Merge tag 'leds_for_4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/j.anaszewsk...
[sfrench/cifs-2.6.git] / drivers / spi / spi-topcliff-pch.c
1 /*
2  * SPI bus driver for the Topcliff PCH used by Intel SoCs
3  *
4  * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; version 2 of the License.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15
16 #include <linux/delay.h>
17 #include <linux/pci.h>
18 #include <linux/wait.h>
19 #include <linux/spi/spi.h>
20 #include <linux/interrupt.h>
21 #include <linux/sched.h>
22 #include <linux/spi/spidev.h>
23 #include <linux/module.h>
24 #include <linux/device.h>
25 #include <linux/platform_device.h>
26
27 #include <linux/dmaengine.h>
28 #include <linux/pch_dma.h>
29
30 /* Register offsets */
31 #define PCH_SPCR                0x00    /* SPI control register */
32 #define PCH_SPBRR               0x04    /* SPI baud rate register */
33 #define PCH_SPSR                0x08    /* SPI status register */
34 #define PCH_SPDWR               0x0C    /* SPI write data register */
35 #define PCH_SPDRR               0x10    /* SPI read data register */
36 #define PCH_SSNXCR              0x18    /* SSN Expand Control Register */
37 #define PCH_SRST                0x1C    /* SPI reset register */
38 #define PCH_ADDRESS_SIZE        0x20
39
40 #define PCH_SPSR_TFD            0x000007C0
41 #define PCH_SPSR_RFD            0x0000F800
42
43 #define PCH_READABLE(x)         (((x) & PCH_SPSR_RFD)>>11)
44 #define PCH_WRITABLE(x)         (((x) & PCH_SPSR_TFD)>>6)
45
46 #define PCH_RX_THOLD            7
47 #define PCH_RX_THOLD_MAX        15
48
49 #define PCH_TX_THOLD            2
50
51 #define PCH_MAX_BAUDRATE        5000000
52 #define PCH_MAX_FIFO_DEPTH      16
53
54 #define STATUS_RUNNING          1
55 #define STATUS_EXITING          2
56 #define PCH_SLEEP_TIME          10
57
58 #define SSN_LOW                 0x02U
59 #define SSN_HIGH                0x03U
60 #define SSN_NO_CONTROL          0x00U
61 #define PCH_MAX_CS              0xFF
62 #define PCI_DEVICE_ID_GE_SPI    0x8816
63
64 #define SPCR_SPE_BIT            (1 << 0)
65 #define SPCR_MSTR_BIT           (1 << 1)
66 #define SPCR_LSBF_BIT           (1 << 4)
67 #define SPCR_CPHA_BIT           (1 << 5)
68 #define SPCR_CPOL_BIT           (1 << 6)
69 #define SPCR_TFIE_BIT           (1 << 8)
70 #define SPCR_RFIE_BIT           (1 << 9)
71 #define SPCR_FIE_BIT            (1 << 10)
72 #define SPCR_ORIE_BIT           (1 << 11)
73 #define SPCR_MDFIE_BIT          (1 << 12)
74 #define SPCR_FICLR_BIT          (1 << 24)
75 #define SPSR_TFI_BIT            (1 << 0)
76 #define SPSR_RFI_BIT            (1 << 1)
77 #define SPSR_FI_BIT             (1 << 2)
78 #define SPSR_ORF_BIT            (1 << 3)
79 #define SPBRR_SIZE_BIT          (1 << 10)
80
81 #define PCH_ALL                 (SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\
82                                 SPCR_ORIE_BIT|SPCR_MDFIE_BIT)
83
84 #define SPCR_RFIC_FIELD         20
85 #define SPCR_TFIC_FIELD         16
86
87 #define MASK_SPBRR_SPBR_BITS    ((1 << 10) - 1)
88 #define MASK_RFIC_SPCR_BITS     (0xf << SPCR_RFIC_FIELD)
89 #define MASK_TFIC_SPCR_BITS     (0xf << SPCR_TFIC_FIELD)
90
91 #define PCH_CLOCK_HZ            50000000
92 #define PCH_MAX_SPBR            1023
93
94 /* Definition for ML7213/ML7223/ML7831 by LAPIS Semiconductor */
95 #define PCI_VENDOR_ID_ROHM              0x10DB
96 #define PCI_DEVICE_ID_ML7213_SPI        0x802c
97 #define PCI_DEVICE_ID_ML7223_SPI        0x800F
98 #define PCI_DEVICE_ID_ML7831_SPI        0x8816
99
100 /*
101  * Set the number of SPI instance max
102  * Intel EG20T PCH :            1ch
103  * LAPIS Semiconductor ML7213 IOH :     2ch
104  * LAPIS Semiconductor ML7223 IOH :     1ch
105  * LAPIS Semiconductor ML7831 IOH :     1ch
106 */
107 #define PCH_SPI_MAX_DEV                 2
108
109 #define PCH_BUF_SIZE            4096
110 #define PCH_DMA_TRANS_SIZE      12
111
112 static int use_dma = 1;
113
114 struct pch_spi_dma_ctrl {
115         struct dma_async_tx_descriptor  *desc_tx;
116         struct dma_async_tx_descriptor  *desc_rx;
117         struct pch_dma_slave            param_tx;
118         struct pch_dma_slave            param_rx;
119         struct dma_chan         *chan_tx;
120         struct dma_chan         *chan_rx;
121         struct scatterlist              *sg_tx_p;
122         struct scatterlist              *sg_rx_p;
123         struct scatterlist              sg_tx;
124         struct scatterlist              sg_rx;
125         int                             nent;
126         void                            *tx_buf_virt;
127         void                            *rx_buf_virt;
128         dma_addr_t                      tx_buf_dma;
129         dma_addr_t                      rx_buf_dma;
130 };
131 /**
132  * struct pch_spi_data - Holds the SPI channel specific details
133  * @io_remap_addr:              The remapped PCI base address
134  * @master:                     Pointer to the SPI master structure
135  * @work:                       Reference to work queue handler
136  * @wk:                         Workqueue for carrying out execution of the
137  *                              requests
138  * @wait:                       Wait queue for waking up upon receiving an
139  *                              interrupt.
140  * @transfer_complete:          Status of SPI Transfer
141  * @bcurrent_msg_processing:    Status flag for message processing
142  * @lock:                       Lock for protecting this structure
143  * @queue:                      SPI Message queue
144  * @status:                     Status of the SPI driver
145  * @bpw_len:                    Length of data to be transferred in bits per
146  *                              word
147  * @transfer_active:            Flag showing active transfer
148  * @tx_index:                   Transmit data count; for bookkeeping during
149  *                              transfer
150  * @rx_index:                   Receive data count; for bookkeeping during
151  *                              transfer
152  * @tx_buff:                    Buffer for data to be transmitted
153  * @rx_index:                   Buffer for Received data
154  * @n_curnt_chip:               The chip number that this SPI driver currently
155  *                              operates on
156  * @current_chip:               Reference to the current chip that this SPI
157  *                              driver currently operates on
158  * @current_msg:                The current message that this SPI driver is
159  *                              handling
160  * @cur_trans:                  The current transfer that this SPI driver is
161  *                              handling
162  * @board_dat:                  Reference to the SPI device data structure
163  * @plat_dev:                   platform_device structure
164  * @ch:                         SPI channel number
165  * @irq_reg_sts:                Status of IRQ registration
166  */
167 struct pch_spi_data {
168         void __iomem *io_remap_addr;
169         unsigned long io_base_addr;
170         struct spi_master *master;
171         struct work_struct work;
172         struct workqueue_struct *wk;
173         wait_queue_head_t wait;
174         u8 transfer_complete;
175         u8 bcurrent_msg_processing;
176         spinlock_t lock;
177         struct list_head queue;
178         u8 status;
179         u32 bpw_len;
180         u8 transfer_active;
181         u32 tx_index;
182         u32 rx_index;
183         u16 *pkt_tx_buff;
184         u16 *pkt_rx_buff;
185         u8 n_curnt_chip;
186         struct spi_device *current_chip;
187         struct spi_message *current_msg;
188         struct spi_transfer *cur_trans;
189         struct pch_spi_board_data *board_dat;
190         struct platform_device  *plat_dev;
191         int ch;
192         struct pch_spi_dma_ctrl dma;
193         int use_dma;
194         u8 irq_reg_sts;
195         int save_total_len;
196 };
197
198 /**
199  * struct pch_spi_board_data - Holds the SPI device specific details
200  * @pdev:               Pointer to the PCI device
201  * @suspend_sts:        Status of suspend
202  * @num:                The number of SPI device instance
203  */
204 struct pch_spi_board_data {
205         struct pci_dev *pdev;
206         u8 suspend_sts;
207         int num;
208 };
209
210 struct pch_pd_dev_save {
211         int num;
212         struct platform_device *pd_save[PCH_SPI_MAX_DEV];
213         struct pch_spi_board_data *board_dat;
214 };
215
216 static const struct pci_device_id pch_spi_pcidev_id[] = {
217         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI),    1, },
218         { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, },
219         { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_SPI), 1, },
220         { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_SPI), 1, },
221         { }
222 };
223
224 /**
225  * pch_spi_writereg() - Performs  register writes
226  * @master:     Pointer to struct spi_master.
227  * @idx:        Register offset.
228  * @val:        Value to be written to register.
229  */
230 static inline void pch_spi_writereg(struct spi_master *master, int idx, u32 val)
231 {
232         struct pch_spi_data *data = spi_master_get_devdata(master);
233         iowrite32(val, (data->io_remap_addr + idx));
234 }
235
236 /**
237  * pch_spi_readreg() - Performs register reads
238  * @master:     Pointer to struct spi_master.
239  * @idx:        Register offset.
240  */
241 static inline u32 pch_spi_readreg(struct spi_master *master, int idx)
242 {
243         struct pch_spi_data *data = spi_master_get_devdata(master);
244         return ioread32(data->io_remap_addr + idx);
245 }
246
247 static inline void pch_spi_setclr_reg(struct spi_master *master, int idx,
248                                       u32 set, u32 clr)
249 {
250         u32 tmp = pch_spi_readreg(master, idx);
251         tmp = (tmp & ~clr) | set;
252         pch_spi_writereg(master, idx, tmp);
253 }
254
255 static void pch_spi_set_master_mode(struct spi_master *master)
256 {
257         pch_spi_setclr_reg(master, PCH_SPCR, SPCR_MSTR_BIT, 0);
258 }
259
260 /**
261  * pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs
262  * @master:     Pointer to struct spi_master.
263  */
264 static void pch_spi_clear_fifo(struct spi_master *master)
265 {
266         pch_spi_setclr_reg(master, PCH_SPCR, SPCR_FICLR_BIT, 0);
267         pch_spi_setclr_reg(master, PCH_SPCR, 0, SPCR_FICLR_BIT);
268 }
269
270 static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val,
271                                 void __iomem *io_remap_addr)
272 {
273         u32 n_read, tx_index, rx_index, bpw_len;
274         u16 *pkt_rx_buffer, *pkt_tx_buff;
275         int read_cnt;
276         u32 reg_spcr_val;
277         void __iomem *spsr;
278         void __iomem *spdrr;
279         void __iomem *spdwr;
280
281         spsr = io_remap_addr + PCH_SPSR;
282         iowrite32(reg_spsr_val, spsr);
283
284         if (data->transfer_active) {
285                 rx_index = data->rx_index;
286                 tx_index = data->tx_index;
287                 bpw_len = data->bpw_len;
288                 pkt_rx_buffer = data->pkt_rx_buff;
289                 pkt_tx_buff = data->pkt_tx_buff;
290
291                 spdrr = io_remap_addr + PCH_SPDRR;
292                 spdwr = io_remap_addr + PCH_SPDWR;
293
294                 n_read = PCH_READABLE(reg_spsr_val);
295
296                 for (read_cnt = 0; (read_cnt < n_read); read_cnt++) {
297                         pkt_rx_buffer[rx_index++] = ioread32(spdrr);
298                         if (tx_index < bpw_len)
299                                 iowrite32(pkt_tx_buff[tx_index++], spdwr);
300                 }
301
302                 /* disable RFI if not needed */
303                 if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) {
304                         reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR);
305                         reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */
306
307                         /* reset rx threshold */
308                         reg_spcr_val &= ~MASK_RFIC_SPCR_BITS;
309                         reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD);
310
311                         iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR));
312                 }
313
314                 /* update counts */
315                 data->tx_index = tx_index;
316                 data->rx_index = rx_index;
317
318                 /* if transfer complete interrupt */
319                 if (reg_spsr_val & SPSR_FI_BIT) {
320                         if ((tx_index == bpw_len) && (rx_index == tx_index)) {
321                                 /* disable interrupts */
322                                 pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
323                                                    PCH_ALL);
324
325                                 /* transfer is completed;
326                                    inform pch_spi_process_messages */
327                                 data->transfer_complete = true;
328                                 data->transfer_active = false;
329                                 wake_up(&data->wait);
330                         } else {
331                                 dev_vdbg(&data->master->dev,
332                                         "%s : Transfer is not completed",
333                                         __func__);
334                         }
335                 }
336         }
337 }
338
339 /**
340  * pch_spi_handler() - Interrupt handler
341  * @irq:        The interrupt number.
342  * @dev_id:     Pointer to struct pch_spi_board_data.
343  */
344 static irqreturn_t pch_spi_handler(int irq, void *dev_id)
345 {
346         u32 reg_spsr_val;
347         void __iomem *spsr;
348         void __iomem *io_remap_addr;
349         irqreturn_t ret = IRQ_NONE;
350         struct pch_spi_data *data = dev_id;
351         struct pch_spi_board_data *board_dat = data->board_dat;
352
353         if (board_dat->suspend_sts) {
354                 dev_dbg(&board_dat->pdev->dev,
355                         "%s returning due to suspend\n", __func__);
356                 return IRQ_NONE;
357         }
358
359         io_remap_addr = data->io_remap_addr;
360         spsr = io_remap_addr + PCH_SPSR;
361
362         reg_spsr_val = ioread32(spsr);
363
364         if (reg_spsr_val & SPSR_ORF_BIT) {
365                 dev_err(&board_dat->pdev->dev, "%s Over run error\n", __func__);
366                 if (data->current_msg->complete) {
367                         data->transfer_complete = true;
368                         data->current_msg->status = -EIO;
369                         data->current_msg->complete(data->current_msg->context);
370                         data->bcurrent_msg_processing = false;
371                         data->current_msg = NULL;
372                         data->cur_trans = NULL;
373                 }
374         }
375
376         if (data->use_dma)
377                 return IRQ_NONE;
378
379         /* Check if the interrupt is for SPI device */
380         if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) {
381                 pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr);
382                 ret = IRQ_HANDLED;
383         }
384
385         dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n",
386                 __func__, ret);
387
388         return ret;
389 }
390
391 /**
392  * pch_spi_set_baud_rate() - Sets SPBR field in SPBRR
393  * @master:     Pointer to struct spi_master.
394  * @speed_hz:   Baud rate.
395  */
396 static void pch_spi_set_baud_rate(struct spi_master *master, u32 speed_hz)
397 {
398         u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2);
399
400         /* if baud rate is less than we can support limit it */
401         if (n_spbr > PCH_MAX_SPBR)
402                 n_spbr = PCH_MAX_SPBR;
403
404         pch_spi_setclr_reg(master, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS);
405 }
406
407 /**
408  * pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR
409  * @master:             Pointer to struct spi_master.
410  * @bits_per_word:      Bits per word for SPI transfer.
411  */
412 static void pch_spi_set_bits_per_word(struct spi_master *master,
413                                       u8 bits_per_word)
414 {
415         if (bits_per_word == 8)
416                 pch_spi_setclr_reg(master, PCH_SPBRR, 0, SPBRR_SIZE_BIT);
417         else
418                 pch_spi_setclr_reg(master, PCH_SPBRR, SPBRR_SIZE_BIT, 0);
419 }
420
421 /**
422  * pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer
423  * @spi:        Pointer to struct spi_device.
424  */
425 static void pch_spi_setup_transfer(struct spi_device *spi)
426 {
427         u32 flags = 0;
428
429         dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n",
430                 __func__, pch_spi_readreg(spi->master, PCH_SPBRR),
431                 spi->max_speed_hz);
432         pch_spi_set_baud_rate(spi->master, spi->max_speed_hz);
433
434         /* set bits per word */
435         pch_spi_set_bits_per_word(spi->master, spi->bits_per_word);
436
437         if (!(spi->mode & SPI_LSB_FIRST))
438                 flags |= SPCR_LSBF_BIT;
439         if (spi->mode & SPI_CPOL)
440                 flags |= SPCR_CPOL_BIT;
441         if (spi->mode & SPI_CPHA)
442                 flags |= SPCR_CPHA_BIT;
443         pch_spi_setclr_reg(spi->master, PCH_SPCR, flags,
444                            (SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT));
445
446         /* Clear the FIFO by toggling  FICLR to 1 and back to 0 */
447         pch_spi_clear_fifo(spi->master);
448 }
449
450 /**
451  * pch_spi_reset() - Clears SPI registers
452  * @master:     Pointer to struct spi_master.
453  */
454 static void pch_spi_reset(struct spi_master *master)
455 {
456         /* write 1 to reset SPI */
457         pch_spi_writereg(master, PCH_SRST, 0x1);
458
459         /* clear reset */
460         pch_spi_writereg(master, PCH_SRST, 0x0);
461 }
462
463 static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg)
464 {
465
466         struct spi_transfer *transfer;
467         struct pch_spi_data *data = spi_master_get_devdata(pspi->master);
468         int retval;
469         unsigned long flags;
470
471         spin_lock_irqsave(&data->lock, flags);
472         /* validate Tx/Rx buffers and Transfer length */
473         list_for_each_entry(transfer, &pmsg->transfers, transfer_list) {
474                 if (!transfer->tx_buf && !transfer->rx_buf) {
475                         dev_err(&pspi->dev,
476                                 "%s Tx and Rx buffer NULL\n", __func__);
477                         retval = -EINVAL;
478                         goto err_return_spinlock;
479                 }
480
481                 if (!transfer->len) {
482                         dev_err(&pspi->dev, "%s Transfer length invalid\n",
483                                 __func__);
484                         retval = -EINVAL;
485                         goto err_return_spinlock;
486                 }
487
488                 dev_dbg(&pspi->dev,
489                         "%s Tx/Rx buffer valid. Transfer length valid\n",
490                         __func__);
491         }
492         spin_unlock_irqrestore(&data->lock, flags);
493
494         /* We won't process any messages if we have been asked to terminate */
495         if (data->status == STATUS_EXITING) {
496                 dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__);
497                 retval = -ESHUTDOWN;
498                 goto err_out;
499         }
500
501         /* If suspended ,return -EINVAL */
502         if (data->board_dat->suspend_sts) {
503                 dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__);
504                 retval = -EINVAL;
505                 goto err_out;
506         }
507
508         /* set status of message */
509         pmsg->actual_length = 0;
510         dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status);
511
512         pmsg->status = -EINPROGRESS;
513         spin_lock_irqsave(&data->lock, flags);
514         /* add message to queue */
515         list_add_tail(&pmsg->queue, &data->queue);
516         spin_unlock_irqrestore(&data->lock, flags);
517
518         dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__);
519
520         /* schedule work queue to run */
521         queue_work(data->wk, &data->work);
522         dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__);
523
524         retval = 0;
525
526 err_out:
527         dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
528         return retval;
529 err_return_spinlock:
530         dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
531         spin_unlock_irqrestore(&data->lock, flags);
532         return retval;
533 }
534
535 static inline void pch_spi_select_chip(struct pch_spi_data *data,
536                                        struct spi_device *pspi)
537 {
538         if (data->current_chip != NULL) {
539                 if (pspi->chip_select != data->n_curnt_chip) {
540                         dev_dbg(&pspi->dev, "%s : different slave\n", __func__);
541                         data->current_chip = NULL;
542                 }
543         }
544
545         data->current_chip = pspi;
546
547         data->n_curnt_chip = data->current_chip->chip_select;
548
549         dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__);
550         pch_spi_setup_transfer(pspi);
551 }
552
553 static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw)
554 {
555         int size;
556         u32 n_writes;
557         int j;
558         struct spi_message *pmsg, *tmp;
559         const u8 *tx_buf;
560         const u16 *tx_sbuf;
561
562         /* set baud rate if needed */
563         if (data->cur_trans->speed_hz) {
564                 dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
565                 pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
566         }
567
568         /* set bits per word if needed */
569         if (data->cur_trans->bits_per_word &&
570             (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) {
571                 dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
572                 pch_spi_set_bits_per_word(data->master,
573                                           data->cur_trans->bits_per_word);
574                 *bpw = data->cur_trans->bits_per_word;
575         } else {
576                 *bpw = data->current_msg->spi->bits_per_word;
577         }
578
579         /* reset Tx/Rx index */
580         data->tx_index = 0;
581         data->rx_index = 0;
582
583         data->bpw_len = data->cur_trans->len / (*bpw / 8);
584
585         /* find alloc size */
586         size = data->cur_trans->len * sizeof(*data->pkt_tx_buff);
587
588         /* allocate memory for pkt_tx_buff & pkt_rx_buffer */
589         data->pkt_tx_buff = kzalloc(size, GFP_KERNEL);
590         if (data->pkt_tx_buff != NULL) {
591                 data->pkt_rx_buff = kzalloc(size, GFP_KERNEL);
592                 if (!data->pkt_rx_buff)
593                         kfree(data->pkt_tx_buff);
594         }
595
596         if (!data->pkt_rx_buff) {
597                 /* flush queue and set status of all transfers to -ENOMEM */
598                 dev_err(&data->master->dev, "%s :kzalloc failed\n", __func__);
599                 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
600                         pmsg->status = -ENOMEM;
601
602                         if (pmsg->complete)
603                                 pmsg->complete(pmsg->context);
604
605                         /* delete from queue */
606                         list_del_init(&pmsg->queue);
607                 }
608                 return;
609         }
610
611         /* copy Tx Data */
612         if (data->cur_trans->tx_buf != NULL) {
613                 if (*bpw == 8) {
614                         tx_buf = data->cur_trans->tx_buf;
615                         for (j = 0; j < data->bpw_len; j++)
616                                 data->pkt_tx_buff[j] = *tx_buf++;
617                 } else {
618                         tx_sbuf = data->cur_trans->tx_buf;
619                         for (j = 0; j < data->bpw_len; j++)
620                                 data->pkt_tx_buff[j] = *tx_sbuf++;
621                 }
622         }
623
624         /* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */
625         n_writes = data->bpw_len;
626         if (n_writes > PCH_MAX_FIFO_DEPTH)
627                 n_writes = PCH_MAX_FIFO_DEPTH;
628
629         dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing "
630                 "0x2 to SSNXCR\n", __func__);
631         pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
632
633         for (j = 0; j < n_writes; j++)
634                 pch_spi_writereg(data->master, PCH_SPDWR, data->pkt_tx_buff[j]);
635
636         /* update tx_index */
637         data->tx_index = j;
638
639         /* reset transfer complete flag */
640         data->transfer_complete = false;
641         data->transfer_active = true;
642 }
643
644 static void pch_spi_nomore_transfer(struct pch_spi_data *data)
645 {
646         struct spi_message *pmsg, *tmp;
647         dev_dbg(&data->master->dev, "%s called\n", __func__);
648         /* Invoke complete callback
649          * [To the spi core..indicating end of transfer] */
650         data->current_msg->status = 0;
651
652         if (data->current_msg->complete) {
653                 dev_dbg(&data->master->dev,
654                         "%s:Invoking callback of SPI core\n", __func__);
655                 data->current_msg->complete(data->current_msg->context);
656         }
657
658         /* update status in global variable */
659         data->bcurrent_msg_processing = false;
660
661         dev_dbg(&data->master->dev,
662                 "%s:data->bcurrent_msg_processing = false\n", __func__);
663
664         data->current_msg = NULL;
665         data->cur_trans = NULL;
666
667         /* check if we have items in list and not suspending
668          * return 1 if list empty */
669         if ((list_empty(&data->queue) == 0) &&
670             (!data->board_dat->suspend_sts) &&
671             (data->status != STATUS_EXITING)) {
672                 /* We have some more work to do (either there is more tranint
673                  * bpw;sfer requests in the current message or there are
674                  *more messages)
675                  */
676                 dev_dbg(&data->master->dev, "%s:Invoke queue_work\n", __func__);
677                 queue_work(data->wk, &data->work);
678         } else if (data->board_dat->suspend_sts ||
679                    data->status == STATUS_EXITING) {
680                 dev_dbg(&data->master->dev,
681                         "%s suspend/remove initiated, flushing queue\n",
682                         __func__);
683                 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
684                         pmsg->status = -EIO;
685
686                         if (pmsg->complete)
687                                 pmsg->complete(pmsg->context);
688
689                         /* delete from queue */
690                         list_del_init(&pmsg->queue);
691                 }
692         }
693 }
694
695 static void pch_spi_set_ir(struct pch_spi_data *data)
696 {
697         /* enable interrupts, set threshold, enable SPI */
698         if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH)
699                 /* set receive threshold to PCH_RX_THOLD */
700                 pch_spi_setclr_reg(data->master, PCH_SPCR,
701                                    PCH_RX_THOLD << SPCR_RFIC_FIELD |
702                                    SPCR_FIE_BIT | SPCR_RFIE_BIT |
703                                    SPCR_ORIE_BIT | SPCR_SPE_BIT,
704                                    MASK_RFIC_SPCR_BITS | PCH_ALL);
705         else
706                 /* set receive threshold to maximum */
707                 pch_spi_setclr_reg(data->master, PCH_SPCR,
708                                    PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD |
709                                    SPCR_FIE_BIT | SPCR_ORIE_BIT |
710                                    SPCR_SPE_BIT,
711                                    MASK_RFIC_SPCR_BITS | PCH_ALL);
712
713         /* Wait until the transfer completes; go to sleep after
714                                  initiating the transfer. */
715         dev_dbg(&data->master->dev,
716                 "%s:waiting for transfer to get over\n", __func__);
717
718         wait_event_interruptible(data->wait, data->transfer_complete);
719
720         /* clear all interrupts */
721         pch_spi_writereg(data->master, PCH_SPSR,
722                          pch_spi_readreg(data->master, PCH_SPSR));
723         /* Disable interrupts and SPI transfer */
724         pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT);
725         /* clear FIFO */
726         pch_spi_clear_fifo(data->master);
727 }
728
729 static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw)
730 {
731         int j;
732         u8 *rx_buf;
733         u16 *rx_sbuf;
734
735         /* copy Rx Data */
736         if (!data->cur_trans->rx_buf)
737                 return;
738
739         if (bpw == 8) {
740                 rx_buf = data->cur_trans->rx_buf;
741                 for (j = 0; j < data->bpw_len; j++)
742                         *rx_buf++ = data->pkt_rx_buff[j] & 0xFF;
743         } else {
744                 rx_sbuf = data->cur_trans->rx_buf;
745                 for (j = 0; j < data->bpw_len; j++)
746                         *rx_sbuf++ = data->pkt_rx_buff[j];
747         }
748 }
749
750 static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw)
751 {
752         int j;
753         u8 *rx_buf;
754         u16 *rx_sbuf;
755         const u8 *rx_dma_buf;
756         const u16 *rx_dma_sbuf;
757
758         /* copy Rx Data */
759         if (!data->cur_trans->rx_buf)
760                 return;
761
762         if (bpw == 8) {
763                 rx_buf = data->cur_trans->rx_buf;
764                 rx_dma_buf = data->dma.rx_buf_virt;
765                 for (j = 0; j < data->bpw_len; j++)
766                         *rx_buf++ = *rx_dma_buf++ & 0xFF;
767                 data->cur_trans->rx_buf = rx_buf;
768         } else {
769                 rx_sbuf = data->cur_trans->rx_buf;
770                 rx_dma_sbuf = data->dma.rx_buf_virt;
771                 for (j = 0; j < data->bpw_len; j++)
772                         *rx_sbuf++ = *rx_dma_sbuf++;
773                 data->cur_trans->rx_buf = rx_sbuf;
774         }
775 }
776
777 static int pch_spi_start_transfer(struct pch_spi_data *data)
778 {
779         struct pch_spi_dma_ctrl *dma;
780         unsigned long flags;
781         int rtn;
782
783         dma = &data->dma;
784
785         spin_lock_irqsave(&data->lock, flags);
786
787         /* disable interrupts, SPI set enable */
788         pch_spi_setclr_reg(data->master, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL);
789
790         spin_unlock_irqrestore(&data->lock, flags);
791
792         /* Wait until the transfer completes; go to sleep after
793                                  initiating the transfer. */
794         dev_dbg(&data->master->dev,
795                 "%s:waiting for transfer to get over\n", __func__);
796         rtn = wait_event_interruptible_timeout(data->wait,
797                                                data->transfer_complete,
798                                                msecs_to_jiffies(2 * HZ));
799         if (!rtn)
800                 dev_err(&data->master->dev,
801                         "%s wait-event timeout\n", __func__);
802
803         dma_sync_sg_for_cpu(&data->master->dev, dma->sg_rx_p, dma->nent,
804                             DMA_FROM_DEVICE);
805
806         dma_sync_sg_for_cpu(&data->master->dev, dma->sg_tx_p, dma->nent,
807                             DMA_FROM_DEVICE);
808         memset(data->dma.tx_buf_virt, 0, PAGE_SIZE);
809
810         async_tx_ack(dma->desc_rx);
811         async_tx_ack(dma->desc_tx);
812         kfree(dma->sg_tx_p);
813         kfree(dma->sg_rx_p);
814
815         spin_lock_irqsave(&data->lock, flags);
816
817         /* clear fifo threshold, disable interrupts, disable SPI transfer */
818         pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
819                            MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL |
820                            SPCR_SPE_BIT);
821         /* clear all interrupts */
822         pch_spi_writereg(data->master, PCH_SPSR,
823                          pch_spi_readreg(data->master, PCH_SPSR));
824         /* clear FIFO */
825         pch_spi_clear_fifo(data->master);
826
827         spin_unlock_irqrestore(&data->lock, flags);
828
829         return rtn;
830 }
831
832 static void pch_dma_rx_complete(void *arg)
833 {
834         struct pch_spi_data *data = arg;
835
836         /* transfer is completed;inform pch_spi_process_messages_dma */
837         data->transfer_complete = true;
838         wake_up_interruptible(&data->wait);
839 }
840
841 static bool pch_spi_filter(struct dma_chan *chan, void *slave)
842 {
843         struct pch_dma_slave *param = slave;
844
845         if ((chan->chan_id == param->chan_id) &&
846             (param->dma_dev == chan->device->dev)) {
847                 chan->private = param;
848                 return true;
849         } else {
850                 return false;
851         }
852 }
853
854 static void pch_spi_request_dma(struct pch_spi_data *data, int bpw)
855 {
856         dma_cap_mask_t mask;
857         struct dma_chan *chan;
858         struct pci_dev *dma_dev;
859         struct pch_dma_slave *param;
860         struct pch_spi_dma_ctrl *dma;
861         unsigned int width;
862
863         if (bpw == 8)
864                 width = PCH_DMA_WIDTH_1_BYTE;
865         else
866                 width = PCH_DMA_WIDTH_2_BYTES;
867
868         dma = &data->dma;
869         dma_cap_zero(mask);
870         dma_cap_set(DMA_SLAVE, mask);
871
872         /* Get DMA's dev information */
873         dma_dev = pci_get_slot(data->board_dat->pdev->bus,
874                         PCI_DEVFN(PCI_SLOT(data->board_dat->pdev->devfn), 0));
875
876         /* Set Tx DMA */
877         param = &dma->param_tx;
878         param->dma_dev = &dma_dev->dev;
879         param->chan_id = data->ch * 2; /* Tx = 0, 2 */;
880         param->tx_reg = data->io_base_addr + PCH_SPDWR;
881         param->width = width;
882         chan = dma_request_channel(mask, pch_spi_filter, param);
883         if (!chan) {
884                 dev_err(&data->master->dev,
885                         "ERROR: dma_request_channel FAILS(Tx)\n");
886                 data->use_dma = 0;
887                 return;
888         }
889         dma->chan_tx = chan;
890
891         /* Set Rx DMA */
892         param = &dma->param_rx;
893         param->dma_dev = &dma_dev->dev;
894         param->chan_id = data->ch * 2 + 1; /* Rx = Tx + 1 */;
895         param->rx_reg = data->io_base_addr + PCH_SPDRR;
896         param->width = width;
897         chan = dma_request_channel(mask, pch_spi_filter, param);
898         if (!chan) {
899                 dev_err(&data->master->dev,
900                         "ERROR: dma_request_channel FAILS(Rx)\n");
901                 dma_release_channel(dma->chan_tx);
902                 dma->chan_tx = NULL;
903                 data->use_dma = 0;
904                 return;
905         }
906         dma->chan_rx = chan;
907 }
908
909 static void pch_spi_release_dma(struct pch_spi_data *data)
910 {
911         struct pch_spi_dma_ctrl *dma;
912
913         dma = &data->dma;
914         if (dma->chan_tx) {
915                 dma_release_channel(dma->chan_tx);
916                 dma->chan_tx = NULL;
917         }
918         if (dma->chan_rx) {
919                 dma_release_channel(dma->chan_rx);
920                 dma->chan_rx = NULL;
921         }
922         return;
923 }
924
925 static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw)
926 {
927         const u8 *tx_buf;
928         const u16 *tx_sbuf;
929         u8 *tx_dma_buf;
930         u16 *tx_dma_sbuf;
931         struct scatterlist *sg;
932         struct dma_async_tx_descriptor *desc_tx;
933         struct dma_async_tx_descriptor *desc_rx;
934         int num;
935         int i;
936         int size;
937         int rem;
938         int head;
939         unsigned long flags;
940         struct pch_spi_dma_ctrl *dma;
941
942         dma = &data->dma;
943
944         /* set baud rate if needed */
945         if (data->cur_trans->speed_hz) {
946                 dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
947                 spin_lock_irqsave(&data->lock, flags);
948                 pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
949                 spin_unlock_irqrestore(&data->lock, flags);
950         }
951
952         /* set bits per word if needed */
953         if (data->cur_trans->bits_per_word &&
954             (data->current_msg->spi->bits_per_word !=
955              data->cur_trans->bits_per_word)) {
956                 dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
957                 spin_lock_irqsave(&data->lock, flags);
958                 pch_spi_set_bits_per_word(data->master,
959                                           data->cur_trans->bits_per_word);
960                 spin_unlock_irqrestore(&data->lock, flags);
961                 *bpw = data->cur_trans->bits_per_word;
962         } else {
963                 *bpw = data->current_msg->spi->bits_per_word;
964         }
965         data->bpw_len = data->cur_trans->len / (*bpw / 8);
966
967         if (data->bpw_len > PCH_BUF_SIZE) {
968                 data->bpw_len = PCH_BUF_SIZE;
969                 data->cur_trans->len -= PCH_BUF_SIZE;
970         }
971
972         /* copy Tx Data */
973         if (data->cur_trans->tx_buf != NULL) {
974                 if (*bpw == 8) {
975                         tx_buf = data->cur_trans->tx_buf;
976                         tx_dma_buf = dma->tx_buf_virt;
977                         for (i = 0; i < data->bpw_len; i++)
978                                 *tx_dma_buf++ = *tx_buf++;
979                 } else {
980                         tx_sbuf = data->cur_trans->tx_buf;
981                         tx_dma_sbuf = dma->tx_buf_virt;
982                         for (i = 0; i < data->bpw_len; i++)
983                                 *tx_dma_sbuf++ = *tx_sbuf++;
984                 }
985         }
986
987         /* Calculate Rx parameter for DMA transmitting */
988         if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
989                 if (data->bpw_len % PCH_DMA_TRANS_SIZE) {
990                         num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
991                         rem = data->bpw_len % PCH_DMA_TRANS_SIZE;
992                 } else {
993                         num = data->bpw_len / PCH_DMA_TRANS_SIZE;
994                         rem = PCH_DMA_TRANS_SIZE;
995                 }
996                 size = PCH_DMA_TRANS_SIZE;
997         } else {
998                 num = 1;
999                 size = data->bpw_len;
1000                 rem = data->bpw_len;
1001         }
1002         dev_dbg(&data->master->dev, "%s num=%d size=%d rem=%d\n",
1003                 __func__, num, size, rem);
1004         spin_lock_irqsave(&data->lock, flags);
1005
1006         /* set receive fifo threshold and transmit fifo threshold */
1007         pch_spi_setclr_reg(data->master, PCH_SPCR,
1008                            ((size - 1) << SPCR_RFIC_FIELD) |
1009                            (PCH_TX_THOLD << SPCR_TFIC_FIELD),
1010                            MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS);
1011
1012         spin_unlock_irqrestore(&data->lock, flags);
1013
1014         /* RX */
1015         dma->sg_rx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
1016         sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */
1017         /* offset, length setting */
1018         sg = dma->sg_rx_p;
1019         for (i = 0; i < num; i++, sg++) {
1020                 if (i == (num - 2)) {
1021                         sg->offset = size * i;
1022                         sg->offset = sg->offset * (*bpw / 8);
1023                         sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem,
1024                                     sg->offset);
1025                         sg_dma_len(sg) = rem;
1026                 } else if (i == (num - 1)) {
1027                         sg->offset = size * (i - 1) + rem;
1028                         sg->offset = sg->offset * (*bpw / 8);
1029                         sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1030                                     sg->offset);
1031                         sg_dma_len(sg) = size;
1032                 } else {
1033                         sg->offset = size * i;
1034                         sg->offset = sg->offset * (*bpw / 8);
1035                         sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1036                                     sg->offset);
1037                         sg_dma_len(sg) = size;
1038                 }
1039                 sg_dma_address(sg) = dma->rx_buf_dma + sg->offset;
1040         }
1041         sg = dma->sg_rx_p;
1042         desc_rx = dmaengine_prep_slave_sg(dma->chan_rx, sg,
1043                                         num, DMA_DEV_TO_MEM,
1044                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1045         if (!desc_rx) {
1046                 dev_err(&data->master->dev,
1047                         "%s:dmaengine_prep_slave_sg Failed\n", __func__);
1048                 return;
1049         }
1050         dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_FROM_DEVICE);
1051         desc_rx->callback = pch_dma_rx_complete;
1052         desc_rx->callback_param = data;
1053         dma->nent = num;
1054         dma->desc_rx = desc_rx;
1055
1056         /* Calculate Tx parameter for DMA transmitting */
1057         if (data->bpw_len > PCH_MAX_FIFO_DEPTH) {
1058                 head = PCH_MAX_FIFO_DEPTH - PCH_DMA_TRANS_SIZE;
1059                 if (data->bpw_len % PCH_DMA_TRANS_SIZE > 4) {
1060                         num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
1061                         rem = data->bpw_len % PCH_DMA_TRANS_SIZE - head;
1062                 } else {
1063                         num = data->bpw_len / PCH_DMA_TRANS_SIZE;
1064                         rem = data->bpw_len % PCH_DMA_TRANS_SIZE +
1065                               PCH_DMA_TRANS_SIZE - head;
1066                 }
1067                 size = PCH_DMA_TRANS_SIZE;
1068         } else {
1069                 num = 1;
1070                 size = data->bpw_len;
1071                 rem = data->bpw_len;
1072                 head = 0;
1073         }
1074
1075         dma->sg_tx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
1076         sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */
1077         /* offset, length setting */
1078         sg = dma->sg_tx_p;
1079         for (i = 0; i < num; i++, sg++) {
1080                 if (i == 0) {
1081                         sg->offset = 0;
1082                         sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size + head,
1083                                     sg->offset);
1084                         sg_dma_len(sg) = size + head;
1085                 } else if (i == (num - 1)) {
1086                         sg->offset = head + size * i;
1087                         sg->offset = sg->offset * (*bpw / 8);
1088                         sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem,
1089                                     sg->offset);
1090                         sg_dma_len(sg) = rem;
1091                 } else {
1092                         sg->offset = head + size * i;
1093                         sg->offset = sg->offset * (*bpw / 8);
1094                         sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size,
1095                                     sg->offset);
1096                         sg_dma_len(sg) = size;
1097                 }
1098                 sg_dma_address(sg) = dma->tx_buf_dma + sg->offset;
1099         }
1100         sg = dma->sg_tx_p;
1101         desc_tx = dmaengine_prep_slave_sg(dma->chan_tx,
1102                                         sg, num, DMA_MEM_TO_DEV,
1103                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1104         if (!desc_tx) {
1105                 dev_err(&data->master->dev,
1106                         "%s:dmaengine_prep_slave_sg Failed\n", __func__);
1107                 return;
1108         }
1109         dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_TO_DEVICE);
1110         desc_tx->callback = NULL;
1111         desc_tx->callback_param = data;
1112         dma->nent = num;
1113         dma->desc_tx = desc_tx;
1114
1115         dev_dbg(&data->master->dev, "%s:Pulling down SSN low - writing 0x2 to SSNXCR\n", __func__);
1116
1117         spin_lock_irqsave(&data->lock, flags);
1118         pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
1119         desc_rx->tx_submit(desc_rx);
1120         desc_tx->tx_submit(desc_tx);
1121         spin_unlock_irqrestore(&data->lock, flags);
1122
1123         /* reset transfer complete flag */
1124         data->transfer_complete = false;
1125 }
1126
1127 static void pch_spi_process_messages(struct work_struct *pwork)
1128 {
1129         struct spi_message *pmsg, *tmp;
1130         struct pch_spi_data *data;
1131         int bpw;
1132
1133         data = container_of(pwork, struct pch_spi_data, work);
1134         dev_dbg(&data->master->dev, "%s data initialized\n", __func__);
1135
1136         spin_lock(&data->lock);
1137         /* check if suspend has been initiated;if yes flush queue */
1138         if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) {
1139                 dev_dbg(&data->master->dev,
1140                         "%s suspend/remove initiated, flushing queue\n", __func__);
1141                 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
1142                         pmsg->status = -EIO;
1143
1144                         if (pmsg->complete) {
1145                                 spin_unlock(&data->lock);
1146                                 pmsg->complete(pmsg->context);
1147                                 spin_lock(&data->lock);
1148                         }
1149
1150                         /* delete from queue */
1151                         list_del_init(&pmsg->queue);
1152                 }
1153
1154                 spin_unlock(&data->lock);
1155                 return;
1156         }
1157
1158         data->bcurrent_msg_processing = true;
1159         dev_dbg(&data->master->dev,
1160                 "%s Set data->bcurrent_msg_processing= true\n", __func__);
1161
1162         /* Get the message from the queue and delete it from there. */
1163         data->current_msg = list_entry(data->queue.next, struct spi_message,
1164                                         queue);
1165
1166         list_del_init(&data->current_msg->queue);
1167
1168         data->current_msg->status = 0;
1169
1170         pch_spi_select_chip(data, data->current_msg->spi);
1171
1172         spin_unlock(&data->lock);
1173
1174         if (data->use_dma)
1175                 pch_spi_request_dma(data,
1176                                     data->current_msg->spi->bits_per_word);
1177         pch_spi_writereg(data->master, PCH_SSNXCR, SSN_NO_CONTROL);
1178         do {
1179                 int cnt;
1180                 /* If we are already processing a message get the next
1181                 transfer structure from the message otherwise retrieve
1182                 the 1st transfer request from the message. */
1183                 spin_lock(&data->lock);
1184                 if (data->cur_trans == NULL) {
1185                         data->cur_trans =
1186                                 list_entry(data->current_msg->transfers.next,
1187                                            struct spi_transfer, transfer_list);
1188                         dev_dbg(&data->master->dev, "%s "
1189                                 ":Getting 1st transfer message\n", __func__);
1190                 } else {
1191                         data->cur_trans =
1192                                 list_entry(data->cur_trans->transfer_list.next,
1193                                            struct spi_transfer, transfer_list);
1194                         dev_dbg(&data->master->dev, "%s "
1195                                 ":Getting next transfer message\n", __func__);
1196                 }
1197                 spin_unlock(&data->lock);
1198
1199                 if (!data->cur_trans->len)
1200                         goto out;
1201                 cnt = (data->cur_trans->len - 1) / PCH_BUF_SIZE + 1;
1202                 data->save_total_len = data->cur_trans->len;
1203                 if (data->use_dma) {
1204                         int i;
1205                         char *save_rx_buf = data->cur_trans->rx_buf;
1206                         for (i = 0; i < cnt; i ++) {
1207                                 pch_spi_handle_dma(data, &bpw);
1208                                 if (!pch_spi_start_transfer(data)) {
1209                                         data->transfer_complete = true;
1210                                         data->current_msg->status = -EIO;
1211                                         data->current_msg->complete
1212                                                    (data->current_msg->context);
1213                                         data->bcurrent_msg_processing = false;
1214                                         data->current_msg = NULL;
1215                                         data->cur_trans = NULL;
1216                                         goto out;
1217                                 }
1218                                 pch_spi_copy_rx_data_for_dma(data, bpw);
1219                         }
1220                         data->cur_trans->rx_buf = save_rx_buf;
1221                 } else {
1222                         pch_spi_set_tx(data, &bpw);
1223                         pch_spi_set_ir(data);
1224                         pch_spi_copy_rx_data(data, bpw);
1225                         kfree(data->pkt_rx_buff);
1226                         data->pkt_rx_buff = NULL;
1227                         kfree(data->pkt_tx_buff);
1228                         data->pkt_tx_buff = NULL;
1229                 }
1230                 /* increment message count */
1231                 data->cur_trans->len = data->save_total_len;
1232                 data->current_msg->actual_length += data->cur_trans->len;
1233
1234                 dev_dbg(&data->master->dev,
1235                         "%s:data->current_msg->actual_length=%d\n",
1236                         __func__, data->current_msg->actual_length);
1237
1238                 /* check for delay */
1239                 if (data->cur_trans->delay_usecs) {
1240                         dev_dbg(&data->master->dev, "%s:"
1241                                 "delay in usec=%d\n", __func__,
1242                                 data->cur_trans->delay_usecs);
1243                         udelay(data->cur_trans->delay_usecs);
1244                 }
1245
1246                 spin_lock(&data->lock);
1247
1248                 /* No more transfer in this message. */
1249                 if ((data->cur_trans->transfer_list.next) ==
1250                     &(data->current_msg->transfers)) {
1251                         pch_spi_nomore_transfer(data);
1252                 }
1253
1254                 spin_unlock(&data->lock);
1255
1256         } while (data->cur_trans != NULL);
1257
1258 out:
1259         pch_spi_writereg(data->master, PCH_SSNXCR, SSN_HIGH);
1260         if (data->use_dma)
1261                 pch_spi_release_dma(data);
1262 }
1263
1264 static void pch_spi_free_resources(struct pch_spi_board_data *board_dat,
1265                                    struct pch_spi_data *data)
1266 {
1267         dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1268
1269         /* free workqueue */
1270         if (data->wk != NULL) {
1271                 destroy_workqueue(data->wk);
1272                 data->wk = NULL;
1273                 dev_dbg(&board_dat->pdev->dev,
1274                         "%s destroy_workqueue invoked successfully\n",
1275                         __func__);
1276         }
1277 }
1278
1279 static int pch_spi_get_resources(struct pch_spi_board_data *board_dat,
1280                                  struct pch_spi_data *data)
1281 {
1282         int retval = 0;
1283
1284         dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1285
1286         /* create workqueue */
1287         data->wk = create_singlethread_workqueue(KBUILD_MODNAME);
1288         if (!data->wk) {
1289                 dev_err(&board_dat->pdev->dev,
1290                         "%s create_singlet hread_workqueue failed\n", __func__);
1291                 retval = -EBUSY;
1292                 goto err_return;
1293         }
1294
1295         /* reset PCH SPI h/w */
1296         pch_spi_reset(data->master);
1297         dev_dbg(&board_dat->pdev->dev,
1298                 "%s pch_spi_reset invoked successfully\n", __func__);
1299
1300         dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__);
1301
1302 err_return:
1303         if (retval != 0) {
1304                 dev_err(&board_dat->pdev->dev,
1305                         "%s FAIL:invoking pch_spi_free_resources\n", __func__);
1306                 pch_spi_free_resources(board_dat, data);
1307         }
1308
1309         dev_dbg(&board_dat->pdev->dev, "%s Return=%d\n", __func__, retval);
1310
1311         return retval;
1312 }
1313
1314 static void pch_free_dma_buf(struct pch_spi_board_data *board_dat,
1315                              struct pch_spi_data *data)
1316 {
1317         struct pch_spi_dma_ctrl *dma;
1318
1319         dma = &data->dma;
1320         if (dma->tx_buf_dma)
1321                 dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1322                                   dma->tx_buf_virt, dma->tx_buf_dma);
1323         if (dma->rx_buf_dma)
1324                 dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1325                                   dma->rx_buf_virt, dma->rx_buf_dma);
1326         return;
1327 }
1328
1329 static void pch_alloc_dma_buf(struct pch_spi_board_data *board_dat,
1330                               struct pch_spi_data *data)
1331 {
1332         struct pch_spi_dma_ctrl *dma;
1333
1334         dma = &data->dma;
1335         /* Get Consistent memory for Tx DMA */
1336         dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1337                                 PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL);
1338         /* Get Consistent memory for Rx DMA */
1339         dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1340                                 PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL);
1341 }
1342
1343 static int pch_spi_pd_probe(struct platform_device *plat_dev)
1344 {
1345         int ret;
1346         struct spi_master *master;
1347         struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1348         struct pch_spi_data *data;
1349
1350         dev_dbg(&plat_dev->dev, "%s:debug\n", __func__);
1351
1352         master = spi_alloc_master(&board_dat->pdev->dev,
1353                                   sizeof(struct pch_spi_data));
1354         if (!master) {
1355                 dev_err(&plat_dev->dev, "spi_alloc_master[%d] failed.\n",
1356                         plat_dev->id);
1357                 return -ENOMEM;
1358         }
1359
1360         data = spi_master_get_devdata(master);
1361         data->master = master;
1362
1363         platform_set_drvdata(plat_dev, data);
1364
1365         /* baseaddress + address offset) */
1366         data->io_base_addr = pci_resource_start(board_dat->pdev, 1) +
1367                                          PCH_ADDRESS_SIZE * plat_dev->id;
1368         data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0);
1369         if (!data->io_remap_addr) {
1370                 dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__);
1371                 ret = -ENOMEM;
1372                 goto err_pci_iomap;
1373         }
1374         data->io_remap_addr += PCH_ADDRESS_SIZE * plat_dev->id;
1375
1376         dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n",
1377                 plat_dev->id, data->io_remap_addr);
1378
1379         /* initialize members of SPI master */
1380         master->num_chipselect = PCH_MAX_CS;
1381         master->transfer = pch_spi_transfer;
1382         master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1383         master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
1384         master->max_speed_hz = PCH_MAX_BAUDRATE;
1385
1386         data->board_dat = board_dat;
1387         data->plat_dev = plat_dev;
1388         data->n_curnt_chip = 255;
1389         data->status = STATUS_RUNNING;
1390         data->ch = plat_dev->id;
1391         data->use_dma = use_dma;
1392
1393         INIT_LIST_HEAD(&data->queue);
1394         spin_lock_init(&data->lock);
1395         INIT_WORK(&data->work, pch_spi_process_messages);
1396         init_waitqueue_head(&data->wait);
1397
1398         ret = pch_spi_get_resources(board_dat, data);
1399         if (ret) {
1400                 dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret);
1401                 goto err_spi_get_resources;
1402         }
1403
1404         ret = request_irq(board_dat->pdev->irq, pch_spi_handler,
1405                           IRQF_SHARED, KBUILD_MODNAME, data);
1406         if (ret) {
1407                 dev_err(&plat_dev->dev,
1408                         "%s request_irq failed\n", __func__);
1409                 goto err_request_irq;
1410         }
1411         data->irq_reg_sts = true;
1412
1413         pch_spi_set_master_mode(master);
1414
1415         if (use_dma) {
1416                 dev_info(&plat_dev->dev, "Use DMA for data transfers\n");
1417                 pch_alloc_dma_buf(board_dat, data);
1418         }
1419
1420         ret = spi_register_master(master);
1421         if (ret != 0) {
1422                 dev_err(&plat_dev->dev,
1423                         "%s spi_register_master FAILED\n", __func__);
1424                 goto err_spi_register_master;
1425         }
1426
1427         return 0;
1428
1429 err_spi_register_master:
1430         pch_free_dma_buf(board_dat, data);
1431         free_irq(board_dat->pdev->irq, data);
1432 err_request_irq:
1433         pch_spi_free_resources(board_dat, data);
1434 err_spi_get_resources:
1435         pci_iounmap(board_dat->pdev, data->io_remap_addr);
1436 err_pci_iomap:
1437         spi_master_put(master);
1438
1439         return ret;
1440 }
1441
1442 static int pch_spi_pd_remove(struct platform_device *plat_dev)
1443 {
1444         struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1445         struct pch_spi_data *data = platform_get_drvdata(plat_dev);
1446         int count;
1447         unsigned long flags;
1448
1449         dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n",
1450                 __func__, plat_dev->id, board_dat->pdev->irq);
1451
1452         if (use_dma)
1453                 pch_free_dma_buf(board_dat, data);
1454
1455         /* check for any pending messages; no action is taken if the queue
1456          * is still full; but at least we tried.  Unload anyway */
1457         count = 500;
1458         spin_lock_irqsave(&data->lock, flags);
1459         data->status = STATUS_EXITING;
1460         while ((list_empty(&data->queue) == 0) && --count) {
1461                 dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n",
1462                         __func__);
1463                 spin_unlock_irqrestore(&data->lock, flags);
1464                 msleep(PCH_SLEEP_TIME);
1465                 spin_lock_irqsave(&data->lock, flags);
1466         }
1467         spin_unlock_irqrestore(&data->lock, flags);
1468
1469         pch_spi_free_resources(board_dat, data);
1470         /* disable interrupts & free IRQ */
1471         if (data->irq_reg_sts) {
1472                 /* disable interrupts */
1473                 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1474                 data->irq_reg_sts = false;
1475                 free_irq(board_dat->pdev->irq, data);
1476         }
1477
1478         pci_iounmap(board_dat->pdev, data->io_remap_addr);
1479         spi_unregister_master(data->master);
1480
1481         return 0;
1482 }
1483 #ifdef CONFIG_PM
1484 static int pch_spi_pd_suspend(struct platform_device *pd_dev,
1485                               pm_message_t state)
1486 {
1487         u8 count;
1488         struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1489         struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1490
1491         dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__);
1492
1493         if (!board_dat) {
1494                 dev_err(&pd_dev->dev,
1495                         "%s pci_get_drvdata returned NULL\n", __func__);
1496                 return -EFAULT;
1497         }
1498
1499         /* check if the current message is processed:
1500            Only after thats done the transfer will be suspended */
1501         count = 255;
1502         while ((--count) > 0) {
1503                 if (!(data->bcurrent_msg_processing))
1504                         break;
1505                 msleep(PCH_SLEEP_TIME);
1506         }
1507
1508         /* Free IRQ */
1509         if (data->irq_reg_sts) {
1510                 /* disable all interrupts */
1511                 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1512                 pch_spi_reset(data->master);
1513                 free_irq(board_dat->pdev->irq, data);
1514
1515                 data->irq_reg_sts = false;
1516                 dev_dbg(&pd_dev->dev,
1517                         "%s free_irq invoked successfully.\n", __func__);
1518         }
1519
1520         return 0;
1521 }
1522
1523 static int pch_spi_pd_resume(struct platform_device *pd_dev)
1524 {
1525         struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1526         struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1527         int retval;
1528
1529         if (!board_dat) {
1530                 dev_err(&pd_dev->dev,
1531                         "%s pci_get_drvdata returned NULL\n", __func__);
1532                 return -EFAULT;
1533         }
1534
1535         if (!data->irq_reg_sts) {
1536                 /* register IRQ */
1537                 retval = request_irq(board_dat->pdev->irq, pch_spi_handler,
1538                                      IRQF_SHARED, KBUILD_MODNAME, data);
1539                 if (retval < 0) {
1540                         dev_err(&pd_dev->dev,
1541                                 "%s request_irq failed\n", __func__);
1542                         return retval;
1543                 }
1544
1545                 /* reset PCH SPI h/w */
1546                 pch_spi_reset(data->master);
1547                 pch_spi_set_master_mode(data->master);
1548                 data->irq_reg_sts = true;
1549         }
1550         return 0;
1551 }
1552 #else
1553 #define pch_spi_pd_suspend NULL
1554 #define pch_spi_pd_resume NULL
1555 #endif
1556
1557 static struct platform_driver pch_spi_pd_driver = {
1558         .driver = {
1559                 .name = "pch-spi",
1560         },
1561         .probe = pch_spi_pd_probe,
1562         .remove = pch_spi_pd_remove,
1563         .suspend = pch_spi_pd_suspend,
1564         .resume = pch_spi_pd_resume
1565 };
1566
1567 static int pch_spi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1568 {
1569         struct pch_spi_board_data *board_dat;
1570         struct platform_device *pd_dev = NULL;
1571         int retval;
1572         int i;
1573         struct pch_pd_dev_save *pd_dev_save;
1574
1575         pd_dev_save = kzalloc(sizeof(struct pch_pd_dev_save), GFP_KERNEL);
1576         if (!pd_dev_save)
1577                 return -ENOMEM;
1578
1579         board_dat = kzalloc(sizeof(struct pch_spi_board_data), GFP_KERNEL);
1580         if (!board_dat) {
1581                 retval = -ENOMEM;
1582                 goto err_no_mem;
1583         }
1584
1585         retval = pci_request_regions(pdev, KBUILD_MODNAME);
1586         if (retval) {
1587                 dev_err(&pdev->dev, "%s request_region failed\n", __func__);
1588                 goto pci_request_regions;
1589         }
1590
1591         board_dat->pdev = pdev;
1592         board_dat->num = id->driver_data;
1593         pd_dev_save->num = id->driver_data;
1594         pd_dev_save->board_dat = board_dat;
1595
1596         retval = pci_enable_device(pdev);
1597         if (retval) {
1598                 dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__);
1599                 goto pci_enable_device;
1600         }
1601
1602         for (i = 0; i < board_dat->num; i++) {
1603                 pd_dev = platform_device_alloc("pch-spi", i);
1604                 if (!pd_dev) {
1605                         dev_err(&pdev->dev, "platform_device_alloc failed\n");
1606                         retval = -ENOMEM;
1607                         goto err_platform_device;
1608                 }
1609                 pd_dev_save->pd_save[i] = pd_dev;
1610                 pd_dev->dev.parent = &pdev->dev;
1611
1612                 retval = platform_device_add_data(pd_dev, board_dat,
1613                                                   sizeof(*board_dat));
1614                 if (retval) {
1615                         dev_err(&pdev->dev,
1616                                 "platform_device_add_data failed\n");
1617                         platform_device_put(pd_dev);
1618                         goto err_platform_device;
1619                 }
1620
1621                 retval = platform_device_add(pd_dev);
1622                 if (retval) {
1623                         dev_err(&pdev->dev, "platform_device_add failed\n");
1624                         platform_device_put(pd_dev);
1625                         goto err_platform_device;
1626                 }
1627         }
1628
1629         pci_set_drvdata(pdev, pd_dev_save);
1630
1631         return 0;
1632
1633 err_platform_device:
1634         while (--i >= 0)
1635                 platform_device_unregister(pd_dev_save->pd_save[i]);
1636         pci_disable_device(pdev);
1637 pci_enable_device:
1638         pci_release_regions(pdev);
1639 pci_request_regions:
1640         kfree(board_dat);
1641 err_no_mem:
1642         kfree(pd_dev_save);
1643
1644         return retval;
1645 }
1646
1647 static void pch_spi_remove(struct pci_dev *pdev)
1648 {
1649         int i;
1650         struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1651
1652         dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev);
1653
1654         for (i = 0; i < pd_dev_save->num; i++)
1655                 platform_device_unregister(pd_dev_save->pd_save[i]);
1656
1657         pci_disable_device(pdev);
1658         pci_release_regions(pdev);
1659         kfree(pd_dev_save->board_dat);
1660         kfree(pd_dev_save);
1661 }
1662
1663 #ifdef CONFIG_PM
1664 static int pch_spi_suspend(struct pci_dev *pdev, pm_message_t state)
1665 {
1666         int retval;
1667         struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1668
1669         dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
1670
1671         pd_dev_save->board_dat->suspend_sts = true;
1672
1673         /* save config space */
1674         retval = pci_save_state(pdev);
1675         if (retval == 0) {
1676                 pci_enable_wake(pdev, PCI_D3hot, 0);
1677                 pci_disable_device(pdev);
1678                 pci_set_power_state(pdev, PCI_D3hot);
1679         } else {
1680                 dev_err(&pdev->dev, "%s pci_save_state failed\n", __func__);
1681         }
1682
1683         return retval;
1684 }
1685
1686 static int pch_spi_resume(struct pci_dev *pdev)
1687 {
1688         int retval;
1689         struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1690         dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
1691
1692         pci_set_power_state(pdev, PCI_D0);
1693         pci_restore_state(pdev);
1694
1695         retval = pci_enable_device(pdev);
1696         if (retval < 0) {
1697                 dev_err(&pdev->dev,
1698                         "%s pci_enable_device failed\n", __func__);
1699         } else {
1700                 pci_enable_wake(pdev, PCI_D3hot, 0);
1701
1702                 /* set suspend status to false */
1703                 pd_dev_save->board_dat->suspend_sts = false;
1704         }
1705
1706         return retval;
1707 }
1708 #else
1709 #define pch_spi_suspend NULL
1710 #define pch_spi_resume NULL
1711
1712 #endif
1713
1714 static struct pci_driver pch_spi_pcidev_driver = {
1715         .name = "pch_spi",
1716         .id_table = pch_spi_pcidev_id,
1717         .probe = pch_spi_probe,
1718         .remove = pch_spi_remove,
1719         .suspend = pch_spi_suspend,
1720         .resume = pch_spi_resume,
1721 };
1722
1723 static int __init pch_spi_init(void)
1724 {
1725         int ret;
1726         ret = platform_driver_register(&pch_spi_pd_driver);
1727         if (ret)
1728                 return ret;
1729
1730         ret = pci_register_driver(&pch_spi_pcidev_driver);
1731         if (ret) {
1732                 platform_driver_unregister(&pch_spi_pd_driver);
1733                 return ret;
1734         }
1735
1736         return 0;
1737 }
1738 module_init(pch_spi_init);
1739
1740 static void __exit pch_spi_exit(void)
1741 {
1742         pci_unregister_driver(&pch_spi_pcidev_driver);
1743         platform_driver_unregister(&pch_spi_pd_driver);
1744 }
1745 module_exit(pch_spi_exit);
1746
1747 module_param(use_dma, int, 0644);
1748 MODULE_PARM_DESC(use_dma,
1749                  "to use DMA for data transfers pass 1 else 0; default 1");
1750
1751 MODULE_LICENSE("GPL");
1752 MODULE_DESCRIPTION("Intel EG20T PCH/LAPIS Semiconductor ML7xxx IOH SPI Driver");
1753 MODULE_DEVICE_TABLE(pci, pch_spi_pcidev_id);
1754