Merge tag 'for-5.4-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[sfrench/cifs-2.6.git] / drivers / scsi / sd.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *      sd.c Copyright (C) 1992 Drew Eckhardt
4  *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
5  *
6  *      Linux scsi disk driver
7  *              Initial versions: Drew Eckhardt
8  *              Subsequent revisions: Eric Youngdale
9  *      Modification history:
10  *       - Drew Eckhardt <drew@colorado.edu> original
11  *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 
12  *         outstanding request, and other enhancements.
13  *         Support loadable low-level scsi drivers.
14  *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 
15  *         eight major numbers.
16  *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
17  *       - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 
18  *         sd_init and cleanups.
19  *       - Alex Davis <letmein@erols.com> Fix problem where partition info
20  *         not being read in sd_open. Fix problem where removable media 
21  *         could be ejected after sd_open.
22  *       - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
23  *       - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 
24  *         <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 
25  *         Support 32k/1M disks.
26  *
27  *      Logging policy (needs CONFIG_SCSI_LOGGING defined):
28  *       - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
29  *       - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
30  *       - entering sd_ioctl: SCSI_LOG_IOCTL level 1
31  *       - entering other commands: SCSI_LOG_HLQUEUE level 3
32  *      Note: when the logging level is set by the user, it must be greater
33  *      than the level indicated above to trigger output.       
34  */
35
36 #include <linux/module.h>
37 #include <linux/fs.h>
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/bio.h>
41 #include <linux/genhd.h>
42 #include <linux/hdreg.h>
43 #include <linux/errno.h>
44 #include <linux/idr.h>
45 #include <linux/interrupt.h>
46 #include <linux/init.h>
47 #include <linux/blkdev.h>
48 #include <linux/blkpg.h>
49 #include <linux/blk-pm.h>
50 #include <linux/delay.h>
51 #include <linux/mutex.h>
52 #include <linux/string_helpers.h>
53 #include <linux/async.h>
54 #include <linux/slab.h>
55 #include <linux/sed-opal.h>
56 #include <linux/pm_runtime.h>
57 #include <linux/pr.h>
58 #include <linux/t10-pi.h>
59 #include <linux/uaccess.h>
60 #include <asm/unaligned.h>
61
62 #include <scsi/scsi.h>
63 #include <scsi/scsi_cmnd.h>
64 #include <scsi/scsi_dbg.h>
65 #include <scsi/scsi_device.h>
66 #include <scsi/scsi_driver.h>
67 #include <scsi/scsi_eh.h>
68 #include <scsi/scsi_host.h>
69 #include <scsi/scsi_ioctl.h>
70 #include <scsi/scsicam.h>
71
72 #include "sd.h"
73 #include "scsi_priv.h"
74 #include "scsi_logging.h"
75
76 MODULE_AUTHOR("Eric Youngdale");
77 MODULE_DESCRIPTION("SCSI disk (sd) driver");
78 MODULE_LICENSE("GPL");
79
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
98 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
99 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
100
101 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT)
102 #define SD_MINORS       16
103 #else
104 #define SD_MINORS       0
105 #endif
106
107 static void sd_config_discard(struct scsi_disk *, unsigned int);
108 static void sd_config_write_same(struct scsi_disk *);
109 static int  sd_revalidate_disk(struct gendisk *);
110 static void sd_unlock_native_capacity(struct gendisk *disk);
111 static int  sd_probe(struct device *);
112 static int  sd_remove(struct device *);
113 static void sd_shutdown(struct device *);
114 static int sd_suspend_system(struct device *);
115 static int sd_suspend_runtime(struct device *);
116 static int sd_resume(struct device *);
117 static void sd_rescan(struct device *);
118 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt);
119 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
120 static int sd_done(struct scsi_cmnd *);
121 static void sd_eh_reset(struct scsi_cmnd *);
122 static int sd_eh_action(struct scsi_cmnd *, int);
123 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
124 static void scsi_disk_release(struct device *cdev);
125 static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *);
126 static void sd_print_result(const struct scsi_disk *, const char *, int);
127
128 static DEFINE_IDA(sd_index_ida);
129
130 /* This semaphore is used to mediate the 0->1 reference get in the
131  * face of object destruction (i.e. we can't allow a get on an
132  * object after last put) */
133 static DEFINE_MUTEX(sd_ref_mutex);
134
135 static struct kmem_cache *sd_cdb_cache;
136 static mempool_t *sd_cdb_pool;
137 static mempool_t *sd_page_pool;
138
139 static const char *sd_cache_types[] = {
140         "write through", "none", "write back",
141         "write back, no read (daft)"
142 };
143
144 static void sd_set_flush_flag(struct scsi_disk *sdkp)
145 {
146         bool wc = false, fua = false;
147
148         if (sdkp->WCE) {
149                 wc = true;
150                 if (sdkp->DPOFUA)
151                         fua = true;
152         }
153
154         blk_queue_write_cache(sdkp->disk->queue, wc, fua);
155 }
156
157 static ssize_t
158 cache_type_store(struct device *dev, struct device_attribute *attr,
159                  const char *buf, size_t count)
160 {
161         int ct, rcd, wce, sp;
162         struct scsi_disk *sdkp = to_scsi_disk(dev);
163         struct scsi_device *sdp = sdkp->device;
164         char buffer[64];
165         char *buffer_data;
166         struct scsi_mode_data data;
167         struct scsi_sense_hdr sshdr;
168         static const char temp[] = "temporary ";
169         int len;
170
171         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
172                 /* no cache control on RBC devices; theoretically they
173                  * can do it, but there's probably so many exceptions
174                  * it's not worth the risk */
175                 return -EINVAL;
176
177         if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
178                 buf += sizeof(temp) - 1;
179                 sdkp->cache_override = 1;
180         } else {
181                 sdkp->cache_override = 0;
182         }
183
184         ct = sysfs_match_string(sd_cache_types, buf);
185         if (ct < 0)
186                 return -EINVAL;
187
188         rcd = ct & 0x01 ? 1 : 0;
189         wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
190
191         if (sdkp->cache_override) {
192                 sdkp->WCE = wce;
193                 sdkp->RCD = rcd;
194                 sd_set_flush_flag(sdkp);
195                 return count;
196         }
197
198         if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
199                             SD_MAX_RETRIES, &data, NULL))
200                 return -EINVAL;
201         len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
202                   data.block_descriptor_length);
203         buffer_data = buffer + data.header_length +
204                 data.block_descriptor_length;
205         buffer_data[2] &= ~0x05;
206         buffer_data[2] |= wce << 2 | rcd;
207         sp = buffer_data[0] & 0x80 ? 1 : 0;
208         buffer_data[0] &= ~0x80;
209
210         /*
211          * Ensure WP, DPOFUA, and RESERVED fields are cleared in
212          * received mode parameter buffer before doing MODE SELECT.
213          */
214         data.device_specific = 0;
215
216         if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
217                              SD_MAX_RETRIES, &data, &sshdr)) {
218                 if (scsi_sense_valid(&sshdr))
219                         sd_print_sense_hdr(sdkp, &sshdr);
220                 return -EINVAL;
221         }
222         revalidate_disk(sdkp->disk);
223         return count;
224 }
225
226 static ssize_t
227 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
228                        char *buf)
229 {
230         struct scsi_disk *sdkp = to_scsi_disk(dev);
231         struct scsi_device *sdp = sdkp->device;
232
233         return sprintf(buf, "%u\n", sdp->manage_start_stop);
234 }
235
236 static ssize_t
237 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
238                         const char *buf, size_t count)
239 {
240         struct scsi_disk *sdkp = to_scsi_disk(dev);
241         struct scsi_device *sdp = sdkp->device;
242         bool v;
243
244         if (!capable(CAP_SYS_ADMIN))
245                 return -EACCES;
246
247         if (kstrtobool(buf, &v))
248                 return -EINVAL;
249
250         sdp->manage_start_stop = v;
251
252         return count;
253 }
254 static DEVICE_ATTR_RW(manage_start_stop);
255
256 static ssize_t
257 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
258 {
259         struct scsi_disk *sdkp = to_scsi_disk(dev);
260
261         return sprintf(buf, "%u\n", sdkp->device->allow_restart);
262 }
263
264 static ssize_t
265 allow_restart_store(struct device *dev, struct device_attribute *attr,
266                     const char *buf, size_t count)
267 {
268         bool v;
269         struct scsi_disk *sdkp = to_scsi_disk(dev);
270         struct scsi_device *sdp = sdkp->device;
271
272         if (!capable(CAP_SYS_ADMIN))
273                 return -EACCES;
274
275         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
276                 return -EINVAL;
277
278         if (kstrtobool(buf, &v))
279                 return -EINVAL;
280
281         sdp->allow_restart = v;
282
283         return count;
284 }
285 static DEVICE_ATTR_RW(allow_restart);
286
287 static ssize_t
288 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
289 {
290         struct scsi_disk *sdkp = to_scsi_disk(dev);
291         int ct = sdkp->RCD + 2*sdkp->WCE;
292
293         return sprintf(buf, "%s\n", sd_cache_types[ct]);
294 }
295 static DEVICE_ATTR_RW(cache_type);
296
297 static ssize_t
298 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
299 {
300         struct scsi_disk *sdkp = to_scsi_disk(dev);
301
302         return sprintf(buf, "%u\n", sdkp->DPOFUA);
303 }
304 static DEVICE_ATTR_RO(FUA);
305
306 static ssize_t
307 protection_type_show(struct device *dev, struct device_attribute *attr,
308                      char *buf)
309 {
310         struct scsi_disk *sdkp = to_scsi_disk(dev);
311
312         return sprintf(buf, "%u\n", sdkp->protection_type);
313 }
314
315 static ssize_t
316 protection_type_store(struct device *dev, struct device_attribute *attr,
317                       const char *buf, size_t count)
318 {
319         struct scsi_disk *sdkp = to_scsi_disk(dev);
320         unsigned int val;
321         int err;
322
323         if (!capable(CAP_SYS_ADMIN))
324                 return -EACCES;
325
326         err = kstrtouint(buf, 10, &val);
327
328         if (err)
329                 return err;
330
331         if (val <= T10_PI_TYPE3_PROTECTION)
332                 sdkp->protection_type = val;
333
334         return count;
335 }
336 static DEVICE_ATTR_RW(protection_type);
337
338 static ssize_t
339 protection_mode_show(struct device *dev, struct device_attribute *attr,
340                      char *buf)
341 {
342         struct scsi_disk *sdkp = to_scsi_disk(dev);
343         struct scsi_device *sdp = sdkp->device;
344         unsigned int dif, dix;
345
346         dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
347         dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
348
349         if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
350                 dif = 0;
351                 dix = 1;
352         }
353
354         if (!dif && !dix)
355                 return sprintf(buf, "none\n");
356
357         return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
358 }
359 static DEVICE_ATTR_RO(protection_mode);
360
361 static ssize_t
362 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
363 {
364         struct scsi_disk *sdkp = to_scsi_disk(dev);
365
366         return sprintf(buf, "%u\n", sdkp->ATO);
367 }
368 static DEVICE_ATTR_RO(app_tag_own);
369
370 static ssize_t
371 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
372                        char *buf)
373 {
374         struct scsi_disk *sdkp = to_scsi_disk(dev);
375
376         return sprintf(buf, "%u\n", sdkp->lbpme);
377 }
378 static DEVICE_ATTR_RO(thin_provisioning);
379
380 /* sysfs_match_string() requires dense arrays */
381 static const char *lbp_mode[] = {
382         [SD_LBP_FULL]           = "full",
383         [SD_LBP_UNMAP]          = "unmap",
384         [SD_LBP_WS16]           = "writesame_16",
385         [SD_LBP_WS10]           = "writesame_10",
386         [SD_LBP_ZERO]           = "writesame_zero",
387         [SD_LBP_DISABLE]        = "disabled",
388 };
389
390 static ssize_t
391 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
392                        char *buf)
393 {
394         struct scsi_disk *sdkp = to_scsi_disk(dev);
395
396         return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
397 }
398
399 static ssize_t
400 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
401                         const char *buf, size_t count)
402 {
403         struct scsi_disk *sdkp = to_scsi_disk(dev);
404         struct scsi_device *sdp = sdkp->device;
405         int mode;
406
407         if (!capable(CAP_SYS_ADMIN))
408                 return -EACCES;
409
410         if (sd_is_zoned(sdkp)) {
411                 sd_config_discard(sdkp, SD_LBP_DISABLE);
412                 return count;
413         }
414
415         if (sdp->type != TYPE_DISK)
416                 return -EINVAL;
417
418         mode = sysfs_match_string(lbp_mode, buf);
419         if (mode < 0)
420                 return -EINVAL;
421
422         sd_config_discard(sdkp, mode);
423
424         return count;
425 }
426 static DEVICE_ATTR_RW(provisioning_mode);
427
428 /* sysfs_match_string() requires dense arrays */
429 static const char *zeroing_mode[] = {
430         [SD_ZERO_WRITE]         = "write",
431         [SD_ZERO_WS]            = "writesame",
432         [SD_ZERO_WS16_UNMAP]    = "writesame_16_unmap",
433         [SD_ZERO_WS10_UNMAP]    = "writesame_10_unmap",
434 };
435
436 static ssize_t
437 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
438                   char *buf)
439 {
440         struct scsi_disk *sdkp = to_scsi_disk(dev);
441
442         return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
443 }
444
445 static ssize_t
446 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
447                    const char *buf, size_t count)
448 {
449         struct scsi_disk *sdkp = to_scsi_disk(dev);
450         int mode;
451
452         if (!capable(CAP_SYS_ADMIN))
453                 return -EACCES;
454
455         mode = sysfs_match_string(zeroing_mode, buf);
456         if (mode < 0)
457                 return -EINVAL;
458
459         sdkp->zeroing_mode = mode;
460
461         return count;
462 }
463 static DEVICE_ATTR_RW(zeroing_mode);
464
465 static ssize_t
466 max_medium_access_timeouts_show(struct device *dev,
467                                 struct device_attribute *attr, char *buf)
468 {
469         struct scsi_disk *sdkp = to_scsi_disk(dev);
470
471         return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
472 }
473
474 static ssize_t
475 max_medium_access_timeouts_store(struct device *dev,
476                                  struct device_attribute *attr, const char *buf,
477                                  size_t count)
478 {
479         struct scsi_disk *sdkp = to_scsi_disk(dev);
480         int err;
481
482         if (!capable(CAP_SYS_ADMIN))
483                 return -EACCES;
484
485         err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
486
487         return err ? err : count;
488 }
489 static DEVICE_ATTR_RW(max_medium_access_timeouts);
490
491 static ssize_t
492 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
493                            char *buf)
494 {
495         struct scsi_disk *sdkp = to_scsi_disk(dev);
496
497         return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
498 }
499
500 static ssize_t
501 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
502                             const char *buf, size_t count)
503 {
504         struct scsi_disk *sdkp = to_scsi_disk(dev);
505         struct scsi_device *sdp = sdkp->device;
506         unsigned long max;
507         int err;
508
509         if (!capable(CAP_SYS_ADMIN))
510                 return -EACCES;
511
512         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
513                 return -EINVAL;
514
515         err = kstrtoul(buf, 10, &max);
516
517         if (err)
518                 return err;
519
520         if (max == 0)
521                 sdp->no_write_same = 1;
522         else if (max <= SD_MAX_WS16_BLOCKS) {
523                 sdp->no_write_same = 0;
524                 sdkp->max_ws_blocks = max;
525         }
526
527         sd_config_write_same(sdkp);
528
529         return count;
530 }
531 static DEVICE_ATTR_RW(max_write_same_blocks);
532
533 static struct attribute *sd_disk_attrs[] = {
534         &dev_attr_cache_type.attr,
535         &dev_attr_FUA.attr,
536         &dev_attr_allow_restart.attr,
537         &dev_attr_manage_start_stop.attr,
538         &dev_attr_protection_type.attr,
539         &dev_attr_protection_mode.attr,
540         &dev_attr_app_tag_own.attr,
541         &dev_attr_thin_provisioning.attr,
542         &dev_attr_provisioning_mode.attr,
543         &dev_attr_zeroing_mode.attr,
544         &dev_attr_max_write_same_blocks.attr,
545         &dev_attr_max_medium_access_timeouts.attr,
546         NULL,
547 };
548 ATTRIBUTE_GROUPS(sd_disk);
549
550 static struct class sd_disk_class = {
551         .name           = "scsi_disk",
552         .owner          = THIS_MODULE,
553         .dev_release    = scsi_disk_release,
554         .dev_groups     = sd_disk_groups,
555 };
556
557 static const struct dev_pm_ops sd_pm_ops = {
558         .suspend                = sd_suspend_system,
559         .resume                 = sd_resume,
560         .poweroff               = sd_suspend_system,
561         .restore                = sd_resume,
562         .runtime_suspend        = sd_suspend_runtime,
563         .runtime_resume         = sd_resume,
564 };
565
566 static struct scsi_driver sd_template = {
567         .gendrv = {
568                 .name           = "sd",
569                 .owner          = THIS_MODULE,
570                 .probe          = sd_probe,
571                 .probe_type     = PROBE_PREFER_ASYNCHRONOUS,
572                 .remove         = sd_remove,
573                 .shutdown       = sd_shutdown,
574                 .pm             = &sd_pm_ops,
575         },
576         .rescan                 = sd_rescan,
577         .init_command           = sd_init_command,
578         .uninit_command         = sd_uninit_command,
579         .done                   = sd_done,
580         .eh_action              = sd_eh_action,
581         .eh_reset               = sd_eh_reset,
582 };
583
584 /*
585  * Dummy kobj_map->probe function.
586  * The default ->probe function will call modprobe, which is
587  * pointless as this module is already loaded.
588  */
589 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data)
590 {
591         return NULL;
592 }
593
594 /*
595  * Device no to disk mapping:
596  * 
597  *       major         disc2     disc  p1
598  *   |............|.............|....|....| <- dev_t
599  *    31        20 19          8 7  4 3  0
600  * 
601  * Inside a major, we have 16k disks, however mapped non-
602  * contiguously. The first 16 disks are for major0, the next
603  * ones with major1, ... Disk 256 is for major0 again, disk 272 
604  * for major1, ... 
605  * As we stay compatible with our numbering scheme, we can reuse 
606  * the well-know SCSI majors 8, 65--71, 136--143.
607  */
608 static int sd_major(int major_idx)
609 {
610         switch (major_idx) {
611         case 0:
612                 return SCSI_DISK0_MAJOR;
613         case 1 ... 7:
614                 return SCSI_DISK1_MAJOR + major_idx - 1;
615         case 8 ... 15:
616                 return SCSI_DISK8_MAJOR + major_idx - 8;
617         default:
618                 BUG();
619                 return 0;       /* shut up gcc */
620         }
621 }
622
623 static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
624 {
625         struct scsi_disk *sdkp = NULL;
626
627         mutex_lock(&sd_ref_mutex);
628
629         if (disk->private_data) {
630                 sdkp = scsi_disk(disk);
631                 if (scsi_device_get(sdkp->device) == 0)
632                         get_device(&sdkp->dev);
633                 else
634                         sdkp = NULL;
635         }
636         mutex_unlock(&sd_ref_mutex);
637         return sdkp;
638 }
639
640 static void scsi_disk_put(struct scsi_disk *sdkp)
641 {
642         struct scsi_device *sdev = sdkp->device;
643
644         mutex_lock(&sd_ref_mutex);
645         put_device(&sdkp->dev);
646         scsi_device_put(sdev);
647         mutex_unlock(&sd_ref_mutex);
648 }
649
650 #ifdef CONFIG_BLK_SED_OPAL
651 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
652                 size_t len, bool send)
653 {
654         struct scsi_device *sdev = data;
655         u8 cdb[12] = { 0, };
656         int ret;
657
658         cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
659         cdb[1] = secp;
660         put_unaligned_be16(spsp, &cdb[2]);
661         put_unaligned_be32(len, &cdb[6]);
662
663         ret = scsi_execute_req(sdev, cdb,
664                         send ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
665                         buffer, len, NULL, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
666         return ret <= 0 ? ret : -EIO;
667 }
668 #endif /* CONFIG_BLK_SED_OPAL */
669
670 /*
671  * Look up the DIX operation based on whether the command is read or
672  * write and whether dix and dif are enabled.
673  */
674 static unsigned int sd_prot_op(bool write, bool dix, bool dif)
675 {
676         /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
677         static const unsigned int ops[] = {     /* wrt dix dif */
678                 SCSI_PROT_NORMAL,               /*  0   0   0  */
679                 SCSI_PROT_READ_STRIP,           /*  0   0   1  */
680                 SCSI_PROT_READ_INSERT,          /*  0   1   0  */
681                 SCSI_PROT_READ_PASS,            /*  0   1   1  */
682                 SCSI_PROT_NORMAL,               /*  1   0   0  */
683                 SCSI_PROT_WRITE_INSERT,         /*  1   0   1  */
684                 SCSI_PROT_WRITE_STRIP,          /*  1   1   0  */
685                 SCSI_PROT_WRITE_PASS,           /*  1   1   1  */
686         };
687
688         return ops[write << 2 | dix << 1 | dif];
689 }
690
691 /*
692  * Returns a mask of the protection flags that are valid for a given DIX
693  * operation.
694  */
695 static unsigned int sd_prot_flag_mask(unsigned int prot_op)
696 {
697         static const unsigned int flag_mask[] = {
698                 [SCSI_PROT_NORMAL]              = 0,
699
700                 [SCSI_PROT_READ_STRIP]          = SCSI_PROT_TRANSFER_PI |
701                                                   SCSI_PROT_GUARD_CHECK |
702                                                   SCSI_PROT_REF_CHECK |
703                                                   SCSI_PROT_REF_INCREMENT,
704
705                 [SCSI_PROT_READ_INSERT]         = SCSI_PROT_REF_INCREMENT |
706                                                   SCSI_PROT_IP_CHECKSUM,
707
708                 [SCSI_PROT_READ_PASS]           = SCSI_PROT_TRANSFER_PI |
709                                                   SCSI_PROT_GUARD_CHECK |
710                                                   SCSI_PROT_REF_CHECK |
711                                                   SCSI_PROT_REF_INCREMENT |
712                                                   SCSI_PROT_IP_CHECKSUM,
713
714                 [SCSI_PROT_WRITE_INSERT]        = SCSI_PROT_TRANSFER_PI |
715                                                   SCSI_PROT_REF_INCREMENT,
716
717                 [SCSI_PROT_WRITE_STRIP]         = SCSI_PROT_GUARD_CHECK |
718                                                   SCSI_PROT_REF_CHECK |
719                                                   SCSI_PROT_REF_INCREMENT |
720                                                   SCSI_PROT_IP_CHECKSUM,
721
722                 [SCSI_PROT_WRITE_PASS]          = SCSI_PROT_TRANSFER_PI |
723                                                   SCSI_PROT_GUARD_CHECK |
724                                                   SCSI_PROT_REF_CHECK |
725                                                   SCSI_PROT_REF_INCREMENT |
726                                                   SCSI_PROT_IP_CHECKSUM,
727         };
728
729         return flag_mask[prot_op];
730 }
731
732 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
733                                            unsigned int dix, unsigned int dif)
734 {
735         struct bio *bio = scmd->request->bio;
736         unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif);
737         unsigned int protect = 0;
738
739         if (dix) {                              /* DIX Type 0, 1, 2, 3 */
740                 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
741                         scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
742
743                 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
744                         scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
745         }
746
747         if (dif != T10_PI_TYPE3_PROTECTION) {   /* DIX/DIF Type 0, 1, 2 */
748                 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
749
750                 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
751                         scmd->prot_flags |= SCSI_PROT_REF_CHECK;
752         }
753
754         if (dif) {                              /* DIX/DIF Type 1, 2, 3 */
755                 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
756
757                 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
758                         protect = 3 << 5;       /* Disable target PI checking */
759                 else
760                         protect = 1 << 5;       /* Enable target PI checking */
761         }
762
763         scsi_set_prot_op(scmd, prot_op);
764         scsi_set_prot_type(scmd, dif);
765         scmd->prot_flags &= sd_prot_flag_mask(prot_op);
766
767         return protect;
768 }
769
770 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
771 {
772         struct request_queue *q = sdkp->disk->queue;
773         unsigned int logical_block_size = sdkp->device->sector_size;
774         unsigned int max_blocks = 0;
775
776         q->limits.discard_alignment =
777                 sdkp->unmap_alignment * logical_block_size;
778         q->limits.discard_granularity =
779                 max(sdkp->physical_block_size,
780                     sdkp->unmap_granularity * logical_block_size);
781         sdkp->provisioning_mode = mode;
782
783         switch (mode) {
784
785         case SD_LBP_FULL:
786         case SD_LBP_DISABLE:
787                 blk_queue_max_discard_sectors(q, 0);
788                 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
789                 return;
790
791         case SD_LBP_UNMAP:
792                 max_blocks = min_not_zero(sdkp->max_unmap_blocks,
793                                           (u32)SD_MAX_WS16_BLOCKS);
794                 break;
795
796         case SD_LBP_WS16:
797                 if (sdkp->device->unmap_limit_for_ws)
798                         max_blocks = sdkp->max_unmap_blocks;
799                 else
800                         max_blocks = sdkp->max_ws_blocks;
801
802                 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
803                 break;
804
805         case SD_LBP_WS10:
806                 if (sdkp->device->unmap_limit_for_ws)
807                         max_blocks = sdkp->max_unmap_blocks;
808                 else
809                         max_blocks = sdkp->max_ws_blocks;
810
811                 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
812                 break;
813
814         case SD_LBP_ZERO:
815                 max_blocks = min_not_zero(sdkp->max_ws_blocks,
816                                           (u32)SD_MAX_WS10_BLOCKS);
817                 break;
818         }
819
820         blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
821         blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
822 }
823
824 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
825 {
826         struct scsi_device *sdp = cmd->device;
827         struct request *rq = cmd->request;
828         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
829         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
830         unsigned int data_len = 24;
831         char *buf;
832
833         rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
834         if (!rq->special_vec.bv_page)
835                 return BLK_STS_RESOURCE;
836         clear_highpage(rq->special_vec.bv_page);
837         rq->special_vec.bv_offset = 0;
838         rq->special_vec.bv_len = data_len;
839         rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
840
841         cmd->cmd_len = 10;
842         cmd->cmnd[0] = UNMAP;
843         cmd->cmnd[8] = 24;
844
845         buf = page_address(rq->special_vec.bv_page);
846         put_unaligned_be16(6 + 16, &buf[0]);
847         put_unaligned_be16(16, &buf[2]);
848         put_unaligned_be64(lba, &buf[8]);
849         put_unaligned_be32(nr_blocks, &buf[16]);
850
851         cmd->allowed = SD_MAX_RETRIES;
852         cmd->transfersize = data_len;
853         rq->timeout = SD_TIMEOUT;
854
855         return scsi_init_io(cmd);
856 }
857
858 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
859                 bool unmap)
860 {
861         struct scsi_device *sdp = cmd->device;
862         struct request *rq = cmd->request;
863         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
864         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
865         u32 data_len = sdp->sector_size;
866
867         rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
868         if (!rq->special_vec.bv_page)
869                 return BLK_STS_RESOURCE;
870         clear_highpage(rq->special_vec.bv_page);
871         rq->special_vec.bv_offset = 0;
872         rq->special_vec.bv_len = data_len;
873         rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
874
875         cmd->cmd_len = 16;
876         cmd->cmnd[0] = WRITE_SAME_16;
877         if (unmap)
878                 cmd->cmnd[1] = 0x8; /* UNMAP */
879         put_unaligned_be64(lba, &cmd->cmnd[2]);
880         put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
881
882         cmd->allowed = SD_MAX_RETRIES;
883         cmd->transfersize = data_len;
884         rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
885
886         return scsi_init_io(cmd);
887 }
888
889 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
890                 bool unmap)
891 {
892         struct scsi_device *sdp = cmd->device;
893         struct request *rq = cmd->request;
894         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
895         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
896         u32 data_len = sdp->sector_size;
897
898         rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
899         if (!rq->special_vec.bv_page)
900                 return BLK_STS_RESOURCE;
901         clear_highpage(rq->special_vec.bv_page);
902         rq->special_vec.bv_offset = 0;
903         rq->special_vec.bv_len = data_len;
904         rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
905
906         cmd->cmd_len = 10;
907         cmd->cmnd[0] = WRITE_SAME;
908         if (unmap)
909                 cmd->cmnd[1] = 0x8; /* UNMAP */
910         put_unaligned_be32(lba, &cmd->cmnd[2]);
911         put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
912
913         cmd->allowed = SD_MAX_RETRIES;
914         cmd->transfersize = data_len;
915         rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
916
917         return scsi_init_io(cmd);
918 }
919
920 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
921 {
922         struct request *rq = cmd->request;
923         struct scsi_device *sdp = cmd->device;
924         struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
925         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
926         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
927
928         if (!(rq->cmd_flags & REQ_NOUNMAP)) {
929                 switch (sdkp->zeroing_mode) {
930                 case SD_ZERO_WS16_UNMAP:
931                         return sd_setup_write_same16_cmnd(cmd, true);
932                 case SD_ZERO_WS10_UNMAP:
933                         return sd_setup_write_same10_cmnd(cmd, true);
934                 }
935         }
936
937         if (sdp->no_write_same)
938                 return BLK_STS_TARGET;
939
940         if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
941                 return sd_setup_write_same16_cmnd(cmd, false);
942
943         return sd_setup_write_same10_cmnd(cmd, false);
944 }
945
946 static void sd_config_write_same(struct scsi_disk *sdkp)
947 {
948         struct request_queue *q = sdkp->disk->queue;
949         unsigned int logical_block_size = sdkp->device->sector_size;
950
951         if (sdkp->device->no_write_same) {
952                 sdkp->max_ws_blocks = 0;
953                 goto out;
954         }
955
956         /* Some devices can not handle block counts above 0xffff despite
957          * supporting WRITE SAME(16). Consequently we default to 64k
958          * blocks per I/O unless the device explicitly advertises a
959          * bigger limit.
960          */
961         if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
962                 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
963                                                    (u32)SD_MAX_WS16_BLOCKS);
964         else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
965                 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
966                                                    (u32)SD_MAX_WS10_BLOCKS);
967         else {
968                 sdkp->device->no_write_same = 1;
969                 sdkp->max_ws_blocks = 0;
970         }
971
972         if (sdkp->lbprz && sdkp->lbpws)
973                 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
974         else if (sdkp->lbprz && sdkp->lbpws10)
975                 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
976         else if (sdkp->max_ws_blocks)
977                 sdkp->zeroing_mode = SD_ZERO_WS;
978         else
979                 sdkp->zeroing_mode = SD_ZERO_WRITE;
980
981         if (sdkp->max_ws_blocks &&
982             sdkp->physical_block_size > logical_block_size) {
983                 /*
984                  * Reporting a maximum number of blocks that is not aligned
985                  * on the device physical size would cause a large write same
986                  * request to be split into physically unaligned chunks by
987                  * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same()
988                  * even if the caller of these functions took care to align the
989                  * large request. So make sure the maximum reported is aligned
990                  * to the device physical block size. This is only an optional
991                  * optimization for regular disks, but this is mandatory to
992                  * avoid failure of large write same requests directed at
993                  * sequential write required zones of host-managed ZBC disks.
994                  */
995                 sdkp->max_ws_blocks =
996                         round_down(sdkp->max_ws_blocks,
997                                    bytes_to_logical(sdkp->device,
998                                                     sdkp->physical_block_size));
999         }
1000
1001 out:
1002         blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
1003                                          (logical_block_size >> 9));
1004         blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
1005                                          (logical_block_size >> 9));
1006 }
1007
1008 /**
1009  * sd_setup_write_same_cmnd - write the same data to multiple blocks
1010  * @cmd: command to prepare
1011  *
1012  * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on
1013  * the preference indicated by the target device.
1014  **/
1015 static blk_status_t sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
1016 {
1017         struct request *rq = cmd->request;
1018         struct scsi_device *sdp = cmd->device;
1019         struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1020         struct bio *bio = rq->bio;
1021         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1022         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1023         blk_status_t ret;
1024
1025         if (sdkp->device->no_write_same)
1026                 return BLK_STS_TARGET;
1027
1028         BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
1029
1030         rq->timeout = SD_WRITE_SAME_TIMEOUT;
1031
1032         if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) {
1033                 cmd->cmd_len = 16;
1034                 cmd->cmnd[0] = WRITE_SAME_16;
1035                 put_unaligned_be64(lba, &cmd->cmnd[2]);
1036                 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1037         } else {
1038                 cmd->cmd_len = 10;
1039                 cmd->cmnd[0] = WRITE_SAME;
1040                 put_unaligned_be32(lba, &cmd->cmnd[2]);
1041                 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1042         }
1043
1044         cmd->transfersize = sdp->sector_size;
1045         cmd->allowed = SD_MAX_RETRIES;
1046
1047         /*
1048          * For WRITE SAME the data transferred via the DATA OUT buffer is
1049          * different from the amount of data actually written to the target.
1050          *
1051          * We set up __data_len to the amount of data transferred via the
1052          * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list
1053          * to transfer a single sector of data first, but then reset it to
1054          * the amount of data to be written right after so that the I/O path
1055          * knows how much to actually write.
1056          */
1057         rq->__data_len = sdp->sector_size;
1058         ret = scsi_init_io(cmd);
1059         rq->__data_len = blk_rq_bytes(rq);
1060
1061         return ret;
1062 }
1063
1064 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1065 {
1066         struct request *rq = cmd->request;
1067
1068         /* flush requests don't perform I/O, zero the S/G table */
1069         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1070
1071         cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1072         cmd->cmd_len = 10;
1073         cmd->transfersize = 0;
1074         cmd->allowed = SD_MAX_RETRIES;
1075
1076         rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1077         return BLK_STS_OK;
1078 }
1079
1080 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1081                                        sector_t lba, unsigned int nr_blocks,
1082                                        unsigned char flags)
1083 {
1084         cmd->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1085         if (unlikely(cmd->cmnd == NULL))
1086                 return BLK_STS_RESOURCE;
1087
1088         cmd->cmd_len = SD_EXT_CDB_SIZE;
1089         memset(cmd->cmnd, 0, cmd->cmd_len);
1090
1091         cmd->cmnd[0]  = VARIABLE_LENGTH_CMD;
1092         cmd->cmnd[7]  = 0x18; /* Additional CDB len */
1093         cmd->cmnd[9]  = write ? WRITE_32 : READ_32;
1094         cmd->cmnd[10] = flags;
1095         put_unaligned_be64(lba, &cmd->cmnd[12]);
1096         put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1097         put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1098
1099         return BLK_STS_OK;
1100 }
1101
1102 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1103                                        sector_t lba, unsigned int nr_blocks,
1104                                        unsigned char flags)
1105 {
1106         cmd->cmd_len  = 16;
1107         cmd->cmnd[0]  = write ? WRITE_16 : READ_16;
1108         cmd->cmnd[1]  = flags;
1109         cmd->cmnd[14] = 0;
1110         cmd->cmnd[15] = 0;
1111         put_unaligned_be64(lba, &cmd->cmnd[2]);
1112         put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1113
1114         return BLK_STS_OK;
1115 }
1116
1117 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1118                                        sector_t lba, unsigned int nr_blocks,
1119                                        unsigned char flags)
1120 {
1121         cmd->cmd_len = 10;
1122         cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1123         cmd->cmnd[1] = flags;
1124         cmd->cmnd[6] = 0;
1125         cmd->cmnd[9] = 0;
1126         put_unaligned_be32(lba, &cmd->cmnd[2]);
1127         put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1128
1129         return BLK_STS_OK;
1130 }
1131
1132 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1133                                       sector_t lba, unsigned int nr_blocks,
1134                                       unsigned char flags)
1135 {
1136         /* Avoid that 0 blocks gets translated into 256 blocks. */
1137         if (WARN_ON_ONCE(nr_blocks == 0))
1138                 return BLK_STS_IOERR;
1139
1140         if (unlikely(flags & 0x8)) {
1141                 /*
1142                  * This happens only if this drive failed 10byte rw
1143                  * command with ILLEGAL_REQUEST during operation and
1144                  * thus turned off use_10_for_rw.
1145                  */
1146                 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1147                 return BLK_STS_IOERR;
1148         }
1149
1150         cmd->cmd_len = 6;
1151         cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1152         cmd->cmnd[1] = (lba >> 16) & 0x1f;
1153         cmd->cmnd[2] = (lba >> 8) & 0xff;
1154         cmd->cmnd[3] = lba & 0xff;
1155         cmd->cmnd[4] = nr_blocks;
1156         cmd->cmnd[5] = 0;
1157
1158         return BLK_STS_OK;
1159 }
1160
1161 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1162 {
1163         struct request *rq = cmd->request;
1164         struct scsi_device *sdp = cmd->device;
1165         struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1166         sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1167         sector_t threshold;
1168         unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1169         bool dif, dix;
1170         unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1171         bool write = rq_data_dir(rq) == WRITE;
1172         unsigned char protect, fua;
1173         blk_status_t ret;
1174
1175         ret = scsi_init_io(cmd);
1176         if (ret != BLK_STS_OK)
1177                 return ret;
1178
1179         if (!scsi_device_online(sdp) || sdp->changed) {
1180                 scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1181                 return BLK_STS_IOERR;
1182         }
1183
1184         if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->rq_disk)) {
1185                 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1186                 return BLK_STS_IOERR;
1187         }
1188
1189         if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1190                 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1191                 return BLK_STS_IOERR;
1192         }
1193
1194         /*
1195          * Some SD card readers can't handle accesses which touch the
1196          * last one or two logical blocks. Split accesses as needed.
1197          */
1198         threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1199
1200         if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1201                 if (lba < threshold) {
1202                         /* Access up to the threshold but not beyond */
1203                         nr_blocks = threshold - lba;
1204                 } else {
1205                         /* Access only a single logical block */
1206                         nr_blocks = 1;
1207                 }
1208         }
1209
1210         fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1211         dix = scsi_prot_sg_count(cmd);
1212         dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1213
1214         if (dif || dix)
1215                 protect = sd_setup_protect_cmnd(cmd, dix, dif);
1216         else
1217                 protect = 0;
1218
1219         if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1220                 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1221                                          protect | fua);
1222         } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1223                 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1224                                          protect | fua);
1225         } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1226                    sdp->use_10_for_rw || protect) {
1227                 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1228                                          protect | fua);
1229         } else {
1230                 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1231                                         protect | fua);
1232         }
1233
1234         if (unlikely(ret != BLK_STS_OK))
1235                 return ret;
1236
1237         /*
1238          * We shouldn't disconnect in the middle of a sector, so with a dumb
1239          * host adapter, it's safe to assume that we can at least transfer
1240          * this many bytes between each connect / disconnect.
1241          */
1242         cmd->transfersize = sdp->sector_size;
1243         cmd->underflow = nr_blocks << 9;
1244         cmd->allowed = SD_MAX_RETRIES;
1245         cmd->sdb.length = nr_blocks * sdp->sector_size;
1246
1247         SCSI_LOG_HLQUEUE(1,
1248                          scmd_printk(KERN_INFO, cmd,
1249                                      "%s: block=%llu, count=%d\n", __func__,
1250                                      (unsigned long long)blk_rq_pos(rq),
1251                                      blk_rq_sectors(rq)));
1252         SCSI_LOG_HLQUEUE(2,
1253                          scmd_printk(KERN_INFO, cmd,
1254                                      "%s %d/%u 512 byte blocks.\n",
1255                                      write ? "writing" : "reading", nr_blocks,
1256                                      blk_rq_sectors(rq)));
1257
1258         /*
1259          * This indicates that the command is ready from our end to be
1260          * queued.
1261          */
1262         return BLK_STS_OK;
1263 }
1264
1265 static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1266 {
1267         struct request *rq = cmd->request;
1268
1269         switch (req_op(rq)) {
1270         case REQ_OP_DISCARD:
1271                 switch (scsi_disk(rq->rq_disk)->provisioning_mode) {
1272                 case SD_LBP_UNMAP:
1273                         return sd_setup_unmap_cmnd(cmd);
1274                 case SD_LBP_WS16:
1275                         return sd_setup_write_same16_cmnd(cmd, true);
1276                 case SD_LBP_WS10:
1277                         return sd_setup_write_same10_cmnd(cmd, true);
1278                 case SD_LBP_ZERO:
1279                         return sd_setup_write_same10_cmnd(cmd, false);
1280                 default:
1281                         return BLK_STS_TARGET;
1282                 }
1283         case REQ_OP_WRITE_ZEROES:
1284                 return sd_setup_write_zeroes_cmnd(cmd);
1285         case REQ_OP_WRITE_SAME:
1286                 return sd_setup_write_same_cmnd(cmd);
1287         case REQ_OP_FLUSH:
1288                 return sd_setup_flush_cmnd(cmd);
1289         case REQ_OP_READ:
1290         case REQ_OP_WRITE:
1291                 return sd_setup_read_write_cmnd(cmd);
1292         case REQ_OP_ZONE_RESET:
1293                 return sd_zbc_setup_reset_cmnd(cmd, false);
1294         case REQ_OP_ZONE_RESET_ALL:
1295                 return sd_zbc_setup_reset_cmnd(cmd, true);
1296         default:
1297                 WARN_ON_ONCE(1);
1298                 return BLK_STS_NOTSUPP;
1299         }
1300 }
1301
1302 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1303 {
1304         struct request *rq = SCpnt->request;
1305         u8 *cmnd;
1306
1307         if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1308                 mempool_free(rq->special_vec.bv_page, sd_page_pool);
1309
1310         if (SCpnt->cmnd != scsi_req(rq)->cmd) {
1311                 cmnd = SCpnt->cmnd;
1312                 SCpnt->cmnd = NULL;
1313                 SCpnt->cmd_len = 0;
1314                 mempool_free(cmnd, sd_cdb_pool);
1315         }
1316 }
1317
1318 /**
1319  *      sd_open - open a scsi disk device
1320  *      @bdev: Block device of the scsi disk to open
1321  *      @mode: FMODE_* mask
1322  *
1323  *      Returns 0 if successful. Returns a negated errno value in case 
1324  *      of error.
1325  *
1326  *      Note: This can be called from a user context (e.g. fsck(1) )
1327  *      or from within the kernel (e.g. as a result of a mount(1) ).
1328  *      In the latter case @inode and @filp carry an abridged amount
1329  *      of information as noted above.
1330  *
1331  *      Locking: called with bdev->bd_mutex held.
1332  **/
1333 static int sd_open(struct block_device *bdev, fmode_t mode)
1334 {
1335         struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1336         struct scsi_device *sdev;
1337         int retval;
1338
1339         if (!sdkp)
1340                 return -ENXIO;
1341
1342         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1343
1344         sdev = sdkp->device;
1345
1346         /*
1347          * If the device is in error recovery, wait until it is done.
1348          * If the device is offline, then disallow any access to it.
1349          */
1350         retval = -ENXIO;
1351         if (!scsi_block_when_processing_errors(sdev))
1352                 goto error_out;
1353
1354         if (sdev->removable || sdkp->write_prot)
1355                 check_disk_change(bdev);
1356
1357         /*
1358          * If the drive is empty, just let the open fail.
1359          */
1360         retval = -ENOMEDIUM;
1361         if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1362                 goto error_out;
1363
1364         /*
1365          * If the device has the write protect tab set, have the open fail
1366          * if the user expects to be able to write to the thing.
1367          */
1368         retval = -EROFS;
1369         if (sdkp->write_prot && (mode & FMODE_WRITE))
1370                 goto error_out;
1371
1372         /*
1373          * It is possible that the disk changing stuff resulted in
1374          * the device being taken offline.  If this is the case,
1375          * report this to the user, and don't pretend that the
1376          * open actually succeeded.
1377          */
1378         retval = -ENXIO;
1379         if (!scsi_device_online(sdev))
1380                 goto error_out;
1381
1382         if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1383                 if (scsi_block_when_processing_errors(sdev))
1384                         scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1385         }
1386
1387         return 0;
1388
1389 error_out:
1390         scsi_disk_put(sdkp);
1391         return retval;  
1392 }
1393
1394 /**
1395  *      sd_release - invoked when the (last) close(2) is called on this
1396  *      scsi disk.
1397  *      @disk: disk to release
1398  *      @mode: FMODE_* mask
1399  *
1400  *      Returns 0. 
1401  *
1402  *      Note: may block (uninterruptible) if error recovery is underway
1403  *      on this disk.
1404  *
1405  *      Locking: called with bdev->bd_mutex held.
1406  **/
1407 static void sd_release(struct gendisk *disk, fmode_t mode)
1408 {
1409         struct scsi_disk *sdkp = scsi_disk(disk);
1410         struct scsi_device *sdev = sdkp->device;
1411
1412         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1413
1414         if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1415                 if (scsi_block_when_processing_errors(sdev))
1416                         scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1417         }
1418
1419         scsi_disk_put(sdkp);
1420 }
1421
1422 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1423 {
1424         struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1425         struct scsi_device *sdp = sdkp->device;
1426         struct Scsi_Host *host = sdp->host;
1427         sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1428         int diskinfo[4];
1429
1430         /* default to most commonly used values */
1431         diskinfo[0] = 0x40;     /* 1 << 6 */
1432         diskinfo[1] = 0x20;     /* 1 << 5 */
1433         diskinfo[2] = capacity >> 11;
1434
1435         /* override with calculated, extended default, or driver values */
1436         if (host->hostt->bios_param)
1437                 host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1438         else
1439                 scsicam_bios_param(bdev, capacity, diskinfo);
1440
1441         geo->heads = diskinfo[0];
1442         geo->sectors = diskinfo[1];
1443         geo->cylinders = diskinfo[2];
1444         return 0;
1445 }
1446
1447 /**
1448  *      sd_ioctl - process an ioctl
1449  *      @bdev: target block device
1450  *      @mode: FMODE_* mask
1451  *      @cmd: ioctl command number
1452  *      @arg: this is third argument given to ioctl(2) system call.
1453  *      Often contains a pointer.
1454  *
1455  *      Returns 0 if successful (some ioctls return positive numbers on
1456  *      success as well). Returns a negated errno value in case of error.
1457  *
1458  *      Note: most ioctls are forward onto the block subsystem or further
1459  *      down in the scsi subsystem.
1460  **/
1461 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1462                     unsigned int cmd, unsigned long arg)
1463 {
1464         struct gendisk *disk = bdev->bd_disk;
1465         struct scsi_disk *sdkp = scsi_disk(disk);
1466         struct scsi_device *sdp = sdkp->device;
1467         void __user *p = (void __user *)arg;
1468         int error;
1469     
1470         SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1471                                     "cmd=0x%x\n", disk->disk_name, cmd));
1472
1473         error = scsi_verify_blk_ioctl(bdev, cmd);
1474         if (error < 0)
1475                 return error;
1476
1477         /*
1478          * If we are in the middle of error recovery, don't let anyone
1479          * else try and use this device.  Also, if error recovery fails, it
1480          * may try and take the device offline, in which case all further
1481          * access to the device is prohibited.
1482          */
1483         error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1484                         (mode & FMODE_NDELAY) != 0);
1485         if (error)
1486                 goto out;
1487
1488         if (is_sed_ioctl(cmd))
1489                 return sed_ioctl(sdkp->opal_dev, cmd, p);
1490
1491         /*
1492          * Send SCSI addressing ioctls directly to mid level, send other
1493          * ioctls to block level and then onto mid level if they can't be
1494          * resolved.
1495          */
1496         switch (cmd) {
1497                 case SCSI_IOCTL_GET_IDLUN:
1498                 case SCSI_IOCTL_GET_BUS_NUMBER:
1499                         error = scsi_ioctl(sdp, cmd, p);
1500                         break;
1501                 default:
1502                         error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p);
1503                         if (error != -ENOTTY)
1504                                 break;
1505                         error = scsi_ioctl(sdp, cmd, p);
1506                         break;
1507         }
1508 out:
1509         return error;
1510 }
1511
1512 static void set_media_not_present(struct scsi_disk *sdkp)
1513 {
1514         if (sdkp->media_present)
1515                 sdkp->device->changed = 1;
1516
1517         if (sdkp->device->removable) {
1518                 sdkp->media_present = 0;
1519                 sdkp->capacity = 0;
1520         }
1521 }
1522
1523 static int media_not_present(struct scsi_disk *sdkp,
1524                              struct scsi_sense_hdr *sshdr)
1525 {
1526         if (!scsi_sense_valid(sshdr))
1527                 return 0;
1528
1529         /* not invoked for commands that could return deferred errors */
1530         switch (sshdr->sense_key) {
1531         case UNIT_ATTENTION:
1532         case NOT_READY:
1533                 /* medium not present */
1534                 if (sshdr->asc == 0x3A) {
1535                         set_media_not_present(sdkp);
1536                         return 1;
1537                 }
1538         }
1539         return 0;
1540 }
1541
1542 /**
1543  *      sd_check_events - check media events
1544  *      @disk: kernel device descriptor
1545  *      @clearing: disk events currently being cleared
1546  *
1547  *      Returns mask of DISK_EVENT_*.
1548  *
1549  *      Note: this function is invoked from the block subsystem.
1550  **/
1551 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1552 {
1553         struct scsi_disk *sdkp = scsi_disk_get(disk);
1554         struct scsi_device *sdp;
1555         int retval;
1556
1557         if (!sdkp)
1558                 return 0;
1559
1560         sdp = sdkp->device;
1561         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1562
1563         /*
1564          * If the device is offline, don't send any commands - just pretend as
1565          * if the command failed.  If the device ever comes back online, we
1566          * can deal with it then.  It is only because of unrecoverable errors
1567          * that we would ever take a device offline in the first place.
1568          */
1569         if (!scsi_device_online(sdp)) {
1570                 set_media_not_present(sdkp);
1571                 goto out;
1572         }
1573
1574         /*
1575          * Using TEST_UNIT_READY enables differentiation between drive with
1576          * no cartridge loaded - NOT READY, drive with changed cartridge -
1577          * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1578          *
1579          * Drives that auto spin down. eg iomega jaz 1G, will be started
1580          * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1581          * sd_revalidate() is called.
1582          */
1583         if (scsi_block_when_processing_errors(sdp)) {
1584                 struct scsi_sense_hdr sshdr = { 0, };
1585
1586                 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES,
1587                                               &sshdr);
1588
1589                 /* failed to execute TUR, assume media not present */
1590                 if (host_byte(retval)) {
1591                         set_media_not_present(sdkp);
1592                         goto out;
1593                 }
1594
1595                 if (media_not_present(sdkp, &sshdr))
1596                         goto out;
1597         }
1598
1599         /*
1600          * For removable scsi disk we have to recognise the presence
1601          * of a disk in the drive.
1602          */
1603         if (!sdkp->media_present)
1604                 sdp->changed = 1;
1605         sdkp->media_present = 1;
1606 out:
1607         /*
1608          * sdp->changed is set under the following conditions:
1609          *
1610          *      Medium present state has changed in either direction.
1611          *      Device has indicated UNIT_ATTENTION.
1612          */
1613         retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1614         sdp->changed = 0;
1615         scsi_disk_put(sdkp);
1616         return retval;
1617 }
1618
1619 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1620 {
1621         int retries, res;
1622         struct scsi_device *sdp = sdkp->device;
1623         const int timeout = sdp->request_queue->rq_timeout
1624                 * SD_FLUSH_TIMEOUT_MULTIPLIER;
1625         struct scsi_sense_hdr my_sshdr;
1626
1627         if (!scsi_device_online(sdp))
1628                 return -ENODEV;
1629
1630         /* caller might not be interested in sense, but we need it */
1631         if (!sshdr)
1632                 sshdr = &my_sshdr;
1633
1634         for (retries = 3; retries > 0; --retries) {
1635                 unsigned char cmd[10] = { 0 };
1636
1637                 cmd[0] = SYNCHRONIZE_CACHE;
1638                 /*
1639                  * Leave the rest of the command zero to indicate
1640                  * flush everything.
1641                  */
1642                 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr,
1643                                 timeout, SD_MAX_RETRIES, 0, RQF_PM, NULL);
1644                 if (res == 0)
1645                         break;
1646         }
1647
1648         if (res) {
1649                 sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1650
1651                 if (driver_byte(res) == DRIVER_SENSE)
1652                         sd_print_sense_hdr(sdkp, sshdr);
1653
1654                 /* we need to evaluate the error return  */
1655                 if (scsi_sense_valid(sshdr) &&
1656                         (sshdr->asc == 0x3a ||  /* medium not present */
1657                          sshdr->asc == 0x20))   /* invalid command */
1658                                 /* this is no error here */
1659                                 return 0;
1660
1661                 switch (host_byte(res)) {
1662                 /* ignore errors due to racing a disconnection */
1663                 case DID_BAD_TARGET:
1664                 case DID_NO_CONNECT:
1665                         return 0;
1666                 /* signal the upper layer it might try again */
1667                 case DID_BUS_BUSY:
1668                 case DID_IMM_RETRY:
1669                 case DID_REQUEUE:
1670                 case DID_SOFT_ERROR:
1671                         return -EBUSY;
1672                 default:
1673                         return -EIO;
1674                 }
1675         }
1676         return 0;
1677 }
1678
1679 static void sd_rescan(struct device *dev)
1680 {
1681         struct scsi_disk *sdkp = dev_get_drvdata(dev);
1682
1683         revalidate_disk(sdkp->disk);
1684 }
1685
1686
1687 #ifdef CONFIG_COMPAT
1688 /* 
1689  * This gets directly called from VFS. When the ioctl 
1690  * is not recognized we go back to the other translation paths. 
1691  */
1692 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode,
1693                            unsigned int cmd, unsigned long arg)
1694 {
1695         struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1696         int error;
1697
1698         error = scsi_ioctl_block_when_processing_errors(sdev, cmd,
1699                         (mode & FMODE_NDELAY) != 0);
1700         if (error)
1701                 return error;
1702                
1703         /* 
1704          * Let the static ioctl translation table take care of it.
1705          */
1706         if (!sdev->host->hostt->compat_ioctl)
1707                 return -ENOIOCTLCMD; 
1708         return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg);
1709 }
1710 #endif
1711
1712 static char sd_pr_type(enum pr_type type)
1713 {
1714         switch (type) {
1715         case PR_WRITE_EXCLUSIVE:
1716                 return 0x01;
1717         case PR_EXCLUSIVE_ACCESS:
1718                 return 0x03;
1719         case PR_WRITE_EXCLUSIVE_REG_ONLY:
1720                 return 0x05;
1721         case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1722                 return 0x06;
1723         case PR_WRITE_EXCLUSIVE_ALL_REGS:
1724                 return 0x07;
1725         case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1726                 return 0x08;
1727         default:
1728                 return 0;
1729         }
1730 };
1731
1732 static int sd_pr_command(struct block_device *bdev, u8 sa,
1733                 u64 key, u64 sa_key, u8 type, u8 flags)
1734 {
1735         struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1736         struct scsi_sense_hdr sshdr;
1737         int result;
1738         u8 cmd[16] = { 0, };
1739         u8 data[24] = { 0, };
1740
1741         cmd[0] = PERSISTENT_RESERVE_OUT;
1742         cmd[1] = sa;
1743         cmd[2] = type;
1744         put_unaligned_be32(sizeof(data), &cmd[5]);
1745
1746         put_unaligned_be64(key, &data[0]);
1747         put_unaligned_be64(sa_key, &data[8]);
1748         data[20] = flags;
1749
1750         result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1751                         &sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
1752
1753         if (driver_byte(result) == DRIVER_SENSE &&
1754             scsi_sense_valid(&sshdr)) {
1755                 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1756                 scsi_print_sense_hdr(sdev, NULL, &sshdr);
1757         }
1758
1759         return result;
1760 }
1761
1762 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1763                 u32 flags)
1764 {
1765         if (flags & ~PR_FL_IGNORE_KEY)
1766                 return -EOPNOTSUPP;
1767         return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1768                         old_key, new_key, 0,
1769                         (1 << 0) /* APTPL */);
1770 }
1771
1772 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1773                 u32 flags)
1774 {
1775         if (flags)
1776                 return -EOPNOTSUPP;
1777         return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1778 }
1779
1780 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1781 {
1782         return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1783 }
1784
1785 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1786                 enum pr_type type, bool abort)
1787 {
1788         return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1789                              sd_pr_type(type), 0);
1790 }
1791
1792 static int sd_pr_clear(struct block_device *bdev, u64 key)
1793 {
1794         return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1795 }
1796
1797 static const struct pr_ops sd_pr_ops = {
1798         .pr_register    = sd_pr_register,
1799         .pr_reserve     = sd_pr_reserve,
1800         .pr_release     = sd_pr_release,
1801         .pr_preempt     = sd_pr_preempt,
1802         .pr_clear       = sd_pr_clear,
1803 };
1804
1805 static const struct block_device_operations sd_fops = {
1806         .owner                  = THIS_MODULE,
1807         .open                   = sd_open,
1808         .release                = sd_release,
1809         .ioctl                  = sd_ioctl,
1810         .getgeo                 = sd_getgeo,
1811 #ifdef CONFIG_COMPAT
1812         .compat_ioctl           = sd_compat_ioctl,
1813 #endif
1814         .check_events           = sd_check_events,
1815         .revalidate_disk        = sd_revalidate_disk,
1816         .unlock_native_capacity = sd_unlock_native_capacity,
1817         .report_zones           = sd_zbc_report_zones,
1818         .pr_ops                 = &sd_pr_ops,
1819 };
1820
1821 /**
1822  *      sd_eh_reset - reset error handling callback
1823  *      @scmd:          sd-issued command that has failed
1824  *
1825  *      This function is called by the SCSI midlayer before starting
1826  *      SCSI EH. When counting medium access failures we have to be
1827  *      careful to register it only only once per device and SCSI EH run;
1828  *      there might be several timed out commands which will cause the
1829  *      'max_medium_access_timeouts' counter to trigger after the first
1830  *      SCSI EH run already and set the device to offline.
1831  *      So this function resets the internal counter before starting SCSI EH.
1832  **/
1833 static void sd_eh_reset(struct scsi_cmnd *scmd)
1834 {
1835         struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1836
1837         /* New SCSI EH run, reset gate variable */
1838         sdkp->ignore_medium_access_errors = false;
1839 }
1840
1841 /**
1842  *      sd_eh_action - error handling callback
1843  *      @scmd:          sd-issued command that has failed
1844  *      @eh_disp:       The recovery disposition suggested by the midlayer
1845  *
1846  *      This function is called by the SCSI midlayer upon completion of an
1847  *      error test command (currently TEST UNIT READY). The result of sending
1848  *      the eh command is passed in eh_disp.  We're looking for devices that
1849  *      fail medium access commands but are OK with non access commands like
1850  *      test unit ready (so wrongly see the device as having a successful
1851  *      recovery)
1852  **/
1853 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1854 {
1855         struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1856         struct scsi_device *sdev = scmd->device;
1857
1858         if (!scsi_device_online(sdev) ||
1859             !scsi_medium_access_command(scmd) ||
1860             host_byte(scmd->result) != DID_TIME_OUT ||
1861             eh_disp != SUCCESS)
1862                 return eh_disp;
1863
1864         /*
1865          * The device has timed out executing a medium access command.
1866          * However, the TEST UNIT READY command sent during error
1867          * handling completed successfully. Either the device is in the
1868          * process of recovering or has it suffered an internal failure
1869          * that prevents access to the storage medium.
1870          */
1871         if (!sdkp->ignore_medium_access_errors) {
1872                 sdkp->medium_access_timed_out++;
1873                 sdkp->ignore_medium_access_errors = true;
1874         }
1875
1876         /*
1877          * If the device keeps failing read/write commands but TEST UNIT
1878          * READY always completes successfully we assume that medium
1879          * access is no longer possible and take the device offline.
1880          */
1881         if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1882                 scmd_printk(KERN_ERR, scmd,
1883                             "Medium access timeout failure. Offlining disk!\n");
1884                 mutex_lock(&sdev->state_mutex);
1885                 scsi_device_set_state(sdev, SDEV_OFFLINE);
1886                 mutex_unlock(&sdev->state_mutex);
1887
1888                 return SUCCESS;
1889         }
1890
1891         return eh_disp;
1892 }
1893
1894 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1895 {
1896         struct request *req = scmd->request;
1897         struct scsi_device *sdev = scmd->device;
1898         unsigned int transferred, good_bytes;
1899         u64 start_lba, end_lba, bad_lba;
1900
1901         /*
1902          * Some commands have a payload smaller than the device logical
1903          * block size (e.g. INQUIRY on a 4K disk).
1904          */
1905         if (scsi_bufflen(scmd) <= sdev->sector_size)
1906                 return 0;
1907
1908         /* Check if we have a 'bad_lba' information */
1909         if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1910                                      SCSI_SENSE_BUFFERSIZE,
1911                                      &bad_lba))
1912                 return 0;
1913
1914         /*
1915          * If the bad lba was reported incorrectly, we have no idea where
1916          * the error is.
1917          */
1918         start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
1919         end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
1920         if (bad_lba < start_lba || bad_lba >= end_lba)
1921                 return 0;
1922
1923         /*
1924          * resid is optional but mostly filled in.  When it's unused,
1925          * its value is zero, so we assume the whole buffer transferred
1926          */
1927         transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1928
1929         /* This computation should always be done in terms of the
1930          * resolution of the device's medium.
1931          */
1932         good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
1933
1934         return min(good_bytes, transferred);
1935 }
1936
1937 /**
1938  *      sd_done - bottom half handler: called when the lower level
1939  *      driver has completed (successfully or otherwise) a scsi command.
1940  *      @SCpnt: mid-level's per command structure.
1941  *
1942  *      Note: potentially run from within an ISR. Must not block.
1943  **/
1944 static int sd_done(struct scsi_cmnd *SCpnt)
1945 {
1946         int result = SCpnt->result;
1947         unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1948         unsigned int sector_size = SCpnt->device->sector_size;
1949         unsigned int resid;
1950         struct scsi_sense_hdr sshdr;
1951         struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk);
1952         struct request *req = SCpnt->request;
1953         int sense_valid = 0;
1954         int sense_deferred = 0;
1955
1956         switch (req_op(req)) {
1957         case REQ_OP_DISCARD:
1958         case REQ_OP_WRITE_ZEROES:
1959         case REQ_OP_WRITE_SAME:
1960         case REQ_OP_ZONE_RESET:
1961         case REQ_OP_ZONE_RESET_ALL:
1962                 if (!result) {
1963                         good_bytes = blk_rq_bytes(req);
1964                         scsi_set_resid(SCpnt, 0);
1965                 } else {
1966                         good_bytes = 0;
1967                         scsi_set_resid(SCpnt, blk_rq_bytes(req));
1968                 }
1969                 break;
1970         default:
1971                 /*
1972                  * In case of bogus fw or device, we could end up having
1973                  * an unaligned partial completion. Check this here and force
1974                  * alignment.
1975                  */
1976                 resid = scsi_get_resid(SCpnt);
1977                 if (resid & (sector_size - 1)) {
1978                         sd_printk(KERN_INFO, sdkp,
1979                                 "Unaligned partial completion (resid=%u, sector_sz=%u)\n",
1980                                 resid, sector_size);
1981                         scsi_print_command(SCpnt);
1982                         resid = min(scsi_bufflen(SCpnt),
1983                                     round_up(resid, sector_size));
1984                         scsi_set_resid(SCpnt, resid);
1985                 }
1986         }
1987
1988         if (result) {
1989                 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
1990                 if (sense_valid)
1991                         sense_deferred = scsi_sense_is_deferred(&sshdr);
1992         }
1993         sdkp->medium_access_timed_out = 0;
1994
1995         if (driver_byte(result) != DRIVER_SENSE &&
1996             (!sense_valid || sense_deferred))
1997                 goto out;
1998
1999         switch (sshdr.sense_key) {
2000         case HARDWARE_ERROR:
2001         case MEDIUM_ERROR:
2002                 good_bytes = sd_completed_bytes(SCpnt);
2003                 break;
2004         case RECOVERED_ERROR:
2005                 good_bytes = scsi_bufflen(SCpnt);
2006                 break;
2007         case NO_SENSE:
2008                 /* This indicates a false check condition, so ignore it.  An
2009                  * unknown amount of data was transferred so treat it as an
2010                  * error.
2011                  */
2012                 SCpnt->result = 0;
2013                 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2014                 break;
2015         case ABORTED_COMMAND:
2016                 if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
2017                         good_bytes = sd_completed_bytes(SCpnt);
2018                 break;
2019         case ILLEGAL_REQUEST:
2020                 switch (sshdr.asc) {
2021                 case 0x10:      /* DIX: Host detected corruption */
2022                         good_bytes = sd_completed_bytes(SCpnt);
2023                         break;
2024                 case 0x20:      /* INVALID COMMAND OPCODE */
2025                 case 0x24:      /* INVALID FIELD IN CDB */
2026                         switch (SCpnt->cmnd[0]) {
2027                         case UNMAP:
2028                                 sd_config_discard(sdkp, SD_LBP_DISABLE);
2029                                 break;
2030                         case WRITE_SAME_16:
2031                         case WRITE_SAME:
2032                                 if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2033                                         sd_config_discard(sdkp, SD_LBP_DISABLE);
2034                                 } else {
2035                                         sdkp->device->no_write_same = 1;
2036                                         sd_config_write_same(sdkp);
2037                                         req->rq_flags |= RQF_QUIET;
2038                                 }
2039                                 break;
2040                         }
2041                 }
2042                 break;
2043         default:
2044                 break;
2045         }
2046
2047  out:
2048         if (sd_is_zoned(sdkp))
2049                 sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2050
2051         SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2052                                            "sd_done: completed %d of %d bytes\n",
2053                                            good_bytes, scsi_bufflen(SCpnt)));
2054
2055         return good_bytes;
2056 }
2057
2058 /*
2059  * spinup disk - called only in sd_revalidate_disk()
2060  */
2061 static void
2062 sd_spinup_disk(struct scsi_disk *sdkp)
2063 {
2064         unsigned char cmd[10];
2065         unsigned long spintime_expire = 0;
2066         int retries, spintime;
2067         unsigned int the_result;
2068         struct scsi_sense_hdr sshdr;
2069         int sense_valid = 0;
2070
2071         spintime = 0;
2072
2073         /* Spin up drives, as required.  Only do this at boot time */
2074         /* Spinup needs to be done for module loads too. */
2075         do {
2076                 retries = 0;
2077
2078                 do {
2079                         cmd[0] = TEST_UNIT_READY;
2080                         memset((void *) &cmd[1], 0, 9);
2081
2082                         the_result = scsi_execute_req(sdkp->device, cmd,
2083                                                       DMA_NONE, NULL, 0,
2084                                                       &sshdr, SD_TIMEOUT,
2085                                                       SD_MAX_RETRIES, NULL);
2086
2087                         /*
2088                          * If the drive has indicated to us that it
2089                          * doesn't have any media in it, don't bother
2090                          * with any more polling.
2091                          */
2092                         if (media_not_present(sdkp, &sshdr))
2093                                 return;
2094
2095                         if (the_result)
2096                                 sense_valid = scsi_sense_valid(&sshdr);
2097                         retries++;
2098                 } while (retries < 3 && 
2099                          (!scsi_status_is_good(the_result) ||
2100                           ((driver_byte(the_result) == DRIVER_SENSE) &&
2101                           sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2102
2103                 if (driver_byte(the_result) != DRIVER_SENSE) {
2104                         /* no sense, TUR either succeeded or failed
2105                          * with a status error */
2106                         if(!spintime && !scsi_status_is_good(the_result)) {
2107                                 sd_print_result(sdkp, "Test Unit Ready failed",
2108                                                 the_result);
2109                         }
2110                         break;
2111                 }
2112
2113                 /*
2114                  * The device does not want the automatic start to be issued.
2115                  */
2116                 if (sdkp->device->no_start_on_add)
2117                         break;
2118
2119                 if (sense_valid && sshdr.sense_key == NOT_READY) {
2120                         if (sshdr.asc == 4 && sshdr.ascq == 3)
2121                                 break;  /* manual intervention required */
2122                         if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2123                                 break;  /* standby */
2124                         if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2125                                 break;  /* unavailable */
2126                         if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2127                                 break;  /* sanitize in progress */
2128                         /*
2129                          * Issue command to spin up drive when not ready
2130                          */
2131                         if (!spintime) {
2132                                 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2133                                 cmd[0] = START_STOP;
2134                                 cmd[1] = 1;     /* Return immediately */
2135                                 memset((void *) &cmd[2], 0, 8);
2136                                 cmd[4] = 1;     /* Start spin cycle */
2137                                 if (sdkp->device->start_stop_pwr_cond)
2138                                         cmd[4] |= 1 << 4;
2139                                 scsi_execute_req(sdkp->device, cmd, DMA_NONE,
2140                                                  NULL, 0, &sshdr,
2141                                                  SD_TIMEOUT, SD_MAX_RETRIES,
2142                                                  NULL);
2143                                 spintime_expire = jiffies + 100 * HZ;
2144                                 spintime = 1;
2145                         }
2146                         /* Wait 1 second for next try */
2147                         msleep(1000);
2148                         printk(KERN_CONT ".");
2149
2150                 /*
2151                  * Wait for USB flash devices with slow firmware.
2152                  * Yes, this sense key/ASC combination shouldn't
2153                  * occur here.  It's characteristic of these devices.
2154                  */
2155                 } else if (sense_valid &&
2156                                 sshdr.sense_key == UNIT_ATTENTION &&
2157                                 sshdr.asc == 0x28) {
2158                         if (!spintime) {
2159                                 spintime_expire = jiffies + 5 * HZ;
2160                                 spintime = 1;
2161                         }
2162                         /* Wait 1 second for next try */
2163                         msleep(1000);
2164                 } else {
2165                         /* we don't understand the sense code, so it's
2166                          * probably pointless to loop */
2167                         if(!spintime) {
2168                                 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2169                                 sd_print_sense_hdr(sdkp, &sshdr);
2170                         }
2171                         break;
2172                 }
2173                                 
2174         } while (spintime && time_before_eq(jiffies, spintime_expire));
2175
2176         if (spintime) {
2177                 if (scsi_status_is_good(the_result))
2178                         printk(KERN_CONT "ready\n");
2179                 else
2180                         printk(KERN_CONT "not responding...\n");
2181         }
2182 }
2183
2184 /*
2185  * Determine whether disk supports Data Integrity Field.
2186  */
2187 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2188 {
2189         struct scsi_device *sdp = sdkp->device;
2190         u8 type;
2191         int ret = 0;
2192
2193         if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0)
2194                 return ret;
2195
2196         type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2197
2198         if (type > T10_PI_TYPE3_PROTECTION)
2199                 ret = -ENODEV;
2200         else if (scsi_host_dif_capable(sdp->host, type))
2201                 ret = 1;
2202
2203         if (sdkp->first_scan || type != sdkp->protection_type)
2204                 switch (ret) {
2205                 case -ENODEV:
2206                         sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2207                                   " protection type %u. Disabling disk!\n",
2208                                   type);
2209                         break;
2210                 case 1:
2211                         sd_printk(KERN_NOTICE, sdkp,
2212                                   "Enabling DIF Type %u protection\n", type);
2213                         break;
2214                 case 0:
2215                         sd_printk(KERN_NOTICE, sdkp,
2216                                   "Disabling DIF Type %u protection\n", type);
2217                         break;
2218                 }
2219
2220         sdkp->protection_type = type;
2221
2222         return ret;
2223 }
2224
2225 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2226                         struct scsi_sense_hdr *sshdr, int sense_valid,
2227                         int the_result)
2228 {
2229         if (driver_byte(the_result) == DRIVER_SENSE)
2230                 sd_print_sense_hdr(sdkp, sshdr);
2231         else
2232                 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2233
2234         /*
2235          * Set dirty bit for removable devices if not ready -
2236          * sometimes drives will not report this properly.
2237          */
2238         if (sdp->removable &&
2239             sense_valid && sshdr->sense_key == NOT_READY)
2240                 set_media_not_present(sdkp);
2241
2242         /*
2243          * We used to set media_present to 0 here to indicate no media
2244          * in the drive, but some drives fail read capacity even with
2245          * media present, so we can't do that.
2246          */
2247         sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2248 }
2249
2250 #define RC16_LEN 32
2251 #if RC16_LEN > SD_BUF_SIZE
2252 #error RC16_LEN must not be more than SD_BUF_SIZE
2253 #endif
2254
2255 #define READ_CAPACITY_RETRIES_ON_RESET  10
2256
2257 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2258                                                 unsigned char *buffer)
2259 {
2260         unsigned char cmd[16];
2261         struct scsi_sense_hdr sshdr;
2262         int sense_valid = 0;
2263         int the_result;
2264         int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2265         unsigned int alignment;
2266         unsigned long long lba;
2267         unsigned sector_size;
2268
2269         if (sdp->no_read_capacity_16)
2270                 return -EINVAL;
2271
2272         do {
2273                 memset(cmd, 0, 16);
2274                 cmd[0] = SERVICE_ACTION_IN_16;
2275                 cmd[1] = SAI_READ_CAPACITY_16;
2276                 cmd[13] = RC16_LEN;
2277                 memset(buffer, 0, RC16_LEN);
2278
2279                 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2280                                         buffer, RC16_LEN, &sshdr,
2281                                         SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2282
2283                 if (media_not_present(sdkp, &sshdr))
2284                         return -ENODEV;
2285
2286                 if (the_result) {
2287                         sense_valid = scsi_sense_valid(&sshdr);
2288                         if (sense_valid &&
2289                             sshdr.sense_key == ILLEGAL_REQUEST &&
2290                             (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2291                             sshdr.ascq == 0x00)
2292                                 /* Invalid Command Operation Code or
2293                                  * Invalid Field in CDB, just retry
2294                                  * silently with RC10 */
2295                                 return -EINVAL;
2296                         if (sense_valid &&
2297                             sshdr.sense_key == UNIT_ATTENTION &&
2298                             sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2299                                 /* Device reset might occur several times,
2300                                  * give it one more chance */
2301                                 if (--reset_retries > 0)
2302                                         continue;
2303                 }
2304                 retries--;
2305
2306         } while (the_result && retries);
2307
2308         if (the_result) {
2309                 sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2310                 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2311                 return -EINVAL;
2312         }
2313
2314         sector_size = get_unaligned_be32(&buffer[8]);
2315         lba = get_unaligned_be64(&buffer[0]);
2316
2317         if (sd_read_protection_type(sdkp, buffer) < 0) {
2318                 sdkp->capacity = 0;
2319                 return -ENODEV;
2320         }
2321
2322         /* Logical blocks per physical block exponent */
2323         sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2324
2325         /* RC basis */
2326         sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2327
2328         /* Lowest aligned logical block */
2329         alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2330         blk_queue_alignment_offset(sdp->request_queue, alignment);
2331         if (alignment && sdkp->first_scan)
2332                 sd_printk(KERN_NOTICE, sdkp,
2333                           "physical block alignment offset: %u\n", alignment);
2334
2335         if (buffer[14] & 0x80) { /* LBPME */
2336                 sdkp->lbpme = 1;
2337
2338                 if (buffer[14] & 0x40) /* LBPRZ */
2339                         sdkp->lbprz = 1;
2340
2341                 sd_config_discard(sdkp, SD_LBP_WS16);
2342         }
2343
2344         sdkp->capacity = lba + 1;
2345         return sector_size;
2346 }
2347
2348 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2349                                                 unsigned char *buffer)
2350 {
2351         unsigned char cmd[16];
2352         struct scsi_sense_hdr sshdr;
2353         int sense_valid = 0;
2354         int the_result;
2355         int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2356         sector_t lba;
2357         unsigned sector_size;
2358
2359         do {
2360                 cmd[0] = READ_CAPACITY;
2361                 memset(&cmd[1], 0, 9);
2362                 memset(buffer, 0, 8);
2363
2364                 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2365                                         buffer, 8, &sshdr,
2366                                         SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2367
2368                 if (media_not_present(sdkp, &sshdr))
2369                         return -ENODEV;
2370
2371                 if (the_result) {
2372                         sense_valid = scsi_sense_valid(&sshdr);
2373                         if (sense_valid &&
2374                             sshdr.sense_key == UNIT_ATTENTION &&
2375                             sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2376                                 /* Device reset might occur several times,
2377                                  * give it one more chance */
2378                                 if (--reset_retries > 0)
2379                                         continue;
2380                 }
2381                 retries--;
2382
2383         } while (the_result && retries);
2384
2385         if (the_result) {
2386                 sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2387                 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2388                 return -EINVAL;
2389         }
2390
2391         sector_size = get_unaligned_be32(&buffer[4]);
2392         lba = get_unaligned_be32(&buffer[0]);
2393
2394         if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2395                 /* Some buggy (usb cardreader) devices return an lba of
2396                    0xffffffff when the want to report a size of 0 (with
2397                    which they really mean no media is present) */
2398                 sdkp->capacity = 0;
2399                 sdkp->physical_block_size = sector_size;
2400                 return sector_size;
2401         }
2402
2403         sdkp->capacity = lba + 1;
2404         sdkp->physical_block_size = sector_size;
2405         return sector_size;
2406 }
2407
2408 static int sd_try_rc16_first(struct scsi_device *sdp)
2409 {
2410         if (sdp->host->max_cmd_len < 16)
2411                 return 0;
2412         if (sdp->try_rc_10_first)
2413                 return 0;
2414         if (sdp->scsi_level > SCSI_SPC_2)
2415                 return 1;
2416         if (scsi_device_protection(sdp))
2417                 return 1;
2418         return 0;
2419 }
2420
2421 /*
2422  * read disk capacity
2423  */
2424 static void
2425 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2426 {
2427         int sector_size;
2428         struct scsi_device *sdp = sdkp->device;
2429
2430         if (sd_try_rc16_first(sdp)) {
2431                 sector_size = read_capacity_16(sdkp, sdp, buffer);
2432                 if (sector_size == -EOVERFLOW)
2433                         goto got_data;
2434                 if (sector_size == -ENODEV)
2435                         return;
2436                 if (sector_size < 0)
2437                         sector_size = read_capacity_10(sdkp, sdp, buffer);
2438                 if (sector_size < 0)
2439                         return;
2440         } else {
2441                 sector_size = read_capacity_10(sdkp, sdp, buffer);
2442                 if (sector_size == -EOVERFLOW)
2443                         goto got_data;
2444                 if (sector_size < 0)
2445                         return;
2446                 if ((sizeof(sdkp->capacity) > 4) &&
2447                     (sdkp->capacity > 0xffffffffULL)) {
2448                         int old_sector_size = sector_size;
2449                         sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2450                                         "Trying to use READ CAPACITY(16).\n");
2451                         sector_size = read_capacity_16(sdkp, sdp, buffer);
2452                         if (sector_size < 0) {
2453                                 sd_printk(KERN_NOTICE, sdkp,
2454                                         "Using 0xffffffff as device size\n");
2455                                 sdkp->capacity = 1 + (sector_t) 0xffffffff;
2456                                 sector_size = old_sector_size;
2457                                 goto got_data;
2458                         }
2459                         /* Remember that READ CAPACITY(16) succeeded */
2460                         sdp->try_rc_10_first = 0;
2461                 }
2462         }
2463
2464         /* Some devices are known to return the total number of blocks,
2465          * not the highest block number.  Some devices have versions
2466          * which do this and others which do not.  Some devices we might
2467          * suspect of doing this but we don't know for certain.
2468          *
2469          * If we know the reported capacity is wrong, decrement it.  If
2470          * we can only guess, then assume the number of blocks is even
2471          * (usually true but not always) and err on the side of lowering
2472          * the capacity.
2473          */
2474         if (sdp->fix_capacity ||
2475             (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2476                 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2477                                 "from its reported value: %llu\n",
2478                                 (unsigned long long) sdkp->capacity);
2479                 --sdkp->capacity;
2480         }
2481
2482 got_data:
2483         if (sector_size == 0) {
2484                 sector_size = 512;
2485                 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2486                           "assuming 512.\n");
2487         }
2488
2489         if (sector_size != 512 &&
2490             sector_size != 1024 &&
2491             sector_size != 2048 &&
2492             sector_size != 4096) {
2493                 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2494                           sector_size);
2495                 /*
2496                  * The user might want to re-format the drive with
2497                  * a supported sectorsize.  Once this happens, it
2498                  * would be relatively trivial to set the thing up.
2499                  * For this reason, we leave the thing in the table.
2500                  */
2501                 sdkp->capacity = 0;
2502                 /*
2503                  * set a bogus sector size so the normal read/write
2504                  * logic in the block layer will eventually refuse any
2505                  * request on this device without tripping over power
2506                  * of two sector size assumptions
2507                  */
2508                 sector_size = 512;
2509         }
2510         blk_queue_logical_block_size(sdp->request_queue, sector_size);
2511         blk_queue_physical_block_size(sdp->request_queue,
2512                                       sdkp->physical_block_size);
2513         sdkp->device->sector_size = sector_size;
2514
2515         if (sdkp->capacity > 0xffffffff)
2516                 sdp->use_16_for_rw = 1;
2517
2518 }
2519
2520 /*
2521  * Print disk capacity
2522  */
2523 static void
2524 sd_print_capacity(struct scsi_disk *sdkp,
2525                   sector_t old_capacity)
2526 {
2527         int sector_size = sdkp->device->sector_size;
2528         char cap_str_2[10], cap_str_10[10];
2529
2530         if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2531                 return;
2532
2533         string_get_size(sdkp->capacity, sector_size,
2534                         STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2535         string_get_size(sdkp->capacity, sector_size,
2536                         STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2537
2538         sd_printk(KERN_NOTICE, sdkp,
2539                   "%llu %d-byte logical blocks: (%s/%s)\n",
2540                   (unsigned long long)sdkp->capacity,
2541                   sector_size, cap_str_10, cap_str_2);
2542
2543         if (sdkp->physical_block_size != sector_size)
2544                 sd_printk(KERN_NOTICE, sdkp,
2545                           "%u-byte physical blocks\n",
2546                           sdkp->physical_block_size);
2547
2548         sd_zbc_print_zones(sdkp);
2549 }
2550
2551 /* called with buffer of length 512 */
2552 static inline int
2553 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage,
2554                  unsigned char *buffer, int len, struct scsi_mode_data *data,
2555                  struct scsi_sense_hdr *sshdr)
2556 {
2557         return scsi_mode_sense(sdp, dbd, modepage, buffer, len,
2558                                SD_TIMEOUT, SD_MAX_RETRIES, data,
2559                                sshdr);
2560 }
2561
2562 /*
2563  * read write protect setting, if possible - called only in sd_revalidate_disk()
2564  * called with buffer of length SD_BUF_SIZE
2565  */
2566 static void
2567 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2568 {
2569         int res;
2570         struct scsi_device *sdp = sdkp->device;
2571         struct scsi_mode_data data;
2572         int old_wp = sdkp->write_prot;
2573
2574         set_disk_ro(sdkp->disk, 0);
2575         if (sdp->skip_ms_page_3f) {
2576                 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2577                 return;
2578         }
2579
2580         if (sdp->use_192_bytes_for_3f) {
2581                 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL);
2582         } else {
2583                 /*
2584                  * First attempt: ask for all pages (0x3F), but only 4 bytes.
2585                  * We have to start carefully: some devices hang if we ask
2586                  * for more than is available.
2587                  */
2588                 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL);
2589
2590                 /*
2591                  * Second attempt: ask for page 0 When only page 0 is
2592                  * implemented, a request for page 3F may return Sense Key
2593                  * 5: Illegal Request, Sense Code 24: Invalid field in
2594                  * CDB.
2595                  */
2596                 if (!scsi_status_is_good(res))
2597                         res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL);
2598
2599                 /*
2600                  * Third attempt: ask 255 bytes, as we did earlier.
2601                  */
2602                 if (!scsi_status_is_good(res))
2603                         res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255,
2604                                                &data, NULL);
2605         }
2606
2607         if (!scsi_status_is_good(res)) {
2608                 sd_first_printk(KERN_WARNING, sdkp,
2609                           "Test WP failed, assume Write Enabled\n");
2610         } else {
2611                 sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2612                 set_disk_ro(sdkp->disk, sdkp->write_prot);
2613                 if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2614                         sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2615                                   sdkp->write_prot ? "on" : "off");
2616                         sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2617                 }
2618         }
2619 }
2620
2621 /*
2622  * sd_read_cache_type - called only from sd_revalidate_disk()
2623  * called with buffer of length SD_BUF_SIZE
2624  */
2625 static void
2626 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2627 {
2628         int len = 0, res;
2629         struct scsi_device *sdp = sdkp->device;
2630
2631         int dbd;
2632         int modepage;
2633         int first_len;
2634         struct scsi_mode_data data;
2635         struct scsi_sense_hdr sshdr;
2636         int old_wce = sdkp->WCE;
2637         int old_rcd = sdkp->RCD;
2638         int old_dpofua = sdkp->DPOFUA;
2639
2640
2641         if (sdkp->cache_override)
2642                 return;
2643
2644         first_len = 4;
2645         if (sdp->skip_ms_page_8) {
2646                 if (sdp->type == TYPE_RBC)
2647                         goto defaults;
2648                 else {
2649                         if (sdp->skip_ms_page_3f)
2650                                 goto defaults;
2651                         modepage = 0x3F;
2652                         if (sdp->use_192_bytes_for_3f)
2653                                 first_len = 192;
2654                         dbd = 0;
2655                 }
2656         } else if (sdp->type == TYPE_RBC) {
2657                 modepage = 6;
2658                 dbd = 8;
2659         } else {
2660                 modepage = 8;
2661                 dbd = 0;
2662         }
2663
2664         /* cautiously ask */
2665         res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len,
2666                         &data, &sshdr);
2667
2668         if (!scsi_status_is_good(res))
2669                 goto bad_sense;
2670
2671         if (!data.header_length) {
2672                 modepage = 6;
2673                 first_len = 0;
2674                 sd_first_printk(KERN_ERR, sdkp,
2675                                 "Missing header in MODE_SENSE response\n");
2676         }
2677
2678         /* that went OK, now ask for the proper length */
2679         len = data.length;
2680
2681         /*
2682          * We're only interested in the first three bytes, actually.
2683          * But the data cache page is defined for the first 20.
2684          */
2685         if (len < 3)
2686                 goto bad_sense;
2687         else if (len > SD_BUF_SIZE) {
2688                 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2689                           "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2690                 len = SD_BUF_SIZE;
2691         }
2692         if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2693                 len = 192;
2694
2695         /* Get the data */
2696         if (len > first_len)
2697                 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len,
2698                                 &data, &sshdr);
2699
2700         if (scsi_status_is_good(res)) {
2701                 int offset = data.header_length + data.block_descriptor_length;
2702
2703                 while (offset < len) {
2704                         u8 page_code = buffer[offset] & 0x3F;
2705                         u8 spf       = buffer[offset] & 0x40;
2706
2707                         if (page_code == 8 || page_code == 6) {
2708                                 /* We're interested only in the first 3 bytes.
2709                                  */
2710                                 if (len - offset <= 2) {
2711                                         sd_first_printk(KERN_ERR, sdkp,
2712                                                 "Incomplete mode parameter "
2713                                                         "data\n");
2714                                         goto defaults;
2715                                 } else {
2716                                         modepage = page_code;
2717                                         goto Page_found;
2718                                 }
2719                         } else {
2720                                 /* Go to the next page */
2721                                 if (spf && len - offset > 3)
2722                                         offset += 4 + (buffer[offset+2] << 8) +
2723                                                 buffer[offset+3];
2724                                 else if (!spf && len - offset > 1)
2725                                         offset += 2 + buffer[offset+1];
2726                                 else {
2727                                         sd_first_printk(KERN_ERR, sdkp,
2728                                                         "Incomplete mode "
2729                                                         "parameter data\n");
2730                                         goto defaults;
2731                                 }
2732                         }
2733                 }
2734
2735                 sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
2736                 goto defaults;
2737
2738         Page_found:
2739                 if (modepage == 8) {
2740                         sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2741                         sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2742                 } else {
2743                         sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2744                         sdkp->RCD = 0;
2745                 }
2746
2747                 sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2748                 if (sdp->broken_fua) {
2749                         sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2750                         sdkp->DPOFUA = 0;
2751                 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2752                            !sdkp->device->use_16_for_rw) {
2753                         sd_first_printk(KERN_NOTICE, sdkp,
2754                                   "Uses READ/WRITE(6), disabling FUA\n");
2755                         sdkp->DPOFUA = 0;
2756                 }
2757
2758                 /* No cache flush allowed for write protected devices */
2759                 if (sdkp->WCE && sdkp->write_prot)
2760                         sdkp->WCE = 0;
2761
2762                 if (sdkp->first_scan || old_wce != sdkp->WCE ||
2763                     old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2764                         sd_printk(KERN_NOTICE, sdkp,
2765                                   "Write cache: %s, read cache: %s, %s\n",
2766                                   sdkp->WCE ? "enabled" : "disabled",
2767                                   sdkp->RCD ? "disabled" : "enabled",
2768                                   sdkp->DPOFUA ? "supports DPO and FUA"
2769                                   : "doesn't support DPO or FUA");
2770
2771                 return;
2772         }
2773
2774 bad_sense:
2775         if (scsi_sense_valid(&sshdr) &&
2776             sshdr.sense_key == ILLEGAL_REQUEST &&
2777             sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2778                 /* Invalid field in CDB */
2779                 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2780         else
2781                 sd_first_printk(KERN_ERR, sdkp,
2782                                 "Asking for cache data failed\n");
2783
2784 defaults:
2785         if (sdp->wce_default_on) {
2786                 sd_first_printk(KERN_NOTICE, sdkp,
2787                                 "Assuming drive cache: write back\n");
2788                 sdkp->WCE = 1;
2789         } else {
2790                 sd_first_printk(KERN_ERR, sdkp,
2791                                 "Assuming drive cache: write through\n");
2792                 sdkp->WCE = 0;
2793         }
2794         sdkp->RCD = 0;
2795         sdkp->DPOFUA = 0;
2796 }
2797
2798 /*
2799  * The ATO bit indicates whether the DIF application tag is available
2800  * for use by the operating system.
2801  */
2802 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2803 {
2804         int res, offset;
2805         struct scsi_device *sdp = sdkp->device;
2806         struct scsi_mode_data data;
2807         struct scsi_sense_hdr sshdr;
2808
2809         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2810                 return;
2811
2812         if (sdkp->protection_type == 0)
2813                 return;
2814
2815         res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2816                               SD_MAX_RETRIES, &data, &sshdr);
2817
2818         if (!scsi_status_is_good(res) || !data.header_length ||
2819             data.length < 6) {
2820                 sd_first_printk(KERN_WARNING, sdkp,
2821                           "getting Control mode page failed, assume no ATO\n");
2822
2823                 if (scsi_sense_valid(&sshdr))
2824                         sd_print_sense_hdr(sdkp, &sshdr);
2825
2826                 return;
2827         }
2828
2829         offset = data.header_length + data.block_descriptor_length;
2830
2831         if ((buffer[offset] & 0x3f) != 0x0a) {
2832                 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2833                 return;
2834         }
2835
2836         if ((buffer[offset + 5] & 0x80) == 0)
2837                 return;
2838
2839         sdkp->ATO = 1;
2840
2841         return;
2842 }
2843
2844 /**
2845  * sd_read_block_limits - Query disk device for preferred I/O sizes.
2846  * @sdkp: disk to query
2847  */
2848 static void sd_read_block_limits(struct scsi_disk *sdkp)
2849 {
2850         unsigned int sector_sz = sdkp->device->sector_size;
2851         const int vpd_len = 64;
2852         unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2853
2854         if (!buffer ||
2855             /* Block Limits VPD */
2856             scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2857                 goto out;
2858
2859         blk_queue_io_min(sdkp->disk->queue,
2860                          get_unaligned_be16(&buffer[6]) * sector_sz);
2861
2862         sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]);
2863         sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]);
2864
2865         if (buffer[3] == 0x3c) {
2866                 unsigned int lba_count, desc_count;
2867
2868                 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2869
2870                 if (!sdkp->lbpme)
2871                         goto out;
2872
2873                 lba_count = get_unaligned_be32(&buffer[20]);
2874                 desc_count = get_unaligned_be32(&buffer[24]);
2875
2876                 if (lba_count && desc_count)
2877                         sdkp->max_unmap_blocks = lba_count;
2878
2879                 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2880
2881                 if (buffer[32] & 0x80)
2882                         sdkp->unmap_alignment =
2883                                 get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2884
2885                 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2886
2887                         if (sdkp->max_unmap_blocks)
2888                                 sd_config_discard(sdkp, SD_LBP_UNMAP);
2889                         else
2890                                 sd_config_discard(sdkp, SD_LBP_WS16);
2891
2892                 } else {        /* LBP VPD page tells us what to use */
2893                         if (sdkp->lbpu && sdkp->max_unmap_blocks)
2894                                 sd_config_discard(sdkp, SD_LBP_UNMAP);
2895                         else if (sdkp->lbpws)
2896                                 sd_config_discard(sdkp, SD_LBP_WS16);
2897                         else if (sdkp->lbpws10)
2898                                 sd_config_discard(sdkp, SD_LBP_WS10);
2899                         else
2900                                 sd_config_discard(sdkp, SD_LBP_DISABLE);
2901                 }
2902         }
2903
2904  out:
2905         kfree(buffer);
2906 }
2907
2908 /**
2909  * sd_read_block_characteristics - Query block dev. characteristics
2910  * @sdkp: disk to query
2911  */
2912 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2913 {
2914         struct request_queue *q = sdkp->disk->queue;
2915         unsigned char *buffer;
2916         u16 rot;
2917         const int vpd_len = 64;
2918
2919         buffer = kmalloc(vpd_len, GFP_KERNEL);
2920
2921         if (!buffer ||
2922             /* Block Device Characteristics VPD */
2923             scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
2924                 goto out;
2925
2926         rot = get_unaligned_be16(&buffer[4]);
2927
2928         if (rot == 1) {
2929                 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2930                 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2931         }
2932
2933         if (sdkp->device->type == TYPE_ZBC) {
2934                 /* Host-managed */
2935                 q->limits.zoned = BLK_ZONED_HM;
2936         } else {
2937                 sdkp->zoned = (buffer[8] >> 4) & 3;
2938                 if (sdkp->zoned == 1)
2939                         /* Host-aware */
2940                         q->limits.zoned = BLK_ZONED_HA;
2941                 else
2942                         /*
2943                          * Treat drive-managed devices as
2944                          * regular block devices.
2945                          */
2946                         q->limits.zoned = BLK_ZONED_NONE;
2947         }
2948         if (blk_queue_is_zoned(q) && sdkp->first_scan)
2949                 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
2950                       q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
2951
2952  out:
2953         kfree(buffer);
2954 }
2955
2956 /**
2957  * sd_read_block_provisioning - Query provisioning VPD page
2958  * @sdkp: disk to query
2959  */
2960 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
2961 {
2962         unsigned char *buffer;
2963         const int vpd_len = 8;
2964
2965         if (sdkp->lbpme == 0)
2966                 return;
2967
2968         buffer = kmalloc(vpd_len, GFP_KERNEL);
2969
2970         if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
2971                 goto out;
2972
2973         sdkp->lbpvpd    = 1;
2974         sdkp->lbpu      = (buffer[5] >> 7) & 1; /* UNMAP */
2975         sdkp->lbpws     = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */
2976         sdkp->lbpws10   = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */
2977
2978  out:
2979         kfree(buffer);
2980 }
2981
2982 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
2983 {
2984         struct scsi_device *sdev = sdkp->device;
2985
2986         if (sdev->host->no_write_same) {
2987                 sdev->no_write_same = 1;
2988
2989                 return;
2990         }
2991
2992         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
2993                 /* too large values might cause issues with arcmsr */
2994                 int vpd_buf_len = 64;
2995
2996                 sdev->no_report_opcodes = 1;
2997
2998                 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION
2999                  * CODES is unsupported and the device has an ATA
3000                  * Information VPD page (SAT).
3001                  */
3002                 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
3003                         sdev->no_write_same = 1;
3004         }
3005
3006         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
3007                 sdkp->ws16 = 1;
3008
3009         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
3010                 sdkp->ws10 = 1;
3011 }
3012
3013 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3014 {
3015         struct scsi_device *sdev = sdkp->device;
3016
3017         if (!sdev->security_supported)
3018                 return;
3019
3020         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3021                         SECURITY_PROTOCOL_IN) == 1 &&
3022             scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3023                         SECURITY_PROTOCOL_OUT) == 1)
3024                 sdkp->security = 1;
3025 }
3026
3027 /*
3028  * Determine the device's preferred I/O size for reads and writes
3029  * unless the reported value is unreasonably small, large, not a
3030  * multiple of the physical block size, or simply garbage.
3031  */
3032 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3033                                       unsigned int dev_max)
3034 {
3035         struct scsi_device *sdp = sdkp->device;
3036         unsigned int opt_xfer_bytes =
3037                 logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3038
3039         if (sdkp->opt_xfer_blocks == 0)
3040                 return false;
3041
3042         if (sdkp->opt_xfer_blocks > dev_max) {
3043                 sd_first_printk(KERN_WARNING, sdkp,
3044                                 "Optimal transfer size %u logical blocks " \
3045                                 "> dev_max (%u logical blocks)\n",
3046                                 sdkp->opt_xfer_blocks, dev_max);
3047                 return false;
3048         }
3049
3050         if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3051                 sd_first_printk(KERN_WARNING, sdkp,
3052                                 "Optimal transfer size %u logical blocks " \
3053                                 "> sd driver limit (%u logical blocks)\n",
3054                                 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3055                 return false;
3056         }
3057
3058         if (opt_xfer_bytes < PAGE_SIZE) {
3059                 sd_first_printk(KERN_WARNING, sdkp,
3060                                 "Optimal transfer size %u bytes < " \
3061                                 "PAGE_SIZE (%u bytes)\n",
3062                                 opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3063                 return false;
3064         }
3065
3066         if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3067                 sd_first_printk(KERN_WARNING, sdkp,
3068                                 "Optimal transfer size %u bytes not a " \
3069                                 "multiple of physical block size (%u bytes)\n",
3070                                 opt_xfer_bytes, sdkp->physical_block_size);
3071                 return false;
3072         }
3073
3074         sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3075                         opt_xfer_bytes);
3076         return true;
3077 }
3078
3079 /**
3080  *      sd_revalidate_disk - called the first time a new disk is seen,
3081  *      performs disk spin up, read_capacity, etc.
3082  *      @disk: struct gendisk we care about
3083  **/
3084 static int sd_revalidate_disk(struct gendisk *disk)
3085 {
3086         struct scsi_disk *sdkp = scsi_disk(disk);
3087         struct scsi_device *sdp = sdkp->device;
3088         struct request_queue *q = sdkp->disk->queue;
3089         sector_t old_capacity = sdkp->capacity;
3090         unsigned char *buffer;
3091         unsigned int dev_max, rw_max;
3092
3093         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3094                                       "sd_revalidate_disk\n"));
3095
3096         /*
3097          * If the device is offline, don't try and read capacity or any
3098          * of the other niceties.
3099          */
3100         if (!scsi_device_online(sdp))
3101                 goto out;
3102
3103         buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3104         if (!buffer) {
3105                 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3106                           "allocation failure.\n");
3107                 goto out;
3108         }
3109
3110         sd_spinup_disk(sdkp);
3111
3112         /*
3113          * Without media there is no reason to ask; moreover, some devices
3114          * react badly if we do.
3115          */
3116         if (sdkp->media_present) {
3117                 sd_read_capacity(sdkp, buffer);
3118
3119                 /*
3120                  * set the default to rotational.  All non-rotational devices
3121                  * support the block characteristics VPD page, which will
3122                  * cause this to be updated correctly and any device which
3123                  * doesn't support it should be treated as rotational.
3124                  */
3125                 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3126                 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3127
3128                 if (scsi_device_supports_vpd(sdp)) {
3129                         sd_read_block_provisioning(sdkp);
3130                         sd_read_block_limits(sdkp);
3131                         sd_read_block_characteristics(sdkp);
3132                         sd_zbc_read_zones(sdkp, buffer);
3133                 }
3134
3135                 sd_print_capacity(sdkp, old_capacity);
3136
3137                 sd_read_write_protect_flag(sdkp, buffer);
3138                 sd_read_cache_type(sdkp, buffer);
3139                 sd_read_app_tag_own(sdkp, buffer);
3140                 sd_read_write_same(sdkp, buffer);
3141                 sd_read_security(sdkp, buffer);
3142         }
3143
3144         /*
3145          * We now have all cache related info, determine how we deal
3146          * with flush requests.
3147          */
3148         sd_set_flush_flag(sdkp);
3149
3150         /* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3151         dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3152
3153         /* Some devices report a maximum block count for READ/WRITE requests. */
3154         dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3155         q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3156
3157         if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3158                 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3159                 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3160         } else
3161                 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3162                                       (sector_t)BLK_DEF_MAX_SECTORS);
3163
3164         /* Do not exceed controller limit */
3165         rw_max = min(rw_max, queue_max_hw_sectors(q));
3166
3167         /*
3168          * Only update max_sectors if previously unset or if the current value
3169          * exceeds the capabilities of the hardware.
3170          */
3171         if (sdkp->first_scan ||
3172             q->limits.max_sectors > q->limits.max_dev_sectors ||
3173             q->limits.max_sectors > q->limits.max_hw_sectors)
3174                 q->limits.max_sectors = rw_max;
3175
3176         sdkp->first_scan = 0;
3177
3178         set_capacity(disk, logical_to_sectors(sdp, sdkp->capacity));
3179         sd_config_write_same(sdkp);
3180         kfree(buffer);
3181
3182  out:
3183         return 0;
3184 }
3185
3186 /**
3187  *      sd_unlock_native_capacity - unlock native capacity
3188  *      @disk: struct gendisk to set capacity for
3189  *
3190  *      Block layer calls this function if it detects that partitions
3191  *      on @disk reach beyond the end of the device.  If the SCSI host
3192  *      implements ->unlock_native_capacity() method, it's invoked to
3193  *      give it a chance to adjust the device capacity.
3194  *
3195  *      CONTEXT:
3196  *      Defined by block layer.  Might sleep.
3197  */
3198 static void sd_unlock_native_capacity(struct gendisk *disk)
3199 {
3200         struct scsi_device *sdev = scsi_disk(disk)->device;
3201
3202         if (sdev->host->hostt->unlock_native_capacity)
3203                 sdev->host->hostt->unlock_native_capacity(sdev);
3204 }
3205
3206 /**
3207  *      sd_format_disk_name - format disk name
3208  *      @prefix: name prefix - ie. "sd" for SCSI disks
3209  *      @index: index of the disk to format name for
3210  *      @buf: output buffer
3211  *      @buflen: length of the output buffer
3212  *
3213  *      SCSI disk names starts at sda.  The 26th device is sdz and the
3214  *      27th is sdaa.  The last one for two lettered suffix is sdzz
3215  *      which is followed by sdaaa.
3216  *
3217  *      This is basically 26 base counting with one extra 'nil' entry
3218  *      at the beginning from the second digit on and can be
3219  *      determined using similar method as 26 base conversion with the
3220  *      index shifted -1 after each digit is computed.
3221  *
3222  *      CONTEXT:
3223  *      Don't care.
3224  *
3225  *      RETURNS:
3226  *      0 on success, -errno on failure.
3227  */
3228 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3229 {
3230         const int base = 'z' - 'a' + 1;
3231         char *begin = buf + strlen(prefix);
3232         char *end = buf + buflen;
3233         char *p;
3234         int unit;
3235
3236         p = end - 1;
3237         *p = '\0';
3238         unit = base;
3239         do {
3240                 if (p == begin)
3241                         return -EINVAL;
3242                 *--p = 'a' + (index % unit);
3243                 index = (index / unit) - 1;
3244         } while (index >= 0);
3245
3246         memmove(begin, p, end - p);
3247         memcpy(buf, prefix, strlen(prefix));
3248
3249         return 0;
3250 }
3251
3252 /**
3253  *      sd_probe - called during driver initialization and whenever a
3254  *      new scsi device is attached to the system. It is called once
3255  *      for each scsi device (not just disks) present.
3256  *      @dev: pointer to device object
3257  *
3258  *      Returns 0 if successful (or not interested in this scsi device 
3259  *      (e.g. scanner)); 1 when there is an error.
3260  *
3261  *      Note: this function is invoked from the scsi mid-level.
3262  *      This function sets up the mapping between a given 
3263  *      <host,channel,id,lun> (found in sdp) and new device name 
3264  *      (e.g. /dev/sda). More precisely it is the block device major 
3265  *      and minor number that is chosen here.
3266  *
3267  *      Assume sd_probe is not re-entrant (for time being)
3268  *      Also think about sd_probe() and sd_remove() running coincidentally.
3269  **/
3270 static int sd_probe(struct device *dev)
3271 {
3272         struct scsi_device *sdp = to_scsi_device(dev);
3273         struct scsi_disk *sdkp;
3274         struct gendisk *gd;
3275         int index;
3276         int error;
3277
3278         scsi_autopm_get_device(sdp);
3279         error = -ENODEV;
3280         if (sdp->type != TYPE_DISK &&
3281             sdp->type != TYPE_ZBC &&
3282             sdp->type != TYPE_MOD &&
3283             sdp->type != TYPE_RBC)
3284                 goto out;
3285
3286 #ifndef CONFIG_BLK_DEV_ZONED
3287         if (sdp->type == TYPE_ZBC)
3288                 goto out;
3289 #endif
3290         SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3291                                         "sd_probe\n"));
3292
3293         error = -ENOMEM;
3294         sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3295         if (!sdkp)
3296                 goto out;
3297
3298         gd = alloc_disk(SD_MINORS);
3299         if (!gd)
3300                 goto out_free;
3301
3302         index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3303         if (index < 0) {
3304                 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3305                 goto out_put;
3306         }
3307
3308         error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3309         if (error) {
3310                 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3311                 goto out_free_index;
3312         }
3313
3314         sdkp->device = sdp;
3315         sdkp->driver = &sd_template;
3316         sdkp->disk = gd;
3317         sdkp->index = index;
3318         atomic_set(&sdkp->openers, 0);
3319         atomic_set(&sdkp->device->ioerr_cnt, 0);
3320
3321         if (!sdp->request_queue->rq_timeout) {
3322                 if (sdp->type != TYPE_MOD)
3323                         blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3324                 else
3325                         blk_queue_rq_timeout(sdp->request_queue,
3326                                              SD_MOD_TIMEOUT);
3327         }
3328
3329         device_initialize(&sdkp->dev);
3330         sdkp->dev.parent = dev;
3331         sdkp->dev.class = &sd_disk_class;
3332         dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3333
3334         error = device_add(&sdkp->dev);
3335         if (error)
3336                 goto out_free_index;
3337
3338         get_device(dev);
3339         dev_set_drvdata(dev, sdkp);
3340
3341         gd->major = sd_major((index & 0xf0) >> 4);
3342         gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3343
3344         gd->fops = &sd_fops;
3345         gd->private_data = &sdkp->driver;
3346         gd->queue = sdkp->device->request_queue;
3347
3348         /* defaults, until the device tells us otherwise */
3349         sdp->sector_size = 512;
3350         sdkp->capacity = 0;
3351         sdkp->media_present = 1;
3352         sdkp->write_prot = 0;
3353         sdkp->cache_override = 0;
3354         sdkp->WCE = 0;
3355         sdkp->RCD = 0;
3356         sdkp->ATO = 0;
3357         sdkp->first_scan = 1;
3358         sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3359
3360         sd_revalidate_disk(gd);
3361
3362         gd->flags = GENHD_FL_EXT_DEVT;
3363         if (sdp->removable) {
3364                 gd->flags |= GENHD_FL_REMOVABLE;
3365                 gd->events |= DISK_EVENT_MEDIA_CHANGE;
3366                 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
3367         }
3368
3369         blk_pm_runtime_init(sdp->request_queue, dev);
3370         device_add_disk(dev, gd, NULL);
3371         if (sdkp->capacity)
3372                 sd_dif_config_host(sdkp);
3373
3374         sd_revalidate_disk(gd);
3375
3376         if (sdkp->security) {
3377                 sdkp->opal_dev = init_opal_dev(sdp, &sd_sec_submit);
3378                 if (sdkp->opal_dev)
3379                         sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3380         }
3381
3382         sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3383                   sdp->removable ? "removable " : "");
3384         scsi_autopm_put_device(sdp);
3385
3386         return 0;
3387
3388  out_free_index:
3389         ida_free(&sd_index_ida, index);
3390  out_put:
3391         put_disk(gd);
3392  out_free:
3393         kfree(sdkp);
3394  out:
3395         scsi_autopm_put_device(sdp);
3396         return error;
3397 }
3398
3399 /**
3400  *      sd_remove - called whenever a scsi disk (previously recognized by
3401  *      sd_probe) is detached from the system. It is called (potentially
3402  *      multiple times) during sd module unload.
3403  *      @dev: pointer to device object
3404  *
3405  *      Note: this function is invoked from the scsi mid-level.
3406  *      This function potentially frees up a device name (e.g. /dev/sdc)
3407  *      that could be re-used by a subsequent sd_probe().
3408  *      This function is not called when the built-in sd driver is "exit-ed".
3409  **/
3410 static int sd_remove(struct device *dev)
3411 {
3412         struct scsi_disk *sdkp;
3413         dev_t devt;
3414
3415         sdkp = dev_get_drvdata(dev);
3416         devt = disk_devt(sdkp->disk);
3417         scsi_autopm_get_device(sdkp->device);
3418
3419         async_synchronize_full_domain(&scsi_sd_pm_domain);
3420         device_del(&sdkp->dev);
3421         del_gendisk(sdkp->disk);
3422         sd_shutdown(dev);
3423
3424         free_opal_dev(sdkp->opal_dev);
3425
3426         blk_register_region(devt, SD_MINORS, NULL,
3427                             sd_default_probe, NULL, NULL);
3428
3429         mutex_lock(&sd_ref_mutex);
3430         dev_set_drvdata(dev, NULL);
3431         put_device(&sdkp->dev);
3432         mutex_unlock(&sd_ref_mutex);
3433
3434         return 0;
3435 }
3436
3437 /**
3438  *      scsi_disk_release - Called to free the scsi_disk structure
3439  *      @dev: pointer to embedded class device
3440  *
3441  *      sd_ref_mutex must be held entering this routine.  Because it is
3442  *      called on last put, you should always use the scsi_disk_get()
3443  *      scsi_disk_put() helpers which manipulate the semaphore directly
3444  *      and never do a direct put_device.
3445  **/
3446 static void scsi_disk_release(struct device *dev)
3447 {
3448         struct scsi_disk *sdkp = to_scsi_disk(dev);
3449         struct gendisk *disk = sdkp->disk;
3450         struct request_queue *q = disk->queue;
3451
3452         ida_free(&sd_index_ida, sdkp->index);
3453
3454         /*
3455          * Wait until all requests that are in progress have completed.
3456          * This is necessary to avoid that e.g. scsi_end_request() crashes
3457          * due to clearing the disk->private_data pointer. Wait from inside
3458          * scsi_disk_release() instead of from sd_release() to avoid that
3459          * freezing and unfreezing the request queue affects user space I/O
3460          * in case multiple processes open a /dev/sd... node concurrently.
3461          */
3462         blk_mq_freeze_queue(q);
3463         blk_mq_unfreeze_queue(q);
3464
3465         disk->private_data = NULL;
3466         put_disk(disk);
3467         put_device(&sdkp->device->sdev_gendev);
3468
3469         kfree(sdkp);
3470 }
3471
3472 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3473 {
3474         unsigned char cmd[6] = { START_STOP };  /* START_VALID */
3475         struct scsi_sense_hdr sshdr;
3476         struct scsi_device *sdp = sdkp->device;
3477         int res;
3478
3479         if (start)
3480                 cmd[4] |= 1;    /* START */
3481
3482         if (sdp->start_stop_pwr_cond)
3483                 cmd[4] |= start ? 1 << 4 : 3 << 4;      /* Active or Standby */
3484
3485         if (!scsi_device_online(sdp))
3486                 return -ENODEV;
3487
3488         res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
3489                         SD_TIMEOUT, SD_MAX_RETRIES, 0, RQF_PM, NULL);
3490         if (res) {
3491                 sd_print_result(sdkp, "Start/Stop Unit failed", res);
3492                 if (driver_byte(res) == DRIVER_SENSE)
3493                         sd_print_sense_hdr(sdkp, &sshdr);
3494                 if (scsi_sense_valid(&sshdr) &&
3495                         /* 0x3a is medium not present */
3496                         sshdr.asc == 0x3a)
3497                         res = 0;
3498         }
3499
3500         /* SCSI error codes must not go to the generic layer */
3501         if (res)
3502                 return -EIO;
3503
3504         return 0;
3505 }
3506
3507 /*
3508  * Send a SYNCHRONIZE CACHE instruction down to the device through
3509  * the normal SCSI command structure.  Wait for the command to
3510  * complete.
3511  */
3512 static void sd_shutdown(struct device *dev)
3513 {
3514         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3515
3516         if (!sdkp)
3517                 return;         /* this can happen */
3518
3519         if (pm_runtime_suspended(dev))
3520                 return;
3521
3522         if (sdkp->WCE && sdkp->media_present) {
3523                 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3524                 sd_sync_cache(sdkp, NULL);
3525         }
3526
3527         if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3528                 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3529                 sd_start_stop_device(sdkp, 0);
3530         }
3531 }
3532
3533 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3534 {
3535         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3536         struct scsi_sense_hdr sshdr;
3537         int ret = 0;
3538
3539         if (!sdkp)      /* E.g.: runtime suspend following sd_remove() */
3540                 return 0;
3541
3542         if (sdkp->WCE && sdkp->media_present) {
3543                 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3544                 ret = sd_sync_cache(sdkp, &sshdr);
3545
3546                 if (ret) {
3547                         /* ignore OFFLINE device */
3548                         if (ret == -ENODEV)
3549                                 return 0;
3550
3551                         if (!scsi_sense_valid(&sshdr) ||
3552                             sshdr.sense_key != ILLEGAL_REQUEST)
3553                                 return ret;
3554
3555                         /*
3556                          * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3557                          * doesn't support sync. There's not much to do and
3558                          * suspend shouldn't fail.
3559                          */
3560                         ret = 0;
3561                 }
3562         }
3563
3564         if (sdkp->device->manage_start_stop) {
3565                 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3566                 /* an error is not worth aborting a system sleep */
3567                 ret = sd_start_stop_device(sdkp, 0);
3568                 if (ignore_stop_errors)
3569                         ret = 0;
3570         }
3571
3572         return ret;
3573 }
3574
3575 static int sd_suspend_system(struct device *dev)
3576 {
3577         return sd_suspend_common(dev, true);
3578 }
3579
3580 static int sd_suspend_runtime(struct device *dev)
3581 {
3582         return sd_suspend_common(dev, false);
3583 }
3584
3585 static int sd_resume(struct device *dev)
3586 {
3587         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3588         int ret;
3589
3590         if (!sdkp)      /* E.g.: runtime resume at the start of sd_probe() */
3591                 return 0;
3592
3593         if (!sdkp->device->manage_start_stop)
3594                 return 0;
3595
3596         sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3597         ret = sd_start_stop_device(sdkp, 1);
3598         if (!ret)
3599                 opal_unlock_from_suspend(sdkp->opal_dev);
3600         return ret;
3601 }
3602
3603 /**
3604  *      init_sd - entry point for this driver (both when built in or when
3605  *      a module).
3606  *
3607  *      Note: this function registers this driver with the scsi mid-level.
3608  **/
3609 static int __init init_sd(void)
3610 {
3611         int majors = 0, i, err;
3612
3613         SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3614
3615         for (i = 0; i < SD_MAJORS; i++) {
3616                 if (register_blkdev(sd_major(i), "sd") != 0)
3617                         continue;
3618                 majors++;
3619                 blk_register_region(sd_major(i), SD_MINORS, NULL,
3620                                     sd_default_probe, NULL, NULL);
3621         }
3622
3623         if (!majors)
3624                 return -ENODEV;
3625
3626         err = class_register(&sd_disk_class);
3627         if (err)
3628                 goto err_out;
3629
3630         sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3631                                          0, 0, NULL);
3632         if (!sd_cdb_cache) {
3633                 printk(KERN_ERR "sd: can't init extended cdb cache\n");
3634                 err = -ENOMEM;
3635                 goto err_out_class;
3636         }
3637
3638         sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3639         if (!sd_cdb_pool) {
3640                 printk(KERN_ERR "sd: can't init extended cdb pool\n");
3641                 err = -ENOMEM;
3642                 goto err_out_cache;
3643         }
3644
3645         sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
3646         if (!sd_page_pool) {
3647                 printk(KERN_ERR "sd: can't init discard page pool\n");
3648                 err = -ENOMEM;
3649                 goto err_out_ppool;
3650         }
3651
3652         err = scsi_register_driver(&sd_template.gendrv);
3653         if (err)
3654                 goto err_out_driver;
3655
3656         return 0;
3657
3658 err_out_driver:
3659         mempool_destroy(sd_page_pool);
3660
3661 err_out_ppool:
3662         mempool_destroy(sd_cdb_pool);
3663
3664 err_out_cache:
3665         kmem_cache_destroy(sd_cdb_cache);
3666
3667 err_out_class:
3668         class_unregister(&sd_disk_class);
3669 err_out:
3670         for (i = 0; i < SD_MAJORS; i++)
3671                 unregister_blkdev(sd_major(i), "sd");
3672         return err;
3673 }
3674
3675 /**
3676  *      exit_sd - exit point for this driver (when it is a module).
3677  *
3678  *      Note: this function unregisters this driver from the scsi mid-level.
3679  **/
3680 static void __exit exit_sd(void)
3681 {
3682         int i;
3683
3684         SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3685
3686         scsi_unregister_driver(&sd_template.gendrv);
3687         mempool_destroy(sd_cdb_pool);
3688         mempool_destroy(sd_page_pool);
3689         kmem_cache_destroy(sd_cdb_cache);
3690
3691         class_unregister(&sd_disk_class);
3692
3693         for (i = 0; i < SD_MAJORS; i++) {
3694                 blk_unregister_region(sd_major(i), SD_MINORS);
3695                 unregister_blkdev(sd_major(i), "sd");
3696         }
3697 }
3698
3699 module_init(init_sd);
3700 module_exit(exit_sd);
3701
3702 static void sd_print_sense_hdr(struct scsi_disk *sdkp,
3703                                struct scsi_sense_hdr *sshdr)
3704 {
3705         scsi_print_sense_hdr(sdkp->device,
3706                              sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3707 }
3708
3709 static void sd_print_result(const struct scsi_disk *sdkp, const char *msg,
3710                             int result)
3711 {
3712         const char *hb_string = scsi_hostbyte_string(result);
3713         const char *db_string = scsi_driverbyte_string(result);
3714
3715         if (hb_string || db_string)
3716                 sd_printk(KERN_INFO, sdkp,
3717                           "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3718                           hb_string ? hb_string : "invalid",
3719                           db_string ? db_string : "invalid");
3720         else
3721                 sd_printk(KERN_INFO, sdkp,
3722                           "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n",
3723                           msg, host_byte(result), driver_byte(result));
3724 }
3725