4 * Copyright (C) 2005 David Brownell
5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
18 #include <linux/kernel.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/cache.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mutex.h>
25 #include <linux/of_device.h>
26 #include <linux/of_irq.h>
27 #include <linux/clk/clk-conf.h>
28 #include <linux/slab.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/spi/spi.h>
31 #include <linux/of_gpio.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/pm_domain.h>
34 #include <linux/property.h>
35 #include <linux/export.h>
36 #include <linux/sched/rt.h>
37 #include <uapi/linux/sched/types.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/ioport.h>
41 #include <linux/acpi.h>
42 #include <linux/highmem.h>
43 #include <linux/idr.h>
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/spi.h>
47 #define SPI_DYN_FIRST_BUS_NUM 0
49 static DEFINE_IDR(spi_master_idr);
51 static void spidev_release(struct device *dev)
53 struct spi_device *spi = to_spi_device(dev);
55 /* spi controllers may cleanup for released devices */
56 if (spi->controller->cleanup)
57 spi->controller->cleanup(spi);
59 spi_controller_put(spi->controller);
64 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
66 const struct spi_device *spi = to_spi_device(dev);
69 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
73 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
75 static DEVICE_ATTR_RO(modalias);
77 #define SPI_STATISTICS_ATTRS(field, file) \
78 static ssize_t spi_controller_##field##_show(struct device *dev, \
79 struct device_attribute *attr, \
82 struct spi_controller *ctlr = container_of(dev, \
83 struct spi_controller, dev); \
84 return spi_statistics_##field##_show(&ctlr->statistics, buf); \
86 static struct device_attribute dev_attr_spi_controller_##field = { \
87 .attr = { .name = file, .mode = 0444 }, \
88 .show = spi_controller_##field##_show, \
90 static ssize_t spi_device_##field##_show(struct device *dev, \
91 struct device_attribute *attr, \
94 struct spi_device *spi = to_spi_device(dev); \
95 return spi_statistics_##field##_show(&spi->statistics, buf); \
97 static struct device_attribute dev_attr_spi_device_##field = { \
98 .attr = { .name = file, .mode = 0444 }, \
99 .show = spi_device_##field##_show, \
102 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \
103 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
106 unsigned long flags; \
108 spin_lock_irqsave(&stat->lock, flags); \
109 len = sprintf(buf, format_string, stat->field); \
110 spin_unlock_irqrestore(&stat->lock, flags); \
113 SPI_STATISTICS_ATTRS(name, file)
115 #define SPI_STATISTICS_SHOW(field, format_string) \
116 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
117 field, format_string)
119 SPI_STATISTICS_SHOW(messages, "%lu");
120 SPI_STATISTICS_SHOW(transfers, "%lu");
121 SPI_STATISTICS_SHOW(errors, "%lu");
122 SPI_STATISTICS_SHOW(timedout, "%lu");
124 SPI_STATISTICS_SHOW(spi_sync, "%lu");
125 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
126 SPI_STATISTICS_SHOW(spi_async, "%lu");
128 SPI_STATISTICS_SHOW(bytes, "%llu");
129 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
130 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
132 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
133 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
134 "transfer_bytes_histo_" number, \
135 transfer_bytes_histo[index], "%lu")
136 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
137 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
138 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
139 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
140 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
141 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
142 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
143 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
144 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
145 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
146 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
147 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
148 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
149 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
150 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
151 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
152 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
154 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
156 static struct attribute *spi_dev_attrs[] = {
157 &dev_attr_modalias.attr,
161 static const struct attribute_group spi_dev_group = {
162 .attrs = spi_dev_attrs,
165 static struct attribute *spi_device_statistics_attrs[] = {
166 &dev_attr_spi_device_messages.attr,
167 &dev_attr_spi_device_transfers.attr,
168 &dev_attr_spi_device_errors.attr,
169 &dev_attr_spi_device_timedout.attr,
170 &dev_attr_spi_device_spi_sync.attr,
171 &dev_attr_spi_device_spi_sync_immediate.attr,
172 &dev_attr_spi_device_spi_async.attr,
173 &dev_attr_spi_device_bytes.attr,
174 &dev_attr_spi_device_bytes_rx.attr,
175 &dev_attr_spi_device_bytes_tx.attr,
176 &dev_attr_spi_device_transfer_bytes_histo0.attr,
177 &dev_attr_spi_device_transfer_bytes_histo1.attr,
178 &dev_attr_spi_device_transfer_bytes_histo2.attr,
179 &dev_attr_spi_device_transfer_bytes_histo3.attr,
180 &dev_attr_spi_device_transfer_bytes_histo4.attr,
181 &dev_attr_spi_device_transfer_bytes_histo5.attr,
182 &dev_attr_spi_device_transfer_bytes_histo6.attr,
183 &dev_attr_spi_device_transfer_bytes_histo7.attr,
184 &dev_attr_spi_device_transfer_bytes_histo8.attr,
185 &dev_attr_spi_device_transfer_bytes_histo9.attr,
186 &dev_attr_spi_device_transfer_bytes_histo10.attr,
187 &dev_attr_spi_device_transfer_bytes_histo11.attr,
188 &dev_attr_spi_device_transfer_bytes_histo12.attr,
189 &dev_attr_spi_device_transfer_bytes_histo13.attr,
190 &dev_attr_spi_device_transfer_bytes_histo14.attr,
191 &dev_attr_spi_device_transfer_bytes_histo15.attr,
192 &dev_attr_spi_device_transfer_bytes_histo16.attr,
193 &dev_attr_spi_device_transfers_split_maxsize.attr,
197 static const struct attribute_group spi_device_statistics_group = {
198 .name = "statistics",
199 .attrs = spi_device_statistics_attrs,
202 static const struct attribute_group *spi_dev_groups[] = {
204 &spi_device_statistics_group,
208 static struct attribute *spi_controller_statistics_attrs[] = {
209 &dev_attr_spi_controller_messages.attr,
210 &dev_attr_spi_controller_transfers.attr,
211 &dev_attr_spi_controller_errors.attr,
212 &dev_attr_spi_controller_timedout.attr,
213 &dev_attr_spi_controller_spi_sync.attr,
214 &dev_attr_spi_controller_spi_sync_immediate.attr,
215 &dev_attr_spi_controller_spi_async.attr,
216 &dev_attr_spi_controller_bytes.attr,
217 &dev_attr_spi_controller_bytes_rx.attr,
218 &dev_attr_spi_controller_bytes_tx.attr,
219 &dev_attr_spi_controller_transfer_bytes_histo0.attr,
220 &dev_attr_spi_controller_transfer_bytes_histo1.attr,
221 &dev_attr_spi_controller_transfer_bytes_histo2.attr,
222 &dev_attr_spi_controller_transfer_bytes_histo3.attr,
223 &dev_attr_spi_controller_transfer_bytes_histo4.attr,
224 &dev_attr_spi_controller_transfer_bytes_histo5.attr,
225 &dev_attr_spi_controller_transfer_bytes_histo6.attr,
226 &dev_attr_spi_controller_transfer_bytes_histo7.attr,
227 &dev_attr_spi_controller_transfer_bytes_histo8.attr,
228 &dev_attr_spi_controller_transfer_bytes_histo9.attr,
229 &dev_attr_spi_controller_transfer_bytes_histo10.attr,
230 &dev_attr_spi_controller_transfer_bytes_histo11.attr,
231 &dev_attr_spi_controller_transfer_bytes_histo12.attr,
232 &dev_attr_spi_controller_transfer_bytes_histo13.attr,
233 &dev_attr_spi_controller_transfer_bytes_histo14.attr,
234 &dev_attr_spi_controller_transfer_bytes_histo15.attr,
235 &dev_attr_spi_controller_transfer_bytes_histo16.attr,
236 &dev_attr_spi_controller_transfers_split_maxsize.attr,
240 static const struct attribute_group spi_controller_statistics_group = {
241 .name = "statistics",
242 .attrs = spi_controller_statistics_attrs,
245 static const struct attribute_group *spi_master_groups[] = {
246 &spi_controller_statistics_group,
250 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
251 struct spi_transfer *xfer,
252 struct spi_controller *ctlr)
255 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
260 spin_lock_irqsave(&stats->lock, flags);
263 stats->transfer_bytes_histo[l2len]++;
265 stats->bytes += xfer->len;
266 if ((xfer->tx_buf) &&
267 (xfer->tx_buf != ctlr->dummy_tx))
268 stats->bytes_tx += xfer->len;
269 if ((xfer->rx_buf) &&
270 (xfer->rx_buf != ctlr->dummy_rx))
271 stats->bytes_rx += xfer->len;
273 spin_unlock_irqrestore(&stats->lock, flags);
275 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
277 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
278 * and the sysfs version makes coldplug work too.
281 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
282 const struct spi_device *sdev)
284 while (id->name[0]) {
285 if (!strcmp(sdev->modalias, id->name))
292 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
294 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
296 return spi_match_id(sdrv->id_table, sdev);
298 EXPORT_SYMBOL_GPL(spi_get_device_id);
300 static int spi_match_device(struct device *dev, struct device_driver *drv)
302 const struct spi_device *spi = to_spi_device(dev);
303 const struct spi_driver *sdrv = to_spi_driver(drv);
305 /* Attempt an OF style match */
306 if (of_driver_match_device(dev, drv))
310 if (acpi_driver_match_device(dev, drv))
314 return !!spi_match_id(sdrv->id_table, spi);
316 return strcmp(spi->modalias, drv->name) == 0;
319 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
321 const struct spi_device *spi = to_spi_device(dev);
324 rc = acpi_device_uevent_modalias(dev, env);
328 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
331 struct bus_type spi_bus_type = {
333 .dev_groups = spi_dev_groups,
334 .match = spi_match_device,
335 .uevent = spi_uevent,
337 EXPORT_SYMBOL_GPL(spi_bus_type);
340 static int spi_drv_probe(struct device *dev)
342 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
343 struct spi_device *spi = to_spi_device(dev);
346 ret = of_clk_set_defaults(dev->of_node, false);
351 spi->irq = of_irq_get(dev->of_node, 0);
352 if (spi->irq == -EPROBE_DEFER)
353 return -EPROBE_DEFER;
358 ret = dev_pm_domain_attach(dev, true);
359 if (ret != -EPROBE_DEFER) {
360 ret = sdrv->probe(spi);
362 dev_pm_domain_detach(dev, true);
368 static int spi_drv_remove(struct device *dev)
370 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
373 ret = sdrv->remove(to_spi_device(dev));
374 dev_pm_domain_detach(dev, true);
379 static void spi_drv_shutdown(struct device *dev)
381 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
383 sdrv->shutdown(to_spi_device(dev));
387 * __spi_register_driver - register a SPI driver
388 * @owner: owner module of the driver to register
389 * @sdrv: the driver to register
392 * Return: zero on success, else a negative error code.
394 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
396 sdrv->driver.owner = owner;
397 sdrv->driver.bus = &spi_bus_type;
399 sdrv->driver.probe = spi_drv_probe;
401 sdrv->driver.remove = spi_drv_remove;
403 sdrv->driver.shutdown = spi_drv_shutdown;
404 return driver_register(&sdrv->driver);
406 EXPORT_SYMBOL_GPL(__spi_register_driver);
408 /*-------------------------------------------------------------------------*/
410 /* SPI devices should normally not be created by SPI device drivers; that
411 * would make them board-specific. Similarly with SPI controller drivers.
412 * Device registration normally goes into like arch/.../mach.../board-YYY.c
413 * with other readonly (flashable) information about mainboard devices.
417 struct list_head list;
418 struct spi_board_info board_info;
421 static LIST_HEAD(board_list);
422 static LIST_HEAD(spi_controller_list);
425 * Used to protect add/del opertion for board_info list and
426 * spi_controller list, and their matching process
427 * also used to protect object of type struct idr
429 static DEFINE_MUTEX(board_lock);
432 * spi_alloc_device - Allocate a new SPI device
433 * @ctlr: Controller to which device is connected
436 * Allows a driver to allocate and initialize a spi_device without
437 * registering it immediately. This allows a driver to directly
438 * fill the spi_device with device parameters before calling
439 * spi_add_device() on it.
441 * Caller is responsible to call spi_add_device() on the returned
442 * spi_device structure to add it to the SPI controller. If the caller
443 * needs to discard the spi_device without adding it, then it should
444 * call spi_dev_put() on it.
446 * Return: a pointer to the new device, or NULL.
448 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
450 struct spi_device *spi;
452 if (!spi_controller_get(ctlr))
455 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
457 spi_controller_put(ctlr);
461 spi->master = spi->controller = ctlr;
462 spi->dev.parent = &ctlr->dev;
463 spi->dev.bus = &spi_bus_type;
464 spi->dev.release = spidev_release;
465 spi->cs_gpio = -ENOENT;
467 spin_lock_init(&spi->statistics.lock);
469 device_initialize(&spi->dev);
472 EXPORT_SYMBOL_GPL(spi_alloc_device);
474 static void spi_dev_set_name(struct spi_device *spi)
476 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
479 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
483 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
487 static int spi_dev_check(struct device *dev, void *data)
489 struct spi_device *spi = to_spi_device(dev);
490 struct spi_device *new_spi = data;
492 if (spi->controller == new_spi->controller &&
493 spi->chip_select == new_spi->chip_select)
499 * spi_add_device - Add spi_device allocated with spi_alloc_device
500 * @spi: spi_device to register
502 * Companion function to spi_alloc_device. Devices allocated with
503 * spi_alloc_device can be added onto the spi bus with this function.
505 * Return: 0 on success; negative errno on failure
507 int spi_add_device(struct spi_device *spi)
509 static DEFINE_MUTEX(spi_add_lock);
510 struct spi_controller *ctlr = spi->controller;
511 struct device *dev = ctlr->dev.parent;
514 /* Chipselects are numbered 0..max; validate. */
515 if (spi->chip_select >= ctlr->num_chipselect) {
516 dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
517 ctlr->num_chipselect);
521 /* Set the bus ID string */
522 spi_dev_set_name(spi);
524 /* We need to make sure there's no other device with this
525 * chipselect **BEFORE** we call setup(), else we'll trash
526 * its configuration. Lock against concurrent add() calls.
528 mutex_lock(&spi_add_lock);
530 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
532 dev_err(dev, "chipselect %d already in use\n",
538 spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
540 /* Drivers may modify this initial i/o setup, but will
541 * normally rely on the device being setup. Devices
542 * using SPI_CS_HIGH can't coexist well otherwise...
544 status = spi_setup(spi);
546 dev_err(dev, "can't setup %s, status %d\n",
547 dev_name(&spi->dev), status);
551 /* Device may be bound to an active driver when this returns */
552 status = device_add(&spi->dev);
554 dev_err(dev, "can't add %s, status %d\n",
555 dev_name(&spi->dev), status);
557 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
560 mutex_unlock(&spi_add_lock);
563 EXPORT_SYMBOL_GPL(spi_add_device);
566 * spi_new_device - instantiate one new SPI device
567 * @ctlr: Controller to which device is connected
568 * @chip: Describes the SPI device
571 * On typical mainboards, this is purely internal; and it's not needed
572 * after board init creates the hard-wired devices. Some development
573 * platforms may not be able to use spi_register_board_info though, and
574 * this is exported so that for example a USB or parport based adapter
575 * driver could add devices (which it would learn about out-of-band).
577 * Return: the new device, or NULL.
579 struct spi_device *spi_new_device(struct spi_controller *ctlr,
580 struct spi_board_info *chip)
582 struct spi_device *proxy;
585 /* NOTE: caller did any chip->bus_num checks necessary.
587 * Also, unless we change the return value convention to use
588 * error-or-pointer (not NULL-or-pointer), troubleshootability
589 * suggests syslogged diagnostics are best here (ugh).
592 proxy = spi_alloc_device(ctlr);
596 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
598 proxy->chip_select = chip->chip_select;
599 proxy->max_speed_hz = chip->max_speed_hz;
600 proxy->mode = chip->mode;
601 proxy->irq = chip->irq;
602 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
603 proxy->dev.platform_data = (void *) chip->platform_data;
604 proxy->controller_data = chip->controller_data;
605 proxy->controller_state = NULL;
607 if (chip->properties) {
608 status = device_add_properties(&proxy->dev, chip->properties);
611 "failed to add properties to '%s': %d\n",
612 chip->modalias, status);
617 status = spi_add_device(proxy);
619 goto err_remove_props;
624 if (chip->properties)
625 device_remove_properties(&proxy->dev);
630 EXPORT_SYMBOL_GPL(spi_new_device);
633 * spi_unregister_device - unregister a single SPI device
634 * @spi: spi_device to unregister
636 * Start making the passed SPI device vanish. Normally this would be handled
637 * by spi_unregister_controller().
639 void spi_unregister_device(struct spi_device *spi)
644 if (spi->dev.of_node) {
645 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
646 of_node_put(spi->dev.of_node);
648 if (ACPI_COMPANION(&spi->dev))
649 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
650 device_unregister(&spi->dev);
652 EXPORT_SYMBOL_GPL(spi_unregister_device);
654 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
655 struct spi_board_info *bi)
657 struct spi_device *dev;
659 if (ctlr->bus_num != bi->bus_num)
662 dev = spi_new_device(ctlr, bi);
664 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
669 * spi_register_board_info - register SPI devices for a given board
670 * @info: array of chip descriptors
671 * @n: how many descriptors are provided
674 * Board-specific early init code calls this (probably during arch_initcall)
675 * with segments of the SPI device table. Any device nodes are created later,
676 * after the relevant parent SPI controller (bus_num) is defined. We keep
677 * this table of devices forever, so that reloading a controller driver will
678 * not make Linux forget about these hard-wired devices.
680 * Other code can also call this, e.g. a particular add-on board might provide
681 * SPI devices through its expansion connector, so code initializing that board
682 * would naturally declare its SPI devices.
684 * The board info passed can safely be __initdata ... but be careful of
685 * any embedded pointers (platform_data, etc), they're copied as-is.
686 * Device properties are deep-copied though.
688 * Return: zero on success, else a negative error code.
690 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
692 struct boardinfo *bi;
698 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
702 for (i = 0; i < n; i++, bi++, info++) {
703 struct spi_controller *ctlr;
705 memcpy(&bi->board_info, info, sizeof(*info));
706 if (info->properties) {
707 bi->board_info.properties =
708 property_entries_dup(info->properties);
709 if (IS_ERR(bi->board_info.properties))
710 return PTR_ERR(bi->board_info.properties);
713 mutex_lock(&board_lock);
714 list_add_tail(&bi->list, &board_list);
715 list_for_each_entry(ctlr, &spi_controller_list, list)
716 spi_match_controller_to_boardinfo(ctlr,
718 mutex_unlock(&board_lock);
724 /*-------------------------------------------------------------------------*/
726 static void spi_set_cs(struct spi_device *spi, bool enable)
728 if (spi->mode & SPI_CS_HIGH)
731 if (gpio_is_valid(spi->cs_gpio)) {
732 gpio_set_value(spi->cs_gpio, !enable);
733 /* Some SPI masters need both GPIO CS & slave_select */
734 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
735 spi->controller->set_cs)
736 spi->controller->set_cs(spi, !enable);
737 } else if (spi->controller->set_cs) {
738 spi->controller->set_cs(spi, !enable);
742 #ifdef CONFIG_HAS_DMA
743 static int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
744 struct sg_table *sgt, void *buf, size_t len,
745 enum dma_data_direction dir)
747 const bool vmalloced_buf = is_vmalloc_addr(buf);
748 unsigned int max_seg_size = dma_get_max_seg_size(dev);
749 #ifdef CONFIG_HIGHMEM
750 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
751 (unsigned long)buf < (PKMAP_BASE +
752 (LAST_PKMAP * PAGE_SIZE)));
754 const bool kmap_buf = false;
758 struct page *vm_page;
759 struct scatterlist *sg;
764 if (vmalloced_buf || kmap_buf) {
765 desc_len = min_t(int, max_seg_size, PAGE_SIZE);
766 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
767 } else if (virt_addr_valid(buf)) {
768 desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
769 sgs = DIV_ROUND_UP(len, desc_len);
774 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
779 for (i = 0; i < sgs; i++) {
781 if (vmalloced_buf || kmap_buf) {
783 len, desc_len - offset_in_page(buf));
785 vm_page = vmalloc_to_page(buf);
787 vm_page = kmap_to_page(buf);
792 sg_set_page(sg, vm_page,
793 min, offset_in_page(buf));
795 min = min_t(size_t, len, desc_len);
797 sg_set_buf(sg, sg_buf, min);
805 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
818 static void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
819 struct sg_table *sgt, enum dma_data_direction dir)
821 if (sgt->orig_nents) {
822 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
827 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
829 struct device *tx_dev, *rx_dev;
830 struct spi_transfer *xfer;
837 tx_dev = ctlr->dma_tx->device->dev;
839 tx_dev = ctlr->dev.parent;
842 rx_dev = ctlr->dma_rx->device->dev;
844 rx_dev = ctlr->dev.parent;
846 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
847 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
850 if (xfer->tx_buf != NULL) {
851 ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
852 (void *)xfer->tx_buf, xfer->len,
858 if (xfer->rx_buf != NULL) {
859 ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
860 xfer->rx_buf, xfer->len,
863 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
870 ctlr->cur_msg_mapped = true;
875 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
877 struct spi_transfer *xfer;
878 struct device *tx_dev, *rx_dev;
880 if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
884 tx_dev = ctlr->dma_tx->device->dev;
886 tx_dev = ctlr->dev.parent;
889 rx_dev = ctlr->dma_rx->device->dev;
891 rx_dev = ctlr->dev.parent;
893 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
894 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
897 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
898 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
903 #else /* !CONFIG_HAS_DMA */
904 static inline int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
905 struct sg_table *sgt, void *buf, size_t len,
906 enum dma_data_direction dir)
911 static inline void spi_unmap_buf(struct spi_controller *ctlr,
912 struct device *dev, struct sg_table *sgt,
913 enum dma_data_direction dir)
917 static inline int __spi_map_msg(struct spi_controller *ctlr,
918 struct spi_message *msg)
923 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
924 struct spi_message *msg)
928 #endif /* !CONFIG_HAS_DMA */
930 static inline int spi_unmap_msg(struct spi_controller *ctlr,
931 struct spi_message *msg)
933 struct spi_transfer *xfer;
935 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
937 * Restore the original value of tx_buf or rx_buf if they are
940 if (xfer->tx_buf == ctlr->dummy_tx)
942 if (xfer->rx_buf == ctlr->dummy_rx)
946 return __spi_unmap_msg(ctlr, msg);
949 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
951 struct spi_transfer *xfer;
953 unsigned int max_tx, max_rx;
955 if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) {
959 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
960 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
962 max_tx = max(xfer->len, max_tx);
963 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
965 max_rx = max(xfer->len, max_rx);
969 tmp = krealloc(ctlr->dummy_tx, max_tx,
970 GFP_KERNEL | GFP_DMA);
973 ctlr->dummy_tx = tmp;
974 memset(tmp, 0, max_tx);
978 tmp = krealloc(ctlr->dummy_rx, max_rx,
979 GFP_KERNEL | GFP_DMA);
982 ctlr->dummy_rx = tmp;
985 if (max_tx || max_rx) {
986 list_for_each_entry(xfer, &msg->transfers,
989 xfer->tx_buf = ctlr->dummy_tx;
991 xfer->rx_buf = ctlr->dummy_rx;
996 return __spi_map_msg(ctlr, msg);
1000 * spi_transfer_one_message - Default implementation of transfer_one_message()
1002 * This is a standard implementation of transfer_one_message() for
1003 * drivers which implement a transfer_one() operation. It provides
1004 * standard handling of delays and chip select management.
1006 static int spi_transfer_one_message(struct spi_controller *ctlr,
1007 struct spi_message *msg)
1009 struct spi_transfer *xfer;
1010 bool keep_cs = false;
1012 unsigned long long ms = 1;
1013 struct spi_statistics *statm = &ctlr->statistics;
1014 struct spi_statistics *stats = &msg->spi->statistics;
1016 spi_set_cs(msg->spi, true);
1018 SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1019 SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1021 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1022 trace_spi_transfer_start(msg, xfer);
1024 spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1025 spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1027 if (xfer->tx_buf || xfer->rx_buf) {
1028 reinit_completion(&ctlr->xfer_completion);
1030 ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1032 SPI_STATISTICS_INCREMENT_FIELD(statm,
1034 SPI_STATISTICS_INCREMENT_FIELD(stats,
1036 dev_err(&msg->spi->dev,
1037 "SPI transfer failed: %d\n", ret);
1043 ms = 8LL * 1000LL * xfer->len;
1044 do_div(ms, xfer->speed_hz);
1045 ms += ms + 200; /* some tolerance */
1050 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1051 msecs_to_jiffies(ms));
1055 SPI_STATISTICS_INCREMENT_FIELD(statm,
1057 SPI_STATISTICS_INCREMENT_FIELD(stats,
1059 dev_err(&msg->spi->dev,
1060 "SPI transfer timed out\n");
1061 msg->status = -ETIMEDOUT;
1065 dev_err(&msg->spi->dev,
1066 "Bufferless transfer has length %u\n",
1070 trace_spi_transfer_stop(msg, xfer);
1072 if (msg->status != -EINPROGRESS)
1075 if (xfer->delay_usecs) {
1076 u16 us = xfer->delay_usecs;
1081 usleep_range(us, us + DIV_ROUND_UP(us, 10));
1084 if (xfer->cs_change) {
1085 if (list_is_last(&xfer->transfer_list,
1089 spi_set_cs(msg->spi, false);
1091 spi_set_cs(msg->spi, true);
1095 msg->actual_length += xfer->len;
1099 if (ret != 0 || !keep_cs)
1100 spi_set_cs(msg->spi, false);
1102 if (msg->status == -EINPROGRESS)
1105 if (msg->status && ctlr->handle_err)
1106 ctlr->handle_err(ctlr, msg);
1108 spi_res_release(ctlr, msg);
1110 spi_finalize_current_message(ctlr);
1116 * spi_finalize_current_transfer - report completion of a transfer
1117 * @ctlr: the controller reporting completion
1119 * Called by SPI drivers using the core transfer_one_message()
1120 * implementation to notify it that the current interrupt driven
1121 * transfer has finished and the next one may be scheduled.
1123 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1125 complete(&ctlr->xfer_completion);
1127 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1130 * __spi_pump_messages - function which processes spi message queue
1131 * @ctlr: controller to process queue for
1132 * @in_kthread: true if we are in the context of the message pump thread
1134 * This function checks if there is any spi message in the queue that
1135 * needs processing and if so call out to the driver to initialize hardware
1136 * and transfer each message.
1138 * Note that it is called both from the kthread itself and also from
1139 * inside spi_sync(); the queue extraction handling at the top of the
1140 * function should deal with this safely.
1142 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1144 unsigned long flags;
1145 bool was_busy = false;
1149 spin_lock_irqsave(&ctlr->queue_lock, flags);
1151 /* Make sure we are not already running a message */
1152 if (ctlr->cur_msg) {
1153 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1157 /* If another context is idling the device then defer */
1159 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1160 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1164 /* Check if the queue is idle */
1165 if (list_empty(&ctlr->queue) || !ctlr->running) {
1167 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1171 /* Only do teardown in the thread */
1173 kthread_queue_work(&ctlr->kworker,
1174 &ctlr->pump_messages);
1175 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1180 ctlr->idling = true;
1181 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1183 kfree(ctlr->dummy_rx);
1184 ctlr->dummy_rx = NULL;
1185 kfree(ctlr->dummy_tx);
1186 ctlr->dummy_tx = NULL;
1187 if (ctlr->unprepare_transfer_hardware &&
1188 ctlr->unprepare_transfer_hardware(ctlr))
1190 "failed to unprepare transfer hardware\n");
1191 if (ctlr->auto_runtime_pm) {
1192 pm_runtime_mark_last_busy(ctlr->dev.parent);
1193 pm_runtime_put_autosuspend(ctlr->dev.parent);
1195 trace_spi_controller_idle(ctlr);
1197 spin_lock_irqsave(&ctlr->queue_lock, flags);
1198 ctlr->idling = false;
1199 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1203 /* Extract head of queue */
1205 list_first_entry(&ctlr->queue, struct spi_message, queue);
1207 list_del_init(&ctlr->cur_msg->queue);
1212 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1214 mutex_lock(&ctlr->io_mutex);
1216 if (!was_busy && ctlr->auto_runtime_pm) {
1217 ret = pm_runtime_get_sync(ctlr->dev.parent);
1219 dev_err(&ctlr->dev, "Failed to power device: %d\n",
1221 mutex_unlock(&ctlr->io_mutex);
1227 trace_spi_controller_busy(ctlr);
1229 if (!was_busy && ctlr->prepare_transfer_hardware) {
1230 ret = ctlr->prepare_transfer_hardware(ctlr);
1233 "failed to prepare transfer hardware\n");
1235 if (ctlr->auto_runtime_pm)
1236 pm_runtime_put(ctlr->dev.parent);
1237 mutex_unlock(&ctlr->io_mutex);
1242 trace_spi_message_start(ctlr->cur_msg);
1244 if (ctlr->prepare_message) {
1245 ret = ctlr->prepare_message(ctlr, ctlr->cur_msg);
1247 dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1249 ctlr->cur_msg->status = ret;
1250 spi_finalize_current_message(ctlr);
1253 ctlr->cur_msg_prepared = true;
1256 ret = spi_map_msg(ctlr, ctlr->cur_msg);
1258 ctlr->cur_msg->status = ret;
1259 spi_finalize_current_message(ctlr);
1263 ret = ctlr->transfer_one_message(ctlr, ctlr->cur_msg);
1266 "failed to transfer one message from queue\n");
1271 mutex_unlock(&ctlr->io_mutex);
1273 /* Prod the scheduler in case transfer_one() was busy waiting */
1279 * spi_pump_messages - kthread work function which processes spi message queue
1280 * @work: pointer to kthread work struct contained in the controller struct
1282 static void spi_pump_messages(struct kthread_work *work)
1284 struct spi_controller *ctlr =
1285 container_of(work, struct spi_controller, pump_messages);
1287 __spi_pump_messages(ctlr, true);
1290 static int spi_init_queue(struct spi_controller *ctlr)
1292 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1294 ctlr->running = false;
1297 kthread_init_worker(&ctlr->kworker);
1298 ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker,
1299 "%s", dev_name(&ctlr->dev));
1300 if (IS_ERR(ctlr->kworker_task)) {
1301 dev_err(&ctlr->dev, "failed to create message pump task\n");
1302 return PTR_ERR(ctlr->kworker_task);
1304 kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1307 * Controller config will indicate if this controller should run the
1308 * message pump with high (realtime) priority to reduce the transfer
1309 * latency on the bus by minimising the delay between a transfer
1310 * request and the scheduling of the message pump thread. Without this
1311 * setting the message pump thread will remain at default priority.
1314 dev_info(&ctlr->dev,
1315 "will run message pump with realtime priority\n");
1316 sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, ¶m);
1323 * spi_get_next_queued_message() - called by driver to check for queued
1325 * @ctlr: the controller to check for queued messages
1327 * If there are more messages in the queue, the next message is returned from
1330 * Return: the next message in the queue, else NULL if the queue is empty.
1332 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1334 struct spi_message *next;
1335 unsigned long flags;
1337 /* get a pointer to the next message, if any */
1338 spin_lock_irqsave(&ctlr->queue_lock, flags);
1339 next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1341 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1345 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1348 * spi_finalize_current_message() - the current message is complete
1349 * @ctlr: the controller to return the message to
1351 * Called by the driver to notify the core that the message in the front of the
1352 * queue is complete and can be removed from the queue.
1354 void spi_finalize_current_message(struct spi_controller *ctlr)
1356 struct spi_message *mesg;
1357 unsigned long flags;
1360 spin_lock_irqsave(&ctlr->queue_lock, flags);
1361 mesg = ctlr->cur_msg;
1362 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1364 spi_unmap_msg(ctlr, mesg);
1366 if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1367 ret = ctlr->unprepare_message(ctlr, mesg);
1369 dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1374 spin_lock_irqsave(&ctlr->queue_lock, flags);
1375 ctlr->cur_msg = NULL;
1376 ctlr->cur_msg_prepared = false;
1377 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1378 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1380 trace_spi_message_done(mesg);
1384 mesg->complete(mesg->context);
1386 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1388 static int spi_start_queue(struct spi_controller *ctlr)
1390 unsigned long flags;
1392 spin_lock_irqsave(&ctlr->queue_lock, flags);
1394 if (ctlr->running || ctlr->busy) {
1395 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1399 ctlr->running = true;
1400 ctlr->cur_msg = NULL;
1401 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1403 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1408 static int spi_stop_queue(struct spi_controller *ctlr)
1410 unsigned long flags;
1411 unsigned limit = 500;
1414 spin_lock_irqsave(&ctlr->queue_lock, flags);
1417 * This is a bit lame, but is optimized for the common execution path.
1418 * A wait_queue on the ctlr->busy could be used, but then the common
1419 * execution path (pump_messages) would be required to call wake_up or
1420 * friends on every SPI message. Do this instead.
1422 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1423 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1424 usleep_range(10000, 11000);
1425 spin_lock_irqsave(&ctlr->queue_lock, flags);
1428 if (!list_empty(&ctlr->queue) || ctlr->busy)
1431 ctlr->running = false;
1433 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1436 dev_warn(&ctlr->dev, "could not stop message queue\n");
1442 static int spi_destroy_queue(struct spi_controller *ctlr)
1446 ret = spi_stop_queue(ctlr);
1449 * kthread_flush_worker will block until all work is done.
1450 * If the reason that stop_queue timed out is that the work will never
1451 * finish, then it does no good to call flush/stop thread, so
1455 dev_err(&ctlr->dev, "problem destroying queue\n");
1459 kthread_flush_worker(&ctlr->kworker);
1460 kthread_stop(ctlr->kworker_task);
1465 static int __spi_queued_transfer(struct spi_device *spi,
1466 struct spi_message *msg,
1469 struct spi_controller *ctlr = spi->controller;
1470 unsigned long flags;
1472 spin_lock_irqsave(&ctlr->queue_lock, flags);
1474 if (!ctlr->running) {
1475 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1478 msg->actual_length = 0;
1479 msg->status = -EINPROGRESS;
1481 list_add_tail(&msg->queue, &ctlr->queue);
1482 if (!ctlr->busy && need_pump)
1483 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1485 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1490 * spi_queued_transfer - transfer function for queued transfers
1491 * @spi: spi device which is requesting transfer
1492 * @msg: spi message which is to handled is queued to driver queue
1494 * Return: zero on success, else a negative error code.
1496 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1498 return __spi_queued_transfer(spi, msg, true);
1501 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1505 ctlr->transfer = spi_queued_transfer;
1506 if (!ctlr->transfer_one_message)
1507 ctlr->transfer_one_message = spi_transfer_one_message;
1509 /* Initialize and start queue */
1510 ret = spi_init_queue(ctlr);
1512 dev_err(&ctlr->dev, "problem initializing queue\n");
1513 goto err_init_queue;
1515 ctlr->queued = true;
1516 ret = spi_start_queue(ctlr);
1518 dev_err(&ctlr->dev, "problem starting queue\n");
1519 goto err_start_queue;
1525 spi_destroy_queue(ctlr);
1530 /*-------------------------------------------------------------------------*/
1532 #if defined(CONFIG_OF)
1533 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1534 struct device_node *nc)
1539 /* Mode (clock phase/polarity/etc.) */
1540 if (of_property_read_bool(nc, "spi-cpha"))
1541 spi->mode |= SPI_CPHA;
1542 if (of_property_read_bool(nc, "spi-cpol"))
1543 spi->mode |= SPI_CPOL;
1544 if (of_property_read_bool(nc, "spi-cs-high"))
1545 spi->mode |= SPI_CS_HIGH;
1546 if (of_property_read_bool(nc, "spi-3wire"))
1547 spi->mode |= SPI_3WIRE;
1548 if (of_property_read_bool(nc, "spi-lsb-first"))
1549 spi->mode |= SPI_LSB_FIRST;
1551 /* Device DUAL/QUAD mode */
1552 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1557 spi->mode |= SPI_TX_DUAL;
1560 spi->mode |= SPI_TX_QUAD;
1563 dev_warn(&ctlr->dev,
1564 "spi-tx-bus-width %d not supported\n",
1570 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1575 spi->mode |= SPI_RX_DUAL;
1578 spi->mode |= SPI_RX_QUAD;
1581 dev_warn(&ctlr->dev,
1582 "spi-rx-bus-width %d not supported\n",
1588 if (spi_controller_is_slave(ctlr)) {
1589 if (strcmp(nc->name, "slave")) {
1590 dev_err(&ctlr->dev, "%s is not called 'slave'\n",
1597 /* Device address */
1598 rc = of_property_read_u32(nc, "reg", &value);
1600 dev_err(&ctlr->dev, "%s has no valid 'reg' property (%d)\n",
1604 spi->chip_select = value;
1607 rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1610 "%s has no valid 'spi-max-frequency' property (%d)\n",
1614 spi->max_speed_hz = value;
1619 static struct spi_device *
1620 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
1622 struct spi_device *spi;
1625 /* Alloc an spi_device */
1626 spi = spi_alloc_device(ctlr);
1628 dev_err(&ctlr->dev, "spi_device alloc error for %s\n",
1634 /* Select device driver */
1635 rc = of_modalias_node(nc, spi->modalias,
1636 sizeof(spi->modalias));
1638 dev_err(&ctlr->dev, "cannot find modalias for %s\n",
1643 rc = of_spi_parse_dt(ctlr, spi, nc);
1647 /* Store a pointer to the node in the device structure */
1649 spi->dev.of_node = nc;
1651 /* Register the new device */
1652 rc = spi_add_device(spi);
1654 dev_err(&ctlr->dev, "spi_device register error %s\n",
1656 goto err_of_node_put;
1669 * of_register_spi_devices() - Register child devices onto the SPI bus
1670 * @ctlr: Pointer to spi_controller device
1672 * Registers an spi_device for each child node of controller node which
1673 * represents a valid SPI slave.
1675 static void of_register_spi_devices(struct spi_controller *ctlr)
1677 struct spi_device *spi;
1678 struct device_node *nc;
1680 if (!ctlr->dev.of_node)
1683 for_each_available_child_of_node(ctlr->dev.of_node, nc) {
1684 if (of_node_test_and_set_flag(nc, OF_POPULATED))
1686 spi = of_register_spi_device(ctlr, nc);
1688 dev_warn(&ctlr->dev,
1689 "Failed to create SPI device for %s\n",
1691 of_node_clear_flag(nc, OF_POPULATED);
1696 static void of_register_spi_devices(struct spi_controller *ctlr) { }
1700 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1702 struct spi_device *spi = data;
1703 struct spi_controller *ctlr = spi->controller;
1705 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1706 struct acpi_resource_spi_serialbus *sb;
1708 sb = &ares->data.spi_serial_bus;
1709 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1711 * ACPI DeviceSelection numbering is handled by the
1712 * host controller driver in Windows and can vary
1713 * from driver to driver. In Linux we always expect
1714 * 0 .. max - 1 so we need to ask the driver to
1715 * translate between the two schemes.
1717 if (ctlr->fw_translate_cs) {
1718 int cs = ctlr->fw_translate_cs(ctlr,
1719 sb->device_selection);
1722 spi->chip_select = cs;
1724 spi->chip_select = sb->device_selection;
1727 spi->max_speed_hz = sb->connection_speed;
1729 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1730 spi->mode |= SPI_CPHA;
1731 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1732 spi->mode |= SPI_CPOL;
1733 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1734 spi->mode |= SPI_CS_HIGH;
1736 } else if (spi->irq < 0) {
1739 if (acpi_dev_resource_interrupt(ares, 0, &r))
1743 /* Always tell the ACPI core to skip this resource */
1747 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
1748 struct acpi_device *adev)
1750 struct list_head resource_list;
1751 struct spi_device *spi;
1754 if (acpi_bus_get_status(adev) || !adev->status.present ||
1755 acpi_device_enumerated(adev))
1758 spi = spi_alloc_device(ctlr);
1760 dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
1761 dev_name(&adev->dev));
1762 return AE_NO_MEMORY;
1765 ACPI_COMPANION_SET(&spi->dev, adev);
1768 INIT_LIST_HEAD(&resource_list);
1769 ret = acpi_dev_get_resources(adev, &resource_list,
1770 acpi_spi_add_resource, spi);
1771 acpi_dev_free_resource_list(&resource_list);
1773 if (ret < 0 || !spi->max_speed_hz) {
1778 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
1779 sizeof(spi->modalias));
1782 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
1784 acpi_device_set_enumerated(adev);
1786 adev->power.flags.ignore_parent = true;
1787 if (spi_add_device(spi)) {
1788 adev->power.flags.ignore_parent = false;
1789 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
1790 dev_name(&adev->dev));
1797 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1798 void *data, void **return_value)
1800 struct spi_controller *ctlr = data;
1801 struct acpi_device *adev;
1803 if (acpi_bus_get_device(handle, &adev))
1806 return acpi_register_spi_device(ctlr, adev);
1809 static void acpi_register_spi_devices(struct spi_controller *ctlr)
1814 handle = ACPI_HANDLE(ctlr->dev.parent);
1818 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1819 acpi_spi_add_device, NULL, ctlr, NULL);
1820 if (ACPI_FAILURE(status))
1821 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
1824 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
1825 #endif /* CONFIG_ACPI */
1827 static void spi_controller_release(struct device *dev)
1829 struct spi_controller *ctlr;
1831 ctlr = container_of(dev, struct spi_controller, dev);
1835 static struct class spi_master_class = {
1836 .name = "spi_master",
1837 .owner = THIS_MODULE,
1838 .dev_release = spi_controller_release,
1839 .dev_groups = spi_master_groups,
1842 #ifdef CONFIG_SPI_SLAVE
1844 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
1846 * @spi: device used for the current transfer
1848 int spi_slave_abort(struct spi_device *spi)
1850 struct spi_controller *ctlr = spi->controller;
1852 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
1853 return ctlr->slave_abort(ctlr);
1857 EXPORT_SYMBOL_GPL(spi_slave_abort);
1859 static int match_true(struct device *dev, void *data)
1864 static ssize_t spi_slave_show(struct device *dev,
1865 struct device_attribute *attr, char *buf)
1867 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
1869 struct device *child;
1871 child = device_find_child(&ctlr->dev, NULL, match_true);
1872 return sprintf(buf, "%s\n",
1873 child ? to_spi_device(child)->modalias : NULL);
1876 static ssize_t spi_slave_store(struct device *dev,
1877 struct device_attribute *attr, const char *buf,
1880 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
1882 struct spi_device *spi;
1883 struct device *child;
1887 rc = sscanf(buf, "%31s", name);
1888 if (rc != 1 || !name[0])
1891 child = device_find_child(&ctlr->dev, NULL, match_true);
1893 /* Remove registered slave */
1894 device_unregister(child);
1898 if (strcmp(name, "(null)")) {
1899 /* Register new slave */
1900 spi = spi_alloc_device(ctlr);
1904 strlcpy(spi->modalias, name, sizeof(spi->modalias));
1906 rc = spi_add_device(spi);
1916 static DEVICE_ATTR(slave, 0644, spi_slave_show, spi_slave_store);
1918 static struct attribute *spi_slave_attrs[] = {
1919 &dev_attr_slave.attr,
1923 static const struct attribute_group spi_slave_group = {
1924 .attrs = spi_slave_attrs,
1927 static const struct attribute_group *spi_slave_groups[] = {
1928 &spi_controller_statistics_group,
1933 static struct class spi_slave_class = {
1934 .name = "spi_slave",
1935 .owner = THIS_MODULE,
1936 .dev_release = spi_controller_release,
1937 .dev_groups = spi_slave_groups,
1940 extern struct class spi_slave_class; /* dummy */
1944 * __spi_alloc_controller - allocate an SPI master or slave controller
1945 * @dev: the controller, possibly using the platform_bus
1946 * @size: how much zeroed driver-private data to allocate; the pointer to this
1947 * memory is in the driver_data field of the returned device,
1948 * accessible with spi_controller_get_devdata().
1949 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
1950 * slave (true) controller
1951 * Context: can sleep
1953 * This call is used only by SPI controller drivers, which are the
1954 * only ones directly touching chip registers. It's how they allocate
1955 * an spi_controller structure, prior to calling spi_register_controller().
1957 * This must be called from context that can sleep.
1959 * The caller is responsible for assigning the bus number and initializing the
1960 * controller's methods before calling spi_register_controller(); and (after
1961 * errors adding the device) calling spi_controller_put() to prevent a memory
1964 * Return: the SPI controller structure on success, else NULL.
1966 struct spi_controller *__spi_alloc_controller(struct device *dev,
1967 unsigned int size, bool slave)
1969 struct spi_controller *ctlr;
1974 ctlr = kzalloc(size + sizeof(*ctlr), GFP_KERNEL);
1978 device_initialize(&ctlr->dev);
1980 ctlr->num_chipselect = 1;
1981 ctlr->slave = slave;
1982 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
1983 ctlr->dev.class = &spi_slave_class;
1985 ctlr->dev.class = &spi_master_class;
1986 ctlr->dev.parent = dev;
1987 pm_suspend_ignore_children(&ctlr->dev, true);
1988 spi_controller_set_devdata(ctlr, &ctlr[1]);
1992 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
1995 static int of_spi_register_master(struct spi_controller *ctlr)
1998 struct device_node *np = ctlr->dev.of_node;
2003 nb = of_gpio_named_count(np, "cs-gpios");
2004 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2006 /* Return error only for an incorrectly formed cs-gpios property */
2007 if (nb == 0 || nb == -ENOENT)
2012 cs = devm_kzalloc(&ctlr->dev, sizeof(int) * ctlr->num_chipselect,
2014 ctlr->cs_gpios = cs;
2016 if (!ctlr->cs_gpios)
2019 for (i = 0; i < ctlr->num_chipselect; i++)
2022 for (i = 0; i < nb; i++)
2023 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2028 static int of_spi_register_master(struct spi_controller *ctlr)
2035 * spi_register_controller - register SPI master or slave controller
2036 * @ctlr: initialized master, originally from spi_alloc_master() or
2038 * Context: can sleep
2040 * SPI controllers connect to their drivers using some non-SPI bus,
2041 * such as the platform bus. The final stage of probe() in that code
2042 * includes calling spi_register_controller() to hook up to this SPI bus glue.
2044 * SPI controllers use board specific (often SOC specific) bus numbers,
2045 * and board-specific addressing for SPI devices combines those numbers
2046 * with chip select numbers. Since SPI does not directly support dynamic
2047 * device identification, boards need configuration tables telling which
2048 * chip is at which address.
2050 * This must be called from context that can sleep. It returns zero on
2051 * success, else a negative error code (dropping the controller's refcount).
2052 * After a successful return, the caller is responsible for calling
2053 * spi_unregister_controller().
2055 * Return: zero on success, else a negative error code.
2057 int spi_register_controller(struct spi_controller *ctlr)
2059 struct device *dev = ctlr->dev.parent;
2060 struct boardinfo *bi;
2061 int status = -ENODEV;
2067 if (!spi_controller_is_slave(ctlr)) {
2068 status = of_spi_register_master(ctlr);
2073 /* even if it's just one always-selected device, there must
2074 * be at least one chipselect
2076 if (ctlr->num_chipselect == 0)
2078 /* allocate dynamic bus number using Linux idr */
2079 if ((ctlr->bus_num < 0) && ctlr->dev.of_node) {
2080 id = of_alias_get_id(ctlr->dev.of_node, "spi");
2083 mutex_lock(&board_lock);
2084 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2085 ctlr->bus_num + 1, GFP_KERNEL);
2086 mutex_unlock(&board_lock);
2087 if (WARN(id < 0, "couldn't get idr"))
2088 return id == -ENOSPC ? -EBUSY : id;
2091 if (ctlr->bus_num < 0) {
2092 mutex_lock(&board_lock);
2093 id = idr_alloc(&spi_master_idr, ctlr, SPI_DYN_FIRST_BUS_NUM, 0,
2095 mutex_unlock(&board_lock);
2096 if (WARN(id < 0, "couldn't get idr"))
2100 INIT_LIST_HEAD(&ctlr->queue);
2101 spin_lock_init(&ctlr->queue_lock);
2102 spin_lock_init(&ctlr->bus_lock_spinlock);
2103 mutex_init(&ctlr->bus_lock_mutex);
2104 mutex_init(&ctlr->io_mutex);
2105 ctlr->bus_lock_flag = 0;
2106 init_completion(&ctlr->xfer_completion);
2107 if (!ctlr->max_dma_len)
2108 ctlr->max_dma_len = INT_MAX;
2110 /* register the device, then userspace will see it.
2111 * registration fails if the bus ID is in use.
2113 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2114 status = device_add(&ctlr->dev);
2117 mutex_lock(&board_lock);
2118 idr_remove(&spi_master_idr, ctlr->bus_num);
2119 mutex_unlock(&board_lock);
2122 dev_dbg(dev, "registered %s %s\n",
2123 spi_controller_is_slave(ctlr) ? "slave" : "master",
2124 dev_name(&ctlr->dev));
2126 /* If we're using a queued driver, start the queue */
2128 dev_info(dev, "controller is unqueued, this is deprecated\n");
2130 status = spi_controller_initialize_queue(ctlr);
2132 device_del(&ctlr->dev);
2134 mutex_lock(&board_lock);
2135 idr_remove(&spi_master_idr, ctlr->bus_num);
2136 mutex_unlock(&board_lock);
2140 /* add statistics */
2141 spin_lock_init(&ctlr->statistics.lock);
2143 mutex_lock(&board_lock);
2144 list_add_tail(&ctlr->list, &spi_controller_list);
2145 list_for_each_entry(bi, &board_list, list)
2146 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2147 mutex_unlock(&board_lock);
2149 /* Register devices from the device tree and ACPI */
2150 of_register_spi_devices(ctlr);
2151 acpi_register_spi_devices(ctlr);
2155 EXPORT_SYMBOL_GPL(spi_register_controller);
2157 static void devm_spi_unregister(struct device *dev, void *res)
2159 spi_unregister_controller(*(struct spi_controller **)res);
2163 * devm_spi_register_controller - register managed SPI master or slave
2165 * @dev: device managing SPI controller
2166 * @ctlr: initialized controller, originally from spi_alloc_master() or
2168 * Context: can sleep
2170 * Register a SPI device as with spi_register_controller() which will
2171 * automatically be unregister
2173 * Return: zero on success, else a negative error code.
2175 int devm_spi_register_controller(struct device *dev,
2176 struct spi_controller *ctlr)
2178 struct spi_controller **ptr;
2181 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2185 ret = spi_register_controller(ctlr);
2188 devres_add(dev, ptr);
2195 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2197 static int __unregister(struct device *dev, void *null)
2199 spi_unregister_device(to_spi_device(dev));
2204 * spi_unregister_controller - unregister SPI master or slave controller
2205 * @ctlr: the controller being unregistered
2206 * Context: can sleep
2208 * This call is used only by SPI controller drivers, which are the
2209 * only ones directly touching chip registers.
2211 * This must be called from context that can sleep.
2213 void spi_unregister_controller(struct spi_controller *ctlr)
2215 struct spi_controller *found;
2218 /* First make sure that this controller was ever added */
2219 mutex_lock(&board_lock);
2220 found = idr_find(&spi_master_idr, ctlr->bus_num);
2221 mutex_unlock(&board_lock);
2222 if (found != ctlr) {
2224 "attempting to delete unregistered controller [%s]\n",
2225 dev_name(&ctlr->dev));
2229 if (spi_destroy_queue(ctlr))
2230 dev_err(&ctlr->dev, "queue remove failed\n");
2232 mutex_lock(&board_lock);
2233 list_del(&ctlr->list);
2234 mutex_unlock(&board_lock);
2236 dummy = device_for_each_child(&ctlr->dev, NULL, __unregister);
2237 device_unregister(&ctlr->dev);
2239 mutex_lock(&board_lock);
2240 idr_remove(&spi_master_idr, ctlr->bus_num);
2241 mutex_unlock(&board_lock);
2243 EXPORT_SYMBOL_GPL(spi_unregister_controller);
2245 int spi_controller_suspend(struct spi_controller *ctlr)
2249 /* Basically no-ops for non-queued controllers */
2253 ret = spi_stop_queue(ctlr);
2255 dev_err(&ctlr->dev, "queue stop failed\n");
2259 EXPORT_SYMBOL_GPL(spi_controller_suspend);
2261 int spi_controller_resume(struct spi_controller *ctlr)
2268 ret = spi_start_queue(ctlr);
2270 dev_err(&ctlr->dev, "queue restart failed\n");
2274 EXPORT_SYMBOL_GPL(spi_controller_resume);
2276 static int __spi_controller_match(struct device *dev, const void *data)
2278 struct spi_controller *ctlr;
2279 const u16 *bus_num = data;
2281 ctlr = container_of(dev, struct spi_controller, dev);
2282 return ctlr->bus_num == *bus_num;
2286 * spi_busnum_to_master - look up master associated with bus_num
2287 * @bus_num: the master's bus number
2288 * Context: can sleep
2290 * This call may be used with devices that are registered after
2291 * arch init time. It returns a refcounted pointer to the relevant
2292 * spi_controller (which the caller must release), or NULL if there is
2293 * no such master registered.
2295 * Return: the SPI master structure on success, else NULL.
2297 struct spi_controller *spi_busnum_to_master(u16 bus_num)
2300 struct spi_controller *ctlr = NULL;
2302 dev = class_find_device(&spi_master_class, NULL, &bus_num,
2303 __spi_controller_match);
2305 ctlr = container_of(dev, struct spi_controller, dev);
2306 /* reference got in class_find_device */
2309 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2311 /*-------------------------------------------------------------------------*/
2313 /* Core methods for SPI resource management */
2316 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2317 * during the processing of a spi_message while using
2319 * @spi: the spi device for which we allocate memory
2320 * @release: the release code to execute for this resource
2321 * @size: size to alloc and return
2322 * @gfp: GFP allocation flags
2324 * Return: the pointer to the allocated data
2326 * This may get enhanced in the future to allocate from a memory pool
2327 * of the @spi_device or @spi_controller to avoid repeated allocations.
2329 void *spi_res_alloc(struct spi_device *spi,
2330 spi_res_release_t release,
2331 size_t size, gfp_t gfp)
2333 struct spi_res *sres;
2335 sres = kzalloc(sizeof(*sres) + size, gfp);
2339 INIT_LIST_HEAD(&sres->entry);
2340 sres->release = release;
2344 EXPORT_SYMBOL_GPL(spi_res_alloc);
2347 * spi_res_free - free an spi resource
2348 * @res: pointer to the custom data of a resource
2351 void spi_res_free(void *res)
2353 struct spi_res *sres = container_of(res, struct spi_res, data);
2358 WARN_ON(!list_empty(&sres->entry));
2361 EXPORT_SYMBOL_GPL(spi_res_free);
2364 * spi_res_add - add a spi_res to the spi_message
2365 * @message: the spi message
2366 * @res: the spi_resource
2368 void spi_res_add(struct spi_message *message, void *res)
2370 struct spi_res *sres = container_of(res, struct spi_res, data);
2372 WARN_ON(!list_empty(&sres->entry));
2373 list_add_tail(&sres->entry, &message->resources);
2375 EXPORT_SYMBOL_GPL(spi_res_add);
2378 * spi_res_release - release all spi resources for this message
2379 * @ctlr: the @spi_controller
2380 * @message: the @spi_message
2382 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
2384 struct spi_res *res;
2386 while (!list_empty(&message->resources)) {
2387 res = list_last_entry(&message->resources,
2388 struct spi_res, entry);
2391 res->release(ctlr, message, res->data);
2393 list_del(&res->entry);
2398 EXPORT_SYMBOL_GPL(spi_res_release);
2400 /*-------------------------------------------------------------------------*/
2402 /* Core methods for spi_message alterations */
2404 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
2405 struct spi_message *msg,
2408 struct spi_replaced_transfers *rxfer = res;
2411 /* call extra callback if requested */
2413 rxfer->release(ctlr, msg, res);
2415 /* insert replaced transfers back into the message */
2416 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2418 /* remove the formerly inserted entries */
2419 for (i = 0; i < rxfer->inserted; i++)
2420 list_del(&rxfer->inserted_transfers[i].transfer_list);
2424 * spi_replace_transfers - replace transfers with several transfers
2425 * and register change with spi_message.resources
2426 * @msg: the spi_message we work upon
2427 * @xfer_first: the first spi_transfer we want to replace
2428 * @remove: number of transfers to remove
2429 * @insert: the number of transfers we want to insert instead
2430 * @release: extra release code necessary in some circumstances
2431 * @extradatasize: extra data to allocate (with alignment guarantees
2432 * of struct @spi_transfer)
2435 * Returns: pointer to @spi_replaced_transfers,
2436 * PTR_ERR(...) in case of errors.
2438 struct spi_replaced_transfers *spi_replace_transfers(
2439 struct spi_message *msg,
2440 struct spi_transfer *xfer_first,
2443 spi_replaced_release_t release,
2444 size_t extradatasize,
2447 struct spi_replaced_transfers *rxfer;
2448 struct spi_transfer *xfer;
2451 /* allocate the structure using spi_res */
2452 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2453 insert * sizeof(struct spi_transfer)
2454 + sizeof(struct spi_replaced_transfers)
2458 return ERR_PTR(-ENOMEM);
2460 /* the release code to invoke before running the generic release */
2461 rxfer->release = release;
2463 /* assign extradata */
2466 &rxfer->inserted_transfers[insert];
2468 /* init the replaced_transfers list */
2469 INIT_LIST_HEAD(&rxfer->replaced_transfers);
2471 /* assign the list_entry after which we should reinsert
2472 * the @replaced_transfers - it may be spi_message.messages!
2474 rxfer->replaced_after = xfer_first->transfer_list.prev;
2476 /* remove the requested number of transfers */
2477 for (i = 0; i < remove; i++) {
2478 /* if the entry after replaced_after it is msg->transfers
2479 * then we have been requested to remove more transfers
2480 * than are in the list
2482 if (rxfer->replaced_after->next == &msg->transfers) {
2483 dev_err(&msg->spi->dev,
2484 "requested to remove more spi_transfers than are available\n");
2485 /* insert replaced transfers back into the message */
2486 list_splice(&rxfer->replaced_transfers,
2487 rxfer->replaced_after);
2489 /* free the spi_replace_transfer structure */
2490 spi_res_free(rxfer);
2492 /* and return with an error */
2493 return ERR_PTR(-EINVAL);
2496 /* remove the entry after replaced_after from list of
2497 * transfers and add it to list of replaced_transfers
2499 list_move_tail(rxfer->replaced_after->next,
2500 &rxfer->replaced_transfers);
2503 /* create copy of the given xfer with identical settings
2504 * based on the first transfer to get removed
2506 for (i = 0; i < insert; i++) {
2507 /* we need to run in reverse order */
2508 xfer = &rxfer->inserted_transfers[insert - 1 - i];
2510 /* copy all spi_transfer data */
2511 memcpy(xfer, xfer_first, sizeof(*xfer));
2514 list_add(&xfer->transfer_list, rxfer->replaced_after);
2516 /* clear cs_change and delay_usecs for all but the last */
2518 xfer->cs_change = false;
2519 xfer->delay_usecs = 0;
2523 /* set up inserted */
2524 rxfer->inserted = insert;
2526 /* and register it with spi_res/spi_message */
2527 spi_res_add(msg, rxfer);
2531 EXPORT_SYMBOL_GPL(spi_replace_transfers);
2533 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
2534 struct spi_message *msg,
2535 struct spi_transfer **xferp,
2539 struct spi_transfer *xfer = *xferp, *xfers;
2540 struct spi_replaced_transfers *srt;
2544 /* warn once about this fact that we are splitting a transfer */
2545 dev_warn_once(&msg->spi->dev,
2546 "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
2547 xfer->len, maxsize);
2549 /* calculate how many we have to replace */
2550 count = DIV_ROUND_UP(xfer->len, maxsize);
2552 /* create replacement */
2553 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2555 return PTR_ERR(srt);
2556 xfers = srt->inserted_transfers;
2558 /* now handle each of those newly inserted spi_transfers
2559 * note that the replacements spi_transfers all are preset
2560 * to the same values as *xferp, so tx_buf, rx_buf and len
2561 * are all identical (as well as most others)
2562 * so we just have to fix up len and the pointers.
2564 * this also includes support for the depreciated
2565 * spi_message.is_dma_mapped interface
2568 /* the first transfer just needs the length modified, so we
2569 * run it outside the loop
2571 xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2573 /* all the others need rx_buf/tx_buf also set */
2574 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2575 /* update rx_buf, tx_buf and dma */
2576 if (xfers[i].rx_buf)
2577 xfers[i].rx_buf += offset;
2578 if (xfers[i].rx_dma)
2579 xfers[i].rx_dma += offset;
2580 if (xfers[i].tx_buf)
2581 xfers[i].tx_buf += offset;
2582 if (xfers[i].tx_dma)
2583 xfers[i].tx_dma += offset;
2586 xfers[i].len = min(maxsize, xfers[i].len - offset);
2589 /* we set up xferp to the last entry we have inserted,
2590 * so that we skip those already split transfers
2592 *xferp = &xfers[count - 1];
2594 /* increment statistics counters */
2595 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
2596 transfers_split_maxsize);
2597 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2598 transfers_split_maxsize);
2604 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2605 * when an individual transfer exceeds a
2607 * @ctlr: the @spi_controller for this transfer
2608 * @msg: the @spi_message to transform
2609 * @maxsize: the maximum when to apply this
2610 * @gfp: GFP allocation flags
2612 * Return: status of transformation
2614 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
2615 struct spi_message *msg,
2619 struct spi_transfer *xfer;
2622 /* iterate over the transfer_list,
2623 * but note that xfer is advanced to the last transfer inserted
2624 * to avoid checking sizes again unnecessarily (also xfer does
2625 * potentiall belong to a different list by the time the
2626 * replacement has happened
2628 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2629 if (xfer->len > maxsize) {
2630 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
2639 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2641 /*-------------------------------------------------------------------------*/
2643 /* Core methods for SPI controller protocol drivers. Some of the
2644 * other core methods are currently defined as inline functions.
2647 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
2650 if (ctlr->bits_per_word_mask) {
2651 /* Only 32 bits fit in the mask */
2652 if (bits_per_word > 32)
2654 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
2662 * spi_setup - setup SPI mode and clock rate
2663 * @spi: the device whose settings are being modified
2664 * Context: can sleep, and no requests are queued to the device
2666 * SPI protocol drivers may need to update the transfer mode if the
2667 * device doesn't work with its default. They may likewise need
2668 * to update clock rates or word sizes from initial values. This function
2669 * changes those settings, and must be called from a context that can sleep.
2670 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2671 * effect the next time the device is selected and data is transferred to
2672 * or from it. When this function returns, the spi device is deselected.
2674 * Note that this call will fail if the protocol driver specifies an option
2675 * that the underlying controller or its driver does not support. For
2676 * example, not all hardware supports wire transfers using nine bit words,
2677 * LSB-first wire encoding, or active-high chipselects.
2679 * Return: zero on success, else a negative error code.
2681 int spi_setup(struct spi_device *spi)
2683 unsigned bad_bits, ugly_bits;
2686 /* check mode to prevent that DUAL and QUAD set at the same time
2688 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2689 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2691 "setup: can not select dual and quad at the same time\n");
2694 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2696 if ((spi->mode & SPI_3WIRE) && (spi->mode &
2697 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
2699 /* help drivers fail *cleanly* when they need options
2700 * that aren't supported with their current controller
2702 bad_bits = spi->mode & ~spi->controller->mode_bits;
2703 ugly_bits = bad_bits &
2704 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
2707 "setup: ignoring unsupported mode bits %x\n",
2709 spi->mode &= ~ugly_bits;
2710 bad_bits &= ~ugly_bits;
2713 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2718 if (!spi->bits_per_word)
2719 spi->bits_per_word = 8;
2721 status = __spi_validate_bits_per_word(spi->controller,
2722 spi->bits_per_word);
2726 if (!spi->max_speed_hz)
2727 spi->max_speed_hz = spi->controller->max_speed_hz;
2729 if (spi->controller->setup)
2730 status = spi->controller->setup(spi);
2732 spi_set_cs(spi, false);
2734 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2735 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2736 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2737 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2738 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
2739 (spi->mode & SPI_LOOP) ? "loopback, " : "",
2740 spi->bits_per_word, spi->max_speed_hz,
2745 EXPORT_SYMBOL_GPL(spi_setup);
2747 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2749 struct spi_controller *ctlr = spi->controller;
2750 struct spi_transfer *xfer;
2753 if (list_empty(&message->transfers))
2756 /* Half-duplex links include original MicroWire, and ones with
2757 * only one data pin like SPI_3WIRE (switches direction) or where
2758 * either MOSI or MISO is missing. They can also be caused by
2759 * software limitations.
2761 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
2762 (spi->mode & SPI_3WIRE)) {
2763 unsigned flags = ctlr->flags;
2765 list_for_each_entry(xfer, &message->transfers, transfer_list) {
2766 if (xfer->rx_buf && xfer->tx_buf)
2768 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
2770 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
2776 * Set transfer bits_per_word and max speed as spi device default if
2777 * it is not set for this transfer.
2778 * Set transfer tx_nbits and rx_nbits as single transfer default
2779 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2781 message->frame_length = 0;
2782 list_for_each_entry(xfer, &message->transfers, transfer_list) {
2783 message->frame_length += xfer->len;
2784 if (!xfer->bits_per_word)
2785 xfer->bits_per_word = spi->bits_per_word;
2787 if (!xfer->speed_hz)
2788 xfer->speed_hz = spi->max_speed_hz;
2789 if (!xfer->speed_hz)
2790 xfer->speed_hz = ctlr->max_speed_hz;
2792 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
2793 xfer->speed_hz = ctlr->max_speed_hz;
2795 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
2799 * SPI transfer length should be multiple of SPI word size
2800 * where SPI word size should be power-of-two multiple
2802 if (xfer->bits_per_word <= 8)
2804 else if (xfer->bits_per_word <= 16)
2809 /* No partial transfers accepted */
2810 if (xfer->len % w_size)
2813 if (xfer->speed_hz && ctlr->min_speed_hz &&
2814 xfer->speed_hz < ctlr->min_speed_hz)
2817 if (xfer->tx_buf && !xfer->tx_nbits)
2818 xfer->tx_nbits = SPI_NBITS_SINGLE;
2819 if (xfer->rx_buf && !xfer->rx_nbits)
2820 xfer->rx_nbits = SPI_NBITS_SINGLE;
2821 /* check transfer tx/rx_nbits:
2822 * 1. check the value matches one of single, dual and quad
2823 * 2. check tx/rx_nbits match the mode in spi_device
2826 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2827 xfer->tx_nbits != SPI_NBITS_DUAL &&
2828 xfer->tx_nbits != SPI_NBITS_QUAD)
2830 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2831 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2833 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2834 !(spi->mode & SPI_TX_QUAD))
2837 /* check transfer rx_nbits */
2839 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2840 xfer->rx_nbits != SPI_NBITS_DUAL &&
2841 xfer->rx_nbits != SPI_NBITS_QUAD)
2843 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2844 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2846 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2847 !(spi->mode & SPI_RX_QUAD))
2852 message->status = -EINPROGRESS;
2857 static int __spi_async(struct spi_device *spi, struct spi_message *message)
2859 struct spi_controller *ctlr = spi->controller;
2863 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
2864 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2866 trace_spi_message_submit(message);
2868 return ctlr->transfer(spi, message);
2872 * spi_async - asynchronous SPI transfer
2873 * @spi: device with which data will be exchanged
2874 * @message: describes the data transfers, including completion callback
2875 * Context: any (irqs may be blocked, etc)
2877 * This call may be used in_irq and other contexts which can't sleep,
2878 * as well as from task contexts which can sleep.
2880 * The completion callback is invoked in a context which can't sleep.
2881 * Before that invocation, the value of message->status is undefined.
2882 * When the callback is issued, message->status holds either zero (to
2883 * indicate complete success) or a negative error code. After that
2884 * callback returns, the driver which issued the transfer request may
2885 * deallocate the associated memory; it's no longer in use by any SPI
2886 * core or controller driver code.
2888 * Note that although all messages to a spi_device are handled in
2889 * FIFO order, messages may go to different devices in other orders.
2890 * Some device might be higher priority, or have various "hard" access
2891 * time requirements, for example.
2893 * On detection of any fault during the transfer, processing of
2894 * the entire message is aborted, and the device is deselected.
2895 * Until returning from the associated message completion callback,
2896 * no other spi_message queued to that device will be processed.
2897 * (This rule applies equally to all the synchronous transfer calls,
2898 * which are wrappers around this core asynchronous primitive.)
2900 * Return: zero on success, else a negative error code.
2902 int spi_async(struct spi_device *spi, struct spi_message *message)
2904 struct spi_controller *ctlr = spi->controller;
2906 unsigned long flags;
2908 ret = __spi_validate(spi, message);
2912 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
2914 if (ctlr->bus_lock_flag)
2917 ret = __spi_async(spi, message);
2919 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
2923 EXPORT_SYMBOL_GPL(spi_async);
2926 * spi_async_locked - version of spi_async with exclusive bus usage
2927 * @spi: device with which data will be exchanged
2928 * @message: describes the data transfers, including completion callback
2929 * Context: any (irqs may be blocked, etc)
2931 * This call may be used in_irq and other contexts which can't sleep,
2932 * as well as from task contexts which can sleep.
2934 * The completion callback is invoked in a context which can't sleep.
2935 * Before that invocation, the value of message->status is undefined.
2936 * When the callback is issued, message->status holds either zero (to
2937 * indicate complete success) or a negative error code. After that
2938 * callback returns, the driver which issued the transfer request may
2939 * deallocate the associated memory; it's no longer in use by any SPI
2940 * core or controller driver code.
2942 * Note that although all messages to a spi_device are handled in
2943 * FIFO order, messages may go to different devices in other orders.
2944 * Some device might be higher priority, or have various "hard" access
2945 * time requirements, for example.
2947 * On detection of any fault during the transfer, processing of
2948 * the entire message is aborted, and the device is deselected.
2949 * Until returning from the associated message completion callback,
2950 * no other spi_message queued to that device will be processed.
2951 * (This rule applies equally to all the synchronous transfer calls,
2952 * which are wrappers around this core asynchronous primitive.)
2954 * Return: zero on success, else a negative error code.
2956 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2958 struct spi_controller *ctlr = spi->controller;
2960 unsigned long flags;
2962 ret = __spi_validate(spi, message);
2966 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
2968 ret = __spi_async(spi, message);
2970 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
2975 EXPORT_SYMBOL_GPL(spi_async_locked);
2978 int spi_flash_read(struct spi_device *spi,
2979 struct spi_flash_read_message *msg)
2982 struct spi_controller *master = spi->controller;
2983 struct device *rx_dev = NULL;
2986 if ((msg->opcode_nbits == SPI_NBITS_DUAL ||
2987 msg->addr_nbits == SPI_NBITS_DUAL) &&
2988 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2990 if ((msg->opcode_nbits == SPI_NBITS_QUAD ||
2991 msg->addr_nbits == SPI_NBITS_QUAD) &&
2992 !(spi->mode & SPI_TX_QUAD))
2994 if (msg->data_nbits == SPI_NBITS_DUAL &&
2995 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2997 if (msg->data_nbits == SPI_NBITS_QUAD &&
2998 !(spi->mode & SPI_RX_QUAD))
3001 if (master->auto_runtime_pm) {
3002 ret = pm_runtime_get_sync(master->dev.parent);
3004 dev_err(&master->dev, "Failed to power device: %d\n",
3010 mutex_lock(&master->bus_lock_mutex);
3011 mutex_lock(&master->io_mutex);
3012 if (master->dma_rx && master->spi_flash_can_dma(spi, msg)) {
3013 rx_dev = master->dma_rx->device->dev;
3014 ret = spi_map_buf(master, rx_dev, &msg->rx_sg,
3018 msg->cur_msg_mapped = true;
3020 ret = master->spi_flash_read(spi, msg);
3021 if (msg->cur_msg_mapped)
3022 spi_unmap_buf(master, rx_dev, &msg->rx_sg,
3024 mutex_unlock(&master->io_mutex);
3025 mutex_unlock(&master->bus_lock_mutex);
3027 if (master->auto_runtime_pm)
3028 pm_runtime_put(master->dev.parent);
3032 EXPORT_SYMBOL_GPL(spi_flash_read);
3034 /*-------------------------------------------------------------------------*/
3036 /* Utility methods for SPI protocol drivers, layered on
3037 * top of the core. Some other utility methods are defined as
3041 static void spi_complete(void *arg)
3046 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3048 DECLARE_COMPLETION_ONSTACK(done);
3050 struct spi_controller *ctlr = spi->controller;
3051 unsigned long flags;
3053 status = __spi_validate(spi, message);
3057 message->complete = spi_complete;
3058 message->context = &done;
3061 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3062 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3064 /* If we're not using the legacy transfer method then we will
3065 * try to transfer in the calling context so special case.
3066 * This code would be less tricky if we could remove the
3067 * support for driver implemented message queues.
3069 if (ctlr->transfer == spi_queued_transfer) {
3070 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3072 trace_spi_message_submit(message);
3074 status = __spi_queued_transfer(spi, message, false);
3076 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3078 status = spi_async_locked(spi, message);
3082 /* Push out the messages in the calling context if we
3085 if (ctlr->transfer == spi_queued_transfer) {
3086 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3087 spi_sync_immediate);
3088 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3089 spi_sync_immediate);
3090 __spi_pump_messages(ctlr, false);
3093 wait_for_completion(&done);
3094 status = message->status;
3096 message->context = NULL;
3101 * spi_sync - blocking/synchronous SPI data transfers
3102 * @spi: device with which data will be exchanged
3103 * @message: describes the data transfers
3104 * Context: can sleep
3106 * This call may only be used from a context that may sleep. The sleep
3107 * is non-interruptible, and has no timeout. Low-overhead controller
3108 * drivers may DMA directly into and out of the message buffers.
3110 * Note that the SPI device's chip select is active during the message,
3111 * and then is normally disabled between messages. Drivers for some
3112 * frequently-used devices may want to minimize costs of selecting a chip,
3113 * by leaving it selected in anticipation that the next message will go
3114 * to the same chip. (That may increase power usage.)
3116 * Also, the caller is guaranteeing that the memory associated with the
3117 * message will not be freed before this call returns.
3119 * Return: zero on success, else a negative error code.
3121 int spi_sync(struct spi_device *spi, struct spi_message *message)
3125 mutex_lock(&spi->controller->bus_lock_mutex);
3126 ret = __spi_sync(spi, message);
3127 mutex_unlock(&spi->controller->bus_lock_mutex);
3131 EXPORT_SYMBOL_GPL(spi_sync);
3134 * spi_sync_locked - version of spi_sync with exclusive bus usage
3135 * @spi: device with which data will be exchanged
3136 * @message: describes the data transfers
3137 * Context: can sleep
3139 * This call may only be used from a context that may sleep. The sleep
3140 * is non-interruptible, and has no timeout. Low-overhead controller
3141 * drivers may DMA directly into and out of the message buffers.
3143 * This call should be used by drivers that require exclusive access to the
3144 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3145 * be released by a spi_bus_unlock call when the exclusive access is over.
3147 * Return: zero on success, else a negative error code.
3149 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3151 return __spi_sync(spi, message);
3153 EXPORT_SYMBOL_GPL(spi_sync_locked);
3156 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3157 * @ctlr: SPI bus master that should be locked for exclusive bus access
3158 * Context: can sleep
3160 * This call may only be used from a context that may sleep. The sleep
3161 * is non-interruptible, and has no timeout.
3163 * This call should be used by drivers that require exclusive access to the
3164 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3165 * exclusive access is over. Data transfer must be done by spi_sync_locked
3166 * and spi_async_locked calls when the SPI bus lock is held.
3168 * Return: always zero.
3170 int spi_bus_lock(struct spi_controller *ctlr)
3172 unsigned long flags;
3174 mutex_lock(&ctlr->bus_lock_mutex);
3176 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3177 ctlr->bus_lock_flag = 1;
3178 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3180 /* mutex remains locked until spi_bus_unlock is called */
3184 EXPORT_SYMBOL_GPL(spi_bus_lock);
3187 * spi_bus_unlock - release the lock for exclusive SPI bus usage
3188 * @ctlr: SPI bus master that was locked for exclusive bus access
3189 * Context: can sleep
3191 * This call may only be used from a context that may sleep. The sleep
3192 * is non-interruptible, and has no timeout.
3194 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3197 * Return: always zero.
3199 int spi_bus_unlock(struct spi_controller *ctlr)
3201 ctlr->bus_lock_flag = 0;
3203 mutex_unlock(&ctlr->bus_lock_mutex);
3207 EXPORT_SYMBOL_GPL(spi_bus_unlock);
3209 /* portable code must never pass more than 32 bytes */
3210 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
3215 * spi_write_then_read - SPI synchronous write followed by read
3216 * @spi: device with which data will be exchanged
3217 * @txbuf: data to be written (need not be dma-safe)
3218 * @n_tx: size of txbuf, in bytes
3219 * @rxbuf: buffer into which data will be read (need not be dma-safe)
3220 * @n_rx: size of rxbuf, in bytes
3221 * Context: can sleep
3223 * This performs a half duplex MicroWire style transaction with the
3224 * device, sending txbuf and then reading rxbuf. The return value
3225 * is zero for success, else a negative errno status code.
3226 * This call may only be used from a context that may sleep.
3228 * Parameters to this routine are always copied using a small buffer;
3229 * portable code should never use this for more than 32 bytes.
3230 * Performance-sensitive or bulk transfer code should instead use
3231 * spi_{async,sync}() calls with dma-safe buffers.
3233 * Return: zero on success, else a negative error code.
3235 int spi_write_then_read(struct spi_device *spi,
3236 const void *txbuf, unsigned n_tx,
3237 void *rxbuf, unsigned n_rx)
3239 static DEFINE_MUTEX(lock);
3242 struct spi_message message;
3243 struct spi_transfer x[2];
3246 /* Use preallocated DMA-safe buffer if we can. We can't avoid
3247 * copying here, (as a pure convenience thing), but we can
3248 * keep heap costs out of the hot path unless someone else is
3249 * using the pre-allocated buffer or the transfer is too large.
3251 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3252 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3253 GFP_KERNEL | GFP_DMA);
3260 spi_message_init(&message);
3261 memset(x, 0, sizeof(x));
3264 spi_message_add_tail(&x[0], &message);
3268 spi_message_add_tail(&x[1], &message);
3271 memcpy(local_buf, txbuf, n_tx);
3272 x[0].tx_buf = local_buf;
3273 x[1].rx_buf = local_buf + n_tx;
3276 status = spi_sync(spi, &message);
3278 memcpy(rxbuf, x[1].rx_buf, n_rx);
3280 if (x[0].tx_buf == buf)
3281 mutex_unlock(&lock);
3287 EXPORT_SYMBOL_GPL(spi_write_then_read);
3289 /*-------------------------------------------------------------------------*/
3291 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
3292 static int __spi_of_device_match(struct device *dev, void *data)
3294 return dev->of_node == data;
3297 /* must call put_device() when done with returned spi_device device */
3298 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3300 struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
3301 __spi_of_device_match);
3302 return dev ? to_spi_device(dev) : NULL;
3305 static int __spi_of_controller_match(struct device *dev, const void *data)
3307 return dev->of_node == data;
3310 /* the spi controllers are not using spi_bus, so we find it with another way */
3311 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
3315 dev = class_find_device(&spi_master_class, NULL, node,
3316 __spi_of_controller_match);
3317 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))