Merge branches 'fixes' and 'misc' into for-linus
[sfrench/cifs-2.6.git] / drivers / scsi / scsi_lib.c
1 /*
2  * Copyright (C) 1999 Eric Youngdale
3  * Copyright (C) 2014 Christoph Hellwig
4  *
5  *  SCSI queueing library.
6  *      Initial versions: Eric Youngdale (eric@andante.org).
7  *                        Based upon conversations with large numbers
8  *                        of people at Linux Expo.
9  */
10
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22 #include <linux/blk-mq.h>
23 #include <linux/ratelimit.h>
24 #include <asm/unaligned.h>
25
26 #include <scsi/scsi.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_device.h>
30 #include <scsi/scsi_driver.h>
31 #include <scsi/scsi_eh.h>
32 #include <scsi/scsi_host.h>
33 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
34 #include <scsi/scsi_dh.h>
35
36 #include <trace/events/scsi.h>
37
38 #include "scsi_debugfs.h"
39 #include "scsi_priv.h"
40 #include "scsi_logging.h"
41
42 static struct kmem_cache *scsi_sdb_cache;
43 static struct kmem_cache *scsi_sense_cache;
44 static struct kmem_cache *scsi_sense_isadma_cache;
45 static DEFINE_MUTEX(scsi_sense_cache_mutex);
46
47 static inline struct kmem_cache *
48 scsi_select_sense_cache(bool unchecked_isa_dma)
49 {
50         return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
51 }
52
53 static void scsi_free_sense_buffer(bool unchecked_isa_dma,
54                                    unsigned char *sense_buffer)
55 {
56         kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
57                         sense_buffer);
58 }
59
60 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
61         gfp_t gfp_mask, int numa_node)
62 {
63         return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
64                                      gfp_mask, numa_node);
65 }
66
67 int scsi_init_sense_cache(struct Scsi_Host *shost)
68 {
69         struct kmem_cache *cache;
70         int ret = 0;
71
72         cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
73         if (cache)
74                 return 0;
75
76         mutex_lock(&scsi_sense_cache_mutex);
77         if (shost->unchecked_isa_dma) {
78                 scsi_sense_isadma_cache =
79                         kmem_cache_create("scsi_sense_cache(DMA)",
80                         SCSI_SENSE_BUFFERSIZE, 0,
81                         SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
82                 if (!scsi_sense_isadma_cache)
83                         ret = -ENOMEM;
84         } else {
85                 scsi_sense_cache =
86                         kmem_cache_create("scsi_sense_cache",
87                         SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, NULL);
88                 if (!scsi_sense_cache)
89                         ret = -ENOMEM;
90         }
91
92         mutex_unlock(&scsi_sense_cache_mutex);
93         return ret;
94 }
95
96 /*
97  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
98  * not change behaviour from the previous unplug mechanism, experimentation
99  * may prove this needs changing.
100  */
101 #define SCSI_QUEUE_DELAY        3
102
103 static void
104 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
105 {
106         struct Scsi_Host *host = cmd->device->host;
107         struct scsi_device *device = cmd->device;
108         struct scsi_target *starget = scsi_target(device);
109
110         /*
111          * Set the appropriate busy bit for the device/host.
112          *
113          * If the host/device isn't busy, assume that something actually
114          * completed, and that we should be able to queue a command now.
115          *
116          * Note that the prior mid-layer assumption that any host could
117          * always queue at least one command is now broken.  The mid-layer
118          * will implement a user specifiable stall (see
119          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
120          * if a command is requeued with no other commands outstanding
121          * either for the device or for the host.
122          */
123         switch (reason) {
124         case SCSI_MLQUEUE_HOST_BUSY:
125                 atomic_set(&host->host_blocked, host->max_host_blocked);
126                 break;
127         case SCSI_MLQUEUE_DEVICE_BUSY:
128         case SCSI_MLQUEUE_EH_RETRY:
129                 atomic_set(&device->device_blocked,
130                            device->max_device_blocked);
131                 break;
132         case SCSI_MLQUEUE_TARGET_BUSY:
133                 atomic_set(&starget->target_blocked,
134                            starget->max_target_blocked);
135                 break;
136         }
137 }
138
139 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
140 {
141         struct scsi_device *sdev = cmd->device;
142
143         blk_mq_requeue_request(cmd->request, true);
144         put_device(&sdev->sdev_gendev);
145 }
146
147 /**
148  * __scsi_queue_insert - private queue insertion
149  * @cmd: The SCSI command being requeued
150  * @reason:  The reason for the requeue
151  * @unbusy: Whether the queue should be unbusied
152  *
153  * This is a private queue insertion.  The public interface
154  * scsi_queue_insert() always assumes the queue should be unbusied
155  * because it's always called before the completion.  This function is
156  * for a requeue after completion, which should only occur in this
157  * file.
158  */
159 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
160 {
161         struct scsi_device *device = cmd->device;
162         struct request_queue *q = device->request_queue;
163         unsigned long flags;
164
165         SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
166                 "Inserting command %p into mlqueue\n", cmd));
167
168         scsi_set_blocked(cmd, reason);
169
170         /*
171          * Decrement the counters, since these commands are no longer
172          * active on the host/device.
173          */
174         if (unbusy)
175                 scsi_device_unbusy(device);
176
177         /*
178          * Requeue this command.  It will go before all other commands
179          * that are already in the queue. Schedule requeue work under
180          * lock such that the kblockd_schedule_work() call happens
181          * before blk_cleanup_queue() finishes.
182          */
183         cmd->result = 0;
184         if (q->mq_ops) {
185                 scsi_mq_requeue_cmd(cmd);
186                 return;
187         }
188         spin_lock_irqsave(q->queue_lock, flags);
189         blk_requeue_request(q, cmd->request);
190         kblockd_schedule_work(&device->requeue_work);
191         spin_unlock_irqrestore(q->queue_lock, flags);
192 }
193
194 /*
195  * Function:    scsi_queue_insert()
196  *
197  * Purpose:     Insert a command in the midlevel queue.
198  *
199  * Arguments:   cmd    - command that we are adding to queue.
200  *              reason - why we are inserting command to queue.
201  *
202  * Lock status: Assumed that lock is not held upon entry.
203  *
204  * Returns:     Nothing.
205  *
206  * Notes:       We do this for one of two cases.  Either the host is busy
207  *              and it cannot accept any more commands for the time being,
208  *              or the device returned QUEUE_FULL and can accept no more
209  *              commands.
210  * Notes:       This could be called either from an interrupt context or a
211  *              normal process context.
212  */
213 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
214 {
215         __scsi_queue_insert(cmd, reason, 1);
216 }
217
218
219 /**
220  * scsi_execute - insert request and wait for the result
221  * @sdev:       scsi device
222  * @cmd:        scsi command
223  * @data_direction: data direction
224  * @buffer:     data buffer
225  * @bufflen:    len of buffer
226  * @sense:      optional sense buffer
227  * @sshdr:      optional decoded sense header
228  * @timeout:    request timeout in seconds
229  * @retries:    number of times to retry request
230  * @flags:      flags for ->cmd_flags
231  * @rq_flags:   flags for ->rq_flags
232  * @resid:      optional residual length
233  *
234  * Returns the scsi_cmnd result field if a command was executed, or a negative
235  * Linux error code if we didn't get that far.
236  */
237 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
238                  int data_direction, void *buffer, unsigned bufflen,
239                  unsigned char *sense, struct scsi_sense_hdr *sshdr,
240                  int timeout, int retries, u64 flags, req_flags_t rq_flags,
241                  int *resid)
242 {
243         struct request *req;
244         struct scsi_request *rq;
245         int ret = DRIVER_ERROR << 24;
246
247         req = blk_get_request(sdev->request_queue,
248                         data_direction == DMA_TO_DEVICE ?
249                         REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, __GFP_RECLAIM);
250         if (IS_ERR(req))
251                 return ret;
252         rq = scsi_req(req);
253
254         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
255                                         buffer, bufflen, __GFP_RECLAIM))
256                 goto out;
257
258         rq->cmd_len = COMMAND_SIZE(cmd[0]);
259         memcpy(rq->cmd, cmd, rq->cmd_len);
260         rq->retries = retries;
261         req->timeout = timeout;
262         req->cmd_flags |= flags;
263         req->rq_flags |= rq_flags | RQF_QUIET | RQF_PREEMPT;
264
265         /*
266          * head injection *required* here otherwise quiesce won't work
267          */
268         blk_execute_rq(req->q, NULL, req, 1);
269
270         /*
271          * Some devices (USB mass-storage in particular) may transfer
272          * garbage data together with a residue indicating that the data
273          * is invalid.  Prevent the garbage from being misinterpreted
274          * and prevent security leaks by zeroing out the excess data.
275          */
276         if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
277                 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
278
279         if (resid)
280                 *resid = rq->resid_len;
281         if (sense && rq->sense_len)
282                 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
283         if (sshdr)
284                 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
285         ret = rq->result;
286  out:
287         blk_put_request(req);
288
289         return ret;
290 }
291 EXPORT_SYMBOL(scsi_execute);
292
293 /*
294  * Function:    scsi_init_cmd_errh()
295  *
296  * Purpose:     Initialize cmd fields related to error handling.
297  *
298  * Arguments:   cmd     - command that is ready to be queued.
299  *
300  * Notes:       This function has the job of initializing a number of
301  *              fields related to error handling.   Typically this will
302  *              be called once for each command, as required.
303  */
304 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
305 {
306         cmd->serial_number = 0;
307         scsi_set_resid(cmd, 0);
308         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
309         if (cmd->cmd_len == 0)
310                 cmd->cmd_len = scsi_command_size(cmd->cmnd);
311 }
312
313 void scsi_device_unbusy(struct scsi_device *sdev)
314 {
315         struct Scsi_Host *shost = sdev->host;
316         struct scsi_target *starget = scsi_target(sdev);
317         unsigned long flags;
318
319         atomic_dec(&shost->host_busy);
320         if (starget->can_queue > 0)
321                 atomic_dec(&starget->target_busy);
322
323         if (unlikely(scsi_host_in_recovery(shost) &&
324                      (shost->host_failed || shost->host_eh_scheduled))) {
325                 spin_lock_irqsave(shost->host_lock, flags);
326                 scsi_eh_wakeup(shost);
327                 spin_unlock_irqrestore(shost->host_lock, flags);
328         }
329
330         atomic_dec(&sdev->device_busy);
331 }
332
333 static void scsi_kick_queue(struct request_queue *q)
334 {
335         if (q->mq_ops)
336                 blk_mq_start_hw_queues(q);
337         else
338                 blk_run_queue(q);
339 }
340
341 /*
342  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
343  * and call blk_run_queue for all the scsi_devices on the target -
344  * including current_sdev first.
345  *
346  * Called with *no* scsi locks held.
347  */
348 static void scsi_single_lun_run(struct scsi_device *current_sdev)
349 {
350         struct Scsi_Host *shost = current_sdev->host;
351         struct scsi_device *sdev, *tmp;
352         struct scsi_target *starget = scsi_target(current_sdev);
353         unsigned long flags;
354
355         spin_lock_irqsave(shost->host_lock, flags);
356         starget->starget_sdev_user = NULL;
357         spin_unlock_irqrestore(shost->host_lock, flags);
358
359         /*
360          * Call blk_run_queue for all LUNs on the target, starting with
361          * current_sdev. We race with others (to set starget_sdev_user),
362          * but in most cases, we will be first. Ideally, each LU on the
363          * target would get some limited time or requests on the target.
364          */
365         scsi_kick_queue(current_sdev->request_queue);
366
367         spin_lock_irqsave(shost->host_lock, flags);
368         if (starget->starget_sdev_user)
369                 goto out;
370         list_for_each_entry_safe(sdev, tmp, &starget->devices,
371                         same_target_siblings) {
372                 if (sdev == current_sdev)
373                         continue;
374                 if (scsi_device_get(sdev))
375                         continue;
376
377                 spin_unlock_irqrestore(shost->host_lock, flags);
378                 scsi_kick_queue(sdev->request_queue);
379                 spin_lock_irqsave(shost->host_lock, flags);
380         
381                 scsi_device_put(sdev);
382         }
383  out:
384         spin_unlock_irqrestore(shost->host_lock, flags);
385 }
386
387 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
388 {
389         if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
390                 return true;
391         if (atomic_read(&sdev->device_blocked) > 0)
392                 return true;
393         return false;
394 }
395
396 static inline bool scsi_target_is_busy(struct scsi_target *starget)
397 {
398         if (starget->can_queue > 0) {
399                 if (atomic_read(&starget->target_busy) >= starget->can_queue)
400                         return true;
401                 if (atomic_read(&starget->target_blocked) > 0)
402                         return true;
403         }
404         return false;
405 }
406
407 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
408 {
409         if (shost->can_queue > 0 &&
410             atomic_read(&shost->host_busy) >= shost->can_queue)
411                 return true;
412         if (atomic_read(&shost->host_blocked) > 0)
413                 return true;
414         if (shost->host_self_blocked)
415                 return true;
416         return false;
417 }
418
419 static void scsi_starved_list_run(struct Scsi_Host *shost)
420 {
421         LIST_HEAD(starved_list);
422         struct scsi_device *sdev;
423         unsigned long flags;
424
425         spin_lock_irqsave(shost->host_lock, flags);
426         list_splice_init(&shost->starved_list, &starved_list);
427
428         while (!list_empty(&starved_list)) {
429                 struct request_queue *slq;
430
431                 /*
432                  * As long as shost is accepting commands and we have
433                  * starved queues, call blk_run_queue. scsi_request_fn
434                  * drops the queue_lock and can add us back to the
435                  * starved_list.
436                  *
437                  * host_lock protects the starved_list and starved_entry.
438                  * scsi_request_fn must get the host_lock before checking
439                  * or modifying starved_list or starved_entry.
440                  */
441                 if (scsi_host_is_busy(shost))
442                         break;
443
444                 sdev = list_entry(starved_list.next,
445                                   struct scsi_device, starved_entry);
446                 list_del_init(&sdev->starved_entry);
447                 if (scsi_target_is_busy(scsi_target(sdev))) {
448                         list_move_tail(&sdev->starved_entry,
449                                        &shost->starved_list);
450                         continue;
451                 }
452
453                 /*
454                  * Once we drop the host lock, a racing scsi_remove_device()
455                  * call may remove the sdev from the starved list and destroy
456                  * it and the queue.  Mitigate by taking a reference to the
457                  * queue and never touching the sdev again after we drop the
458                  * host lock.  Note: if __scsi_remove_device() invokes
459                  * blk_cleanup_queue() before the queue is run from this
460                  * function then blk_run_queue() will return immediately since
461                  * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
462                  */
463                 slq = sdev->request_queue;
464                 if (!blk_get_queue(slq))
465                         continue;
466                 spin_unlock_irqrestore(shost->host_lock, flags);
467
468                 scsi_kick_queue(slq);
469                 blk_put_queue(slq);
470
471                 spin_lock_irqsave(shost->host_lock, flags);
472         }
473         /* put any unprocessed entries back */
474         list_splice(&starved_list, &shost->starved_list);
475         spin_unlock_irqrestore(shost->host_lock, flags);
476 }
477
478 /*
479  * Function:   scsi_run_queue()
480  *
481  * Purpose:    Select a proper request queue to serve next
482  *
483  * Arguments:  q       - last request's queue
484  *
485  * Returns:     Nothing
486  *
487  * Notes:      The previous command was completely finished, start
488  *             a new one if possible.
489  */
490 static void scsi_run_queue(struct request_queue *q)
491 {
492         struct scsi_device *sdev = q->queuedata;
493
494         if (scsi_target(sdev)->single_lun)
495                 scsi_single_lun_run(sdev);
496         if (!list_empty(&sdev->host->starved_list))
497                 scsi_starved_list_run(sdev->host);
498
499         if (q->mq_ops)
500                 blk_mq_run_hw_queues(q, false);
501         else
502                 blk_run_queue(q);
503 }
504
505 void scsi_requeue_run_queue(struct work_struct *work)
506 {
507         struct scsi_device *sdev;
508         struct request_queue *q;
509
510         sdev = container_of(work, struct scsi_device, requeue_work);
511         q = sdev->request_queue;
512         scsi_run_queue(q);
513 }
514
515 /*
516  * Function:    scsi_requeue_command()
517  *
518  * Purpose:     Handle post-processing of completed commands.
519  *
520  * Arguments:   q       - queue to operate on
521  *              cmd     - command that may need to be requeued.
522  *
523  * Returns:     Nothing
524  *
525  * Notes:       After command completion, there may be blocks left
526  *              over which weren't finished by the previous command
527  *              this can be for a number of reasons - the main one is
528  *              I/O errors in the middle of the request, in which case
529  *              we need to request the blocks that come after the bad
530  *              sector.
531  * Notes:       Upon return, cmd is a stale pointer.
532  */
533 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
534 {
535         struct scsi_device *sdev = cmd->device;
536         struct request *req = cmd->request;
537         unsigned long flags;
538
539         spin_lock_irqsave(q->queue_lock, flags);
540         blk_unprep_request(req);
541         req->special = NULL;
542         scsi_put_command(cmd);
543         blk_requeue_request(q, req);
544         spin_unlock_irqrestore(q->queue_lock, flags);
545
546         scsi_run_queue(q);
547
548         put_device(&sdev->sdev_gendev);
549 }
550
551 void scsi_run_host_queues(struct Scsi_Host *shost)
552 {
553         struct scsi_device *sdev;
554
555         shost_for_each_device(sdev, shost)
556                 scsi_run_queue(sdev->request_queue);
557 }
558
559 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
560 {
561         if (!blk_rq_is_passthrough(cmd->request)) {
562                 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
563
564                 if (drv->uninit_command)
565                         drv->uninit_command(cmd);
566         }
567 }
568
569 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
570 {
571         struct scsi_data_buffer *sdb;
572
573         if (cmd->sdb.table.nents)
574                 sg_free_table_chained(&cmd->sdb.table, true);
575         if (cmd->request->next_rq) {
576                 sdb = cmd->request->next_rq->special;
577                 if (sdb)
578                         sg_free_table_chained(&sdb->table, true);
579         }
580         if (scsi_prot_sg_count(cmd))
581                 sg_free_table_chained(&cmd->prot_sdb->table, true);
582 }
583
584 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
585 {
586         scsi_mq_free_sgtables(cmd);
587         scsi_uninit_cmd(cmd);
588         scsi_del_cmd_from_list(cmd);
589 }
590
591 /*
592  * Function:    scsi_release_buffers()
593  *
594  * Purpose:     Free resources allocate for a scsi_command.
595  *
596  * Arguments:   cmd     - command that we are bailing.
597  *
598  * Lock status: Assumed that no lock is held upon entry.
599  *
600  * Returns:     Nothing
601  *
602  * Notes:       In the event that an upper level driver rejects a
603  *              command, we must release resources allocated during
604  *              the __init_io() function.  Primarily this would involve
605  *              the scatter-gather table.
606  */
607 static void scsi_release_buffers(struct scsi_cmnd *cmd)
608 {
609         if (cmd->sdb.table.nents)
610                 sg_free_table_chained(&cmd->sdb.table, false);
611
612         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
613
614         if (scsi_prot_sg_count(cmd))
615                 sg_free_table_chained(&cmd->prot_sdb->table, false);
616 }
617
618 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
619 {
620         struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
621
622         sg_free_table_chained(&bidi_sdb->table, false);
623         kmem_cache_free(scsi_sdb_cache, bidi_sdb);
624         cmd->request->next_rq->special = NULL;
625 }
626
627 static bool scsi_end_request(struct request *req, blk_status_t error,
628                 unsigned int bytes, unsigned int bidi_bytes)
629 {
630         struct scsi_cmnd *cmd = req->special;
631         struct scsi_device *sdev = cmd->device;
632         struct request_queue *q = sdev->request_queue;
633
634         if (blk_update_request(req, error, bytes))
635                 return true;
636
637         /* Bidi request must be completed as a whole */
638         if (unlikely(bidi_bytes) &&
639             blk_update_request(req->next_rq, error, bidi_bytes))
640                 return true;
641
642         if (blk_queue_add_random(q))
643                 add_disk_randomness(req->rq_disk);
644
645         if (req->mq_ctx) {
646                 /*
647                  * In the MQ case the command gets freed by __blk_mq_end_request,
648                  * so we have to do all cleanup that depends on it earlier.
649                  *
650                  * We also can't kick the queues from irq context, so we
651                  * will have to defer it to a workqueue.
652                  */
653                 scsi_mq_uninit_cmd(cmd);
654
655                 __blk_mq_end_request(req, error);
656
657                 if (scsi_target(sdev)->single_lun ||
658                     !list_empty(&sdev->host->starved_list))
659                         kblockd_schedule_work(&sdev->requeue_work);
660                 else
661                         blk_mq_run_hw_queues(q, true);
662         } else {
663                 unsigned long flags;
664
665                 if (bidi_bytes)
666                         scsi_release_bidi_buffers(cmd);
667                 scsi_release_buffers(cmd);
668                 scsi_put_command(cmd);
669
670                 spin_lock_irqsave(q->queue_lock, flags);
671                 blk_finish_request(req, error);
672                 spin_unlock_irqrestore(q->queue_lock, flags);
673
674                 scsi_run_queue(q);
675         }
676
677         put_device(&sdev->sdev_gendev);
678         return false;
679 }
680
681 /**
682  * __scsi_error_from_host_byte - translate SCSI error code into errno
683  * @cmd:        SCSI command (unused)
684  * @result:     scsi error code
685  *
686  * Translate SCSI error code into block errors.
687  */
688 static blk_status_t __scsi_error_from_host_byte(struct scsi_cmnd *cmd,
689                 int result)
690 {
691         switch (host_byte(result)) {
692         case DID_TRANSPORT_FAILFAST:
693                 return BLK_STS_TRANSPORT;
694         case DID_TARGET_FAILURE:
695                 set_host_byte(cmd, DID_OK);
696                 return BLK_STS_TARGET;
697         case DID_NEXUS_FAILURE:
698                 return BLK_STS_NEXUS;
699         case DID_ALLOC_FAILURE:
700                 set_host_byte(cmd, DID_OK);
701                 return BLK_STS_NOSPC;
702         case DID_MEDIUM_ERROR:
703                 set_host_byte(cmd, DID_OK);
704                 return BLK_STS_MEDIUM;
705         default:
706                 return BLK_STS_IOERR;
707         }
708 }
709
710 /*
711  * Function:    scsi_io_completion()
712  *
713  * Purpose:     Completion processing for block device I/O requests.
714  *
715  * Arguments:   cmd   - command that is finished.
716  *
717  * Lock status: Assumed that no lock is held upon entry.
718  *
719  * Returns:     Nothing
720  *
721  * Notes:       We will finish off the specified number of sectors.  If we
722  *              are done, the command block will be released and the queue
723  *              function will be goosed.  If we are not done then we have to
724  *              figure out what to do next:
725  *
726  *              a) We can call scsi_requeue_command().  The request
727  *                 will be unprepared and put back on the queue.  Then
728  *                 a new command will be created for it.  This should
729  *                 be used if we made forward progress, or if we want
730  *                 to switch from READ(10) to READ(6) for example.
731  *
732  *              b) We can call __scsi_queue_insert().  The request will
733  *                 be put back on the queue and retried using the same
734  *                 command as before, possibly after a delay.
735  *
736  *              c) We can call scsi_end_request() with -EIO to fail
737  *                 the remainder of the request.
738  */
739 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
740 {
741         int result = cmd->result;
742         struct request_queue *q = cmd->device->request_queue;
743         struct request *req = cmd->request;
744         blk_status_t error = BLK_STS_OK;
745         struct scsi_sense_hdr sshdr;
746         bool sense_valid = false;
747         int sense_deferred = 0, level = 0;
748         enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
749               ACTION_DELAYED_RETRY} action;
750         unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
751
752         if (result) {
753                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
754                 if (sense_valid)
755                         sense_deferred = scsi_sense_is_deferred(&sshdr);
756         }
757
758         if (blk_rq_is_passthrough(req)) {
759                 if (result) {
760                         if (sense_valid) {
761                                 /*
762                                  * SG_IO wants current and deferred errors
763                                  */
764                                 scsi_req(req)->sense_len =
765                                         min(8 + cmd->sense_buffer[7],
766                                             SCSI_SENSE_BUFFERSIZE);
767                         }
768                         if (!sense_deferred)
769                                 error = __scsi_error_from_host_byte(cmd, result);
770                 }
771                 /*
772                  * __scsi_error_from_host_byte may have reset the host_byte
773                  */
774                 scsi_req(req)->result = cmd->result;
775                 scsi_req(req)->resid_len = scsi_get_resid(cmd);
776
777                 if (scsi_bidi_cmnd(cmd)) {
778                         /*
779                          * Bidi commands Must be complete as a whole,
780                          * both sides at once.
781                          */
782                         scsi_req(req->next_rq)->resid_len = scsi_in(cmd)->resid;
783                         if (scsi_end_request(req, BLK_STS_OK, blk_rq_bytes(req),
784                                         blk_rq_bytes(req->next_rq)))
785                                 BUG();
786                         return;
787                 }
788         } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
789                 /*
790                  * Flush commands do not transfers any data, and thus cannot use
791                  * good_bytes != blk_rq_bytes(req) as the signal for an error.
792                  * This sets the error explicitly for the problem case.
793                  */
794                 error = __scsi_error_from_host_byte(cmd, result);
795         }
796
797         /* no bidi support for !blk_rq_is_passthrough yet */
798         BUG_ON(blk_bidi_rq(req));
799
800         /*
801          * Next deal with any sectors which we were able to correctly
802          * handle.
803          */
804         SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
805                 "%u sectors total, %d bytes done.\n",
806                 blk_rq_sectors(req), good_bytes));
807
808         /*
809          * Recovered errors need reporting, but they're always treated as
810          * success, so fiddle the result code here.  For passthrough requests
811          * we already took a copy of the original into sreq->result which
812          * is what gets returned to the user
813          */
814         if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
815                 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
816                  * print since caller wants ATA registers. Only occurs on
817                  * SCSI ATA PASS_THROUGH commands when CK_COND=1
818                  */
819                 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
820                         ;
821                 else if (!(req->rq_flags & RQF_QUIET))
822                         scsi_print_sense(cmd);
823                 result = 0;
824                 /* for passthrough error may be set */
825                 error = BLK_STS_OK;
826         }
827
828         /*
829          * special case: failed zero length commands always need to
830          * drop down into the retry code. Otherwise, if we finished
831          * all bytes in the request we are done now.
832          */
833         if (!(blk_rq_bytes(req) == 0 && error) &&
834             !scsi_end_request(req, error, good_bytes, 0))
835                 return;
836
837         /*
838          * Kill remainder if no retrys.
839          */
840         if (error && scsi_noretry_cmd(cmd)) {
841                 if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
842                         BUG();
843                 return;
844         }
845
846         /*
847          * If there had been no error, but we have leftover bytes in the
848          * requeues just queue the command up again.
849          */
850         if (result == 0)
851                 goto requeue;
852
853         error = __scsi_error_from_host_byte(cmd, result);
854
855         if (host_byte(result) == DID_RESET) {
856                 /* Third party bus reset or reset for error recovery
857                  * reasons.  Just retry the command and see what
858                  * happens.
859                  */
860                 action = ACTION_RETRY;
861         } else if (sense_valid && !sense_deferred) {
862                 switch (sshdr.sense_key) {
863                 case UNIT_ATTENTION:
864                         if (cmd->device->removable) {
865                                 /* Detected disc change.  Set a bit
866                                  * and quietly refuse further access.
867                                  */
868                                 cmd->device->changed = 1;
869                                 action = ACTION_FAIL;
870                         } else {
871                                 /* Must have been a power glitch, or a
872                                  * bus reset.  Could not have been a
873                                  * media change, so we just retry the
874                                  * command and see what happens.
875                                  */
876                                 action = ACTION_RETRY;
877                         }
878                         break;
879                 case ILLEGAL_REQUEST:
880                         /* If we had an ILLEGAL REQUEST returned, then
881                          * we may have performed an unsupported
882                          * command.  The only thing this should be
883                          * would be a ten byte read where only a six
884                          * byte read was supported.  Also, on a system
885                          * where READ CAPACITY failed, we may have
886                          * read past the end of the disk.
887                          */
888                         if ((cmd->device->use_10_for_rw &&
889                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
890                             (cmd->cmnd[0] == READ_10 ||
891                              cmd->cmnd[0] == WRITE_10)) {
892                                 /* This will issue a new 6-byte command. */
893                                 cmd->device->use_10_for_rw = 0;
894                                 action = ACTION_REPREP;
895                         } else if (sshdr.asc == 0x10) /* DIX */ {
896                                 action = ACTION_FAIL;
897                                 error = BLK_STS_PROTECTION;
898                         /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
899                         } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
900                                 action = ACTION_FAIL;
901                                 error = BLK_STS_TARGET;
902                         } else
903                                 action = ACTION_FAIL;
904                         break;
905                 case ABORTED_COMMAND:
906                         action = ACTION_FAIL;
907                         if (sshdr.asc == 0x10) /* DIF */
908                                 error = BLK_STS_PROTECTION;
909                         break;
910                 case NOT_READY:
911                         /* If the device is in the process of becoming
912                          * ready, or has a temporary blockage, retry.
913                          */
914                         if (sshdr.asc == 0x04) {
915                                 switch (sshdr.ascq) {
916                                 case 0x01: /* becoming ready */
917                                 case 0x04: /* format in progress */
918                                 case 0x05: /* rebuild in progress */
919                                 case 0x06: /* recalculation in progress */
920                                 case 0x07: /* operation in progress */
921                                 case 0x08: /* Long write in progress */
922                                 case 0x09: /* self test in progress */
923                                 case 0x14: /* space allocation in progress */
924                                         action = ACTION_DELAYED_RETRY;
925                                         break;
926                                 default:
927                                         action = ACTION_FAIL;
928                                         break;
929                                 }
930                         } else
931                                 action = ACTION_FAIL;
932                         break;
933                 case VOLUME_OVERFLOW:
934                         /* See SSC3rXX or current. */
935                         action = ACTION_FAIL;
936                         break;
937                 default:
938                         action = ACTION_FAIL;
939                         break;
940                 }
941         } else
942                 action = ACTION_FAIL;
943
944         if (action != ACTION_FAIL &&
945             time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
946                 action = ACTION_FAIL;
947
948         switch (action) {
949         case ACTION_FAIL:
950                 /* Give up and fail the remainder of the request */
951                 if (!(req->rq_flags & RQF_QUIET)) {
952                         static DEFINE_RATELIMIT_STATE(_rs,
953                                         DEFAULT_RATELIMIT_INTERVAL,
954                                         DEFAULT_RATELIMIT_BURST);
955
956                         if (unlikely(scsi_logging_level))
957                                 level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
958                                                        SCSI_LOG_MLCOMPLETE_BITS);
959
960                         /*
961                          * if logging is enabled the failure will be printed
962                          * in scsi_log_completion(), so avoid duplicate messages
963                          */
964                         if (!level && __ratelimit(&_rs)) {
965                                 scsi_print_result(cmd, NULL, FAILED);
966                                 if (driver_byte(result) & DRIVER_SENSE)
967                                         scsi_print_sense(cmd);
968                                 scsi_print_command(cmd);
969                         }
970                 }
971                 if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
972                         return;
973                 /*FALLTHRU*/
974         case ACTION_REPREP:
975         requeue:
976                 /* Unprep the request and put it back at the head of the queue.
977                  * A new command will be prepared and issued.
978                  */
979                 if (q->mq_ops) {
980                         cmd->request->rq_flags &= ~RQF_DONTPREP;
981                         scsi_mq_uninit_cmd(cmd);
982                         scsi_mq_requeue_cmd(cmd);
983                 } else {
984                         scsi_release_buffers(cmd);
985                         scsi_requeue_command(q, cmd);
986                 }
987                 break;
988         case ACTION_RETRY:
989                 /* Retry the same command immediately */
990                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
991                 break;
992         case ACTION_DELAYED_RETRY:
993                 /* Retry the same command after a delay */
994                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
995                 break;
996         }
997 }
998
999 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
1000 {
1001         int count;
1002
1003         /*
1004          * If sg table allocation fails, requeue request later.
1005          */
1006         if (unlikely(sg_alloc_table_chained(&sdb->table,
1007                         blk_rq_nr_phys_segments(req), sdb->table.sgl)))
1008                 return BLKPREP_DEFER;
1009
1010         /* 
1011          * Next, walk the list, and fill in the addresses and sizes of
1012          * each segment.
1013          */
1014         count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1015         BUG_ON(count > sdb->table.nents);
1016         sdb->table.nents = count;
1017         sdb->length = blk_rq_payload_bytes(req);
1018         return BLKPREP_OK;
1019 }
1020
1021 /*
1022  * Function:    scsi_init_io()
1023  *
1024  * Purpose:     SCSI I/O initialize function.
1025  *
1026  * Arguments:   cmd   - Command descriptor we wish to initialize
1027  *
1028  * Returns:     0 on success
1029  *              BLKPREP_DEFER if the failure is retryable
1030  *              BLKPREP_KILL if the failure is fatal
1031  */
1032 int scsi_init_io(struct scsi_cmnd *cmd)
1033 {
1034         struct scsi_device *sdev = cmd->device;
1035         struct request *rq = cmd->request;
1036         bool is_mq = (rq->mq_ctx != NULL);
1037         int error = BLKPREP_KILL;
1038
1039         if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq)))
1040                 goto err_exit;
1041
1042         error = scsi_init_sgtable(rq, &cmd->sdb);
1043         if (error)
1044                 goto err_exit;
1045
1046         if (blk_bidi_rq(rq)) {
1047                 if (!rq->q->mq_ops) {
1048                         struct scsi_data_buffer *bidi_sdb =
1049                                 kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1050                         if (!bidi_sdb) {
1051                                 error = BLKPREP_DEFER;
1052                                 goto err_exit;
1053                         }
1054
1055                         rq->next_rq->special = bidi_sdb;
1056                 }
1057
1058                 error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1059                 if (error)
1060                         goto err_exit;
1061         }
1062
1063         if (blk_integrity_rq(rq)) {
1064                 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1065                 int ivecs, count;
1066
1067                 if (prot_sdb == NULL) {
1068                         /*
1069                          * This can happen if someone (e.g. multipath)
1070                          * queues a command to a device on an adapter
1071                          * that does not support DIX.
1072                          */
1073                         WARN_ON_ONCE(1);
1074                         error = BLKPREP_KILL;
1075                         goto err_exit;
1076                 }
1077
1078                 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1079
1080                 if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1081                                 prot_sdb->table.sgl)) {
1082                         error = BLKPREP_DEFER;
1083                         goto err_exit;
1084                 }
1085
1086                 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1087                                                 prot_sdb->table.sgl);
1088                 BUG_ON(unlikely(count > ivecs));
1089                 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1090
1091                 cmd->prot_sdb = prot_sdb;
1092                 cmd->prot_sdb->table.nents = count;
1093         }
1094
1095         return BLKPREP_OK;
1096 err_exit:
1097         if (is_mq) {
1098                 scsi_mq_free_sgtables(cmd);
1099         } else {
1100                 scsi_release_buffers(cmd);
1101                 cmd->request->special = NULL;
1102                 scsi_put_command(cmd);
1103                 put_device(&sdev->sdev_gendev);
1104         }
1105         return error;
1106 }
1107 EXPORT_SYMBOL(scsi_init_io);
1108
1109 /**
1110  * scsi_initialize_rq - initialize struct scsi_cmnd.req
1111  *
1112  * Called from inside blk_get_request().
1113  */
1114 void scsi_initialize_rq(struct request *rq)
1115 {
1116         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1117
1118         scsi_req_init(&cmd->req);
1119 }
1120 EXPORT_SYMBOL(scsi_initialize_rq);
1121
1122 /* Add a command to the list used by the aacraid and dpt_i2o drivers */
1123 void scsi_add_cmd_to_list(struct scsi_cmnd *cmd)
1124 {
1125         struct scsi_device *sdev = cmd->device;
1126         struct Scsi_Host *shost = sdev->host;
1127         unsigned long flags;
1128
1129         if (shost->use_cmd_list) {
1130                 spin_lock_irqsave(&sdev->list_lock, flags);
1131                 list_add_tail(&cmd->list, &sdev->cmd_list);
1132                 spin_unlock_irqrestore(&sdev->list_lock, flags);
1133         }
1134 }
1135
1136 /* Remove a command from the list used by the aacraid and dpt_i2o drivers */
1137 void scsi_del_cmd_from_list(struct scsi_cmnd *cmd)
1138 {
1139         struct scsi_device *sdev = cmd->device;
1140         struct Scsi_Host *shost = sdev->host;
1141         unsigned long flags;
1142
1143         if (shost->use_cmd_list) {
1144                 spin_lock_irqsave(&sdev->list_lock, flags);
1145                 BUG_ON(list_empty(&cmd->list));
1146                 list_del_init(&cmd->list);
1147                 spin_unlock_irqrestore(&sdev->list_lock, flags);
1148         }
1149 }
1150
1151 /* Called after a request has been started. */
1152 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1153 {
1154         void *buf = cmd->sense_buffer;
1155         void *prot = cmd->prot_sdb;
1156         unsigned int unchecked_isa_dma = cmd->flags & SCMD_UNCHECKED_ISA_DMA;
1157
1158         /* zero out the cmd, except for the embedded scsi_request */
1159         memset((char *)cmd + sizeof(cmd->req), 0,
1160                 sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size);
1161
1162         cmd->device = dev;
1163         cmd->sense_buffer = buf;
1164         cmd->prot_sdb = prot;
1165         cmd->flags = unchecked_isa_dma;
1166         INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1167         cmd->jiffies_at_alloc = jiffies;
1168
1169         scsi_add_cmd_to_list(cmd);
1170 }
1171
1172 static int scsi_setup_scsi_cmnd(struct scsi_device *sdev, struct request *req)
1173 {
1174         struct scsi_cmnd *cmd = req->special;
1175
1176         /*
1177          * Passthrough requests may transfer data, in which case they must
1178          * a bio attached to them.  Or they might contain a SCSI command
1179          * that does not transfer data, in which case they may optionally
1180          * submit a request without an attached bio.
1181          */
1182         if (req->bio) {
1183                 int ret = scsi_init_io(cmd);
1184                 if (unlikely(ret))
1185                         return ret;
1186         } else {
1187                 BUG_ON(blk_rq_bytes(req));
1188
1189                 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1190         }
1191
1192         cmd->cmd_len = scsi_req(req)->cmd_len;
1193         cmd->cmnd = scsi_req(req)->cmd;
1194         cmd->transfersize = blk_rq_bytes(req);
1195         cmd->allowed = scsi_req(req)->retries;
1196         return BLKPREP_OK;
1197 }
1198
1199 /*
1200  * Setup a normal block command.  These are simple request from filesystems
1201  * that still need to be translated to SCSI CDBs from the ULD.
1202  */
1203 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1204 {
1205         struct scsi_cmnd *cmd = req->special;
1206
1207         if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1208                 int ret = sdev->handler->prep_fn(sdev, req);
1209                 if (ret != BLKPREP_OK)
1210                         return ret;
1211         }
1212
1213         cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1214         memset(cmd->cmnd, 0, BLK_MAX_CDB);
1215         return scsi_cmd_to_driver(cmd)->init_command(cmd);
1216 }
1217
1218 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1219 {
1220         struct scsi_cmnd *cmd = req->special;
1221
1222         if (!blk_rq_bytes(req))
1223                 cmd->sc_data_direction = DMA_NONE;
1224         else if (rq_data_dir(req) == WRITE)
1225                 cmd->sc_data_direction = DMA_TO_DEVICE;
1226         else
1227                 cmd->sc_data_direction = DMA_FROM_DEVICE;
1228
1229         if (blk_rq_is_scsi(req))
1230                 return scsi_setup_scsi_cmnd(sdev, req);
1231         else
1232                 return scsi_setup_fs_cmnd(sdev, req);
1233 }
1234
1235 static int
1236 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1237 {
1238         int ret = BLKPREP_OK;
1239
1240         /*
1241          * If the device is not in running state we will reject some
1242          * or all commands.
1243          */
1244         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1245                 switch (sdev->sdev_state) {
1246                 case SDEV_OFFLINE:
1247                 case SDEV_TRANSPORT_OFFLINE:
1248                         /*
1249                          * If the device is offline we refuse to process any
1250                          * commands.  The device must be brought online
1251                          * before trying any recovery commands.
1252                          */
1253                         sdev_printk(KERN_ERR, sdev,
1254                                     "rejecting I/O to offline device\n");
1255                         ret = BLKPREP_KILL;
1256                         break;
1257                 case SDEV_DEL:
1258                         /*
1259                          * If the device is fully deleted, we refuse to
1260                          * process any commands as well.
1261                          */
1262                         sdev_printk(KERN_ERR, sdev,
1263                                     "rejecting I/O to dead device\n");
1264                         ret = BLKPREP_KILL;
1265                         break;
1266                 case SDEV_BLOCK:
1267                 case SDEV_CREATED_BLOCK:
1268                         ret = BLKPREP_DEFER;
1269                         break;
1270                 case SDEV_QUIESCE:
1271                         /*
1272                          * If the devices is blocked we defer normal commands.
1273                          */
1274                         if (!(req->rq_flags & RQF_PREEMPT))
1275                                 ret = BLKPREP_DEFER;
1276                         break;
1277                 default:
1278                         /*
1279                          * For any other not fully online state we only allow
1280                          * special commands.  In particular any user initiated
1281                          * command is not allowed.
1282                          */
1283                         if (!(req->rq_flags & RQF_PREEMPT))
1284                                 ret = BLKPREP_KILL;
1285                         break;
1286                 }
1287         }
1288         return ret;
1289 }
1290
1291 static int
1292 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1293 {
1294         struct scsi_device *sdev = q->queuedata;
1295
1296         switch (ret) {
1297         case BLKPREP_KILL:
1298         case BLKPREP_INVALID:
1299                 scsi_req(req)->result = DID_NO_CONNECT << 16;
1300                 /* release the command and kill it */
1301                 if (req->special) {
1302                         struct scsi_cmnd *cmd = req->special;
1303                         scsi_release_buffers(cmd);
1304                         scsi_put_command(cmd);
1305                         put_device(&sdev->sdev_gendev);
1306                         req->special = NULL;
1307                 }
1308                 break;
1309         case BLKPREP_DEFER:
1310                 /*
1311                  * If we defer, the blk_peek_request() returns NULL, but the
1312                  * queue must be restarted, so we schedule a callback to happen
1313                  * shortly.
1314                  */
1315                 if (atomic_read(&sdev->device_busy) == 0)
1316                         blk_delay_queue(q, SCSI_QUEUE_DELAY);
1317                 break;
1318         default:
1319                 req->rq_flags |= RQF_DONTPREP;
1320         }
1321
1322         return ret;
1323 }
1324
1325 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1326 {
1327         struct scsi_device *sdev = q->queuedata;
1328         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1329         int ret;
1330
1331         ret = scsi_prep_state_check(sdev, req);
1332         if (ret != BLKPREP_OK)
1333                 goto out;
1334
1335         if (!req->special) {
1336                 /* Bail if we can't get a reference to the device */
1337                 if (unlikely(!get_device(&sdev->sdev_gendev))) {
1338                         ret = BLKPREP_DEFER;
1339                         goto out;
1340                 }
1341
1342                 scsi_init_command(sdev, cmd);
1343                 req->special = cmd;
1344         }
1345
1346         cmd->tag = req->tag;
1347         cmd->request = req;
1348         cmd->prot_op = SCSI_PROT_NORMAL;
1349
1350         ret = scsi_setup_cmnd(sdev, req);
1351 out:
1352         return scsi_prep_return(q, req, ret);
1353 }
1354
1355 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1356 {
1357         scsi_uninit_cmd(req->special);
1358 }
1359
1360 /*
1361  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1362  * return 0.
1363  *
1364  * Called with the queue_lock held.
1365  */
1366 static inline int scsi_dev_queue_ready(struct request_queue *q,
1367                                   struct scsi_device *sdev)
1368 {
1369         unsigned int busy;
1370
1371         busy = atomic_inc_return(&sdev->device_busy) - 1;
1372         if (atomic_read(&sdev->device_blocked)) {
1373                 if (busy)
1374                         goto out_dec;
1375
1376                 /*
1377                  * unblock after device_blocked iterates to zero
1378                  */
1379                 if (atomic_dec_return(&sdev->device_blocked) > 0) {
1380                         /*
1381                          * For the MQ case we take care of this in the caller.
1382                          */
1383                         if (!q->mq_ops)
1384                                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1385                         goto out_dec;
1386                 }
1387                 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1388                                    "unblocking device at zero depth\n"));
1389         }
1390
1391         if (busy >= sdev->queue_depth)
1392                 goto out_dec;
1393
1394         return 1;
1395 out_dec:
1396         atomic_dec(&sdev->device_busy);
1397         return 0;
1398 }
1399
1400 /*
1401  * scsi_target_queue_ready: checks if there we can send commands to target
1402  * @sdev: scsi device on starget to check.
1403  */
1404 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1405                                            struct scsi_device *sdev)
1406 {
1407         struct scsi_target *starget = scsi_target(sdev);
1408         unsigned int busy;
1409
1410         if (starget->single_lun) {
1411                 spin_lock_irq(shost->host_lock);
1412                 if (starget->starget_sdev_user &&
1413                     starget->starget_sdev_user != sdev) {
1414                         spin_unlock_irq(shost->host_lock);
1415                         return 0;
1416                 }
1417                 starget->starget_sdev_user = sdev;
1418                 spin_unlock_irq(shost->host_lock);
1419         }
1420
1421         if (starget->can_queue <= 0)
1422                 return 1;
1423
1424         busy = atomic_inc_return(&starget->target_busy) - 1;
1425         if (atomic_read(&starget->target_blocked) > 0) {
1426                 if (busy)
1427                         goto starved;
1428
1429                 /*
1430                  * unblock after target_blocked iterates to zero
1431                  */
1432                 if (atomic_dec_return(&starget->target_blocked) > 0)
1433                         goto out_dec;
1434
1435                 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1436                                  "unblocking target at zero depth\n"));
1437         }
1438
1439         if (busy >= starget->can_queue)
1440                 goto starved;
1441
1442         return 1;
1443
1444 starved:
1445         spin_lock_irq(shost->host_lock);
1446         list_move_tail(&sdev->starved_entry, &shost->starved_list);
1447         spin_unlock_irq(shost->host_lock);
1448 out_dec:
1449         if (starget->can_queue > 0)
1450                 atomic_dec(&starget->target_busy);
1451         return 0;
1452 }
1453
1454 /*
1455  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1456  * return 0. We must end up running the queue again whenever 0 is
1457  * returned, else IO can hang.
1458  */
1459 static inline int scsi_host_queue_ready(struct request_queue *q,
1460                                    struct Scsi_Host *shost,
1461                                    struct scsi_device *sdev)
1462 {
1463         unsigned int busy;
1464
1465         if (scsi_host_in_recovery(shost))
1466                 return 0;
1467
1468         busy = atomic_inc_return(&shost->host_busy) - 1;
1469         if (atomic_read(&shost->host_blocked) > 0) {
1470                 if (busy)
1471                         goto starved;
1472
1473                 /*
1474                  * unblock after host_blocked iterates to zero
1475                  */
1476                 if (atomic_dec_return(&shost->host_blocked) > 0)
1477                         goto out_dec;
1478
1479                 SCSI_LOG_MLQUEUE(3,
1480                         shost_printk(KERN_INFO, shost,
1481                                      "unblocking host at zero depth\n"));
1482         }
1483
1484         if (shost->can_queue > 0 && busy >= shost->can_queue)
1485                 goto starved;
1486         if (shost->host_self_blocked)
1487                 goto starved;
1488
1489         /* We're OK to process the command, so we can't be starved */
1490         if (!list_empty(&sdev->starved_entry)) {
1491                 spin_lock_irq(shost->host_lock);
1492                 if (!list_empty(&sdev->starved_entry))
1493                         list_del_init(&sdev->starved_entry);
1494                 spin_unlock_irq(shost->host_lock);
1495         }
1496
1497         return 1;
1498
1499 starved:
1500         spin_lock_irq(shost->host_lock);
1501         if (list_empty(&sdev->starved_entry))
1502                 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1503         spin_unlock_irq(shost->host_lock);
1504 out_dec:
1505         atomic_dec(&shost->host_busy);
1506         return 0;
1507 }
1508
1509 /*
1510  * Busy state exporting function for request stacking drivers.
1511  *
1512  * For efficiency, no lock is taken to check the busy state of
1513  * shost/starget/sdev, since the returned value is not guaranteed and
1514  * may be changed after request stacking drivers call the function,
1515  * regardless of taking lock or not.
1516  *
1517  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1518  * needs to return 'not busy'. Otherwise, request stacking drivers
1519  * may hold requests forever.
1520  */
1521 static int scsi_lld_busy(struct request_queue *q)
1522 {
1523         struct scsi_device *sdev = q->queuedata;
1524         struct Scsi_Host *shost;
1525
1526         if (blk_queue_dying(q))
1527                 return 0;
1528
1529         shost = sdev->host;
1530
1531         /*
1532          * Ignore host/starget busy state.
1533          * Since block layer does not have a concept of fairness across
1534          * multiple queues, congestion of host/starget needs to be handled
1535          * in SCSI layer.
1536          */
1537         if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1538                 return 1;
1539
1540         return 0;
1541 }
1542
1543 /*
1544  * Kill a request for a dead device
1545  */
1546 static void scsi_kill_request(struct request *req, struct request_queue *q)
1547 {
1548         struct scsi_cmnd *cmd = req->special;
1549         struct scsi_device *sdev;
1550         struct scsi_target *starget;
1551         struct Scsi_Host *shost;
1552
1553         blk_start_request(req);
1554
1555         scmd_printk(KERN_INFO, cmd, "killing request\n");
1556
1557         sdev = cmd->device;
1558         starget = scsi_target(sdev);
1559         shost = sdev->host;
1560         scsi_init_cmd_errh(cmd);
1561         cmd->result = DID_NO_CONNECT << 16;
1562         atomic_inc(&cmd->device->iorequest_cnt);
1563
1564         /*
1565          * SCSI request completion path will do scsi_device_unbusy(),
1566          * bump busy counts.  To bump the counters, we need to dance
1567          * with the locks as normal issue path does.
1568          */
1569         atomic_inc(&sdev->device_busy);
1570         atomic_inc(&shost->host_busy);
1571         if (starget->can_queue > 0)
1572                 atomic_inc(&starget->target_busy);
1573
1574         blk_complete_request(req);
1575 }
1576
1577 static void scsi_softirq_done(struct request *rq)
1578 {
1579         struct scsi_cmnd *cmd = rq->special;
1580         unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1581         int disposition;
1582
1583         INIT_LIST_HEAD(&cmd->eh_entry);
1584
1585         atomic_inc(&cmd->device->iodone_cnt);
1586         if (cmd->result)
1587                 atomic_inc(&cmd->device->ioerr_cnt);
1588
1589         disposition = scsi_decide_disposition(cmd);
1590         if (disposition != SUCCESS &&
1591             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1592                 sdev_printk(KERN_ERR, cmd->device,
1593                             "timing out command, waited %lus\n",
1594                             wait_for/HZ);
1595                 disposition = SUCCESS;
1596         }
1597
1598         scsi_log_completion(cmd, disposition);
1599
1600         switch (disposition) {
1601                 case SUCCESS:
1602                         scsi_finish_command(cmd);
1603                         break;
1604                 case NEEDS_RETRY:
1605                         scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1606                         break;
1607                 case ADD_TO_MLQUEUE:
1608                         scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1609                         break;
1610                 default:
1611                         scsi_eh_scmd_add(cmd);
1612                         break;
1613         }
1614 }
1615
1616 /**
1617  * scsi_dispatch_command - Dispatch a command to the low-level driver.
1618  * @cmd: command block we are dispatching.
1619  *
1620  * Return: nonzero return request was rejected and device's queue needs to be
1621  * plugged.
1622  */
1623 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1624 {
1625         struct Scsi_Host *host = cmd->device->host;
1626         int rtn = 0;
1627
1628         atomic_inc(&cmd->device->iorequest_cnt);
1629
1630         /* check if the device is still usable */
1631         if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1632                 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1633                  * returns an immediate error upwards, and signals
1634                  * that the device is no longer present */
1635                 cmd->result = DID_NO_CONNECT << 16;
1636                 goto done;
1637         }
1638
1639         /* Check to see if the scsi lld made this device blocked. */
1640         if (unlikely(scsi_device_blocked(cmd->device))) {
1641                 /*
1642                  * in blocked state, the command is just put back on
1643                  * the device queue.  The suspend state has already
1644                  * blocked the queue so future requests should not
1645                  * occur until the device transitions out of the
1646                  * suspend state.
1647                  */
1648                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1649                         "queuecommand : device blocked\n"));
1650                 return SCSI_MLQUEUE_DEVICE_BUSY;
1651         }
1652
1653         /* Store the LUN value in cmnd, if needed. */
1654         if (cmd->device->lun_in_cdb)
1655                 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1656                                (cmd->device->lun << 5 & 0xe0);
1657
1658         scsi_log_send(cmd);
1659
1660         /*
1661          * Before we queue this command, check if the command
1662          * length exceeds what the host adapter can handle.
1663          */
1664         if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1665                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1666                                "queuecommand : command too long. "
1667                                "cdb_size=%d host->max_cmd_len=%d\n",
1668                                cmd->cmd_len, cmd->device->host->max_cmd_len));
1669                 cmd->result = (DID_ABORT << 16);
1670                 goto done;
1671         }
1672
1673         if (unlikely(host->shost_state == SHOST_DEL)) {
1674                 cmd->result = (DID_NO_CONNECT << 16);
1675                 goto done;
1676
1677         }
1678
1679         trace_scsi_dispatch_cmd_start(cmd);
1680         rtn = host->hostt->queuecommand(host, cmd);
1681         if (rtn) {
1682                 trace_scsi_dispatch_cmd_error(cmd, rtn);
1683                 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1684                     rtn != SCSI_MLQUEUE_TARGET_BUSY)
1685                         rtn = SCSI_MLQUEUE_HOST_BUSY;
1686
1687                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1688                         "queuecommand : request rejected\n"));
1689         }
1690
1691         return rtn;
1692  done:
1693         cmd->scsi_done(cmd);
1694         return 0;
1695 }
1696
1697 /**
1698  * scsi_done - Invoke completion on finished SCSI command.
1699  * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1700  * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1701  *
1702  * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1703  * which regains ownership of the SCSI command (de facto) from a LLDD, and
1704  * calls blk_complete_request() for further processing.
1705  *
1706  * This function is interrupt context safe.
1707  */
1708 static void scsi_done(struct scsi_cmnd *cmd)
1709 {
1710         trace_scsi_dispatch_cmd_done(cmd);
1711         blk_complete_request(cmd->request);
1712 }
1713
1714 /*
1715  * Function:    scsi_request_fn()
1716  *
1717  * Purpose:     Main strategy routine for SCSI.
1718  *
1719  * Arguments:   q       - Pointer to actual queue.
1720  *
1721  * Returns:     Nothing
1722  *
1723  * Lock status: IO request lock assumed to be held when called.
1724  */
1725 static void scsi_request_fn(struct request_queue *q)
1726         __releases(q->queue_lock)
1727         __acquires(q->queue_lock)
1728 {
1729         struct scsi_device *sdev = q->queuedata;
1730         struct Scsi_Host *shost;
1731         struct scsi_cmnd *cmd;
1732         struct request *req;
1733
1734         /*
1735          * To start with, we keep looping until the queue is empty, or until
1736          * the host is no longer able to accept any more requests.
1737          */
1738         shost = sdev->host;
1739         for (;;) {
1740                 int rtn;
1741                 /*
1742                  * get next queueable request.  We do this early to make sure
1743                  * that the request is fully prepared even if we cannot
1744                  * accept it.
1745                  */
1746                 req = blk_peek_request(q);
1747                 if (!req)
1748                         break;
1749
1750                 if (unlikely(!scsi_device_online(sdev))) {
1751                         sdev_printk(KERN_ERR, sdev,
1752                                     "rejecting I/O to offline device\n");
1753                         scsi_kill_request(req, q);
1754                         continue;
1755                 }
1756
1757                 if (!scsi_dev_queue_ready(q, sdev))
1758                         break;
1759
1760                 /*
1761                  * Remove the request from the request list.
1762                  */
1763                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1764                         blk_start_request(req);
1765
1766                 spin_unlock_irq(q->queue_lock);
1767                 cmd = req->special;
1768                 if (unlikely(cmd == NULL)) {
1769                         printk(KERN_CRIT "impossible request in %s.\n"
1770                                          "please mail a stack trace to "
1771                                          "linux-scsi@vger.kernel.org\n",
1772                                          __func__);
1773                         blk_dump_rq_flags(req, "foo");
1774                         BUG();
1775                 }
1776
1777                 /*
1778                  * We hit this when the driver is using a host wide
1779                  * tag map. For device level tag maps the queue_depth check
1780                  * in the device ready fn would prevent us from trying
1781                  * to allocate a tag. Since the map is a shared host resource
1782                  * we add the dev to the starved list so it eventually gets
1783                  * a run when a tag is freed.
1784                  */
1785                 if (blk_queue_tagged(q) && !(req->rq_flags & RQF_QUEUED)) {
1786                         spin_lock_irq(shost->host_lock);
1787                         if (list_empty(&sdev->starved_entry))
1788                                 list_add_tail(&sdev->starved_entry,
1789                                               &shost->starved_list);
1790                         spin_unlock_irq(shost->host_lock);
1791                         goto not_ready;
1792                 }
1793
1794                 if (!scsi_target_queue_ready(shost, sdev))
1795                         goto not_ready;
1796
1797                 if (!scsi_host_queue_ready(q, shost, sdev))
1798                         goto host_not_ready;
1799         
1800                 if (sdev->simple_tags)
1801                         cmd->flags |= SCMD_TAGGED;
1802                 else
1803                         cmd->flags &= ~SCMD_TAGGED;
1804
1805                 /*
1806                  * Finally, initialize any error handling parameters, and set up
1807                  * the timers for timeouts.
1808                  */
1809                 scsi_init_cmd_errh(cmd);
1810
1811                 /*
1812                  * Dispatch the command to the low-level driver.
1813                  */
1814                 cmd->scsi_done = scsi_done;
1815                 rtn = scsi_dispatch_cmd(cmd);
1816                 if (rtn) {
1817                         scsi_queue_insert(cmd, rtn);
1818                         spin_lock_irq(q->queue_lock);
1819                         goto out_delay;
1820                 }
1821                 spin_lock_irq(q->queue_lock);
1822         }
1823
1824         return;
1825
1826  host_not_ready:
1827         if (scsi_target(sdev)->can_queue > 0)
1828                 atomic_dec(&scsi_target(sdev)->target_busy);
1829  not_ready:
1830         /*
1831          * lock q, handle tag, requeue req, and decrement device_busy. We
1832          * must return with queue_lock held.
1833          *
1834          * Decrementing device_busy without checking it is OK, as all such
1835          * cases (host limits or settings) should run the queue at some
1836          * later time.
1837          */
1838         spin_lock_irq(q->queue_lock);
1839         blk_requeue_request(q, req);
1840         atomic_dec(&sdev->device_busy);
1841 out_delay:
1842         if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1843                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1844 }
1845
1846 static inline blk_status_t prep_to_mq(int ret)
1847 {
1848         switch (ret) {
1849         case BLKPREP_OK:
1850                 return BLK_STS_OK;
1851         case BLKPREP_DEFER:
1852                 return BLK_STS_RESOURCE;
1853         default:
1854                 return BLK_STS_IOERR;
1855         }
1856 }
1857
1858 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1859 static unsigned int scsi_mq_sgl_size(struct Scsi_Host *shost)
1860 {
1861         return min_t(unsigned int, shost->sg_tablesize, SG_CHUNK_SIZE) *
1862                 sizeof(struct scatterlist);
1863 }
1864
1865 static int scsi_mq_prep_fn(struct request *req)
1866 {
1867         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1868         struct scsi_device *sdev = req->q->queuedata;
1869         struct Scsi_Host *shost = sdev->host;
1870         struct scatterlist *sg;
1871
1872         scsi_init_command(sdev, cmd);
1873
1874         req->special = cmd;
1875
1876         cmd->request = req;
1877
1878         cmd->tag = req->tag;
1879         cmd->prot_op = SCSI_PROT_NORMAL;
1880
1881         sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1882         cmd->sdb.table.sgl = sg;
1883
1884         if (scsi_host_get_prot(shost)) {
1885                 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1886
1887                 cmd->prot_sdb->table.sgl =
1888                         (struct scatterlist *)(cmd->prot_sdb + 1);
1889         }
1890
1891         if (blk_bidi_rq(req)) {
1892                 struct request *next_rq = req->next_rq;
1893                 struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1894
1895                 memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1896                 bidi_sdb->table.sgl =
1897                         (struct scatterlist *)(bidi_sdb + 1);
1898
1899                 next_rq->special = bidi_sdb;
1900         }
1901
1902         blk_mq_start_request(req);
1903
1904         return scsi_setup_cmnd(sdev, req);
1905 }
1906
1907 static void scsi_mq_done(struct scsi_cmnd *cmd)
1908 {
1909         trace_scsi_dispatch_cmd_done(cmd);
1910         blk_mq_complete_request(cmd->request);
1911 }
1912
1913 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1914                          const struct blk_mq_queue_data *bd)
1915 {
1916         struct request *req = bd->rq;
1917         struct request_queue *q = req->q;
1918         struct scsi_device *sdev = q->queuedata;
1919         struct Scsi_Host *shost = sdev->host;
1920         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1921         blk_status_t ret;
1922         int reason;
1923
1924         ret = prep_to_mq(scsi_prep_state_check(sdev, req));
1925         if (ret != BLK_STS_OK)
1926                 goto out;
1927
1928         ret = BLK_STS_RESOURCE;
1929         if (!get_device(&sdev->sdev_gendev))
1930                 goto out;
1931
1932         if (!scsi_dev_queue_ready(q, sdev))
1933                 goto out_put_device;
1934         if (!scsi_target_queue_ready(shost, sdev))
1935                 goto out_dec_device_busy;
1936         if (!scsi_host_queue_ready(q, shost, sdev))
1937                 goto out_dec_target_busy;
1938
1939         if (!(req->rq_flags & RQF_DONTPREP)) {
1940                 ret = prep_to_mq(scsi_mq_prep_fn(req));
1941                 if (ret != BLK_STS_OK)
1942                         goto out_dec_host_busy;
1943                 req->rq_flags |= RQF_DONTPREP;
1944         } else {
1945                 blk_mq_start_request(req);
1946         }
1947
1948         if (sdev->simple_tags)
1949                 cmd->flags |= SCMD_TAGGED;
1950         else
1951                 cmd->flags &= ~SCMD_TAGGED;
1952
1953         scsi_init_cmd_errh(cmd);
1954         cmd->scsi_done = scsi_mq_done;
1955
1956         reason = scsi_dispatch_cmd(cmd);
1957         if (reason) {
1958                 scsi_set_blocked(cmd, reason);
1959                 ret = BLK_STS_RESOURCE;
1960                 goto out_dec_host_busy;
1961         }
1962
1963         return BLK_STS_OK;
1964
1965 out_dec_host_busy:
1966         atomic_dec(&shost->host_busy);
1967 out_dec_target_busy:
1968         if (scsi_target(sdev)->can_queue > 0)
1969                 atomic_dec(&scsi_target(sdev)->target_busy);
1970 out_dec_device_busy:
1971         atomic_dec(&sdev->device_busy);
1972 out_put_device:
1973         put_device(&sdev->sdev_gendev);
1974 out:
1975         switch (ret) {
1976         case BLK_STS_OK:
1977                 break;
1978         case BLK_STS_RESOURCE:
1979                 if (atomic_read(&sdev->device_busy) == 0 &&
1980                     !scsi_device_blocked(sdev))
1981                         blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY);
1982                 break;
1983         default:
1984                 /*
1985                  * Make sure to release all allocated ressources when
1986                  * we hit an error, as we will never see this command
1987                  * again.
1988                  */
1989                 if (req->rq_flags & RQF_DONTPREP)
1990                         scsi_mq_uninit_cmd(cmd);
1991                 break;
1992         }
1993         return ret;
1994 }
1995
1996 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1997                 bool reserved)
1998 {
1999         if (reserved)
2000                 return BLK_EH_RESET_TIMER;
2001         return scsi_times_out(req);
2002 }
2003
2004 static int scsi_init_request(struct blk_mq_tag_set *set, struct request *rq,
2005                 unsigned int hctx_idx, unsigned int numa_node)
2006 {
2007         struct Scsi_Host *shost = set->driver_data;
2008         const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2009         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2010         struct scatterlist *sg;
2011
2012         if (unchecked_isa_dma)
2013                 cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2014         cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
2015                                                     GFP_KERNEL, numa_node);
2016         if (!cmd->sense_buffer)
2017                 return -ENOMEM;
2018         cmd->req.sense = cmd->sense_buffer;
2019
2020         if (scsi_host_get_prot(shost)) {
2021                 sg = (void *)cmd + sizeof(struct scsi_cmnd) +
2022                         shost->hostt->cmd_size;
2023                 cmd->prot_sdb = (void *)sg + scsi_mq_sgl_size(shost);
2024         }
2025
2026         return 0;
2027 }
2028
2029 static void scsi_exit_request(struct blk_mq_tag_set *set, struct request *rq,
2030                 unsigned int hctx_idx)
2031 {
2032         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2033
2034         scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2035                                cmd->sense_buffer);
2036 }
2037
2038 static int scsi_map_queues(struct blk_mq_tag_set *set)
2039 {
2040         struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
2041
2042         if (shost->hostt->map_queues)
2043                 return shost->hostt->map_queues(shost);
2044         return blk_mq_map_queues(set);
2045 }
2046
2047 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
2048 {
2049         struct device *host_dev;
2050         u64 bounce_limit = 0xffffffff;
2051
2052         if (shost->unchecked_isa_dma)
2053                 return BLK_BOUNCE_ISA;
2054         /*
2055          * Platforms with virtual-DMA translation
2056          * hardware have no practical limit.
2057          */
2058         if (!PCI_DMA_BUS_IS_PHYS)
2059                 return BLK_BOUNCE_ANY;
2060
2061         host_dev = scsi_get_device(shost);
2062         if (host_dev && host_dev->dma_mask)
2063                 bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
2064
2065         return bounce_limit;
2066 }
2067
2068 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2069 {
2070         struct device *dev = shost->dma_dev;
2071
2072         queue_flag_set_unlocked(QUEUE_FLAG_SCSI_PASSTHROUGH, q);
2073
2074         /*
2075          * this limit is imposed by hardware restrictions
2076          */
2077         blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2078                                         SG_MAX_SEGMENTS));
2079
2080         if (scsi_host_prot_dma(shost)) {
2081                 shost->sg_prot_tablesize =
2082                         min_not_zero(shost->sg_prot_tablesize,
2083                                      (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2084                 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2085                 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2086         }
2087
2088         blk_queue_max_hw_sectors(q, shost->max_sectors);
2089         blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2090         blk_queue_segment_boundary(q, shost->dma_boundary);
2091         dma_set_seg_boundary(dev, shost->dma_boundary);
2092
2093         blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2094
2095         if (!shost->use_clustering)
2096                 q->limits.cluster = 0;
2097
2098         /*
2099          * set a reasonable default alignment on word boundaries: the
2100          * host and device may alter it using
2101          * blk_queue_update_dma_alignment() later.
2102          */
2103         blk_queue_dma_alignment(q, 0x03);
2104 }
2105 EXPORT_SYMBOL_GPL(__scsi_init_queue);
2106
2107 static int scsi_init_rq(struct request_queue *q, struct request *rq, gfp_t gfp)
2108 {
2109         struct Scsi_Host *shost = q->rq_alloc_data;
2110         const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2111         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2112
2113         memset(cmd, 0, sizeof(*cmd));
2114
2115         if (unchecked_isa_dma)
2116                 cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2117         cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, gfp,
2118                                                     NUMA_NO_NODE);
2119         if (!cmd->sense_buffer)
2120                 goto fail;
2121         cmd->req.sense = cmd->sense_buffer;
2122
2123         if (scsi_host_get_prot(shost) >= SHOST_DIX_TYPE0_PROTECTION) {
2124                 cmd->prot_sdb = kmem_cache_zalloc(scsi_sdb_cache, gfp);
2125                 if (!cmd->prot_sdb)
2126                         goto fail_free_sense;
2127         }
2128
2129         return 0;
2130
2131 fail_free_sense:
2132         scsi_free_sense_buffer(unchecked_isa_dma, cmd->sense_buffer);
2133 fail:
2134         return -ENOMEM;
2135 }
2136
2137 static void scsi_exit_rq(struct request_queue *q, struct request *rq)
2138 {
2139         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2140
2141         if (cmd->prot_sdb)
2142                 kmem_cache_free(scsi_sdb_cache, cmd->prot_sdb);
2143         scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2144                                cmd->sense_buffer);
2145 }
2146
2147 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
2148 {
2149         struct Scsi_Host *shost = sdev->host;
2150         struct request_queue *q;
2151
2152         q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE);
2153         if (!q)
2154                 return NULL;
2155         q->cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
2156         q->rq_alloc_data = shost;
2157         q->request_fn = scsi_request_fn;
2158         q->init_rq_fn = scsi_init_rq;
2159         q->exit_rq_fn = scsi_exit_rq;
2160         q->initialize_rq_fn = scsi_initialize_rq;
2161
2162         if (blk_init_allocated_queue(q) < 0) {
2163                 blk_cleanup_queue(q);
2164                 return NULL;
2165         }
2166
2167         __scsi_init_queue(shost, q);
2168         blk_queue_prep_rq(q, scsi_prep_fn);
2169         blk_queue_unprep_rq(q, scsi_unprep_fn);
2170         blk_queue_softirq_done(q, scsi_softirq_done);
2171         blk_queue_rq_timed_out(q, scsi_times_out);
2172         blk_queue_lld_busy(q, scsi_lld_busy);
2173         return q;
2174 }
2175
2176 static const struct blk_mq_ops scsi_mq_ops = {
2177         .queue_rq       = scsi_queue_rq,
2178         .complete       = scsi_softirq_done,
2179         .timeout        = scsi_timeout,
2180 #ifdef CONFIG_BLK_DEBUG_FS
2181         .show_rq        = scsi_show_rq,
2182 #endif
2183         .init_request   = scsi_init_request,
2184         .exit_request   = scsi_exit_request,
2185         .initialize_rq_fn = scsi_initialize_rq,
2186         .map_queues     = scsi_map_queues,
2187 };
2188
2189 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2190 {
2191         sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2192         if (IS_ERR(sdev->request_queue))
2193                 return NULL;
2194
2195         sdev->request_queue->queuedata = sdev;
2196         __scsi_init_queue(sdev->host, sdev->request_queue);
2197         return sdev->request_queue;
2198 }
2199
2200 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2201 {
2202         unsigned int cmd_size, sgl_size;
2203
2204         sgl_size = scsi_mq_sgl_size(shost);
2205         cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2206         if (scsi_host_get_prot(shost))
2207                 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2208
2209         memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2210         shost->tag_set.ops = &scsi_mq_ops;
2211         shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2212         shost->tag_set.queue_depth = shost->can_queue;
2213         shost->tag_set.cmd_size = cmd_size;
2214         shost->tag_set.numa_node = NUMA_NO_NODE;
2215         shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2216         shost->tag_set.flags |=
2217                 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2218         shost->tag_set.driver_data = shost;
2219
2220         return blk_mq_alloc_tag_set(&shost->tag_set);
2221 }
2222
2223 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2224 {
2225         blk_mq_free_tag_set(&shost->tag_set);
2226 }
2227
2228 /**
2229  * scsi_device_from_queue - return sdev associated with a request_queue
2230  * @q: The request queue to return the sdev from
2231  *
2232  * Return the sdev associated with a request queue or NULL if the
2233  * request_queue does not reference a SCSI device.
2234  */
2235 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2236 {
2237         struct scsi_device *sdev = NULL;
2238
2239         if (q->mq_ops) {
2240                 if (q->mq_ops == &scsi_mq_ops)
2241                         sdev = q->queuedata;
2242         } else if (q->request_fn == scsi_request_fn)
2243                 sdev = q->queuedata;
2244         if (!sdev || !get_device(&sdev->sdev_gendev))
2245                 sdev = NULL;
2246
2247         return sdev;
2248 }
2249 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2250
2251 /*
2252  * Function:    scsi_block_requests()
2253  *
2254  * Purpose:     Utility function used by low-level drivers to prevent further
2255  *              commands from being queued to the device.
2256  *
2257  * Arguments:   shost       - Host in question
2258  *
2259  * Returns:     Nothing
2260  *
2261  * Lock status: No locks are assumed held.
2262  *
2263  * Notes:       There is no timer nor any other means by which the requests
2264  *              get unblocked other than the low-level driver calling
2265  *              scsi_unblock_requests().
2266  */
2267 void scsi_block_requests(struct Scsi_Host *shost)
2268 {
2269         shost->host_self_blocked = 1;
2270 }
2271 EXPORT_SYMBOL(scsi_block_requests);
2272
2273 /*
2274  * Function:    scsi_unblock_requests()
2275  *
2276  * Purpose:     Utility function used by low-level drivers to allow further
2277  *              commands from being queued to the device.
2278  *
2279  * Arguments:   shost       - Host in question
2280  *
2281  * Returns:     Nothing
2282  *
2283  * Lock status: No locks are assumed held.
2284  *
2285  * Notes:       There is no timer nor any other means by which the requests
2286  *              get unblocked other than the low-level driver calling
2287  *              scsi_unblock_requests().
2288  *
2289  *              This is done as an API function so that changes to the
2290  *              internals of the scsi mid-layer won't require wholesale
2291  *              changes to drivers that use this feature.
2292  */
2293 void scsi_unblock_requests(struct Scsi_Host *shost)
2294 {
2295         shost->host_self_blocked = 0;
2296         scsi_run_host_queues(shost);
2297 }
2298 EXPORT_SYMBOL(scsi_unblock_requests);
2299
2300 int __init scsi_init_queue(void)
2301 {
2302         scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2303                                            sizeof(struct scsi_data_buffer),
2304                                            0, 0, NULL);
2305         if (!scsi_sdb_cache) {
2306                 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2307                 return -ENOMEM;
2308         }
2309
2310         return 0;
2311 }
2312
2313 void scsi_exit_queue(void)
2314 {
2315         kmem_cache_destroy(scsi_sense_cache);
2316         kmem_cache_destroy(scsi_sense_isadma_cache);
2317         kmem_cache_destroy(scsi_sdb_cache);
2318 }
2319
2320 /**
2321  *      scsi_mode_select - issue a mode select
2322  *      @sdev:  SCSI device to be queried
2323  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
2324  *      @sp:    Save page bit (0 == don't save, 1 == save)
2325  *      @modepage: mode page being requested
2326  *      @buffer: request buffer (may not be smaller than eight bytes)
2327  *      @len:   length of request buffer.
2328  *      @timeout: command timeout
2329  *      @retries: number of retries before failing
2330  *      @data: returns a structure abstracting the mode header data
2331  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2332  *              must be SCSI_SENSE_BUFFERSIZE big.
2333  *
2334  *      Returns zero if successful; negative error number or scsi
2335  *      status on error
2336  *
2337  */
2338 int
2339 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2340                  unsigned char *buffer, int len, int timeout, int retries,
2341                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2342 {
2343         unsigned char cmd[10];
2344         unsigned char *real_buffer;
2345         int ret;
2346
2347         memset(cmd, 0, sizeof(cmd));
2348         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2349
2350         if (sdev->use_10_for_ms) {
2351                 if (len > 65535)
2352                         return -EINVAL;
2353                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2354                 if (!real_buffer)
2355                         return -ENOMEM;
2356                 memcpy(real_buffer + 8, buffer, len);
2357                 len += 8;
2358                 real_buffer[0] = 0;
2359                 real_buffer[1] = 0;
2360                 real_buffer[2] = data->medium_type;
2361                 real_buffer[3] = data->device_specific;
2362                 real_buffer[4] = data->longlba ? 0x01 : 0;
2363                 real_buffer[5] = 0;
2364                 real_buffer[6] = data->block_descriptor_length >> 8;
2365                 real_buffer[7] = data->block_descriptor_length;
2366
2367                 cmd[0] = MODE_SELECT_10;
2368                 cmd[7] = len >> 8;
2369                 cmd[8] = len;
2370         } else {
2371                 if (len > 255 || data->block_descriptor_length > 255 ||
2372                     data->longlba)
2373                         return -EINVAL;
2374
2375                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2376                 if (!real_buffer)
2377                         return -ENOMEM;
2378                 memcpy(real_buffer + 4, buffer, len);
2379                 len += 4;
2380                 real_buffer[0] = 0;
2381                 real_buffer[1] = data->medium_type;
2382                 real_buffer[2] = data->device_specific;
2383                 real_buffer[3] = data->block_descriptor_length;
2384                 
2385
2386                 cmd[0] = MODE_SELECT;
2387                 cmd[4] = len;
2388         }
2389
2390         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2391                                sshdr, timeout, retries, NULL);
2392         kfree(real_buffer);
2393         return ret;
2394 }
2395 EXPORT_SYMBOL_GPL(scsi_mode_select);
2396
2397 /**
2398  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2399  *      @sdev:  SCSI device to be queried
2400  *      @dbd:   set if mode sense will allow block descriptors to be returned
2401  *      @modepage: mode page being requested
2402  *      @buffer: request buffer (may not be smaller than eight bytes)
2403  *      @len:   length of request buffer.
2404  *      @timeout: command timeout
2405  *      @retries: number of retries before failing
2406  *      @data: returns a structure abstracting the mode header data
2407  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2408  *              must be SCSI_SENSE_BUFFERSIZE big.
2409  *
2410  *      Returns zero if unsuccessful, or the header offset (either 4
2411  *      or 8 depending on whether a six or ten byte command was
2412  *      issued) if successful.
2413  */
2414 int
2415 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2416                   unsigned char *buffer, int len, int timeout, int retries,
2417                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2418 {
2419         unsigned char cmd[12];
2420         int use_10_for_ms;
2421         int header_length;
2422         int result, retry_count = retries;
2423         struct scsi_sense_hdr my_sshdr;
2424
2425         memset(data, 0, sizeof(*data));
2426         memset(&cmd[0], 0, 12);
2427         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
2428         cmd[2] = modepage;
2429
2430         /* caller might not be interested in sense, but we need it */
2431         if (!sshdr)
2432                 sshdr = &my_sshdr;
2433
2434  retry:
2435         use_10_for_ms = sdev->use_10_for_ms;
2436
2437         if (use_10_for_ms) {
2438                 if (len < 8)
2439                         len = 8;
2440
2441                 cmd[0] = MODE_SENSE_10;
2442                 cmd[8] = len;
2443                 header_length = 8;
2444         } else {
2445                 if (len < 4)
2446                         len = 4;
2447
2448                 cmd[0] = MODE_SENSE;
2449                 cmd[4] = len;
2450                 header_length = 4;
2451         }
2452
2453         memset(buffer, 0, len);
2454
2455         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2456                                   sshdr, timeout, retries, NULL);
2457
2458         /* This code looks awful: what it's doing is making sure an
2459          * ILLEGAL REQUEST sense return identifies the actual command
2460          * byte as the problem.  MODE_SENSE commands can return
2461          * ILLEGAL REQUEST if the code page isn't supported */
2462
2463         if (use_10_for_ms && !scsi_status_is_good(result) &&
2464             (driver_byte(result) & DRIVER_SENSE)) {
2465                 if (scsi_sense_valid(sshdr)) {
2466                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2467                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2468                                 /* 
2469                                  * Invalid command operation code
2470                                  */
2471                                 sdev->use_10_for_ms = 0;
2472                                 goto retry;
2473                         }
2474                 }
2475         }
2476
2477         if(scsi_status_is_good(result)) {
2478                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2479                              (modepage == 6 || modepage == 8))) {
2480                         /* Initio breakage? */
2481                         header_length = 0;
2482                         data->length = 13;
2483                         data->medium_type = 0;
2484                         data->device_specific = 0;
2485                         data->longlba = 0;
2486                         data->block_descriptor_length = 0;
2487                 } else if(use_10_for_ms) {
2488                         data->length = buffer[0]*256 + buffer[1] + 2;
2489                         data->medium_type = buffer[2];
2490                         data->device_specific = buffer[3];
2491                         data->longlba = buffer[4] & 0x01;
2492                         data->block_descriptor_length = buffer[6]*256
2493                                 + buffer[7];
2494                 } else {
2495                         data->length = buffer[0] + 1;
2496                         data->medium_type = buffer[1];
2497                         data->device_specific = buffer[2];
2498                         data->block_descriptor_length = buffer[3];
2499                 }
2500                 data->header_length = header_length;
2501         } else if ((status_byte(result) == CHECK_CONDITION) &&
2502                    scsi_sense_valid(sshdr) &&
2503                    sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2504                 retry_count--;
2505                 goto retry;
2506         }
2507
2508         return result;
2509 }
2510 EXPORT_SYMBOL(scsi_mode_sense);
2511
2512 /**
2513  *      scsi_test_unit_ready - test if unit is ready
2514  *      @sdev:  scsi device to change the state of.
2515  *      @timeout: command timeout
2516  *      @retries: number of retries before failing
2517  *      @sshdr: outpout pointer for decoded sense information.
2518  *
2519  *      Returns zero if unsuccessful or an error if TUR failed.  For
2520  *      removable media, UNIT_ATTENTION sets ->changed flag.
2521  **/
2522 int
2523 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2524                      struct scsi_sense_hdr *sshdr)
2525 {
2526         char cmd[] = {
2527                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2528         };
2529         int result;
2530
2531         /* try to eat the UNIT_ATTENTION if there are enough retries */
2532         do {
2533                 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2534                                           timeout, retries, NULL);
2535                 if (sdev->removable && scsi_sense_valid(sshdr) &&
2536                     sshdr->sense_key == UNIT_ATTENTION)
2537                         sdev->changed = 1;
2538         } while (scsi_sense_valid(sshdr) &&
2539                  sshdr->sense_key == UNIT_ATTENTION && --retries);
2540
2541         return result;
2542 }
2543 EXPORT_SYMBOL(scsi_test_unit_ready);
2544
2545 /**
2546  *      scsi_device_set_state - Take the given device through the device state model.
2547  *      @sdev:  scsi device to change the state of.
2548  *      @state: state to change to.
2549  *
2550  *      Returns zero if unsuccessful or an error if the requested 
2551  *      transition is illegal.
2552  */
2553 int
2554 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2555 {
2556         enum scsi_device_state oldstate = sdev->sdev_state;
2557
2558         if (state == oldstate)
2559                 return 0;
2560
2561         switch (state) {
2562         case SDEV_CREATED:
2563                 switch (oldstate) {
2564                 case SDEV_CREATED_BLOCK:
2565                         break;
2566                 default:
2567                         goto illegal;
2568                 }
2569                 break;
2570                         
2571         case SDEV_RUNNING:
2572                 switch (oldstate) {
2573                 case SDEV_CREATED:
2574                 case SDEV_OFFLINE:
2575                 case SDEV_TRANSPORT_OFFLINE:
2576                 case SDEV_QUIESCE:
2577                 case SDEV_BLOCK:
2578                         break;
2579                 default:
2580                         goto illegal;
2581                 }
2582                 break;
2583
2584         case SDEV_QUIESCE:
2585                 switch (oldstate) {
2586                 case SDEV_RUNNING:
2587                 case SDEV_OFFLINE:
2588                 case SDEV_TRANSPORT_OFFLINE:
2589                         break;
2590                 default:
2591                         goto illegal;
2592                 }
2593                 break;
2594
2595         case SDEV_OFFLINE:
2596         case SDEV_TRANSPORT_OFFLINE:
2597                 switch (oldstate) {
2598                 case SDEV_CREATED:
2599                 case SDEV_RUNNING:
2600                 case SDEV_QUIESCE:
2601                 case SDEV_BLOCK:
2602                         break;
2603                 default:
2604                         goto illegal;
2605                 }
2606                 break;
2607
2608         case SDEV_BLOCK:
2609                 switch (oldstate) {
2610                 case SDEV_RUNNING:
2611                 case SDEV_CREATED_BLOCK:
2612                         break;
2613                 default:
2614                         goto illegal;
2615                 }
2616                 break;
2617
2618         case SDEV_CREATED_BLOCK:
2619                 switch (oldstate) {
2620                 case SDEV_CREATED:
2621                         break;
2622                 default:
2623                         goto illegal;
2624                 }
2625                 break;
2626
2627         case SDEV_CANCEL:
2628                 switch (oldstate) {
2629                 case SDEV_CREATED:
2630                 case SDEV_RUNNING:
2631                 case SDEV_QUIESCE:
2632                 case SDEV_OFFLINE:
2633                 case SDEV_TRANSPORT_OFFLINE:
2634                         break;
2635                 default:
2636                         goto illegal;
2637                 }
2638                 break;
2639
2640         case SDEV_DEL:
2641                 switch (oldstate) {
2642                 case SDEV_CREATED:
2643                 case SDEV_RUNNING:
2644                 case SDEV_OFFLINE:
2645                 case SDEV_TRANSPORT_OFFLINE:
2646                 case SDEV_CANCEL:
2647                 case SDEV_BLOCK:
2648                 case SDEV_CREATED_BLOCK:
2649                         break;
2650                 default:
2651                         goto illegal;
2652                 }
2653                 break;
2654
2655         }
2656         sdev->sdev_state = state;
2657         return 0;
2658
2659  illegal:
2660         SCSI_LOG_ERROR_RECOVERY(1,
2661                                 sdev_printk(KERN_ERR, sdev,
2662                                             "Illegal state transition %s->%s",
2663                                             scsi_device_state_name(oldstate),
2664                                             scsi_device_state_name(state))
2665                                 );
2666         return -EINVAL;
2667 }
2668 EXPORT_SYMBOL(scsi_device_set_state);
2669
2670 /**
2671  *      sdev_evt_emit - emit a single SCSI device uevent
2672  *      @sdev: associated SCSI device
2673  *      @evt: event to emit
2674  *
2675  *      Send a single uevent (scsi_event) to the associated scsi_device.
2676  */
2677 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2678 {
2679         int idx = 0;
2680         char *envp[3];
2681
2682         switch (evt->evt_type) {
2683         case SDEV_EVT_MEDIA_CHANGE:
2684                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2685                 break;
2686         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2687                 scsi_rescan_device(&sdev->sdev_gendev);
2688                 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2689                 break;
2690         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2691                 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2692                 break;
2693         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2694                envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2695                 break;
2696         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2697                 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2698                 break;
2699         case SDEV_EVT_LUN_CHANGE_REPORTED:
2700                 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2701                 break;
2702         case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2703                 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2704                 break;
2705         default:
2706                 /* do nothing */
2707                 break;
2708         }
2709
2710         envp[idx++] = NULL;
2711
2712         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2713 }
2714
2715 /**
2716  *      sdev_evt_thread - send a uevent for each scsi event
2717  *      @work: work struct for scsi_device
2718  *
2719  *      Dispatch queued events to their associated scsi_device kobjects
2720  *      as uevents.
2721  */
2722 void scsi_evt_thread(struct work_struct *work)
2723 {
2724         struct scsi_device *sdev;
2725         enum scsi_device_event evt_type;
2726         LIST_HEAD(event_list);
2727
2728         sdev = container_of(work, struct scsi_device, event_work);
2729
2730         for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2731                 if (test_and_clear_bit(evt_type, sdev->pending_events))
2732                         sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2733
2734         while (1) {
2735                 struct scsi_event *evt;
2736                 struct list_head *this, *tmp;
2737                 unsigned long flags;
2738
2739                 spin_lock_irqsave(&sdev->list_lock, flags);
2740                 list_splice_init(&sdev->event_list, &event_list);
2741                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2742
2743                 if (list_empty(&event_list))
2744                         break;
2745
2746                 list_for_each_safe(this, tmp, &event_list) {
2747                         evt = list_entry(this, struct scsi_event, node);
2748                         list_del(&evt->node);
2749                         scsi_evt_emit(sdev, evt);
2750                         kfree(evt);
2751                 }
2752         }
2753 }
2754
2755 /**
2756  *      sdev_evt_send - send asserted event to uevent thread
2757  *      @sdev: scsi_device event occurred on
2758  *      @evt: event to send
2759  *
2760  *      Assert scsi device event asynchronously.
2761  */
2762 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2763 {
2764         unsigned long flags;
2765
2766 #if 0
2767         /* FIXME: currently this check eliminates all media change events
2768          * for polled devices.  Need to update to discriminate between AN
2769          * and polled events */
2770         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2771                 kfree(evt);
2772                 return;
2773         }
2774 #endif
2775
2776         spin_lock_irqsave(&sdev->list_lock, flags);
2777         list_add_tail(&evt->node, &sdev->event_list);
2778         schedule_work(&sdev->event_work);
2779         spin_unlock_irqrestore(&sdev->list_lock, flags);
2780 }
2781 EXPORT_SYMBOL_GPL(sdev_evt_send);
2782
2783 /**
2784  *      sdev_evt_alloc - allocate a new scsi event
2785  *      @evt_type: type of event to allocate
2786  *      @gfpflags: GFP flags for allocation
2787  *
2788  *      Allocates and returns a new scsi_event.
2789  */
2790 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2791                                   gfp_t gfpflags)
2792 {
2793         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2794         if (!evt)
2795                 return NULL;
2796
2797         evt->evt_type = evt_type;
2798         INIT_LIST_HEAD(&evt->node);
2799
2800         /* evt_type-specific initialization, if any */
2801         switch (evt_type) {
2802         case SDEV_EVT_MEDIA_CHANGE:
2803         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2804         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2805         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2806         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2807         case SDEV_EVT_LUN_CHANGE_REPORTED:
2808         case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2809         default:
2810                 /* do nothing */
2811                 break;
2812         }
2813
2814         return evt;
2815 }
2816 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2817
2818 /**
2819  *      sdev_evt_send_simple - send asserted event to uevent thread
2820  *      @sdev: scsi_device event occurred on
2821  *      @evt_type: type of event to send
2822  *      @gfpflags: GFP flags for allocation
2823  *
2824  *      Assert scsi device event asynchronously, given an event type.
2825  */
2826 void sdev_evt_send_simple(struct scsi_device *sdev,
2827                           enum scsi_device_event evt_type, gfp_t gfpflags)
2828 {
2829         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2830         if (!evt) {
2831                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2832                             evt_type);
2833                 return;
2834         }
2835
2836         sdev_evt_send(sdev, evt);
2837 }
2838 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2839
2840 /**
2841  * scsi_request_fn_active() - number of kernel threads inside scsi_request_fn()
2842  * @sdev: SCSI device to count the number of scsi_request_fn() callers for.
2843  */
2844 static int scsi_request_fn_active(struct scsi_device *sdev)
2845 {
2846         struct request_queue *q = sdev->request_queue;
2847         int request_fn_active;
2848
2849         WARN_ON_ONCE(sdev->host->use_blk_mq);
2850
2851         spin_lock_irq(q->queue_lock);
2852         request_fn_active = q->request_fn_active;
2853         spin_unlock_irq(q->queue_lock);
2854
2855         return request_fn_active;
2856 }
2857
2858 /**
2859  * scsi_wait_for_queuecommand() - wait for ongoing queuecommand() calls
2860  * @sdev: SCSI device pointer.
2861  *
2862  * Wait until the ongoing shost->hostt->queuecommand() calls that are
2863  * invoked from scsi_request_fn() have finished.
2864  */
2865 static void scsi_wait_for_queuecommand(struct scsi_device *sdev)
2866 {
2867         WARN_ON_ONCE(sdev->host->use_blk_mq);
2868
2869         while (scsi_request_fn_active(sdev))
2870                 msleep(20);
2871 }
2872
2873 /**
2874  *      scsi_device_quiesce - Block user issued commands.
2875  *      @sdev:  scsi device to quiesce.
2876  *
2877  *      This works by trying to transition to the SDEV_QUIESCE state
2878  *      (which must be a legal transition).  When the device is in this
2879  *      state, only special requests will be accepted, all others will
2880  *      be deferred.  Since special requests may also be requeued requests,
2881  *      a successful return doesn't guarantee the device will be 
2882  *      totally quiescent.
2883  *
2884  *      Must be called with user context, may sleep.
2885  *
2886  *      Returns zero if unsuccessful or an error if not.
2887  */
2888 int
2889 scsi_device_quiesce(struct scsi_device *sdev)
2890 {
2891         int err;
2892
2893         mutex_lock(&sdev->state_mutex);
2894         err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2895         mutex_unlock(&sdev->state_mutex);
2896
2897         if (err)
2898                 return err;
2899
2900         scsi_run_queue(sdev->request_queue);
2901         while (atomic_read(&sdev->device_busy)) {
2902                 msleep_interruptible(200);
2903                 scsi_run_queue(sdev->request_queue);
2904         }
2905         return 0;
2906 }
2907 EXPORT_SYMBOL(scsi_device_quiesce);
2908
2909 /**
2910  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2911  *      @sdev:  scsi device to resume.
2912  *
2913  *      Moves the device from quiesced back to running and restarts the
2914  *      queues.
2915  *
2916  *      Must be called with user context, may sleep.
2917  */
2918 void scsi_device_resume(struct scsi_device *sdev)
2919 {
2920         /* check if the device state was mutated prior to resume, and if
2921          * so assume the state is being managed elsewhere (for example
2922          * device deleted during suspend)
2923          */
2924         mutex_lock(&sdev->state_mutex);
2925         if (sdev->sdev_state == SDEV_QUIESCE &&
2926             scsi_device_set_state(sdev, SDEV_RUNNING) == 0)
2927                 scsi_run_queue(sdev->request_queue);
2928         mutex_unlock(&sdev->state_mutex);
2929 }
2930 EXPORT_SYMBOL(scsi_device_resume);
2931
2932 static void
2933 device_quiesce_fn(struct scsi_device *sdev, void *data)
2934 {
2935         scsi_device_quiesce(sdev);
2936 }
2937
2938 void
2939 scsi_target_quiesce(struct scsi_target *starget)
2940 {
2941         starget_for_each_device(starget, NULL, device_quiesce_fn);
2942 }
2943 EXPORT_SYMBOL(scsi_target_quiesce);
2944
2945 static void
2946 device_resume_fn(struct scsi_device *sdev, void *data)
2947 {
2948         scsi_device_resume(sdev);
2949 }
2950
2951 void
2952 scsi_target_resume(struct scsi_target *starget)
2953 {
2954         starget_for_each_device(starget, NULL, device_resume_fn);
2955 }
2956 EXPORT_SYMBOL(scsi_target_resume);
2957
2958 /**
2959  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2960  * @sdev: device to block
2961  *
2962  * Pause SCSI command processing on the specified device. Does not sleep.
2963  *
2964  * Returns zero if successful or a negative error code upon failure.
2965  *
2966  * Notes:
2967  * This routine transitions the device to the SDEV_BLOCK state (which must be
2968  * a legal transition). When the device is in this state, command processing
2969  * is paused until the device leaves the SDEV_BLOCK state. See also
2970  * scsi_internal_device_unblock_nowait().
2971  */
2972 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2973 {
2974         struct request_queue *q = sdev->request_queue;
2975         unsigned long flags;
2976         int err = 0;
2977
2978         err = scsi_device_set_state(sdev, SDEV_BLOCK);
2979         if (err) {
2980                 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2981
2982                 if (err)
2983                         return err;
2984         }
2985
2986         /* 
2987          * The device has transitioned to SDEV_BLOCK.  Stop the
2988          * block layer from calling the midlayer with this device's
2989          * request queue. 
2990          */
2991         if (q->mq_ops) {
2992                 blk_mq_quiesce_queue_nowait(q);
2993         } else {
2994                 spin_lock_irqsave(q->queue_lock, flags);
2995                 blk_stop_queue(q);
2996                 spin_unlock_irqrestore(q->queue_lock, flags);
2997         }
2998
2999         return 0;
3000 }
3001 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
3002
3003 /**
3004  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
3005  * @sdev: device to block
3006  *
3007  * Pause SCSI command processing on the specified device and wait until all
3008  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
3009  *
3010  * Returns zero if successful or a negative error code upon failure.
3011  *
3012  * Note:
3013  * This routine transitions the device to the SDEV_BLOCK state (which must be
3014  * a legal transition). When the device is in this state, command processing
3015  * is paused until the device leaves the SDEV_BLOCK state. See also
3016  * scsi_internal_device_unblock().
3017  *
3018  * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after
3019  * scsi_internal_device_block() has blocked a SCSI device and also
3020  * remove the rport mutex lock and unlock calls from srp_queuecommand().
3021  */
3022 static int scsi_internal_device_block(struct scsi_device *sdev)
3023 {
3024         struct request_queue *q = sdev->request_queue;
3025         int err;
3026
3027         mutex_lock(&sdev->state_mutex);
3028         err = scsi_internal_device_block_nowait(sdev);
3029         if (err == 0) {
3030                 if (q->mq_ops)
3031                         blk_mq_quiesce_queue(q);
3032                 else
3033                         scsi_wait_for_queuecommand(sdev);
3034         }
3035         mutex_unlock(&sdev->state_mutex);
3036
3037         return err;
3038 }
3039  
3040 void scsi_start_queue(struct scsi_device *sdev)
3041 {
3042         struct request_queue *q = sdev->request_queue;
3043         unsigned long flags;
3044
3045         if (q->mq_ops) {
3046                 blk_mq_unquiesce_queue(q);
3047         } else {
3048                 spin_lock_irqsave(q->queue_lock, flags);
3049                 blk_start_queue(q);
3050                 spin_unlock_irqrestore(q->queue_lock, flags);
3051         }
3052 }
3053
3054 /**
3055  * scsi_internal_device_unblock_nowait - resume a device after a block request
3056  * @sdev:       device to resume
3057  * @new_state:  state to set the device to after unblocking
3058  *
3059  * Restart the device queue for a previously suspended SCSI device. Does not
3060  * sleep.
3061  *
3062  * Returns zero if successful or a negative error code upon failure.
3063  *
3064  * Notes:
3065  * This routine transitions the device to the SDEV_RUNNING state or to one of
3066  * the offline states (which must be a legal transition) allowing the midlayer
3067  * to goose the queue for this device.
3068  */
3069 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
3070                                         enum scsi_device_state new_state)
3071 {
3072         /*
3073          * Try to transition the scsi device to SDEV_RUNNING or one of the
3074          * offlined states and goose the device queue if successful.
3075          */
3076         if ((sdev->sdev_state == SDEV_BLOCK) ||
3077             (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
3078                 sdev->sdev_state = new_state;
3079         else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
3080                 if (new_state == SDEV_TRANSPORT_OFFLINE ||
3081                     new_state == SDEV_OFFLINE)
3082                         sdev->sdev_state = new_state;
3083                 else
3084                         sdev->sdev_state = SDEV_CREATED;
3085         } else if (sdev->sdev_state != SDEV_CANCEL &&
3086                  sdev->sdev_state != SDEV_OFFLINE)
3087                 return -EINVAL;
3088
3089         scsi_start_queue(sdev);
3090
3091         return 0;
3092 }
3093 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
3094
3095 /**
3096  * scsi_internal_device_unblock - resume a device after a block request
3097  * @sdev:       device to resume
3098  * @new_state:  state to set the device to after unblocking
3099  *
3100  * Restart the device queue for a previously suspended SCSI device. May sleep.
3101  *
3102  * Returns zero if successful or a negative error code upon failure.
3103  *
3104  * Notes:
3105  * This routine transitions the device to the SDEV_RUNNING state or to one of
3106  * the offline states (which must be a legal transition) allowing the midlayer
3107  * to goose the queue for this device.
3108  */
3109 static int scsi_internal_device_unblock(struct scsi_device *sdev,
3110                                         enum scsi_device_state new_state)
3111 {
3112         int ret;
3113
3114         mutex_lock(&sdev->state_mutex);
3115         ret = scsi_internal_device_unblock_nowait(sdev, new_state);
3116         mutex_unlock(&sdev->state_mutex);
3117
3118         return ret;
3119 }
3120
3121 static void
3122 device_block(struct scsi_device *sdev, void *data)
3123 {
3124         scsi_internal_device_block(sdev);
3125 }
3126
3127 static int
3128 target_block(struct device *dev, void *data)
3129 {
3130         if (scsi_is_target_device(dev))
3131                 starget_for_each_device(to_scsi_target(dev), NULL,
3132                                         device_block);
3133         return 0;
3134 }
3135
3136 void
3137 scsi_target_block(struct device *dev)
3138 {
3139         if (scsi_is_target_device(dev))
3140                 starget_for_each_device(to_scsi_target(dev), NULL,
3141                                         device_block);
3142         else
3143                 device_for_each_child(dev, NULL, target_block);
3144 }
3145 EXPORT_SYMBOL_GPL(scsi_target_block);
3146
3147 static void
3148 device_unblock(struct scsi_device *sdev, void *data)
3149 {
3150         scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3151 }
3152
3153 static int
3154 target_unblock(struct device *dev, void *data)
3155 {
3156         if (scsi_is_target_device(dev))
3157                 starget_for_each_device(to_scsi_target(dev), data,
3158                                         device_unblock);
3159         return 0;
3160 }
3161
3162 void
3163 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3164 {
3165         if (scsi_is_target_device(dev))
3166                 starget_for_each_device(to_scsi_target(dev), &new_state,
3167                                         device_unblock);
3168         else
3169                 device_for_each_child(dev, &new_state, target_unblock);
3170 }
3171 EXPORT_SYMBOL_GPL(scsi_target_unblock);
3172
3173 /**
3174  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3175  * @sgl:        scatter-gather list
3176  * @sg_count:   number of segments in sg
3177  * @offset:     offset in bytes into sg, on return offset into the mapped area
3178  * @len:        bytes to map, on return number of bytes mapped
3179  *
3180  * Returns virtual address of the start of the mapped page
3181  */
3182 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3183                           size_t *offset, size_t *len)
3184 {
3185         int i;
3186         size_t sg_len = 0, len_complete = 0;
3187         struct scatterlist *sg;
3188         struct page *page;
3189
3190         WARN_ON(!irqs_disabled());
3191
3192         for_each_sg(sgl, sg, sg_count, i) {
3193                 len_complete = sg_len; /* Complete sg-entries */
3194                 sg_len += sg->length;
3195                 if (sg_len > *offset)
3196                         break;
3197         }
3198
3199         if (unlikely(i == sg_count)) {
3200                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3201                         "elements %d\n",
3202                        __func__, sg_len, *offset, sg_count);
3203                 WARN_ON(1);
3204                 return NULL;
3205         }
3206
3207         /* Offset starting from the beginning of first page in this sg-entry */
3208         *offset = *offset - len_complete + sg->offset;
3209
3210         /* Assumption: contiguous pages can be accessed as "page + i" */
3211         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3212         *offset &= ~PAGE_MASK;
3213
3214         /* Bytes in this sg-entry from *offset to the end of the page */
3215         sg_len = PAGE_SIZE - *offset;
3216         if (*len > sg_len)
3217                 *len = sg_len;
3218
3219         return kmap_atomic(page);
3220 }
3221 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3222
3223 /**
3224  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3225  * @virt:       virtual address to be unmapped
3226  */
3227 void scsi_kunmap_atomic_sg(void *virt)
3228 {
3229         kunmap_atomic(virt);
3230 }
3231 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3232
3233 void sdev_disable_disk_events(struct scsi_device *sdev)
3234 {
3235         atomic_inc(&sdev->disk_events_disable_depth);
3236 }
3237 EXPORT_SYMBOL(sdev_disable_disk_events);
3238
3239 void sdev_enable_disk_events(struct scsi_device *sdev)
3240 {
3241         if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3242                 return;
3243         atomic_dec(&sdev->disk_events_disable_depth);
3244 }
3245 EXPORT_SYMBOL(sdev_enable_disk_events);
3246
3247 /**
3248  * scsi_vpd_lun_id - return a unique device identification
3249  * @sdev: SCSI device
3250  * @id:   buffer for the identification
3251  * @id_len:  length of the buffer
3252  *
3253  * Copies a unique device identification into @id based
3254  * on the information in the VPD page 0x83 of the device.
3255  * The string will be formatted as a SCSI name string.
3256  *
3257  * Returns the length of the identification or error on failure.
3258  * If the identifier is longer than the supplied buffer the actual
3259  * identifier length is returned and the buffer is not zero-padded.
3260  */
3261 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3262 {
3263         u8 cur_id_type = 0xff;
3264         u8 cur_id_size = 0;
3265         unsigned char *d, *cur_id_str;
3266         unsigned char __rcu *vpd_pg83;
3267         int id_size = -EINVAL;
3268
3269         rcu_read_lock();
3270         vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3271         if (!vpd_pg83) {
3272                 rcu_read_unlock();
3273                 return -ENXIO;
3274         }
3275
3276         /*
3277          * Look for the correct descriptor.
3278          * Order of preference for lun descriptor:
3279          * - SCSI name string
3280          * - NAA IEEE Registered Extended
3281          * - EUI-64 based 16-byte
3282          * - EUI-64 based 12-byte
3283          * - NAA IEEE Registered
3284          * - NAA IEEE Extended
3285          * - T10 Vendor ID
3286          * as longer descriptors reduce the likelyhood
3287          * of identification clashes.
3288          */
3289
3290         /* The id string must be at least 20 bytes + terminating NULL byte */
3291         if (id_len < 21) {
3292                 rcu_read_unlock();
3293                 return -EINVAL;
3294         }
3295
3296         memset(id, 0, id_len);
3297         d = vpd_pg83 + 4;
3298         while (d < vpd_pg83 + sdev->vpd_pg83_len) {
3299                 /* Skip designators not referring to the LUN */
3300                 if ((d[1] & 0x30) != 0x00)
3301                         goto next_desig;
3302
3303                 switch (d[1] & 0xf) {
3304                 case 0x1:
3305                         /* T10 Vendor ID */
3306                         if (cur_id_size > d[3])
3307                                 break;
3308                         /* Prefer anything */
3309                         if (cur_id_type > 0x01 && cur_id_type != 0xff)
3310                                 break;
3311                         cur_id_size = d[3];
3312                         if (cur_id_size + 4 > id_len)
3313                                 cur_id_size = id_len - 4;
3314                         cur_id_str = d + 4;
3315                         cur_id_type = d[1] & 0xf;
3316                         id_size = snprintf(id, id_len, "t10.%*pE",
3317                                            cur_id_size, cur_id_str);
3318                         break;
3319                 case 0x2:
3320                         /* EUI-64 */
3321                         if (cur_id_size > d[3])
3322                                 break;
3323                         /* Prefer NAA IEEE Registered Extended */
3324                         if (cur_id_type == 0x3 &&
3325                             cur_id_size == d[3])
3326                                 break;
3327                         cur_id_size = d[3];
3328                         cur_id_str = d + 4;
3329                         cur_id_type = d[1] & 0xf;
3330                         switch (cur_id_size) {
3331                         case 8:
3332                                 id_size = snprintf(id, id_len,
3333                                                    "eui.%8phN",
3334                                                    cur_id_str);
3335                                 break;
3336                         case 12:
3337                                 id_size = snprintf(id, id_len,
3338                                                    "eui.%12phN",
3339                                                    cur_id_str);
3340                                 break;
3341                         case 16:
3342                                 id_size = snprintf(id, id_len,
3343                                                    "eui.%16phN",
3344                                                    cur_id_str);
3345                                 break;
3346                         default:
3347                                 cur_id_size = 0;
3348                                 break;
3349                         }
3350                         break;
3351                 case 0x3:
3352                         /* NAA */
3353                         if (cur_id_size > d[3])
3354                                 break;
3355                         cur_id_size = d[3];
3356                         cur_id_str = d + 4;
3357                         cur_id_type = d[1] & 0xf;
3358                         switch (cur_id_size) {
3359                         case 8:
3360                                 id_size = snprintf(id, id_len,
3361                                                    "naa.%8phN",
3362                                                    cur_id_str);
3363                                 break;
3364                         case 16:
3365                                 id_size = snprintf(id, id_len,
3366                                                    "naa.%16phN",
3367                                                    cur_id_str);
3368                                 break;
3369                         default:
3370                                 cur_id_size = 0;
3371                                 break;
3372                         }
3373                         break;
3374                 case 0x8:
3375                         /* SCSI name string */
3376                         if (cur_id_size + 4 > d[3])
3377                                 break;
3378                         /* Prefer others for truncated descriptor */
3379                         if (cur_id_size && d[3] > id_len)
3380                                 break;
3381                         cur_id_size = id_size = d[3];
3382                         cur_id_str = d + 4;
3383                         cur_id_type = d[1] & 0xf;
3384                         if (cur_id_size >= id_len)
3385                                 cur_id_size = id_len - 1;
3386                         memcpy(id, cur_id_str, cur_id_size);
3387                         /* Decrease priority for truncated descriptor */
3388                         if (cur_id_size != id_size)
3389                                 cur_id_size = 6;
3390                         break;
3391                 default:
3392                         break;
3393                 }
3394 next_desig:
3395                 d += d[3] + 4;
3396         }
3397         rcu_read_unlock();
3398
3399         return id_size;
3400 }
3401 EXPORT_SYMBOL(scsi_vpd_lun_id);
3402
3403 /*
3404  * scsi_vpd_tpg_id - return a target port group identifier
3405  * @sdev: SCSI device
3406  *
3407  * Returns the Target Port Group identifier from the information
3408  * froom VPD page 0x83 of the device.
3409  *
3410  * Returns the identifier or error on failure.
3411  */
3412 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3413 {
3414         unsigned char *d;
3415         unsigned char __rcu *vpd_pg83;
3416         int group_id = -EAGAIN, rel_port = -1;
3417
3418         rcu_read_lock();
3419         vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3420         if (!vpd_pg83) {
3421                 rcu_read_unlock();
3422                 return -ENXIO;
3423         }
3424
3425         d = sdev->vpd_pg83 + 4;
3426         while (d < sdev->vpd_pg83 + sdev->vpd_pg83_len) {
3427                 switch (d[1] & 0xf) {
3428                 case 0x4:
3429                         /* Relative target port */
3430                         rel_port = get_unaligned_be16(&d[6]);
3431                         break;
3432                 case 0x5:
3433                         /* Target port group */
3434                         group_id = get_unaligned_be16(&d[6]);
3435                         break;
3436                 default:
3437                         break;
3438                 }
3439                 d += d[3] + 4;
3440         }
3441         rcu_read_unlock();
3442
3443         if (group_id >= 0 && rel_id && rel_port != -1)
3444                 *rel_id = rel_port;
3445
3446         return group_id;
3447 }
3448 EXPORT_SYMBOL(scsi_vpd_tpg_id);