030         struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
3031                                                 __spi_of_device_match);
3032         return dev ? to_spi_device(dev) : NULL;
3033 }
3034
3035 static int __spi_of_master_match(struct device *dev, const void *data)
3036 {
3037         return dev->of_node == data;
3038 }
3039
3040 /* the spi masters are not using spi_bus, so we find it with another way */
3041 static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
3042 {
3043         struct device *dev;
3044
3045         dev = class_find_device(&spi_master_class, NULL, node,
3046                                 __spi_of_master_match);
3047         if (!dev)
3048                 return NULL;
3049
3050         /* reference got in class_find_device */
3051         return container_of(dev, struct spi_master, dev);
3052 }
3053
3054 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3055                          void *arg)
3056 {
3057         struct of_reconfig_data *rd = arg;
3058         struct spi_master *master;
3059         struct spi_device *spi;
3060
3061         switch (of_reconfig_get_state_change(action, arg)) {
3062         case OF_RECONFIG_CHANGE_ADD:
3063                 master = of_find_spi_master_by_node(rd->dn->parent);
3064                 if (master == NULL)
3065                         return NOTIFY_OK;       /* not for us */
3066
3067                 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3068                         put_device(&master->dev);
3069                         return NOTIFY_OK;
3070                 }
3071
3072                 spi = of_register_spi_device(master, rd->dn);
3073                 put_device(&master->dev);
3074
3075                 if (IS_ERR(spi)) {
3076                         pr_err("%s: failed to create for '%s'\n",
3077                                         __func__, rd->dn->full_name);
3078                         return notifier_from_errno(PTR_ERR(spi));
3079                 }
3080                 break;
3081
3082         case OF_RECONFIG_CHANGE_REMOVE:
3083                 /* already depopulated? */
3084                 if (!of_node_check_flag(rd->dn, OF_POPULATED))
3085                         return NOTIFY_OK;
3086
3087                 /* find our device by node */
3088                 spi = of_find_spi_device_by_node(rd->dn);
3089                 if (spi == NULL)
3090                         return NOTIFY_OK;       /* no? not meant for us */
3091
3092                 /* unregister takes one ref away */
3093                 spi_unregister_device(spi);
3094
3095                 /* and put the reference of the find */
3096                 put_device(&spi->dev);
3097                 break;
3098         }
3099
3100         return NOTIFY_OK;
3101 }
3102
3103 static struct notifier_block spi_of_notifier = {
3104         .notifier_call = of_spi_notify,
3105 };
3106 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3107 extern struct notifier_block spi_of_notifier;
3108 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3109
3110 static int __init spi_init(void)
3111 {
3112         int     status;
3113
3114         buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3115         if (!buf) {
3116                 status = -ENOMEM;
3117                 goto err0;
3118         }
3119
3120         status = bus_register(&spi_bus_type);
3121         if (status < 0)
3122                 goto err1;
3123
3124         status = class_register(&spi_master_class);
3125         if (status < 0)
3126                 goto err2;
3127
3128         if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3129                 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3130
3131         return 0;
3132
3133 err2:
3134         bus_unregister(&spi_bus_type);
3135 err1:
3136         kfree(buf);
3137         buf = NULL;
3138 err0:
3139         return status;
3140 }
3141
3142 /* board_info is normally registered in arch_initcall(),
3143  * but even essential drivers wait till later
3144  *
3145  * REVISIT only boardinfo really needs static linking. the rest (device and
3146  * driver registration) _could_ be dynamically linked (modular) ... costs
3147  * include needing to have boardinfo data structures be much more public.
3148  */
3149 postcore_initcall(spi_init);
3150