Linux 4.12
[sfrench/cifs-2.6.git] / drivers / spi / spi-fsl-dspi.c
1 /*
2  * drivers/spi/spi-fsl-dspi.c
3  *
4  * Copyright 2013 Freescale Semiconductor, Inc.
5  *
6  * Freescale DSPI driver
7  * This file contains a driver for the Freescale DSPI
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  */
15
16 #include <linux/clk.h>
17 #include <linux/delay.h>
18 #include <linux/dmaengine.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/err.h>
21 #include <linux/errno.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/kernel.h>
25 #include <linux/math64.h>
26 #include <linux/module.h>
27 #include <linux/of.h>
28 #include <linux/of_device.h>
29 #include <linux/pinctrl/consumer.h>
30 #include <linux/platform_device.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/regmap.h>
33 #include <linux/sched.h>
34 #include <linux/spi/spi.h>
35 #include <linux/spi/spi_bitbang.h>
36 #include <linux/time.h>
37
38 #define DRIVER_NAME "fsl-dspi"
39
40 #define TRAN_STATE_RX_VOID              0x01
41 #define TRAN_STATE_TX_VOID              0x02
42 #define TRAN_STATE_WORD_ODD_NUM 0x04
43
44 #define DSPI_FIFO_SIZE                  4
45 #define DSPI_DMA_BUFSIZE                (DSPI_FIFO_SIZE * 1024)
46
47 #define SPI_MCR         0x00
48 #define SPI_MCR_MASTER          (1 << 31)
49 #define SPI_MCR_PCSIS           (0x3F << 16)
50 #define SPI_MCR_CLR_TXF (1 << 11)
51 #define SPI_MCR_CLR_RXF (1 << 10)
52
53 #define SPI_TCR                 0x08
54 #define SPI_TCR_GET_TCNT(x)     (((x) & 0xffff0000) >> 16)
55
56 #define SPI_CTAR(x)             (0x0c + (((x) & 0x3) * 4))
57 #define SPI_CTAR_FMSZ(x)        (((x) & 0x0000000f) << 27)
58 #define SPI_CTAR_CPOL(x)        ((x) << 26)
59 #define SPI_CTAR_CPHA(x)        ((x) << 25)
60 #define SPI_CTAR_LSBFE(x)       ((x) << 24)
61 #define SPI_CTAR_PCSSCK(x)      (((x) & 0x00000003) << 22)
62 #define SPI_CTAR_PASC(x)        (((x) & 0x00000003) << 20)
63 #define SPI_CTAR_PDT(x) (((x) & 0x00000003) << 18)
64 #define SPI_CTAR_PBR(x) (((x) & 0x00000003) << 16)
65 #define SPI_CTAR_CSSCK(x)       (((x) & 0x0000000f) << 12)
66 #define SPI_CTAR_ASC(x) (((x) & 0x0000000f) << 8)
67 #define SPI_CTAR_DT(x)          (((x) & 0x0000000f) << 4)
68 #define SPI_CTAR_BR(x)          ((x) & 0x0000000f)
69 #define SPI_CTAR_SCALE_BITS     0xf
70
71 #define SPI_CTAR0_SLAVE 0x0c
72
73 #define SPI_SR                  0x2c
74 #define SPI_SR_EOQF             0x10000000
75 #define SPI_SR_TCFQF            0x80000000
76 #define SPI_SR_CLEAR            0xdaad0000
77
78 #define SPI_RSER_TFFFE          BIT(25)
79 #define SPI_RSER_TFFFD          BIT(24)
80 #define SPI_RSER_RFDFE          BIT(17)
81 #define SPI_RSER_RFDFD          BIT(16)
82
83 #define SPI_RSER                0x30
84 #define SPI_RSER_EOQFE          0x10000000
85 #define SPI_RSER_TCFQE          0x80000000
86
87 #define SPI_PUSHR               0x34
88 #define SPI_PUSHR_CONT          (1 << 31)
89 #define SPI_PUSHR_CTAS(x)       (((x) & 0x00000003) << 28)
90 #define SPI_PUSHR_EOQ           (1 << 27)
91 #define SPI_PUSHR_CTCNT (1 << 26)
92 #define SPI_PUSHR_PCS(x)        (((1 << x) & 0x0000003f) << 16)
93 #define SPI_PUSHR_TXDATA(x)     ((x) & 0x0000ffff)
94
95 #define SPI_PUSHR_SLAVE 0x34
96
97 #define SPI_POPR                0x38
98 #define SPI_POPR_RXDATA(x)      ((x) & 0x0000ffff)
99
100 #define SPI_TXFR0               0x3c
101 #define SPI_TXFR1               0x40
102 #define SPI_TXFR2               0x44
103 #define SPI_TXFR3               0x48
104 #define SPI_RXFR0               0x7c
105 #define SPI_RXFR1               0x80
106 #define SPI_RXFR2               0x84
107 #define SPI_RXFR3               0x88
108
109 #define SPI_FRAME_BITS(bits)    SPI_CTAR_FMSZ((bits) - 1)
110 #define SPI_FRAME_BITS_MASK     SPI_CTAR_FMSZ(0xf)
111 #define SPI_FRAME_BITS_16       SPI_CTAR_FMSZ(0xf)
112 #define SPI_FRAME_BITS_8        SPI_CTAR_FMSZ(0x7)
113
114 #define SPI_CS_INIT             0x01
115 #define SPI_CS_ASSERT           0x02
116 #define SPI_CS_DROP             0x04
117
118 #define SPI_TCR_TCNT_MAX        0x10000
119
120 #define DMA_COMPLETION_TIMEOUT  msecs_to_jiffies(3000)
121
122 struct chip_data {
123         u32 mcr_val;
124         u32 ctar_val;
125         u16 void_write_data;
126 };
127
128 enum dspi_trans_mode {
129         DSPI_EOQ_MODE = 0,
130         DSPI_TCFQ_MODE,
131         DSPI_DMA_MODE,
132 };
133
134 struct fsl_dspi_devtype_data {
135         enum dspi_trans_mode trans_mode;
136         u8 max_clock_factor;
137 };
138
139 static const struct fsl_dspi_devtype_data vf610_data = {
140         .trans_mode = DSPI_DMA_MODE,
141         .max_clock_factor = 2,
142 };
143
144 static const struct fsl_dspi_devtype_data ls1021a_v1_data = {
145         .trans_mode = DSPI_TCFQ_MODE,
146         .max_clock_factor = 8,
147 };
148
149 static const struct fsl_dspi_devtype_data ls2085a_data = {
150         .trans_mode = DSPI_TCFQ_MODE,
151         .max_clock_factor = 8,
152 };
153
154 struct fsl_dspi_dma {
155         /* Length of transfer in words of DSPI_FIFO_SIZE */
156         u32 curr_xfer_len;
157
158         u32 *tx_dma_buf;
159         struct dma_chan *chan_tx;
160         dma_addr_t tx_dma_phys;
161         struct completion cmd_tx_complete;
162         struct dma_async_tx_descriptor *tx_desc;
163
164         u32 *rx_dma_buf;
165         struct dma_chan *chan_rx;
166         dma_addr_t rx_dma_phys;
167         struct completion cmd_rx_complete;
168         struct dma_async_tx_descriptor *rx_desc;
169 };
170
171 struct fsl_dspi {
172         struct spi_master       *master;
173         struct platform_device  *pdev;
174
175         struct regmap           *regmap;
176         int                     irq;
177         struct clk              *clk;
178
179         struct spi_transfer     *cur_transfer;
180         struct spi_message      *cur_msg;
181         struct chip_data        *cur_chip;
182         size_t                  len;
183         void                    *tx;
184         void                    *tx_end;
185         void                    *rx;
186         void                    *rx_end;
187         char                    dataflags;
188         u8                      cs;
189         u16                     void_write_data;
190         u32                     cs_change;
191         const struct fsl_dspi_devtype_data *devtype_data;
192
193         wait_queue_head_t       waitq;
194         u32                     waitflags;
195
196         u32                     spi_tcnt;
197         struct fsl_dspi_dma     *dma;
198 };
199
200 static u32 dspi_data_to_pushr(struct fsl_dspi *dspi, int tx_word);
201
202 static inline int is_double_byte_mode(struct fsl_dspi *dspi)
203 {
204         unsigned int val;
205
206         regmap_read(dspi->regmap, SPI_CTAR(0), &val);
207
208         return ((val & SPI_FRAME_BITS_MASK) == SPI_FRAME_BITS(8)) ? 0 : 1;
209 }
210
211 static void dspi_tx_dma_callback(void *arg)
212 {
213         struct fsl_dspi *dspi = arg;
214         struct fsl_dspi_dma *dma = dspi->dma;
215
216         complete(&dma->cmd_tx_complete);
217 }
218
219 static void dspi_rx_dma_callback(void *arg)
220 {
221         struct fsl_dspi *dspi = arg;
222         struct fsl_dspi_dma *dma = dspi->dma;
223         int rx_word;
224         int i;
225         u16 d;
226
227         rx_word = is_double_byte_mode(dspi);
228
229         if (!(dspi->dataflags & TRAN_STATE_RX_VOID)) {
230                 for (i = 0; i < dma->curr_xfer_len; i++) {
231                         d = dspi->dma->rx_dma_buf[i];
232                         rx_word ? (*(u16 *)dspi->rx = d) :
233                                                 (*(u8 *)dspi->rx = d);
234                         dspi->rx += rx_word + 1;
235                 }
236         }
237
238         complete(&dma->cmd_rx_complete);
239 }
240
241 static int dspi_next_xfer_dma_submit(struct fsl_dspi *dspi)
242 {
243         struct fsl_dspi_dma *dma = dspi->dma;
244         struct device *dev = &dspi->pdev->dev;
245         int time_left;
246         int tx_word;
247         int i;
248
249         tx_word = is_double_byte_mode(dspi);
250
251         for (i = 0; i < dma->curr_xfer_len; i++) {
252                 dspi->dma->tx_dma_buf[i] = dspi_data_to_pushr(dspi, tx_word);
253                 if ((dspi->cs_change) && (!dspi->len))
254                         dspi->dma->tx_dma_buf[i] &= ~SPI_PUSHR_CONT;
255         }
256
257         dma->tx_desc = dmaengine_prep_slave_single(dma->chan_tx,
258                                         dma->tx_dma_phys,
259                                         dma->curr_xfer_len *
260                                         DMA_SLAVE_BUSWIDTH_4_BYTES,
261                                         DMA_MEM_TO_DEV,
262                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
263         if (!dma->tx_desc) {
264                 dev_err(dev, "Not able to get desc for DMA xfer\n");
265                 return -EIO;
266         }
267
268         dma->tx_desc->callback = dspi_tx_dma_callback;
269         dma->tx_desc->callback_param = dspi;
270         if (dma_submit_error(dmaengine_submit(dma->tx_desc))) {
271                 dev_err(dev, "DMA submit failed\n");
272                 return -EINVAL;
273         }
274
275         dma->rx_desc = dmaengine_prep_slave_single(dma->chan_rx,
276                                         dma->rx_dma_phys,
277                                         dma->curr_xfer_len *
278                                         DMA_SLAVE_BUSWIDTH_4_BYTES,
279                                         DMA_DEV_TO_MEM,
280                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
281         if (!dma->rx_desc) {
282                 dev_err(dev, "Not able to get desc for DMA xfer\n");
283                 return -EIO;
284         }
285
286         dma->rx_desc->callback = dspi_rx_dma_callback;
287         dma->rx_desc->callback_param = dspi;
288         if (dma_submit_error(dmaengine_submit(dma->rx_desc))) {
289                 dev_err(dev, "DMA submit failed\n");
290                 return -EINVAL;
291         }
292
293         reinit_completion(&dspi->dma->cmd_rx_complete);
294         reinit_completion(&dspi->dma->cmd_tx_complete);
295
296         dma_async_issue_pending(dma->chan_rx);
297         dma_async_issue_pending(dma->chan_tx);
298
299         time_left = wait_for_completion_timeout(&dspi->dma->cmd_tx_complete,
300                                         DMA_COMPLETION_TIMEOUT);
301         if (time_left == 0) {
302                 dev_err(dev, "DMA tx timeout\n");
303                 dmaengine_terminate_all(dma->chan_tx);
304                 dmaengine_terminate_all(dma->chan_rx);
305                 return -ETIMEDOUT;
306         }
307
308         time_left = wait_for_completion_timeout(&dspi->dma->cmd_rx_complete,
309                                         DMA_COMPLETION_TIMEOUT);
310         if (time_left == 0) {
311                 dev_err(dev, "DMA rx timeout\n");
312                 dmaengine_terminate_all(dma->chan_tx);
313                 dmaengine_terminate_all(dma->chan_rx);
314                 return -ETIMEDOUT;
315         }
316
317         return 0;
318 }
319
320 static int dspi_dma_xfer(struct fsl_dspi *dspi)
321 {
322         struct fsl_dspi_dma *dma = dspi->dma;
323         struct device *dev = &dspi->pdev->dev;
324         int curr_remaining_bytes;
325         int bytes_per_buffer;
326         int word = 1;
327         int ret = 0;
328
329         if (is_double_byte_mode(dspi))
330                 word = 2;
331         curr_remaining_bytes = dspi->len;
332         bytes_per_buffer = DSPI_DMA_BUFSIZE / DSPI_FIFO_SIZE;
333         while (curr_remaining_bytes) {
334                 /* Check if current transfer fits the DMA buffer */
335                 dma->curr_xfer_len = curr_remaining_bytes / word;
336                 if (dma->curr_xfer_len > bytes_per_buffer)
337                         dma->curr_xfer_len = bytes_per_buffer;
338
339                 ret = dspi_next_xfer_dma_submit(dspi);
340                 if (ret) {
341                         dev_err(dev, "DMA transfer failed\n");
342                         goto exit;
343
344                 } else {
345                         curr_remaining_bytes -= dma->curr_xfer_len * word;
346                         if (curr_remaining_bytes < 0)
347                                 curr_remaining_bytes = 0;
348                 }
349         }
350
351 exit:
352         return ret;
353 }
354
355 static int dspi_request_dma(struct fsl_dspi *dspi, phys_addr_t phy_addr)
356 {
357         struct fsl_dspi_dma *dma;
358         struct dma_slave_config cfg;
359         struct device *dev = &dspi->pdev->dev;
360         int ret;
361
362         dma = devm_kzalloc(dev, sizeof(*dma), GFP_KERNEL);
363         if (!dma)
364                 return -ENOMEM;
365
366         dma->chan_rx = dma_request_slave_channel(dev, "rx");
367         if (!dma->chan_rx) {
368                 dev_err(dev, "rx dma channel not available\n");
369                 ret = -ENODEV;
370                 return ret;
371         }
372
373         dma->chan_tx = dma_request_slave_channel(dev, "tx");
374         if (!dma->chan_tx) {
375                 dev_err(dev, "tx dma channel not available\n");
376                 ret = -ENODEV;
377                 goto err_tx_channel;
378         }
379
380         dma->tx_dma_buf = dma_alloc_coherent(dev, DSPI_DMA_BUFSIZE,
381                                         &dma->tx_dma_phys, GFP_KERNEL);
382         if (!dma->tx_dma_buf) {
383                 ret = -ENOMEM;
384                 goto err_tx_dma_buf;
385         }
386
387         dma->rx_dma_buf = dma_alloc_coherent(dev, DSPI_DMA_BUFSIZE,
388                                         &dma->rx_dma_phys, GFP_KERNEL);
389         if (!dma->rx_dma_buf) {
390                 ret = -ENOMEM;
391                 goto err_rx_dma_buf;
392         }
393
394         cfg.src_addr = phy_addr + SPI_POPR;
395         cfg.dst_addr = phy_addr + SPI_PUSHR;
396         cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
397         cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
398         cfg.src_maxburst = 1;
399         cfg.dst_maxburst = 1;
400
401         cfg.direction = DMA_DEV_TO_MEM;
402         ret = dmaengine_slave_config(dma->chan_rx, &cfg);
403         if (ret) {
404                 dev_err(dev, "can't configure rx dma channel\n");
405                 ret = -EINVAL;
406                 goto err_slave_config;
407         }
408
409         cfg.direction = DMA_MEM_TO_DEV;
410         ret = dmaengine_slave_config(dma->chan_tx, &cfg);
411         if (ret) {
412                 dev_err(dev, "can't configure tx dma channel\n");
413                 ret = -EINVAL;
414                 goto err_slave_config;
415         }
416
417         dspi->dma = dma;
418         init_completion(&dma->cmd_tx_complete);
419         init_completion(&dma->cmd_rx_complete);
420
421         return 0;
422
423 err_slave_config:
424         dma_free_coherent(dev, DSPI_DMA_BUFSIZE,
425                         dma->rx_dma_buf, dma->rx_dma_phys);
426 err_rx_dma_buf:
427         dma_free_coherent(dev, DSPI_DMA_BUFSIZE,
428                         dma->tx_dma_buf, dma->tx_dma_phys);
429 err_tx_dma_buf:
430         dma_release_channel(dma->chan_tx);
431 err_tx_channel:
432         dma_release_channel(dma->chan_rx);
433
434         devm_kfree(dev, dma);
435         dspi->dma = NULL;
436
437         return ret;
438 }
439
440 static void dspi_release_dma(struct fsl_dspi *dspi)
441 {
442         struct fsl_dspi_dma *dma = dspi->dma;
443         struct device *dev = &dspi->pdev->dev;
444
445         if (dma) {
446                 if (dma->chan_tx) {
447                         dma_unmap_single(dev, dma->tx_dma_phys,
448                                         DSPI_DMA_BUFSIZE, DMA_TO_DEVICE);
449                         dma_release_channel(dma->chan_tx);
450                 }
451
452                 if (dma->chan_rx) {
453                         dma_unmap_single(dev, dma->rx_dma_phys,
454                                         DSPI_DMA_BUFSIZE, DMA_FROM_DEVICE);
455                         dma_release_channel(dma->chan_rx);
456                 }
457         }
458 }
459
460 static void hz_to_spi_baud(char *pbr, char *br, int speed_hz,
461                 unsigned long clkrate)
462 {
463         /* Valid baud rate pre-scaler values */
464         int pbr_tbl[4] = {2, 3, 5, 7};
465         int brs[16] = { 2,      4,      6,      8,
466                 16,     32,     64,     128,
467                 256,    512,    1024,   2048,
468                 4096,   8192,   16384,  32768 };
469         int scale_needed, scale, minscale = INT_MAX;
470         int i, j;
471
472         scale_needed = clkrate / speed_hz;
473         if (clkrate % speed_hz)
474                 scale_needed++;
475
476         for (i = 0; i < ARRAY_SIZE(brs); i++)
477                 for (j = 0; j < ARRAY_SIZE(pbr_tbl); j++) {
478                         scale = brs[i] * pbr_tbl[j];
479                         if (scale >= scale_needed) {
480                                 if (scale < minscale) {
481                                         minscale = scale;
482                                         *br = i;
483                                         *pbr = j;
484                                 }
485                                 break;
486                         }
487                 }
488
489         if (minscale == INT_MAX) {
490                 pr_warn("Can not find valid baud rate,speed_hz is %d,clkrate is %ld, we use the max prescaler value.\n",
491                         speed_hz, clkrate);
492                 *pbr = ARRAY_SIZE(pbr_tbl) - 1;
493                 *br =  ARRAY_SIZE(brs) - 1;
494         }
495 }
496
497 static void ns_delay_scale(char *psc, char *sc, int delay_ns,
498                 unsigned long clkrate)
499 {
500         int pscale_tbl[4] = {1, 3, 5, 7};
501         int scale_needed, scale, minscale = INT_MAX;
502         int i, j;
503         u32 remainder;
504
505         scale_needed = div_u64_rem((u64)delay_ns * clkrate, NSEC_PER_SEC,
506                         &remainder);
507         if (remainder)
508                 scale_needed++;
509
510         for (i = 0; i < ARRAY_SIZE(pscale_tbl); i++)
511                 for (j = 0; j <= SPI_CTAR_SCALE_BITS; j++) {
512                         scale = pscale_tbl[i] * (2 << j);
513                         if (scale >= scale_needed) {
514                                 if (scale < minscale) {
515                                         minscale = scale;
516                                         *psc = i;
517                                         *sc = j;
518                                 }
519                                 break;
520                         }
521                 }
522
523         if (minscale == INT_MAX) {
524                 pr_warn("Cannot find correct scale values for %dns delay at clkrate %ld, using max prescaler value",
525                         delay_ns, clkrate);
526                 *psc = ARRAY_SIZE(pscale_tbl) - 1;
527                 *sc = SPI_CTAR_SCALE_BITS;
528         }
529 }
530
531 static u32 dspi_data_to_pushr(struct fsl_dspi *dspi, int tx_word)
532 {
533         u16 d16;
534
535         if (!(dspi->dataflags & TRAN_STATE_TX_VOID))
536                 d16 = tx_word ? *(u16 *)dspi->tx : *(u8 *)dspi->tx;
537         else
538                 d16 = dspi->void_write_data;
539
540         dspi->tx += tx_word + 1;
541         dspi->len -= tx_word + 1;
542
543         return  SPI_PUSHR_TXDATA(d16) |
544                 SPI_PUSHR_PCS(dspi->cs) |
545                 SPI_PUSHR_CTAS(0) |
546                 SPI_PUSHR_CONT;
547 }
548
549 static void dspi_data_from_popr(struct fsl_dspi *dspi, int rx_word)
550 {
551         u16 d;
552         unsigned int val;
553
554         regmap_read(dspi->regmap, SPI_POPR, &val);
555         d = SPI_POPR_RXDATA(val);
556
557         if (!(dspi->dataflags & TRAN_STATE_RX_VOID))
558                 rx_word ? (*(u16 *)dspi->rx = d) : (*(u8 *)dspi->rx = d);
559
560         dspi->rx += rx_word + 1;
561 }
562
563 static int dspi_eoq_write(struct fsl_dspi *dspi)
564 {
565         int tx_count = 0;
566         int tx_word;
567         u32 dspi_pushr = 0;
568
569         tx_word = is_double_byte_mode(dspi);
570
571         while (dspi->len && (tx_count < DSPI_FIFO_SIZE)) {
572                 /* If we are in word mode, only have a single byte to transfer
573                  * switch to byte mode temporarily.  Will switch back at the
574                  * end of the transfer.
575                  */
576                 if (tx_word && (dspi->len == 1)) {
577                         dspi->dataflags |= TRAN_STATE_WORD_ODD_NUM;
578                         regmap_update_bits(dspi->regmap, SPI_CTAR(0),
579                                         SPI_FRAME_BITS_MASK, SPI_FRAME_BITS(8));
580                         tx_word = 0;
581                 }
582
583                 dspi_pushr = dspi_data_to_pushr(dspi, tx_word);
584
585                 if (dspi->len == 0 || tx_count == DSPI_FIFO_SIZE - 1) {
586                         /* last transfer in the transfer */
587                         dspi_pushr |= SPI_PUSHR_EOQ;
588                         if ((dspi->cs_change) && (!dspi->len))
589                                 dspi_pushr &= ~SPI_PUSHR_CONT;
590                 } else if (tx_word && (dspi->len == 1))
591                         dspi_pushr |= SPI_PUSHR_EOQ;
592
593                 regmap_write(dspi->regmap, SPI_PUSHR, dspi_pushr);
594
595                 tx_count++;
596         }
597
598         return tx_count * (tx_word + 1);
599 }
600
601 static int dspi_eoq_read(struct fsl_dspi *dspi)
602 {
603         int rx_count = 0;
604         int rx_word = is_double_byte_mode(dspi);
605
606         while ((dspi->rx < dspi->rx_end)
607                         && (rx_count < DSPI_FIFO_SIZE)) {
608                 if (rx_word && (dspi->rx_end - dspi->rx) == 1)
609                         rx_word = 0;
610
611                 dspi_data_from_popr(dspi, rx_word);
612                 rx_count++;
613         }
614
615         return rx_count;
616 }
617
618 static int dspi_tcfq_write(struct fsl_dspi *dspi)
619 {
620         int tx_word;
621         u32 dspi_pushr = 0;
622
623         tx_word = is_double_byte_mode(dspi);
624
625         if (tx_word && (dspi->len == 1)) {
626                 dspi->dataflags |= TRAN_STATE_WORD_ODD_NUM;
627                 regmap_update_bits(dspi->regmap, SPI_CTAR(0),
628                                 SPI_FRAME_BITS_MASK, SPI_FRAME_BITS(8));
629                 tx_word = 0;
630         }
631
632         dspi_pushr = dspi_data_to_pushr(dspi, tx_word);
633
634         if ((dspi->cs_change) && (!dspi->len))
635                 dspi_pushr &= ~SPI_PUSHR_CONT;
636
637         regmap_write(dspi->regmap, SPI_PUSHR, dspi_pushr);
638
639         return tx_word + 1;
640 }
641
642 static void dspi_tcfq_read(struct fsl_dspi *dspi)
643 {
644         int rx_word = is_double_byte_mode(dspi);
645
646         if (rx_word && (dspi->rx_end - dspi->rx) == 1)
647                 rx_word = 0;
648
649         dspi_data_from_popr(dspi, rx_word);
650 }
651
652 static int dspi_transfer_one_message(struct spi_master *master,
653                 struct spi_message *message)
654 {
655         struct fsl_dspi *dspi = spi_master_get_devdata(master);
656         struct spi_device *spi = message->spi;
657         struct spi_transfer *transfer;
658         int status = 0;
659         enum dspi_trans_mode trans_mode;
660         u32 spi_tcr;
661
662         regmap_read(dspi->regmap, SPI_TCR, &spi_tcr);
663         dspi->spi_tcnt = SPI_TCR_GET_TCNT(spi_tcr);
664
665         message->actual_length = 0;
666
667         list_for_each_entry(transfer, &message->transfers, transfer_list) {
668                 dspi->cur_transfer = transfer;
669                 dspi->cur_msg = message;
670                 dspi->cur_chip = spi_get_ctldata(spi);
671                 dspi->cs = spi->chip_select;
672                 dspi->cs_change = 0;
673                 if (list_is_last(&dspi->cur_transfer->transfer_list,
674                                  &dspi->cur_msg->transfers) || transfer->cs_change)
675                         dspi->cs_change = 1;
676                 dspi->void_write_data = dspi->cur_chip->void_write_data;
677
678                 dspi->dataflags = 0;
679                 dspi->tx = (void *)transfer->tx_buf;
680                 dspi->tx_end = dspi->tx + transfer->len;
681                 dspi->rx = transfer->rx_buf;
682                 dspi->rx_end = dspi->rx + transfer->len;
683                 dspi->len = transfer->len;
684
685                 if (!dspi->rx)
686                         dspi->dataflags |= TRAN_STATE_RX_VOID;
687
688                 if (!dspi->tx)
689                         dspi->dataflags |= TRAN_STATE_TX_VOID;
690
691                 regmap_write(dspi->regmap, SPI_MCR, dspi->cur_chip->mcr_val);
692                 regmap_update_bits(dspi->regmap, SPI_MCR,
693                                 SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
694                                 SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
695                 regmap_write(dspi->regmap, SPI_CTAR(0),
696                                 dspi->cur_chip->ctar_val);
697
698                 trans_mode = dspi->devtype_data->trans_mode;
699                 switch (trans_mode) {
700                 case DSPI_EOQ_MODE:
701                         regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_EOQFE);
702                         dspi_eoq_write(dspi);
703                         break;
704                 case DSPI_TCFQ_MODE:
705                         regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_TCFQE);
706                         dspi_tcfq_write(dspi);
707                         break;
708                 case DSPI_DMA_MODE:
709                         regmap_write(dspi->regmap, SPI_RSER,
710                                 SPI_RSER_TFFFE | SPI_RSER_TFFFD |
711                                 SPI_RSER_RFDFE | SPI_RSER_RFDFD);
712                         status = dspi_dma_xfer(dspi);
713                         break;
714                 default:
715                         dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n",
716                                 trans_mode);
717                         status = -EINVAL;
718                         goto out;
719                 }
720
721                 if (trans_mode != DSPI_DMA_MODE) {
722                         if (wait_event_interruptible(dspi->waitq,
723                                                 dspi->waitflags))
724                                 dev_err(&dspi->pdev->dev,
725                                         "wait transfer complete fail!\n");
726                         dspi->waitflags = 0;
727                 }
728
729                 if (transfer->delay_usecs)
730                         udelay(transfer->delay_usecs);
731         }
732
733 out:
734         message->status = status;
735         spi_finalize_current_message(master);
736
737         return status;
738 }
739
740 static int dspi_setup(struct spi_device *spi)
741 {
742         struct chip_data *chip;
743         struct fsl_dspi *dspi = spi_master_get_devdata(spi->master);
744         u32 cs_sck_delay = 0, sck_cs_delay = 0;
745         unsigned char br = 0, pbr = 0, pcssck = 0, cssck = 0;
746         unsigned char pasc = 0, asc = 0, fmsz = 0;
747         unsigned long clkrate;
748
749         if ((spi->bits_per_word >= 4) && (spi->bits_per_word <= 16)) {
750                 fmsz = spi->bits_per_word - 1;
751         } else {
752                 pr_err("Invalid wordsize\n");
753                 return -ENODEV;
754         }
755
756         /* Only alloc on first setup */
757         chip = spi_get_ctldata(spi);
758         if (chip == NULL) {
759                 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
760                 if (!chip)
761                         return -ENOMEM;
762         }
763
764         of_property_read_u32(spi->dev.of_node, "fsl,spi-cs-sck-delay",
765                         &cs_sck_delay);
766
767         of_property_read_u32(spi->dev.of_node, "fsl,spi-sck-cs-delay",
768                         &sck_cs_delay);
769
770         chip->mcr_val = SPI_MCR_MASTER | SPI_MCR_PCSIS |
771                 SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF;
772
773         chip->void_write_data = 0;
774
775         clkrate = clk_get_rate(dspi->clk);
776         hz_to_spi_baud(&pbr, &br, spi->max_speed_hz, clkrate);
777
778         /* Set PCS to SCK delay scale values */
779         ns_delay_scale(&pcssck, &cssck, cs_sck_delay, clkrate);
780
781         /* Set After SCK delay scale values */
782         ns_delay_scale(&pasc, &asc, sck_cs_delay, clkrate);
783
784         chip->ctar_val =  SPI_CTAR_FMSZ(fmsz)
785                 | SPI_CTAR_CPOL(spi->mode & SPI_CPOL ? 1 : 0)
786                 | SPI_CTAR_CPHA(spi->mode & SPI_CPHA ? 1 : 0)
787                 | SPI_CTAR_LSBFE(spi->mode & SPI_LSB_FIRST ? 1 : 0)
788                 | SPI_CTAR_PCSSCK(pcssck)
789                 | SPI_CTAR_CSSCK(cssck)
790                 | SPI_CTAR_PASC(pasc)
791                 | SPI_CTAR_ASC(asc)
792                 | SPI_CTAR_PBR(pbr)
793                 | SPI_CTAR_BR(br);
794
795         spi_set_ctldata(spi, chip);
796
797         return 0;
798 }
799
800 static void dspi_cleanup(struct spi_device *spi)
801 {
802         struct chip_data *chip = spi_get_ctldata((struct spi_device *)spi);
803
804         dev_dbg(&spi->dev, "spi_device %u.%u cleanup\n",
805                         spi->master->bus_num, spi->chip_select);
806
807         kfree(chip);
808 }
809
810 static irqreturn_t dspi_interrupt(int irq, void *dev_id)
811 {
812         struct fsl_dspi *dspi = (struct fsl_dspi *)dev_id;
813         struct spi_message *msg = dspi->cur_msg;
814         enum dspi_trans_mode trans_mode;
815         u32 spi_sr, spi_tcr;
816         u32 spi_tcnt, tcnt_diff;
817         int tx_word;
818
819         regmap_read(dspi->regmap, SPI_SR, &spi_sr);
820         regmap_write(dspi->regmap, SPI_SR, spi_sr);
821
822
823         if (spi_sr & (SPI_SR_EOQF | SPI_SR_TCFQF)) {
824                 tx_word = is_double_byte_mode(dspi);
825
826                 regmap_read(dspi->regmap, SPI_TCR, &spi_tcr);
827                 spi_tcnt = SPI_TCR_GET_TCNT(spi_tcr);
828                 /*
829                  * The width of SPI Transfer Counter in SPI_TCR is 16bits,
830                  * so the max couner is 65535. When the counter reach 65535,
831                  * it will wrap around, counter reset to zero.
832                  * spi_tcnt my be less than dspi->spi_tcnt, it means the
833                  * counter already wrapped around.
834                  * SPI Transfer Counter is a counter of transmitted frames.
835                  * The size of frame maybe two bytes.
836                  */
837                 tcnt_diff = ((spi_tcnt + SPI_TCR_TCNT_MAX) - dspi->spi_tcnt)
838                         % SPI_TCR_TCNT_MAX;
839                 tcnt_diff *= (tx_word + 1);
840                 if (dspi->dataflags & TRAN_STATE_WORD_ODD_NUM)
841                         tcnt_diff--;
842
843                 msg->actual_length += tcnt_diff;
844
845                 dspi->spi_tcnt = spi_tcnt;
846
847                 trans_mode = dspi->devtype_data->trans_mode;
848                 switch (trans_mode) {
849                 case DSPI_EOQ_MODE:
850                         dspi_eoq_read(dspi);
851                         break;
852                 case DSPI_TCFQ_MODE:
853                         dspi_tcfq_read(dspi);
854                         break;
855                 default:
856                         dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n",
857                                 trans_mode);
858                                 return IRQ_HANDLED;
859                 }
860
861                 if (!dspi->len) {
862                         if (dspi->dataflags & TRAN_STATE_WORD_ODD_NUM) {
863                                 regmap_update_bits(dspi->regmap,
864                                                    SPI_CTAR(0),
865                                                    SPI_FRAME_BITS_MASK,
866                                                    SPI_FRAME_BITS(16));
867                                 dspi->dataflags &= ~TRAN_STATE_WORD_ODD_NUM;
868                         }
869
870                         dspi->waitflags = 1;
871                         wake_up_interruptible(&dspi->waitq);
872                 } else {
873                         switch (trans_mode) {
874                         case DSPI_EOQ_MODE:
875                                 dspi_eoq_write(dspi);
876                                 break;
877                         case DSPI_TCFQ_MODE:
878                                 dspi_tcfq_write(dspi);
879                                 break;
880                         default:
881                                 dev_err(&dspi->pdev->dev,
882                                         "unsupported trans_mode %u\n",
883                                         trans_mode);
884                         }
885                 }
886         }
887
888         return IRQ_HANDLED;
889 }
890
891 static const struct of_device_id fsl_dspi_dt_ids[] = {
892         { .compatible = "fsl,vf610-dspi", .data = (void *)&vf610_data, },
893         { .compatible = "fsl,ls1021a-v1.0-dspi",
894                 .data = (void *)&ls1021a_v1_data, },
895         { .compatible = "fsl,ls2085a-dspi", .data = (void *)&ls2085a_data, },
896         { /* sentinel */ }
897 };
898 MODULE_DEVICE_TABLE(of, fsl_dspi_dt_ids);
899
900 #ifdef CONFIG_PM_SLEEP
901 static int dspi_suspend(struct device *dev)
902 {
903         struct spi_master *master = dev_get_drvdata(dev);
904         struct fsl_dspi *dspi = spi_master_get_devdata(master);
905
906         spi_master_suspend(master);
907         clk_disable_unprepare(dspi->clk);
908
909         pinctrl_pm_select_sleep_state(dev);
910
911         return 0;
912 }
913
914 static int dspi_resume(struct device *dev)
915 {
916         struct spi_master *master = dev_get_drvdata(dev);
917         struct fsl_dspi *dspi = spi_master_get_devdata(master);
918         int ret;
919
920         pinctrl_pm_select_default_state(dev);
921
922         ret = clk_prepare_enable(dspi->clk);
923         if (ret)
924                 return ret;
925         spi_master_resume(master);
926
927         return 0;
928 }
929 #endif /* CONFIG_PM_SLEEP */
930
931 static SIMPLE_DEV_PM_OPS(dspi_pm, dspi_suspend, dspi_resume);
932
933 static const struct regmap_config dspi_regmap_config = {
934         .reg_bits = 32,
935         .val_bits = 32,
936         .reg_stride = 4,
937         .max_register = 0x88,
938 };
939
940 static void dspi_init(struct fsl_dspi *dspi)
941 {
942         regmap_write(dspi->regmap, SPI_SR, SPI_SR_CLEAR);
943 }
944
945 static int dspi_probe(struct platform_device *pdev)
946 {
947         struct device_node *np = pdev->dev.of_node;
948         struct spi_master *master;
949         struct fsl_dspi *dspi;
950         struct resource *res;
951         void __iomem *base;
952         int ret = 0, cs_num, bus_num;
953
954         master = spi_alloc_master(&pdev->dev, sizeof(struct fsl_dspi));
955         if (!master)
956                 return -ENOMEM;
957
958         dspi = spi_master_get_devdata(master);
959         dspi->pdev = pdev;
960         dspi->master = master;
961
962         master->transfer = NULL;
963         master->setup = dspi_setup;
964         master->transfer_one_message = dspi_transfer_one_message;
965         master->dev.of_node = pdev->dev.of_node;
966
967         master->cleanup = dspi_cleanup;
968         master->mode_bits = SPI_CPOL | SPI_CPHA;
969         master->bits_per_word_mask = SPI_BPW_MASK(4) | SPI_BPW_MASK(8) |
970                                         SPI_BPW_MASK(16);
971
972         ret = of_property_read_u32(np, "spi-num-chipselects", &cs_num);
973         if (ret < 0) {
974                 dev_err(&pdev->dev, "can't get spi-num-chipselects\n");
975                 goto out_master_put;
976         }
977         master->num_chipselect = cs_num;
978
979         ret = of_property_read_u32(np, "bus-num", &bus_num);
980         if (ret < 0) {
981                 dev_err(&pdev->dev, "can't get bus-num\n");
982                 goto out_master_put;
983         }
984         master->bus_num = bus_num;
985
986         dspi->devtype_data = of_device_get_match_data(&pdev->dev);
987         if (!dspi->devtype_data) {
988                 dev_err(&pdev->dev, "can't get devtype_data\n");
989                 ret = -EFAULT;
990                 goto out_master_put;
991         }
992
993         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
994         base = devm_ioremap_resource(&pdev->dev, res);
995         if (IS_ERR(base)) {
996                 ret = PTR_ERR(base);
997                 goto out_master_put;
998         }
999
1000         dspi->regmap = devm_regmap_init_mmio_clk(&pdev->dev, NULL, base,
1001                                                 &dspi_regmap_config);
1002         if (IS_ERR(dspi->regmap)) {
1003                 dev_err(&pdev->dev, "failed to init regmap: %ld\n",
1004                                 PTR_ERR(dspi->regmap));
1005                 ret = PTR_ERR(dspi->regmap);
1006                 goto out_master_put;
1007         }
1008
1009         dspi_init(dspi);
1010         dspi->irq = platform_get_irq(pdev, 0);
1011         if (dspi->irq < 0) {
1012                 dev_err(&pdev->dev, "can't get platform irq\n");
1013                 ret = dspi->irq;
1014                 goto out_master_put;
1015         }
1016
1017         ret = devm_request_irq(&pdev->dev, dspi->irq, dspi_interrupt, 0,
1018                         pdev->name, dspi);
1019         if (ret < 0) {
1020                 dev_err(&pdev->dev, "Unable to attach DSPI interrupt\n");
1021                 goto out_master_put;
1022         }
1023
1024         dspi->clk = devm_clk_get(&pdev->dev, "dspi");
1025         if (IS_ERR(dspi->clk)) {
1026                 ret = PTR_ERR(dspi->clk);
1027                 dev_err(&pdev->dev, "unable to get clock\n");
1028                 goto out_master_put;
1029         }
1030         ret = clk_prepare_enable(dspi->clk);
1031         if (ret)
1032                 goto out_master_put;
1033
1034         if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
1035                 if (dspi_request_dma(dspi, res->start)) {
1036                         dev_err(&pdev->dev, "can't get dma channels\n");
1037                         goto out_clk_put;
1038                 }
1039         }
1040
1041         master->max_speed_hz =
1042                 clk_get_rate(dspi->clk) / dspi->devtype_data->max_clock_factor;
1043
1044         init_waitqueue_head(&dspi->waitq);
1045         platform_set_drvdata(pdev, master);
1046
1047         ret = spi_register_master(master);
1048         if (ret != 0) {
1049                 dev_err(&pdev->dev, "Problem registering DSPI master\n");
1050                 goto out_clk_put;
1051         }
1052
1053         return ret;
1054
1055 out_clk_put:
1056         clk_disable_unprepare(dspi->clk);
1057 out_master_put:
1058         spi_master_put(master);
1059
1060         return ret;
1061 }
1062
1063 static int dspi_remove(struct platform_device *pdev)
1064 {
1065         struct spi_master *master = platform_get_drvdata(pdev);
1066         struct fsl_dspi *dspi = spi_master_get_devdata(master);
1067
1068         /* Disconnect from the SPI framework */
1069         dspi_release_dma(dspi);
1070         clk_disable_unprepare(dspi->clk);
1071         spi_unregister_master(dspi->master);
1072
1073         return 0;
1074 }
1075
1076 static struct platform_driver fsl_dspi_driver = {
1077         .driver.name    = DRIVER_NAME,
1078         .driver.of_match_table = fsl_dspi_dt_ids,
1079         .driver.owner   = THIS_MODULE,
1080         .driver.pm = &dspi_pm,
1081         .probe          = dspi_probe,
1082         .remove         = dspi_remove,
1083 };
1084 module_platform_driver(fsl_dspi_driver);
1085
1086 MODULE_DESCRIPTION("Freescale DSPI Controller Driver");
1087 MODULE_LICENSE("GPL");
1088 MODULE_ALIAS("platform:" DRIVER_NAME);