Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[sfrench/cifs-2.6.git] / drivers / scsi / mpt3sas / mpt3sas_base.c
1 /*
2  * This is the Fusion MPT base driver providing common API layer interface
3  * for access to MPT (Message Passing Technology) firmware.
4  *
5  * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6  * Copyright (C) 2012-2014  LSI Corporation
7  * Copyright (C) 2013-2014 Avago Technologies
8  *  (mailto: MPT-FusionLinux.pdl@avagotech.com)
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version 2
13  * of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * NO WARRANTY
21  * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22  * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23  * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25  * solely responsible for determining the appropriateness of using and
26  * distributing the Program and assumes all risks associated with its
27  * exercise of rights under this Agreement, including but not limited to
28  * the risks and costs of program errors, damage to or loss of data,
29  * programs or equipment, and unavailability or interruption of operations.
30
31  * DISCLAIMER OF LIABILITY
32  * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37  * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38  * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
39
40  * You should have received a copy of the GNU General Public License
41  * along with this program; if not, write to the Free Software
42  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
43  * USA.
44  */
45
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/io.h>
59 #include <linux/time.h>
60 #include <linux/ktime.h>
61 #include <linux/kthread.h>
62 #include <asm/page.h>        /* To get host page size per arch */
63 #include <linux/aer.h>
64
65
66 #include "mpt3sas_base.h"
67
68 static MPT_CALLBACK     mpt_callbacks[MPT_MAX_CALLBACKS];
69
70
71 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
72
73  /* maximum controller queue depth */
74 #define MAX_HBA_QUEUE_DEPTH     30000
75 #define MAX_CHAIN_DEPTH         100000
76 static int max_queue_depth = -1;
77 module_param(max_queue_depth, int, 0);
78 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
79
80 static int max_sgl_entries = -1;
81 module_param(max_sgl_entries, int, 0);
82 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
83
84 static int msix_disable = -1;
85 module_param(msix_disable, int, 0);
86 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
87
88 static int smp_affinity_enable = 1;
89 module_param(smp_affinity_enable, int, S_IRUGO);
90 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)");
91
92 static int max_msix_vectors = -1;
93 module_param(max_msix_vectors, int, 0);
94 MODULE_PARM_DESC(max_msix_vectors,
95         " max msix vectors");
96
97 static int mpt3sas_fwfault_debug;
98 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
99         " enable detection of firmware fault and halt firmware - (default=0)");
100
101 static int
102 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc);
103
104 /**
105  * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
106  *
107  */
108 static int
109 _scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp)
110 {
111         int ret = param_set_int(val, kp);
112         struct MPT3SAS_ADAPTER *ioc;
113
114         if (ret)
115                 return ret;
116
117         /* global ioc spinlock to protect controller list on list operations */
118         pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
119         spin_lock(&gioc_lock);
120         list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
121                 ioc->fwfault_debug = mpt3sas_fwfault_debug;
122         spin_unlock(&gioc_lock);
123         return 0;
124 }
125 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
126         param_get_int, &mpt3sas_fwfault_debug, 0644);
127
128 /**
129  * _base_clone_reply_to_sys_mem - copies reply to reply free iomem
130  *                                in BAR0 space.
131  *
132  * @ioc: per adapter object
133  * @reply: reply message frame(lower 32bit addr)
134  * @index: System request message index.
135  *
136  * @Returns - Nothing
137  */
138 static void
139 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply,
140                 u32 index)
141 {
142         /*
143          * 256 is offset within sys register.
144          * 256 offset MPI frame starts. Max MPI frame supported is 32.
145          * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts
146          */
147         u16 cmd_credit = ioc->facts.RequestCredit + 1;
148         void __iomem *reply_free_iomem = (void __iomem *)ioc->chip +
149                         MPI_FRAME_START_OFFSET +
150                         (cmd_credit * ioc->request_sz) + (index * sizeof(u32));
151
152         writel(reply, reply_free_iomem);
153 }
154
155 /**
156  * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames
157  *                              to system/BAR0 region.
158  *
159  * @dst_iomem: Pointer to the destinaltion location in BAR0 space.
160  * @src: Pointer to the Source data.
161  * @size: Size of data to be copied.
162  */
163 static void
164 _base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size)
165 {
166         int i;
167         u32 *src_virt_mem = (u32 *)src;
168
169         for (i = 0; i < size/4; i++)
170                 writel((u32)src_virt_mem[i],
171                                 (void __iomem *)dst_iomem + (i * 4));
172 }
173
174 /**
175  * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region
176  *
177  * @dst_iomem: Pointer to the destination location in BAR0 space.
178  * @src: Pointer to the Source data.
179  * @size: Size of data to be copied.
180  */
181 static void
182 _base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size)
183 {
184         int i;
185         u32 *src_virt_mem = (u32 *)(src);
186
187         for (i = 0; i < size/4; i++)
188                 writel((u32)src_virt_mem[i],
189                         (void __iomem *)dst_iomem + (i * 4));
190 }
191
192 /**
193  * _base_get_chain - Calculates and Returns virtual chain address
194  *                       for the provided smid in BAR0 space.
195  *
196  * @ioc: per adapter object
197  * @smid: system request message index
198  * @sge_chain_count: Scatter gather chain count.
199  *
200  * @Return: chain address.
201  */
202 static inline void __iomem*
203 _base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid,
204                 u8 sge_chain_count)
205 {
206         void __iomem *base_chain, *chain_virt;
207         u16 cmd_credit = ioc->facts.RequestCredit + 1;
208
209         base_chain  = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET +
210                 (cmd_credit * ioc->request_sz) +
211                 REPLY_FREE_POOL_SIZE;
212         chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth *
213                         ioc->request_sz) + (sge_chain_count * ioc->request_sz);
214         return chain_virt;
215 }
216
217 /**
218  * _base_get_chain_phys - Calculates and Returns physical address
219  *                      in BAR0 for scatter gather chains, for
220  *                      the provided smid.
221  *
222  * @ioc: per adapter object
223  * @smid: system request message index
224  * @sge_chain_count: Scatter gather chain count.
225  *
226  * @Return - Physical chain address.
227  */
228 static inline phys_addr_t
229 _base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid,
230                 u8 sge_chain_count)
231 {
232         phys_addr_t base_chain_phys, chain_phys;
233         u16 cmd_credit = ioc->facts.RequestCredit + 1;
234
235         base_chain_phys  = ioc->chip_phys + MPI_FRAME_START_OFFSET +
236                 (cmd_credit * ioc->request_sz) +
237                 REPLY_FREE_POOL_SIZE;
238         chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth *
239                         ioc->request_sz) + (sge_chain_count * ioc->request_sz);
240         return chain_phys;
241 }
242
243 /**
244  * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host
245  *                      buffer address for the provided smid.
246  *                      (Each smid can have 64K starts from 17024)
247  *
248  * @ioc: per adapter object
249  * @smid: system request message index
250  *
251  * @Returns - Pointer to buffer location in BAR0.
252  */
253
254 static void __iomem *
255 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
256 {
257         u16 cmd_credit = ioc->facts.RequestCredit + 1;
258         // Added extra 1 to reach end of chain.
259         void __iomem *chain_end = _base_get_chain(ioc,
260                         cmd_credit + 1,
261                         ioc->facts.MaxChainDepth);
262         return chain_end + (smid * 64 * 1024);
263 }
264
265 /**
266  * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped
267  *              Host buffer Physical address for the provided smid.
268  *              (Each smid can have 64K starts from 17024)
269  *
270  * @ioc: per adapter object
271  * @smid: system request message index
272  *
273  * @Returns - Pointer to buffer location in BAR0.
274  */
275 static phys_addr_t
276 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
277 {
278         u16 cmd_credit = ioc->facts.RequestCredit + 1;
279         phys_addr_t chain_end_phys = _base_get_chain_phys(ioc,
280                         cmd_credit + 1,
281                         ioc->facts.MaxChainDepth);
282         return chain_end_phys + (smid * 64 * 1024);
283 }
284
285 /**
286  * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain
287  *                      lookup list and Provides chain_buffer
288  *                      address for the matching dma address.
289  *                      (Each smid can have 64K starts from 17024)
290  *
291  * @ioc: per adapter object
292  * @chain_buffer_dma: Chain buffer dma address.
293  *
294  * @Returns - Pointer to chain buffer. Or Null on Failure.
295  */
296 static void *
297 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc,
298                 dma_addr_t chain_buffer_dma)
299 {
300         u16 index, j;
301         struct chain_tracker *ct;
302
303         for (index = 0; index < ioc->scsiio_depth; index++) {
304                 for (j = 0; j < ioc->chains_needed_per_io; j++) {
305                         ct = &ioc->chain_lookup[index].chains_per_smid[j];
306                         if (ct && ct->chain_buffer_dma == chain_buffer_dma)
307                                 return ct->chain_buffer;
308                 }
309         }
310         pr_info(MPT3SAS_FMT
311             "Provided chain_buffer_dma address is not in the lookup list\n",
312             ioc->name);
313         return NULL;
314 }
315
316 /**
317  * _clone_sg_entries -  MPI EP's scsiio and config requests
318  *                      are handled here. Base function for
319  *                      double buffering, before submitting
320  *                      the requests.
321  *
322  * @ioc: per adapter object.
323  * @mpi_request: mf request pointer.
324  * @smid: system request message index.
325  *
326  * @Returns: Nothing.
327  */
328 static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc,
329                 void *mpi_request, u16 smid)
330 {
331         Mpi2SGESimple32_t *sgel, *sgel_next;
332         u32  sgl_flags, sge_chain_count = 0;
333         bool is_write = 0;
334         u16 i = 0;
335         void __iomem *buffer_iomem;
336         phys_addr_t buffer_iomem_phys;
337         void __iomem *buff_ptr;
338         phys_addr_t buff_ptr_phys;
339         void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO];
340         void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO];
341         phys_addr_t dst_addr_phys;
342         MPI2RequestHeader_t *request_hdr;
343         struct scsi_cmnd *scmd;
344         struct scatterlist *sg_scmd = NULL;
345         int is_scsiio_req = 0;
346
347         request_hdr = (MPI2RequestHeader_t *) mpi_request;
348
349         if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
350                 Mpi25SCSIIORequest_t *scsiio_request =
351                         (Mpi25SCSIIORequest_t *)mpi_request;
352                 sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL;
353                 is_scsiio_req = 1;
354         } else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
355                 Mpi2ConfigRequest_t  *config_req =
356                         (Mpi2ConfigRequest_t *)mpi_request;
357                 sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE;
358         } else
359                 return;
360
361         /* From smid we can get scsi_cmd, once we have sg_scmd,
362          * we just need to get sg_virt and sg_next to get virual
363          * address associated with sgel->Address.
364          */
365
366         if (is_scsiio_req) {
367                 /* Get scsi_cmd using smid */
368                 scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
369                 if (scmd == NULL) {
370                         pr_err(MPT3SAS_FMT "scmd is NULL\n", ioc->name);
371                         return;
372                 }
373
374                 /* Get sg_scmd from scmd provided */
375                 sg_scmd = scsi_sglist(scmd);
376         }
377
378         /*
379          * 0 - 255      System register
380          * 256 - 4352   MPI Frame. (This is based on maxCredit 32)
381          * 4352 - 4864  Reply_free pool (512 byte is reserved
382          *              considering maxCredit 32. Reply need extra
383          *              room, for mCPU case kept four times of
384          *              maxCredit).
385          * 4864 - 17152 SGE chain element. (32cmd * 3 chain of
386          *              128 byte size = 12288)
387          * 17152 - x    Host buffer mapped with smid.
388          *              (Each smid can have 64K Max IO.)
389          * BAR0+Last 1K MSIX Addr and Data
390          * Total size in use 2113664 bytes of 4MB BAR0
391          */
392
393         buffer_iomem = _base_get_buffer_bar0(ioc, smid);
394         buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid);
395
396         buff_ptr = buffer_iomem;
397         buff_ptr_phys = buffer_iomem_phys;
398         WARN_ON(buff_ptr_phys > U32_MAX);
399
400         if (le32_to_cpu(sgel->FlagsLength) &
401                         (MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT))
402                 is_write = 1;
403
404         for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) {
405
406                 sgl_flags =
407                     (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT);
408
409                 switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) {
410                 case MPI2_SGE_FLAGS_CHAIN_ELEMENT:
411                         /*
412                          * Helper function which on passing
413                          * chain_buffer_dma returns chain_buffer. Get
414                          * the virtual address for sgel->Address
415                          */
416                         sgel_next =
417                                 _base_get_chain_buffer_dma_to_chain_buffer(ioc,
418                                                 le32_to_cpu(sgel->Address));
419                         if (sgel_next == NULL)
420                                 return;
421                         /*
422                          * This is coping 128 byte chain
423                          * frame (not a host buffer)
424                          */
425                         dst_chain_addr[sge_chain_count] =
426                                 _base_get_chain(ioc,
427                                         smid, sge_chain_count);
428                         src_chain_addr[sge_chain_count] =
429                                                 (void *) sgel_next;
430                         dst_addr_phys = _base_get_chain_phys(ioc,
431                                                 smid, sge_chain_count);
432                         WARN_ON(dst_addr_phys > U32_MAX);
433                         sgel->Address =
434                                 cpu_to_le32(lower_32_bits(dst_addr_phys));
435                         sgel = sgel_next;
436                         sge_chain_count++;
437                         break;
438                 case MPI2_SGE_FLAGS_SIMPLE_ELEMENT:
439                         if (is_write) {
440                                 if (is_scsiio_req) {
441                                         _base_clone_to_sys_mem(buff_ptr,
442                                             sg_virt(sg_scmd),
443                                             (le32_to_cpu(sgel->FlagsLength) &
444                                             0x00ffffff));
445                                         /*
446                                          * FIXME: this relies on a a zero
447                                          * PCI mem_offset.
448                                          */
449                                         sgel->Address =
450                                             cpu_to_le32((u32)buff_ptr_phys);
451                                 } else {
452                                         _base_clone_to_sys_mem(buff_ptr,
453                                             ioc->config_vaddr,
454                                             (le32_to_cpu(sgel->FlagsLength) &
455                                             0x00ffffff));
456                                         sgel->Address =
457                                             cpu_to_le32((u32)buff_ptr_phys);
458                                 }
459                         }
460                         buff_ptr += (le32_to_cpu(sgel->FlagsLength) &
461                             0x00ffffff);
462                         buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) &
463                             0x00ffffff);
464                         if ((le32_to_cpu(sgel->FlagsLength) &
465                             (MPI2_SGE_FLAGS_END_OF_BUFFER
466                                         << MPI2_SGE_FLAGS_SHIFT)))
467                                 goto eob_clone_chain;
468                         else {
469                                 /*
470                                  * Every single element in MPT will have
471                                  * associated sg_next. Better to sanity that
472                                  * sg_next is not NULL, but it will be a bug
473                                  * if it is null.
474                                  */
475                                 if (is_scsiio_req) {
476                                         sg_scmd = sg_next(sg_scmd);
477                                         if (sg_scmd)
478                                                 sgel++;
479                                         else
480                                                 goto eob_clone_chain;
481                                 }
482                         }
483                         break;
484                 }
485         }
486
487 eob_clone_chain:
488         for (i = 0; i < sge_chain_count; i++) {
489                 if (is_scsiio_req)
490                         _base_clone_to_sys_mem(dst_chain_addr[i],
491                                 src_chain_addr[i], ioc->request_sz);
492         }
493 }
494
495 /**
496  *  mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
497  * @arg: input argument, used to derive ioc
498  *
499  * Return 0 if controller is removed from pci subsystem.
500  * Return -1 for other case.
501  */
502 static int mpt3sas_remove_dead_ioc_func(void *arg)
503 {
504         struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
505         struct pci_dev *pdev;
506
507         if ((ioc == NULL))
508                 return -1;
509
510         pdev = ioc->pdev;
511         if ((pdev == NULL))
512                 return -1;
513         pci_stop_and_remove_bus_device_locked(pdev);
514         return 0;
515 }
516
517 /**
518  * _base_fault_reset_work - workq handling ioc fault conditions
519  * @work: input argument, used to derive ioc
520  * Context: sleep.
521  *
522  * Return nothing.
523  */
524 static void
525 _base_fault_reset_work(struct work_struct *work)
526 {
527         struct MPT3SAS_ADAPTER *ioc =
528             container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
529         unsigned long    flags;
530         u32 doorbell;
531         int rc;
532         struct task_struct *p;
533
534
535         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
536         if (ioc->shost_recovery || ioc->pci_error_recovery)
537                 goto rearm_timer;
538         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
539
540         doorbell = mpt3sas_base_get_iocstate(ioc, 0);
541         if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
542                 pr_err(MPT3SAS_FMT "SAS host is non-operational !!!!\n",
543                     ioc->name);
544
545                 /* It may be possible that EEH recovery can resolve some of
546                  * pci bus failure issues rather removing the dead ioc function
547                  * by considering controller is in a non-operational state. So
548                  * here priority is given to the EEH recovery. If it doesn't
549                  * not resolve this issue, mpt3sas driver will consider this
550                  * controller to non-operational state and remove the dead ioc
551                  * function.
552                  */
553                 if (ioc->non_operational_loop++ < 5) {
554                         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
555                                                          flags);
556                         goto rearm_timer;
557                 }
558
559                 /*
560                  * Call _scsih_flush_pending_cmds callback so that we flush all
561                  * pending commands back to OS. This call is required to aovid
562                  * deadlock at block layer. Dead IOC will fail to do diag reset,
563                  * and this call is safe since dead ioc will never return any
564                  * command back from HW.
565                  */
566                 ioc->schedule_dead_ioc_flush_running_cmds(ioc);
567                 /*
568                  * Set remove_host flag early since kernel thread will
569                  * take some time to execute.
570                  */
571                 ioc->remove_host = 1;
572                 /*Remove the Dead Host */
573                 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
574                     "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
575                 if (IS_ERR(p))
576                         pr_err(MPT3SAS_FMT
577                         "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
578                         ioc->name, __func__);
579                 else
580                         pr_err(MPT3SAS_FMT
581                         "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
582                         ioc->name, __func__);
583                 return; /* don't rearm timer */
584         }
585
586         ioc->non_operational_loop = 0;
587
588         if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
589                 rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
590                 pr_warn(MPT3SAS_FMT "%s: hard reset: %s\n", ioc->name,
591                     __func__, (rc == 0) ? "success" : "failed");
592                 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
593                 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
594                         mpt3sas_base_fault_info(ioc, doorbell &
595                             MPI2_DOORBELL_DATA_MASK);
596                 if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
597                     MPI2_IOC_STATE_OPERATIONAL)
598                         return; /* don't rearm timer */
599         }
600
601         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
602  rearm_timer:
603         if (ioc->fault_reset_work_q)
604                 queue_delayed_work(ioc->fault_reset_work_q,
605                     &ioc->fault_reset_work,
606                     msecs_to_jiffies(FAULT_POLLING_INTERVAL));
607         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
608 }
609
610 /**
611  * mpt3sas_base_start_watchdog - start the fault_reset_work_q
612  * @ioc: per adapter object
613  * Context: sleep.
614  *
615  * Return nothing.
616  */
617 void
618 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
619 {
620         unsigned long    flags;
621
622         if (ioc->fault_reset_work_q)
623                 return;
624
625         /* initialize fault polling */
626
627         INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
628         snprintf(ioc->fault_reset_work_q_name,
629             sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
630             ioc->driver_name, ioc->id);
631         ioc->fault_reset_work_q =
632                 create_singlethread_workqueue(ioc->fault_reset_work_q_name);
633         if (!ioc->fault_reset_work_q) {
634                 pr_err(MPT3SAS_FMT "%s: failed (line=%d)\n",
635                     ioc->name, __func__, __LINE__);
636                         return;
637         }
638         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
639         if (ioc->fault_reset_work_q)
640                 queue_delayed_work(ioc->fault_reset_work_q,
641                     &ioc->fault_reset_work,
642                     msecs_to_jiffies(FAULT_POLLING_INTERVAL));
643         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
644 }
645
646 /**
647  * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
648  * @ioc: per adapter object
649  * Context: sleep.
650  *
651  * Return nothing.
652  */
653 void
654 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
655 {
656         unsigned long flags;
657         struct workqueue_struct *wq;
658
659         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
660         wq = ioc->fault_reset_work_q;
661         ioc->fault_reset_work_q = NULL;
662         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
663         if (wq) {
664                 if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
665                         flush_workqueue(wq);
666                 destroy_workqueue(wq);
667         }
668 }
669
670 /**
671  * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
672  * @ioc: per adapter object
673  * @fault_code: fault code
674  *
675  * Return nothing.
676  */
677 void
678 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
679 {
680         pr_err(MPT3SAS_FMT "fault_state(0x%04x)!\n",
681             ioc->name, fault_code);
682 }
683
684 /**
685  * mpt3sas_halt_firmware - halt's mpt controller firmware
686  * @ioc: per adapter object
687  *
688  * For debugging timeout related issues.  Writing 0xCOFFEE00
689  * to the doorbell register will halt controller firmware. With
690  * the purpose to stop both driver and firmware, the enduser can
691  * obtain a ring buffer from controller UART.
692  */
693 void
694 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
695 {
696         u32 doorbell;
697
698         if (!ioc->fwfault_debug)
699                 return;
700
701         dump_stack();
702
703         doorbell = readl(&ioc->chip->Doorbell);
704         if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
705                 mpt3sas_base_fault_info(ioc , doorbell);
706         else {
707                 writel(0xC0FFEE00, &ioc->chip->Doorbell);
708                 pr_err(MPT3SAS_FMT "Firmware is halted due to command timeout\n",
709                         ioc->name);
710         }
711
712         if (ioc->fwfault_debug == 2)
713                 for (;;)
714                         ;
715         else
716                 panic("panic in %s\n", __func__);
717 }
718
719 /**
720  * _base_sas_ioc_info - verbose translation of the ioc status
721  * @ioc: per adapter object
722  * @mpi_reply: reply mf payload returned from firmware
723  * @request_hdr: request mf
724  *
725  * Return nothing.
726  */
727 static void
728 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
729         MPI2RequestHeader_t *request_hdr)
730 {
731         u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
732             MPI2_IOCSTATUS_MASK;
733         char *desc = NULL;
734         u16 frame_sz;
735         char *func_str = NULL;
736
737         /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
738         if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
739             request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
740             request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
741                 return;
742
743         if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
744                 return;
745
746         switch (ioc_status) {
747
748 /****************************************************************************
749 *  Common IOCStatus values for all replies
750 ****************************************************************************/
751
752         case MPI2_IOCSTATUS_INVALID_FUNCTION:
753                 desc = "invalid function";
754                 break;
755         case MPI2_IOCSTATUS_BUSY:
756                 desc = "busy";
757                 break;
758         case MPI2_IOCSTATUS_INVALID_SGL:
759                 desc = "invalid sgl";
760                 break;
761         case MPI2_IOCSTATUS_INTERNAL_ERROR:
762                 desc = "internal error";
763                 break;
764         case MPI2_IOCSTATUS_INVALID_VPID:
765                 desc = "invalid vpid";
766                 break;
767         case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
768                 desc = "insufficient resources";
769                 break;
770         case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
771                 desc = "insufficient power";
772                 break;
773         case MPI2_IOCSTATUS_INVALID_FIELD:
774                 desc = "invalid field";
775                 break;
776         case MPI2_IOCSTATUS_INVALID_STATE:
777                 desc = "invalid state";
778                 break;
779         case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
780                 desc = "op state not supported";
781                 break;
782
783 /****************************************************************************
784 *  Config IOCStatus values
785 ****************************************************************************/
786
787         case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
788                 desc = "config invalid action";
789                 break;
790         case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
791                 desc = "config invalid type";
792                 break;
793         case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
794                 desc = "config invalid page";
795                 break;
796         case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
797                 desc = "config invalid data";
798                 break;
799         case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
800                 desc = "config no defaults";
801                 break;
802         case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
803                 desc = "config cant commit";
804                 break;
805
806 /****************************************************************************
807 *  SCSI IO Reply
808 ****************************************************************************/
809
810         case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
811         case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
812         case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
813         case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
814         case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
815         case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
816         case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
817         case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
818         case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
819         case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
820         case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
821         case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
822                 break;
823
824 /****************************************************************************
825 *  For use by SCSI Initiator and SCSI Target end-to-end data protection
826 ****************************************************************************/
827
828         case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
829                 desc = "eedp guard error";
830                 break;
831         case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
832                 desc = "eedp ref tag error";
833                 break;
834         case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
835                 desc = "eedp app tag error";
836                 break;
837
838 /****************************************************************************
839 *  SCSI Target values
840 ****************************************************************************/
841
842         case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
843                 desc = "target invalid io index";
844                 break;
845         case MPI2_IOCSTATUS_TARGET_ABORTED:
846                 desc = "target aborted";
847                 break;
848         case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
849                 desc = "target no conn retryable";
850                 break;
851         case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
852                 desc = "target no connection";
853                 break;
854         case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
855                 desc = "target xfer count mismatch";
856                 break;
857         case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
858                 desc = "target data offset error";
859                 break;
860         case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
861                 desc = "target too much write data";
862                 break;
863         case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
864                 desc = "target iu too short";
865                 break;
866         case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
867                 desc = "target ack nak timeout";
868                 break;
869         case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
870                 desc = "target nak received";
871                 break;
872
873 /****************************************************************************
874 *  Serial Attached SCSI values
875 ****************************************************************************/
876
877         case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
878                 desc = "smp request failed";
879                 break;
880         case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
881                 desc = "smp data overrun";
882                 break;
883
884 /****************************************************************************
885 *  Diagnostic Buffer Post / Diagnostic Release values
886 ****************************************************************************/
887
888         case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
889                 desc = "diagnostic released";
890                 break;
891         default:
892                 break;
893         }
894
895         if (!desc)
896                 return;
897
898         switch (request_hdr->Function) {
899         case MPI2_FUNCTION_CONFIG:
900                 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
901                 func_str = "config_page";
902                 break;
903         case MPI2_FUNCTION_SCSI_TASK_MGMT:
904                 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
905                 func_str = "task_mgmt";
906                 break;
907         case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
908                 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
909                 func_str = "sas_iounit_ctl";
910                 break;
911         case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
912                 frame_sz = sizeof(Mpi2SepRequest_t);
913                 func_str = "enclosure";
914                 break;
915         case MPI2_FUNCTION_IOC_INIT:
916                 frame_sz = sizeof(Mpi2IOCInitRequest_t);
917                 func_str = "ioc_init";
918                 break;
919         case MPI2_FUNCTION_PORT_ENABLE:
920                 frame_sz = sizeof(Mpi2PortEnableRequest_t);
921                 func_str = "port_enable";
922                 break;
923         case MPI2_FUNCTION_SMP_PASSTHROUGH:
924                 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
925                 func_str = "smp_passthru";
926                 break;
927         case MPI2_FUNCTION_NVME_ENCAPSULATED:
928                 frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) +
929                     ioc->sge_size;
930                 func_str = "nvme_encapsulated";
931                 break;
932         default:
933                 frame_sz = 32;
934                 func_str = "unknown";
935                 break;
936         }
937
938         pr_warn(MPT3SAS_FMT "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
939                 ioc->name, desc, ioc_status, request_hdr, func_str);
940
941         _debug_dump_mf(request_hdr, frame_sz/4);
942 }
943
944 /**
945  * _base_display_event_data - verbose translation of firmware asyn events
946  * @ioc: per adapter object
947  * @mpi_reply: reply mf payload returned from firmware
948  *
949  * Return nothing.
950  */
951 static void
952 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
953         Mpi2EventNotificationReply_t *mpi_reply)
954 {
955         char *desc = NULL;
956         u16 event;
957
958         if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
959                 return;
960
961         event = le16_to_cpu(mpi_reply->Event);
962
963         switch (event) {
964         case MPI2_EVENT_LOG_DATA:
965                 desc = "Log Data";
966                 break;
967         case MPI2_EVENT_STATE_CHANGE:
968                 desc = "Status Change";
969                 break;
970         case MPI2_EVENT_HARD_RESET_RECEIVED:
971                 desc = "Hard Reset Received";
972                 break;
973         case MPI2_EVENT_EVENT_CHANGE:
974                 desc = "Event Change";
975                 break;
976         case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
977                 desc = "Device Status Change";
978                 break;
979         case MPI2_EVENT_IR_OPERATION_STATUS:
980                 if (!ioc->hide_ir_msg)
981                         desc = "IR Operation Status";
982                 break;
983         case MPI2_EVENT_SAS_DISCOVERY:
984         {
985                 Mpi2EventDataSasDiscovery_t *event_data =
986                     (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
987                 pr_info(MPT3SAS_FMT "Discovery: (%s)", ioc->name,
988                     (event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED) ?
989                     "start" : "stop");
990                 if (event_data->DiscoveryStatus)
991                         pr_cont(" discovery_status(0x%08x)",
992                             le32_to_cpu(event_data->DiscoveryStatus));
993                 pr_cont("\n");
994                 return;
995         }
996         case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
997                 desc = "SAS Broadcast Primitive";
998                 break;
999         case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
1000                 desc = "SAS Init Device Status Change";
1001                 break;
1002         case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
1003                 desc = "SAS Init Table Overflow";
1004                 break;
1005         case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
1006                 desc = "SAS Topology Change List";
1007                 break;
1008         case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
1009                 desc = "SAS Enclosure Device Status Change";
1010                 break;
1011         case MPI2_EVENT_IR_VOLUME:
1012                 if (!ioc->hide_ir_msg)
1013                         desc = "IR Volume";
1014                 break;
1015         case MPI2_EVENT_IR_PHYSICAL_DISK:
1016                 if (!ioc->hide_ir_msg)
1017                         desc = "IR Physical Disk";
1018                 break;
1019         case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
1020                 if (!ioc->hide_ir_msg)
1021                         desc = "IR Configuration Change List";
1022                 break;
1023         case MPI2_EVENT_LOG_ENTRY_ADDED:
1024                 if (!ioc->hide_ir_msg)
1025                         desc = "Log Entry Added";
1026                 break;
1027         case MPI2_EVENT_TEMP_THRESHOLD:
1028                 desc = "Temperature Threshold";
1029                 break;
1030         case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION:
1031                 desc = "Cable Event";
1032                 break;
1033         case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR:
1034                 desc = "SAS Device Discovery Error";
1035                 break;
1036         case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE:
1037                 desc = "PCIE Device Status Change";
1038                 break;
1039         case MPI2_EVENT_PCIE_ENUMERATION:
1040         {
1041                 Mpi26EventDataPCIeEnumeration_t *event_data =
1042                         (Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData;
1043                 pr_info(MPT3SAS_FMT "PCIE Enumeration: (%s)", ioc->name,
1044                            (event_data->ReasonCode ==
1045                                 MPI26_EVENT_PCIE_ENUM_RC_STARTED) ?
1046                                 "start" : "stop");
1047                 if (event_data->EnumerationStatus)
1048                         pr_info("enumeration_status(0x%08x)",
1049                                    le32_to_cpu(event_data->EnumerationStatus));
1050                 pr_info("\n");
1051                 return;
1052         }
1053         case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST:
1054                 desc = "PCIE Topology Change List";
1055                 break;
1056         }
1057
1058         if (!desc)
1059                 return;
1060
1061         pr_info(MPT3SAS_FMT "%s\n", ioc->name, desc);
1062 }
1063
1064 /**
1065  * _base_sas_log_info - verbose translation of firmware log info
1066  * @ioc: per adapter object
1067  * @log_info: log info
1068  *
1069  * Return nothing.
1070  */
1071 static void
1072 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
1073 {
1074         union loginfo_type {
1075                 u32     loginfo;
1076                 struct {
1077                         u32     subcode:16;
1078                         u32     code:8;
1079                         u32     originator:4;
1080                         u32     bus_type:4;
1081                 } dw;
1082         };
1083         union loginfo_type sas_loginfo;
1084         char *originator_str = NULL;
1085
1086         sas_loginfo.loginfo = log_info;
1087         if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
1088                 return;
1089
1090         /* each nexus loss loginfo */
1091         if (log_info == 0x31170000)
1092                 return;
1093
1094         /* eat the loginfos associated with task aborts */
1095         if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
1096             0x31140000 || log_info == 0x31130000))
1097                 return;
1098
1099         switch (sas_loginfo.dw.originator) {
1100         case 0:
1101                 originator_str = "IOP";
1102                 break;
1103         case 1:
1104                 originator_str = "PL";
1105                 break;
1106         case 2:
1107                 if (!ioc->hide_ir_msg)
1108                         originator_str = "IR";
1109                 else
1110                         originator_str = "WarpDrive";
1111                 break;
1112         }
1113
1114         pr_warn(MPT3SAS_FMT
1115                 "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
1116                 ioc->name, log_info,
1117              originator_str, sas_loginfo.dw.code,
1118              sas_loginfo.dw.subcode);
1119 }
1120
1121 /**
1122  * _base_display_reply_info -
1123  * @ioc: per adapter object
1124  * @smid: system request message index
1125  * @msix_index: MSIX table index supplied by the OS
1126  * @reply: reply message frame(lower 32bit addr)
1127  *
1128  * Return nothing.
1129  */
1130 static void
1131 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1132         u32 reply)
1133 {
1134         MPI2DefaultReply_t *mpi_reply;
1135         u16 ioc_status;
1136         u32 loginfo = 0;
1137
1138         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1139         if (unlikely(!mpi_reply)) {
1140                 pr_err(MPT3SAS_FMT "mpi_reply not valid at %s:%d/%s()!\n",
1141                     ioc->name, __FILE__, __LINE__, __func__);
1142                 return;
1143         }
1144         ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
1145
1146         if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
1147             (ioc->logging_level & MPT_DEBUG_REPLY)) {
1148                 _base_sas_ioc_info(ioc , mpi_reply,
1149                    mpt3sas_base_get_msg_frame(ioc, smid));
1150         }
1151
1152         if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
1153                 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
1154                 _base_sas_log_info(ioc, loginfo);
1155         }
1156
1157         if (ioc_status || loginfo) {
1158                 ioc_status &= MPI2_IOCSTATUS_MASK;
1159                 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
1160         }
1161 }
1162
1163 /**
1164  * mpt3sas_base_done - base internal command completion routine
1165  * @ioc: per adapter object
1166  * @smid: system request message index
1167  * @msix_index: MSIX table index supplied by the OS
1168  * @reply: reply message frame(lower 32bit addr)
1169  *
1170  * Return 1 meaning mf should be freed from _base_interrupt
1171  *        0 means the mf is freed from this function.
1172  */
1173 u8
1174 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1175         u32 reply)
1176 {
1177         MPI2DefaultReply_t *mpi_reply;
1178
1179         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1180         if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
1181                 return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
1182
1183         if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
1184                 return 1;
1185
1186         ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
1187         if (mpi_reply) {
1188                 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
1189                 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
1190         }
1191         ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
1192
1193         complete(&ioc->base_cmds.done);
1194         return 1;
1195 }
1196
1197 /**
1198  * _base_async_event - main callback handler for firmware asyn events
1199  * @ioc: per adapter object
1200  * @msix_index: MSIX table index supplied by the OS
1201  * @reply: reply message frame(lower 32bit addr)
1202  *
1203  * Return 1 meaning mf should be freed from _base_interrupt
1204  *        0 means the mf is freed from this function.
1205  */
1206 static u8
1207 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
1208 {
1209         Mpi2EventNotificationReply_t *mpi_reply;
1210         Mpi2EventAckRequest_t *ack_request;
1211         u16 smid;
1212         struct _event_ack_list *delayed_event_ack;
1213
1214         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1215         if (!mpi_reply)
1216                 return 1;
1217         if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
1218                 return 1;
1219
1220         _base_display_event_data(ioc, mpi_reply);
1221
1222         if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
1223                 goto out;
1224         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
1225         if (!smid) {
1226                 delayed_event_ack = kzalloc(sizeof(*delayed_event_ack),
1227                                         GFP_ATOMIC);
1228                 if (!delayed_event_ack)
1229                         goto out;
1230                 INIT_LIST_HEAD(&delayed_event_ack->list);
1231                 delayed_event_ack->Event = mpi_reply->Event;
1232                 delayed_event_ack->EventContext = mpi_reply->EventContext;
1233                 list_add_tail(&delayed_event_ack->list,
1234                                 &ioc->delayed_event_ack_list);
1235                 dewtprintk(ioc, pr_info(MPT3SAS_FMT
1236                                 "DELAYED: EVENT ACK: event (0x%04x)\n",
1237                                 ioc->name, le16_to_cpu(mpi_reply->Event)));
1238                 goto out;
1239         }
1240
1241         ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
1242         memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
1243         ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
1244         ack_request->Event = mpi_reply->Event;
1245         ack_request->EventContext = mpi_reply->EventContext;
1246         ack_request->VF_ID = 0;  /* TODO */
1247         ack_request->VP_ID = 0;
1248         mpt3sas_base_put_smid_default(ioc, smid);
1249
1250  out:
1251
1252         /* scsih callback handler */
1253         mpt3sas_scsih_event_callback(ioc, msix_index, reply);
1254
1255         /* ctl callback handler */
1256         mpt3sas_ctl_event_callback(ioc, msix_index, reply);
1257
1258         return 1;
1259 }
1260
1261 static struct scsiio_tracker *
1262 _get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1263 {
1264         struct scsi_cmnd *cmd;
1265
1266         if (WARN_ON(!smid) ||
1267             WARN_ON(smid >= ioc->hi_priority_smid))
1268                 return NULL;
1269
1270         cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
1271         if (cmd)
1272                 return scsi_cmd_priv(cmd);
1273
1274         return NULL;
1275 }
1276
1277 /**
1278  * _base_get_cb_idx - obtain the callback index
1279  * @ioc: per adapter object
1280  * @smid: system request message index
1281  *
1282  * Return callback index.
1283  */
1284 static u8
1285 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1286 {
1287         int i;
1288         u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1;
1289         u8 cb_idx = 0xFF;
1290
1291         if (smid < ioc->hi_priority_smid) {
1292                 struct scsiio_tracker *st;
1293
1294                 if (smid < ctl_smid) {
1295                         st = _get_st_from_smid(ioc, smid);
1296                         if (st)
1297                                 cb_idx = st->cb_idx;
1298                 } else if (smid == ctl_smid)
1299                         cb_idx = ioc->ctl_cb_idx;
1300         } else if (smid < ioc->internal_smid) {
1301                 i = smid - ioc->hi_priority_smid;
1302                 cb_idx = ioc->hpr_lookup[i].cb_idx;
1303         } else if (smid <= ioc->hba_queue_depth) {
1304                 i = smid - ioc->internal_smid;
1305                 cb_idx = ioc->internal_lookup[i].cb_idx;
1306         }
1307         return cb_idx;
1308 }
1309
1310 /**
1311  * _base_mask_interrupts - disable interrupts
1312  * @ioc: per adapter object
1313  *
1314  * Disabling ResetIRQ, Reply and Doorbell Interrupts
1315  *
1316  * Return nothing.
1317  */
1318 static void
1319 _base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1320 {
1321         u32 him_register;
1322
1323         ioc->mask_interrupts = 1;
1324         him_register = readl(&ioc->chip->HostInterruptMask);
1325         him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
1326         writel(him_register, &ioc->chip->HostInterruptMask);
1327         readl(&ioc->chip->HostInterruptMask);
1328 }
1329
1330 /**
1331  * _base_unmask_interrupts - enable interrupts
1332  * @ioc: per adapter object
1333  *
1334  * Enabling only Reply Interrupts
1335  *
1336  * Return nothing.
1337  */
1338 static void
1339 _base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1340 {
1341         u32 him_register;
1342
1343         him_register = readl(&ioc->chip->HostInterruptMask);
1344         him_register &= ~MPI2_HIM_RIM;
1345         writel(him_register, &ioc->chip->HostInterruptMask);
1346         ioc->mask_interrupts = 0;
1347 }
1348
1349 union reply_descriptor {
1350         u64 word;
1351         struct {
1352                 u32 low;
1353                 u32 high;
1354         } u;
1355 };
1356
1357 /**
1358  * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
1359  * @irq: irq number (not used)
1360  * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
1361  * @r: pt_regs pointer (not used)
1362  *
1363  * Return IRQ_HANDLE if processed, else IRQ_NONE.
1364  */
1365 static irqreturn_t
1366 _base_interrupt(int irq, void *bus_id)
1367 {
1368         struct adapter_reply_queue *reply_q = bus_id;
1369         union reply_descriptor rd;
1370         u32 completed_cmds;
1371         u8 request_desript_type;
1372         u16 smid;
1373         u8 cb_idx;
1374         u32 reply;
1375         u8 msix_index = reply_q->msix_index;
1376         struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1377         Mpi2ReplyDescriptorsUnion_t *rpf;
1378         u8 rc;
1379
1380         if (ioc->mask_interrupts)
1381                 return IRQ_NONE;
1382
1383         if (!atomic_add_unless(&reply_q->busy, 1, 1))
1384                 return IRQ_NONE;
1385
1386         rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
1387         request_desript_type = rpf->Default.ReplyFlags
1388              & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1389         if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
1390                 atomic_dec(&reply_q->busy);
1391                 return IRQ_NONE;
1392         }
1393
1394         completed_cmds = 0;
1395         cb_idx = 0xFF;
1396         do {
1397                 rd.word = le64_to_cpu(rpf->Words);
1398                 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
1399                         goto out;
1400                 reply = 0;
1401                 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
1402                 if (request_desript_type ==
1403                     MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
1404                     request_desript_type ==
1405                     MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS ||
1406                     request_desript_type ==
1407                     MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) {
1408                         cb_idx = _base_get_cb_idx(ioc, smid);
1409                         if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1410                             (likely(mpt_callbacks[cb_idx] != NULL))) {
1411                                 rc = mpt_callbacks[cb_idx](ioc, smid,
1412                                     msix_index, 0);
1413                                 if (rc)
1414                                         mpt3sas_base_free_smid(ioc, smid);
1415                         }
1416                 } else if (request_desript_type ==
1417                     MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
1418                         reply = le32_to_cpu(
1419                             rpf->AddressReply.ReplyFrameAddress);
1420                         if (reply > ioc->reply_dma_max_address ||
1421                             reply < ioc->reply_dma_min_address)
1422                                 reply = 0;
1423                         if (smid) {
1424                                 cb_idx = _base_get_cb_idx(ioc, smid);
1425                                 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1426                                     (likely(mpt_callbacks[cb_idx] != NULL))) {
1427                                         rc = mpt_callbacks[cb_idx](ioc, smid,
1428                                             msix_index, reply);
1429                                         if (reply)
1430                                                 _base_display_reply_info(ioc,
1431                                                     smid, msix_index, reply);
1432                                         if (rc)
1433                                                 mpt3sas_base_free_smid(ioc,
1434                                                     smid);
1435                                 }
1436                         } else {
1437                                 _base_async_event(ioc, msix_index, reply);
1438                         }
1439
1440                         /* reply free queue handling */
1441                         if (reply) {
1442                                 ioc->reply_free_host_index =
1443                                     (ioc->reply_free_host_index ==
1444                                     (ioc->reply_free_queue_depth - 1)) ?
1445                                     0 : ioc->reply_free_host_index + 1;
1446                                 ioc->reply_free[ioc->reply_free_host_index] =
1447                                     cpu_to_le32(reply);
1448                                 if (ioc->is_mcpu_endpoint)
1449                                         _base_clone_reply_to_sys_mem(ioc,
1450                                                 reply,
1451                                                 ioc->reply_free_host_index);
1452                                 writel(ioc->reply_free_host_index,
1453                                     &ioc->chip->ReplyFreeHostIndex);
1454                         }
1455                 }
1456
1457                 rpf->Words = cpu_to_le64(ULLONG_MAX);
1458                 reply_q->reply_post_host_index =
1459                     (reply_q->reply_post_host_index ==
1460                     (ioc->reply_post_queue_depth - 1)) ? 0 :
1461                     reply_q->reply_post_host_index + 1;
1462                 request_desript_type =
1463                     reply_q->reply_post_free[reply_q->reply_post_host_index].
1464                     Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1465                 completed_cmds++;
1466                 /* Update the reply post host index after continuously
1467                  * processing the threshold number of Reply Descriptors.
1468                  * So that FW can find enough entries to post the Reply
1469                  * Descriptors in the reply descriptor post queue.
1470                  */
1471                 if (completed_cmds > ioc->hba_queue_depth/3) {
1472                         if (ioc->combined_reply_queue) {
1473                                 writel(reply_q->reply_post_host_index |
1474                                                 ((msix_index  & 7) <<
1475                                                  MPI2_RPHI_MSIX_INDEX_SHIFT),
1476                                     ioc->replyPostRegisterIndex[msix_index/8]);
1477                         } else {
1478                                 writel(reply_q->reply_post_host_index |
1479                                                 (msix_index <<
1480                                                  MPI2_RPHI_MSIX_INDEX_SHIFT),
1481                                                 &ioc->chip->ReplyPostHostIndex);
1482                         }
1483                         completed_cmds = 1;
1484                 }
1485                 if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1486                         goto out;
1487                 if (!reply_q->reply_post_host_index)
1488                         rpf = reply_q->reply_post_free;
1489                 else
1490                         rpf++;
1491         } while (1);
1492
1493  out:
1494
1495         if (!completed_cmds) {
1496                 atomic_dec(&reply_q->busy);
1497                 return IRQ_NONE;
1498         }
1499
1500         if (ioc->is_warpdrive) {
1501                 writel(reply_q->reply_post_host_index,
1502                 ioc->reply_post_host_index[msix_index]);
1503                 atomic_dec(&reply_q->busy);
1504                 return IRQ_HANDLED;
1505         }
1506
1507         /* Update Reply Post Host Index.
1508          * For those HBA's which support combined reply queue feature
1509          * 1. Get the correct Supplemental Reply Post Host Index Register.
1510          *    i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1511          *    Index Register address bank i.e replyPostRegisterIndex[],
1512          * 2. Then update this register with new reply host index value
1513          *    in ReplyPostIndex field and the MSIxIndex field with
1514          *    msix_index value reduced to a value between 0 and 7,
1515          *    using a modulo 8 operation. Since each Supplemental Reply Post
1516          *    Host Index Register supports 8 MSI-X vectors.
1517          *
1518          * For other HBA's just update the Reply Post Host Index register with
1519          * new reply host index value in ReplyPostIndex Field and msix_index
1520          * value in MSIxIndex field.
1521          */
1522         if (ioc->combined_reply_queue)
1523                 writel(reply_q->reply_post_host_index | ((msix_index  & 7) <<
1524                         MPI2_RPHI_MSIX_INDEX_SHIFT),
1525                         ioc->replyPostRegisterIndex[msix_index/8]);
1526         else
1527                 writel(reply_q->reply_post_host_index | (msix_index <<
1528                         MPI2_RPHI_MSIX_INDEX_SHIFT),
1529                         &ioc->chip->ReplyPostHostIndex);
1530         atomic_dec(&reply_q->busy);
1531         return IRQ_HANDLED;
1532 }
1533
1534 /**
1535  * _base_is_controller_msix_enabled - is controller support muli-reply queues
1536  * @ioc: per adapter object
1537  *
1538  */
1539 static inline int
1540 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1541 {
1542         return (ioc->facts.IOCCapabilities &
1543             MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1544 }
1545
1546 /**
1547  * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
1548  * @ioc: per adapter object
1549  * Context: non ISR conext
1550  *
1551  * Called when a Task Management request has completed.
1552  *
1553  * Return nothing.
1554  */
1555 void
1556 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc)
1557 {
1558         struct adapter_reply_queue *reply_q;
1559
1560         /* If MSIX capability is turned off
1561          * then multi-queues are not enabled
1562          */
1563         if (!_base_is_controller_msix_enabled(ioc))
1564                 return;
1565
1566         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1567                 if (ioc->shost_recovery || ioc->remove_host ||
1568                                 ioc->pci_error_recovery)
1569                         return;
1570                 /* TMs are on msix_index == 0 */
1571                 if (reply_q->msix_index == 0)
1572                         continue;
1573                 synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index));
1574         }
1575 }
1576
1577 /**
1578  * mpt3sas_base_release_callback_handler - clear interrupt callback handler
1579  * @cb_idx: callback index
1580  *
1581  * Return nothing.
1582  */
1583 void
1584 mpt3sas_base_release_callback_handler(u8 cb_idx)
1585 {
1586         mpt_callbacks[cb_idx] = NULL;
1587 }
1588
1589 /**
1590  * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
1591  * @cb_func: callback function
1592  *
1593  * Returns cb_func.
1594  */
1595 u8
1596 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
1597 {
1598         u8 cb_idx;
1599
1600         for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
1601                 if (mpt_callbacks[cb_idx] == NULL)
1602                         break;
1603
1604         mpt_callbacks[cb_idx] = cb_func;
1605         return cb_idx;
1606 }
1607
1608 /**
1609  * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
1610  *
1611  * Return nothing.
1612  */
1613 void
1614 mpt3sas_base_initialize_callback_handler(void)
1615 {
1616         u8 cb_idx;
1617
1618         for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
1619                 mpt3sas_base_release_callback_handler(cb_idx);
1620 }
1621
1622
1623 /**
1624  * _base_build_zero_len_sge - build zero length sg entry
1625  * @ioc: per adapter object
1626  * @paddr: virtual address for SGE
1627  *
1628  * Create a zero length scatter gather entry to insure the IOCs hardware has
1629  * something to use if the target device goes brain dead and tries
1630  * to send data even when none is asked for.
1631  *
1632  * Return nothing.
1633  */
1634 static void
1635 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1636 {
1637         u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
1638             MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
1639             MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
1640             MPI2_SGE_FLAGS_SHIFT);
1641         ioc->base_add_sg_single(paddr, flags_length, -1);
1642 }
1643
1644 /**
1645  * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
1646  * @paddr: virtual address for SGE
1647  * @flags_length: SGE flags and data transfer length
1648  * @dma_addr: Physical address
1649  *
1650  * Return nothing.
1651  */
1652 static void
1653 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1654 {
1655         Mpi2SGESimple32_t *sgel = paddr;
1656
1657         flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
1658             MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1659         sgel->FlagsLength = cpu_to_le32(flags_length);
1660         sgel->Address = cpu_to_le32(dma_addr);
1661 }
1662
1663
1664 /**
1665  * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
1666  * @paddr: virtual address for SGE
1667  * @flags_length: SGE flags and data transfer length
1668  * @dma_addr: Physical address
1669  *
1670  * Return nothing.
1671  */
1672 static void
1673 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1674 {
1675         Mpi2SGESimple64_t *sgel = paddr;
1676
1677         flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
1678             MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1679         sgel->FlagsLength = cpu_to_le32(flags_length);
1680         sgel->Address = cpu_to_le64(dma_addr);
1681 }
1682
1683 /**
1684  * _base_get_chain_buffer_tracker - obtain chain tracker
1685  * @ioc: per adapter object
1686  * @scmd: SCSI commands of the IO request
1687  *
1688  * Returns chain tracker from chain_lookup table using key as
1689  * smid and smid's chain_offset.
1690  */
1691 static struct chain_tracker *
1692 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc,
1693                                struct scsi_cmnd *scmd)
1694 {
1695         struct chain_tracker *chain_req;
1696         struct scsiio_tracker *st = scsi_cmd_priv(scmd);
1697         u16 smid = st->smid;
1698         u8 chain_offset =
1699            atomic_read(&ioc->chain_lookup[smid - 1].chain_offset);
1700
1701         if (chain_offset == ioc->chains_needed_per_io)
1702                 return NULL;
1703
1704         chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset];
1705         atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset);
1706         return chain_req;
1707 }
1708
1709
1710 /**
1711  * _base_build_sg - build generic sg
1712  * @ioc: per adapter object
1713  * @psge: virtual address for SGE
1714  * @data_out_dma: physical address for WRITES
1715  * @data_out_sz: data xfer size for WRITES
1716  * @data_in_dma: physical address for READS
1717  * @data_in_sz: data xfer size for READS
1718  *
1719  * Return nothing.
1720  */
1721 static void
1722 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
1723         dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1724         size_t data_in_sz)
1725 {
1726         u32 sgl_flags;
1727
1728         if (!data_out_sz && !data_in_sz) {
1729                 _base_build_zero_len_sge(ioc, psge);
1730                 return;
1731         }
1732
1733         if (data_out_sz && data_in_sz) {
1734                 /* WRITE sgel first */
1735                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1736                     MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
1737                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1738                 ioc->base_add_sg_single(psge, sgl_flags |
1739                     data_out_sz, data_out_dma);
1740
1741                 /* incr sgel */
1742                 psge += ioc->sge_size;
1743
1744                 /* READ sgel last */
1745                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1746                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1747                     MPI2_SGE_FLAGS_END_OF_LIST);
1748                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1749                 ioc->base_add_sg_single(psge, sgl_flags |
1750                     data_in_sz, data_in_dma);
1751         } else if (data_out_sz) /* WRITE */ {
1752                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1753                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1754                     MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
1755                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1756                 ioc->base_add_sg_single(psge, sgl_flags |
1757                     data_out_sz, data_out_dma);
1758         } else if (data_in_sz) /* READ */ {
1759                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1760                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1761                     MPI2_SGE_FLAGS_END_OF_LIST);
1762                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1763                 ioc->base_add_sg_single(psge, sgl_flags |
1764                     data_in_sz, data_in_dma);
1765         }
1766 }
1767
1768 /* IEEE format sgls */
1769
1770 /**
1771  * _base_build_nvme_prp - This function is called for NVMe end devices to build
1772  * a native SGL (NVMe PRP). The native SGL is built starting in the first PRP
1773  * entry of the NVMe message (PRP1).  If the data buffer is small enough to be
1774  * described entirely using PRP1, then PRP2 is not used.  If needed, PRP2 is
1775  * used to describe a larger data buffer.  If the data buffer is too large to
1776  * describe using the two PRP entriess inside the NVMe message, then PRP1
1777  * describes the first data memory segment, and PRP2 contains a pointer to a PRP
1778  * list located elsewhere in memory to describe the remaining data memory
1779  * segments.  The PRP list will be contiguous.
1780
1781  * The native SGL for NVMe devices is a Physical Region Page (PRP).  A PRP
1782  * consists of a list of PRP entries to describe a number of noncontigous
1783  * physical memory segments as a single memory buffer, just as a SGL does.  Note
1784  * however, that this function is only used by the IOCTL call, so the memory
1785  * given will be guaranteed to be contiguous.  There is no need to translate
1786  * non-contiguous SGL into a PRP in this case.  All PRPs will describe
1787  * contiguous space that is one page size each.
1788  *
1789  * Each NVMe message contains two PRP entries.  The first (PRP1) either contains
1790  * a PRP list pointer or a PRP element, depending upon the command.  PRP2
1791  * contains the second PRP element if the memory being described fits within 2
1792  * PRP entries, or a PRP list pointer if the PRP spans more than two entries.
1793  *
1794  * A PRP list pointer contains the address of a PRP list, structured as a linear
1795  * array of PRP entries.  Each PRP entry in this list describes a segment of
1796  * physical memory.
1797  *
1798  * Each 64-bit PRP entry comprises an address and an offset field.  The address
1799  * always points at the beginning of a 4KB physical memory page, and the offset
1800  * describes where within that 4KB page the memory segment begins.  Only the
1801  * first element in a PRP list may contain a non-zero offest, implying that all
1802  * memory segments following the first begin at the start of a 4KB page.
1803  *
1804  * Each PRP element normally describes 4KB of physical memory, with exceptions
1805  * for the first and last elements in the list.  If the memory being described
1806  * by the list begins at a non-zero offset within the first 4KB page, then the
1807  * first PRP element will contain a non-zero offset indicating where the region
1808  * begins within the 4KB page.  The last memory segment may end before the end
1809  * of the 4KB segment, depending upon the overall size of the memory being
1810  * described by the PRP list.
1811  *
1812  * Since PRP entries lack any indication of size, the overall data buffer length
1813  * is used to determine where the end of the data memory buffer is located, and
1814  * how many PRP entries are required to describe it.
1815  *
1816  * @ioc: per adapter object
1817  * @smid: system request message index for getting asscociated SGL
1818  * @nvme_encap_request: the NVMe request msg frame pointer
1819  * @data_out_dma: physical address for WRITES
1820  * @data_out_sz: data xfer size for WRITES
1821  * @data_in_dma: physical address for READS
1822  * @data_in_sz: data xfer size for READS
1823  *
1824  * Returns nothing.
1825  */
1826 static void
1827 _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid,
1828         Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request,
1829         dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1830         size_t data_in_sz)
1831 {
1832         int             prp_size = NVME_PRP_SIZE;
1833         __le64          *prp_entry, *prp1_entry, *prp2_entry;
1834         __le64          *prp_page;
1835         dma_addr_t      prp_entry_dma, prp_page_dma, dma_addr;
1836         u32             offset, entry_len;
1837         u32             page_mask_result, page_mask;
1838         size_t          length;
1839
1840         /*
1841          * Not all commands require a data transfer. If no data, just return
1842          * without constructing any PRP.
1843          */
1844         if (!data_in_sz && !data_out_sz)
1845                 return;
1846         /*
1847          * Set pointers to PRP1 and PRP2, which are in the NVMe command.
1848          * PRP1 is located at a 24 byte offset from the start of the NVMe
1849          * command.  Then set the current PRP entry pointer to PRP1.
1850          */
1851         prp1_entry = (__le64 *)(nvme_encap_request->NVMe_Command +
1852             NVME_CMD_PRP1_OFFSET);
1853         prp2_entry = (__le64 *)(nvme_encap_request->NVMe_Command +
1854             NVME_CMD_PRP2_OFFSET);
1855         prp_entry = prp1_entry;
1856         /*
1857          * For the PRP entries, use the specially allocated buffer of
1858          * contiguous memory.
1859          */
1860         prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid);
1861         prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
1862
1863         /*
1864          * Check if we are within 1 entry of a page boundary we don't
1865          * want our first entry to be a PRP List entry.
1866          */
1867         page_mask = ioc->page_size - 1;
1868         page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
1869         if (!page_mask_result) {
1870                 /* Bump up to next page boundary. */
1871                 prp_page = (__le64 *)((u8 *)prp_page + prp_size);
1872                 prp_page_dma = prp_page_dma + prp_size;
1873         }
1874
1875         /*
1876          * Set PRP physical pointer, which initially points to the current PRP
1877          * DMA memory page.
1878          */
1879         prp_entry_dma = prp_page_dma;
1880
1881         /* Get physical address and length of the data buffer. */
1882         if (data_in_sz) {
1883                 dma_addr = data_in_dma;
1884                 length = data_in_sz;
1885         } else {
1886                 dma_addr = data_out_dma;
1887                 length = data_out_sz;
1888         }
1889
1890         /* Loop while the length is not zero. */
1891         while (length) {
1892                 /*
1893                  * Check if we need to put a list pointer here if we are at
1894                  * page boundary - prp_size (8 bytes).
1895                  */
1896                 page_mask_result = (prp_entry_dma + prp_size) & page_mask;
1897                 if (!page_mask_result) {
1898                         /*
1899                          * This is the last entry in a PRP List, so we need to
1900                          * put a PRP list pointer here.  What this does is:
1901                          *   - bump the current memory pointer to the next
1902                          *     address, which will be the next full page.
1903                          *   - set the PRP Entry to point to that page.  This
1904                          *     is now the PRP List pointer.
1905                          *   - bump the PRP Entry pointer the start of the
1906                          *     next page.  Since all of this PRP memory is
1907                          *     contiguous, no need to get a new page - it's
1908                          *     just the next address.
1909                          */
1910                         prp_entry_dma++;
1911                         *prp_entry = cpu_to_le64(prp_entry_dma);
1912                         prp_entry++;
1913                 }
1914
1915                 /* Need to handle if entry will be part of a page. */
1916                 offset = dma_addr & page_mask;
1917                 entry_len = ioc->page_size - offset;
1918
1919                 if (prp_entry == prp1_entry) {
1920                         /*
1921                          * Must fill in the first PRP pointer (PRP1) before
1922                          * moving on.
1923                          */
1924                         *prp1_entry = cpu_to_le64(dma_addr);
1925
1926                         /*
1927                          * Now point to the second PRP entry within the
1928                          * command (PRP2).
1929                          */
1930                         prp_entry = prp2_entry;
1931                 } else if (prp_entry == prp2_entry) {
1932                         /*
1933                          * Should the PRP2 entry be a PRP List pointer or just
1934                          * a regular PRP pointer?  If there is more than one
1935                          * more page of data, must use a PRP List pointer.
1936                          */
1937                         if (length > ioc->page_size) {
1938                                 /*
1939                                  * PRP2 will contain a PRP List pointer because
1940                                  * more PRP's are needed with this command. The
1941                                  * list will start at the beginning of the
1942                                  * contiguous buffer.
1943                                  */
1944                                 *prp2_entry = cpu_to_le64(prp_entry_dma);
1945
1946                                 /*
1947                                  * The next PRP Entry will be the start of the
1948                                  * first PRP List.
1949                                  */
1950                                 prp_entry = prp_page;
1951                         } else {
1952                                 /*
1953                                  * After this, the PRP Entries are complete.
1954                                  * This command uses 2 PRP's and no PRP list.
1955                                  */
1956                                 *prp2_entry = cpu_to_le64(dma_addr);
1957                         }
1958                 } else {
1959                         /*
1960                          * Put entry in list and bump the addresses.
1961                          *
1962                          * After PRP1 and PRP2 are filled in, this will fill in
1963                          * all remaining PRP entries in a PRP List, one per
1964                          * each time through the loop.
1965                          */
1966                         *prp_entry = cpu_to_le64(dma_addr);
1967                         prp_entry++;
1968                         prp_entry_dma++;
1969                 }
1970
1971                 /*
1972                  * Bump the phys address of the command's data buffer by the
1973                  * entry_len.
1974                  */
1975                 dma_addr += entry_len;
1976
1977                 /* Decrement length accounting for last partial page. */
1978                 if (entry_len > length)
1979                         length = 0;
1980                 else
1981                         length -= entry_len;
1982         }
1983 }
1984
1985 /**
1986  * base_make_prp_nvme -
1987  * Prepare PRPs(Physical Region Page)- SGLs specific to NVMe drives only
1988  *
1989  * @ioc:                per adapter object
1990  * @scmd:               SCSI command from the mid-layer
1991  * @mpi_request:        mpi request
1992  * @smid:               msg Index
1993  * @sge_count:          scatter gather element count.
1994  *
1995  * Returns:             true: PRPs are built
1996  *                      false: IEEE SGLs needs to be built
1997  */
1998 static void
1999 base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc,
2000                 struct scsi_cmnd *scmd,
2001                 Mpi25SCSIIORequest_t *mpi_request,
2002                 u16 smid, int sge_count)
2003 {
2004         int sge_len, num_prp_in_chain = 0;
2005         Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl;
2006         __le64 *curr_buff;
2007         dma_addr_t msg_dma, sge_addr, offset;
2008         u32 page_mask, page_mask_result;
2009         struct scatterlist *sg_scmd;
2010         u32 first_prp_len;
2011         int data_len = scsi_bufflen(scmd);
2012         u32 nvme_pg_size;
2013
2014         nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE);
2015         /*
2016          * Nvme has a very convoluted prp format.  One prp is required
2017          * for each page or partial page. Driver need to split up OS sg_list
2018          * entries if it is longer than one page or cross a page
2019          * boundary.  Driver also have to insert a PRP list pointer entry as
2020          * the last entry in each physical page of the PRP list.
2021          *
2022          * NOTE: The first PRP "entry" is actually placed in the first
2023          * SGL entry in the main message as IEEE 64 format.  The 2nd
2024          * entry in the main message is the chain element, and the rest
2025          * of the PRP entries are built in the contiguous pcie buffer.
2026          */
2027         page_mask = nvme_pg_size - 1;
2028
2029         /*
2030          * Native SGL is needed.
2031          * Put a chain element in main message frame that points to the first
2032          * chain buffer.
2033          *
2034          * NOTE:  The ChainOffset field must be 0 when using a chain pointer to
2035          *        a native SGL.
2036          */
2037
2038         /* Set main message chain element pointer */
2039         main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2040         /*
2041          * For NVMe the chain element needs to be the 2nd SG entry in the main
2042          * message.
2043          */
2044         main_chain_element = (Mpi25IeeeSgeChain64_t *)
2045                 ((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
2046
2047         /*
2048          * For the PRP entries, use the specially allocated buffer of
2049          * contiguous memory.  Normal chain buffers can't be used
2050          * because each chain buffer would need to be the size of an OS
2051          * page (4k).
2052          */
2053         curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid);
2054         msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2055
2056         main_chain_element->Address = cpu_to_le64(msg_dma);
2057         main_chain_element->NextChainOffset = 0;
2058         main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2059                         MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2060                         MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
2061
2062         /* Build first prp, sge need not to be page aligned*/
2063         ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2064         sg_scmd = scsi_sglist(scmd);
2065         sge_addr = sg_dma_address(sg_scmd);
2066         sge_len = sg_dma_len(sg_scmd);
2067
2068         offset = sge_addr & page_mask;
2069         first_prp_len = nvme_pg_size - offset;
2070
2071         ptr_first_sgl->Address = cpu_to_le64(sge_addr);
2072         ptr_first_sgl->Length = cpu_to_le32(first_prp_len);
2073
2074         data_len -= first_prp_len;
2075
2076         if (sge_len > first_prp_len) {
2077                 sge_addr += first_prp_len;
2078                 sge_len -= first_prp_len;
2079         } else if (data_len && (sge_len == first_prp_len)) {
2080                 sg_scmd = sg_next(sg_scmd);
2081                 sge_addr = sg_dma_address(sg_scmd);
2082                 sge_len = sg_dma_len(sg_scmd);
2083         }
2084
2085         for (;;) {
2086                 offset = sge_addr & page_mask;
2087
2088                 /* Put PRP pointer due to page boundary*/
2089                 page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask;
2090                 if (unlikely(!page_mask_result)) {
2091                         scmd_printk(KERN_NOTICE,
2092                                 scmd, "page boundary curr_buff: 0x%p\n",
2093                                 curr_buff);
2094                         msg_dma += 8;
2095                         *curr_buff = cpu_to_le64(msg_dma);
2096                         curr_buff++;
2097                         num_prp_in_chain++;
2098                 }
2099
2100                 *curr_buff = cpu_to_le64(sge_addr);
2101                 curr_buff++;
2102                 msg_dma += 8;
2103                 num_prp_in_chain++;
2104
2105                 sge_addr += nvme_pg_size;
2106                 sge_len -= nvme_pg_size;
2107                 data_len -= nvme_pg_size;
2108
2109                 if (data_len <= 0)
2110                         break;
2111
2112                 if (sge_len > 0)
2113                         continue;
2114
2115                 sg_scmd = sg_next(sg_scmd);
2116                 sge_addr = sg_dma_address(sg_scmd);
2117                 sge_len = sg_dma_len(sg_scmd);
2118         }
2119
2120         main_chain_element->Length =
2121                 cpu_to_le32(num_prp_in_chain * sizeof(u64));
2122         return;
2123 }
2124
2125 static bool
2126 base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc,
2127         struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count)
2128 {
2129         u32 data_length = 0;
2130         struct scatterlist *sg_scmd;
2131         bool build_prp = true;
2132
2133         data_length = scsi_bufflen(scmd);
2134         sg_scmd = scsi_sglist(scmd);
2135
2136         /* If Datalenth is <= 16K and number of SGE’s entries are <= 2
2137          * we built IEEE SGL
2138          */
2139         if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2))
2140                 build_prp = false;
2141
2142         return build_prp;
2143 }
2144
2145 /**
2146  * _base_check_pcie_native_sgl - This function is called for PCIe end devices to
2147  * determine if the driver needs to build a native SGL.  If so, that native
2148  * SGL is built in the special contiguous buffers allocated especially for
2149  * PCIe SGL creation.  If the driver will not build a native SGL, return
2150  * TRUE and a normal IEEE SGL will be built.  Currently this routine
2151  * supports NVMe.
2152  * @ioc: per adapter object
2153  * @mpi_request: mf request pointer
2154  * @smid: system request message index
2155  * @scmd: scsi command
2156  * @pcie_device: points to the PCIe device's info
2157  *
2158  * Returns 0 if native SGL was built, 1 if no SGL was built
2159  */
2160 static int
2161 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc,
2162         Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd,
2163         struct _pcie_device *pcie_device)
2164 {
2165         struct scatterlist *sg_scmd;
2166         int sges_left;
2167
2168         /* Get the SG list pointer and info. */
2169         sg_scmd = scsi_sglist(scmd);
2170         sges_left = scsi_dma_map(scmd);
2171         if (sges_left < 0) {
2172                 sdev_printk(KERN_ERR, scmd->device,
2173                         "scsi_dma_map failed: request for %d bytes!\n",
2174                         scsi_bufflen(scmd));
2175                 return 1;
2176         }
2177
2178         /* Check if we need to build a native SG list. */
2179         if (base_is_prp_possible(ioc, pcie_device,
2180                                 scmd, sges_left) == 0) {
2181                 /* We built a native SG list, just return. */
2182                 goto out;
2183         }
2184
2185         /*
2186          * Build native NVMe PRP.
2187          */
2188         base_make_prp_nvme(ioc, scmd, mpi_request,
2189                         smid, sges_left);
2190
2191         return 0;
2192 out:
2193         scsi_dma_unmap(scmd);
2194         return 1;
2195 }
2196
2197 /**
2198  * _base_add_sg_single_ieee - add sg element for IEEE format
2199  * @paddr: virtual address for SGE
2200  * @flags: SGE flags
2201  * @chain_offset: number of 128 byte elements from start of segment
2202  * @length: data transfer length
2203  * @dma_addr: Physical address
2204  *
2205  * Return nothing.
2206  */
2207 static void
2208 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
2209         dma_addr_t dma_addr)
2210 {
2211         Mpi25IeeeSgeChain64_t *sgel = paddr;
2212
2213         sgel->Flags = flags;
2214         sgel->NextChainOffset = chain_offset;
2215         sgel->Length = cpu_to_le32(length);
2216         sgel->Address = cpu_to_le64(dma_addr);
2217 }
2218
2219 /**
2220  * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
2221  * @ioc: per adapter object
2222  * @paddr: virtual address for SGE
2223  *
2224  * Create a zero length scatter gather entry to insure the IOCs hardware has
2225  * something to use if the target device goes brain dead and tries
2226  * to send data even when none is asked for.
2227  *
2228  * Return nothing.
2229  */
2230 static void
2231 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2232 {
2233         u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2234                 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2235                 MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
2236
2237         _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
2238 }
2239
2240 /**
2241  * _base_build_sg_scmd - main sg creation routine
2242  *              pcie_device is unused here!
2243  * @ioc: per adapter object
2244  * @scmd: scsi command
2245  * @smid: system request message index
2246  * @unused: unused pcie_device pointer
2247  * Context: none.
2248  *
2249  * The main routine that builds scatter gather table from a given
2250  * scsi request sent via the .queuecommand main handler.
2251  *
2252  * Returns 0 success, anything else error
2253  */
2254 static int
2255 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
2256         struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused)
2257 {
2258         Mpi2SCSIIORequest_t *mpi_request;
2259         dma_addr_t chain_dma;
2260         struct scatterlist *sg_scmd;
2261         void *sg_local, *chain;
2262         u32 chain_offset;
2263         u32 chain_length;
2264         u32 chain_flags;
2265         int sges_left;
2266         u32 sges_in_segment;
2267         u32 sgl_flags;
2268         u32 sgl_flags_last_element;
2269         u32 sgl_flags_end_buffer;
2270         struct chain_tracker *chain_req;
2271
2272         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2273
2274         /* init scatter gather flags */
2275         sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
2276         if (scmd->sc_data_direction == DMA_TO_DEVICE)
2277                 sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
2278         sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
2279             << MPI2_SGE_FLAGS_SHIFT;
2280         sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
2281             MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
2282             << MPI2_SGE_FLAGS_SHIFT;
2283         sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2284
2285         sg_scmd = scsi_sglist(scmd);
2286         sges_left = scsi_dma_map(scmd);
2287         if (sges_left < 0) {
2288                 sdev_printk(KERN_ERR, scmd->device,
2289                  "pci_map_sg failed: request for %d bytes!\n",
2290                  scsi_bufflen(scmd));
2291                 return -ENOMEM;
2292         }
2293
2294         sg_local = &mpi_request->SGL;
2295         sges_in_segment = ioc->max_sges_in_main_message;
2296         if (sges_left <= sges_in_segment)
2297                 goto fill_in_last_segment;
2298
2299         mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
2300             (sges_in_segment * ioc->sge_size))/4;
2301
2302         /* fill in main message segment when there is a chain following */
2303         while (sges_in_segment) {
2304                 if (sges_in_segment == 1)
2305                         ioc->base_add_sg_single(sg_local,
2306                             sgl_flags_last_element | sg_dma_len(sg_scmd),
2307                             sg_dma_address(sg_scmd));
2308                 else
2309                         ioc->base_add_sg_single(sg_local, sgl_flags |
2310                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2311                 sg_scmd = sg_next(sg_scmd);
2312                 sg_local += ioc->sge_size;
2313                 sges_left--;
2314                 sges_in_segment--;
2315         }
2316
2317         /* initializing the chain flags and pointers */
2318         chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
2319         chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2320         if (!chain_req)
2321                 return -1;
2322         chain = chain_req->chain_buffer;
2323         chain_dma = chain_req->chain_buffer_dma;
2324         do {
2325                 sges_in_segment = (sges_left <=
2326                     ioc->max_sges_in_chain_message) ? sges_left :
2327                     ioc->max_sges_in_chain_message;
2328                 chain_offset = (sges_left == sges_in_segment) ?
2329                     0 : (sges_in_segment * ioc->sge_size)/4;
2330                 chain_length = sges_in_segment * ioc->sge_size;
2331                 if (chain_offset) {
2332                         chain_offset = chain_offset <<
2333                             MPI2_SGE_CHAIN_OFFSET_SHIFT;
2334                         chain_length += ioc->sge_size;
2335                 }
2336                 ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
2337                     chain_length, chain_dma);
2338                 sg_local = chain;
2339                 if (!chain_offset)
2340                         goto fill_in_last_segment;
2341
2342                 /* fill in chain segments */
2343                 while (sges_in_segment) {
2344                         if (sges_in_segment == 1)
2345                                 ioc->base_add_sg_single(sg_local,
2346                                     sgl_flags_last_element |
2347                                     sg_dma_len(sg_scmd),
2348                                     sg_dma_address(sg_scmd));
2349                         else
2350                                 ioc->base_add_sg_single(sg_local, sgl_flags |
2351                                     sg_dma_len(sg_scmd),
2352                                     sg_dma_address(sg_scmd));
2353                         sg_scmd = sg_next(sg_scmd);
2354                         sg_local += ioc->sge_size;
2355                         sges_left--;
2356                         sges_in_segment--;
2357                 }
2358
2359                 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2360                 if (!chain_req)
2361                         return -1;
2362                 chain = chain_req->chain_buffer;
2363                 chain_dma = chain_req->chain_buffer_dma;
2364         } while (1);
2365
2366
2367  fill_in_last_segment:
2368
2369         /* fill the last segment */
2370         while (sges_left) {
2371                 if (sges_left == 1)
2372                         ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
2373                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2374                 else
2375                         ioc->base_add_sg_single(sg_local, sgl_flags |
2376                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2377                 sg_scmd = sg_next(sg_scmd);
2378                 sg_local += ioc->sge_size;
2379                 sges_left--;
2380         }
2381
2382         return 0;
2383 }
2384
2385 /**
2386  * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
2387  * @ioc: per adapter object
2388  * @scmd: scsi command
2389  * @smid: system request message index
2390  * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be
2391  * constructed on need.
2392  * Context: none.
2393  *
2394  * The main routine that builds scatter gather table from a given
2395  * scsi request sent via the .queuecommand main handler.
2396  *
2397  * Returns 0 success, anything else error
2398  */
2399 static int
2400 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
2401         struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device)
2402 {
2403         Mpi25SCSIIORequest_t *mpi_request;
2404         dma_addr_t chain_dma;
2405         struct scatterlist *sg_scmd;
2406         void *sg_local, *chain;
2407         u32 chain_offset;
2408         u32 chain_length;
2409         int sges_left;
2410         u32 sges_in_segment;
2411         u8 simple_sgl_flags;
2412         u8 simple_sgl_flags_last;
2413         u8 chain_sgl_flags;
2414         struct chain_tracker *chain_req;
2415
2416         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2417
2418         /* init scatter gather flags */
2419         simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2420             MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2421         simple_sgl_flags_last = simple_sgl_flags |
2422             MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2423         chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2424             MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2425
2426         /* Check if we need to build a native SG list. */
2427         if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request,
2428                         smid, scmd, pcie_device) == 0)) {
2429                 /* We built a native SG list, just return. */
2430                 return 0;
2431         }
2432
2433         sg_scmd = scsi_sglist(scmd);
2434         sges_left = scsi_dma_map(scmd);
2435         if (sges_left < 0) {
2436                 sdev_printk(KERN_ERR, scmd->device,
2437                         "pci_map_sg failed: request for %d bytes!\n",
2438                         scsi_bufflen(scmd));
2439                 return -ENOMEM;
2440         }
2441
2442         sg_local = &mpi_request->SGL;
2443         sges_in_segment = (ioc->request_sz -
2444                    offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
2445         if (sges_left <= sges_in_segment)
2446                 goto fill_in_last_segment;
2447
2448         mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
2449             (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
2450
2451         /* fill in main message segment when there is a chain following */
2452         while (sges_in_segment > 1) {
2453                 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2454                     sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2455                 sg_scmd = sg_next(sg_scmd);
2456                 sg_local += ioc->sge_size_ieee;
2457                 sges_left--;
2458                 sges_in_segment--;
2459         }
2460
2461         /* initializing the pointers */
2462         chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2463         if (!chain_req)
2464                 return -1;
2465         chain = chain_req->chain_buffer;
2466         chain_dma = chain_req->chain_buffer_dma;
2467         do {
2468                 sges_in_segment = (sges_left <=
2469                     ioc->max_sges_in_chain_message) ? sges_left :
2470                     ioc->max_sges_in_chain_message;
2471                 chain_offset = (sges_left == sges_in_segment) ?
2472                     0 : sges_in_segment;
2473                 chain_length = sges_in_segment * ioc->sge_size_ieee;
2474                 if (chain_offset)
2475                         chain_length += ioc->sge_size_ieee;
2476                 _base_add_sg_single_ieee(sg_local, chain_sgl_flags,
2477                     chain_offset, chain_length, chain_dma);
2478
2479                 sg_local = chain;
2480                 if (!chain_offset)
2481                         goto fill_in_last_segment;
2482
2483                 /* fill in chain segments */
2484                 while (sges_in_segment) {
2485                         _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2486                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2487                         sg_scmd = sg_next(sg_scmd);
2488                         sg_local += ioc->sge_size_ieee;
2489                         sges_left--;
2490                         sges_in_segment--;
2491                 }
2492
2493                 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2494                 if (!chain_req)
2495                         return -1;
2496                 chain = chain_req->chain_buffer;
2497                 chain_dma = chain_req->chain_buffer_dma;
2498         } while (1);
2499
2500
2501  fill_in_last_segment:
2502
2503         /* fill the last segment */
2504         while (sges_left > 0) {
2505                 if (sges_left == 1)
2506                         _base_add_sg_single_ieee(sg_local,
2507                             simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
2508                             sg_dma_address(sg_scmd));
2509                 else
2510                         _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2511                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2512                 sg_scmd = sg_next(sg_scmd);
2513                 sg_local += ioc->sge_size_ieee;
2514                 sges_left--;
2515         }
2516
2517         return 0;
2518 }
2519
2520 /**
2521  * _base_build_sg_ieee - build generic sg for IEEE format
2522  * @ioc: per adapter object
2523  * @psge: virtual address for SGE
2524  * @data_out_dma: physical address for WRITES
2525  * @data_out_sz: data xfer size for WRITES
2526  * @data_in_dma: physical address for READS
2527  * @data_in_sz: data xfer size for READS
2528  *
2529  * Return nothing.
2530  */
2531 static void
2532 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
2533         dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2534         size_t data_in_sz)
2535 {
2536         u8 sgl_flags;
2537
2538         if (!data_out_sz && !data_in_sz) {
2539                 _base_build_zero_len_sge_ieee(ioc, psge);
2540                 return;
2541         }
2542
2543         if (data_out_sz && data_in_sz) {
2544                 /* WRITE sgel first */
2545                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2546                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2547                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2548                     data_out_dma);
2549
2550                 /* incr sgel */
2551                 psge += ioc->sge_size_ieee;
2552
2553                 /* READ sgel last */
2554                 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2555                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2556                     data_in_dma);
2557         } else if (data_out_sz) /* WRITE */ {
2558                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2559                     MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2560                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2561                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2562                     data_out_dma);
2563         } else if (data_in_sz) /* READ */ {
2564                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2565                     MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2566                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2567                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2568                     data_in_dma);
2569         }
2570 }
2571
2572 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
2573
2574 /**
2575  * _base_config_dma_addressing - set dma addressing
2576  * @ioc: per adapter object
2577  * @pdev: PCI device struct
2578  *
2579  * Returns 0 for success, non-zero for failure.
2580  */
2581 static int
2582 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
2583 {
2584         struct sysinfo s;
2585         u64 consistent_dma_mask;
2586
2587         if (ioc->is_mcpu_endpoint)
2588                 goto try_32bit;
2589
2590         if (ioc->dma_mask)
2591                 consistent_dma_mask = DMA_BIT_MASK(64);
2592         else
2593                 consistent_dma_mask = DMA_BIT_MASK(32);
2594
2595         if (sizeof(dma_addr_t) > 4) {
2596                 const uint64_t required_mask =
2597                     dma_get_required_mask(&pdev->dev);
2598                 if ((required_mask > DMA_BIT_MASK(32)) &&
2599                     !pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) &&
2600                     !pci_set_consistent_dma_mask(pdev, consistent_dma_mask)) {
2601                         ioc->base_add_sg_single = &_base_add_sg_single_64;
2602                         ioc->sge_size = sizeof(Mpi2SGESimple64_t);
2603                         ioc->dma_mask = 64;
2604                         goto out;
2605                 }
2606         }
2607
2608  try_32bit:
2609         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))
2610             && !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) {
2611                 ioc->base_add_sg_single = &_base_add_sg_single_32;
2612                 ioc->sge_size = sizeof(Mpi2SGESimple32_t);
2613                 ioc->dma_mask = 32;
2614         } else
2615                 return -ENODEV;
2616
2617  out:
2618         si_meminfo(&s);
2619         pr_info(MPT3SAS_FMT
2620                 "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
2621                 ioc->name, ioc->dma_mask, convert_to_kb(s.totalram));
2622
2623         return 0;
2624 }
2625
2626 static int
2627 _base_change_consistent_dma_mask(struct MPT3SAS_ADAPTER *ioc,
2628                                       struct pci_dev *pdev)
2629 {
2630         if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
2631                 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
2632                         return -ENODEV;
2633         }
2634         return 0;
2635 }
2636
2637 /**
2638  * _base_check_enable_msix - checks MSIX capabable.
2639  * @ioc: per adapter object
2640  *
2641  * Check to see if card is capable of MSIX, and set number
2642  * of available msix vectors
2643  */
2644 static int
2645 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
2646 {
2647         int base;
2648         u16 message_control;
2649
2650         /* Check whether controller SAS2008 B0 controller,
2651          * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
2652          */
2653         if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
2654             ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
2655                 return -EINVAL;
2656         }
2657
2658         base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
2659         if (!base) {
2660                 dfailprintk(ioc, pr_info(MPT3SAS_FMT "msix not supported\n",
2661                         ioc->name));
2662                 return -EINVAL;
2663         }
2664
2665         /* get msix vector count */
2666         /* NUMA_IO not supported for older controllers */
2667         if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
2668             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
2669             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
2670             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
2671             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
2672             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
2673             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
2674                 ioc->msix_vector_count = 1;
2675         else {
2676                 pci_read_config_word(ioc->pdev, base + 2, &message_control);
2677                 ioc->msix_vector_count = (message_control & 0x3FF) + 1;
2678         }
2679         dinitprintk(ioc, pr_info(MPT3SAS_FMT
2680                 "msix is supported, vector_count(%d)\n",
2681                 ioc->name, ioc->msix_vector_count));
2682         return 0;
2683 }
2684
2685 /**
2686  * _base_free_irq - free irq
2687  * @ioc: per adapter object
2688  *
2689  * Freeing respective reply_queue from the list.
2690  */
2691 static void
2692 _base_free_irq(struct MPT3SAS_ADAPTER *ioc)
2693 {
2694         struct adapter_reply_queue *reply_q, *next;
2695
2696         if (list_empty(&ioc->reply_queue_list))
2697                 return;
2698
2699         list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
2700                 list_del(&reply_q->list);
2701                 free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index),
2702                          reply_q);
2703                 kfree(reply_q);
2704         }
2705 }
2706
2707 /**
2708  * _base_request_irq - request irq
2709  * @ioc: per adapter object
2710  * @index: msix index into vector table
2711  *
2712  * Inserting respective reply_queue into the list.
2713  */
2714 static int
2715 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index)
2716 {
2717         struct pci_dev *pdev = ioc->pdev;
2718         struct adapter_reply_queue *reply_q;
2719         int r;
2720
2721         reply_q =  kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
2722         if (!reply_q) {
2723                 pr_err(MPT3SAS_FMT "unable to allocate memory %d!\n",
2724                     ioc->name, (int)sizeof(struct adapter_reply_queue));
2725                 return -ENOMEM;
2726         }
2727         reply_q->ioc = ioc;
2728         reply_q->msix_index = index;
2729
2730         atomic_set(&reply_q->busy, 0);
2731         if (ioc->msix_enable)
2732                 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
2733                     ioc->driver_name, ioc->id, index);
2734         else
2735                 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
2736                     ioc->driver_name, ioc->id);
2737         r = request_irq(pci_irq_vector(pdev, index), _base_interrupt,
2738                         IRQF_SHARED, reply_q->name, reply_q);
2739         if (r) {
2740                 pr_err(MPT3SAS_FMT "unable to allocate interrupt %d!\n",
2741                        reply_q->name, pci_irq_vector(pdev, index));
2742                 kfree(reply_q);
2743                 return -EBUSY;
2744         }
2745
2746         INIT_LIST_HEAD(&reply_q->list);
2747         list_add_tail(&reply_q->list, &ioc->reply_queue_list);
2748         return 0;
2749 }
2750
2751 /**
2752  * _base_assign_reply_queues - assigning msix index for each cpu
2753  * @ioc: per adapter object
2754  *
2755  * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
2756  *
2757  * It would nice if we could call irq_set_affinity, however it is not
2758  * an exported symbol
2759  */
2760 static void
2761 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
2762 {
2763         unsigned int cpu, nr_cpus, nr_msix, index = 0;
2764         struct adapter_reply_queue *reply_q;
2765
2766         if (!_base_is_controller_msix_enabled(ioc))
2767                 return;
2768
2769         memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
2770
2771         nr_cpus = num_online_cpus();
2772         nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
2773                                                ioc->facts.MaxMSIxVectors);
2774         if (!nr_msix)
2775                 return;
2776
2777         if (smp_affinity_enable) {
2778                 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
2779                         const cpumask_t *mask = pci_irq_get_affinity(ioc->pdev,
2780                                                         reply_q->msix_index);
2781                         if (!mask) {
2782                                 pr_warn(MPT3SAS_FMT "no affinity for msi %x\n",
2783                                         ioc->name, reply_q->msix_index);
2784                                 continue;
2785                         }
2786
2787                         for_each_cpu_and(cpu, mask, cpu_online_mask) {
2788                                 if (cpu >= ioc->cpu_msix_table_sz)
2789                                         break;
2790                                 ioc->cpu_msix_table[cpu] = reply_q->msix_index;
2791                         }
2792                 }
2793                 return;
2794         }
2795         cpu = cpumask_first(cpu_online_mask);
2796
2797         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
2798
2799                 unsigned int i, group = nr_cpus / nr_msix;
2800
2801                 if (cpu >= nr_cpus)
2802                         break;
2803
2804                 if (index < nr_cpus % nr_msix)
2805                         group++;
2806
2807                 for (i = 0 ; i < group ; i++) {
2808                         ioc->cpu_msix_table[cpu] = reply_q->msix_index;
2809                         cpu = cpumask_next(cpu, cpu_online_mask);
2810                 }
2811                 index++;
2812         }
2813 }
2814
2815 /**
2816  * _base_disable_msix - disables msix
2817  * @ioc: per adapter object
2818  *
2819  */
2820 static void
2821 _base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
2822 {
2823         if (!ioc->msix_enable)
2824                 return;
2825         pci_disable_msix(ioc->pdev);
2826         ioc->msix_enable = 0;
2827 }
2828
2829 /**
2830  * _base_enable_msix - enables msix, failback to io_apic
2831  * @ioc: per adapter object
2832  *
2833  */
2834 static int
2835 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
2836 {
2837         int r;
2838         int i, local_max_msix_vectors;
2839         u8 try_msix = 0;
2840         unsigned int irq_flags = PCI_IRQ_MSIX;
2841
2842         if (msix_disable == -1 || msix_disable == 0)
2843                 try_msix = 1;
2844
2845         if (!try_msix)
2846                 goto try_ioapic;
2847
2848         if (_base_check_enable_msix(ioc) != 0)
2849                 goto try_ioapic;
2850
2851         ioc->reply_queue_count = min_t(int, ioc->cpu_count,
2852                 ioc->msix_vector_count);
2853
2854         printk(MPT3SAS_FMT "MSI-X vectors supported: %d, no of cores"
2855           ": %d, max_msix_vectors: %d\n", ioc->name, ioc->msix_vector_count,
2856           ioc->cpu_count, max_msix_vectors);
2857
2858         if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
2859                 local_max_msix_vectors = (reset_devices) ? 1 : 8;
2860         else
2861                 local_max_msix_vectors = max_msix_vectors;
2862
2863         if (local_max_msix_vectors > 0)
2864                 ioc->reply_queue_count = min_t(int, local_max_msix_vectors,
2865                         ioc->reply_queue_count);
2866         else if (local_max_msix_vectors == 0)
2867                 goto try_ioapic;
2868
2869         if (ioc->msix_vector_count < ioc->cpu_count)
2870                 smp_affinity_enable = 0;
2871
2872         if (smp_affinity_enable)
2873                 irq_flags |= PCI_IRQ_AFFINITY;
2874
2875         r = pci_alloc_irq_vectors(ioc->pdev, 1, ioc->reply_queue_count,
2876                                   irq_flags);
2877         if (r < 0) {
2878                 dfailprintk(ioc, pr_info(MPT3SAS_FMT
2879                         "pci_alloc_irq_vectors failed (r=%d) !!!\n",
2880                         ioc->name, r));
2881                 goto try_ioapic;
2882         }
2883
2884         ioc->msix_enable = 1;
2885         ioc->reply_queue_count = r;
2886         for (i = 0; i < ioc->reply_queue_count; i++) {
2887                 r = _base_request_irq(ioc, i);
2888                 if (r) {
2889                         _base_free_irq(ioc);
2890                         _base_disable_msix(ioc);
2891                         goto try_ioapic;
2892                 }
2893         }
2894
2895         return 0;
2896
2897 /* failback to io_apic interrupt routing */
2898  try_ioapic:
2899
2900         ioc->reply_queue_count = 1;
2901         r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY);
2902         if (r < 0) {
2903                 dfailprintk(ioc, pr_info(MPT3SAS_FMT
2904                         "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n",
2905                         ioc->name, r));
2906         } else
2907                 r = _base_request_irq(ioc, 0);
2908
2909         return r;
2910 }
2911
2912 /**
2913  * mpt3sas_base_unmap_resources - free controller resources
2914  * @ioc: per adapter object
2915  */
2916 static void
2917 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
2918 {
2919         struct pci_dev *pdev = ioc->pdev;
2920
2921         dexitprintk(ioc, printk(MPT3SAS_FMT "%s\n",
2922                 ioc->name, __func__));
2923
2924         _base_free_irq(ioc);
2925         _base_disable_msix(ioc);
2926
2927         if (ioc->combined_reply_queue) {
2928                 kfree(ioc->replyPostRegisterIndex);
2929                 ioc->replyPostRegisterIndex = NULL;
2930         }
2931
2932         if (ioc->chip_phys) {
2933                 iounmap(ioc->chip);
2934                 ioc->chip_phys = 0;
2935         }
2936
2937         if (pci_is_enabled(pdev)) {
2938                 pci_release_selected_regions(ioc->pdev, ioc->bars);
2939                 pci_disable_pcie_error_reporting(pdev);
2940                 pci_disable_device(pdev);
2941         }
2942 }
2943
2944 /**
2945  * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
2946  * @ioc: per adapter object
2947  *
2948  * Returns 0 for success, non-zero for failure.
2949  */
2950 int
2951 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
2952 {
2953         struct pci_dev *pdev = ioc->pdev;
2954         u32 memap_sz;
2955         u32 pio_sz;
2956         int i, r = 0;
2957         u64 pio_chip = 0;
2958         phys_addr_t chip_phys = 0;
2959         struct adapter_reply_queue *reply_q;
2960
2961         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n",
2962             ioc->name, __func__));
2963
2964         ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
2965         if (pci_enable_device_mem(pdev)) {
2966                 pr_warn(MPT3SAS_FMT "pci_enable_device_mem: failed\n",
2967                         ioc->name);
2968                 ioc->bars = 0;
2969                 return -ENODEV;
2970         }
2971
2972
2973         if (pci_request_selected_regions(pdev, ioc->bars,
2974             ioc->driver_name)) {
2975                 pr_warn(MPT3SAS_FMT "pci_request_selected_regions: failed\n",
2976                         ioc->name);
2977                 ioc->bars = 0;
2978                 r = -ENODEV;
2979                 goto out_fail;
2980         }
2981
2982 /* AER (Advanced Error Reporting) hooks */
2983         pci_enable_pcie_error_reporting(pdev);
2984
2985         pci_set_master(pdev);
2986
2987
2988         if (_base_config_dma_addressing(ioc, pdev) != 0) {
2989                 pr_warn(MPT3SAS_FMT "no suitable DMA mask for %s\n",
2990                     ioc->name, pci_name(pdev));
2991                 r = -ENODEV;
2992                 goto out_fail;
2993         }
2994
2995         for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
2996              (!memap_sz || !pio_sz); i++) {
2997                 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
2998                         if (pio_sz)
2999                                 continue;
3000                         pio_chip = (u64)pci_resource_start(pdev, i);
3001                         pio_sz = pci_resource_len(pdev, i);
3002                 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3003                         if (memap_sz)
3004                                 continue;
3005                         ioc->chip_phys = pci_resource_start(pdev, i);
3006                         chip_phys = ioc->chip_phys;
3007                         memap_sz = pci_resource_len(pdev, i);
3008                         ioc->chip = ioremap(ioc->chip_phys, memap_sz);
3009                 }
3010         }
3011
3012         if (ioc->chip == NULL) {
3013                 pr_err(MPT3SAS_FMT "unable to map adapter memory! "
3014                         " or resource not found\n", ioc->name);
3015                 r = -EINVAL;
3016                 goto out_fail;
3017         }
3018
3019         _base_mask_interrupts(ioc);
3020
3021         r = _base_get_ioc_facts(ioc);
3022         if (r)
3023                 goto out_fail;
3024
3025         if (!ioc->rdpq_array_enable_assigned) {
3026                 ioc->rdpq_array_enable = ioc->rdpq_array_capable;
3027                 ioc->rdpq_array_enable_assigned = 1;
3028         }
3029
3030         r = _base_enable_msix(ioc);
3031         if (r)
3032                 goto out_fail;
3033
3034         /* Use the Combined reply queue feature only for SAS3 C0 & higher
3035          * revision HBAs and also only when reply queue count is greater than 8
3036          */
3037         if (ioc->combined_reply_queue && ioc->reply_queue_count > 8) {
3038                 /* Determine the Supplemental Reply Post Host Index Registers
3039                  * Addresse. Supplemental Reply Post Host Index Registers
3040                  * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
3041                  * each register is at offset bytes of
3042                  * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
3043                  */
3044                 ioc->replyPostRegisterIndex = kcalloc(
3045                      ioc->combined_reply_index_count,
3046                      sizeof(resource_size_t *), GFP_KERNEL);
3047                 if (!ioc->replyPostRegisterIndex) {
3048                         dfailprintk(ioc, printk(MPT3SAS_FMT
3049                         "allocation for reply Post Register Index failed!!!\n",
3050                                                                    ioc->name));
3051                         r = -ENOMEM;
3052                         goto out_fail;
3053                 }
3054
3055                 for (i = 0; i < ioc->combined_reply_index_count; i++) {
3056                         ioc->replyPostRegisterIndex[i] = (resource_size_t *)
3057                              ((u8 __force *)&ioc->chip->Doorbell +
3058                              MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
3059                              (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
3060                 }
3061         } else
3062                 ioc->combined_reply_queue = 0;
3063
3064         if (ioc->is_warpdrive) {
3065                 ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
3066                     &ioc->chip->ReplyPostHostIndex;
3067
3068                 for (i = 1; i < ioc->cpu_msix_table_sz; i++)
3069                         ioc->reply_post_host_index[i] =
3070                         (resource_size_t __iomem *)
3071                         ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
3072                         * 4)));
3073         }
3074
3075         list_for_each_entry(reply_q, &ioc->reply_queue_list, list)
3076                 pr_info(MPT3SAS_FMT "%s: IRQ %d\n",
3077                     reply_q->name,  ((ioc->msix_enable) ? "PCI-MSI-X enabled" :
3078                     "IO-APIC enabled"),
3079                     pci_irq_vector(ioc->pdev, reply_q->msix_index));
3080
3081         pr_info(MPT3SAS_FMT "iomem(%pap), mapped(0x%p), size(%d)\n",
3082             ioc->name, &chip_phys, ioc->chip, memap_sz);
3083         pr_info(MPT3SAS_FMT "ioport(0x%016llx), size(%d)\n",
3084             ioc->name, (unsigned long long)pio_chip, pio_sz);
3085
3086         /* Save PCI configuration state for recovery from PCI AER/EEH errors */
3087         pci_save_state(pdev);
3088         return 0;
3089
3090  out_fail:
3091         mpt3sas_base_unmap_resources(ioc);
3092         return r;
3093 }
3094
3095 /**
3096  * mpt3sas_base_get_msg_frame - obtain request mf pointer
3097  * @ioc: per adapter object
3098  * @smid: system request message index(smid zero is invalid)
3099  *
3100  * Returns virt pointer to message frame.
3101  */
3102 void *
3103 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3104 {
3105         return (void *)(ioc->request + (smid * ioc->request_sz));
3106 }
3107
3108 /**
3109  * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
3110  * @ioc: per adapter object
3111  * @smid: system request message index
3112  *
3113  * Returns virt pointer to sense buffer.
3114  */
3115 void *
3116 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3117 {
3118         return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
3119 }
3120
3121 /**
3122  * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
3123  * @ioc: per adapter object
3124  * @smid: system request message index
3125  *
3126  * Returns phys pointer to the low 32bit address of the sense buffer.
3127  */
3128 __le32
3129 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3130 {
3131         return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
3132             SCSI_SENSE_BUFFERSIZE));
3133 }
3134
3135 /**
3136  * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr
3137  * @ioc: per adapter object
3138  * @smid: system request message index
3139  *
3140  * Returns virt pointer to a PCIe SGL.
3141  */
3142 void *
3143 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3144 {
3145         return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl);
3146 }
3147
3148 /**
3149  * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr
3150  * @ioc: per adapter object
3151  * @smid: system request message index
3152  *
3153  * Returns phys pointer to the address of the PCIe buffer.
3154  */
3155 dma_addr_t
3156 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3157 {
3158         return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma;
3159 }
3160
3161 /**
3162  * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
3163  * @ioc: per adapter object
3164  * @phys_addr: lower 32 physical addr of the reply
3165  *
3166  * Converts 32bit lower physical addr into a virt address.
3167  */
3168 void *
3169 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
3170 {
3171         if (!phys_addr)
3172                 return NULL;
3173         return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
3174 }
3175
3176 static inline u8
3177 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc)
3178 {
3179         return ioc->cpu_msix_table[raw_smp_processor_id()];
3180 }
3181
3182 /**
3183  * mpt3sas_base_get_smid - obtain a free smid from internal queue
3184  * @ioc: per adapter object
3185  * @cb_idx: callback index
3186  *
3187  * Returns smid (zero is invalid)
3188  */
3189 u16
3190 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3191 {
3192         unsigned long flags;
3193         struct request_tracker *request;
3194         u16 smid;
3195
3196         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3197         if (list_empty(&ioc->internal_free_list)) {
3198                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3199                 pr_err(MPT3SAS_FMT "%s: smid not available\n",
3200                     ioc->name, __func__);
3201                 return 0;
3202         }
3203
3204         request = list_entry(ioc->internal_free_list.next,
3205             struct request_tracker, tracker_list);
3206         request->cb_idx = cb_idx;
3207         smid = request->smid;
3208         list_del(&request->tracker_list);
3209         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3210         return smid;
3211 }
3212
3213 /**
3214  * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
3215  * @ioc: per adapter object
3216  * @cb_idx: callback index
3217  * @scmd: pointer to scsi command object
3218  *
3219  * Returns smid (zero is invalid)
3220  */
3221 u16
3222 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
3223         struct scsi_cmnd *scmd)
3224 {
3225         struct scsiio_tracker *request = scsi_cmd_priv(scmd);
3226         unsigned int tag = scmd->request->tag;
3227         u16 smid;
3228
3229         smid = tag + 1;
3230         request->cb_idx = cb_idx;
3231         request->msix_io = _base_get_msix_index(ioc);
3232         request->smid = smid;
3233         INIT_LIST_HEAD(&request->chain_list);
3234         return smid;
3235 }
3236
3237 /**
3238  * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
3239  * @ioc: per adapter object
3240  * @cb_idx: callback index
3241  *
3242  * Returns smid (zero is invalid)
3243  */
3244 u16
3245 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3246 {
3247         unsigned long flags;
3248         struct request_tracker *request;
3249         u16 smid;
3250
3251         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3252         if (list_empty(&ioc->hpr_free_list)) {
3253                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3254                 return 0;
3255         }
3256
3257         request = list_entry(ioc->hpr_free_list.next,
3258             struct request_tracker, tracker_list);
3259         request->cb_idx = cb_idx;
3260         smid = request->smid;
3261         list_del(&request->tracker_list);
3262         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3263         return smid;
3264 }
3265
3266 static void
3267 _base_recovery_check(struct MPT3SAS_ADAPTER *ioc)
3268 {
3269         /*
3270          * See _wait_for_commands_to_complete() call with regards to this code.
3271          */
3272         if (ioc->shost_recovery && ioc->pending_io_count) {
3273                 ioc->pending_io_count = atomic_read(&ioc->shost->host_busy);
3274                 if (ioc->pending_io_count == 0)
3275                         wake_up(&ioc->reset_wq);
3276         }
3277 }
3278
3279 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc,
3280                            struct scsiio_tracker *st)
3281 {
3282         if (WARN_ON(st->smid == 0))
3283                 return;
3284         st->cb_idx = 0xFF;
3285         st->direct_io = 0;
3286         atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0);
3287 }
3288
3289 /**
3290  * mpt3sas_base_free_smid - put smid back on free_list
3291  * @ioc: per adapter object
3292  * @smid: system request message index
3293  *
3294  * Return nothing.
3295  */
3296 void
3297 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3298 {
3299         unsigned long flags;
3300         int i;
3301
3302         if (smid < ioc->hi_priority_smid) {
3303                 struct scsiio_tracker *st;
3304
3305                 st = _get_st_from_smid(ioc, smid);
3306                 if (!st) {
3307                         _base_recovery_check(ioc);
3308                         return;
3309                 }
3310                 mpt3sas_base_clear_st(ioc, st);
3311                 _base_recovery_check(ioc);
3312                 return;
3313         }
3314
3315         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3316         if (smid < ioc->internal_smid) {
3317                 /* hi-priority */
3318                 i = smid - ioc->hi_priority_smid;
3319                 ioc->hpr_lookup[i].cb_idx = 0xFF;
3320                 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
3321         } else if (smid <= ioc->hba_queue_depth) {
3322                 /* internal queue */
3323                 i = smid - ioc->internal_smid;
3324                 ioc->internal_lookup[i].cb_idx = 0xFF;
3325                 list_add(&ioc->internal_lookup[i].tracker_list,
3326                     &ioc->internal_free_list);
3327         }
3328         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3329 }
3330
3331 /**
3332  * _base_mpi_ep_writeq - 32 bit write to MMIO
3333  * @b: data payload
3334  * @addr: address in MMIO space
3335  * @writeq_lock: spin lock
3336  *
3337  * This special handling for MPI EP to take care of 32 bit
3338  * environment where its not quarenteed to send the entire word
3339  * in one transfer.
3340  */
3341 static inline void
3342 _base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr,
3343                                         spinlock_t *writeq_lock)
3344 {
3345         unsigned long flags;
3346         __u64 data_out = b;
3347
3348         spin_lock_irqsave(writeq_lock, flags);
3349         writel((u32)(data_out), addr);
3350         writel((u32)(data_out >> 32), (addr + 4));
3351         mmiowb();
3352         spin_unlock_irqrestore(writeq_lock, flags);
3353 }
3354
3355 /**
3356  * _base_writeq - 64 bit write to MMIO
3357  * @ioc: per adapter object
3358  * @b: data payload
3359  * @addr: address in MMIO space
3360  * @writeq_lock: spin lock
3361  *
3362  * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
3363  * care of 32 bit environment where its not quarenteed to send the entire word
3364  * in one transfer.
3365  */
3366 #if defined(writeq) && defined(CONFIG_64BIT)
3367 static inline void
3368 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
3369 {
3370         writeq(b, addr);
3371 }
3372 #else
3373 static inline void
3374 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
3375 {
3376         _base_mpi_ep_writeq(b, addr, writeq_lock);
3377 }
3378 #endif
3379
3380 /**
3381  * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware
3382  * @ioc: per adapter object
3383  * @smid: system request message index
3384  * @handle: device handle
3385  *
3386  * Return nothing.
3387  */
3388 static void
3389 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
3390 {
3391         Mpi2RequestDescriptorUnion_t descriptor;
3392         u64 *request = (u64 *)&descriptor;
3393         void *mpi_req_iomem;
3394         __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3395
3396         _clone_sg_entries(ioc, (void *) mfp, smid);
3397         mpi_req_iomem = (void __force *)ioc->chip +
3398                         MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
3399         _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3400                                         ioc->request_sz);
3401         descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
3402         descriptor.SCSIIO.MSIxIndex =  _base_get_msix_index(ioc);
3403         descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3404         descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3405         descriptor.SCSIIO.LMID = 0;
3406         _base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3407             &ioc->scsi_lookup_lock);
3408 }
3409
3410 /**
3411  * _base_put_smid_scsi_io - send SCSI_IO request to firmware
3412  * @ioc: per adapter object
3413  * @smid: system request message index
3414  * @handle: device handle
3415  *
3416  * Return nothing.
3417  */
3418 static void
3419 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
3420 {
3421         Mpi2RequestDescriptorUnion_t descriptor;
3422         u64 *request = (u64 *)&descriptor;
3423
3424
3425         descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
3426         descriptor.SCSIIO.MSIxIndex =  _base_get_msix_index(ioc);
3427         descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3428         descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3429         descriptor.SCSIIO.LMID = 0;
3430         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3431             &ioc->scsi_lookup_lock);
3432 }
3433
3434 /**
3435  * mpt3sas_base_put_smid_fast_path - send fast path request to firmware
3436  * @ioc: per adapter object
3437  * @smid: system request message index
3438  * @handle: device handle
3439  *
3440  * Return nothing.
3441  */
3442 void
3443 mpt3sas_base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
3444         u16 handle)
3445 {
3446         Mpi2RequestDescriptorUnion_t descriptor;
3447         u64 *request = (u64 *)&descriptor;
3448
3449         descriptor.SCSIIO.RequestFlags =
3450             MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
3451         descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc);
3452         descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3453         descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3454         descriptor.SCSIIO.LMID = 0;
3455         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3456             &ioc->scsi_lookup_lock);
3457 }
3458
3459 /**
3460  * mpt3sas_base_put_smid_hi_priority - send Task Management request to firmware
3461  * @ioc: per adapter object
3462  * @smid: system request message index
3463  * @msix_task: msix_task will be same as msix of IO incase of task abort else 0.
3464  * Return nothing.
3465  */
3466 void
3467 mpt3sas_base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
3468         u16 msix_task)
3469 {
3470         Mpi2RequestDescriptorUnion_t descriptor;
3471         void *mpi_req_iomem;
3472         u64 *request;
3473
3474         if (ioc->is_mcpu_endpoint) {
3475                 MPI2RequestHeader_t *request_hdr;
3476
3477                 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3478
3479                 request_hdr = (MPI2RequestHeader_t *)mfp;
3480                 /* TBD 256 is offset within sys register. */
3481                 mpi_req_iomem = (void __force *)ioc->chip
3482                                         + MPI_FRAME_START_OFFSET
3483                                         + (smid * ioc->request_sz);
3484                 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3485                                                         ioc->request_sz);
3486         }
3487
3488         request = (u64 *)&descriptor;
3489
3490         descriptor.HighPriority.RequestFlags =
3491             MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
3492         descriptor.HighPriority.MSIxIndex =  msix_task;
3493         descriptor.HighPriority.SMID = cpu_to_le16(smid);
3494         descriptor.HighPriority.LMID = 0;
3495         descriptor.HighPriority.Reserved1 = 0;
3496         if (ioc->is_mcpu_endpoint)
3497                 _base_mpi_ep_writeq(*request,
3498                                 &ioc->chip->RequestDescriptorPostLow,
3499                                 &ioc->scsi_lookup_lock);
3500         else
3501                 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3502                     &ioc->scsi_lookup_lock);
3503 }
3504
3505 /**
3506  * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to
3507  *  firmware
3508  * @ioc: per adapter object
3509  * @smid: system request message index
3510  *
3511  * Return nothing.
3512  */
3513 void
3514 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3515 {
3516         Mpi2RequestDescriptorUnion_t descriptor;
3517         u64 *request = (u64 *)&descriptor;
3518
3519         descriptor.Default.RequestFlags =
3520                 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
3521         descriptor.Default.MSIxIndex =  _base_get_msix_index(ioc);
3522         descriptor.Default.SMID = cpu_to_le16(smid);
3523         descriptor.Default.LMID = 0;
3524         descriptor.Default.DescriptorTypeDependent = 0;
3525         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3526             &ioc->scsi_lookup_lock);
3527 }
3528
3529 /**
3530  * mpt3sas_base_put_smid_default - Default, primarily used for config pages
3531  * @ioc: per adapter object
3532  * @smid: system request message index
3533  *
3534  * Return nothing.
3535  */
3536 void
3537 mpt3sas_base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3538 {
3539         Mpi2RequestDescriptorUnion_t descriptor;
3540         void *mpi_req_iomem;
3541         u64 *request;
3542         MPI2RequestHeader_t *request_hdr;
3543
3544         if (ioc->is_mcpu_endpoint) {
3545                 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3546
3547                 request_hdr = (MPI2RequestHeader_t *)mfp;
3548
3549                 _clone_sg_entries(ioc, (void *) mfp, smid);
3550                 /* TBD 256 is offset within sys register */
3551                 mpi_req_iomem = (void __force *)ioc->chip +
3552                         MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
3553                 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3554                                                         ioc->request_sz);
3555         }
3556         request = (u64 *)&descriptor;
3557         descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
3558         descriptor.Default.MSIxIndex =  _base_get_msix_index(ioc);
3559         descriptor.Default.SMID = cpu_to_le16(smid);
3560         descriptor.Default.LMID = 0;
3561         descriptor.Default.DescriptorTypeDependent = 0;
3562         if (ioc->is_mcpu_endpoint)
3563                 _base_mpi_ep_writeq(*request,
3564                                 &ioc->chip->RequestDescriptorPostLow,
3565                                 &ioc->scsi_lookup_lock);
3566         else
3567                 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3568                                 &ioc->scsi_lookup_lock);
3569 }
3570
3571 /**
3572  * _base_display_OEMs_branding - Display branding string
3573  * @ioc: per adapter object
3574  *
3575  * Return nothing.
3576  */
3577 static void
3578 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
3579 {
3580         if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
3581                 return;
3582
3583         switch (ioc->pdev->subsystem_vendor) {
3584         case PCI_VENDOR_ID_INTEL:
3585                 switch (ioc->pdev->device) {
3586                 case MPI2_MFGPAGE_DEVID_SAS2008:
3587                         switch (ioc->pdev->subsystem_device) {
3588                         case MPT2SAS_INTEL_RMS2LL080_SSDID:
3589                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3590                                     MPT2SAS_INTEL_RMS2LL080_BRANDING);
3591                                 break;
3592                         case MPT2SAS_INTEL_RMS2LL040_SSDID:
3593                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3594                                     MPT2SAS_INTEL_RMS2LL040_BRANDING);
3595                                 break;
3596                         case MPT2SAS_INTEL_SSD910_SSDID:
3597                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3598                                     MPT2SAS_INTEL_SSD910_BRANDING);
3599                                 break;
3600                         default:
3601                                 pr_info(MPT3SAS_FMT
3602                                  "Intel(R) Controller: Subsystem ID: 0x%X\n",
3603                                  ioc->name, ioc->pdev->subsystem_device);
3604                                 break;
3605                         }
3606                 case MPI2_MFGPAGE_DEVID_SAS2308_2:
3607                         switch (ioc->pdev->subsystem_device) {
3608                         case MPT2SAS_INTEL_RS25GB008_SSDID:
3609                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3610                                     MPT2SAS_INTEL_RS25GB008_BRANDING);
3611                                 break;
3612                         case MPT2SAS_INTEL_RMS25JB080_SSDID:
3613                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3614                                     MPT2SAS_INTEL_RMS25JB080_BRANDING);
3615                                 break;
3616                         case MPT2SAS_INTEL_RMS25JB040_SSDID:
3617                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3618                                     MPT2SAS_INTEL_RMS25JB040_BRANDING);
3619                                 break;
3620                         case MPT2SAS_INTEL_RMS25KB080_SSDID:
3621                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3622                                     MPT2SAS_INTEL_RMS25KB080_BRANDING);
3623                                 break;
3624                         case MPT2SAS_INTEL_RMS25KB040_SSDID:
3625                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3626                                     MPT2SAS_INTEL_RMS25KB040_BRANDING);
3627                                 break;
3628                         case MPT2SAS_INTEL_RMS25LB040_SSDID:
3629                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3630                                     MPT2SAS_INTEL_RMS25LB040_BRANDING);
3631                                 break;
3632                         case MPT2SAS_INTEL_RMS25LB080_SSDID:
3633                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3634                                     MPT2SAS_INTEL_RMS25LB080_BRANDING);
3635                                 break;
3636                         default:
3637                                 pr_info(MPT3SAS_FMT
3638                                  "Intel(R) Controller: Subsystem ID: 0x%X\n",
3639                                  ioc->name, ioc->pdev->subsystem_device);
3640                                 break;
3641                         }
3642                 case MPI25_MFGPAGE_DEVID_SAS3008:
3643                         switch (ioc->pdev->subsystem_device) {
3644                         case MPT3SAS_INTEL_RMS3JC080_SSDID:
3645                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3646                                         MPT3SAS_INTEL_RMS3JC080_BRANDING);
3647                                 break;
3648
3649                         case MPT3SAS_INTEL_RS3GC008_SSDID:
3650                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3651                                         MPT3SAS_INTEL_RS3GC008_BRANDING);
3652                                 break;
3653                         case MPT3SAS_INTEL_RS3FC044_SSDID:
3654                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3655                                         MPT3SAS_INTEL_RS3FC044_BRANDING);
3656                                 break;
3657                         case MPT3SAS_INTEL_RS3UC080_SSDID:
3658                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3659                                         MPT3SAS_INTEL_RS3UC080_BRANDING);
3660                                 break;
3661                         default:
3662                                 pr_info(MPT3SAS_FMT
3663                                  "Intel(R) Controller: Subsystem ID: 0x%X\n",
3664                                  ioc->name, ioc->pdev->subsystem_device);
3665                                 break;
3666                         }
3667                         break;
3668                 default:
3669                         pr_info(MPT3SAS_FMT
3670                          "Intel(R) Controller: Subsystem ID: 0x%X\n",
3671                          ioc->name, ioc->pdev->subsystem_device);
3672                         break;
3673                 }
3674                 break;
3675         case PCI_VENDOR_ID_DELL:
3676                 switch (ioc->pdev->device) {
3677                 case MPI2_MFGPAGE_DEVID_SAS2008:
3678                         switch (ioc->pdev->subsystem_device) {
3679                         case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
3680                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3681                                  MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
3682                                 break;
3683                         case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
3684                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3685                                  MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
3686                                 break;
3687                         case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
3688                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3689                                  MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
3690                                 break;
3691                         case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
3692                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3693                                  MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
3694                                 break;
3695                         case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
3696                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3697                                  MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
3698                                 break;
3699                         case MPT2SAS_DELL_PERC_H200_SSDID:
3700                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3701                                  MPT2SAS_DELL_PERC_H200_BRANDING);
3702                                 break;
3703                         case MPT2SAS_DELL_6GBPS_SAS_SSDID:
3704                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3705                                  MPT2SAS_DELL_6GBPS_SAS_BRANDING);
3706                                 break;
3707                         default:
3708                                 pr_info(MPT3SAS_FMT
3709                                    "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
3710                                    ioc->name, ioc->pdev->subsystem_device);
3711                                 break;
3712                         }
3713                         break;
3714                 case MPI25_MFGPAGE_DEVID_SAS3008:
3715                         switch (ioc->pdev->subsystem_device) {
3716                         case MPT3SAS_DELL_12G_HBA_SSDID:
3717                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3718                                         MPT3SAS_DELL_12G_HBA_BRANDING);
3719                                 break;
3720                         default:
3721                                 pr_info(MPT3SAS_FMT
3722                                    "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
3723                                    ioc->name, ioc->pdev->subsystem_device);
3724                                 break;
3725                         }
3726                         break;
3727                 default:
3728                         pr_info(MPT3SAS_FMT
3729                            "Dell HBA: Subsystem ID: 0x%X\n", ioc->name,
3730                            ioc->pdev->subsystem_device);
3731                         break;
3732                 }
3733                 break;
3734         case PCI_VENDOR_ID_CISCO:
3735                 switch (ioc->pdev->device) {
3736                 case MPI25_MFGPAGE_DEVID_SAS3008:
3737                         switch (ioc->pdev->subsystem_device) {
3738                         case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
3739                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3740                                         MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
3741                                 break;
3742                         case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
3743                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3744                                         MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
3745                                 break;
3746                         case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
3747                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3748                                         MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
3749                                 break;
3750                         default:
3751                                 pr_info(MPT3SAS_FMT
3752                                   "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
3753                                   ioc->name, ioc->pdev->subsystem_device);
3754                                 break;
3755                         }
3756                         break;
3757                 case MPI25_MFGPAGE_DEVID_SAS3108_1:
3758                         switch (ioc->pdev->subsystem_device) {
3759                         case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
3760                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3761                                 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
3762                                 break;
3763                         case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
3764                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3765                                 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING
3766                                 );
3767                                 break;
3768                         default:
3769                                 pr_info(MPT3SAS_FMT
3770                                  "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
3771                                  ioc->name, ioc->pdev->subsystem_device);
3772                                 break;
3773                         }
3774                         break;
3775                 default:
3776                         pr_info(MPT3SAS_FMT
3777                            "Cisco SAS HBA: Subsystem ID: 0x%X\n",
3778                            ioc->name, ioc->pdev->subsystem_device);
3779                         break;
3780                 }
3781                 break;
3782         case MPT2SAS_HP_3PAR_SSVID:
3783                 switch (ioc->pdev->device) {
3784                 case MPI2_MFGPAGE_DEVID_SAS2004:
3785                         switch (ioc->pdev->subsystem_device) {
3786                         case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
3787                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3788                                     MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
3789                                 break;
3790                         default:
3791                                 pr_info(MPT3SAS_FMT
3792                                    "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
3793                                    ioc->name, ioc->pdev->subsystem_device);
3794                                 break;
3795                         }
3796                 case MPI2_MFGPAGE_DEVID_SAS2308_2:
3797                         switch (ioc->pdev->subsystem_device) {
3798                         case MPT2SAS_HP_2_4_INTERNAL_SSDID:
3799                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3800                                     MPT2SAS_HP_2_4_INTERNAL_BRANDING);
3801                                 break;
3802                         case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
3803                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3804                                     MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
3805                                 break;
3806                         case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
3807                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3808                                  MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
3809                                 break;
3810                         case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
3811                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3812                                     MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
3813                                 break;
3814                         default:
3815                                 pr_info(MPT3SAS_FMT
3816                                    "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
3817                                    ioc->name, ioc->pdev->subsystem_device);
3818                                 break;
3819                         }
3820                 default:
3821                         pr_info(MPT3SAS_FMT
3822                            "HP SAS HBA: Subsystem ID: 0x%X\n",
3823                            ioc->name, ioc->pdev->subsystem_device);
3824                         break;
3825                 }
3826         default:
3827                 break;
3828         }
3829 }
3830
3831 /**
3832  * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg
3833  *                              version from FW Image Header.
3834  * @ioc: per adapter object
3835  *
3836  * Returns 0 for success, non-zero for failure.
3837  */
3838         static int
3839 _base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc)
3840 {
3841         Mpi2FWImageHeader_t *FWImgHdr;
3842         Mpi25FWUploadRequest_t *mpi_request;
3843         Mpi2FWUploadReply_t mpi_reply;
3844         int r = 0;
3845         void *fwpkg_data = NULL;
3846         dma_addr_t fwpkg_data_dma;
3847         u16 smid, ioc_status;
3848         size_t data_length;
3849
3850         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3851                                 __func__));
3852
3853         if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
3854                 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
3855                                 ioc->name, __func__);
3856                 return -EAGAIN;
3857         }
3858
3859         data_length = sizeof(Mpi2FWImageHeader_t);
3860         fwpkg_data = pci_alloc_consistent(ioc->pdev, data_length,
3861                         &fwpkg_data_dma);
3862         if (!fwpkg_data) {
3863                 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
3864                                 ioc->name, __FILE__, __LINE__, __func__);
3865                 return -ENOMEM;
3866         }
3867
3868         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
3869         if (!smid) {
3870                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
3871                                 ioc->name, __func__);
3872                 r = -EAGAIN;
3873                 goto out;
3874         }
3875
3876         ioc->base_cmds.status = MPT3_CMD_PENDING;
3877         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
3878         ioc->base_cmds.smid = smid;
3879         memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t));
3880         mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD;
3881         mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH;
3882         mpi_request->ImageSize = cpu_to_le32(data_length);
3883         ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma,
3884                         data_length);
3885         init_completion(&ioc->base_cmds.done);
3886         mpt3sas_base_put_smid_default(ioc, smid);
3887         /* Wait for 15 seconds */
3888         wait_for_completion_timeout(&ioc->base_cmds.done,
3889                         FW_IMG_HDR_READ_TIMEOUT*HZ);
3890         pr_info(MPT3SAS_FMT "%s: complete\n",
3891                         ioc->name, __func__);
3892         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
3893                 pr_err(MPT3SAS_FMT "%s: timeout\n",
3894                                 ioc->name, __func__);
3895                 _debug_dump_mf(mpi_request,
3896                                 sizeof(Mpi25FWUploadRequest_t)/4);
3897                 r = -ETIME;
3898         } else {
3899                 memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t));
3900                 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) {
3901                         memcpy(&mpi_reply, ioc->base_cmds.reply,
3902                                         sizeof(Mpi2FWUploadReply_t));
3903                         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
3904                                                 MPI2_IOCSTATUS_MASK;
3905                         if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
3906                                 FWImgHdr = (Mpi2FWImageHeader_t *)fwpkg_data;
3907                                 if (FWImgHdr->PackageVersion.Word) {
3908                                         pr_info(MPT3SAS_FMT "FW Package Version"
3909                                         "(%02d.%02d.%02d.%02d)\n",
3910                                         ioc->name,
3911                                         FWImgHdr->PackageVersion.Struct.Major,
3912                                         FWImgHdr->PackageVersion.Struct.Minor,
3913                                         FWImgHdr->PackageVersion.Struct.Unit,
3914                                         FWImgHdr->PackageVersion.Struct.Dev);
3915                                 }
3916                         } else {
3917                                 _debug_dump_mf(&mpi_reply,
3918                                                 sizeof(Mpi2FWUploadReply_t)/4);
3919                         }
3920                 }
3921         }
3922         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
3923 out:
3924         if (fwpkg_data)
3925                 pci_free_consistent(ioc->pdev, data_length, fwpkg_data,
3926                                 fwpkg_data_dma);
3927         return r;
3928 }
3929
3930 /**
3931  * _base_display_ioc_capabilities - Disply IOC's capabilities.
3932  * @ioc: per adapter object
3933  *
3934  * Return nothing.
3935  */
3936 static void
3937 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
3938 {
3939         int i = 0;
3940         char desc[16];
3941         u32 iounit_pg1_flags;
3942         u32 bios_version;
3943
3944         bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
3945         strncpy(desc, ioc->manu_pg0.ChipName, 16);
3946         pr_info(MPT3SAS_FMT "%s: FWVersion(%02d.%02d.%02d.%02d), "\
3947            "ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
3948             ioc->name, desc,
3949            (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
3950            (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
3951            (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
3952            ioc->facts.FWVersion.Word & 0x000000FF,
3953            ioc->pdev->revision,
3954            (bios_version & 0xFF000000) >> 24,
3955            (bios_version & 0x00FF0000) >> 16,
3956            (bios_version & 0x0000FF00) >> 8,
3957             bios_version & 0x000000FF);
3958
3959         _base_display_OEMs_branding(ioc);
3960
3961         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
3962                 pr_info("%sNVMe", i ? "," : "");
3963                 i++;
3964         }
3965
3966         pr_info(MPT3SAS_FMT "Protocol=(", ioc->name);
3967
3968         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
3969                 pr_info("Initiator");
3970                 i++;
3971         }
3972
3973         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
3974                 pr_info("%sTarget", i ? "," : "");
3975                 i++;
3976         }
3977
3978         i = 0;
3979         pr_info("), ");
3980         pr_info("Capabilities=(");
3981
3982         if (!ioc->hide_ir_msg) {
3983                 if (ioc->facts.IOCCapabilities &
3984                     MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
3985                         pr_info("Raid");
3986                         i++;
3987                 }
3988         }
3989
3990         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
3991                 pr_info("%sTLR", i ? "," : "");
3992                 i++;
3993         }
3994
3995         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
3996                 pr_info("%sMulticast", i ? "," : "");
3997                 i++;
3998         }
3999
4000         if (ioc->facts.IOCCapabilities &
4001             MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
4002                 pr_info("%sBIDI Target", i ? "," : "");
4003                 i++;
4004         }
4005
4006         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
4007                 pr_info("%sEEDP", i ? "," : "");
4008                 i++;
4009         }
4010
4011         if (ioc->facts.IOCCapabilities &
4012             MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
4013                 pr_info("%sSnapshot Buffer", i ? "," : "");
4014                 i++;
4015         }
4016
4017         if (ioc->facts.IOCCapabilities &
4018             MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
4019                 pr_info("%sDiag Trace Buffer", i ? "," : "");
4020                 i++;
4021         }
4022
4023         if (ioc->facts.IOCCapabilities &
4024             MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
4025                 pr_info("%sDiag Extended Buffer", i ? "," : "");
4026                 i++;
4027         }
4028
4029         if (ioc->facts.IOCCapabilities &
4030             MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
4031                 pr_info("%sTask Set Full", i ? "," : "");
4032                 i++;
4033         }
4034
4035         iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
4036         if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
4037                 pr_info("%sNCQ", i ? "," : "");
4038                 i++;
4039         }
4040
4041         pr_info(")\n");
4042 }
4043
4044 /**
4045  * mpt3sas_base_update_missing_delay - change the missing delay timers
4046  * @ioc: per adapter object
4047  * @device_missing_delay: amount of time till device is reported missing
4048  * @io_missing_delay: interval IO is returned when there is a missing device
4049  *
4050  * Return nothing.
4051  *
4052  * Passed on the command line, this function will modify the device missing
4053  * delay, as well as the io missing delay. This should be called at driver
4054  * load time.
4055  */
4056 void
4057 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
4058         u16 device_missing_delay, u8 io_missing_delay)
4059 {
4060         u16 dmd, dmd_new, dmd_orignal;
4061         u8 io_missing_delay_original;
4062         u16 sz;
4063         Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
4064         Mpi2ConfigReply_t mpi_reply;
4065         u8 num_phys = 0;
4066         u16 ioc_status;
4067
4068         mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
4069         if (!num_phys)
4070                 return;
4071
4072         sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
4073             sizeof(Mpi2SasIOUnit1PhyData_t));
4074         sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
4075         if (!sas_iounit_pg1) {
4076                 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
4077                     ioc->name, __FILE__, __LINE__, __func__);
4078                 goto out;
4079         }
4080         if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
4081             sas_iounit_pg1, sz))) {
4082                 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
4083                     ioc->name, __FILE__, __LINE__, __func__);
4084                 goto out;
4085         }
4086         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4087             MPI2_IOCSTATUS_MASK;
4088         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4089                 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
4090                     ioc->name, __FILE__, __LINE__, __func__);
4091                 goto out;
4092         }
4093
4094         /* device missing delay */
4095         dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
4096         if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4097                 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4098         else
4099                 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4100         dmd_orignal = dmd;
4101         if (device_missing_delay > 0x7F) {
4102                 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
4103                     device_missing_delay;
4104                 dmd = dmd / 16;
4105                 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
4106         } else
4107                 dmd = device_missing_delay;
4108         sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
4109
4110         /* io missing delay */
4111         io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
4112         sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
4113
4114         if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
4115             sz)) {
4116                 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4117                         dmd_new = (dmd &
4118                             MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4119                 else
4120                         dmd_new =
4121                     dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4122                 pr_info(MPT3SAS_FMT "device_missing_delay: old(%d), new(%d)\n",
4123                         ioc->name, dmd_orignal, dmd_new);
4124                 pr_info(MPT3SAS_FMT "ioc_missing_delay: old(%d), new(%d)\n",
4125                         ioc->name, io_missing_delay_original,
4126                     io_missing_delay);
4127                 ioc->device_missing_delay = dmd_new;
4128                 ioc->io_missing_delay = io_missing_delay;
4129         }
4130
4131 out:
4132         kfree(sas_iounit_pg1);
4133 }
4134 /**
4135  * _base_static_config_pages - static start of day config pages
4136  * @ioc: per adapter object
4137  *
4138  * Return nothing.
4139  */
4140 static void
4141 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
4142 {
4143         Mpi2ConfigReply_t mpi_reply;
4144         u32 iounit_pg1_flags;
4145
4146         ioc->nvme_abort_timeout = 30;
4147         mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0);
4148         if (ioc->ir_firmware)
4149                 mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
4150                     &ioc->manu_pg10);
4151
4152         /*
4153          * Ensure correct T10 PI operation if vendor left EEDPTagMode
4154          * flag unset in NVDATA.
4155          */
4156         mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11);
4157         if (ioc->manu_pg11.EEDPTagMode == 0) {
4158                 pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
4159                     ioc->name);
4160                 ioc->manu_pg11.EEDPTagMode &= ~0x3;
4161                 ioc->manu_pg11.EEDPTagMode |= 0x1;
4162                 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
4163                     &ioc->manu_pg11);
4164         }
4165         if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK)
4166                 ioc->tm_custom_handling = 1;
4167         else {
4168                 ioc->tm_custom_handling = 0;
4169                 if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT)
4170                         ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT;
4171                 else if (ioc->manu_pg11.NVMeAbortTO >
4172                                         NVME_TASK_ABORT_MAX_TIMEOUT)
4173                         ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT;
4174                 else
4175                         ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO;
4176         }
4177
4178         mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
4179         mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
4180         mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
4181         mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
4182         mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
4183         mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
4184         _base_display_ioc_capabilities(ioc);
4185
4186         /*
4187          * Enable task_set_full handling in iounit_pg1 when the
4188          * facts capabilities indicate that its supported.
4189          */
4190         iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
4191         if ((ioc->facts.IOCCapabilities &
4192             MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
4193                 iounit_pg1_flags &=
4194                     ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
4195         else
4196                 iounit_pg1_flags |=
4197                     MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
4198         ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
4199         mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
4200
4201         if (ioc->iounit_pg8.NumSensors)
4202                 ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
4203 }
4204
4205 /**
4206  * mpt3sas_free_enclosure_list - release memory
4207  * @ioc: per adapter object
4208  *
4209  * Free memory allocated during encloure add.
4210  *
4211  * Return nothing.
4212  */
4213 void
4214 mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc)
4215 {
4216         struct _enclosure_node *enclosure_dev, *enclosure_dev_next;
4217
4218         /* Free enclosure list */
4219         list_for_each_entry_safe(enclosure_dev,
4220                         enclosure_dev_next, &ioc->enclosure_list, list) {
4221                 list_del(&enclosure_dev->list);
4222                 kfree(enclosure_dev);
4223         }
4224 }
4225
4226 /**
4227  * _base_release_memory_pools - release memory
4228  * @ioc: per adapter object
4229  *
4230  * Free memory allocated from _base_allocate_memory_pools.
4231  *
4232  * Return nothing.
4233  */
4234 static void
4235 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
4236 {
4237         int i = 0;
4238         int j = 0;
4239         struct chain_tracker *ct;
4240         struct reply_post_struct *rps;
4241
4242         dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4243             __func__));
4244
4245         if (ioc->request) {
4246                 pci_free_consistent(ioc->pdev, ioc->request_dma_sz,
4247                     ioc->request,  ioc->request_dma);
4248                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
4249                         "request_pool(0x%p): free\n",
4250                         ioc->name, ioc->request));
4251                 ioc->request = NULL;
4252         }
4253
4254         if (ioc->sense) {
4255                 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
4256                 dma_pool_destroy(ioc->sense_dma_pool);
4257                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
4258                         "sense_pool(0x%p): free\n",
4259                         ioc->name, ioc->sense));
4260                 ioc->sense = NULL;
4261         }
4262
4263         if (ioc->reply) {
4264                 dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
4265                 dma_pool_destroy(ioc->reply_dma_pool);
4266                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
4267                         "reply_pool(0x%p): free\n",
4268                         ioc->name, ioc->reply));
4269                 ioc->reply = NULL;
4270         }
4271
4272         if (ioc->reply_free) {
4273                 dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
4274                     ioc->reply_free_dma);
4275                 dma_pool_destroy(ioc->reply_free_dma_pool);
4276                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
4277                         "reply_free_pool(0x%p): free\n",
4278                         ioc->name, ioc->reply_free));
4279                 ioc->reply_free = NULL;
4280         }
4281
4282         if (ioc->reply_post) {
4283                 do {
4284                         rps = &ioc->reply_post[i];
4285                         if (rps->reply_post_free) {
4286                                 dma_pool_free(
4287                                     ioc->reply_post_free_dma_pool,
4288                                     rps->reply_post_free,
4289                                     rps->reply_post_free_dma);
4290                                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
4291                                     "reply_post_free_pool(0x%p): free\n",
4292                                     ioc->name, rps->reply_post_free));
4293                                 rps->reply_post_free = NULL;
4294                         }
4295                 } while (ioc->rdpq_array_enable &&
4296                            (++i < ioc->reply_queue_count));
4297                 if (ioc->reply_post_free_array &&
4298                         ioc->rdpq_array_enable) {
4299                         dma_pool_free(ioc->reply_post_free_array_dma_pool,
4300                                 ioc->reply_post_free_array,
4301                                 ioc->reply_post_free_array_dma);
4302                         ioc->reply_post_free_array = NULL;
4303                 }
4304                 dma_pool_destroy(ioc->reply_post_free_array_dma_pool);
4305                 dma_pool_destroy(ioc->reply_post_free_dma_pool);
4306                 kfree(ioc->reply_post);
4307         }
4308
4309         if (ioc->pcie_sgl_dma_pool) {
4310                 for (i = 0; i < ioc->scsiio_depth; i++) {
4311                         dma_pool_free(ioc->pcie_sgl_dma_pool,
4312                                         ioc->pcie_sg_lookup[i].pcie_sgl,
4313                                         ioc->pcie_sg_lookup[i].pcie_sgl_dma);
4314                 }
4315                 if (ioc->pcie_sgl_dma_pool)
4316                         dma_pool_destroy(ioc->pcie_sgl_dma_pool);
4317         }
4318
4319         if (ioc->config_page) {
4320                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
4321                     "config_page(0x%p): free\n", ioc->name,
4322                     ioc->config_page));
4323                 pci_free_consistent(ioc->pdev, ioc->config_page_sz,
4324                     ioc->config_page, ioc->config_page_dma);
4325         }
4326
4327         kfree(ioc->hpr_lookup);
4328         kfree(ioc->internal_lookup);
4329         if (ioc->chain_lookup) {
4330                 for (i = 0; i < ioc->scsiio_depth; i++) {
4331                         for (j = ioc->chains_per_prp_buffer;
4332                             j < ioc->chains_needed_per_io; j++) {
4333                                 ct = &ioc->chain_lookup[i].chains_per_smid[j];
4334                                 if (ct && ct->chain_buffer)
4335                                         dma_pool_free(ioc->chain_dma_pool,
4336                                                 ct->chain_buffer,
4337                                                 ct->chain_buffer_dma);
4338                         }
4339                         kfree(ioc->chain_lookup[i].chains_per_smid);
4340                 }
4341                 dma_pool_destroy(ioc->chain_dma_pool);
4342                 kfree(ioc->chain_lookup);
4343                 ioc->chain_lookup = NULL;
4344         }
4345 }
4346
4347 /**
4348  * is_MSB_are_same - checks whether all reply queues in a set are
4349  *      having same upper 32bits in their base memory address.
4350  * @reply_pool_start_address: Base address of a reply queue set
4351  * @pool_sz: Size of single Reply Descriptor Post Queues pool size
4352  *
4353  * Returns 1 if reply queues in a set have a same upper 32bits
4354  * in their base memory address,
4355  * else 0
4356  */
4357
4358 static int
4359 is_MSB_are_same(long reply_pool_start_address, u32 pool_sz)
4360 {
4361         long reply_pool_end_address;
4362
4363         reply_pool_end_address = reply_pool_start_address + pool_sz;
4364
4365         if (upper_32_bits(reply_pool_start_address) ==
4366                 upper_32_bits(reply_pool_end_address))
4367                 return 1;
4368         else
4369                 return 0;
4370 }
4371
4372 /**
4373  * _base_allocate_memory_pools - allocate start of day memory pools
4374  * @ioc: per adapter object
4375  *
4376  * Returns 0 success, anything else error
4377  */
4378 static int
4379 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc)
4380 {
4381         struct mpt3sas_facts *facts;
4382         u16 max_sge_elements;
4383         u16 chains_needed_per_io;
4384         u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz;
4385         u32 retry_sz;
4386         u16 max_request_credit, nvme_blocks_needed;
4387         unsigned short sg_tablesize;
4388         u16 sge_size;
4389         int i, j;
4390         struct chain_tracker *ct;
4391
4392         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4393             __func__));
4394
4395
4396         retry_sz = 0;
4397         facts = &ioc->facts;
4398
4399         /* command line tunables for max sgl entries */
4400         if (max_sgl_entries != -1)
4401                 sg_tablesize = max_sgl_entries;
4402         else {
4403                 if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
4404                         sg_tablesize = MPT2SAS_SG_DEPTH;
4405                 else
4406                         sg_tablesize = MPT3SAS_SG_DEPTH;
4407         }
4408
4409         /* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */
4410         if (reset_devices)
4411                 sg_tablesize = min_t(unsigned short, sg_tablesize,
4412                    MPT_KDUMP_MIN_PHYS_SEGMENTS);
4413
4414         if (ioc->is_mcpu_endpoint)
4415                 ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
4416         else {
4417                 if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
4418                         sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
4419                 else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
4420                         sg_tablesize = min_t(unsigned short, sg_tablesize,
4421                                         SG_MAX_SEGMENTS);
4422                         pr_warn(MPT3SAS_FMT
4423                                 "sg_tablesize(%u) is bigger than kernel "
4424                                 "defined SG_CHUNK_SIZE(%u)\n", ioc->name,
4425                                 sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
4426                 }
4427                 ioc->shost->sg_tablesize = sg_tablesize;
4428         }
4429
4430         ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
4431                 (facts->RequestCredit / 4));
4432         if (ioc->internal_depth < INTERNAL_CMDS_COUNT) {
4433                 if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT +
4434                                 INTERNAL_SCSIIO_CMDS_COUNT)) {
4435                         pr_err(MPT3SAS_FMT "IOC doesn't have enough Request \
4436                             Credits, it has just %d number of credits\n",
4437                             ioc->name, facts->RequestCredit);
4438                         return -ENOMEM;
4439                 }
4440                 ioc->internal_depth = 10;
4441         }
4442
4443         ioc->hi_priority_depth = ioc->internal_depth - (5);
4444         /* command line tunables  for max controller queue depth */
4445         if (max_queue_depth != -1 && max_queue_depth != 0) {
4446                 max_request_credit = min_t(u16, max_queue_depth +
4447                         ioc->internal_depth, facts->RequestCredit);
4448                 if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
4449                         max_request_credit =  MAX_HBA_QUEUE_DEPTH;
4450         } else if (reset_devices)
4451                 max_request_credit = min_t(u16, facts->RequestCredit,
4452                     (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth));
4453         else
4454                 max_request_credit = min_t(u16, facts->RequestCredit,
4455                     MAX_HBA_QUEUE_DEPTH);
4456
4457         /* Firmware maintains additional facts->HighPriorityCredit number of
4458          * credits for HiPriprity Request messages, so hba queue depth will be
4459          * sum of max_request_credit and high priority queue depth.
4460          */
4461         ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth;
4462
4463         /* request frame size */
4464         ioc->request_sz = facts->IOCRequestFrameSize * 4;
4465
4466         /* reply frame size */
4467         ioc->reply_sz = facts->ReplyFrameSize * 4;
4468
4469         /* chain segment size */
4470         if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
4471                 if (facts->IOCMaxChainSegmentSize)
4472                         ioc->chain_segment_sz =
4473                                         facts->IOCMaxChainSegmentSize *
4474                                         MAX_CHAIN_ELEMT_SZ;
4475                 else
4476                 /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
4477                         ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS *
4478                                                     MAX_CHAIN_ELEMT_SZ;
4479         } else
4480                 ioc->chain_segment_sz = ioc->request_sz;
4481
4482         /* calculate the max scatter element size */
4483         sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
4484
4485  retry_allocation:
4486         total_sz = 0;
4487         /* calculate number of sg elements left over in the 1st frame */
4488         max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
4489             sizeof(Mpi2SGEIOUnion_t)) + sge_size);
4490         ioc->max_sges_in_main_message = max_sge_elements/sge_size;
4491
4492         /* now do the same for a chain buffer */
4493         max_sge_elements = ioc->chain_segment_sz - sge_size;
4494         ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
4495
4496         /*
4497          *  MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
4498          */
4499         chains_needed_per_io = ((ioc->shost->sg_tablesize -
4500            ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
4501             + 1;
4502         if (chains_needed_per_io > facts->MaxChainDepth) {
4503                 chains_needed_per_io = facts->MaxChainDepth;
4504                 ioc->shost->sg_tablesize = min_t(u16,
4505                 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
4506                 * chains_needed_per_io), ioc->shost->sg_tablesize);
4507         }
4508         ioc->chains_needed_per_io = chains_needed_per_io;
4509
4510         /* reply free queue sizing - taking into account for 64 FW events */
4511         ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
4512
4513         /* mCPU manage single counters for simplicity */
4514         if (ioc->is_mcpu_endpoint)
4515                 ioc->reply_post_queue_depth = ioc->reply_free_queue_depth;
4516         else {
4517                 /* calculate reply descriptor post queue depth */
4518                 ioc->reply_post_queue_depth = ioc->hba_queue_depth +
4519                         ioc->reply_free_queue_depth +  1;
4520                 /* align the reply post queue on the next 16 count boundary */
4521                 if (ioc->reply_post_queue_depth % 16)
4522                         ioc->reply_post_queue_depth += 16 -
4523                                 (ioc->reply_post_queue_depth % 16);
4524         }
4525
4526         if (ioc->reply_post_queue_depth >
4527             facts->MaxReplyDescriptorPostQueueDepth) {
4528                 ioc->reply_post_queue_depth =
4529                                 facts->MaxReplyDescriptorPostQueueDepth -
4530                     (facts->MaxReplyDescriptorPostQueueDepth % 16);
4531                 ioc->hba_queue_depth =
4532                                 ((ioc->reply_post_queue_depth - 64) / 2) - 1;
4533                 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
4534         }
4535
4536         dinitprintk(ioc, pr_info(MPT3SAS_FMT "scatter gather: " \
4537             "sge_in_main_msg(%d), sge_per_chain(%d), sge_per_io(%d), "
4538             "chains_per_io(%d)\n", ioc->name, ioc->max_sges_in_main_message,
4539             ioc->max_sges_in_chain_message, ioc->shost->sg_tablesize,
4540             ioc->chains_needed_per_io));
4541
4542         /* reply post queue, 16 byte align */
4543         reply_post_free_sz = ioc->reply_post_queue_depth *
4544             sizeof(Mpi2DefaultReplyDescriptor_t);
4545
4546         sz = reply_post_free_sz;
4547         if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
4548                 sz *= ioc->reply_queue_count;
4549
4550         ioc->reply_post = kcalloc((ioc->rdpq_array_enable) ?
4551             (ioc->reply_queue_count):1,
4552             sizeof(struct reply_post_struct), GFP_KERNEL);
4553
4554         if (!ioc->reply_post) {
4555                 pr_err(MPT3SAS_FMT "reply_post_free pool: kcalloc failed\n",
4556                         ioc->name);
4557                 goto out;
4558         }
4559         ioc->reply_post_free_dma_pool = dma_pool_create("reply_post_free pool",
4560             &ioc->pdev->dev, sz, 16, 0);
4561         if (!ioc->reply_post_free_dma_pool) {
4562                 pr_err(MPT3SAS_FMT
4563                  "reply_post_free pool: dma_pool_create failed\n",
4564                  ioc->name);
4565                 goto out;
4566         }
4567         i = 0;
4568         do {
4569                 ioc->reply_post[i].reply_post_free =
4570                     dma_pool_alloc(ioc->reply_post_free_dma_pool,
4571                     GFP_KERNEL,
4572                     &ioc->reply_post[i].reply_post_free_dma);
4573                 if (!ioc->reply_post[i].reply_post_free) {
4574                         pr_err(MPT3SAS_FMT
4575                         "reply_post_free pool: dma_pool_alloc failed\n",
4576                         ioc->name);
4577                         goto out;
4578                 }
4579                 memset(ioc->reply_post[i].reply_post_free, 0, sz);
4580                 dinitprintk(ioc, pr_info(MPT3SAS_FMT
4581                     "reply post free pool (0x%p): depth(%d),"
4582                     "element_size(%d), pool_size(%d kB)\n", ioc->name,
4583                     ioc->reply_post[i].reply_post_free,
4584                     ioc->reply_post_queue_depth, 8, sz/1024));
4585                 dinitprintk(ioc, pr_info(MPT3SAS_FMT
4586                     "reply_post_free_dma = (0x%llx)\n", ioc->name,
4587                     (unsigned long long)
4588                     ioc->reply_post[i].reply_post_free_dma));
4589                 total_sz += sz;
4590         } while (ioc->rdpq_array_enable && (++i < ioc->reply_queue_count));
4591
4592         if (ioc->dma_mask == 64) {
4593                 if (_base_change_consistent_dma_mask(ioc, ioc->pdev) != 0) {
4594                         pr_warn(MPT3SAS_FMT
4595                             "no suitable consistent DMA mask for %s\n",
4596                             ioc->name, pci_name(ioc->pdev));
4597                         goto out;
4598                 }
4599         }
4600
4601         ioc->scsiio_depth = ioc->hba_queue_depth -
4602             ioc->hi_priority_depth - ioc->internal_depth;
4603
4604         /* set the scsi host can_queue depth
4605          * with some internal commands that could be outstanding
4606          */
4607         ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT;
4608         dinitprintk(ioc, pr_info(MPT3SAS_FMT
4609                 "scsi host: can_queue depth (%d)\n",
4610                 ioc->name, ioc->shost->can_queue));
4611
4612
4613         /* contiguous pool for request and chains, 16 byte align, one extra "
4614          * "frame for smid=0
4615          */
4616         ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
4617         sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
4618
4619         /* hi-priority queue */
4620         sz += (ioc->hi_priority_depth * ioc->request_sz);
4621
4622         /* internal queue */
4623         sz += (ioc->internal_depth * ioc->request_sz);
4624
4625         ioc->request_dma_sz = sz;
4626         ioc->request = pci_alloc_consistent(ioc->pdev, sz, &ioc->request_dma);
4627         if (!ioc->request) {
4628                 pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
4629                     "failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
4630                     "total(%d kB)\n", ioc->name, ioc->hba_queue_depth,
4631                     ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
4632                 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
4633                         goto out;
4634                 retry_sz = 64;
4635                 ioc->hba_queue_depth -= retry_sz;
4636                 _base_release_memory_pools(ioc);
4637                 goto retry_allocation;
4638         }
4639
4640         if (retry_sz)
4641                 pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
4642                     "succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
4643                     "total(%d kb)\n", ioc->name, ioc->hba_queue_depth,
4644                     ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
4645
4646         /* hi-priority queue */
4647         ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
4648             ioc->request_sz);
4649         ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
4650             ioc->request_sz);
4651
4652         /* internal queue */
4653         ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
4654             ioc->request_sz);
4655         ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
4656             ioc->request_sz);
4657
4658         dinitprintk(ioc, pr_info(MPT3SAS_FMT
4659                 "request pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
4660                 ioc->name, ioc->request, ioc->hba_queue_depth, ioc->request_sz,
4661             (ioc->hba_queue_depth * ioc->request_sz)/1024));
4662
4663         dinitprintk(ioc, pr_info(MPT3SAS_FMT "request pool: dma(0x%llx)\n",
4664             ioc->name, (unsigned long long) ioc->request_dma));
4665         total_sz += sz;
4666
4667         dinitprintk(ioc, pr_info(MPT3SAS_FMT "scsiio(0x%p): depth(%d)\n",
4668                 ioc->name, ioc->request, ioc->scsiio_depth));
4669
4670         ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
4671         sz = ioc->scsiio_depth * sizeof(struct chain_lookup);
4672         ioc->chain_lookup = kzalloc(sz, GFP_KERNEL);
4673         if (!ioc->chain_lookup) {
4674                 pr_err(MPT3SAS_FMT "chain_lookup: __get_free_pages "
4675                                 "failed\n", ioc->name);
4676                 goto out;
4677         }
4678
4679         sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker);
4680         for (i = 0; i < ioc->scsiio_depth; i++) {
4681                 ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL);
4682                 if (!ioc->chain_lookup[i].chains_per_smid) {
4683                         pr_err(MPT3SAS_FMT "chain_lookup: "
4684                                         " kzalloc failed\n", ioc->name);
4685                         goto out;
4686                 }
4687         }
4688
4689         /* initialize hi-priority queue smid's */
4690         ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
4691             sizeof(struct request_tracker), GFP_KERNEL);
4692         if (!ioc->hpr_lookup) {
4693                 pr_err(MPT3SAS_FMT "hpr_lookup: kcalloc failed\n",
4694                     ioc->name);
4695                 goto out;
4696         }
4697         ioc->hi_priority_smid = ioc->scsiio_depth + 1;
4698         dinitprintk(ioc, pr_info(MPT3SAS_FMT
4699                 "hi_priority(0x%p): depth(%d), start smid(%d)\n",
4700                 ioc->name, ioc->hi_priority,
4701             ioc->hi_priority_depth, ioc->hi_priority_smid));
4702
4703         /* initialize internal queue smid's */
4704         ioc->internal_lookup = kcalloc(ioc->internal_depth,
4705             sizeof(struct request_tracker), GFP_KERNEL);
4706         if (!ioc->internal_lookup) {
4707                 pr_err(MPT3SAS_FMT "internal_lookup: kcalloc failed\n",
4708                     ioc->name);
4709                 goto out;
4710         }
4711         ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
4712         dinitprintk(ioc, pr_info(MPT3SAS_FMT
4713                 "internal(0x%p): depth(%d), start smid(%d)\n",
4714                 ioc->name, ioc->internal,
4715             ioc->internal_depth, ioc->internal_smid));
4716         /*
4717          * The number of NVMe page sized blocks needed is:
4718          *     (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1
4719          * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry
4720          * that is placed in the main message frame.  8 is the size of each PRP
4721          * entry or PRP list pointer entry.  8 is subtracted from page_size
4722          * because of the PRP list pointer entry at the end of a page, so this
4723          * is not counted as a PRP entry.  The 1 added page is a round up.
4724          *
4725          * To avoid allocation failures due to the amount of memory that could
4726          * be required for NVMe PRP's, only each set of NVMe blocks will be
4727          * contiguous, so a new set is allocated for each possible I/O.
4728          */
4729         ioc->chains_per_prp_buffer = 0;
4730         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
4731                 nvme_blocks_needed =
4732                         (ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1;
4733                 nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE);
4734                 nvme_blocks_needed++;
4735
4736                 sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth;
4737                 ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL);
4738                 if (!ioc->pcie_sg_lookup) {
4739                         pr_info(MPT3SAS_FMT
4740                             "PCIe SGL lookup: kzalloc failed\n", ioc->name);
4741                         goto out;
4742                 }
4743                 sz = nvme_blocks_needed * ioc->page_size;
4744                 ioc->pcie_sgl_dma_pool =
4745                         dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz, 16, 0);
4746                 if (!ioc->pcie_sgl_dma_pool) {
4747                         pr_info(MPT3SAS_FMT
4748                             "PCIe SGL pool: dma_pool_create failed\n",
4749                             ioc->name);
4750                         goto out;
4751                 }
4752
4753                 ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz;
4754                 ioc->chains_per_prp_buffer = min(ioc->chains_per_prp_buffer,
4755                                                 ioc->chains_needed_per_io);
4756
4757                 for (i = 0; i < ioc->scsiio_depth; i++) {
4758                         ioc->pcie_sg_lookup[i].pcie_sgl = dma_pool_alloc(
4759                                 ioc->pcie_sgl_dma_pool, GFP_KERNEL,
4760                                 &ioc->pcie_sg_lookup[i].pcie_sgl_dma);
4761                         if (!ioc->pcie_sg_lookup[i].pcie_sgl) {
4762                                 pr_info(MPT3SAS_FMT
4763                                     "PCIe SGL pool: dma_pool_alloc failed\n",
4764                                     ioc->name);
4765                                 goto out;
4766                         }
4767                         for (j = 0; j < ioc->chains_per_prp_buffer; j++) {
4768                                 ct = &ioc->chain_lookup[i].chains_per_smid[j];
4769                                 ct->chain_buffer =
4770                                     ioc->pcie_sg_lookup[i].pcie_sgl +
4771                                     (j * ioc->chain_segment_sz);
4772                                 ct->chain_buffer_dma =
4773                                     ioc->pcie_sg_lookup[i].pcie_sgl_dma +
4774                                     (j * ioc->chain_segment_sz);
4775                         }
4776                 }
4777
4778                 dinitprintk(ioc, pr_info(MPT3SAS_FMT "PCIe sgl pool depth(%d), "
4779                         "element_size(%d), pool_size(%d kB)\n", ioc->name,
4780                         ioc->scsiio_depth, sz, (sz * ioc->scsiio_depth)/1024));
4781                 dinitprintk(ioc, pr_info(MPT3SAS_FMT "Number of chains can "
4782                     "fit in a PRP page(%d)\n", ioc->name,
4783                     ioc->chains_per_prp_buffer));
4784                 total_sz += sz * ioc->scsiio_depth;
4785         }
4786
4787         ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev,
4788             ioc->chain_segment_sz, 16, 0);
4789         if (!ioc->chain_dma_pool) {
4790                 pr_err(MPT3SAS_FMT "chain_dma_pool: dma_pool_create failed\n",
4791                         ioc->name);
4792                 goto out;
4793         }
4794         for (i = 0; i < ioc->scsiio_depth; i++) {
4795                 for (j = ioc->chains_per_prp_buffer;
4796                                 j < ioc->chains_needed_per_io; j++) {
4797                         ct = &ioc->chain_lookup[i].chains_per_smid[j];
4798                         ct->chain_buffer = dma_pool_alloc(
4799                                         ioc->chain_dma_pool, GFP_KERNEL,
4800                                         &ct->chain_buffer_dma);
4801                         if (!ct->chain_buffer) {
4802                                 pr_err(MPT3SAS_FMT "chain_lookup: "
4803                                 " pci_pool_alloc failed\n", ioc->name);
4804                                 _base_release_memory_pools(ioc);
4805                                 goto out;
4806                         }
4807                 }
4808                 total_sz += ioc->chain_segment_sz;
4809         }
4810
4811         dinitprintk(ioc, pr_info(MPT3SAS_FMT
4812                 "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
4813                 ioc->name, ioc->chain_depth, ioc->chain_segment_sz,
4814                 ((ioc->chain_depth *  ioc->chain_segment_sz))/1024));
4815
4816         /* sense buffers, 4 byte align */
4817         sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
4818         ioc->sense_dma_pool = dma_pool_create("sense pool", &ioc->pdev->dev, sz,
4819                                               4, 0);
4820         if (!ioc->sense_dma_pool) {
4821                 pr_err(MPT3SAS_FMT "sense pool: dma_pool_create failed\n",
4822                     ioc->name);
4823                 goto out;
4824         }
4825         ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL,
4826             &ioc->sense_dma);
4827         if (!ioc->sense) {
4828                 pr_err(MPT3SAS_FMT "sense pool: dma_pool_alloc failed\n",
4829                     ioc->name);
4830                 goto out;
4831         }
4832         /* sense buffer requires to be in same 4 gb region.
4833          * Below function will check the same.
4834          * In case of failure, new pci pool will be created with updated
4835          * alignment. Older allocation and pool will be destroyed.
4836          * Alignment will be used such a way that next allocation if
4837          * success, will always meet same 4gb region requirement.
4838          * Actual requirement is not alignment, but we need start and end of
4839          * DMA address must have same upper 32 bit address.
4840          */
4841         if (!is_MSB_are_same((long)ioc->sense, sz)) {
4842                 //Release Sense pool & Reallocate
4843                 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
4844                 dma_pool_destroy(ioc->sense_dma_pool);
4845                 ioc->sense = NULL;
4846
4847                 ioc->sense_dma_pool =
4848                         dma_pool_create("sense pool", &ioc->pdev->dev, sz,
4849                                                 roundup_pow_of_two(sz), 0);
4850                 if (!ioc->sense_dma_pool) {
4851                         pr_err(MPT3SAS_FMT "sense pool: pci_pool_create failed\n",
4852                                         ioc->name);
4853                         goto out;
4854                 }
4855                 ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL,
4856                                 &ioc->sense_dma);
4857                 if (!ioc->sense) {
4858                         pr_err(MPT3SAS_FMT "sense pool: pci_pool_alloc failed\n",
4859                                         ioc->name);
4860                         goto out;
4861                 }
4862         }
4863         dinitprintk(ioc, pr_info(MPT3SAS_FMT
4864             "sense pool(0x%p): depth(%d), element_size(%d), pool_size"
4865             "(%d kB)\n", ioc->name, ioc->sense, ioc->scsiio_depth,
4866             SCSI_SENSE_BUFFERSIZE, sz/1024));
4867         dinitprintk(ioc, pr_info(MPT3SAS_FMT "sense_dma(0x%llx)\n",
4868             ioc->name, (unsigned long long)ioc->sense_dma));
4869         total_sz += sz;
4870
4871         /* reply pool, 4 byte align */
4872         sz = ioc->reply_free_queue_depth * ioc->reply_sz;
4873         ioc->reply_dma_pool = dma_pool_create("reply pool", &ioc->pdev->dev, sz,
4874                                               4, 0);
4875         if (!ioc->reply_dma_pool) {
4876                 pr_err(MPT3SAS_FMT "reply pool: dma_pool_create failed\n",
4877                     ioc->name);
4878                 goto out;
4879         }
4880         ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL,
4881             &ioc->reply_dma);
4882         if (!ioc->reply) {
4883                 pr_err(MPT3SAS_FMT "reply pool: dma_pool_alloc failed\n",
4884                     ioc->name);
4885                 goto out;
4886         }
4887         ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
4888         ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
4889         dinitprintk(ioc, pr_info(MPT3SAS_FMT
4890                 "reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
4891                 ioc->name, ioc->reply,
4892             ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024));
4893         dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_dma(0x%llx)\n",
4894             ioc->name, (unsigned long long)ioc->reply_dma));
4895         total_sz += sz;
4896
4897         /* reply free queue, 16 byte align */
4898         sz = ioc->reply_free_queue_depth * 4;
4899         ioc->reply_free_dma_pool = dma_pool_create("reply_free pool",
4900             &ioc->pdev->dev, sz, 16, 0);
4901         if (!ioc->reply_free_dma_pool) {
4902                 pr_err(MPT3SAS_FMT "reply_free pool: dma_pool_create failed\n",
4903                         ioc->name);
4904                 goto out;
4905         }
4906         ioc->reply_free = dma_pool_alloc(ioc->reply_free_dma_pool, GFP_KERNEL,
4907             &ioc->reply_free_dma);
4908         if (!ioc->reply_free) {
4909                 pr_err(MPT3SAS_FMT "reply_free pool: dma_pool_alloc failed\n",
4910                         ioc->name);
4911                 goto out;
4912         }
4913         memset(ioc->reply_free, 0, sz);
4914         dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_free pool(0x%p): " \
4915             "depth(%d), element_size(%d), pool_size(%d kB)\n", ioc->name,
4916             ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024));
4917         dinitprintk(ioc, pr_info(MPT3SAS_FMT
4918                 "reply_free_dma (0x%llx)\n",
4919                 ioc->name, (unsigned long long)ioc->reply_free_dma));
4920         total_sz += sz;
4921
4922         if (ioc->rdpq_array_enable) {
4923                 reply_post_free_array_sz = ioc->reply_queue_count *
4924                     sizeof(Mpi2IOCInitRDPQArrayEntry);
4925                 ioc->reply_post_free_array_dma_pool =
4926                     dma_pool_create("reply_post_free_array pool",
4927                     &ioc->pdev->dev, reply_post_free_array_sz, 16, 0);
4928                 if (!ioc->reply_post_free_array_dma_pool) {
4929                         dinitprintk(ioc,
4930                             pr_info(MPT3SAS_FMT "reply_post_free_array pool: "
4931                             "dma_pool_create failed\n", ioc->name));
4932                         goto out;
4933                 }
4934                 ioc->reply_post_free_array =
4935                     dma_pool_alloc(ioc->reply_post_free_array_dma_pool,
4936                     GFP_KERNEL, &ioc->reply_post_free_array_dma);
4937                 if (!ioc->reply_post_free_array) {
4938                         dinitprintk(ioc,
4939                             pr_info(MPT3SAS_FMT "reply_post_free_array pool: "
4940                             "dma_pool_alloc failed\n", ioc->name));
4941                         goto out;
4942                 }
4943         }
4944         ioc->config_page_sz = 512;
4945         ioc->config_page = pci_alloc_consistent(ioc->pdev,
4946             ioc->config_page_sz, &ioc->config_page_dma);
4947         if (!ioc->config_page) {
4948                 pr_err(MPT3SAS_FMT
4949                         "config page: dma_pool_alloc failed\n",
4950                         ioc->name);
4951                 goto out;
4952         }
4953         dinitprintk(ioc, pr_info(MPT3SAS_FMT
4954                 "config page(0x%p): size(%d)\n",
4955                 ioc->name, ioc->config_page, ioc->config_page_sz));
4956         dinitprintk(ioc, pr_info(MPT3SAS_FMT "config_page_dma(0x%llx)\n",
4957                 ioc->name, (unsigned long long)ioc->config_page_dma));
4958         total_sz += ioc->config_page_sz;
4959
4960         pr_info(MPT3SAS_FMT "Allocated physical memory: size(%d kB)\n",
4961             ioc->name, total_sz/1024);
4962         pr_info(MPT3SAS_FMT
4963                 "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
4964             ioc->name, ioc->shost->can_queue, facts->RequestCredit);
4965         pr_info(MPT3SAS_FMT "Scatter Gather Elements per IO(%d)\n",
4966             ioc->name, ioc->shost->sg_tablesize);
4967         return 0;
4968
4969  out:
4970         return -ENOMEM;
4971 }
4972
4973 /**
4974  * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
4975  * @ioc: Pointer to MPT_ADAPTER structure
4976  * @cooked: Request raw or cooked IOC state
4977  *
4978  * Returns all IOC Doorbell register bits if cooked==0, else just the
4979  * Doorbell bits in MPI_IOC_STATE_MASK.
4980  */
4981 u32
4982 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
4983 {
4984         u32 s, sc;
4985
4986         s = readl(&ioc->chip->Doorbell);
4987         sc = s & MPI2_IOC_STATE_MASK;
4988         return cooked ? sc : s;
4989 }
4990
4991 /**
4992  * _base_wait_on_iocstate - waiting on a particular ioc state
4993  * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
4994  * @timeout: timeout in second
4995  *
4996  * Returns 0 for success, non-zero for failure.
4997  */
4998 static int
4999 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout)
5000 {
5001         u32 count, cntdn;
5002         u32 current_state;
5003
5004         count = 0;
5005         cntdn = 1000 * timeout;
5006         do {
5007                 current_state = mpt3sas_base_get_iocstate(ioc, 1);
5008                 if (current_state == ioc_state)
5009                         return 0;
5010                 if (count && current_state == MPI2_IOC_STATE_FAULT)
5011                         break;
5012
5013                 usleep_range(1000, 1500);
5014                 count++;
5015         } while (--cntdn);
5016
5017         return current_state;
5018 }
5019
5020 /**
5021  * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
5022  * a write to the doorbell)
5023  * @ioc: per adapter object
5024  * @timeout: timeout in second
5025  *
5026  * Returns 0 for success, non-zero for failure.
5027  *
5028  * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
5029  */
5030 static int
5031 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc);
5032
5033 static int
5034 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
5035 {
5036         u32 cntdn, count;
5037         u32 int_status;
5038
5039         count = 0;
5040         cntdn = 1000 * timeout;
5041         do {
5042                 int_status = readl(&ioc->chip->HostInterruptStatus);
5043                 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
5044                         dhsprintk(ioc, pr_info(MPT3SAS_FMT
5045                                 "%s: successful count(%d), timeout(%d)\n",
5046                                 ioc->name, __func__, count, timeout));
5047                         return 0;
5048                 }
5049
5050                 usleep_range(1000, 1500);
5051                 count++;
5052         } while (--cntdn);
5053
5054         pr_err(MPT3SAS_FMT
5055                 "%s: failed due to timeout count(%d), int_status(%x)!\n",
5056                 ioc->name, __func__, count, int_status);
5057         return -EFAULT;
5058 }
5059
5060 static int
5061 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
5062 {
5063         u32 cntdn, count;
5064         u32 int_status;
5065
5066         count = 0;
5067         cntdn = 2000 * timeout;
5068         do {
5069                 int_status = readl(&ioc->chip->HostInterruptStatus);
5070                 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
5071                         dhsprintk(ioc, pr_info(MPT3SAS_FMT
5072                                 "%s: successful count(%d), timeout(%d)\n",
5073                                 ioc->name, __func__, count, timeout));
5074                         return 0;
5075                 }
5076
5077                 udelay(500);
5078                 count++;
5079         } while (--cntdn);
5080
5081         pr_err(MPT3SAS_FMT
5082                 "%s: failed due to timeout count(%d), int_status(%x)!\n",
5083                 ioc->name, __func__, count, int_status);
5084         return -EFAULT;
5085
5086 }
5087
5088 /**
5089  * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
5090  * @ioc: per adapter object
5091  * @timeout: timeout in second
5092  *
5093  * Returns 0 for success, non-zero for failure.
5094  *
5095  * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
5096  * doorbell.
5097  */
5098 static int
5099 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout)
5100 {
5101         u32 cntdn, count;
5102         u32 int_status;
5103         u32 doorbell;
5104
5105         count = 0;
5106         cntdn = 1000 * timeout;
5107         do {
5108                 int_status = readl(&ioc->chip->HostInterruptStatus);
5109                 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
5110                         dhsprintk(ioc, pr_info(MPT3SAS_FMT
5111                                 "%s: successful count(%d), timeout(%d)\n",
5112                                 ioc->name, __func__, count, timeout));
5113                         return 0;
5114                 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
5115                         doorbell = readl(&ioc->chip->Doorbell);
5116                         if ((doorbell & MPI2_IOC_STATE_MASK) ==
5117                             MPI2_IOC_STATE_FAULT) {
5118                                 mpt3sas_base_fault_info(ioc , doorbell);
5119                                 return -EFAULT;
5120                         }
5121                 } else if (int_status == 0xFFFFFFFF)
5122                         goto out;
5123
5124                 usleep_range(1000, 1500);
5125                 count++;
5126         } while (--cntdn);
5127
5128  out:
5129         pr_err(MPT3SAS_FMT
5130          "%s: failed due to timeout count(%d), int_status(%x)!\n",
5131          ioc->name, __func__, count, int_status);
5132         return -EFAULT;
5133 }
5134
5135 /**
5136  * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
5137  * @ioc: per adapter object
5138  * @timeout: timeout in second
5139  *
5140  * Returns 0 for success, non-zero for failure.
5141  *
5142  */
5143 static int
5144 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout)
5145 {
5146         u32 cntdn, count;
5147         u32 doorbell_reg;
5148
5149         count = 0;
5150         cntdn = 1000 * timeout;
5151         do {
5152                 doorbell_reg = readl(&ioc->chip->Doorbell);
5153                 if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
5154                         dhsprintk(ioc, pr_info(MPT3SAS_FMT
5155                                 "%s: successful count(%d), timeout(%d)\n",
5156                                 ioc->name, __func__, count, timeout));
5157                         return 0;
5158                 }
5159
5160                 usleep_range(1000, 1500);
5161                 count++;
5162         } while (--cntdn);
5163
5164         pr_err(MPT3SAS_FMT
5165                 "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
5166                 ioc->name, __func__, count, doorbell_reg);
5167         return -EFAULT;
5168 }
5169
5170 /**
5171  * _base_send_ioc_reset - send doorbell reset
5172  * @ioc: per adapter object
5173  * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
5174  * @timeout: timeout in second
5175  *
5176  * Returns 0 for success, non-zero for failure.
5177  */
5178 static int
5179 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout)
5180 {
5181         u32 ioc_state;
5182         int r = 0;
5183
5184         if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
5185                 pr_err(MPT3SAS_FMT "%s: unknown reset_type\n",
5186                     ioc->name, __func__);
5187                 return -EFAULT;
5188         }
5189
5190         if (!(ioc->facts.IOCCapabilities &
5191            MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
5192                 return -EFAULT;
5193
5194         pr_info(MPT3SAS_FMT "sending message unit reset !!\n", ioc->name);
5195
5196         writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
5197             &ioc->chip->Doorbell);
5198         if ((_base_wait_for_doorbell_ack(ioc, 15))) {
5199                 r = -EFAULT;
5200                 goto out;
5201         }
5202         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
5203         if (ioc_state) {
5204                 pr_err(MPT3SAS_FMT
5205                         "%s: failed going to ready state (ioc_state=0x%x)\n",
5206                         ioc->name, __func__, ioc_state);
5207                 r = -EFAULT;
5208                 goto out;
5209         }
5210  out:
5211         pr_info(MPT3SAS_FMT "message unit reset: %s\n",
5212             ioc->name, ((r == 0) ? "SUCCESS" : "FAILED"));
5213         return r;
5214 }
5215
5216 /**
5217  * _base_handshake_req_reply_wait - send request thru doorbell interface
5218  * @ioc: per adapter object
5219  * @request_bytes: request length
5220  * @request: pointer having request payload
5221  * @reply_bytes: reply length
5222  * @reply: pointer to reply payload
5223  * @timeout: timeout in second
5224  *
5225  * Returns 0 for success, non-zero for failure.
5226  */
5227 static int
5228 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
5229         u32 *request, int reply_bytes, u16 *reply, int timeout)
5230 {
5231         MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
5232         int i;
5233         u8 failed;
5234         __le32 *mfp;
5235
5236         /* make sure doorbell is not in use */
5237         if ((readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
5238                 pr_err(MPT3SAS_FMT
5239                         "doorbell is in use (line=%d)\n",
5240                         ioc->name, __LINE__);
5241                 return -EFAULT;
5242         }
5243
5244         /* clear pending doorbell interrupts from previous state changes */
5245         if (readl(&ioc->chip->HostInterruptStatus) &
5246             MPI2_HIS_IOC2SYS_DB_STATUS)
5247                 writel(0, &ioc->chip->HostInterruptStatus);
5248
5249         /* send message to ioc */
5250         writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
5251             ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
5252             &ioc->chip->Doorbell);
5253
5254         if ((_base_spin_on_doorbell_int(ioc, 5))) {
5255                 pr_err(MPT3SAS_FMT
5256                         "doorbell handshake int failed (line=%d)\n",
5257                         ioc->name, __LINE__);
5258                 return -EFAULT;
5259         }
5260         writel(0, &ioc->chip->HostInterruptStatus);
5261
5262         if ((_base_wait_for_doorbell_ack(ioc, 5))) {
5263                 pr_err(MPT3SAS_FMT
5264                         "doorbell handshake ack failed (line=%d)\n",
5265                         ioc->name, __LINE__);
5266                 return -EFAULT;
5267         }
5268
5269         /* send message 32-bits at a time */
5270         for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
5271                 writel((u32)(request[i]), &ioc->chip->Doorbell);
5272                 if ((_base_wait_for_doorbell_ack(ioc, 5)))
5273                         failed = 1;
5274         }
5275
5276         if (failed) {
5277                 pr_err(MPT3SAS_FMT
5278                         "doorbell handshake sending request failed (line=%d)\n",
5279                         ioc->name, __LINE__);
5280                 return -EFAULT;
5281         }
5282
5283         /* now wait for the reply */
5284         if ((_base_wait_for_doorbell_int(ioc, timeout))) {
5285                 pr_err(MPT3SAS_FMT
5286                         "doorbell handshake int failed (line=%d)\n",
5287                         ioc->name, __LINE__);
5288                 return -EFAULT;
5289         }
5290
5291         /* read the first two 16-bits, it gives the total length of the reply */
5292         reply[0] = (u16)(readl(&ioc->chip->Doorbell)
5293             & MPI2_DOORBELL_DATA_MASK);
5294         writel(0, &ioc->chip->HostInterruptStatus);
5295         if ((_base_wait_for_doorbell_int(ioc, 5))) {
5296                 pr_err(MPT3SAS_FMT
5297                         "doorbell handshake int failed (line=%d)\n",
5298                         ioc->name, __LINE__);
5299                 return -EFAULT;
5300         }
5301         reply[1] = (u16)(readl(&ioc->chip->Doorbell)
5302             & MPI2_DOORBELL_DATA_MASK);
5303         writel(0, &ioc->chip->HostInterruptStatus);
5304
5305         for (i = 2; i < default_reply->MsgLength * 2; i++)  {
5306                 if ((_base_wait_for_doorbell_int(ioc, 5))) {
5307                         pr_err(MPT3SAS_FMT
5308                                 "doorbell handshake int failed (line=%d)\n",
5309                                 ioc->name, __LINE__);
5310                         return -EFAULT;
5311                 }
5312                 if (i >=  reply_bytes/2) /* overflow case */
5313                         readl(&ioc->chip->Doorbell);
5314                 else
5315                         reply[i] = (u16)(readl(&ioc->chip->Doorbell)
5316                             & MPI2_DOORBELL_DATA_MASK);
5317                 writel(0, &ioc->chip->HostInterruptStatus);
5318         }
5319
5320         _base_wait_for_doorbell_int(ioc, 5);
5321         if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) {
5322                 dhsprintk(ioc, pr_info(MPT3SAS_FMT
5323                         "doorbell is in use (line=%d)\n", ioc->name, __LINE__));
5324         }
5325         writel(0, &ioc->chip->HostInterruptStatus);
5326
5327         if (ioc->logging_level & MPT_DEBUG_INIT) {
5328                 mfp = (__le32 *)reply;
5329                 pr_info("\toffset:data\n");
5330                 for (i = 0; i < reply_bytes/4; i++)
5331                         pr_info("\t[0x%02x]:%08x\n", i*4,
5332                             le32_to_cpu(mfp[i]));
5333         }
5334         return 0;
5335 }
5336
5337 /**
5338  * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
5339  * @ioc: per adapter object
5340  * @mpi_reply: the reply payload from FW
5341  * @mpi_request: the request payload sent to FW
5342  *
5343  * The SAS IO Unit Control Request message allows the host to perform low-level
5344  * operations, such as resets on the PHYs of the IO Unit, also allows the host
5345  * to obtain the IOC assigned device handles for a device if it has other
5346  * identifying information about the device, in addition allows the host to
5347  * remove IOC resources associated with the device.
5348  *
5349  * Returns 0 for success, non-zero for failure.
5350  */
5351 int
5352 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
5353         Mpi2SasIoUnitControlReply_t *mpi_reply,
5354         Mpi2SasIoUnitControlRequest_t *mpi_request)
5355 {
5356         u16 smid;
5357         u32 ioc_state;
5358         bool issue_reset = false;
5359         int rc;
5360         void *request;
5361         u16 wait_state_count;
5362
5363         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5364             __func__));
5365
5366         mutex_lock(&ioc->base_cmds.mutex);
5367
5368         if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
5369                 pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
5370                     ioc->name, __func__);
5371                 rc = -EAGAIN;
5372                 goto out;
5373         }
5374
5375         wait_state_count = 0;
5376         ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
5377         while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
5378                 if (wait_state_count++ == 10) {
5379                         pr_err(MPT3SAS_FMT
5380                             "%s: failed due to ioc not operational\n",
5381                             ioc->name, __func__);
5382                         rc = -EFAULT;
5383                         goto out;
5384                 }
5385                 ssleep(1);
5386                 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
5387                 pr_info(MPT3SAS_FMT
5388                         "%s: waiting for operational state(count=%d)\n",
5389                         ioc->name, __func__, wait_state_count);
5390         }
5391
5392         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
5393         if (!smid) {
5394                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
5395                     ioc->name, __func__);
5396                 rc = -EAGAIN;
5397                 goto out;
5398         }
5399
5400         rc = 0;
5401         ioc->base_cmds.status = MPT3_CMD_PENDING;
5402         request = mpt3sas_base_get_msg_frame(ioc, smid);
5403         ioc->base_cmds.smid = smid;
5404         memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
5405         if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
5406             mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
5407                 ioc->ioc_link_reset_in_progress = 1;
5408         init_completion(&ioc->base_cmds.done);
5409         mpt3sas_base_put_smid_default(ioc, smid);
5410         wait_for_completion_timeout(&ioc->base_cmds.done,
5411             msecs_to_jiffies(10000));
5412         if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
5413             mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
5414             ioc->ioc_link_reset_in_progress)
5415                 ioc->ioc_link_reset_in_progress = 0;
5416         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
5417                 pr_err(MPT3SAS_FMT "%s: timeout\n",
5418                     ioc->name, __func__);
5419                 _debug_dump_mf(mpi_request,
5420                     sizeof(Mpi2SasIoUnitControlRequest_t)/4);
5421                 if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
5422                         issue_reset = true;
5423                 goto issue_host_reset;
5424         }
5425         if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
5426                 memcpy(mpi_reply, ioc->base_cmds.reply,
5427                     sizeof(Mpi2SasIoUnitControlReply_t));
5428         else
5429                 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
5430         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5431         goto out;
5432
5433  issue_host_reset:
5434         if (issue_reset)
5435                 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
5436         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5437         rc = -EFAULT;
5438  out:
5439         mutex_unlock(&ioc->base_cmds.mutex);
5440         return rc;
5441 }
5442
5443 /**
5444  * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
5445  * @ioc: per adapter object
5446  * @mpi_reply: the reply payload from FW
5447  * @mpi_request: the request payload sent to FW
5448  *
5449  * The SCSI Enclosure Processor request message causes the IOC to
5450  * communicate with SES devices to control LED status signals.
5451  *
5452  * Returns 0 for success, non-zero for failure.
5453  */
5454 int
5455 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
5456         Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
5457 {
5458         u16 smid;
5459         u32 ioc_state;
5460         bool issue_reset = false;
5461         int rc;
5462         void *request;
5463         u16 wait_state_count;
5464
5465         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5466             __func__));
5467
5468         mutex_lock(&ioc->base_cmds.mutex);
5469
5470         if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
5471                 pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
5472                     ioc->name, __func__);
5473                 rc = -EAGAIN;
5474                 goto out;
5475         }
5476
5477         wait_state_count = 0;
5478         ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
5479         while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
5480                 if (wait_state_count++ == 10) {
5481                         pr_err(MPT3SAS_FMT
5482                             "%s: failed due to ioc not operational\n",
5483                             ioc->name, __func__);
5484                         rc = -EFAULT;
5485                         goto out;
5486                 }
5487                 ssleep(1);
5488                 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
5489                 pr_info(MPT3SAS_FMT
5490                         "%s: waiting for operational state(count=%d)\n",
5491                         ioc->name,
5492                     __func__, wait_state_count);
5493         }
5494
5495         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
5496         if (!smid) {
5497                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
5498                     ioc->name, __func__);
5499                 rc = -EAGAIN;
5500                 goto out;
5501         }
5502
5503         rc = 0;
5504         ioc->base_cmds.status = MPT3_CMD_PENDING;
5505         request = mpt3sas_base_get_msg_frame(ioc, smid);
5506         ioc->base_cmds.smid = smid;
5507         memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
5508         init_completion(&ioc->base_cmds.done);
5509         mpt3sas_base_put_smid_default(ioc, smid);
5510         wait_for_completion_timeout(&ioc->base_cmds.done,
5511             msecs_to_jiffies(10000));
5512         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
5513                 pr_err(MPT3SAS_FMT "%s: timeout\n",
5514                     ioc->name, __func__);
5515                 _debug_dump_mf(mpi_request,
5516                     sizeof(Mpi2SepRequest_t)/4);
5517                 if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
5518                         issue_reset = false;
5519                 goto issue_host_reset;
5520         }
5521         if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
5522                 memcpy(mpi_reply, ioc->base_cmds.reply,
5523                     sizeof(Mpi2SepReply_t));
5524         else
5525                 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
5526         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5527         goto out;
5528
5529  issue_host_reset:
5530         if (issue_reset)
5531                 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
5532         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5533         rc = -EFAULT;
5534  out:
5535         mutex_unlock(&ioc->base_cmds.mutex);
5536         return rc;
5537 }
5538
5539 /**
5540  * _base_get_port_facts - obtain port facts reply and save in ioc
5541  * @ioc: per adapter object
5542  *
5543  * Returns 0 for success, non-zero for failure.
5544  */
5545 static int
5546 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port)
5547 {
5548         Mpi2PortFactsRequest_t mpi_request;
5549         Mpi2PortFactsReply_t mpi_reply;
5550         struct mpt3sas_port_facts *pfacts;
5551         int mpi_reply_sz, mpi_request_sz, r;
5552
5553         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5554             __func__));
5555
5556         mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
5557         mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
5558         memset(&mpi_request, 0, mpi_request_sz);
5559         mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
5560         mpi_request.PortNumber = port;
5561         r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
5562             (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
5563
5564         if (r != 0) {
5565                 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
5566                     ioc->name, __func__, r);
5567                 return r;
5568         }
5569
5570         pfacts = &ioc->pfacts[port];
5571         memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
5572         pfacts->PortNumber = mpi_reply.PortNumber;
5573         pfacts->VP_ID = mpi_reply.VP_ID;
5574         pfacts->VF_ID = mpi_reply.VF_ID;
5575         pfacts->MaxPostedCmdBuffers =
5576             le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
5577
5578         return 0;
5579 }
5580
5581 /**
5582  * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
5583  * @ioc: per adapter object
5584  * @timeout:
5585  *
5586  * Returns 0 for success, non-zero for failure.
5587  */
5588 static int
5589 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout)
5590 {
5591         u32 ioc_state;
5592         int rc;
5593
5594         dinitprintk(ioc, printk(MPT3SAS_FMT "%s\n", ioc->name,
5595             __func__));
5596
5597         if (ioc->pci_error_recovery) {
5598                 dfailprintk(ioc, printk(MPT3SAS_FMT
5599                     "%s: host in pci error recovery\n", ioc->name, __func__));
5600                 return -EFAULT;
5601         }
5602
5603         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5604         dhsprintk(ioc, printk(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
5605             ioc->name, __func__, ioc_state));
5606
5607         if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
5608             (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
5609                 return 0;
5610
5611         if (ioc_state & MPI2_DOORBELL_USED) {
5612                 dhsprintk(ioc, printk(MPT3SAS_FMT
5613                     "unexpected doorbell active!\n", ioc->name));
5614                 goto issue_diag_reset;
5615         }
5616
5617         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
5618                 mpt3sas_base_fault_info(ioc, ioc_state &
5619                     MPI2_DOORBELL_DATA_MASK);
5620                 goto issue_diag_reset;
5621         }
5622
5623         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
5624         if (ioc_state) {
5625                 dfailprintk(ioc, printk(MPT3SAS_FMT
5626                     "%s: failed going to ready state (ioc_state=0x%x)\n",
5627                     ioc->name, __func__, ioc_state));
5628                 return -EFAULT;
5629         }
5630
5631  issue_diag_reset:
5632         rc = _base_diag_reset(ioc);
5633         return rc;
5634 }
5635
5636 /**
5637  * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
5638  * @ioc: per adapter object
5639  *
5640  * Returns 0 for success, non-zero for failure.
5641  */
5642 static int
5643 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc)
5644 {
5645         Mpi2IOCFactsRequest_t mpi_request;
5646         Mpi2IOCFactsReply_t mpi_reply;
5647         struct mpt3sas_facts *facts;
5648         int mpi_reply_sz, mpi_request_sz, r;
5649
5650         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5651             __func__));
5652
5653         r = _base_wait_for_iocstate(ioc, 10);
5654         if (r) {
5655                 dfailprintk(ioc, printk(MPT3SAS_FMT
5656                     "%s: failed getting to correct state\n",
5657                     ioc->name, __func__));
5658                 return r;
5659         }
5660         mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
5661         mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
5662         memset(&mpi_request, 0, mpi_request_sz);
5663         mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
5664         r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
5665             (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
5666
5667         if (r != 0) {
5668                 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
5669                     ioc->name, __func__, r);
5670                 return r;
5671         }
5672
5673         facts = &ioc->facts;
5674         memset(facts, 0, sizeof(struct mpt3sas_facts));
5675         facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
5676         facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
5677         facts->VP_ID = mpi_reply.VP_ID;
5678         facts->VF_ID = mpi_reply.VF_ID;
5679         facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
5680         facts->MaxChainDepth = mpi_reply.MaxChainDepth;
5681         facts->WhoInit = mpi_reply.WhoInit;
5682         facts->NumberOfPorts = mpi_reply.NumberOfPorts;
5683         facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
5684         facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
5685         facts->MaxReplyDescriptorPostQueueDepth =
5686             le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
5687         facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
5688         facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
5689         if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
5690                 ioc->ir_firmware = 1;
5691         if ((facts->IOCCapabilities &
5692               MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices))
5693                 ioc->rdpq_array_capable = 1;
5694         facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
5695         facts->IOCRequestFrameSize =
5696             le16_to_cpu(mpi_reply.IOCRequestFrameSize);
5697         if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
5698                 facts->IOCMaxChainSegmentSize =
5699                         le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize);
5700         }
5701         facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
5702         facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
5703         ioc->shost->max_id = -1;
5704         facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
5705         facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
5706         facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
5707         facts->HighPriorityCredit =
5708             le16_to_cpu(mpi_reply.HighPriorityCredit);
5709         facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
5710         facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
5711         facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize;
5712
5713         /*
5714          * Get the Page Size from IOC Facts. If it's 0, default to 4k.
5715          */
5716         ioc->page_size = 1 << facts->CurrentHostPageSize;
5717         if (ioc->page_size == 1) {
5718                 pr_info(MPT3SAS_FMT "CurrentHostPageSize is 0: Setting "
5719                         "default host page size to 4k\n", ioc->name);
5720                 ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K;
5721         }
5722         dinitprintk(ioc, pr_info(MPT3SAS_FMT "CurrentHostPageSize(%d)\n",
5723                 ioc->name, facts->CurrentHostPageSize));
5724
5725         dinitprintk(ioc, pr_info(MPT3SAS_FMT
5726                 "hba queue depth(%d), max chains per io(%d)\n",
5727                 ioc->name, facts->RequestCredit,
5728             facts->MaxChainDepth));
5729         dinitprintk(ioc, pr_info(MPT3SAS_FMT
5730                 "request frame size(%d), reply frame size(%d)\n", ioc->name,
5731             facts->IOCRequestFrameSize * 4, facts->ReplyFrameSize * 4));
5732         return 0;
5733 }
5734
5735 /**
5736  * _base_send_ioc_init - send ioc_init to firmware
5737  * @ioc: per adapter object
5738  *
5739  * Returns 0 for success, non-zero for failure.
5740  */
5741 static int
5742 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc)
5743 {
5744         Mpi2IOCInitRequest_t mpi_request;
5745         Mpi2IOCInitReply_t mpi_reply;
5746         int i, r = 0;
5747         ktime_t current_time;
5748         u16 ioc_status;
5749         u32 reply_post_free_array_sz = 0;
5750
5751         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5752             __func__));
5753
5754         memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
5755         mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
5756         mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
5757         mpi_request.VF_ID = 0; /* TODO */
5758         mpi_request.VP_ID = 0;
5759         mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
5760         mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
5761         mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K;
5762
5763         if (_base_is_controller_msix_enabled(ioc))
5764                 mpi_request.HostMSIxVectors = ioc->reply_queue_count;
5765         mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
5766         mpi_request.ReplyDescriptorPostQueueDepth =
5767             cpu_to_le16(ioc->reply_post_queue_depth);
5768         mpi_request.ReplyFreeQueueDepth =
5769             cpu_to_le16(ioc->reply_free_queue_depth);
5770
5771         mpi_request.SenseBufferAddressHigh =
5772             cpu_to_le32((u64)ioc->sense_dma >> 32);
5773         mpi_request.SystemReplyAddressHigh =
5774             cpu_to_le32((u64)ioc->reply_dma >> 32);
5775         mpi_request.SystemRequestFrameBaseAddress =
5776             cpu_to_le64((u64)ioc->request_dma);
5777         mpi_request.ReplyFreeQueueAddress =
5778             cpu_to_le64((u64)ioc->reply_free_dma);
5779
5780         if (ioc->rdpq_array_enable) {
5781                 reply_post_free_array_sz = ioc->reply_queue_count *
5782                     sizeof(Mpi2IOCInitRDPQArrayEntry);
5783                 memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz);
5784                 for (i = 0; i < ioc->reply_queue_count; i++)
5785                         ioc->reply_post_free_array[i].RDPQBaseAddress =
5786                             cpu_to_le64(
5787                                 (u64)ioc->reply_post[i].reply_post_free_dma);
5788                 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
5789                 mpi_request.ReplyDescriptorPostQueueAddress =
5790                     cpu_to_le64((u64)ioc->reply_post_free_array_dma);
5791         } else {
5792                 mpi_request.ReplyDescriptorPostQueueAddress =
5793                     cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
5794         }
5795
5796         /* This time stamp specifies number of milliseconds
5797          * since epoch ~ midnight January 1, 1970.
5798          */
5799         current_time = ktime_get_real();
5800         mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time));
5801
5802         if (ioc->logging_level & MPT_DEBUG_INIT) {
5803                 __le32 *mfp;
5804                 int i;
5805
5806                 mfp = (__le32 *)&mpi_request;
5807                 pr_info("\toffset:data\n");
5808                 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
5809                         pr_info("\t[0x%02x]:%08x\n", i*4,
5810                             le32_to_cpu(mfp[i]));
5811         }
5812
5813         r = _base_handshake_req_reply_wait(ioc,
5814             sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
5815             sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10);
5816
5817         if (r != 0) {
5818                 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
5819                     ioc->name, __func__, r);
5820                 return r;
5821         }
5822
5823         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
5824         if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
5825             mpi_reply.IOCLogInfo) {
5826                 pr_err(MPT3SAS_FMT "%s: failed\n", ioc->name, __func__);
5827                 r = -EIO;
5828         }
5829
5830         return r;
5831 }
5832
5833 /**
5834  * mpt3sas_port_enable_done - command completion routine for port enable
5835  * @ioc: per adapter object
5836  * @smid: system request message index
5837  * @msix_index: MSIX table index supplied by the OS
5838  * @reply: reply message frame(lower 32bit addr)
5839  *
5840  * Return 1 meaning mf should be freed from _base_interrupt
5841  *        0 means the mf is freed from this function.
5842  */
5843 u8
5844 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
5845         u32 reply)
5846 {
5847         MPI2DefaultReply_t *mpi_reply;
5848         u16 ioc_status;
5849
5850         if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
5851                 return 1;
5852
5853         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
5854         if (!mpi_reply)
5855                 return 1;
5856
5857         if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
5858                 return 1;
5859
5860         ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
5861         ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
5862         ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
5863         memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
5864         ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
5865         if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
5866                 ioc->port_enable_failed = 1;
5867
5868         if (ioc->is_driver_loading) {
5869                 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
5870                         mpt3sas_port_enable_complete(ioc);
5871                         return 1;
5872                 } else {
5873                         ioc->start_scan_failed = ioc_status;
5874                         ioc->start_scan = 0;
5875                         return 1;
5876                 }
5877         }
5878         complete(&ioc->port_enable_cmds.done);
5879         return 1;
5880 }
5881
5882 /**
5883  * _base_send_port_enable - send port_enable(discovery stuff) to firmware
5884  * @ioc: per adapter object
5885  *
5886  * Returns 0 for success, non-zero for failure.
5887  */
5888 static int
5889 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc)
5890 {
5891         Mpi2PortEnableRequest_t *mpi_request;
5892         Mpi2PortEnableReply_t *mpi_reply;
5893         int r = 0;
5894         u16 smid;
5895         u16 ioc_status;
5896
5897         pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
5898
5899         if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
5900                 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
5901                     ioc->name, __func__);
5902                 return -EAGAIN;
5903         }
5904
5905         smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
5906         if (!smid) {
5907                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
5908                     ioc->name, __func__);
5909                 return -EAGAIN;
5910         }
5911
5912         ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
5913         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
5914         ioc->port_enable_cmds.smid = smid;
5915         memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
5916         mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
5917
5918         init_completion(&ioc->port_enable_cmds.done);
5919         mpt3sas_base_put_smid_default(ioc, smid);
5920         wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ);
5921         if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
5922                 pr_err(MPT3SAS_FMT "%s: timeout\n",
5923                     ioc->name, __func__);
5924                 _debug_dump_mf(mpi_request,
5925                     sizeof(Mpi2PortEnableRequest_t)/4);
5926                 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
5927                         r = -EFAULT;
5928                 else
5929                         r = -ETIME;
5930                 goto out;
5931         }
5932
5933         mpi_reply = ioc->port_enable_cmds.reply;
5934         ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
5935         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5936                 pr_err(MPT3SAS_FMT "%s: failed with (ioc_status=0x%08x)\n",
5937                     ioc->name, __func__, ioc_status);
5938                 r = -EFAULT;
5939                 goto out;
5940         }
5941
5942  out:
5943         ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
5944         pr_info(MPT3SAS_FMT "port enable: %s\n", ioc->name, ((r == 0) ?
5945             "SUCCESS" : "FAILED"));
5946         return r;
5947 }
5948
5949 /**
5950  * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
5951  * @ioc: per adapter object
5952  *
5953  * Returns 0 for success, non-zero for failure.
5954  */
5955 int
5956 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
5957 {
5958         Mpi2PortEnableRequest_t *mpi_request;
5959         u16 smid;
5960
5961         pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
5962
5963         if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
5964                 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
5965                     ioc->name, __func__);
5966                 return -EAGAIN;
5967         }
5968
5969         smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
5970         if (!smid) {
5971                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
5972                     ioc->name, __func__);
5973                 return -EAGAIN;
5974         }
5975
5976         ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
5977         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
5978         ioc->port_enable_cmds.smid = smid;
5979         memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
5980         mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
5981
5982         mpt3sas_base_put_smid_default(ioc, smid);
5983         return 0;
5984 }
5985
5986 /**
5987  * _base_determine_wait_on_discovery - desposition
5988  * @ioc: per adapter object
5989  *
5990  * Decide whether to wait on discovery to complete. Used to either
5991  * locate boot device, or report volumes ahead of physical devices.
5992  *
5993  * Returns 1 for wait, 0 for don't wait
5994  */
5995 static int
5996 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
5997 {
5998         /* We wait for discovery to complete if IR firmware is loaded.
5999          * The sas topology events arrive before PD events, so we need time to
6000          * turn on the bit in ioc->pd_handles to indicate PD
6001          * Also, it maybe required to report Volumes ahead of physical
6002          * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
6003          */
6004         if (ioc->ir_firmware)
6005                 return 1;
6006
6007         /* if no Bios, then we don't need to wait */
6008         if (!ioc->bios_pg3.BiosVersion)
6009                 return 0;
6010
6011         /* Bios is present, then we drop down here.
6012          *
6013          * If there any entries in the Bios Page 2, then we wait
6014          * for discovery to complete.
6015          */
6016
6017         /* Current Boot Device */
6018         if ((ioc->bios_pg2.CurrentBootDeviceForm &
6019             MPI2_BIOSPAGE2_FORM_MASK) ==
6020             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
6021         /* Request Boot Device */
6022            (ioc->bios_pg2.ReqBootDeviceForm &
6023             MPI2_BIOSPAGE2_FORM_MASK) ==
6024             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
6025         /* Alternate Request Boot Device */
6026            (ioc->bios_pg2.ReqAltBootDeviceForm &
6027             MPI2_BIOSPAGE2_FORM_MASK) ==
6028             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
6029                 return 0;
6030
6031         return 1;
6032 }
6033
6034 /**
6035  * _base_unmask_events - turn on notification for this event
6036  * @ioc: per adapter object
6037  * @event: firmware event
6038  *
6039  * The mask is stored in ioc->event_masks.
6040  */
6041 static void
6042 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
6043 {
6044         u32 desired_event;
6045
6046         if (event >= 128)
6047                 return;
6048
6049         desired_event = (1 << (event % 32));
6050
6051         if (event < 32)
6052                 ioc->event_masks[0] &= ~desired_event;
6053         else if (event < 64)
6054                 ioc->event_masks[1] &= ~desired_event;
6055         else if (event < 96)
6056                 ioc->event_masks[2] &= ~desired_event;
6057         else if (event < 128)
6058                 ioc->event_masks[3] &= ~desired_event;
6059 }
6060
6061 /**
6062  * _base_event_notification - send event notification
6063  * @ioc: per adapter object
6064  *
6065  * Returns 0 for success, non-zero for failure.
6066  */
6067 static int
6068 _base_event_notification(struct MPT3SAS_ADAPTER *ioc)
6069 {
6070         Mpi2EventNotificationRequest_t *mpi_request;
6071         u16 smid;
6072         int r = 0;
6073         int i;
6074
6075         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
6076             __func__));
6077
6078         if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
6079                 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
6080                     ioc->name, __func__);
6081                 return -EAGAIN;
6082         }
6083
6084         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
6085         if (!smid) {
6086                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
6087                     ioc->name, __func__);
6088                 return -EAGAIN;
6089         }
6090         ioc->base_cmds.status = MPT3_CMD_PENDING;
6091         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
6092         ioc->base_cmds.smid = smid;
6093         memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
6094         mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
6095         mpi_request->VF_ID = 0; /* TODO */
6096         mpi_request->VP_ID = 0;
6097         for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
6098                 mpi_request->EventMasks[i] =
6099                     cpu_to_le32(ioc->event_masks[i]);
6100         init_completion(&ioc->base_cmds.done);
6101         mpt3sas_base_put_smid_default(ioc, smid);
6102         wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
6103         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
6104                 pr_err(MPT3SAS_FMT "%s: timeout\n",
6105                     ioc->name, __func__);
6106                 _debug_dump_mf(mpi_request,
6107                     sizeof(Mpi2EventNotificationRequest_t)/4);
6108                 if (ioc->base_cmds.status & MPT3_CMD_RESET)
6109                         r = -EFAULT;
6110                 else
6111                         r = -ETIME;
6112         } else
6113                 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s: complete\n",
6114                     ioc->name, __func__));
6115         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6116         return r;
6117 }
6118
6119 /**
6120  * mpt3sas_base_validate_event_type - validating event types
6121  * @ioc: per adapter object
6122  * @event: firmware event
6123  *
6124  * This will turn on firmware event notification when application
6125  * ask for that event. We don't mask events that are already enabled.
6126  */
6127 void
6128 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
6129 {
6130         int i, j;
6131         u32 event_mask, desired_event;
6132         u8 send_update_to_fw;
6133
6134         for (i = 0, send_update_to_fw = 0; i <
6135             MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
6136                 event_mask = ~event_type[i];
6137                 desired_event = 1;
6138                 for (j = 0; j < 32; j++) {
6139                         if (!(event_mask & desired_event) &&
6140                             (ioc->event_masks[i] & desired_event)) {
6141                                 ioc->event_masks[i] &= ~desired_event;
6142                                 send_update_to_fw = 1;
6143                         }
6144                         desired_event = (desired_event << 1);
6145                 }
6146         }
6147
6148         if (!send_update_to_fw)
6149                 return;
6150
6151         mutex_lock(&ioc->base_cmds.mutex);
6152         _base_event_notification(ioc);
6153         mutex_unlock(&ioc->base_cmds.mutex);
6154 }
6155
6156 /**
6157  * _base_diag_reset - the "big hammer" start of day reset
6158  * @ioc: per adapter object
6159  *
6160  * Returns 0 for success, non-zero for failure.
6161  */
6162 static int
6163 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc)
6164 {
6165         u32 host_diagnostic;
6166         u32 ioc_state;
6167         u32 count;
6168         u32 hcb_size;
6169
6170         pr_info(MPT3SAS_FMT "sending diag reset !!\n", ioc->name);
6171
6172         drsprintk(ioc, pr_info(MPT3SAS_FMT "clear interrupts\n",
6173             ioc->name));
6174
6175         count = 0;
6176         do {
6177                 /* Write magic sequence to WriteSequence register
6178                  * Loop until in diagnostic mode
6179                  */
6180                 drsprintk(ioc, pr_info(MPT3SAS_FMT
6181                         "write magic sequence\n", ioc->name));
6182                 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
6183                 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
6184                 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
6185                 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
6186                 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
6187                 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
6188                 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
6189
6190                 /* wait 100 msec */
6191                 msleep(100);
6192
6193                 if (count++ > 20)
6194                         goto out;
6195
6196                 host_diagnostic = readl(&ioc->chip->HostDiagnostic);
6197                 drsprintk(ioc, pr_info(MPT3SAS_FMT
6198                         "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
6199                     ioc->name, count, host_diagnostic));
6200
6201         } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
6202
6203         hcb_size = readl(&ioc->chip->HCBSize);
6204
6205         drsprintk(ioc, pr_info(MPT3SAS_FMT "diag reset: issued\n",
6206             ioc->name));
6207         writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
6208              &ioc->chip->HostDiagnostic);
6209
6210         /*This delay allows the chip PCIe hardware time to finish reset tasks*/
6211         msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
6212
6213         /* Approximately 300 second max wait */
6214         for (count = 0; count < (300000000 /
6215                 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
6216
6217                 host_diagnostic = readl(&ioc->chip->HostDiagnostic);
6218
6219                 if (host_diagnostic == 0xFFFFFFFF)
6220                         goto out;
6221                 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
6222                         break;
6223
6224                 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000);
6225         }
6226
6227         if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
6228
6229                 drsprintk(ioc, pr_info(MPT3SAS_FMT
6230                 "restart the adapter assuming the HCB Address points to good F/W\n",
6231                     ioc->name));
6232                 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
6233                 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
6234                 writel(host_diagnostic, &ioc->chip->HostDiagnostic);
6235
6236                 drsprintk(ioc, pr_info(MPT3SAS_FMT
6237                     "re-enable the HCDW\n", ioc->name));
6238                 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
6239                     &ioc->chip->HCBSize);
6240         }
6241
6242         drsprintk(ioc, pr_info(MPT3SAS_FMT "restart the adapter\n",
6243             ioc->name));
6244         writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
6245             &ioc->chip->HostDiagnostic);
6246
6247         drsprintk(ioc, pr_info(MPT3SAS_FMT
6248                 "disable writes to the diagnostic register\n", ioc->name));
6249         writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
6250
6251         drsprintk(ioc, pr_info(MPT3SAS_FMT
6252                 "Wait for FW to go to the READY state\n", ioc->name));
6253         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20);
6254         if (ioc_state) {
6255                 pr_err(MPT3SAS_FMT
6256                         "%s: failed going to ready state (ioc_state=0x%x)\n",
6257                         ioc->name, __func__, ioc_state);
6258                 goto out;
6259         }
6260
6261         pr_info(MPT3SAS_FMT "diag reset: SUCCESS\n", ioc->name);
6262         return 0;
6263
6264  out:
6265         pr_err(MPT3SAS_FMT "diag reset: FAILED\n", ioc->name);
6266         return -EFAULT;
6267 }
6268
6269 /**
6270  * _base_make_ioc_ready - put controller in READY state
6271  * @ioc: per adapter object
6272  * @type: FORCE_BIG_HAMMER or SOFT_RESET
6273  *
6274  * Returns 0 for success, non-zero for failure.
6275  */
6276 static int
6277 _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type)
6278 {
6279         u32 ioc_state;
6280         int rc;
6281         int count;
6282
6283         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
6284             __func__));
6285
6286         if (ioc->pci_error_recovery)
6287                 return 0;
6288
6289         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6290         dhsprintk(ioc, pr_info(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
6291             ioc->name, __func__, ioc_state));
6292
6293         /* if in RESET state, it should move to READY state shortly */
6294         count = 0;
6295         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
6296                 while ((ioc_state & MPI2_IOC_STATE_MASK) !=
6297                     MPI2_IOC_STATE_READY) {
6298                         if (count++ == 10) {
6299                                 pr_err(MPT3SAS_FMT
6300                                         "%s: failed going to ready state (ioc_state=0x%x)\n",
6301                                     ioc->name, __func__, ioc_state);
6302                                 return -EFAULT;
6303                         }
6304                         ssleep(1);
6305                         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6306                 }
6307         }
6308
6309         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
6310                 return 0;
6311
6312         if (ioc_state & MPI2_DOORBELL_USED) {
6313                 dhsprintk(ioc, pr_info(MPT3SAS_FMT
6314                         "unexpected doorbell active!\n",
6315                         ioc->name));
6316                 goto issue_diag_reset;
6317         }
6318
6319         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
6320                 mpt3sas_base_fault_info(ioc, ioc_state &
6321                     MPI2_DOORBELL_DATA_MASK);
6322                 goto issue_diag_reset;
6323         }
6324
6325         if (type == FORCE_BIG_HAMMER)
6326                 goto issue_diag_reset;
6327
6328         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
6329                 if (!(_base_send_ioc_reset(ioc,
6330                     MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) {
6331                         return 0;
6332         }
6333
6334  issue_diag_reset:
6335         rc = _base_diag_reset(ioc);
6336         return rc;
6337 }
6338
6339 /**
6340  * _base_make_ioc_operational - put controller in OPERATIONAL state
6341  * @ioc: per adapter object
6342  *
6343  * Returns 0 for success, non-zero for failure.
6344  */
6345 static int
6346 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc)
6347 {
6348         int r, i, index;
6349         unsigned long   flags;
6350         u32 reply_address;
6351         u16 smid;
6352         struct _tr_list *delayed_tr, *delayed_tr_next;
6353         struct _sc_list *delayed_sc, *delayed_sc_next;
6354         struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next;
6355         u8 hide_flag;
6356         struct adapter_reply_queue *reply_q;
6357         Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
6358
6359         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
6360             __func__));
6361
6362         /* clean the delayed target reset list */
6363         list_for_each_entry_safe(delayed_tr, delayed_tr_next,
6364             &ioc->delayed_tr_list, list) {
6365                 list_del(&delayed_tr->list);
6366                 kfree(delayed_tr);
6367         }
6368
6369
6370         list_for_each_entry_safe(delayed_tr, delayed_tr_next,
6371             &ioc->delayed_tr_volume_list, list) {
6372                 list_del(&delayed_tr->list);
6373                 kfree(delayed_tr);
6374         }
6375
6376         list_for_each_entry_safe(delayed_sc, delayed_sc_next,
6377             &ioc->delayed_sc_list, list) {
6378                 list_del(&delayed_sc->list);
6379                 kfree(delayed_sc);
6380         }
6381
6382         list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next,
6383             &ioc->delayed_event_ack_list, list) {
6384                 list_del(&delayed_event_ack->list);
6385                 kfree(delayed_event_ack);
6386         }
6387
6388         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
6389
6390         /* hi-priority queue */
6391         INIT_LIST_HEAD(&ioc->hpr_free_list);
6392         smid = ioc->hi_priority_smid;
6393         for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
6394                 ioc->hpr_lookup[i].cb_idx = 0xFF;
6395                 ioc->hpr_lookup[i].smid = smid;
6396                 list_add_tail(&ioc->hpr_lookup[i].tracker_list,
6397                     &ioc->hpr_free_list);
6398         }
6399
6400         /* internal queue */
6401         INIT_LIST_HEAD(&ioc->internal_free_list);
6402         smid = ioc->internal_smid;
6403         for (i = 0; i < ioc->internal_depth; i++, smid++) {
6404                 ioc->internal_lookup[i].cb_idx = 0xFF;
6405                 ioc->internal_lookup[i].smid = smid;
6406                 list_add_tail(&ioc->internal_lookup[i].tracker_list,
6407                     &ioc->internal_free_list);
6408         }
6409
6410         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
6411
6412         /* initialize Reply Free Queue */
6413         for (i = 0, reply_address = (u32)ioc->reply_dma ;
6414             i < ioc->reply_free_queue_depth ; i++, reply_address +=
6415             ioc->reply_sz) {
6416                 ioc->reply_free[i] = cpu_to_le32(reply_address);
6417                 if (ioc->is_mcpu_endpoint)
6418                         _base_clone_reply_to_sys_mem(ioc,
6419                                         reply_address, i);
6420         }
6421
6422         /* initialize reply queues */
6423         if (ioc->is_driver_loading)
6424                 _base_assign_reply_queues(ioc);
6425
6426         /* initialize Reply Post Free Queue */
6427         index = 0;
6428         reply_post_free_contig = ioc->reply_post[0].reply_post_free;
6429         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
6430                 /*
6431                  * If RDPQ is enabled, switch to the next allocation.
6432                  * Otherwise advance within the contiguous region.
6433                  */
6434                 if (ioc->rdpq_array_enable) {
6435                         reply_q->reply_post_free =
6436                                 ioc->reply_post[index++].reply_post_free;
6437                 } else {
6438                         reply_q->reply_post_free = reply_post_free_contig;
6439                         reply_post_free_contig += ioc->reply_post_queue_depth;
6440                 }
6441
6442                 reply_q->reply_post_host_index = 0;
6443                 for (i = 0; i < ioc->reply_post_queue_depth; i++)
6444                         reply_q->reply_post_free[i].Words =
6445                             cpu_to_le64(ULLONG_MAX);
6446                 if (!_base_is_controller_msix_enabled(ioc))
6447                         goto skip_init_reply_post_free_queue;
6448         }
6449  skip_init_reply_post_free_queue:
6450
6451         r = _base_send_ioc_init(ioc);
6452         if (r)
6453                 return r;
6454
6455         /* initialize reply free host index */
6456         ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
6457         writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
6458
6459         /* initialize reply post host index */
6460         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
6461                 if (ioc->combined_reply_queue)
6462                         writel((reply_q->msix_index & 7)<<
6463                            MPI2_RPHI_MSIX_INDEX_SHIFT,
6464                            ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
6465                 else
6466                         writel(reply_q->msix_index <<
6467                                 MPI2_RPHI_MSIX_INDEX_SHIFT,
6468                                 &ioc->chip->ReplyPostHostIndex);
6469
6470                 if (!_base_is_controller_msix_enabled(ioc))
6471                         goto skip_init_reply_post_host_index;
6472         }
6473
6474  skip_init_reply_post_host_index:
6475
6476         _base_unmask_interrupts(ioc);
6477
6478         if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
6479                 r = _base_display_fwpkg_version(ioc);
6480                 if (r)
6481                         return r;
6482         }
6483
6484         _base_static_config_pages(ioc);
6485         r = _base_event_notification(ioc);
6486         if (r)
6487                 return r;
6488
6489         if (ioc->is_driver_loading) {
6490
6491                 if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
6492                     == 0x80) {
6493                         hide_flag = (u8) (
6494                             le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
6495                             MFG_PAGE10_HIDE_SSDS_MASK);
6496                         if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
6497                                 ioc->mfg_pg10_hide_flag = hide_flag;
6498                 }
6499
6500                 ioc->wait_for_discovery_to_complete =
6501                     _base_determine_wait_on_discovery(ioc);
6502
6503                 return r; /* scan_start and scan_finished support */
6504         }
6505
6506         r = _base_send_port_enable(ioc);
6507         if (r)
6508                 return r;
6509
6510         return r;
6511 }
6512
6513 /**
6514  * mpt3sas_base_free_resources - free resources controller resources
6515  * @ioc: per adapter object
6516  *
6517  * Return nothing.
6518  */
6519 void
6520 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
6521 {
6522         dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
6523             __func__));
6524
6525         /* synchronizing freeing resource with pci_access_mutex lock */
6526         mutex_lock(&ioc->pci_access_mutex);
6527         if (ioc->chip_phys && ioc->chip) {
6528                 _base_mask_interrupts(ioc);
6529                 ioc->shost_recovery = 1;
6530                 _base_make_ioc_ready(ioc, SOFT_RESET);
6531                 ioc->shost_recovery = 0;
6532         }
6533
6534         mpt3sas_base_unmap_resources(ioc);
6535         mutex_unlock(&ioc->pci_access_mutex);
6536         return;
6537 }
6538
6539 /**
6540  * mpt3sas_base_attach - attach controller instance
6541  * @ioc: per adapter object
6542  *
6543  * Returns 0 for success, non-zero for failure.
6544  */
6545 int
6546 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
6547 {
6548         int r, i;
6549         int cpu_id, last_cpu_id = 0;
6550
6551         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
6552             __func__));
6553
6554         /* setup cpu_msix_table */
6555         ioc->cpu_count = num_online_cpus();
6556         for_each_online_cpu(cpu_id)
6557                 last_cpu_id = cpu_id;
6558         ioc->cpu_msix_table_sz = last_cpu_id + 1;
6559         ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
6560         ioc->reply_queue_count = 1;
6561         if (!ioc->cpu_msix_table) {
6562                 dfailprintk(ioc, pr_info(MPT3SAS_FMT
6563                         "allocation for cpu_msix_table failed!!!\n",
6564                         ioc->name));
6565                 r = -ENOMEM;
6566                 goto out_free_resources;
6567         }
6568
6569         if (ioc->is_warpdrive) {
6570                 ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
6571                     sizeof(resource_size_t *), GFP_KERNEL);
6572                 if (!ioc->reply_post_host_index) {
6573                         dfailprintk(ioc, pr_info(MPT3SAS_FMT "allocation "
6574                                 "for reply_post_host_index failed!!!\n",
6575                                 ioc->name));
6576                         r = -ENOMEM;
6577                         goto out_free_resources;
6578                 }
6579         }
6580
6581         ioc->rdpq_array_enable_assigned = 0;
6582         ioc->dma_mask = 0;
6583         r = mpt3sas_base_map_resources(ioc);
6584         if (r)
6585                 goto out_free_resources;
6586
6587         pci_set_drvdata(ioc->pdev, ioc->shost);
6588         r = _base_get_ioc_facts(ioc);
6589         if (r)
6590                 goto out_free_resources;
6591
6592         switch (ioc->hba_mpi_version_belonged) {
6593         case MPI2_VERSION:
6594                 ioc->build_sg_scmd = &_base_build_sg_scmd;
6595                 ioc->build_sg = &_base_build_sg;
6596                 ioc->build_zero_len_sge = &_base_build_zero_len_sge;
6597                 break;
6598         case MPI25_VERSION:
6599         case MPI26_VERSION:
6600                 /*
6601                  * In SAS3.0,
6602                  * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
6603                  * Target Status - all require the IEEE formated scatter gather
6604                  * elements.
6605                  */
6606                 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
6607                 ioc->build_sg = &_base_build_sg_ieee;
6608                 ioc->build_nvme_prp = &_base_build_nvme_prp;
6609                 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
6610                 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
6611
6612                 break;
6613         }
6614
6615         if (ioc->is_mcpu_endpoint)
6616                 ioc->put_smid_scsi_io = &_base_put_smid_mpi_ep_scsi_io;
6617         else
6618                 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io;
6619
6620         /*
6621          * These function pointers for other requests that don't
6622          * the require IEEE scatter gather elements.
6623          *
6624          * For example Configuration Pages and SAS IOUNIT Control don't.
6625          */
6626         ioc->build_sg_mpi = &_base_build_sg;
6627         ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
6628
6629         r = _base_make_ioc_ready(ioc, SOFT_RESET);
6630         if (r)
6631                 goto out_free_resources;
6632
6633         ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
6634             sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
6635         if (!ioc->pfacts) {
6636                 r = -ENOMEM;
6637                 goto out_free_resources;
6638         }
6639
6640         for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
6641                 r = _base_get_port_facts(ioc, i);
6642                 if (r)
6643                         goto out_free_resources;
6644         }
6645
6646         r = _base_allocate_memory_pools(ioc);
6647         if (r)
6648                 goto out_free_resources;
6649
6650         init_waitqueue_head(&ioc->reset_wq);
6651
6652         /* allocate memory pd handle bitmask list */
6653         ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
6654         if (ioc->facts.MaxDevHandle % 8)
6655                 ioc->pd_handles_sz++;
6656         ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
6657             GFP_KERNEL);
6658         if (!ioc->pd_handles) {
6659                 r = -ENOMEM;
6660                 goto out_free_resources;
6661         }
6662         ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
6663             GFP_KERNEL);
6664         if (!ioc->blocking_handles) {
6665                 r = -ENOMEM;
6666                 goto out_free_resources;
6667         }
6668
6669         /* allocate memory for pending OS device add list */
6670         ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8);
6671         if (ioc->facts.MaxDevHandle % 8)
6672                 ioc->pend_os_device_add_sz++;
6673         ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz,
6674             GFP_KERNEL);
6675         if (!ioc->pend_os_device_add)
6676                 goto out_free_resources;
6677
6678         ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz;
6679         ioc->device_remove_in_progress =
6680                 kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL);
6681         if (!ioc->device_remove_in_progress)
6682                 goto out_free_resources;
6683
6684         ioc->fwfault_debug = mpt3sas_fwfault_debug;
6685
6686         /* base internal command bits */
6687         mutex_init(&ioc->base_cmds.mutex);
6688         ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6689         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6690
6691         /* port_enable command bits */
6692         ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6693         ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
6694
6695         /* transport internal command bits */
6696         ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6697         ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
6698         mutex_init(&ioc->transport_cmds.mutex);
6699
6700         /* scsih internal command bits */
6701         ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6702         ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
6703         mutex_init(&ioc->scsih_cmds.mutex);
6704
6705         /* task management internal command bits */
6706         ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6707         ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
6708         mutex_init(&ioc->tm_cmds.mutex);
6709
6710         /* config page internal command bits */
6711         ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6712         ioc->config_cmds.status = MPT3_CMD_NOT_USED;
6713         mutex_init(&ioc->config_cmds.mutex);
6714
6715         /* ctl module internal command bits */
6716         ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6717         ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
6718         ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
6719         mutex_init(&ioc->ctl_cmds.mutex);
6720
6721         if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply ||
6722             !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply ||
6723             !ioc->tm_cmds.reply || !ioc->config_cmds.reply ||
6724             !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) {
6725                 r = -ENOMEM;
6726                 goto out_free_resources;
6727         }
6728
6729         for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
6730                 ioc->event_masks[i] = -1;
6731
6732         /* here we enable the events we care about */
6733         _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
6734         _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
6735         _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
6736         _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
6737         _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
6738         _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
6739         _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
6740         _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
6741         _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
6742         _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
6743         _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
6744         _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
6745         _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR);
6746         if (ioc->hba_mpi_version_belonged == MPI26_VERSION) {
6747                 if (ioc->is_gen35_ioc) {
6748                         _base_unmask_events(ioc,
6749                                 MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE);
6750                         _base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION);
6751                         _base_unmask_events(ioc,
6752                                 MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST);
6753                 }
6754         }
6755         r = _base_make_ioc_operational(ioc);
6756         if (r)
6757                 goto out_free_resources;
6758
6759         ioc->non_operational_loop = 0;
6760         ioc->got_task_abort_from_ioctl = 0;
6761         return 0;
6762
6763  out_free_resources:
6764
6765         ioc->remove_host = 1;
6766
6767         mpt3sas_base_free_resources(ioc);
6768         _base_release_memory_pools(ioc);
6769         pci_set_drvdata(ioc->pdev, NULL);
6770         kfree(ioc->cpu_msix_table);
6771         if (ioc->is_warpdrive)
6772                 kfree(ioc->reply_post_host_index);
6773         kfree(ioc->pd_handles);
6774         kfree(ioc->blocking_handles);
6775         kfree(ioc->device_remove_in_progress);
6776         kfree(ioc->pend_os_device_add);
6777         kfree(ioc->tm_cmds.reply);
6778         kfree(ioc->transport_cmds.reply);
6779         kfree(ioc->scsih_cmds.reply);
6780         kfree(ioc->config_cmds.reply);
6781         kfree(ioc->base_cmds.reply);
6782         kfree(ioc->port_enable_cmds.reply);
6783         kfree(ioc->ctl_cmds.reply);
6784         kfree(ioc->ctl_cmds.sense);
6785         kfree(ioc->pfacts);
6786         ioc->ctl_cmds.reply = NULL;
6787         ioc->base_cmds.reply = NULL;
6788         ioc->tm_cmds.reply = NULL;
6789         ioc->scsih_cmds.reply = NULL;
6790         ioc->transport_cmds.reply = NULL;
6791         ioc->config_cmds.reply = NULL;
6792         ioc->pfacts = NULL;
6793         return r;
6794 }
6795
6796
6797 /**
6798  * mpt3sas_base_detach - remove controller instance
6799  * @ioc: per adapter object
6800  *
6801  * Return nothing.
6802  */
6803 void
6804 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
6805 {
6806         dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
6807             __func__));
6808
6809         mpt3sas_base_stop_watchdog(ioc);
6810         mpt3sas_base_free_resources(ioc);
6811         _base_release_memory_pools(ioc);
6812         mpt3sas_free_enclosure_list(ioc);
6813         pci_set_drvdata(ioc->pdev, NULL);
6814         kfree(ioc->cpu_msix_table);
6815         if (ioc->is_warpdrive)
6816                 kfree(ioc->reply_post_host_index);
6817         kfree(ioc->pd_handles);
6818         kfree(ioc->blocking_handles);
6819         kfree(ioc->device_remove_in_progress);
6820         kfree(ioc->pend_os_device_add);
6821         kfree(ioc->pfacts);
6822         kfree(ioc->ctl_cmds.reply);
6823         kfree(ioc->ctl_cmds.sense);
6824         kfree(ioc->base_cmds.reply);
6825         kfree(ioc->port_enable_cmds.reply);
6826         kfree(ioc->tm_cmds.reply);
6827         kfree(ioc->transport_cmds.reply);
6828         kfree(ioc->scsih_cmds.reply);
6829         kfree(ioc->config_cmds.reply);
6830 }
6831
6832 /**
6833  * _base_reset_handler - reset callback handler (for base)
6834  * @ioc: per adapter object
6835  * @reset_phase: phase
6836  *
6837  * The handler for doing any required cleanup or initialization.
6838  *
6839  * The reset phase can be MPT3_IOC_PRE_RESET, MPT3_IOC_AFTER_RESET,
6840  * MPT3_IOC_DONE_RESET
6841  *
6842  * Return nothing.
6843  */
6844 static void
6845 _base_reset_handler(struct MPT3SAS_ADAPTER *ioc, int reset_phase)
6846 {
6847         mpt3sas_scsih_reset_handler(ioc, reset_phase);
6848         mpt3sas_ctl_reset_handler(ioc, reset_phase);
6849         switch (reset_phase) {
6850         case MPT3_IOC_PRE_RESET:
6851                 dtmprintk(ioc, pr_info(MPT3SAS_FMT
6852                 "%s: MPT3_IOC_PRE_RESET\n", ioc->name, __func__));
6853                 break;
6854         case MPT3_IOC_AFTER_RESET:
6855                 dtmprintk(ioc, pr_info(MPT3SAS_FMT
6856                 "%s: MPT3_IOC_AFTER_RESET\n", ioc->name, __func__));
6857                 if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
6858                         ioc->transport_cmds.status |= MPT3_CMD_RESET;
6859                         mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
6860                         complete(&ioc->transport_cmds.done);
6861                 }
6862                 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
6863                         ioc->base_cmds.status |= MPT3_CMD_RESET;
6864                         mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
6865                         complete(&ioc->base_cmds.done);
6866                 }
6867                 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
6868                         ioc->port_enable_failed = 1;
6869                         ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
6870                         mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
6871                         if (ioc->is_driver_loading) {
6872                                 ioc->start_scan_failed =
6873                                     MPI2_IOCSTATUS_INTERNAL_ERROR;
6874                                 ioc->start_scan = 0;
6875                                 ioc->port_enable_cmds.status =
6876                                     MPT3_CMD_NOT_USED;
6877                         } else
6878                                 complete(&ioc->port_enable_cmds.done);
6879                 }
6880                 if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
6881                         ioc->config_cmds.status |= MPT3_CMD_RESET;
6882                         mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
6883                         ioc->config_cmds.smid = USHRT_MAX;
6884                         complete(&ioc->config_cmds.done);
6885                 }
6886                 break;
6887         case MPT3_IOC_DONE_RESET:
6888                 dtmprintk(ioc, pr_info(MPT3SAS_FMT
6889                         "%s: MPT3_IOC_DONE_RESET\n", ioc->name, __func__));
6890                 break;
6891         }
6892 }
6893
6894 /**
6895  * mpt3sas_wait_for_commands_to_complete - reset controller
6896  * @ioc: Pointer to MPT_ADAPTER structure
6897  *
6898  * This function is waiting 10s for all pending commands to complete
6899  * prior to putting controller in reset.
6900  */
6901 void
6902 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc)
6903 {
6904         u32 ioc_state;
6905
6906         ioc->pending_io_count = 0;
6907
6908         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6909         if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
6910                 return;
6911
6912         /* pending command count */
6913         ioc->pending_io_count = atomic_read(&ioc->shost->host_busy);
6914
6915         if (!ioc->pending_io_count)
6916                 return;
6917
6918         /* wait for pending commands to complete */
6919         wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
6920 }
6921
6922 /**
6923  * mpt3sas_base_hard_reset_handler - reset controller
6924  * @ioc: Pointer to MPT_ADAPTER structure
6925  * @type: FORCE_BIG_HAMMER or SOFT_RESET
6926  *
6927  * Returns 0 for success, non-zero for failure.
6928  */
6929 int
6930 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc,
6931         enum reset_type type)
6932 {
6933         int r;
6934         unsigned long flags;
6935         u32 ioc_state;
6936         u8 is_fault = 0, is_trigger = 0;
6937
6938         dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: enter\n", ioc->name,
6939             __func__));
6940
6941         if (ioc->pci_error_recovery) {
6942                 pr_err(MPT3SAS_FMT "%s: pci error recovery reset\n",
6943                     ioc->name, __func__);
6944                 r = 0;
6945                 goto out_unlocked;
6946         }
6947
6948         if (mpt3sas_fwfault_debug)
6949                 mpt3sas_halt_firmware(ioc);
6950
6951         /* wait for an active reset in progress to complete */
6952         if (!mutex_trylock(&ioc->reset_in_progress_mutex)) {
6953                 do {
6954                         ssleep(1);
6955                 } while (ioc->shost_recovery == 1);
6956                 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
6957                     __func__));
6958                 return ioc->ioc_reset_in_progress_status;
6959         }
6960
6961         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
6962         ioc->shost_recovery = 1;
6963         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
6964
6965         if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
6966             MPT3_DIAG_BUFFER_IS_REGISTERED) &&
6967             (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
6968             MPT3_DIAG_BUFFER_IS_RELEASED))) {
6969                 is_trigger = 1;
6970                 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6971                 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
6972                         is_fault = 1;
6973         }
6974         _base_reset_handler(ioc, MPT3_IOC_PRE_RESET);
6975         mpt3sas_wait_for_commands_to_complete(ioc);
6976         _base_mask_interrupts(ioc);
6977         r = _base_make_ioc_ready(ioc, type);
6978         if (r)
6979                 goto out;
6980         _base_reset_handler(ioc, MPT3_IOC_AFTER_RESET);
6981
6982         /* If this hard reset is called while port enable is active, then
6983          * there is no reason to call make_ioc_operational
6984          */
6985         if (ioc->is_driver_loading && ioc->port_enable_failed) {
6986                 ioc->remove_host = 1;
6987                 r = -EFAULT;
6988                 goto out;
6989         }
6990         r = _base_get_ioc_facts(ioc);
6991         if (r)
6992                 goto out;
6993
6994         if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
6995                 panic("%s: Issue occurred with flashing controller firmware."
6996                       "Please reboot the system and ensure that the correct"
6997                       " firmware version is running\n", ioc->name);
6998
6999         r = _base_make_ioc_operational(ioc);
7000         if (!r)
7001                 _base_reset_handler(ioc, MPT3_IOC_DONE_RESET);
7002
7003  out:
7004         dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: %s\n",
7005             ioc->name, __func__, ((r == 0) ? "SUCCESS" : "FAILED")));
7006
7007         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
7008         ioc->ioc_reset_in_progress_status = r;
7009         ioc->shost_recovery = 0;
7010         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
7011         ioc->ioc_reset_count++;
7012         mutex_unlock(&ioc->reset_in_progress_mutex);
7013
7014  out_unlocked:
7015         if ((r == 0) && is_trigger) {
7016                 if (is_fault)
7017                         mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
7018                 else
7019                         mpt3sas_trigger_master(ioc,
7020                             MASTER_TRIGGER_ADAPTER_RESET);
7021         }
7022         dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
7023             __func__));
7024         return r;
7025 }