Merge tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[sfrench/cifs-2.6.git] / drivers / scsi / scsi_lib.c
1 /*
2  * Copyright (C) 1999 Eric Youngdale
3  * Copyright (C) 2014 Christoph Hellwig
4  *
5  *  SCSI queueing library.
6  *      Initial versions: Eric Youngdale (eric@andante.org).
7  *                        Based upon conversations with large numbers
8  *                        of people at Linux Expo.
9  */
10
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22 #include <linux/blk-mq.h>
23 #include <linux/ratelimit.h>
24 #include <asm/unaligned.h>
25
26 #include <scsi/scsi.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_device.h>
30 #include <scsi/scsi_driver.h>
31 #include <scsi/scsi_eh.h>
32 #include <scsi/scsi_host.h>
33 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
34 #include <scsi/scsi_dh.h>
35
36 #include <trace/events/scsi.h>
37
38 #include "scsi_debugfs.h"
39 #include "scsi_priv.h"
40 #include "scsi_logging.h"
41
42 static struct kmem_cache *scsi_sdb_cache;
43 static struct kmem_cache *scsi_sense_cache;
44 static struct kmem_cache *scsi_sense_isadma_cache;
45 static DEFINE_MUTEX(scsi_sense_cache_mutex);
46
47 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
48
49 static inline struct kmem_cache *
50 scsi_select_sense_cache(bool unchecked_isa_dma)
51 {
52         return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
53 }
54
55 static void scsi_free_sense_buffer(bool unchecked_isa_dma,
56                                    unsigned char *sense_buffer)
57 {
58         kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
59                         sense_buffer);
60 }
61
62 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
63         gfp_t gfp_mask, int numa_node)
64 {
65         return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
66                                      gfp_mask, numa_node);
67 }
68
69 int scsi_init_sense_cache(struct Scsi_Host *shost)
70 {
71         struct kmem_cache *cache;
72         int ret = 0;
73
74         cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
75         if (cache)
76                 return 0;
77
78         mutex_lock(&scsi_sense_cache_mutex);
79         if (shost->unchecked_isa_dma) {
80                 scsi_sense_isadma_cache =
81                         kmem_cache_create("scsi_sense_cache(DMA)",
82                                 SCSI_SENSE_BUFFERSIZE, 0,
83                                 SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
84                 if (!scsi_sense_isadma_cache)
85                         ret = -ENOMEM;
86         } else {
87                 scsi_sense_cache =
88                         kmem_cache_create_usercopy("scsi_sense_cache",
89                                 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
90                                 0, SCSI_SENSE_BUFFERSIZE, NULL);
91                 if (!scsi_sense_cache)
92                         ret = -ENOMEM;
93         }
94
95         mutex_unlock(&scsi_sense_cache_mutex);
96         return ret;
97 }
98
99 /*
100  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
101  * not change behaviour from the previous unplug mechanism, experimentation
102  * may prove this needs changing.
103  */
104 #define SCSI_QUEUE_DELAY        3
105
106 static void
107 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
108 {
109         struct Scsi_Host *host = cmd->device->host;
110         struct scsi_device *device = cmd->device;
111         struct scsi_target *starget = scsi_target(device);
112
113         /*
114          * Set the appropriate busy bit for the device/host.
115          *
116          * If the host/device isn't busy, assume that something actually
117          * completed, and that we should be able to queue a command now.
118          *
119          * Note that the prior mid-layer assumption that any host could
120          * always queue at least one command is now broken.  The mid-layer
121          * will implement a user specifiable stall (see
122          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
123          * if a command is requeued with no other commands outstanding
124          * either for the device or for the host.
125          */
126         switch (reason) {
127         case SCSI_MLQUEUE_HOST_BUSY:
128                 atomic_set(&host->host_blocked, host->max_host_blocked);
129                 break;
130         case SCSI_MLQUEUE_DEVICE_BUSY:
131         case SCSI_MLQUEUE_EH_RETRY:
132                 atomic_set(&device->device_blocked,
133                            device->max_device_blocked);
134                 break;
135         case SCSI_MLQUEUE_TARGET_BUSY:
136                 atomic_set(&starget->target_blocked,
137                            starget->max_target_blocked);
138                 break;
139         }
140 }
141
142 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
143 {
144         struct scsi_device *sdev = cmd->device;
145
146         if (cmd->request->rq_flags & RQF_DONTPREP) {
147                 cmd->request->rq_flags &= ~RQF_DONTPREP;
148                 scsi_mq_uninit_cmd(cmd);
149         } else {
150                 WARN_ON_ONCE(true);
151         }
152         blk_mq_requeue_request(cmd->request, true);
153         put_device(&sdev->sdev_gendev);
154 }
155
156 /**
157  * __scsi_queue_insert - private queue insertion
158  * @cmd: The SCSI command being requeued
159  * @reason:  The reason for the requeue
160  * @unbusy: Whether the queue should be unbusied
161  *
162  * This is a private queue insertion.  The public interface
163  * scsi_queue_insert() always assumes the queue should be unbusied
164  * because it's always called before the completion.  This function is
165  * for a requeue after completion, which should only occur in this
166  * file.
167  */
168 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
169 {
170         struct scsi_device *device = cmd->device;
171         struct request_queue *q = device->request_queue;
172         unsigned long flags;
173
174         SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
175                 "Inserting command %p into mlqueue\n", cmd));
176
177         scsi_set_blocked(cmd, reason);
178
179         /*
180          * Decrement the counters, since these commands are no longer
181          * active on the host/device.
182          */
183         if (unbusy)
184                 scsi_device_unbusy(device);
185
186         /*
187          * Requeue this command.  It will go before all other commands
188          * that are already in the queue. Schedule requeue work under
189          * lock such that the kblockd_schedule_work() call happens
190          * before blk_cleanup_queue() finishes.
191          */
192         cmd->result = 0;
193         if (q->mq_ops) {
194                 /*
195                  * Before a SCSI command is dispatched,
196                  * get_device(&sdev->sdev_gendev) is called and the host,
197                  * target and device busy counters are increased. Since
198                  * requeuing a request causes these actions to be repeated and
199                  * since scsi_device_unbusy() has already been called,
200                  * put_device(&device->sdev_gendev) must still be called. Call
201                  * put_device() after blk_mq_requeue_request() to avoid that
202                  * removal of the SCSI device can start before requeueing has
203                  * happened.
204                  */
205                 blk_mq_requeue_request(cmd->request, true);
206                 put_device(&device->sdev_gendev);
207                 return;
208         }
209         spin_lock_irqsave(q->queue_lock, flags);
210         blk_requeue_request(q, cmd->request);
211         kblockd_schedule_work(&device->requeue_work);
212         spin_unlock_irqrestore(q->queue_lock, flags);
213 }
214
215 /*
216  * Function:    scsi_queue_insert()
217  *
218  * Purpose:     Insert a command in the midlevel queue.
219  *
220  * Arguments:   cmd    - command that we are adding to queue.
221  *              reason - why we are inserting command to queue.
222  *
223  * Lock status: Assumed that lock is not held upon entry.
224  *
225  * Returns:     Nothing.
226  *
227  * Notes:       We do this for one of two cases.  Either the host is busy
228  *              and it cannot accept any more commands for the time being,
229  *              or the device returned QUEUE_FULL and can accept no more
230  *              commands.
231  * Notes:       This could be called either from an interrupt context or a
232  *              normal process context.
233  */
234 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
235 {
236         __scsi_queue_insert(cmd, reason, true);
237 }
238
239
240 /**
241  * scsi_execute - insert request and wait for the result
242  * @sdev:       scsi device
243  * @cmd:        scsi command
244  * @data_direction: data direction
245  * @buffer:     data buffer
246  * @bufflen:    len of buffer
247  * @sense:      optional sense buffer
248  * @sshdr:      optional decoded sense header
249  * @timeout:    request timeout in seconds
250  * @retries:    number of times to retry request
251  * @flags:      flags for ->cmd_flags
252  * @rq_flags:   flags for ->rq_flags
253  * @resid:      optional residual length
254  *
255  * Returns the scsi_cmnd result field if a command was executed, or a negative
256  * Linux error code if we didn't get that far.
257  */
258 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
259                  int data_direction, void *buffer, unsigned bufflen,
260                  unsigned char *sense, struct scsi_sense_hdr *sshdr,
261                  int timeout, int retries, u64 flags, req_flags_t rq_flags,
262                  int *resid)
263 {
264         struct request *req;
265         struct scsi_request *rq;
266         int ret = DRIVER_ERROR << 24;
267
268         req = blk_get_request(sdev->request_queue,
269                         data_direction == DMA_TO_DEVICE ?
270                         REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT);
271         if (IS_ERR(req))
272                 return ret;
273         rq = scsi_req(req);
274
275         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
276                                         buffer, bufflen, GFP_NOIO))
277                 goto out;
278
279         rq->cmd_len = COMMAND_SIZE(cmd[0]);
280         memcpy(rq->cmd, cmd, rq->cmd_len);
281         rq->retries = retries;
282         req->timeout = timeout;
283         req->cmd_flags |= flags;
284         req->rq_flags |= rq_flags | RQF_QUIET;
285
286         /*
287          * head injection *required* here otherwise quiesce won't work
288          */
289         blk_execute_rq(req->q, NULL, req, 1);
290
291         /*
292          * Some devices (USB mass-storage in particular) may transfer
293          * garbage data together with a residue indicating that the data
294          * is invalid.  Prevent the garbage from being misinterpreted
295          * and prevent security leaks by zeroing out the excess data.
296          */
297         if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
298                 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
299
300         if (resid)
301                 *resid = rq->resid_len;
302         if (sense && rq->sense_len)
303                 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
304         if (sshdr)
305                 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
306         ret = rq->result;
307  out:
308         blk_put_request(req);
309
310         return ret;
311 }
312 EXPORT_SYMBOL(scsi_execute);
313
314 /*
315  * Function:    scsi_init_cmd_errh()
316  *
317  * Purpose:     Initialize cmd fields related to error handling.
318  *
319  * Arguments:   cmd     - command that is ready to be queued.
320  *
321  * Notes:       This function has the job of initializing a number of
322  *              fields related to error handling.   Typically this will
323  *              be called once for each command, as required.
324  */
325 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
326 {
327         cmd->serial_number = 0;
328         scsi_set_resid(cmd, 0);
329         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
330         if (cmd->cmd_len == 0)
331                 cmd->cmd_len = scsi_command_size(cmd->cmnd);
332 }
333
334 /*
335  * Decrement the host_busy counter and wake up the error handler if necessary.
336  * Avoid as follows that the error handler is not woken up if shost->host_busy
337  * == shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
338  * with an RCU read lock in this function to ensure that this function in its
339  * entirety either finishes before scsi_eh_scmd_add() increases the
340  * host_failed counter or that it notices the shost state change made by
341  * scsi_eh_scmd_add().
342  */
343 static void scsi_dec_host_busy(struct Scsi_Host *shost)
344 {
345         unsigned long flags;
346
347         rcu_read_lock();
348         atomic_dec(&shost->host_busy);
349         if (unlikely(scsi_host_in_recovery(shost))) {
350                 spin_lock_irqsave(shost->host_lock, flags);
351                 if (shost->host_failed || shost->host_eh_scheduled)
352                         scsi_eh_wakeup(shost);
353                 spin_unlock_irqrestore(shost->host_lock, flags);
354         }
355         rcu_read_unlock();
356 }
357
358 void scsi_device_unbusy(struct scsi_device *sdev)
359 {
360         struct Scsi_Host *shost = sdev->host;
361         struct scsi_target *starget = scsi_target(sdev);
362
363         scsi_dec_host_busy(shost);
364
365         if (starget->can_queue > 0)
366                 atomic_dec(&starget->target_busy);
367
368         atomic_dec(&sdev->device_busy);
369 }
370
371 static void scsi_kick_queue(struct request_queue *q)
372 {
373         if (q->mq_ops)
374                 blk_mq_start_hw_queues(q);
375         else
376                 blk_run_queue(q);
377 }
378
379 /*
380  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
381  * and call blk_run_queue for all the scsi_devices on the target -
382  * including current_sdev first.
383  *
384  * Called with *no* scsi locks held.
385  */
386 static void scsi_single_lun_run(struct scsi_device *current_sdev)
387 {
388         struct Scsi_Host *shost = current_sdev->host;
389         struct scsi_device *sdev, *tmp;
390         struct scsi_target *starget = scsi_target(current_sdev);
391         unsigned long flags;
392
393         spin_lock_irqsave(shost->host_lock, flags);
394         starget->starget_sdev_user = NULL;
395         spin_unlock_irqrestore(shost->host_lock, flags);
396
397         /*
398          * Call blk_run_queue for all LUNs on the target, starting with
399          * current_sdev. We race with others (to set starget_sdev_user),
400          * but in most cases, we will be first. Ideally, each LU on the
401          * target would get some limited time or requests on the target.
402          */
403         scsi_kick_queue(current_sdev->request_queue);
404
405         spin_lock_irqsave(shost->host_lock, flags);
406         if (starget->starget_sdev_user)
407                 goto out;
408         list_for_each_entry_safe(sdev, tmp, &starget->devices,
409                         same_target_siblings) {
410                 if (sdev == current_sdev)
411                         continue;
412                 if (scsi_device_get(sdev))
413                         continue;
414
415                 spin_unlock_irqrestore(shost->host_lock, flags);
416                 scsi_kick_queue(sdev->request_queue);
417                 spin_lock_irqsave(shost->host_lock, flags);
418         
419                 scsi_device_put(sdev);
420         }
421  out:
422         spin_unlock_irqrestore(shost->host_lock, flags);
423 }
424
425 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
426 {
427         if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
428                 return true;
429         if (atomic_read(&sdev->device_blocked) > 0)
430                 return true;
431         return false;
432 }
433
434 static inline bool scsi_target_is_busy(struct scsi_target *starget)
435 {
436         if (starget->can_queue > 0) {
437                 if (atomic_read(&starget->target_busy) >= starget->can_queue)
438                         return true;
439                 if (atomic_read(&starget->target_blocked) > 0)
440                         return true;
441         }
442         return false;
443 }
444
445 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
446 {
447         if (shost->can_queue > 0 &&
448             atomic_read(&shost->host_busy) >= shost->can_queue)
449                 return true;
450         if (atomic_read(&shost->host_blocked) > 0)
451                 return true;
452         if (shost->host_self_blocked)
453                 return true;
454         return false;
455 }
456
457 static void scsi_starved_list_run(struct Scsi_Host *shost)
458 {
459         LIST_HEAD(starved_list);
460         struct scsi_device *sdev;
461         unsigned long flags;
462
463         spin_lock_irqsave(shost->host_lock, flags);
464         list_splice_init(&shost->starved_list, &starved_list);
465
466         while (!list_empty(&starved_list)) {
467                 struct request_queue *slq;
468
469                 /*
470                  * As long as shost is accepting commands and we have
471                  * starved queues, call blk_run_queue. scsi_request_fn
472                  * drops the queue_lock and can add us back to the
473                  * starved_list.
474                  *
475                  * host_lock protects the starved_list and starved_entry.
476                  * scsi_request_fn must get the host_lock before checking
477                  * or modifying starved_list or starved_entry.
478                  */
479                 if (scsi_host_is_busy(shost))
480                         break;
481
482                 sdev = list_entry(starved_list.next,
483                                   struct scsi_device, starved_entry);
484                 list_del_init(&sdev->starved_entry);
485                 if (scsi_target_is_busy(scsi_target(sdev))) {
486                         list_move_tail(&sdev->starved_entry,
487                                        &shost->starved_list);
488                         continue;
489                 }
490
491                 /*
492                  * Once we drop the host lock, a racing scsi_remove_device()
493                  * call may remove the sdev from the starved list and destroy
494                  * it and the queue.  Mitigate by taking a reference to the
495                  * queue and never touching the sdev again after we drop the
496                  * host lock.  Note: if __scsi_remove_device() invokes
497                  * blk_cleanup_queue() before the queue is run from this
498                  * function then blk_run_queue() will return immediately since
499                  * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
500                  */
501                 slq = sdev->request_queue;
502                 if (!blk_get_queue(slq))
503                         continue;
504                 spin_unlock_irqrestore(shost->host_lock, flags);
505
506                 scsi_kick_queue(slq);
507                 blk_put_queue(slq);
508
509                 spin_lock_irqsave(shost->host_lock, flags);
510         }
511         /* put any unprocessed entries back */
512         list_splice(&starved_list, &shost->starved_list);
513         spin_unlock_irqrestore(shost->host_lock, flags);
514 }
515
516 /*
517  * Function:   scsi_run_queue()
518  *
519  * Purpose:    Select a proper request queue to serve next
520  *
521  * Arguments:  q       - last request's queue
522  *
523  * Returns:     Nothing
524  *
525  * Notes:      The previous command was completely finished, start
526  *             a new one if possible.
527  */
528 static void scsi_run_queue(struct request_queue *q)
529 {
530         struct scsi_device *sdev = q->queuedata;
531
532         if (scsi_target(sdev)->single_lun)
533                 scsi_single_lun_run(sdev);
534         if (!list_empty(&sdev->host->starved_list))
535                 scsi_starved_list_run(sdev->host);
536
537         if (q->mq_ops)
538                 blk_mq_run_hw_queues(q, false);
539         else
540                 blk_run_queue(q);
541 }
542
543 void scsi_requeue_run_queue(struct work_struct *work)
544 {
545         struct scsi_device *sdev;
546         struct request_queue *q;
547
548         sdev = container_of(work, struct scsi_device, requeue_work);
549         q = sdev->request_queue;
550         scsi_run_queue(q);
551 }
552
553 /*
554  * Function:    scsi_requeue_command()
555  *
556  * Purpose:     Handle post-processing of completed commands.
557  *
558  * Arguments:   q       - queue to operate on
559  *              cmd     - command that may need to be requeued.
560  *
561  * Returns:     Nothing
562  *
563  * Notes:       After command completion, there may be blocks left
564  *              over which weren't finished by the previous command
565  *              this can be for a number of reasons - the main one is
566  *              I/O errors in the middle of the request, in which case
567  *              we need to request the blocks that come after the bad
568  *              sector.
569  * Notes:       Upon return, cmd is a stale pointer.
570  */
571 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
572 {
573         struct scsi_device *sdev = cmd->device;
574         struct request *req = cmd->request;
575         unsigned long flags;
576
577         spin_lock_irqsave(q->queue_lock, flags);
578         blk_unprep_request(req);
579         req->special = NULL;
580         scsi_put_command(cmd);
581         blk_requeue_request(q, req);
582         spin_unlock_irqrestore(q->queue_lock, flags);
583
584         scsi_run_queue(q);
585
586         put_device(&sdev->sdev_gendev);
587 }
588
589 void scsi_run_host_queues(struct Scsi_Host *shost)
590 {
591         struct scsi_device *sdev;
592
593         shost_for_each_device(sdev, shost)
594                 scsi_run_queue(sdev->request_queue);
595 }
596
597 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
598 {
599         if (!blk_rq_is_passthrough(cmd->request)) {
600                 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
601
602                 if (drv->uninit_command)
603                         drv->uninit_command(cmd);
604         }
605 }
606
607 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
608 {
609         struct scsi_data_buffer *sdb;
610
611         if (cmd->sdb.table.nents)
612                 sg_free_table_chained(&cmd->sdb.table, true);
613         if (cmd->request->next_rq) {
614                 sdb = cmd->request->next_rq->special;
615                 if (sdb)
616                         sg_free_table_chained(&sdb->table, true);
617         }
618         if (scsi_prot_sg_count(cmd))
619                 sg_free_table_chained(&cmd->prot_sdb->table, true);
620 }
621
622 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
623 {
624         scsi_mq_free_sgtables(cmd);
625         scsi_uninit_cmd(cmd);
626         scsi_del_cmd_from_list(cmd);
627 }
628
629 /*
630  * Function:    scsi_release_buffers()
631  *
632  * Purpose:     Free resources allocate for a scsi_command.
633  *
634  * Arguments:   cmd     - command that we are bailing.
635  *
636  * Lock status: Assumed that no lock is held upon entry.
637  *
638  * Returns:     Nothing
639  *
640  * Notes:       In the event that an upper level driver rejects a
641  *              command, we must release resources allocated during
642  *              the __init_io() function.  Primarily this would involve
643  *              the scatter-gather table.
644  */
645 static void scsi_release_buffers(struct scsi_cmnd *cmd)
646 {
647         if (cmd->sdb.table.nents)
648                 sg_free_table_chained(&cmd->sdb.table, false);
649
650         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
651
652         if (scsi_prot_sg_count(cmd))
653                 sg_free_table_chained(&cmd->prot_sdb->table, false);
654 }
655
656 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
657 {
658         struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
659
660         sg_free_table_chained(&bidi_sdb->table, false);
661         kmem_cache_free(scsi_sdb_cache, bidi_sdb);
662         cmd->request->next_rq->special = NULL;
663 }
664
665 static bool scsi_end_request(struct request *req, blk_status_t error,
666                 unsigned int bytes, unsigned int bidi_bytes)
667 {
668         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
669         struct scsi_device *sdev = cmd->device;
670         struct request_queue *q = sdev->request_queue;
671
672         if (blk_update_request(req, error, bytes))
673                 return true;
674
675         /* Bidi request must be completed as a whole */
676         if (unlikely(bidi_bytes) &&
677             blk_update_request(req->next_rq, error, bidi_bytes))
678                 return true;
679
680         if (blk_queue_add_random(q))
681                 add_disk_randomness(req->rq_disk);
682
683         if (!blk_rq_is_scsi(req)) {
684                 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
685                 cmd->flags &= ~SCMD_INITIALIZED;
686                 destroy_rcu_head(&cmd->rcu);
687         }
688
689         if (req->mq_ctx) {
690                 /*
691                  * In the MQ case the command gets freed by __blk_mq_end_request,
692                  * so we have to do all cleanup that depends on it earlier.
693                  *
694                  * We also can't kick the queues from irq context, so we
695                  * will have to defer it to a workqueue.
696                  */
697                 scsi_mq_uninit_cmd(cmd);
698
699                 __blk_mq_end_request(req, error);
700
701                 if (scsi_target(sdev)->single_lun ||
702                     !list_empty(&sdev->host->starved_list))
703                         kblockd_schedule_work(&sdev->requeue_work);
704                 else
705                         blk_mq_run_hw_queues(q, true);
706         } else {
707                 unsigned long flags;
708
709                 if (bidi_bytes)
710                         scsi_release_bidi_buffers(cmd);
711                 scsi_release_buffers(cmd);
712                 scsi_put_command(cmd);
713
714                 spin_lock_irqsave(q->queue_lock, flags);
715                 blk_finish_request(req, error);
716                 spin_unlock_irqrestore(q->queue_lock, flags);
717
718                 scsi_run_queue(q);
719         }
720
721         put_device(&sdev->sdev_gendev);
722         return false;
723 }
724
725 /**
726  * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
727  * @cmd:        SCSI command
728  * @result:     scsi error code
729  *
730  * Translate a SCSI result code into a blk_status_t value. May reset the host
731  * byte of @cmd->result.
732  */
733 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
734 {
735         switch (host_byte(result)) {
736         case DID_OK:
737                 /*
738                  * Also check the other bytes than the status byte in result
739                  * to handle the case when a SCSI LLD sets result to
740                  * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION.
741                  */
742                 if (scsi_status_is_good(result) && (result & ~0xff) == 0)
743                         return BLK_STS_OK;
744                 return BLK_STS_IOERR;
745         case DID_TRANSPORT_FAILFAST:
746                 return BLK_STS_TRANSPORT;
747         case DID_TARGET_FAILURE:
748                 set_host_byte(cmd, DID_OK);
749                 return BLK_STS_TARGET;
750         case DID_NEXUS_FAILURE:
751                 return BLK_STS_NEXUS;
752         case DID_ALLOC_FAILURE:
753                 set_host_byte(cmd, DID_OK);
754                 return BLK_STS_NOSPC;
755         case DID_MEDIUM_ERROR:
756                 set_host_byte(cmd, DID_OK);
757                 return BLK_STS_MEDIUM;
758         default:
759                 return BLK_STS_IOERR;
760         }
761 }
762
763 /*
764  * Function:    scsi_io_completion()
765  *
766  * Purpose:     Completion processing for block device I/O requests.
767  *
768  * Arguments:   cmd   - command that is finished.
769  *
770  * Lock status: Assumed that no lock is held upon entry.
771  *
772  * Returns:     Nothing
773  *
774  * Notes:       We will finish off the specified number of sectors.  If we
775  *              are done, the command block will be released and the queue
776  *              function will be goosed.  If we are not done then we have to
777  *              figure out what to do next:
778  *
779  *              a) We can call scsi_requeue_command().  The request
780  *                 will be unprepared and put back on the queue.  Then
781  *                 a new command will be created for it.  This should
782  *                 be used if we made forward progress, or if we want
783  *                 to switch from READ(10) to READ(6) for example.
784  *
785  *              b) We can call __scsi_queue_insert().  The request will
786  *                 be put back on the queue and retried using the same
787  *                 command as before, possibly after a delay.
788  *
789  *              c) We can call scsi_end_request() with -EIO to fail
790  *                 the remainder of the request.
791  */
792 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
793 {
794         int result = cmd->result;
795         struct request_queue *q = cmd->device->request_queue;
796         struct request *req = cmd->request;
797         blk_status_t error = BLK_STS_OK;
798         struct scsi_sense_hdr sshdr;
799         bool sense_valid = false;
800         int sense_deferred = 0, level = 0;
801         enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
802               ACTION_DELAYED_RETRY} action;
803         unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
804
805         if (result) {
806                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
807                 if (sense_valid)
808                         sense_deferred = scsi_sense_is_deferred(&sshdr);
809         }
810
811         if (blk_rq_is_passthrough(req)) {
812                 if (result) {
813                         if (sense_valid) {
814                                 /*
815                                  * SG_IO wants current and deferred errors
816                                  */
817                                 scsi_req(req)->sense_len =
818                                         min(8 + cmd->sense_buffer[7],
819                                             SCSI_SENSE_BUFFERSIZE);
820                         }
821                         if (!sense_deferred)
822                                 error = scsi_result_to_blk_status(cmd, result);
823                 }
824                 /*
825                  * scsi_result_to_blk_status may have reset the host_byte
826                  */
827                 scsi_req(req)->result = cmd->result;
828                 scsi_req(req)->resid_len = scsi_get_resid(cmd);
829
830                 if (scsi_bidi_cmnd(cmd)) {
831                         /*
832                          * Bidi commands Must be complete as a whole,
833                          * both sides at once.
834                          */
835                         scsi_req(req->next_rq)->resid_len = scsi_in(cmd)->resid;
836                         if (scsi_end_request(req, BLK_STS_OK, blk_rq_bytes(req),
837                                         blk_rq_bytes(req->next_rq)))
838                                 BUG();
839                         return;
840                 }
841         } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
842                 /*
843                  * Flush commands do not transfers any data, and thus cannot use
844                  * good_bytes != blk_rq_bytes(req) as the signal for an error.
845                  * This sets the error explicitly for the problem case.
846                  */
847                 error = scsi_result_to_blk_status(cmd, result);
848         }
849
850         /* no bidi support for !blk_rq_is_passthrough yet */
851         BUG_ON(blk_bidi_rq(req));
852
853         /*
854          * Next deal with any sectors which we were able to correctly
855          * handle.
856          */
857         SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
858                 "%u sectors total, %d bytes done.\n",
859                 blk_rq_sectors(req), good_bytes));
860
861         /*
862          * Recovered errors need reporting, but they're always treated as
863          * success, so fiddle the result code here.  For passthrough requests
864          * we already took a copy of the original into sreq->result which
865          * is what gets returned to the user
866          */
867         if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
868                 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
869                  * print since caller wants ATA registers. Only occurs on
870                  * SCSI ATA PASS_THROUGH commands when CK_COND=1
871                  */
872                 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
873                         ;
874                 else if (!(req->rq_flags & RQF_QUIET))
875                         scsi_print_sense(cmd);
876                 result = 0;
877                 /* for passthrough error may be set */
878                 error = BLK_STS_OK;
879         }
880         /*
881          * Another corner case: the SCSI status byte is non-zero but 'good'.
882          * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
883          * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
884          * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
885          * intermediate statuses (both obsolete in SAM-4) as good.
886          */
887         if (status_byte(result) && scsi_status_is_good(result)) {
888                 result = 0;
889                 error = BLK_STS_OK;
890         }
891
892         /*
893          * special case: failed zero length commands always need to
894          * drop down into the retry code. Otherwise, if we finished
895          * all bytes in the request we are done now.
896          */
897         if (!(blk_rq_bytes(req) == 0 && error) &&
898             !scsi_end_request(req, error, good_bytes, 0))
899                 return;
900
901         /*
902          * Kill remainder if no retrys.
903          */
904         if (error && scsi_noretry_cmd(cmd)) {
905                 if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
906                         BUG();
907                 return;
908         }
909
910         /*
911          * If there had been no error, but we have leftover bytes in the
912          * requeues just queue the command up again.
913          */
914         if (result == 0)
915                 goto requeue;
916
917         error = scsi_result_to_blk_status(cmd, result);
918
919         if (host_byte(result) == DID_RESET) {
920                 /* Third party bus reset or reset for error recovery
921                  * reasons.  Just retry the command and see what
922                  * happens.
923                  */
924                 action = ACTION_RETRY;
925         } else if (sense_valid && !sense_deferred) {
926                 switch (sshdr.sense_key) {
927                 case UNIT_ATTENTION:
928                         if (cmd->device->removable) {
929                                 /* Detected disc change.  Set a bit
930                                  * and quietly refuse further access.
931                                  */
932                                 cmd->device->changed = 1;
933                                 action = ACTION_FAIL;
934                         } else {
935                                 /* Must have been a power glitch, or a
936                                  * bus reset.  Could not have been a
937                                  * media change, so we just retry the
938                                  * command and see what happens.
939                                  */
940                                 action = ACTION_RETRY;
941                         }
942                         break;
943                 case ILLEGAL_REQUEST:
944                         /* If we had an ILLEGAL REQUEST returned, then
945                          * we may have performed an unsupported
946                          * command.  The only thing this should be
947                          * would be a ten byte read where only a six
948                          * byte read was supported.  Also, on a system
949                          * where READ CAPACITY failed, we may have
950                          * read past the end of the disk.
951                          */
952                         if ((cmd->device->use_10_for_rw &&
953                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
954                             (cmd->cmnd[0] == READ_10 ||
955                              cmd->cmnd[0] == WRITE_10)) {
956                                 /* This will issue a new 6-byte command. */
957                                 cmd->device->use_10_for_rw = 0;
958                                 action = ACTION_REPREP;
959                         } else if (sshdr.asc == 0x10) /* DIX */ {
960                                 action = ACTION_FAIL;
961                                 error = BLK_STS_PROTECTION;
962                         /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
963                         } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
964                                 action = ACTION_FAIL;
965                                 error = BLK_STS_TARGET;
966                         } else
967                                 action = ACTION_FAIL;
968                         break;
969                 case ABORTED_COMMAND:
970                         action = ACTION_FAIL;
971                         if (sshdr.asc == 0x10) /* DIF */
972                                 error = BLK_STS_PROTECTION;
973                         break;
974                 case NOT_READY:
975                         /* If the device is in the process of becoming
976                          * ready, or has a temporary blockage, retry.
977                          */
978                         if (sshdr.asc == 0x04) {
979                                 switch (sshdr.ascq) {
980                                 case 0x01: /* becoming ready */
981                                 case 0x04: /* format in progress */
982                                 case 0x05: /* rebuild in progress */
983                                 case 0x06: /* recalculation in progress */
984                                 case 0x07: /* operation in progress */
985                                 case 0x08: /* Long write in progress */
986                                 case 0x09: /* self test in progress */
987                                 case 0x14: /* space allocation in progress */
988                                 case 0x1a: /* start stop unit in progress */
989                                 case 0x1b: /* sanitize in progress */
990                                 case 0x1d: /* configuration in progress */
991                                 case 0x24: /* depopulation in progress */
992                                         action = ACTION_DELAYED_RETRY;
993                                         break;
994                                 default:
995                                         action = ACTION_FAIL;
996                                         break;
997                                 }
998                         } else
999                                 action = ACTION_FAIL;
1000                         break;
1001                 case VOLUME_OVERFLOW:
1002                         /* See SSC3rXX or current. */
1003                         action = ACTION_FAIL;
1004                         break;
1005                 default:
1006                         action = ACTION_FAIL;
1007                         break;
1008                 }
1009         } else
1010                 action = ACTION_FAIL;
1011
1012         if (action != ACTION_FAIL &&
1013             time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
1014                 action = ACTION_FAIL;
1015
1016         switch (action) {
1017         case ACTION_FAIL:
1018                 /* Give up and fail the remainder of the request */
1019                 if (!(req->rq_flags & RQF_QUIET)) {
1020                         static DEFINE_RATELIMIT_STATE(_rs,
1021                                         DEFAULT_RATELIMIT_INTERVAL,
1022                                         DEFAULT_RATELIMIT_BURST);
1023
1024                         if (unlikely(scsi_logging_level))
1025                                 level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
1026                                                        SCSI_LOG_MLCOMPLETE_BITS);
1027
1028                         /*
1029                          * if logging is enabled the failure will be printed
1030                          * in scsi_log_completion(), so avoid duplicate messages
1031                          */
1032                         if (!level && __ratelimit(&_rs)) {
1033                                 scsi_print_result(cmd, NULL, FAILED);
1034                                 if (driver_byte(result) & DRIVER_SENSE)
1035                                         scsi_print_sense(cmd);
1036                                 scsi_print_command(cmd);
1037                         }
1038                 }
1039                 if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
1040                         return;
1041                 /*FALLTHRU*/
1042         case ACTION_REPREP:
1043         requeue:
1044                 /* Unprep the request and put it back at the head of the queue.
1045                  * A new command will be prepared and issued.
1046                  */
1047                 if (q->mq_ops) {
1048                         scsi_mq_requeue_cmd(cmd);
1049                 } else {
1050                         scsi_release_buffers(cmd);
1051                         scsi_requeue_command(q, cmd);
1052                 }
1053                 break;
1054         case ACTION_RETRY:
1055                 /* Retry the same command immediately */
1056                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
1057                 break;
1058         case ACTION_DELAYED_RETRY:
1059                 /* Retry the same command after a delay */
1060                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
1061                 break;
1062         }
1063 }
1064
1065 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
1066 {
1067         int count;
1068
1069         /*
1070          * If sg table allocation fails, requeue request later.
1071          */
1072         if (unlikely(sg_alloc_table_chained(&sdb->table,
1073                         blk_rq_nr_phys_segments(req), sdb->table.sgl)))
1074                 return BLKPREP_DEFER;
1075
1076         /* 
1077          * Next, walk the list, and fill in the addresses and sizes of
1078          * each segment.
1079          */
1080         count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1081         BUG_ON(count > sdb->table.nents);
1082         sdb->table.nents = count;
1083         sdb->length = blk_rq_payload_bytes(req);
1084         return BLKPREP_OK;
1085 }
1086
1087 /*
1088  * Function:    scsi_init_io()
1089  *
1090  * Purpose:     SCSI I/O initialize function.
1091  *
1092  * Arguments:   cmd   - Command descriptor we wish to initialize
1093  *
1094  * Returns:     0 on success
1095  *              BLKPREP_DEFER if the failure is retryable
1096  *              BLKPREP_KILL if the failure is fatal
1097  */
1098 int scsi_init_io(struct scsi_cmnd *cmd)
1099 {
1100         struct scsi_device *sdev = cmd->device;
1101         struct request *rq = cmd->request;
1102         bool is_mq = (rq->mq_ctx != NULL);
1103         int error = BLKPREP_KILL;
1104
1105         if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq)))
1106                 goto err_exit;
1107
1108         error = scsi_init_sgtable(rq, &cmd->sdb);
1109         if (error)
1110                 goto err_exit;
1111
1112         if (blk_bidi_rq(rq)) {
1113                 if (!rq->q->mq_ops) {
1114                         struct scsi_data_buffer *bidi_sdb =
1115                                 kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1116                         if (!bidi_sdb) {
1117                                 error = BLKPREP_DEFER;
1118                                 goto err_exit;
1119                         }
1120
1121                         rq->next_rq->special = bidi_sdb;
1122                 }
1123
1124                 error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1125                 if (error)
1126                         goto err_exit;
1127         }
1128
1129         if (blk_integrity_rq(rq)) {
1130                 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1131                 int ivecs, count;
1132
1133                 if (prot_sdb == NULL) {
1134                         /*
1135                          * This can happen if someone (e.g. multipath)
1136                          * queues a command to a device on an adapter
1137                          * that does not support DIX.
1138                          */
1139                         WARN_ON_ONCE(1);
1140                         error = BLKPREP_KILL;
1141                         goto err_exit;
1142                 }
1143
1144                 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1145
1146                 if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1147                                 prot_sdb->table.sgl)) {
1148                         error = BLKPREP_DEFER;
1149                         goto err_exit;
1150                 }
1151
1152                 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1153                                                 prot_sdb->table.sgl);
1154                 BUG_ON(unlikely(count > ivecs));
1155                 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1156
1157                 cmd->prot_sdb = prot_sdb;
1158                 cmd->prot_sdb->table.nents = count;
1159         }
1160
1161         return BLKPREP_OK;
1162 err_exit:
1163         if (is_mq) {
1164                 scsi_mq_free_sgtables(cmd);
1165         } else {
1166                 scsi_release_buffers(cmd);
1167                 cmd->request->special = NULL;
1168                 scsi_put_command(cmd);
1169                 put_device(&sdev->sdev_gendev);
1170         }
1171         return error;
1172 }
1173 EXPORT_SYMBOL(scsi_init_io);
1174
1175 /**
1176  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1177  * @rq: Request associated with the SCSI command to be initialized.
1178  *
1179  * This function initializes the members of struct scsi_cmnd that must be
1180  * initialized before request processing starts and that won't be
1181  * reinitialized if a SCSI command is requeued.
1182  *
1183  * Called from inside blk_get_request() for pass-through requests and from
1184  * inside scsi_init_command() for filesystem requests.
1185  */
1186 static void scsi_initialize_rq(struct request *rq)
1187 {
1188         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1189
1190         scsi_req_init(&cmd->req);
1191         init_rcu_head(&cmd->rcu);
1192         cmd->jiffies_at_alloc = jiffies;
1193         cmd->retries = 0;
1194 }
1195
1196 /* Add a command to the list used by the aacraid and dpt_i2o drivers */
1197 void scsi_add_cmd_to_list(struct scsi_cmnd *cmd)
1198 {
1199         struct scsi_device *sdev = cmd->device;
1200         struct Scsi_Host *shost = sdev->host;
1201         unsigned long flags;
1202
1203         if (shost->use_cmd_list) {
1204                 spin_lock_irqsave(&sdev->list_lock, flags);
1205                 list_add_tail(&cmd->list, &sdev->cmd_list);
1206                 spin_unlock_irqrestore(&sdev->list_lock, flags);
1207         }
1208 }
1209
1210 /* Remove a command from the list used by the aacraid and dpt_i2o drivers */
1211 void scsi_del_cmd_from_list(struct scsi_cmnd *cmd)
1212 {
1213         struct scsi_device *sdev = cmd->device;
1214         struct Scsi_Host *shost = sdev->host;
1215         unsigned long flags;
1216
1217         if (shost->use_cmd_list) {
1218                 spin_lock_irqsave(&sdev->list_lock, flags);
1219                 BUG_ON(list_empty(&cmd->list));
1220                 list_del_init(&cmd->list);
1221                 spin_unlock_irqrestore(&sdev->list_lock, flags);
1222         }
1223 }
1224
1225 /* Called after a request has been started. */
1226 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1227 {
1228         void *buf = cmd->sense_buffer;
1229         void *prot = cmd->prot_sdb;
1230         struct request *rq = blk_mq_rq_from_pdu(cmd);
1231         unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1232         unsigned long jiffies_at_alloc;
1233         int retries;
1234
1235         if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1236                 flags |= SCMD_INITIALIZED;
1237                 scsi_initialize_rq(rq);
1238         }
1239
1240         jiffies_at_alloc = cmd->jiffies_at_alloc;
1241         retries = cmd->retries;
1242         /* zero out the cmd, except for the embedded scsi_request */
1243         memset((char *)cmd + sizeof(cmd->req), 0,
1244                 sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size);
1245
1246         cmd->device = dev;
1247         cmd->sense_buffer = buf;
1248         cmd->prot_sdb = prot;
1249         cmd->flags = flags;
1250         INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1251         cmd->jiffies_at_alloc = jiffies_at_alloc;
1252         cmd->retries = retries;
1253
1254         scsi_add_cmd_to_list(cmd);
1255 }
1256
1257 static int scsi_setup_scsi_cmnd(struct scsi_device *sdev, struct request *req)
1258 {
1259         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1260
1261         /*
1262          * Passthrough requests may transfer data, in which case they must
1263          * a bio attached to them.  Or they might contain a SCSI command
1264          * that does not transfer data, in which case they may optionally
1265          * submit a request without an attached bio.
1266          */
1267         if (req->bio) {
1268                 int ret = scsi_init_io(cmd);
1269                 if (unlikely(ret))
1270                         return ret;
1271         } else {
1272                 BUG_ON(blk_rq_bytes(req));
1273
1274                 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1275         }
1276
1277         cmd->cmd_len = scsi_req(req)->cmd_len;
1278         cmd->cmnd = scsi_req(req)->cmd;
1279         cmd->transfersize = blk_rq_bytes(req);
1280         cmd->allowed = scsi_req(req)->retries;
1281         return BLKPREP_OK;
1282 }
1283
1284 /*
1285  * Setup a normal block command.  These are simple request from filesystems
1286  * that still need to be translated to SCSI CDBs from the ULD.
1287  */
1288 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1289 {
1290         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1291
1292         if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1293                 int ret = sdev->handler->prep_fn(sdev, req);
1294                 if (ret != BLKPREP_OK)
1295                         return ret;
1296         }
1297
1298         cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1299         memset(cmd->cmnd, 0, BLK_MAX_CDB);
1300         return scsi_cmd_to_driver(cmd)->init_command(cmd);
1301 }
1302
1303 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1304 {
1305         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1306
1307         if (!blk_rq_bytes(req))
1308                 cmd->sc_data_direction = DMA_NONE;
1309         else if (rq_data_dir(req) == WRITE)
1310                 cmd->sc_data_direction = DMA_TO_DEVICE;
1311         else
1312                 cmd->sc_data_direction = DMA_FROM_DEVICE;
1313
1314         if (blk_rq_is_scsi(req))
1315                 return scsi_setup_scsi_cmnd(sdev, req);
1316         else
1317                 return scsi_setup_fs_cmnd(sdev, req);
1318 }
1319
1320 static int
1321 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1322 {
1323         int ret = BLKPREP_OK;
1324
1325         /*
1326          * If the device is not in running state we will reject some
1327          * or all commands.
1328          */
1329         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1330                 switch (sdev->sdev_state) {
1331                 case SDEV_OFFLINE:
1332                 case SDEV_TRANSPORT_OFFLINE:
1333                         /*
1334                          * If the device is offline we refuse to process any
1335                          * commands.  The device must be brought online
1336                          * before trying any recovery commands.
1337                          */
1338                         sdev_printk(KERN_ERR, sdev,
1339                                     "rejecting I/O to offline device\n");
1340                         ret = BLKPREP_KILL;
1341                         break;
1342                 case SDEV_DEL:
1343                         /*
1344                          * If the device is fully deleted, we refuse to
1345                          * process any commands as well.
1346                          */
1347                         sdev_printk(KERN_ERR, sdev,
1348                                     "rejecting I/O to dead device\n");
1349                         ret = BLKPREP_KILL;
1350                         break;
1351                 case SDEV_BLOCK:
1352                 case SDEV_CREATED_BLOCK:
1353                         ret = BLKPREP_DEFER;
1354                         break;
1355                 case SDEV_QUIESCE:
1356                         /*
1357                          * If the devices is blocked we defer normal commands.
1358                          */
1359                         if (req && !(req->rq_flags & RQF_PREEMPT))
1360                                 ret = BLKPREP_DEFER;
1361                         break;
1362                 default:
1363                         /*
1364                          * For any other not fully online state we only allow
1365                          * special commands.  In particular any user initiated
1366                          * command is not allowed.
1367                          */
1368                         if (req && !(req->rq_flags & RQF_PREEMPT))
1369                                 ret = BLKPREP_KILL;
1370                         break;
1371                 }
1372         }
1373         return ret;
1374 }
1375
1376 static int
1377 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1378 {
1379         struct scsi_device *sdev = q->queuedata;
1380
1381         switch (ret) {
1382         case BLKPREP_KILL:
1383         case BLKPREP_INVALID:
1384                 scsi_req(req)->result = DID_NO_CONNECT << 16;
1385                 /* release the command and kill it */
1386                 if (req->special) {
1387                         struct scsi_cmnd *cmd = req->special;
1388                         scsi_release_buffers(cmd);
1389                         scsi_put_command(cmd);
1390                         put_device(&sdev->sdev_gendev);
1391                         req->special = NULL;
1392                 }
1393                 break;
1394         case BLKPREP_DEFER:
1395                 /*
1396                  * If we defer, the blk_peek_request() returns NULL, but the
1397                  * queue must be restarted, so we schedule a callback to happen
1398                  * shortly.
1399                  */
1400                 if (atomic_read(&sdev->device_busy) == 0)
1401                         blk_delay_queue(q, SCSI_QUEUE_DELAY);
1402                 break;
1403         default:
1404                 req->rq_flags |= RQF_DONTPREP;
1405         }
1406
1407         return ret;
1408 }
1409
1410 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1411 {
1412         struct scsi_device *sdev = q->queuedata;
1413         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1414         int ret;
1415
1416         ret = scsi_prep_state_check(sdev, req);
1417         if (ret != BLKPREP_OK)
1418                 goto out;
1419
1420         if (!req->special) {
1421                 /* Bail if we can't get a reference to the device */
1422                 if (unlikely(!get_device(&sdev->sdev_gendev))) {
1423                         ret = BLKPREP_DEFER;
1424                         goto out;
1425                 }
1426
1427                 scsi_init_command(sdev, cmd);
1428                 req->special = cmd;
1429         }
1430
1431         cmd->tag = req->tag;
1432         cmd->request = req;
1433         cmd->prot_op = SCSI_PROT_NORMAL;
1434
1435         ret = scsi_setup_cmnd(sdev, req);
1436 out:
1437         return scsi_prep_return(q, req, ret);
1438 }
1439
1440 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1441 {
1442         scsi_uninit_cmd(blk_mq_rq_to_pdu(req));
1443 }
1444
1445 /*
1446  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1447  * return 0.
1448  *
1449  * Called with the queue_lock held.
1450  */
1451 static inline int scsi_dev_queue_ready(struct request_queue *q,
1452                                   struct scsi_device *sdev)
1453 {
1454         unsigned int busy;
1455
1456         busy = atomic_inc_return(&sdev->device_busy) - 1;
1457         if (atomic_read(&sdev->device_blocked)) {
1458                 if (busy)
1459                         goto out_dec;
1460
1461                 /*
1462                  * unblock after device_blocked iterates to zero
1463                  */
1464                 if (atomic_dec_return(&sdev->device_blocked) > 0) {
1465                         /*
1466                          * For the MQ case we take care of this in the caller.
1467                          */
1468                         if (!q->mq_ops)
1469                                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1470                         goto out_dec;
1471                 }
1472                 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1473                                    "unblocking device at zero depth\n"));
1474         }
1475
1476         if (busy >= sdev->queue_depth)
1477                 goto out_dec;
1478
1479         return 1;
1480 out_dec:
1481         atomic_dec(&sdev->device_busy);
1482         return 0;
1483 }
1484
1485 /*
1486  * scsi_target_queue_ready: checks if there we can send commands to target
1487  * @sdev: scsi device on starget to check.
1488  */
1489 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1490                                            struct scsi_device *sdev)
1491 {
1492         struct scsi_target *starget = scsi_target(sdev);
1493         unsigned int busy;
1494
1495         if (starget->single_lun) {
1496                 spin_lock_irq(shost->host_lock);
1497                 if (starget->starget_sdev_user &&
1498                     starget->starget_sdev_user != sdev) {
1499                         spin_unlock_irq(shost->host_lock);
1500                         return 0;
1501                 }
1502                 starget->starget_sdev_user = sdev;
1503                 spin_unlock_irq(shost->host_lock);
1504         }
1505
1506         if (starget->can_queue <= 0)
1507                 return 1;
1508
1509         busy = atomic_inc_return(&starget->target_busy) - 1;
1510         if (atomic_read(&starget->target_blocked) > 0) {
1511                 if (busy)
1512                         goto starved;
1513
1514                 /*
1515                  * unblock after target_blocked iterates to zero
1516                  */
1517                 if (atomic_dec_return(&starget->target_blocked) > 0)
1518                         goto out_dec;
1519
1520                 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1521                                  "unblocking target at zero depth\n"));
1522         }
1523
1524         if (busy >= starget->can_queue)
1525                 goto starved;
1526
1527         return 1;
1528
1529 starved:
1530         spin_lock_irq(shost->host_lock);
1531         list_move_tail(&sdev->starved_entry, &shost->starved_list);
1532         spin_unlock_irq(shost->host_lock);
1533 out_dec:
1534         if (starget->can_queue > 0)
1535                 atomic_dec(&starget->target_busy);
1536         return 0;
1537 }
1538
1539 /*
1540  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1541  * return 0. We must end up running the queue again whenever 0 is
1542  * returned, else IO can hang.
1543  */
1544 static inline int scsi_host_queue_ready(struct request_queue *q,
1545                                    struct Scsi_Host *shost,
1546                                    struct scsi_device *sdev)
1547 {
1548         unsigned int busy;
1549
1550         if (scsi_host_in_recovery(shost))
1551                 return 0;
1552
1553         busy = atomic_inc_return(&shost->host_busy) - 1;
1554         if (atomic_read(&shost->host_blocked) > 0) {
1555                 if (busy)
1556                         goto starved;
1557
1558                 /*
1559                  * unblock after host_blocked iterates to zero
1560                  */
1561                 if (atomic_dec_return(&shost->host_blocked) > 0)
1562                         goto out_dec;
1563
1564                 SCSI_LOG_MLQUEUE(3,
1565                         shost_printk(KERN_INFO, shost,
1566                                      "unblocking host at zero depth\n"));
1567         }
1568
1569         if (shost->can_queue > 0 && busy >= shost->can_queue)
1570                 goto starved;
1571         if (shost->host_self_blocked)
1572                 goto starved;
1573
1574         /* We're OK to process the command, so we can't be starved */
1575         if (!list_empty(&sdev->starved_entry)) {
1576                 spin_lock_irq(shost->host_lock);
1577                 if (!list_empty(&sdev->starved_entry))
1578                         list_del_init(&sdev->starved_entry);
1579                 spin_unlock_irq(shost->host_lock);
1580         }
1581
1582         return 1;
1583
1584 starved:
1585         spin_lock_irq(shost->host_lock);
1586         if (list_empty(&sdev->starved_entry))
1587                 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1588         spin_unlock_irq(shost->host_lock);
1589 out_dec:
1590         scsi_dec_host_busy(shost);
1591         return 0;
1592 }
1593
1594 /*
1595  * Busy state exporting function for request stacking drivers.
1596  *
1597  * For efficiency, no lock is taken to check the busy state of
1598  * shost/starget/sdev, since the returned value is not guaranteed and
1599  * may be changed after request stacking drivers call the function,
1600  * regardless of taking lock or not.
1601  *
1602  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1603  * needs to return 'not busy'. Otherwise, request stacking drivers
1604  * may hold requests forever.
1605  */
1606 static int scsi_lld_busy(struct request_queue *q)
1607 {
1608         struct scsi_device *sdev = q->queuedata;
1609         struct Scsi_Host *shost;
1610
1611         if (blk_queue_dying(q))
1612                 return 0;
1613
1614         shost = sdev->host;
1615
1616         /*
1617          * Ignore host/starget busy state.
1618          * Since block layer does not have a concept of fairness across
1619          * multiple queues, congestion of host/starget needs to be handled
1620          * in SCSI layer.
1621          */
1622         if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1623                 return 1;
1624
1625         return 0;
1626 }
1627
1628 /*
1629  * Kill a request for a dead device
1630  */
1631 static void scsi_kill_request(struct request *req, struct request_queue *q)
1632 {
1633         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1634         struct scsi_device *sdev;
1635         struct scsi_target *starget;
1636         struct Scsi_Host *shost;
1637
1638         blk_start_request(req);
1639
1640         scmd_printk(KERN_INFO, cmd, "killing request\n");
1641
1642         sdev = cmd->device;
1643         starget = scsi_target(sdev);
1644         shost = sdev->host;
1645         scsi_init_cmd_errh(cmd);
1646         cmd->result = DID_NO_CONNECT << 16;
1647         atomic_inc(&cmd->device->iorequest_cnt);
1648
1649         /*
1650          * SCSI request completion path will do scsi_device_unbusy(),
1651          * bump busy counts.  To bump the counters, we need to dance
1652          * with the locks as normal issue path does.
1653          */
1654         atomic_inc(&sdev->device_busy);
1655         atomic_inc(&shost->host_busy);
1656         if (starget->can_queue > 0)
1657                 atomic_inc(&starget->target_busy);
1658
1659         blk_complete_request(req);
1660 }
1661
1662 static void scsi_softirq_done(struct request *rq)
1663 {
1664         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1665         unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1666         int disposition;
1667
1668         INIT_LIST_HEAD(&cmd->eh_entry);
1669
1670         atomic_inc(&cmd->device->iodone_cnt);
1671         if (cmd->result)
1672                 atomic_inc(&cmd->device->ioerr_cnt);
1673
1674         disposition = scsi_decide_disposition(cmd);
1675         if (disposition != SUCCESS &&
1676             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1677                 sdev_printk(KERN_ERR, cmd->device,
1678                             "timing out command, waited %lus\n",
1679                             wait_for/HZ);
1680                 disposition = SUCCESS;
1681         }
1682
1683         scsi_log_completion(cmd, disposition);
1684
1685         switch (disposition) {
1686                 case SUCCESS:
1687                         scsi_finish_command(cmd);
1688                         break;
1689                 case NEEDS_RETRY:
1690                         scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1691                         break;
1692                 case ADD_TO_MLQUEUE:
1693                         scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1694                         break;
1695                 default:
1696                         scsi_eh_scmd_add(cmd);
1697                         break;
1698         }
1699 }
1700
1701 /**
1702  * scsi_dispatch_command - Dispatch a command to the low-level driver.
1703  * @cmd: command block we are dispatching.
1704  *
1705  * Return: nonzero return request was rejected and device's queue needs to be
1706  * plugged.
1707  */
1708 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1709 {
1710         struct Scsi_Host *host = cmd->device->host;
1711         int rtn = 0;
1712
1713         atomic_inc(&cmd->device->iorequest_cnt);
1714
1715         /* check if the device is still usable */
1716         if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1717                 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1718                  * returns an immediate error upwards, and signals
1719                  * that the device is no longer present */
1720                 cmd->result = DID_NO_CONNECT << 16;
1721                 goto done;
1722         }
1723
1724         /* Check to see if the scsi lld made this device blocked. */
1725         if (unlikely(scsi_device_blocked(cmd->device))) {
1726                 /*
1727                  * in blocked state, the command is just put back on
1728                  * the device queue.  The suspend state has already
1729                  * blocked the queue so future requests should not
1730                  * occur until the device transitions out of the
1731                  * suspend state.
1732                  */
1733                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1734                         "queuecommand : device blocked\n"));
1735                 return SCSI_MLQUEUE_DEVICE_BUSY;
1736         }
1737
1738         /* Store the LUN value in cmnd, if needed. */
1739         if (cmd->device->lun_in_cdb)
1740                 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1741                                (cmd->device->lun << 5 & 0xe0);
1742
1743         scsi_log_send(cmd);
1744
1745         /*
1746          * Before we queue this command, check if the command
1747          * length exceeds what the host adapter can handle.
1748          */
1749         if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1750                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1751                                "queuecommand : command too long. "
1752                                "cdb_size=%d host->max_cmd_len=%d\n",
1753                                cmd->cmd_len, cmd->device->host->max_cmd_len));
1754                 cmd->result = (DID_ABORT << 16);
1755                 goto done;
1756         }
1757
1758         if (unlikely(host->shost_state == SHOST_DEL)) {
1759                 cmd->result = (DID_NO_CONNECT << 16);
1760                 goto done;
1761
1762         }
1763
1764         trace_scsi_dispatch_cmd_start(cmd);
1765         rtn = host->hostt->queuecommand(host, cmd);
1766         if (rtn) {
1767                 trace_scsi_dispatch_cmd_error(cmd, rtn);
1768                 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1769                     rtn != SCSI_MLQUEUE_TARGET_BUSY)
1770                         rtn = SCSI_MLQUEUE_HOST_BUSY;
1771
1772                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1773                         "queuecommand : request rejected\n"));
1774         }
1775
1776         return rtn;
1777  done:
1778         cmd->scsi_done(cmd);
1779         return 0;
1780 }
1781
1782 /**
1783  * scsi_done - Invoke completion on finished SCSI command.
1784  * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1785  * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1786  *
1787  * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1788  * which regains ownership of the SCSI command (de facto) from a LLDD, and
1789  * calls blk_complete_request() for further processing.
1790  *
1791  * This function is interrupt context safe.
1792  */
1793 static void scsi_done(struct scsi_cmnd *cmd)
1794 {
1795         trace_scsi_dispatch_cmd_done(cmd);
1796         blk_complete_request(cmd->request);
1797 }
1798
1799 /*
1800  * Function:    scsi_request_fn()
1801  *
1802  * Purpose:     Main strategy routine for SCSI.
1803  *
1804  * Arguments:   q       - Pointer to actual queue.
1805  *
1806  * Returns:     Nothing
1807  *
1808  * Lock status: request queue lock assumed to be held when called.
1809  *
1810  * Note: See sd_zbc.c sd_zbc_write_lock_zone() for write order
1811  * protection for ZBC disks.
1812  */
1813 static void scsi_request_fn(struct request_queue *q)
1814         __releases(q->queue_lock)
1815         __acquires(q->queue_lock)
1816 {
1817         struct scsi_device *sdev = q->queuedata;
1818         struct Scsi_Host *shost;
1819         struct scsi_cmnd *cmd;
1820         struct request *req;
1821
1822         /*
1823          * To start with, we keep looping until the queue is empty, or until
1824          * the host is no longer able to accept any more requests.
1825          */
1826         shost = sdev->host;
1827         for (;;) {
1828                 int rtn;
1829                 /*
1830                  * get next queueable request.  We do this early to make sure
1831                  * that the request is fully prepared even if we cannot
1832                  * accept it.
1833                  */
1834                 req = blk_peek_request(q);
1835                 if (!req)
1836                         break;
1837
1838                 if (unlikely(!scsi_device_online(sdev))) {
1839                         sdev_printk(KERN_ERR, sdev,
1840                                     "rejecting I/O to offline device\n");
1841                         scsi_kill_request(req, q);
1842                         continue;
1843                 }
1844
1845                 if (!scsi_dev_queue_ready(q, sdev))
1846                         break;
1847
1848                 /*
1849                  * Remove the request from the request list.
1850                  */
1851                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1852                         blk_start_request(req);
1853
1854                 spin_unlock_irq(q->queue_lock);
1855                 cmd = blk_mq_rq_to_pdu(req);
1856                 if (cmd != req->special) {
1857                         printk(KERN_CRIT "impossible request in %s.\n"
1858                                          "please mail a stack trace to "
1859                                          "linux-scsi@vger.kernel.org\n",
1860                                          __func__);
1861                         blk_dump_rq_flags(req, "foo");
1862                         BUG();
1863                 }
1864
1865                 /*
1866                  * We hit this when the driver is using a host wide
1867                  * tag map. For device level tag maps the queue_depth check
1868                  * in the device ready fn would prevent us from trying
1869                  * to allocate a tag. Since the map is a shared host resource
1870                  * we add the dev to the starved list so it eventually gets
1871                  * a run when a tag is freed.
1872                  */
1873                 if (blk_queue_tagged(q) && !(req->rq_flags & RQF_QUEUED)) {
1874                         spin_lock_irq(shost->host_lock);
1875                         if (list_empty(&sdev->starved_entry))
1876                                 list_add_tail(&sdev->starved_entry,
1877                                               &shost->starved_list);
1878                         spin_unlock_irq(shost->host_lock);
1879                         goto not_ready;
1880                 }
1881
1882                 if (!scsi_target_queue_ready(shost, sdev))
1883                         goto not_ready;
1884
1885                 if (!scsi_host_queue_ready(q, shost, sdev))
1886                         goto host_not_ready;
1887         
1888                 if (sdev->simple_tags)
1889                         cmd->flags |= SCMD_TAGGED;
1890                 else
1891                         cmd->flags &= ~SCMD_TAGGED;
1892
1893                 /*
1894                  * Finally, initialize any error handling parameters, and set up
1895                  * the timers for timeouts.
1896                  */
1897                 scsi_init_cmd_errh(cmd);
1898
1899                 /*
1900                  * Dispatch the command to the low-level driver.
1901                  */
1902                 cmd->scsi_done = scsi_done;
1903                 rtn = scsi_dispatch_cmd(cmd);
1904                 if (rtn) {
1905                         scsi_queue_insert(cmd, rtn);
1906                         spin_lock_irq(q->queue_lock);
1907                         goto out_delay;
1908                 }
1909                 spin_lock_irq(q->queue_lock);
1910         }
1911
1912         return;
1913
1914  host_not_ready:
1915         if (scsi_target(sdev)->can_queue > 0)
1916                 atomic_dec(&scsi_target(sdev)->target_busy);
1917  not_ready:
1918         /*
1919          * lock q, handle tag, requeue req, and decrement device_busy. We
1920          * must return with queue_lock held.
1921          *
1922          * Decrementing device_busy without checking it is OK, as all such
1923          * cases (host limits or settings) should run the queue at some
1924          * later time.
1925          */
1926         spin_lock_irq(q->queue_lock);
1927         blk_requeue_request(q, req);
1928         atomic_dec(&sdev->device_busy);
1929 out_delay:
1930         if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1931                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1932 }
1933
1934 static inline blk_status_t prep_to_mq(int ret)
1935 {
1936         switch (ret) {
1937         case BLKPREP_OK:
1938                 return BLK_STS_OK;
1939         case BLKPREP_DEFER:
1940                 return BLK_STS_RESOURCE;
1941         default:
1942                 return BLK_STS_IOERR;
1943         }
1944 }
1945
1946 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1947 static unsigned int scsi_mq_sgl_size(struct Scsi_Host *shost)
1948 {
1949         return min_t(unsigned int, shost->sg_tablesize, SG_CHUNK_SIZE) *
1950                 sizeof(struct scatterlist);
1951 }
1952
1953 static int scsi_mq_prep_fn(struct request *req)
1954 {
1955         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1956         struct scsi_device *sdev = req->q->queuedata;
1957         struct Scsi_Host *shost = sdev->host;
1958         struct scatterlist *sg;
1959
1960         scsi_init_command(sdev, cmd);
1961
1962         req->special = cmd;
1963
1964         cmd->request = req;
1965
1966         cmd->tag = req->tag;
1967         cmd->prot_op = SCSI_PROT_NORMAL;
1968
1969         sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1970         cmd->sdb.table.sgl = sg;
1971
1972         if (scsi_host_get_prot(shost)) {
1973                 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1974
1975                 cmd->prot_sdb->table.sgl =
1976                         (struct scatterlist *)(cmd->prot_sdb + 1);
1977         }
1978
1979         if (blk_bidi_rq(req)) {
1980                 struct request *next_rq = req->next_rq;
1981                 struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1982
1983                 memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1984                 bidi_sdb->table.sgl =
1985                         (struct scatterlist *)(bidi_sdb + 1);
1986
1987                 next_rq->special = bidi_sdb;
1988         }
1989
1990         blk_mq_start_request(req);
1991
1992         return scsi_setup_cmnd(sdev, req);
1993 }
1994
1995 static void scsi_mq_done(struct scsi_cmnd *cmd)
1996 {
1997         trace_scsi_dispatch_cmd_done(cmd);
1998         blk_mq_complete_request(cmd->request);
1999 }
2000
2001 static void scsi_mq_put_budget(struct blk_mq_hw_ctx *hctx)
2002 {
2003         struct request_queue *q = hctx->queue;
2004         struct scsi_device *sdev = q->queuedata;
2005
2006         atomic_dec(&sdev->device_busy);
2007         put_device(&sdev->sdev_gendev);
2008 }
2009
2010 static bool scsi_mq_get_budget(struct blk_mq_hw_ctx *hctx)
2011 {
2012         struct request_queue *q = hctx->queue;
2013         struct scsi_device *sdev = q->queuedata;
2014
2015         if (!get_device(&sdev->sdev_gendev))
2016                 goto out;
2017         if (!scsi_dev_queue_ready(q, sdev))
2018                 goto out_put_device;
2019
2020         return true;
2021
2022 out_put_device:
2023         put_device(&sdev->sdev_gendev);
2024 out:
2025         if (atomic_read(&sdev->device_busy) == 0 && !scsi_device_blocked(sdev))
2026                 blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY);
2027         return false;
2028 }
2029
2030 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
2031                          const struct blk_mq_queue_data *bd)
2032 {
2033         struct request *req = bd->rq;
2034         struct request_queue *q = req->q;
2035         struct scsi_device *sdev = q->queuedata;
2036         struct Scsi_Host *shost = sdev->host;
2037         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
2038         blk_status_t ret;
2039         int reason;
2040
2041         ret = prep_to_mq(scsi_prep_state_check(sdev, req));
2042         if (ret != BLK_STS_OK)
2043                 goto out_put_budget;
2044
2045         ret = BLK_STS_RESOURCE;
2046         if (!scsi_target_queue_ready(shost, sdev))
2047                 goto out_put_budget;
2048         if (!scsi_host_queue_ready(q, shost, sdev))
2049                 goto out_dec_target_busy;
2050
2051         if (!(req->rq_flags & RQF_DONTPREP)) {
2052                 ret = prep_to_mq(scsi_mq_prep_fn(req));
2053                 if (ret != BLK_STS_OK)
2054                         goto out_dec_host_busy;
2055                 req->rq_flags |= RQF_DONTPREP;
2056         } else {
2057                 blk_mq_start_request(req);
2058         }
2059
2060         if (sdev->simple_tags)
2061                 cmd->flags |= SCMD_TAGGED;
2062         else
2063                 cmd->flags &= ~SCMD_TAGGED;
2064
2065         scsi_init_cmd_errh(cmd);
2066         cmd->scsi_done = scsi_mq_done;
2067
2068         reason = scsi_dispatch_cmd(cmd);
2069         if (reason) {
2070                 scsi_set_blocked(cmd, reason);
2071                 ret = BLK_STS_RESOURCE;
2072                 goto out_dec_host_busy;
2073         }
2074
2075         return BLK_STS_OK;
2076
2077 out_dec_host_busy:
2078         scsi_dec_host_busy(shost);
2079 out_dec_target_busy:
2080         if (scsi_target(sdev)->can_queue > 0)
2081                 atomic_dec(&scsi_target(sdev)->target_busy);
2082 out_put_budget:
2083         scsi_mq_put_budget(hctx);
2084         switch (ret) {
2085         case BLK_STS_OK:
2086                 break;
2087         case BLK_STS_RESOURCE:
2088                 if (atomic_read(&sdev->device_busy) ||
2089                     scsi_device_blocked(sdev))
2090                         ret = BLK_STS_DEV_RESOURCE;
2091                 break;
2092         default:
2093                 /*
2094                  * Make sure to release all allocated ressources when
2095                  * we hit an error, as we will never see this command
2096                  * again.
2097                  */
2098                 if (req->rq_flags & RQF_DONTPREP)
2099                         scsi_mq_uninit_cmd(cmd);
2100                 break;
2101         }
2102         return ret;
2103 }
2104
2105 static enum blk_eh_timer_return scsi_timeout(struct request *req,
2106                 bool reserved)
2107 {
2108         if (reserved)
2109                 return BLK_EH_RESET_TIMER;
2110         return scsi_times_out(req);
2111 }
2112
2113 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2114                                 unsigned int hctx_idx, unsigned int numa_node)
2115 {
2116         struct Scsi_Host *shost = set->driver_data;
2117         const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2118         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2119         struct scatterlist *sg;
2120
2121         if (unchecked_isa_dma)
2122                 cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2123         cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
2124                                                     GFP_KERNEL, numa_node);
2125         if (!cmd->sense_buffer)
2126                 return -ENOMEM;
2127         cmd->req.sense = cmd->sense_buffer;
2128
2129         if (scsi_host_get_prot(shost)) {
2130                 sg = (void *)cmd + sizeof(struct scsi_cmnd) +
2131                         shost->hostt->cmd_size;
2132                 cmd->prot_sdb = (void *)sg + scsi_mq_sgl_size(shost);
2133         }
2134
2135         return 0;
2136 }
2137
2138 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
2139                                  unsigned int hctx_idx)
2140 {
2141         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2142
2143         scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2144                                cmd->sense_buffer);
2145 }
2146
2147 static int scsi_map_queues(struct blk_mq_tag_set *set)
2148 {
2149         struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
2150
2151         if (shost->hostt->map_queues)
2152                 return shost->hostt->map_queues(shost);
2153         return blk_mq_map_queues(set);
2154 }
2155
2156 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2157 {
2158         struct device *dev = shost->dma_dev;
2159
2160         /*
2161          * this limit is imposed by hardware restrictions
2162          */
2163         blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2164                                         SG_MAX_SEGMENTS));
2165
2166         if (scsi_host_prot_dma(shost)) {
2167                 shost->sg_prot_tablesize =
2168                         min_not_zero(shost->sg_prot_tablesize,
2169                                      (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2170                 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2171                 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2172         }
2173
2174         blk_queue_max_hw_sectors(q, shost->max_sectors);
2175         if (shost->unchecked_isa_dma)
2176                 blk_queue_bounce_limit(q, BLK_BOUNCE_ISA);
2177         blk_queue_segment_boundary(q, shost->dma_boundary);
2178         dma_set_seg_boundary(dev, shost->dma_boundary);
2179
2180         blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2181
2182         if (!shost->use_clustering)
2183                 q->limits.cluster = 0;
2184
2185         /*
2186          * Set a reasonable default alignment:  The larger of 32-byte (dword),
2187          * which is a common minimum for HBAs, and the minimum DMA alignment,
2188          * which is set by the platform.
2189          *
2190          * Devices that require a bigger alignment can increase it later.
2191          */
2192         blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
2193 }
2194 EXPORT_SYMBOL_GPL(__scsi_init_queue);
2195
2196 static int scsi_old_init_rq(struct request_queue *q, struct request *rq,
2197                             gfp_t gfp)
2198 {
2199         struct Scsi_Host *shost = q->rq_alloc_data;
2200         const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2201         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2202
2203         memset(cmd, 0, sizeof(*cmd));
2204
2205         if (unchecked_isa_dma)
2206                 cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2207         cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, gfp,
2208                                                     NUMA_NO_NODE);
2209         if (!cmd->sense_buffer)
2210                 goto fail;
2211         cmd->req.sense = cmd->sense_buffer;
2212
2213         if (scsi_host_get_prot(shost) >= SHOST_DIX_TYPE0_PROTECTION) {
2214                 cmd->prot_sdb = kmem_cache_zalloc(scsi_sdb_cache, gfp);
2215                 if (!cmd->prot_sdb)
2216                         goto fail_free_sense;
2217         }
2218
2219         return 0;
2220
2221 fail_free_sense:
2222         scsi_free_sense_buffer(unchecked_isa_dma, cmd->sense_buffer);
2223 fail:
2224         return -ENOMEM;
2225 }
2226
2227 static void scsi_old_exit_rq(struct request_queue *q, struct request *rq)
2228 {
2229         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2230
2231         if (cmd->prot_sdb)
2232                 kmem_cache_free(scsi_sdb_cache, cmd->prot_sdb);
2233         scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2234                                cmd->sense_buffer);
2235 }
2236
2237 struct request_queue *scsi_old_alloc_queue(struct scsi_device *sdev)
2238 {
2239         struct Scsi_Host *shost = sdev->host;
2240         struct request_queue *q;
2241
2242         q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE, NULL);
2243         if (!q)
2244                 return NULL;
2245         q->cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
2246         q->rq_alloc_data = shost;
2247         q->request_fn = scsi_request_fn;
2248         q->init_rq_fn = scsi_old_init_rq;
2249         q->exit_rq_fn = scsi_old_exit_rq;
2250         q->initialize_rq_fn = scsi_initialize_rq;
2251
2252         if (blk_init_allocated_queue(q) < 0) {
2253                 blk_cleanup_queue(q);
2254                 return NULL;
2255         }
2256
2257         __scsi_init_queue(shost, q);
2258         blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, q);
2259         blk_queue_prep_rq(q, scsi_prep_fn);
2260         blk_queue_unprep_rq(q, scsi_unprep_fn);
2261         blk_queue_softirq_done(q, scsi_softirq_done);
2262         blk_queue_rq_timed_out(q, scsi_times_out);
2263         blk_queue_lld_busy(q, scsi_lld_busy);
2264         return q;
2265 }
2266
2267 static const struct blk_mq_ops scsi_mq_ops = {
2268         .get_budget     = scsi_mq_get_budget,
2269         .put_budget     = scsi_mq_put_budget,
2270         .queue_rq       = scsi_queue_rq,
2271         .complete       = scsi_softirq_done,
2272         .timeout        = scsi_timeout,
2273 #ifdef CONFIG_BLK_DEBUG_FS
2274         .show_rq        = scsi_show_rq,
2275 #endif
2276         .init_request   = scsi_mq_init_request,
2277         .exit_request   = scsi_mq_exit_request,
2278         .initialize_rq_fn = scsi_initialize_rq,
2279         .map_queues     = scsi_map_queues,
2280 };
2281
2282 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2283 {
2284         sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2285         if (IS_ERR(sdev->request_queue))
2286                 return NULL;
2287
2288         sdev->request_queue->queuedata = sdev;
2289         __scsi_init_queue(sdev->host, sdev->request_queue);
2290         blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue);
2291         return sdev->request_queue;
2292 }
2293
2294 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2295 {
2296         unsigned int cmd_size, sgl_size;
2297
2298         sgl_size = scsi_mq_sgl_size(shost);
2299         cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2300         if (scsi_host_get_prot(shost))
2301                 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2302
2303         memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2304         shost->tag_set.ops = &scsi_mq_ops;
2305         shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2306         shost->tag_set.queue_depth = shost->can_queue;
2307         shost->tag_set.cmd_size = cmd_size;
2308         shost->tag_set.numa_node = NUMA_NO_NODE;
2309         shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2310         shost->tag_set.flags |=
2311                 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2312         shost->tag_set.driver_data = shost;
2313
2314         return blk_mq_alloc_tag_set(&shost->tag_set);
2315 }
2316
2317 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2318 {
2319         blk_mq_free_tag_set(&shost->tag_set);
2320 }
2321
2322 /**
2323  * scsi_device_from_queue - return sdev associated with a request_queue
2324  * @q: The request queue to return the sdev from
2325  *
2326  * Return the sdev associated with a request queue or NULL if the
2327  * request_queue does not reference a SCSI device.
2328  */
2329 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2330 {
2331         struct scsi_device *sdev = NULL;
2332
2333         if (q->mq_ops) {
2334                 if (q->mq_ops == &scsi_mq_ops)
2335                         sdev = q->queuedata;
2336         } else if (q->request_fn == scsi_request_fn)
2337                 sdev = q->queuedata;
2338         if (!sdev || !get_device(&sdev->sdev_gendev))
2339                 sdev = NULL;
2340
2341         return sdev;
2342 }
2343 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2344
2345 /*
2346  * Function:    scsi_block_requests()
2347  *
2348  * Purpose:     Utility function used by low-level drivers to prevent further
2349  *              commands from being queued to the device.
2350  *
2351  * Arguments:   shost       - Host in question
2352  *
2353  * Returns:     Nothing
2354  *
2355  * Lock status: No locks are assumed held.
2356  *
2357  * Notes:       There is no timer nor any other means by which the requests
2358  *              get unblocked other than the low-level driver calling
2359  *              scsi_unblock_requests().
2360  */
2361 void scsi_block_requests(struct Scsi_Host *shost)
2362 {
2363         shost->host_self_blocked = 1;
2364 }
2365 EXPORT_SYMBOL(scsi_block_requests);
2366
2367 /*
2368  * Function:    scsi_unblock_requests()
2369  *
2370  * Purpose:     Utility function used by low-level drivers to allow further
2371  *              commands from being queued to the device.
2372  *
2373  * Arguments:   shost       - Host in question
2374  *
2375  * Returns:     Nothing
2376  *
2377  * Lock status: No locks are assumed held.
2378  *
2379  * Notes:       There is no timer nor any other means by which the requests
2380  *              get unblocked other than the low-level driver calling
2381  *              scsi_unblock_requests().
2382  *
2383  *              This is done as an API function so that changes to the
2384  *              internals of the scsi mid-layer won't require wholesale
2385  *              changes to drivers that use this feature.
2386  */
2387 void scsi_unblock_requests(struct Scsi_Host *shost)
2388 {
2389         shost->host_self_blocked = 0;
2390         scsi_run_host_queues(shost);
2391 }
2392 EXPORT_SYMBOL(scsi_unblock_requests);
2393
2394 int __init scsi_init_queue(void)
2395 {
2396         scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2397                                            sizeof(struct scsi_data_buffer),
2398                                            0, 0, NULL);
2399         if (!scsi_sdb_cache) {
2400                 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2401                 return -ENOMEM;
2402         }
2403
2404         return 0;
2405 }
2406
2407 void scsi_exit_queue(void)
2408 {
2409         kmem_cache_destroy(scsi_sense_cache);
2410         kmem_cache_destroy(scsi_sense_isadma_cache);
2411         kmem_cache_destroy(scsi_sdb_cache);
2412 }
2413
2414 /**
2415  *      scsi_mode_select - issue a mode select
2416  *      @sdev:  SCSI device to be queried
2417  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
2418  *      @sp:    Save page bit (0 == don't save, 1 == save)
2419  *      @modepage: mode page being requested
2420  *      @buffer: request buffer (may not be smaller than eight bytes)
2421  *      @len:   length of request buffer.
2422  *      @timeout: command timeout
2423  *      @retries: number of retries before failing
2424  *      @data: returns a structure abstracting the mode header data
2425  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2426  *              must be SCSI_SENSE_BUFFERSIZE big.
2427  *
2428  *      Returns zero if successful; negative error number or scsi
2429  *      status on error
2430  *
2431  */
2432 int
2433 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2434                  unsigned char *buffer, int len, int timeout, int retries,
2435                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2436 {
2437         unsigned char cmd[10];
2438         unsigned char *real_buffer;
2439         int ret;
2440
2441         memset(cmd, 0, sizeof(cmd));
2442         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2443
2444         if (sdev->use_10_for_ms) {
2445                 if (len > 65535)
2446                         return -EINVAL;
2447                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2448                 if (!real_buffer)
2449                         return -ENOMEM;
2450                 memcpy(real_buffer + 8, buffer, len);
2451                 len += 8;
2452                 real_buffer[0] = 0;
2453                 real_buffer[1] = 0;
2454                 real_buffer[2] = data->medium_type;
2455                 real_buffer[3] = data->device_specific;
2456                 real_buffer[4] = data->longlba ? 0x01 : 0;
2457                 real_buffer[5] = 0;
2458                 real_buffer[6] = data->block_descriptor_length >> 8;
2459                 real_buffer[7] = data->block_descriptor_length;
2460
2461                 cmd[0] = MODE_SELECT_10;
2462                 cmd[7] = len >> 8;
2463                 cmd[8] = len;
2464         } else {
2465                 if (len > 255 || data->block_descriptor_length > 255 ||
2466                     data->longlba)
2467                         return -EINVAL;
2468
2469                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2470                 if (!real_buffer)
2471                         return -ENOMEM;
2472                 memcpy(real_buffer + 4, buffer, len);
2473                 len += 4;
2474                 real_buffer[0] = 0;
2475                 real_buffer[1] = data->medium_type;
2476                 real_buffer[2] = data->device_specific;
2477                 real_buffer[3] = data->block_descriptor_length;
2478                 
2479
2480                 cmd[0] = MODE_SELECT;
2481                 cmd[4] = len;
2482         }
2483
2484         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2485                                sshdr, timeout, retries, NULL);
2486         kfree(real_buffer);
2487         return ret;
2488 }
2489 EXPORT_SYMBOL_GPL(scsi_mode_select);
2490
2491 /**
2492  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2493  *      @sdev:  SCSI device to be queried
2494  *      @dbd:   set if mode sense will allow block descriptors to be returned
2495  *      @modepage: mode page being requested
2496  *      @buffer: request buffer (may not be smaller than eight bytes)
2497  *      @len:   length of request buffer.
2498  *      @timeout: command timeout
2499  *      @retries: number of retries before failing
2500  *      @data: returns a structure abstracting the mode header data
2501  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2502  *              must be SCSI_SENSE_BUFFERSIZE big.
2503  *
2504  *      Returns zero if unsuccessful, or the header offset (either 4
2505  *      or 8 depending on whether a six or ten byte command was
2506  *      issued) if successful.
2507  */
2508 int
2509 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2510                   unsigned char *buffer, int len, int timeout, int retries,
2511                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2512 {
2513         unsigned char cmd[12];
2514         int use_10_for_ms;
2515         int header_length;
2516         int result, retry_count = retries;
2517         struct scsi_sense_hdr my_sshdr;
2518
2519         memset(data, 0, sizeof(*data));
2520         memset(&cmd[0], 0, 12);
2521         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
2522         cmd[2] = modepage;
2523
2524         /* caller might not be interested in sense, but we need it */
2525         if (!sshdr)
2526                 sshdr = &my_sshdr;
2527
2528  retry:
2529         use_10_for_ms = sdev->use_10_for_ms;
2530
2531         if (use_10_for_ms) {
2532                 if (len < 8)
2533                         len = 8;
2534
2535                 cmd[0] = MODE_SENSE_10;
2536                 cmd[8] = len;
2537                 header_length = 8;
2538         } else {
2539                 if (len < 4)
2540                         len = 4;
2541
2542                 cmd[0] = MODE_SENSE;
2543                 cmd[4] = len;
2544                 header_length = 4;
2545         }
2546
2547         memset(buffer, 0, len);
2548
2549         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2550                                   sshdr, timeout, retries, NULL);
2551
2552         /* This code looks awful: what it's doing is making sure an
2553          * ILLEGAL REQUEST sense return identifies the actual command
2554          * byte as the problem.  MODE_SENSE commands can return
2555          * ILLEGAL REQUEST if the code page isn't supported */
2556
2557         if (use_10_for_ms && !scsi_status_is_good(result) &&
2558             (driver_byte(result) & DRIVER_SENSE)) {
2559                 if (scsi_sense_valid(sshdr)) {
2560                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2561                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2562                                 /* 
2563                                  * Invalid command operation code
2564                                  */
2565                                 sdev->use_10_for_ms = 0;
2566                                 goto retry;
2567                         }
2568                 }
2569         }
2570
2571         if(scsi_status_is_good(result)) {
2572                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2573                              (modepage == 6 || modepage == 8))) {
2574                         /* Initio breakage? */
2575                         header_length = 0;
2576                         data->length = 13;
2577                         data->medium_type = 0;
2578                         data->device_specific = 0;
2579                         data->longlba = 0;
2580                         data->block_descriptor_length = 0;
2581                 } else if(use_10_for_ms) {
2582                         data->length = buffer[0]*256 + buffer[1] + 2;
2583                         data->medium_type = buffer[2];
2584                         data->device_specific = buffer[3];
2585                         data->longlba = buffer[4] & 0x01;
2586                         data->block_descriptor_length = buffer[6]*256
2587                                 + buffer[7];
2588                 } else {
2589                         data->length = buffer[0] + 1;
2590                         data->medium_type = buffer[1];
2591                         data->device_specific = buffer[2];
2592                         data->block_descriptor_length = buffer[3];
2593                 }
2594                 data->header_length = header_length;
2595         } else if ((status_byte(result) == CHECK_CONDITION) &&
2596                    scsi_sense_valid(sshdr) &&
2597                    sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2598                 retry_count--;
2599                 goto retry;
2600         }
2601
2602         return result;
2603 }
2604 EXPORT_SYMBOL(scsi_mode_sense);
2605
2606 /**
2607  *      scsi_test_unit_ready - test if unit is ready
2608  *      @sdev:  scsi device to change the state of.
2609  *      @timeout: command timeout
2610  *      @retries: number of retries before failing
2611  *      @sshdr: outpout pointer for decoded sense information.
2612  *
2613  *      Returns zero if unsuccessful or an error if TUR failed.  For
2614  *      removable media, UNIT_ATTENTION sets ->changed flag.
2615  **/
2616 int
2617 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2618                      struct scsi_sense_hdr *sshdr)
2619 {
2620         char cmd[] = {
2621                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2622         };
2623         int result;
2624
2625         /* try to eat the UNIT_ATTENTION if there are enough retries */
2626         do {
2627                 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2628                                           timeout, 1, NULL);
2629                 if (sdev->removable && scsi_sense_valid(sshdr) &&
2630                     sshdr->sense_key == UNIT_ATTENTION)
2631                         sdev->changed = 1;
2632         } while (scsi_sense_valid(sshdr) &&
2633                  sshdr->sense_key == UNIT_ATTENTION && --retries);
2634
2635         return result;
2636 }
2637 EXPORT_SYMBOL(scsi_test_unit_ready);
2638
2639 /**
2640  *      scsi_device_set_state - Take the given device through the device state model.
2641  *      @sdev:  scsi device to change the state of.
2642  *      @state: state to change to.
2643  *
2644  *      Returns zero if successful or an error if the requested
2645  *      transition is illegal.
2646  */
2647 int
2648 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2649 {
2650         enum scsi_device_state oldstate = sdev->sdev_state;
2651
2652         if (state == oldstate)
2653                 return 0;
2654
2655         switch (state) {
2656         case SDEV_CREATED:
2657                 switch (oldstate) {
2658                 case SDEV_CREATED_BLOCK:
2659                         break;
2660                 default:
2661                         goto illegal;
2662                 }
2663                 break;
2664                         
2665         case SDEV_RUNNING:
2666                 switch (oldstate) {
2667                 case SDEV_CREATED:
2668                 case SDEV_OFFLINE:
2669                 case SDEV_TRANSPORT_OFFLINE:
2670                 case SDEV_QUIESCE:
2671                 case SDEV_BLOCK:
2672                         break;
2673                 default:
2674                         goto illegal;
2675                 }
2676                 break;
2677
2678         case SDEV_QUIESCE:
2679                 switch (oldstate) {
2680                 case SDEV_RUNNING:
2681                 case SDEV_OFFLINE:
2682                 case SDEV_TRANSPORT_OFFLINE:
2683                         break;
2684                 default:
2685                         goto illegal;
2686                 }
2687                 break;
2688
2689         case SDEV_OFFLINE:
2690         case SDEV_TRANSPORT_OFFLINE:
2691                 switch (oldstate) {
2692                 case SDEV_CREATED:
2693                 case SDEV_RUNNING:
2694                 case SDEV_QUIESCE:
2695                 case SDEV_BLOCK:
2696                         break;
2697                 default:
2698                         goto illegal;
2699                 }
2700                 break;
2701
2702         case SDEV_BLOCK:
2703                 switch (oldstate) {
2704                 case SDEV_RUNNING:
2705                 case SDEV_CREATED_BLOCK:
2706                         break;
2707                 default:
2708                         goto illegal;
2709                 }
2710                 break;
2711
2712         case SDEV_CREATED_BLOCK:
2713                 switch (oldstate) {
2714                 case SDEV_CREATED:
2715                         break;
2716                 default:
2717                         goto illegal;
2718                 }
2719                 break;
2720
2721         case SDEV_CANCEL:
2722                 switch (oldstate) {
2723                 case SDEV_CREATED:
2724                 case SDEV_RUNNING:
2725                 case SDEV_QUIESCE:
2726                 case SDEV_OFFLINE:
2727                 case SDEV_TRANSPORT_OFFLINE:
2728                         break;
2729                 default:
2730                         goto illegal;
2731                 }
2732                 break;
2733
2734         case SDEV_DEL:
2735                 switch (oldstate) {
2736                 case SDEV_CREATED:
2737                 case SDEV_RUNNING:
2738                 case SDEV_OFFLINE:
2739                 case SDEV_TRANSPORT_OFFLINE:
2740                 case SDEV_CANCEL:
2741                 case SDEV_BLOCK:
2742                 case SDEV_CREATED_BLOCK:
2743                         break;
2744                 default:
2745                         goto illegal;
2746                 }
2747                 break;
2748
2749         }
2750         sdev->sdev_state = state;
2751         return 0;
2752
2753  illegal:
2754         SCSI_LOG_ERROR_RECOVERY(1,
2755                                 sdev_printk(KERN_ERR, sdev,
2756                                             "Illegal state transition %s->%s",
2757                                             scsi_device_state_name(oldstate),
2758                                             scsi_device_state_name(state))
2759                                 );
2760         return -EINVAL;
2761 }
2762 EXPORT_SYMBOL(scsi_device_set_state);
2763
2764 /**
2765  *      sdev_evt_emit - emit a single SCSI device uevent
2766  *      @sdev: associated SCSI device
2767  *      @evt: event to emit
2768  *
2769  *      Send a single uevent (scsi_event) to the associated scsi_device.
2770  */
2771 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2772 {
2773         int idx = 0;
2774         char *envp[3];
2775
2776         switch (evt->evt_type) {
2777         case SDEV_EVT_MEDIA_CHANGE:
2778                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2779                 break;
2780         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2781                 scsi_rescan_device(&sdev->sdev_gendev);
2782                 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2783                 break;
2784         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2785                 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2786                 break;
2787         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2788                envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2789                 break;
2790         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2791                 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2792                 break;
2793         case SDEV_EVT_LUN_CHANGE_REPORTED:
2794                 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2795                 break;
2796         case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2797                 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2798                 break;
2799         case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2800                 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2801                 break;
2802         default:
2803                 /* do nothing */
2804                 break;
2805         }
2806
2807         envp[idx++] = NULL;
2808
2809         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2810 }
2811
2812 /**
2813  *      sdev_evt_thread - send a uevent for each scsi event
2814  *      @work: work struct for scsi_device
2815  *
2816  *      Dispatch queued events to their associated scsi_device kobjects
2817  *      as uevents.
2818  */
2819 void scsi_evt_thread(struct work_struct *work)
2820 {
2821         struct scsi_device *sdev;
2822         enum scsi_device_event evt_type;
2823         LIST_HEAD(event_list);
2824
2825         sdev = container_of(work, struct scsi_device, event_work);
2826
2827         for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2828                 if (test_and_clear_bit(evt_type, sdev->pending_events))
2829                         sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2830
2831         while (1) {
2832                 struct scsi_event *evt;
2833                 struct list_head *this, *tmp;
2834                 unsigned long flags;
2835
2836                 spin_lock_irqsave(&sdev->list_lock, flags);
2837                 list_splice_init(&sdev->event_list, &event_list);
2838                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2839
2840                 if (list_empty(&event_list))
2841                         break;
2842
2843                 list_for_each_safe(this, tmp, &event_list) {
2844                         evt = list_entry(this, struct scsi_event, node);
2845                         list_del(&evt->node);
2846                         scsi_evt_emit(sdev, evt);
2847                         kfree(evt);
2848                 }
2849         }
2850 }
2851
2852 /**
2853  *      sdev_evt_send - send asserted event to uevent thread
2854  *      @sdev: scsi_device event occurred on
2855  *      @evt: event to send
2856  *
2857  *      Assert scsi device event asynchronously.
2858  */
2859 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2860 {
2861         unsigned long flags;
2862
2863 #if 0
2864         /* FIXME: currently this check eliminates all media change events
2865          * for polled devices.  Need to update to discriminate between AN
2866          * and polled events */
2867         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2868                 kfree(evt);
2869                 return;
2870         }
2871 #endif
2872
2873         spin_lock_irqsave(&sdev->list_lock, flags);
2874         list_add_tail(&evt->node, &sdev->event_list);
2875         schedule_work(&sdev->event_work);
2876         spin_unlock_irqrestore(&sdev->list_lock, flags);
2877 }
2878 EXPORT_SYMBOL_GPL(sdev_evt_send);
2879
2880 /**
2881  *      sdev_evt_alloc - allocate a new scsi event
2882  *      @evt_type: type of event to allocate
2883  *      @gfpflags: GFP flags for allocation
2884  *
2885  *      Allocates and returns a new scsi_event.
2886  */
2887 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2888                                   gfp_t gfpflags)
2889 {
2890         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2891         if (!evt)
2892                 return NULL;
2893
2894         evt->evt_type = evt_type;
2895         INIT_LIST_HEAD(&evt->node);
2896
2897         /* evt_type-specific initialization, if any */
2898         switch (evt_type) {
2899         case SDEV_EVT_MEDIA_CHANGE:
2900         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2901         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2902         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2903         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2904         case SDEV_EVT_LUN_CHANGE_REPORTED:
2905         case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2906         case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2907         default:
2908                 /* do nothing */
2909                 break;
2910         }
2911
2912         return evt;
2913 }
2914 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2915
2916 /**
2917  *      sdev_evt_send_simple - send asserted event to uevent thread
2918  *      @sdev: scsi_device event occurred on
2919  *      @evt_type: type of event to send
2920  *      @gfpflags: GFP flags for allocation
2921  *
2922  *      Assert scsi device event asynchronously, given an event type.
2923  */
2924 void sdev_evt_send_simple(struct scsi_device *sdev,
2925                           enum scsi_device_event evt_type, gfp_t gfpflags)
2926 {
2927         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2928         if (!evt) {
2929                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2930                             evt_type);
2931                 return;
2932         }
2933
2934         sdev_evt_send(sdev, evt);
2935 }
2936 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2937
2938 /**
2939  * scsi_request_fn_active() - number of kernel threads inside scsi_request_fn()
2940  * @sdev: SCSI device to count the number of scsi_request_fn() callers for.
2941  */
2942 static int scsi_request_fn_active(struct scsi_device *sdev)
2943 {
2944         struct request_queue *q = sdev->request_queue;
2945         int request_fn_active;
2946
2947         WARN_ON_ONCE(sdev->host->use_blk_mq);
2948
2949         spin_lock_irq(q->queue_lock);
2950         request_fn_active = q->request_fn_active;
2951         spin_unlock_irq(q->queue_lock);
2952
2953         return request_fn_active;
2954 }
2955
2956 /**
2957  * scsi_wait_for_queuecommand() - wait for ongoing queuecommand() calls
2958  * @sdev: SCSI device pointer.
2959  *
2960  * Wait until the ongoing shost->hostt->queuecommand() calls that are
2961  * invoked from scsi_request_fn() have finished.
2962  */
2963 static void scsi_wait_for_queuecommand(struct scsi_device *sdev)
2964 {
2965         WARN_ON_ONCE(sdev->host->use_blk_mq);
2966
2967         while (scsi_request_fn_active(sdev))
2968                 msleep(20);
2969 }
2970
2971 /**
2972  *      scsi_device_quiesce - Block user issued commands.
2973  *      @sdev:  scsi device to quiesce.
2974  *
2975  *      This works by trying to transition to the SDEV_QUIESCE state
2976  *      (which must be a legal transition).  When the device is in this
2977  *      state, only special requests will be accepted, all others will
2978  *      be deferred.  Since special requests may also be requeued requests,
2979  *      a successful return doesn't guarantee the device will be 
2980  *      totally quiescent.
2981  *
2982  *      Must be called with user context, may sleep.
2983  *
2984  *      Returns zero if unsuccessful or an error if not.
2985  */
2986 int
2987 scsi_device_quiesce(struct scsi_device *sdev)
2988 {
2989         struct request_queue *q = sdev->request_queue;
2990         int err;
2991
2992         /*
2993          * It is allowed to call scsi_device_quiesce() multiple times from
2994          * the same context but concurrent scsi_device_quiesce() calls are
2995          * not allowed.
2996          */
2997         WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2998
2999         blk_set_preempt_only(q);
3000
3001         blk_mq_freeze_queue(q);
3002         /*
3003          * Ensure that the effect of blk_set_preempt_only() will be visible
3004          * for percpu_ref_tryget() callers that occur after the queue
3005          * unfreeze even if the queue was already frozen before this function
3006          * was called. See also https://lwn.net/Articles/573497/.
3007          */
3008         synchronize_rcu();
3009         blk_mq_unfreeze_queue(q);
3010
3011         mutex_lock(&sdev->state_mutex);
3012         err = scsi_device_set_state(sdev, SDEV_QUIESCE);
3013         if (err == 0)
3014                 sdev->quiesced_by = current;
3015         else
3016                 blk_clear_preempt_only(q);
3017         mutex_unlock(&sdev->state_mutex);
3018
3019         return err;
3020 }
3021 EXPORT_SYMBOL(scsi_device_quiesce);
3022
3023 /**
3024  *      scsi_device_resume - Restart user issued commands to a quiesced device.
3025  *      @sdev:  scsi device to resume.
3026  *
3027  *      Moves the device from quiesced back to running and restarts the
3028  *      queues.
3029  *
3030  *      Must be called with user context, may sleep.
3031  */
3032 void scsi_device_resume(struct scsi_device *sdev)
3033 {
3034         /* check if the device state was mutated prior to resume, and if
3035          * so assume the state is being managed elsewhere (for example
3036          * device deleted during suspend)
3037          */
3038         mutex_lock(&sdev->state_mutex);
3039         WARN_ON_ONCE(!sdev->quiesced_by);
3040         sdev->quiesced_by = NULL;
3041         blk_clear_preempt_only(sdev->request_queue);
3042         if (sdev->sdev_state == SDEV_QUIESCE)
3043                 scsi_device_set_state(sdev, SDEV_RUNNING);
3044         mutex_unlock(&sdev->state_mutex);
3045 }
3046 EXPORT_SYMBOL(scsi_device_resume);
3047
3048 static void
3049 device_quiesce_fn(struct scsi_device *sdev, void *data)
3050 {
3051         scsi_device_quiesce(sdev);
3052 }
3053
3054 void
3055 scsi_target_quiesce(struct scsi_target *starget)
3056 {
3057         starget_for_each_device(starget, NULL, device_quiesce_fn);
3058 }
3059 EXPORT_SYMBOL(scsi_target_quiesce);
3060
3061 static void
3062 device_resume_fn(struct scsi_device *sdev, void *data)
3063 {
3064         scsi_device_resume(sdev);
3065 }
3066
3067 void
3068 scsi_target_resume(struct scsi_target *starget)
3069 {
3070         starget_for_each_device(starget, NULL, device_resume_fn);
3071 }
3072 EXPORT_SYMBOL(scsi_target_resume);
3073
3074 /**
3075  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
3076  * @sdev: device to block
3077  *
3078  * Pause SCSI command processing on the specified device. Does not sleep.
3079  *
3080  * Returns zero if successful or a negative error code upon failure.
3081  *
3082  * Notes:
3083  * This routine transitions the device to the SDEV_BLOCK state (which must be
3084  * a legal transition). When the device is in this state, command processing
3085  * is paused until the device leaves the SDEV_BLOCK state. See also
3086  * scsi_internal_device_unblock_nowait().
3087  */
3088 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
3089 {
3090         struct request_queue *q = sdev->request_queue;
3091         unsigned long flags;
3092         int err = 0;
3093
3094         err = scsi_device_set_state(sdev, SDEV_BLOCK);
3095         if (err) {
3096                 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
3097
3098                 if (err)
3099                         return err;
3100         }
3101
3102         /* 
3103          * The device has transitioned to SDEV_BLOCK.  Stop the
3104          * block layer from calling the midlayer with this device's
3105          * request queue. 
3106          */
3107         if (q->mq_ops) {
3108                 blk_mq_quiesce_queue_nowait(q);
3109         } else {
3110                 spin_lock_irqsave(q->queue_lock, flags);
3111                 blk_stop_queue(q);
3112                 spin_unlock_irqrestore(q->queue_lock, flags);
3113         }
3114
3115         return 0;
3116 }
3117 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
3118
3119 /**
3120  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
3121  * @sdev: device to block
3122  *
3123  * Pause SCSI command processing on the specified device and wait until all
3124  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
3125  *
3126  * Returns zero if successful or a negative error code upon failure.
3127  *
3128  * Note:
3129  * This routine transitions the device to the SDEV_BLOCK state (which must be
3130  * a legal transition). When the device is in this state, command processing
3131  * is paused until the device leaves the SDEV_BLOCK state. See also
3132  * scsi_internal_device_unblock().
3133  *
3134  * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after
3135  * scsi_internal_device_block() has blocked a SCSI device and also
3136  * remove the rport mutex lock and unlock calls from srp_queuecommand().
3137  */
3138 static int scsi_internal_device_block(struct scsi_device *sdev)
3139 {
3140         struct request_queue *q = sdev->request_queue;
3141         int err;
3142
3143         mutex_lock(&sdev->state_mutex);
3144         err = scsi_internal_device_block_nowait(sdev);
3145         if (err == 0) {
3146                 if (q->mq_ops)
3147                         blk_mq_quiesce_queue(q);
3148                 else
3149                         scsi_wait_for_queuecommand(sdev);
3150         }
3151         mutex_unlock(&sdev->state_mutex);
3152
3153         return err;
3154 }
3155  
3156 void scsi_start_queue(struct scsi_device *sdev)
3157 {
3158         struct request_queue *q = sdev->request_queue;
3159         unsigned long flags;
3160
3161         if (q->mq_ops) {
3162                 blk_mq_unquiesce_queue(q);
3163         } else {
3164                 spin_lock_irqsave(q->queue_lock, flags);
3165                 blk_start_queue(q);
3166                 spin_unlock_irqrestore(q->queue_lock, flags);
3167         }
3168 }
3169
3170 /**
3171  * scsi_internal_device_unblock_nowait - resume a device after a block request
3172  * @sdev:       device to resume
3173  * @new_state:  state to set the device to after unblocking
3174  *
3175  * Restart the device queue for a previously suspended SCSI device. Does not
3176  * sleep.
3177  *
3178  * Returns zero if successful or a negative error code upon failure.
3179  *
3180  * Notes:
3181  * This routine transitions the device to the SDEV_RUNNING state or to one of
3182  * the offline states (which must be a legal transition) allowing the midlayer
3183  * to goose the queue for this device.
3184  */
3185 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
3186                                         enum scsi_device_state new_state)
3187 {
3188         /*
3189          * Try to transition the scsi device to SDEV_RUNNING or one of the
3190          * offlined states and goose the device queue if successful.
3191          */
3192         switch (sdev->sdev_state) {
3193         case SDEV_BLOCK:
3194         case SDEV_TRANSPORT_OFFLINE:
3195                 sdev->sdev_state = new_state;
3196                 break;
3197         case SDEV_CREATED_BLOCK:
3198                 if (new_state == SDEV_TRANSPORT_OFFLINE ||
3199                     new_state == SDEV_OFFLINE)
3200                         sdev->sdev_state = new_state;
3201                 else
3202                         sdev->sdev_state = SDEV_CREATED;
3203                 break;
3204         case SDEV_CANCEL:
3205         case SDEV_OFFLINE:
3206                 break;
3207         default:
3208                 return -EINVAL;
3209         }
3210         scsi_start_queue(sdev);
3211
3212         return 0;
3213 }
3214 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
3215
3216 /**
3217  * scsi_internal_device_unblock - resume a device after a block request
3218  * @sdev:       device to resume
3219  * @new_state:  state to set the device to after unblocking
3220  *
3221  * Restart the device queue for a previously suspended SCSI device. May sleep.
3222  *
3223  * Returns zero if successful or a negative error code upon failure.
3224  *
3225  * Notes:
3226  * This routine transitions the device to the SDEV_RUNNING state or to one of
3227  * the offline states (which must be a legal transition) allowing the midlayer
3228  * to goose the queue for this device.
3229  */
3230 static int scsi_internal_device_unblock(struct scsi_device *sdev,
3231                                         enum scsi_device_state new_state)
3232 {
3233         int ret;
3234
3235         mutex_lock(&sdev->state_mutex);
3236         ret = scsi_internal_device_unblock_nowait(sdev, new_state);
3237         mutex_unlock(&sdev->state_mutex);
3238
3239         return ret;
3240 }
3241
3242 static void
3243 device_block(struct scsi_device *sdev, void *data)
3244 {
3245         scsi_internal_device_block(sdev);
3246 }
3247
3248 static int
3249 target_block(struct device *dev, void *data)
3250 {
3251         if (scsi_is_target_device(dev))
3252                 starget_for_each_device(to_scsi_target(dev), NULL,
3253                                         device_block);
3254         return 0;
3255 }
3256
3257 void
3258 scsi_target_block(struct device *dev)
3259 {
3260         if (scsi_is_target_device(dev))
3261                 starget_for_each_device(to_scsi_target(dev), NULL,
3262                                         device_block);
3263         else
3264                 device_for_each_child(dev, NULL, target_block);
3265 }
3266 EXPORT_SYMBOL_GPL(scsi_target_block);
3267
3268 static void
3269 device_unblock(struct scsi_device *sdev, void *data)
3270 {
3271         scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3272 }
3273
3274 static int
3275 target_unblock(struct device *dev, void *data)
3276 {
3277         if (scsi_is_target_device(dev))
3278                 starget_for_each_device(to_scsi_target(dev), data,
3279                                         device_unblock);
3280         return 0;
3281 }
3282
3283 void
3284 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3285 {
3286         if (scsi_is_target_device(dev))
3287                 starget_for_each_device(to_scsi_target(dev), &new_state,
3288                                         device_unblock);
3289         else
3290                 device_for_each_child(dev, &new_state, target_unblock);
3291 }
3292 EXPORT_SYMBOL_GPL(scsi_target_unblock);
3293
3294 /**
3295  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3296  * @sgl:        scatter-gather list
3297  * @sg_count:   number of segments in sg
3298  * @offset:     offset in bytes into sg, on return offset into the mapped area
3299  * @len:        bytes to map, on return number of bytes mapped
3300  *
3301  * Returns virtual address of the start of the mapped page
3302  */
3303 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3304                           size_t *offset, size_t *len)
3305 {
3306         int i;
3307         size_t sg_len = 0, len_complete = 0;
3308         struct scatterlist *sg;
3309         struct page *page;
3310
3311         WARN_ON(!irqs_disabled());
3312
3313         for_each_sg(sgl, sg, sg_count, i) {
3314                 len_complete = sg_len; /* Complete sg-entries */
3315                 sg_len += sg->length;
3316                 if (sg_len > *offset)
3317                         break;
3318         }
3319
3320         if (unlikely(i == sg_count)) {
3321                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3322                         "elements %d\n",
3323                        __func__, sg_len, *offset, sg_count);
3324                 WARN_ON(1);
3325                 return NULL;
3326         }
3327
3328         /* Offset starting from the beginning of first page in this sg-entry */
3329         *offset = *offset - len_complete + sg->offset;
3330
3331         /* Assumption: contiguous pages can be accessed as "page + i" */
3332         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3333         *offset &= ~PAGE_MASK;
3334
3335         /* Bytes in this sg-entry from *offset to the end of the page */
3336         sg_len = PAGE_SIZE - *offset;
3337         if (*len > sg_len)
3338                 *len = sg_len;
3339
3340         return kmap_atomic(page);
3341 }
3342 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3343
3344 /**
3345  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3346  * @virt:       virtual address to be unmapped
3347  */
3348 void scsi_kunmap_atomic_sg(void *virt)
3349 {
3350         kunmap_atomic(virt);
3351 }
3352 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3353
3354 void sdev_disable_disk_events(struct scsi_device *sdev)
3355 {
3356         atomic_inc(&sdev->disk_events_disable_depth);
3357 }
3358 EXPORT_SYMBOL(sdev_disable_disk_events);
3359
3360 void sdev_enable_disk_events(struct scsi_device *sdev)
3361 {
3362         if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3363                 return;
3364         atomic_dec(&sdev->disk_events_disable_depth);
3365 }
3366 EXPORT_SYMBOL(sdev_enable_disk_events);
3367
3368 /**
3369  * scsi_vpd_lun_id - return a unique device identification
3370  * @sdev: SCSI device
3371  * @id:   buffer for the identification
3372  * @id_len:  length of the buffer
3373  *
3374  * Copies a unique device identification into @id based
3375  * on the information in the VPD page 0x83 of the device.
3376  * The string will be formatted as a SCSI name string.
3377  *
3378  * Returns the length of the identification or error on failure.
3379  * If the identifier is longer than the supplied buffer the actual
3380  * identifier length is returned and the buffer is not zero-padded.
3381  */
3382 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3383 {
3384         u8 cur_id_type = 0xff;
3385         u8 cur_id_size = 0;
3386         const unsigned char *d, *cur_id_str;
3387         const struct scsi_vpd *vpd_pg83;
3388         int id_size = -EINVAL;
3389
3390         rcu_read_lock();
3391         vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3392         if (!vpd_pg83) {
3393                 rcu_read_unlock();
3394                 return -ENXIO;
3395         }
3396
3397         /*
3398          * Look for the correct descriptor.
3399          * Order of preference for lun descriptor:
3400          * - SCSI name string
3401          * - NAA IEEE Registered Extended
3402          * - EUI-64 based 16-byte
3403          * - EUI-64 based 12-byte
3404          * - NAA IEEE Registered
3405          * - NAA IEEE Extended
3406          * - T10 Vendor ID
3407          * as longer descriptors reduce the likelyhood
3408          * of identification clashes.
3409          */
3410
3411         /* The id string must be at least 20 bytes + terminating NULL byte */
3412         if (id_len < 21) {
3413                 rcu_read_unlock();
3414                 return -EINVAL;
3415         }
3416
3417         memset(id, 0, id_len);
3418         d = vpd_pg83->data + 4;
3419         while (d < vpd_pg83->data + vpd_pg83->len) {
3420                 /* Skip designators not referring to the LUN */
3421                 if ((d[1] & 0x30) != 0x00)
3422                         goto next_desig;
3423
3424                 switch (d[1] & 0xf) {
3425                 case 0x1:
3426                         /* T10 Vendor ID */
3427                         if (cur_id_size > d[3])
3428                                 break;
3429                         /* Prefer anything */
3430                         if (cur_id_type > 0x01 && cur_id_type != 0xff)
3431                                 break;
3432                         cur_id_size = d[3];
3433                         if (cur_id_size + 4 > id_len)
3434                                 cur_id_size = id_len - 4;
3435                         cur_id_str = d + 4;
3436                         cur_id_type = d[1] & 0xf;
3437                         id_size = snprintf(id, id_len, "t10.%*pE",
3438                                            cur_id_size, cur_id_str);
3439                         break;
3440                 case 0x2:
3441                         /* EUI-64 */
3442                         if (cur_id_size > d[3])
3443                                 break;
3444                         /* Prefer NAA IEEE Registered Extended */
3445                         if (cur_id_type == 0x3 &&
3446                             cur_id_size == d[3])
3447                                 break;
3448                         cur_id_size = d[3];
3449                         cur_id_str = d + 4;
3450                         cur_id_type = d[1] & 0xf;
3451                         switch (cur_id_size) {
3452                         case 8:
3453                                 id_size = snprintf(id, id_len,
3454                                                    "eui.%8phN",
3455                                                    cur_id_str);
3456                                 break;
3457                         case 12:
3458                                 id_size = snprintf(id, id_len,
3459                                                    "eui.%12phN",
3460                                                    cur_id_str);
3461                                 break;
3462                         case 16:
3463                                 id_size = snprintf(id, id_len,
3464                                                    "eui.%16phN",
3465                                                    cur_id_str);
3466                                 break;
3467                         default:
3468                                 cur_id_size = 0;
3469                                 break;
3470                         }
3471                         break;
3472                 case 0x3:
3473                         /* NAA */
3474                         if (cur_id_size > d[3])
3475                                 break;
3476                         cur_id_size = d[3];
3477                         cur_id_str = d + 4;
3478                         cur_id_type = d[1] & 0xf;
3479                         switch (cur_id_size) {
3480                         case 8:
3481                                 id_size = snprintf(id, id_len,
3482                                                    "naa.%8phN",
3483                                                    cur_id_str);
3484                                 break;
3485                         case 16:
3486                                 id_size = snprintf(id, id_len,
3487                                                    "naa.%16phN",
3488                                                    cur_id_str);
3489                                 break;
3490                         default:
3491                                 cur_id_size = 0;
3492                                 break;
3493                         }
3494                         break;
3495                 case 0x8:
3496                         /* SCSI name string */
3497                         if (cur_id_size + 4 > d[3])
3498                                 break;
3499                         /* Prefer others for truncated descriptor */
3500                         if (cur_id_size && d[3] > id_len)
3501                                 break;
3502                         cur_id_size = id_size = d[3];
3503                         cur_id_str = d + 4;
3504                         cur_id_type = d[1] & 0xf;
3505                         if (cur_id_size >= id_len)
3506                                 cur_id_size = id_len - 1;
3507                         memcpy(id, cur_id_str, cur_id_size);
3508                         /* Decrease priority for truncated descriptor */
3509                         if (cur_id_size != id_size)
3510                                 cur_id_size = 6;
3511                         break;
3512                 default:
3513                         break;
3514                 }
3515 next_desig:
3516                 d += d[3] + 4;
3517         }
3518         rcu_read_unlock();
3519
3520         return id_size;
3521 }
3522 EXPORT_SYMBOL(scsi_vpd_lun_id);
3523
3524 /*
3525  * scsi_vpd_tpg_id - return a target port group identifier
3526  * @sdev: SCSI device
3527  *
3528  * Returns the Target Port Group identifier from the information
3529  * froom VPD page 0x83 of the device.
3530  *
3531  * Returns the identifier or error on failure.
3532  */
3533 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3534 {
3535         const unsigned char *d;
3536         const struct scsi_vpd *vpd_pg83;
3537         int group_id = -EAGAIN, rel_port = -1;
3538
3539         rcu_read_lock();
3540         vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3541         if (!vpd_pg83) {
3542                 rcu_read_unlock();
3543                 return -ENXIO;
3544         }
3545
3546         d = vpd_pg83->data + 4;
3547         while (d < vpd_pg83->data + vpd_pg83->len) {
3548                 switch (d[1] & 0xf) {
3549                 case 0x4:
3550                         /* Relative target port */
3551                         rel_port = get_unaligned_be16(&d[6]);
3552                         break;
3553                 case 0x5:
3554                         /* Target port group */
3555                         group_id = get_unaligned_be16(&d[6]);
3556                         break;
3557                 default:
3558                         break;
3559                 }
3560                 d += d[3] + 4;
3561         }
3562         rcu_read_unlock();
3563
3564         if (group_id >= 0 && rel_id && rel_port != -1)
3565                 *rel_id = rel_port;
3566
3567         return group_id;
3568 }
3569 EXPORT_SYMBOL(scsi_vpd_tpg_id);