Merge tag 'rpmsg-v4.15' of git://github.com/andersson/remoteproc
[sfrench/cifs-2.6.git] / drivers / scsi / libsas / sas_expander.c
1 /*
2  * Serial Attached SCSI (SAS) Expander discovery and configuration
3  *
4  * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
5  * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6  *
7  * This file is licensed under GPLv2.
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License as
11  * published by the Free Software Foundation; either version 2 of the
12  * License, or (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
22  *
23  */
24
25 #include <linux/scatterlist.h>
26 #include <linux/blkdev.h>
27 #include <linux/slab.h>
28
29 #include "sas_internal.h"
30
31 #include <scsi/sas_ata.h>
32 #include <scsi/scsi_transport.h>
33 #include <scsi/scsi_transport_sas.h>
34 #include "../scsi_sas_internal.h"
35
36 static int sas_discover_expander(struct domain_device *dev);
37 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
38 static int sas_configure_phy(struct domain_device *dev, int phy_id,
39                              u8 *sas_addr, int include);
40 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
41
42 /* ---------- SMP task management ---------- */
43
44 static void smp_task_timedout(struct timer_list *t)
45 {
46         struct sas_task_slow *slow = from_timer(slow, t, timer);
47         struct sas_task *task = slow->task;
48         unsigned long flags;
49
50         spin_lock_irqsave(&task->task_state_lock, flags);
51         if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
52                 task->task_state_flags |= SAS_TASK_STATE_ABORTED;
53         spin_unlock_irqrestore(&task->task_state_lock, flags);
54
55         complete(&task->slow_task->completion);
56 }
57
58 static void smp_task_done(struct sas_task *task)
59 {
60         if (!del_timer(&task->slow_task->timer))
61                 return;
62         complete(&task->slow_task->completion);
63 }
64
65 /* Give it some long enough timeout. In seconds. */
66 #define SMP_TIMEOUT 10
67
68 static int smp_execute_task_sg(struct domain_device *dev,
69                 struct scatterlist *req, struct scatterlist *resp)
70 {
71         int res, retry;
72         struct sas_task *task = NULL;
73         struct sas_internal *i =
74                 to_sas_internal(dev->port->ha->core.shost->transportt);
75
76         mutex_lock(&dev->ex_dev.cmd_mutex);
77         for (retry = 0; retry < 3; retry++) {
78                 if (test_bit(SAS_DEV_GONE, &dev->state)) {
79                         res = -ECOMM;
80                         break;
81                 }
82
83                 task = sas_alloc_slow_task(GFP_KERNEL);
84                 if (!task) {
85                         res = -ENOMEM;
86                         break;
87                 }
88                 task->dev = dev;
89                 task->task_proto = dev->tproto;
90                 task->smp_task.smp_req = *req;
91                 task->smp_task.smp_resp = *resp;
92
93                 task->task_done = smp_task_done;
94
95                 task->slow_task->timer.function = (TIMER_FUNC_TYPE)smp_task_timedout;
96                 task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
97                 add_timer(&task->slow_task->timer);
98
99                 res = i->dft->lldd_execute_task(task, GFP_KERNEL);
100
101                 if (res) {
102                         del_timer(&task->slow_task->timer);
103                         SAS_DPRINTK("executing SMP task failed:%d\n", res);
104                         break;
105                 }
106
107                 wait_for_completion(&task->slow_task->completion);
108                 res = -ECOMM;
109                 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
110                         SAS_DPRINTK("smp task timed out or aborted\n");
111                         i->dft->lldd_abort_task(task);
112                         if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
113                                 SAS_DPRINTK("SMP task aborted and not done\n");
114                                 break;
115                         }
116                 }
117                 if (task->task_status.resp == SAS_TASK_COMPLETE &&
118                     task->task_status.stat == SAM_STAT_GOOD) {
119                         res = 0;
120                         break;
121                 }
122                 if (task->task_status.resp == SAS_TASK_COMPLETE &&
123                     task->task_status.stat == SAS_DATA_UNDERRUN) {
124                         /* no error, but return the number of bytes of
125                          * underrun */
126                         res = task->task_status.residual;
127                         break;
128                 }
129                 if (task->task_status.resp == SAS_TASK_COMPLETE &&
130                     task->task_status.stat == SAS_DATA_OVERRUN) {
131                         res = -EMSGSIZE;
132                         break;
133                 }
134                 if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
135                     task->task_status.stat == SAS_DEVICE_UNKNOWN)
136                         break;
137                 else {
138                         SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
139                                     "status 0x%x\n", __func__,
140                                     SAS_ADDR(dev->sas_addr),
141                                     task->task_status.resp,
142                                     task->task_status.stat);
143                         sas_free_task(task);
144                         task = NULL;
145                 }
146         }
147         mutex_unlock(&dev->ex_dev.cmd_mutex);
148
149         BUG_ON(retry == 3 && task != NULL);
150         sas_free_task(task);
151         return res;
152 }
153
154 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
155                             void *resp, int resp_size)
156 {
157         struct scatterlist req_sg;
158         struct scatterlist resp_sg;
159
160         sg_init_one(&req_sg, req, req_size);
161         sg_init_one(&resp_sg, resp, resp_size);
162         return smp_execute_task_sg(dev, &req_sg, &resp_sg);
163 }
164
165 /* ---------- Allocations ---------- */
166
167 static inline void *alloc_smp_req(int size)
168 {
169         u8 *p = kzalloc(size, GFP_KERNEL);
170         if (p)
171                 p[0] = SMP_REQUEST;
172         return p;
173 }
174
175 static inline void *alloc_smp_resp(int size)
176 {
177         return kzalloc(size, GFP_KERNEL);
178 }
179
180 static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
181 {
182         switch (phy->routing_attr) {
183         case TABLE_ROUTING:
184                 if (dev->ex_dev.t2t_supp)
185                         return 'U';
186                 else
187                         return 'T';
188         case DIRECT_ROUTING:
189                 return 'D';
190         case SUBTRACTIVE_ROUTING:
191                 return 'S';
192         default:
193                 return '?';
194         }
195 }
196
197 static enum sas_device_type to_dev_type(struct discover_resp *dr)
198 {
199         /* This is detecting a failure to transmit initial dev to host
200          * FIS as described in section J.5 of sas-2 r16
201          */
202         if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
203             dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
204                 return SAS_SATA_PENDING;
205         else
206                 return dr->attached_dev_type;
207 }
208
209 static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp)
210 {
211         enum sas_device_type dev_type;
212         enum sas_linkrate linkrate;
213         u8 sas_addr[SAS_ADDR_SIZE];
214         struct smp_resp *resp = rsp;
215         struct discover_resp *dr = &resp->disc;
216         struct sas_ha_struct *ha = dev->port->ha;
217         struct expander_device *ex = &dev->ex_dev;
218         struct ex_phy *phy = &ex->ex_phy[phy_id];
219         struct sas_rphy *rphy = dev->rphy;
220         bool new_phy = !phy->phy;
221         char *type;
222
223         if (new_phy) {
224                 if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
225                         return;
226                 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
227
228                 /* FIXME: error_handling */
229                 BUG_ON(!phy->phy);
230         }
231
232         switch (resp->result) {
233         case SMP_RESP_PHY_VACANT:
234                 phy->phy_state = PHY_VACANT;
235                 break;
236         default:
237                 phy->phy_state = PHY_NOT_PRESENT;
238                 break;
239         case SMP_RESP_FUNC_ACC:
240                 phy->phy_state = PHY_EMPTY; /* do not know yet */
241                 break;
242         }
243
244         /* check if anything important changed to squelch debug */
245         dev_type = phy->attached_dev_type;
246         linkrate  = phy->linkrate;
247         memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
248
249         /* Handle vacant phy - rest of dr data is not valid so skip it */
250         if (phy->phy_state == PHY_VACANT) {
251                 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
252                 phy->attached_dev_type = SAS_PHY_UNUSED;
253                 if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
254                         phy->phy_id = phy_id;
255                         goto skip;
256                 } else
257                         goto out;
258         }
259
260         phy->attached_dev_type = to_dev_type(dr);
261         if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
262                 goto out;
263         phy->phy_id = phy_id;
264         phy->linkrate = dr->linkrate;
265         phy->attached_sata_host = dr->attached_sata_host;
266         phy->attached_sata_dev  = dr->attached_sata_dev;
267         phy->attached_sata_ps   = dr->attached_sata_ps;
268         phy->attached_iproto = dr->iproto << 1;
269         phy->attached_tproto = dr->tproto << 1;
270         /* help some expanders that fail to zero sas_address in the 'no
271          * device' case
272          */
273         if (phy->attached_dev_type == SAS_PHY_UNUSED ||
274             phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
275                 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
276         else
277                 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
278         phy->attached_phy_id = dr->attached_phy_id;
279         phy->phy_change_count = dr->change_count;
280         phy->routing_attr = dr->routing_attr;
281         phy->virtual = dr->virtual;
282         phy->last_da_index = -1;
283
284         phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
285         phy->phy->identify.device_type = dr->attached_dev_type;
286         phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
287         phy->phy->identify.target_port_protocols = phy->attached_tproto;
288         if (!phy->attached_tproto && dr->attached_sata_dev)
289                 phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
290         phy->phy->identify.phy_identifier = phy_id;
291         phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
292         phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
293         phy->phy->minimum_linkrate = dr->pmin_linkrate;
294         phy->phy->maximum_linkrate = dr->pmax_linkrate;
295         phy->phy->negotiated_linkrate = phy->linkrate;
296
297  skip:
298         if (new_phy)
299                 if (sas_phy_add(phy->phy)) {
300                         sas_phy_free(phy->phy);
301                         return;
302                 }
303
304  out:
305         switch (phy->attached_dev_type) {
306         case SAS_SATA_PENDING:
307                 type = "stp pending";
308                 break;
309         case SAS_PHY_UNUSED:
310                 type = "no device";
311                 break;
312         case SAS_END_DEVICE:
313                 if (phy->attached_iproto) {
314                         if (phy->attached_tproto)
315                                 type = "host+target";
316                         else
317                                 type = "host";
318                 } else {
319                         if (dr->attached_sata_dev)
320                                 type = "stp";
321                         else
322                                 type = "ssp";
323                 }
324                 break;
325         case SAS_EDGE_EXPANDER_DEVICE:
326         case SAS_FANOUT_EXPANDER_DEVICE:
327                 type = "smp";
328                 break;
329         default:
330                 type = "unknown";
331         }
332
333         /* this routine is polled by libata error recovery so filter
334          * unimportant messages
335          */
336         if (new_phy || phy->attached_dev_type != dev_type ||
337             phy->linkrate != linkrate ||
338             SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
339                 /* pass */;
340         else
341                 return;
342
343         /* if the attached device type changed and ata_eh is active,
344          * make sure we run revalidation when eh completes (see:
345          * sas_enable_revalidation)
346          */
347         if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
348                 set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
349
350         SAS_DPRINTK("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
351                     test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
352                     SAS_ADDR(dev->sas_addr), phy->phy_id,
353                     sas_route_char(dev, phy), phy->linkrate,
354                     SAS_ADDR(phy->attached_sas_addr), type);
355 }
356
357 /* check if we have an existing attached ata device on this expander phy */
358 struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
359 {
360         struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
361         struct domain_device *dev;
362         struct sas_rphy *rphy;
363
364         if (!ex_phy->port)
365                 return NULL;
366
367         rphy = ex_phy->port->rphy;
368         if (!rphy)
369                 return NULL;
370
371         dev = sas_find_dev_by_rphy(rphy);
372
373         if (dev && dev_is_sata(dev))
374                 return dev;
375
376         return NULL;
377 }
378
379 #define DISCOVER_REQ_SIZE  16
380 #define DISCOVER_RESP_SIZE 56
381
382 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
383                                       u8 *disc_resp, int single)
384 {
385         struct discover_resp *dr;
386         int res;
387
388         disc_req[9] = single;
389
390         res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
391                                disc_resp, DISCOVER_RESP_SIZE);
392         if (res)
393                 return res;
394         dr = &((struct smp_resp *)disc_resp)->disc;
395         if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
396                 sas_printk("Found loopback topology, just ignore it!\n");
397                 return 0;
398         }
399         sas_set_ex_phy(dev, single, disc_resp);
400         return 0;
401 }
402
403 int sas_ex_phy_discover(struct domain_device *dev, int single)
404 {
405         struct expander_device *ex = &dev->ex_dev;
406         int  res = 0;
407         u8   *disc_req;
408         u8   *disc_resp;
409
410         disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
411         if (!disc_req)
412                 return -ENOMEM;
413
414         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
415         if (!disc_resp) {
416                 kfree(disc_req);
417                 return -ENOMEM;
418         }
419
420         disc_req[1] = SMP_DISCOVER;
421
422         if (0 <= single && single < ex->num_phys) {
423                 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
424         } else {
425                 int i;
426
427                 for (i = 0; i < ex->num_phys; i++) {
428                         res = sas_ex_phy_discover_helper(dev, disc_req,
429                                                          disc_resp, i);
430                         if (res)
431                                 goto out_err;
432                 }
433         }
434 out_err:
435         kfree(disc_resp);
436         kfree(disc_req);
437         return res;
438 }
439
440 static int sas_expander_discover(struct domain_device *dev)
441 {
442         struct expander_device *ex = &dev->ex_dev;
443         int res = -ENOMEM;
444
445         ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
446         if (!ex->ex_phy)
447                 return -ENOMEM;
448
449         res = sas_ex_phy_discover(dev, -1);
450         if (res)
451                 goto out_err;
452
453         return 0;
454  out_err:
455         kfree(ex->ex_phy);
456         ex->ex_phy = NULL;
457         return res;
458 }
459
460 #define MAX_EXPANDER_PHYS 128
461
462 static void ex_assign_report_general(struct domain_device *dev,
463                                             struct smp_resp *resp)
464 {
465         struct report_general_resp *rg = &resp->rg;
466
467         dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
468         dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
469         dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
470         dev->ex_dev.t2t_supp = rg->t2t_supp;
471         dev->ex_dev.conf_route_table = rg->conf_route_table;
472         dev->ex_dev.configuring = rg->configuring;
473         memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
474 }
475
476 #define RG_REQ_SIZE   8
477 #define RG_RESP_SIZE 32
478
479 static int sas_ex_general(struct domain_device *dev)
480 {
481         u8 *rg_req;
482         struct smp_resp *rg_resp;
483         int res;
484         int i;
485
486         rg_req = alloc_smp_req(RG_REQ_SIZE);
487         if (!rg_req)
488                 return -ENOMEM;
489
490         rg_resp = alloc_smp_resp(RG_RESP_SIZE);
491         if (!rg_resp) {
492                 kfree(rg_req);
493                 return -ENOMEM;
494         }
495
496         rg_req[1] = SMP_REPORT_GENERAL;
497
498         for (i = 0; i < 5; i++) {
499                 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
500                                        RG_RESP_SIZE);
501
502                 if (res) {
503                         SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
504                                     SAS_ADDR(dev->sas_addr), res);
505                         goto out;
506                 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
507                         SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
508                                     SAS_ADDR(dev->sas_addr), rg_resp->result);
509                         res = rg_resp->result;
510                         goto out;
511                 }
512
513                 ex_assign_report_general(dev, rg_resp);
514
515                 if (dev->ex_dev.configuring) {
516                         SAS_DPRINTK("RG: ex %llx self-configuring...\n",
517                                     SAS_ADDR(dev->sas_addr));
518                         schedule_timeout_interruptible(5*HZ);
519                 } else
520                         break;
521         }
522 out:
523         kfree(rg_req);
524         kfree(rg_resp);
525         return res;
526 }
527
528 static void ex_assign_manuf_info(struct domain_device *dev, void
529                                         *_mi_resp)
530 {
531         u8 *mi_resp = _mi_resp;
532         struct sas_rphy *rphy = dev->rphy;
533         struct sas_expander_device *edev = rphy_to_expander_device(rphy);
534
535         memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
536         memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
537         memcpy(edev->product_rev, mi_resp + 36,
538                SAS_EXPANDER_PRODUCT_REV_LEN);
539
540         if (mi_resp[8] & 1) {
541                 memcpy(edev->component_vendor_id, mi_resp + 40,
542                        SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
543                 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
544                 edev->component_revision_id = mi_resp[50];
545         }
546 }
547
548 #define MI_REQ_SIZE   8
549 #define MI_RESP_SIZE 64
550
551 static int sas_ex_manuf_info(struct domain_device *dev)
552 {
553         u8 *mi_req;
554         u8 *mi_resp;
555         int res;
556
557         mi_req = alloc_smp_req(MI_REQ_SIZE);
558         if (!mi_req)
559                 return -ENOMEM;
560
561         mi_resp = alloc_smp_resp(MI_RESP_SIZE);
562         if (!mi_resp) {
563                 kfree(mi_req);
564                 return -ENOMEM;
565         }
566
567         mi_req[1] = SMP_REPORT_MANUF_INFO;
568
569         res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
570         if (res) {
571                 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
572                             SAS_ADDR(dev->sas_addr), res);
573                 goto out;
574         } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
575                 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
576                             SAS_ADDR(dev->sas_addr), mi_resp[2]);
577                 goto out;
578         }
579
580         ex_assign_manuf_info(dev, mi_resp);
581 out:
582         kfree(mi_req);
583         kfree(mi_resp);
584         return res;
585 }
586
587 #define PC_REQ_SIZE  44
588 #define PC_RESP_SIZE 8
589
590 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
591                         enum phy_func phy_func,
592                         struct sas_phy_linkrates *rates)
593 {
594         u8 *pc_req;
595         u8 *pc_resp;
596         int res;
597
598         pc_req = alloc_smp_req(PC_REQ_SIZE);
599         if (!pc_req)
600                 return -ENOMEM;
601
602         pc_resp = alloc_smp_resp(PC_RESP_SIZE);
603         if (!pc_resp) {
604                 kfree(pc_req);
605                 return -ENOMEM;
606         }
607
608         pc_req[1] = SMP_PHY_CONTROL;
609         pc_req[9] = phy_id;
610         pc_req[10]= phy_func;
611         if (rates) {
612                 pc_req[32] = rates->minimum_linkrate << 4;
613                 pc_req[33] = rates->maximum_linkrate << 4;
614         }
615
616         res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
617
618         kfree(pc_resp);
619         kfree(pc_req);
620         return res;
621 }
622
623 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
624 {
625         struct expander_device *ex = &dev->ex_dev;
626         struct ex_phy *phy = &ex->ex_phy[phy_id];
627
628         sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
629         phy->linkrate = SAS_PHY_DISABLED;
630 }
631
632 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
633 {
634         struct expander_device *ex = &dev->ex_dev;
635         int i;
636
637         for (i = 0; i < ex->num_phys; i++) {
638                 struct ex_phy *phy = &ex->ex_phy[i];
639
640                 if (phy->phy_state == PHY_VACANT ||
641                     phy->phy_state == PHY_NOT_PRESENT)
642                         continue;
643
644                 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
645                         sas_ex_disable_phy(dev, i);
646         }
647 }
648
649 static int sas_dev_present_in_domain(struct asd_sas_port *port,
650                                             u8 *sas_addr)
651 {
652         struct domain_device *dev;
653
654         if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
655                 return 1;
656         list_for_each_entry(dev, &port->dev_list, dev_list_node) {
657                 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
658                         return 1;
659         }
660         return 0;
661 }
662
663 #define RPEL_REQ_SIZE   16
664 #define RPEL_RESP_SIZE  32
665 int sas_smp_get_phy_events(struct sas_phy *phy)
666 {
667         int res;
668         u8 *req;
669         u8 *resp;
670         struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
671         struct domain_device *dev = sas_find_dev_by_rphy(rphy);
672
673         req = alloc_smp_req(RPEL_REQ_SIZE);
674         if (!req)
675                 return -ENOMEM;
676
677         resp = alloc_smp_resp(RPEL_RESP_SIZE);
678         if (!resp) {
679                 kfree(req);
680                 return -ENOMEM;
681         }
682
683         req[1] = SMP_REPORT_PHY_ERR_LOG;
684         req[9] = phy->number;
685
686         res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
687                                     resp, RPEL_RESP_SIZE);
688
689         if (!res)
690                 goto out;
691
692         phy->invalid_dword_count = scsi_to_u32(&resp[12]);
693         phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
694         phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
695         phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
696
697  out:
698         kfree(resp);
699         return res;
700
701 }
702
703 #ifdef CONFIG_SCSI_SAS_ATA
704
705 #define RPS_REQ_SIZE  16
706 #define RPS_RESP_SIZE 60
707
708 int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
709                             struct smp_resp *rps_resp)
710 {
711         int res;
712         u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
713         u8 *resp = (u8 *)rps_resp;
714
715         if (!rps_req)
716                 return -ENOMEM;
717
718         rps_req[1] = SMP_REPORT_PHY_SATA;
719         rps_req[9] = phy_id;
720
721         res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
722                                     rps_resp, RPS_RESP_SIZE);
723
724         /* 0x34 is the FIS type for the D2H fis.  There's a potential
725          * standards cockup here.  sas-2 explicitly specifies the FIS
726          * should be encoded so that FIS type is in resp[24].
727          * However, some expanders endian reverse this.  Undo the
728          * reversal here */
729         if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
730                 int i;
731
732                 for (i = 0; i < 5; i++) {
733                         int j = 24 + (i*4);
734                         u8 a, b;
735                         a = resp[j + 0];
736                         b = resp[j + 1];
737                         resp[j + 0] = resp[j + 3];
738                         resp[j + 1] = resp[j + 2];
739                         resp[j + 2] = b;
740                         resp[j + 3] = a;
741                 }
742         }
743
744         kfree(rps_req);
745         return res;
746 }
747 #endif
748
749 static void sas_ex_get_linkrate(struct domain_device *parent,
750                                        struct domain_device *child,
751                                        struct ex_phy *parent_phy)
752 {
753         struct expander_device *parent_ex = &parent->ex_dev;
754         struct sas_port *port;
755         int i;
756
757         child->pathways = 0;
758
759         port = parent_phy->port;
760
761         for (i = 0; i < parent_ex->num_phys; i++) {
762                 struct ex_phy *phy = &parent_ex->ex_phy[i];
763
764                 if (phy->phy_state == PHY_VACANT ||
765                     phy->phy_state == PHY_NOT_PRESENT)
766                         continue;
767
768                 if (SAS_ADDR(phy->attached_sas_addr) ==
769                     SAS_ADDR(child->sas_addr)) {
770
771                         child->min_linkrate = min(parent->min_linkrate,
772                                                   phy->linkrate);
773                         child->max_linkrate = max(parent->max_linkrate,
774                                                   phy->linkrate);
775                         child->pathways++;
776                         sas_port_add_phy(port, phy->phy);
777                 }
778         }
779         child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
780         child->pathways = min(child->pathways, parent->pathways);
781 }
782
783 static struct domain_device *sas_ex_discover_end_dev(
784         struct domain_device *parent, int phy_id)
785 {
786         struct expander_device *parent_ex = &parent->ex_dev;
787         struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
788         struct domain_device *child = NULL;
789         struct sas_rphy *rphy;
790         int res;
791
792         if (phy->attached_sata_host || phy->attached_sata_ps)
793                 return NULL;
794
795         child = sas_alloc_device();
796         if (!child)
797                 return NULL;
798
799         kref_get(&parent->kref);
800         child->parent = parent;
801         child->port   = parent->port;
802         child->iproto = phy->attached_iproto;
803         memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
804         sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
805         if (!phy->port) {
806                 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
807                 if (unlikely(!phy->port))
808                         goto out_err;
809                 if (unlikely(sas_port_add(phy->port) != 0)) {
810                         sas_port_free(phy->port);
811                         goto out_err;
812                 }
813         }
814         sas_ex_get_linkrate(parent, child, phy);
815         sas_device_set_phy(child, phy->port);
816
817 #ifdef CONFIG_SCSI_SAS_ATA
818         if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
819                 res = sas_get_ata_info(child, phy);
820                 if (res)
821                         goto out_free;
822
823                 sas_init_dev(child);
824                 res = sas_ata_init(child);
825                 if (res)
826                         goto out_free;
827                 rphy = sas_end_device_alloc(phy->port);
828                 if (!rphy)
829                         goto out_free;
830
831                 child->rphy = rphy;
832                 get_device(&rphy->dev);
833
834                 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
835
836                 res = sas_discover_sata(child);
837                 if (res) {
838                         SAS_DPRINTK("sas_discover_sata() for device %16llx at "
839                                     "%016llx:0x%x returned 0x%x\n",
840                                     SAS_ADDR(child->sas_addr),
841                                     SAS_ADDR(parent->sas_addr), phy_id, res);
842                         goto out_list_del;
843                 }
844         } else
845 #endif
846           if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
847                 child->dev_type = SAS_END_DEVICE;
848                 rphy = sas_end_device_alloc(phy->port);
849                 /* FIXME: error handling */
850                 if (unlikely(!rphy))
851                         goto out_free;
852                 child->tproto = phy->attached_tproto;
853                 sas_init_dev(child);
854
855                 child->rphy = rphy;
856                 get_device(&rphy->dev);
857                 sas_fill_in_rphy(child, rphy);
858
859                 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
860
861                 res = sas_discover_end_dev(child);
862                 if (res) {
863                         SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
864                                     "at %016llx:0x%x returned 0x%x\n",
865                                     SAS_ADDR(child->sas_addr),
866                                     SAS_ADDR(parent->sas_addr), phy_id, res);
867                         goto out_list_del;
868                 }
869         } else {
870                 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
871                             phy->attached_tproto, SAS_ADDR(parent->sas_addr),
872                             phy_id);
873                 goto out_free;
874         }
875
876         list_add_tail(&child->siblings, &parent_ex->children);
877         return child;
878
879  out_list_del:
880         sas_rphy_free(child->rphy);
881         list_del(&child->disco_list_node);
882         spin_lock_irq(&parent->port->dev_list_lock);
883         list_del(&child->dev_list_node);
884         spin_unlock_irq(&parent->port->dev_list_lock);
885  out_free:
886         sas_port_delete(phy->port);
887  out_err:
888         phy->port = NULL;
889         sas_put_device(child);
890         return NULL;
891 }
892
893 /* See if this phy is part of a wide port */
894 static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
895 {
896         struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
897         int i;
898
899         for (i = 0; i < parent->ex_dev.num_phys; i++) {
900                 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
901
902                 if (ephy == phy)
903                         continue;
904
905                 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
906                             SAS_ADDR_SIZE) && ephy->port) {
907                         sas_port_add_phy(ephy->port, phy->phy);
908                         phy->port = ephy->port;
909                         phy->phy_state = PHY_DEVICE_DISCOVERED;
910                         return true;
911                 }
912         }
913
914         return false;
915 }
916
917 static struct domain_device *sas_ex_discover_expander(
918         struct domain_device *parent, int phy_id)
919 {
920         struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
921         struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
922         struct domain_device *child = NULL;
923         struct sas_rphy *rphy;
924         struct sas_expander_device *edev;
925         struct asd_sas_port *port;
926         int res;
927
928         if (phy->routing_attr == DIRECT_ROUTING) {
929                 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
930                             "allowed\n",
931                             SAS_ADDR(parent->sas_addr), phy_id,
932                             SAS_ADDR(phy->attached_sas_addr),
933                             phy->attached_phy_id);
934                 return NULL;
935         }
936         child = sas_alloc_device();
937         if (!child)
938                 return NULL;
939
940         phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
941         /* FIXME: better error handling */
942         BUG_ON(sas_port_add(phy->port) != 0);
943
944
945         switch (phy->attached_dev_type) {
946         case SAS_EDGE_EXPANDER_DEVICE:
947                 rphy = sas_expander_alloc(phy->port,
948                                           SAS_EDGE_EXPANDER_DEVICE);
949                 break;
950         case SAS_FANOUT_EXPANDER_DEVICE:
951                 rphy = sas_expander_alloc(phy->port,
952                                           SAS_FANOUT_EXPANDER_DEVICE);
953                 break;
954         default:
955                 rphy = NULL;    /* shut gcc up */
956                 BUG();
957         }
958         port = parent->port;
959         child->rphy = rphy;
960         get_device(&rphy->dev);
961         edev = rphy_to_expander_device(rphy);
962         child->dev_type = phy->attached_dev_type;
963         kref_get(&parent->kref);
964         child->parent = parent;
965         child->port = port;
966         child->iproto = phy->attached_iproto;
967         child->tproto = phy->attached_tproto;
968         memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
969         sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
970         sas_ex_get_linkrate(parent, child, phy);
971         edev->level = parent_ex->level + 1;
972         parent->port->disc.max_level = max(parent->port->disc.max_level,
973                                            edev->level);
974         sas_init_dev(child);
975         sas_fill_in_rphy(child, rphy);
976         sas_rphy_add(rphy);
977
978         spin_lock_irq(&parent->port->dev_list_lock);
979         list_add_tail(&child->dev_list_node, &parent->port->dev_list);
980         spin_unlock_irq(&parent->port->dev_list_lock);
981
982         res = sas_discover_expander(child);
983         if (res) {
984                 sas_rphy_delete(rphy);
985                 spin_lock_irq(&parent->port->dev_list_lock);
986                 list_del(&child->dev_list_node);
987                 spin_unlock_irq(&parent->port->dev_list_lock);
988                 sas_put_device(child);
989                 return NULL;
990         }
991         list_add_tail(&child->siblings, &parent->ex_dev.children);
992         return child;
993 }
994
995 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
996 {
997         struct expander_device *ex = &dev->ex_dev;
998         struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
999         struct domain_device *child = NULL;
1000         int res = 0;
1001
1002         /* Phy state */
1003         if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
1004                 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
1005                         res = sas_ex_phy_discover(dev, phy_id);
1006                 if (res)
1007                         return res;
1008         }
1009
1010         /* Parent and domain coherency */
1011         if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1012                              SAS_ADDR(dev->port->sas_addr))) {
1013                 sas_add_parent_port(dev, phy_id);
1014                 return 0;
1015         }
1016         if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1017                             SAS_ADDR(dev->parent->sas_addr))) {
1018                 sas_add_parent_port(dev, phy_id);
1019                 if (ex_phy->routing_attr == TABLE_ROUTING)
1020                         sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
1021                 return 0;
1022         }
1023
1024         if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
1025                 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
1026
1027         if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
1028                 if (ex_phy->routing_attr == DIRECT_ROUTING) {
1029                         memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1030                         sas_configure_routing(dev, ex_phy->attached_sas_addr);
1031                 }
1032                 return 0;
1033         } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1034                 return 0;
1035
1036         if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
1037             ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
1038             ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1039             ex_phy->attached_dev_type != SAS_SATA_PENDING) {
1040                 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
1041                             "phy 0x%x\n", ex_phy->attached_dev_type,
1042                             SAS_ADDR(dev->sas_addr),
1043                             phy_id);
1044                 return 0;
1045         }
1046
1047         res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1048         if (res) {
1049                 SAS_DPRINTK("configure routing for dev %016llx "
1050                             "reported 0x%x. Forgotten\n",
1051                             SAS_ADDR(ex_phy->attached_sas_addr), res);
1052                 sas_disable_routing(dev, ex_phy->attached_sas_addr);
1053                 return res;
1054         }
1055
1056         if (sas_ex_join_wide_port(dev, phy_id)) {
1057                 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1058                             phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1059                 return res;
1060         }
1061
1062         switch (ex_phy->attached_dev_type) {
1063         case SAS_END_DEVICE:
1064         case SAS_SATA_PENDING:
1065                 child = sas_ex_discover_end_dev(dev, phy_id);
1066                 break;
1067         case SAS_FANOUT_EXPANDER_DEVICE:
1068                 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1069                         SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
1070                                     "attached to ex %016llx phy 0x%x\n",
1071                                     SAS_ADDR(ex_phy->attached_sas_addr),
1072                                     ex_phy->attached_phy_id,
1073                                     SAS_ADDR(dev->sas_addr),
1074                                     phy_id);
1075                         sas_ex_disable_phy(dev, phy_id);
1076                         break;
1077                 } else
1078                         memcpy(dev->port->disc.fanout_sas_addr,
1079                                ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1080                 /* fallthrough */
1081         case SAS_EDGE_EXPANDER_DEVICE:
1082                 child = sas_ex_discover_expander(dev, phy_id);
1083                 break;
1084         default:
1085                 break;
1086         }
1087
1088         if (child) {
1089                 int i;
1090
1091                 for (i = 0; i < ex->num_phys; i++) {
1092                         if (ex->ex_phy[i].phy_state == PHY_VACANT ||
1093                             ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
1094                                 continue;
1095                         /*
1096                          * Due to races, the phy might not get added to the
1097                          * wide port, so we add the phy to the wide port here.
1098                          */
1099                         if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
1100                             SAS_ADDR(child->sas_addr)) {
1101                                 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
1102                                 if (sas_ex_join_wide_port(dev, i))
1103                                         SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1104                                                     i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
1105
1106                         }
1107                 }
1108         }
1109
1110         return res;
1111 }
1112
1113 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1114 {
1115         struct expander_device *ex = &dev->ex_dev;
1116         int i;
1117
1118         for (i = 0; i < ex->num_phys; i++) {
1119                 struct ex_phy *phy = &ex->ex_phy[i];
1120
1121                 if (phy->phy_state == PHY_VACANT ||
1122                     phy->phy_state == PHY_NOT_PRESENT)
1123                         continue;
1124
1125                 if ((phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1126                      phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE) &&
1127                     phy->routing_attr == SUBTRACTIVE_ROUTING) {
1128
1129                         memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
1130
1131                         return 1;
1132                 }
1133         }
1134         return 0;
1135 }
1136
1137 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1138 {
1139         struct expander_device *ex = &dev->ex_dev;
1140         struct domain_device *child;
1141         u8 sub_addr[8] = {0, };
1142
1143         list_for_each_entry(child, &ex->children, siblings) {
1144                 if (child->dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1145                     child->dev_type != SAS_FANOUT_EXPANDER_DEVICE)
1146                         continue;
1147                 if (sub_addr[0] == 0) {
1148                         sas_find_sub_addr(child, sub_addr);
1149                         continue;
1150                 } else {
1151                         u8 s2[8];
1152
1153                         if (sas_find_sub_addr(child, s2) &&
1154                             (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1155
1156                                 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1157                                             "diverges from subtractive "
1158                                             "boundary %016llx\n",
1159                                             SAS_ADDR(dev->sas_addr),
1160                                             SAS_ADDR(child->sas_addr),
1161                                             SAS_ADDR(s2),
1162                                             SAS_ADDR(sub_addr));
1163
1164                                 sas_ex_disable_port(child, s2);
1165                         }
1166                 }
1167         }
1168         return 0;
1169 }
1170 /**
1171  * sas_ex_discover_devices -- discover devices attached to this expander
1172  * dev: pointer to the expander domain device
1173  * single: if you want to do a single phy, else set to -1;
1174  *
1175  * Configure this expander for use with its devices and register the
1176  * devices of this expander.
1177  */
1178 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1179 {
1180         struct expander_device *ex = &dev->ex_dev;
1181         int i = 0, end = ex->num_phys;
1182         int res = 0;
1183
1184         if (0 <= single && single < end) {
1185                 i = single;
1186                 end = i+1;
1187         }
1188
1189         for ( ; i < end; i++) {
1190                 struct ex_phy *ex_phy = &ex->ex_phy[i];
1191
1192                 if (ex_phy->phy_state == PHY_VACANT ||
1193                     ex_phy->phy_state == PHY_NOT_PRESENT ||
1194                     ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1195                         continue;
1196
1197                 switch (ex_phy->linkrate) {
1198                 case SAS_PHY_DISABLED:
1199                 case SAS_PHY_RESET_PROBLEM:
1200                 case SAS_SATA_PORT_SELECTOR:
1201                         continue;
1202                 default:
1203                         res = sas_ex_discover_dev(dev, i);
1204                         if (res)
1205                                 break;
1206                         continue;
1207                 }
1208         }
1209
1210         if (!res)
1211                 sas_check_level_subtractive_boundary(dev);
1212
1213         return res;
1214 }
1215
1216 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1217 {
1218         struct expander_device *ex = &dev->ex_dev;
1219         int i;
1220         u8  *sub_sas_addr = NULL;
1221
1222         if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1223                 return 0;
1224
1225         for (i = 0; i < ex->num_phys; i++) {
1226                 struct ex_phy *phy = &ex->ex_phy[i];
1227
1228                 if (phy->phy_state == PHY_VACANT ||
1229                     phy->phy_state == PHY_NOT_PRESENT)
1230                         continue;
1231
1232                 if ((phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE ||
1233                      phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE) &&
1234                     phy->routing_attr == SUBTRACTIVE_ROUTING) {
1235
1236                         if (!sub_sas_addr)
1237                                 sub_sas_addr = &phy->attached_sas_addr[0];
1238                         else if (SAS_ADDR(sub_sas_addr) !=
1239                                  SAS_ADDR(phy->attached_sas_addr)) {
1240
1241                                 SAS_DPRINTK("ex %016llx phy 0x%x "
1242                                             "diverges(%016llx) on subtractive "
1243                                             "boundary(%016llx). Disabled\n",
1244                                             SAS_ADDR(dev->sas_addr), i,
1245                                             SAS_ADDR(phy->attached_sas_addr),
1246                                             SAS_ADDR(sub_sas_addr));
1247                                 sas_ex_disable_phy(dev, i);
1248                         }
1249                 }
1250         }
1251         return 0;
1252 }
1253
1254 static void sas_print_parent_topology_bug(struct domain_device *child,
1255                                                  struct ex_phy *parent_phy,
1256                                                  struct ex_phy *child_phy)
1257 {
1258         static const char *ex_type[] = {
1259                 [SAS_EDGE_EXPANDER_DEVICE] = "edge",
1260                 [SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1261         };
1262         struct domain_device *parent = child->parent;
1263
1264         sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx "
1265                    "phy 0x%x has %c:%c routing link!\n",
1266
1267                    ex_type[parent->dev_type],
1268                    SAS_ADDR(parent->sas_addr),
1269                    parent_phy->phy_id,
1270
1271                    ex_type[child->dev_type],
1272                    SAS_ADDR(child->sas_addr),
1273                    child_phy->phy_id,
1274
1275                    sas_route_char(parent, parent_phy),
1276                    sas_route_char(child, child_phy));
1277 }
1278
1279 static int sas_check_eeds(struct domain_device *child,
1280                                  struct ex_phy *parent_phy,
1281                                  struct ex_phy *child_phy)
1282 {
1283         int res = 0;
1284         struct domain_device *parent = child->parent;
1285
1286         if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1287                 res = -ENODEV;
1288                 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1289                             "phy S:0x%x, while there is a fanout ex %016llx\n",
1290                             SAS_ADDR(parent->sas_addr),
1291                             parent_phy->phy_id,
1292                             SAS_ADDR(child->sas_addr),
1293                             child_phy->phy_id,
1294                             SAS_ADDR(parent->port->disc.fanout_sas_addr));
1295         } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1296                 memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1297                        SAS_ADDR_SIZE);
1298                 memcpy(parent->port->disc.eeds_b, child->sas_addr,
1299                        SAS_ADDR_SIZE);
1300         } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1301                     SAS_ADDR(parent->sas_addr)) ||
1302                    (SAS_ADDR(parent->port->disc.eeds_a) ==
1303                     SAS_ADDR(child->sas_addr)))
1304                    &&
1305                    ((SAS_ADDR(parent->port->disc.eeds_b) ==
1306                      SAS_ADDR(parent->sas_addr)) ||
1307                     (SAS_ADDR(parent->port->disc.eeds_b) ==
1308                      SAS_ADDR(child->sas_addr))))
1309                 ;
1310         else {
1311                 res = -ENODEV;
1312                 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1313                             "phy 0x%x link forms a third EEDS!\n",
1314                             SAS_ADDR(parent->sas_addr),
1315                             parent_phy->phy_id,
1316                             SAS_ADDR(child->sas_addr),
1317                             child_phy->phy_id);
1318         }
1319
1320         return res;
1321 }
1322
1323 /* Here we spill over 80 columns.  It is intentional.
1324  */
1325 static int sas_check_parent_topology(struct domain_device *child)
1326 {
1327         struct expander_device *child_ex = &child->ex_dev;
1328         struct expander_device *parent_ex;
1329         int i;
1330         int res = 0;
1331
1332         if (!child->parent)
1333                 return 0;
1334
1335         if (child->parent->dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1336             child->parent->dev_type != SAS_FANOUT_EXPANDER_DEVICE)
1337                 return 0;
1338
1339         parent_ex = &child->parent->ex_dev;
1340
1341         for (i = 0; i < parent_ex->num_phys; i++) {
1342                 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1343                 struct ex_phy *child_phy;
1344
1345                 if (parent_phy->phy_state == PHY_VACANT ||
1346                     parent_phy->phy_state == PHY_NOT_PRESENT)
1347                         continue;
1348
1349                 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1350                         continue;
1351
1352                 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1353
1354                 switch (child->parent->dev_type) {
1355                 case SAS_EDGE_EXPANDER_DEVICE:
1356                         if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1357                                 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1358                                     child_phy->routing_attr != TABLE_ROUTING) {
1359                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1360                                         res = -ENODEV;
1361                                 }
1362                         } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1363                                 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1364                                         res = sas_check_eeds(child, parent_phy, child_phy);
1365                                 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1366                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1367                                         res = -ENODEV;
1368                                 }
1369                         } else if (parent_phy->routing_attr == TABLE_ROUTING) {
1370                                 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1371                                     (child_phy->routing_attr == TABLE_ROUTING &&
1372                                      child_ex->t2t_supp && parent_ex->t2t_supp)) {
1373                                         /* All good */;
1374                                 } else {
1375                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1376                                         res = -ENODEV;
1377                                 }
1378                         }
1379                         break;
1380                 case SAS_FANOUT_EXPANDER_DEVICE:
1381                         if (parent_phy->routing_attr != TABLE_ROUTING ||
1382                             child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1383                                 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1384                                 res = -ENODEV;
1385                         }
1386                         break;
1387                 default:
1388                         break;
1389                 }
1390         }
1391
1392         return res;
1393 }
1394
1395 #define RRI_REQ_SIZE  16
1396 #define RRI_RESP_SIZE 44
1397
1398 static int sas_configure_present(struct domain_device *dev, int phy_id,
1399                                  u8 *sas_addr, int *index, int *present)
1400 {
1401         int i, res = 0;
1402         struct expander_device *ex = &dev->ex_dev;
1403         struct ex_phy *phy = &ex->ex_phy[phy_id];
1404         u8 *rri_req;
1405         u8 *rri_resp;
1406
1407         *present = 0;
1408         *index = 0;
1409
1410         rri_req = alloc_smp_req(RRI_REQ_SIZE);
1411         if (!rri_req)
1412                 return -ENOMEM;
1413
1414         rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1415         if (!rri_resp) {
1416                 kfree(rri_req);
1417                 return -ENOMEM;
1418         }
1419
1420         rri_req[1] = SMP_REPORT_ROUTE_INFO;
1421         rri_req[9] = phy_id;
1422
1423         for (i = 0; i < ex->max_route_indexes ; i++) {
1424                 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1425                 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1426                                        RRI_RESP_SIZE);
1427                 if (res)
1428                         goto out;
1429                 res = rri_resp[2];
1430                 if (res == SMP_RESP_NO_INDEX) {
1431                         SAS_DPRINTK("overflow of indexes: dev %016llx "
1432                                     "phy 0x%x index 0x%x\n",
1433                                     SAS_ADDR(dev->sas_addr), phy_id, i);
1434                         goto out;
1435                 } else if (res != SMP_RESP_FUNC_ACC) {
1436                         SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1437                                     "result 0x%x\n", __func__,
1438                                     SAS_ADDR(dev->sas_addr), phy_id, i, res);
1439                         goto out;
1440                 }
1441                 if (SAS_ADDR(sas_addr) != 0) {
1442                         if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1443                                 *index = i;
1444                                 if ((rri_resp[12] & 0x80) == 0x80)
1445                                         *present = 0;
1446                                 else
1447                                         *present = 1;
1448                                 goto out;
1449                         } else if (SAS_ADDR(rri_resp+16) == 0) {
1450                                 *index = i;
1451                                 *present = 0;
1452                                 goto out;
1453                         }
1454                 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1455                            phy->last_da_index < i) {
1456                         phy->last_da_index = i;
1457                         *index = i;
1458                         *present = 0;
1459                         goto out;
1460                 }
1461         }
1462         res = -1;
1463 out:
1464         kfree(rri_req);
1465         kfree(rri_resp);
1466         return res;
1467 }
1468
1469 #define CRI_REQ_SIZE  44
1470 #define CRI_RESP_SIZE  8
1471
1472 static int sas_configure_set(struct domain_device *dev, int phy_id,
1473                              u8 *sas_addr, int index, int include)
1474 {
1475         int res;
1476         u8 *cri_req;
1477         u8 *cri_resp;
1478
1479         cri_req = alloc_smp_req(CRI_REQ_SIZE);
1480         if (!cri_req)
1481                 return -ENOMEM;
1482
1483         cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1484         if (!cri_resp) {
1485                 kfree(cri_req);
1486                 return -ENOMEM;
1487         }
1488
1489         cri_req[1] = SMP_CONF_ROUTE_INFO;
1490         *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1491         cri_req[9] = phy_id;
1492         if (SAS_ADDR(sas_addr) == 0 || !include)
1493                 cri_req[12] |= 0x80;
1494         memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1495
1496         res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1497                                CRI_RESP_SIZE);
1498         if (res)
1499                 goto out;
1500         res = cri_resp[2];
1501         if (res == SMP_RESP_NO_INDEX) {
1502                 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1503                             "index 0x%x\n",
1504                             SAS_ADDR(dev->sas_addr), phy_id, index);
1505         }
1506 out:
1507         kfree(cri_req);
1508         kfree(cri_resp);
1509         return res;
1510 }
1511
1512 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1513                                     u8 *sas_addr, int include)
1514 {
1515         int index;
1516         int present;
1517         int res;
1518
1519         res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1520         if (res)
1521                 return res;
1522         if (include ^ present)
1523                 return sas_configure_set(dev, phy_id, sas_addr, index,include);
1524
1525         return res;
1526 }
1527
1528 /**
1529  * sas_configure_parent -- configure routing table of parent
1530  * parent: parent expander
1531  * child: child expander
1532  * sas_addr: SAS port identifier of device directly attached to child
1533  */
1534 static int sas_configure_parent(struct domain_device *parent,
1535                                 struct domain_device *child,
1536                                 u8 *sas_addr, int include)
1537 {
1538         struct expander_device *ex_parent = &parent->ex_dev;
1539         int res = 0;
1540         int i;
1541
1542         if (parent->parent) {
1543                 res = sas_configure_parent(parent->parent, parent, sas_addr,
1544                                            include);
1545                 if (res)
1546                         return res;
1547         }
1548
1549         if (ex_parent->conf_route_table == 0) {
1550                 SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1551                             SAS_ADDR(parent->sas_addr));
1552                 return 0;
1553         }
1554
1555         for (i = 0; i < ex_parent->num_phys; i++) {
1556                 struct ex_phy *phy = &ex_parent->ex_phy[i];
1557
1558                 if ((phy->routing_attr == TABLE_ROUTING) &&
1559                     (SAS_ADDR(phy->attached_sas_addr) ==
1560                      SAS_ADDR(child->sas_addr))) {
1561                         res = sas_configure_phy(parent, i, sas_addr, include);
1562                         if (res)
1563                                 return res;
1564                 }
1565         }
1566
1567         return res;
1568 }
1569
1570 /**
1571  * sas_configure_routing -- configure routing
1572  * dev: expander device
1573  * sas_addr: port identifier of device directly attached to the expander device
1574  */
1575 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1576 {
1577         if (dev->parent)
1578                 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1579         return 0;
1580 }
1581
1582 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1583 {
1584         if (dev->parent)
1585                 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1586         return 0;
1587 }
1588
1589 /**
1590  * sas_discover_expander -- expander discovery
1591  * @ex: pointer to expander domain device
1592  *
1593  * See comment in sas_discover_sata().
1594  */
1595 static int sas_discover_expander(struct domain_device *dev)
1596 {
1597         int res;
1598
1599         res = sas_notify_lldd_dev_found(dev);
1600         if (res)
1601                 return res;
1602
1603         res = sas_ex_general(dev);
1604         if (res)
1605                 goto out_err;
1606         res = sas_ex_manuf_info(dev);
1607         if (res)
1608                 goto out_err;
1609
1610         res = sas_expander_discover(dev);
1611         if (res) {
1612                 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1613                             SAS_ADDR(dev->sas_addr), res);
1614                 goto out_err;
1615         }
1616
1617         sas_check_ex_subtractive_boundary(dev);
1618         res = sas_check_parent_topology(dev);
1619         if (res)
1620                 goto out_err;
1621         return 0;
1622 out_err:
1623         sas_notify_lldd_dev_gone(dev);
1624         return res;
1625 }
1626
1627 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1628 {
1629         int res = 0;
1630         struct domain_device *dev;
1631
1632         list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1633                 if (dev->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1634                     dev->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1635                         struct sas_expander_device *ex =
1636                                 rphy_to_expander_device(dev->rphy);
1637
1638                         if (level == ex->level)
1639                                 res = sas_ex_discover_devices(dev, -1);
1640                         else if (level > 0)
1641                                 res = sas_ex_discover_devices(port->port_dev, -1);
1642
1643                 }
1644         }
1645
1646         return res;
1647 }
1648
1649 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1650 {
1651         int res;
1652         int level;
1653
1654         do {
1655                 level = port->disc.max_level;
1656                 res = sas_ex_level_discovery(port, level);
1657                 mb();
1658         } while (level < port->disc.max_level);
1659
1660         return res;
1661 }
1662
1663 int sas_discover_root_expander(struct domain_device *dev)
1664 {
1665         int res;
1666         struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1667
1668         res = sas_rphy_add(dev->rphy);
1669         if (res)
1670                 goto out_err;
1671
1672         ex->level = dev->port->disc.max_level; /* 0 */
1673         res = sas_discover_expander(dev);
1674         if (res)
1675                 goto out_err2;
1676
1677         sas_ex_bfs_disc(dev->port);
1678
1679         return res;
1680
1681 out_err2:
1682         sas_rphy_remove(dev->rphy);
1683 out_err:
1684         return res;
1685 }
1686
1687 /* ---------- Domain revalidation ---------- */
1688
1689 static int sas_get_phy_discover(struct domain_device *dev,
1690                                 int phy_id, struct smp_resp *disc_resp)
1691 {
1692         int res;
1693         u8 *disc_req;
1694
1695         disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1696         if (!disc_req)
1697                 return -ENOMEM;
1698
1699         disc_req[1] = SMP_DISCOVER;
1700         disc_req[9] = phy_id;
1701
1702         res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1703                                disc_resp, DISCOVER_RESP_SIZE);
1704         if (res)
1705                 goto out;
1706         else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1707                 res = disc_resp->result;
1708                 goto out;
1709         }
1710 out:
1711         kfree(disc_req);
1712         return res;
1713 }
1714
1715 static int sas_get_phy_change_count(struct domain_device *dev,
1716                                     int phy_id, int *pcc)
1717 {
1718         int res;
1719         struct smp_resp *disc_resp;
1720
1721         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1722         if (!disc_resp)
1723                 return -ENOMEM;
1724
1725         res = sas_get_phy_discover(dev, phy_id, disc_resp);
1726         if (!res)
1727                 *pcc = disc_resp->disc.change_count;
1728
1729         kfree(disc_resp);
1730         return res;
1731 }
1732
1733 static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1734                                     u8 *sas_addr, enum sas_device_type *type)
1735 {
1736         int res;
1737         struct smp_resp *disc_resp;
1738         struct discover_resp *dr;
1739
1740         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1741         if (!disc_resp)
1742                 return -ENOMEM;
1743         dr = &disc_resp->disc;
1744
1745         res = sas_get_phy_discover(dev, phy_id, disc_resp);
1746         if (res == 0) {
1747                 memcpy(sas_addr, disc_resp->disc.attached_sas_addr, 8);
1748                 *type = to_dev_type(dr);
1749                 if (*type == 0)
1750                         memset(sas_addr, 0, 8);
1751         }
1752         kfree(disc_resp);
1753         return res;
1754 }
1755
1756 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1757                               int from_phy, bool update)
1758 {
1759         struct expander_device *ex = &dev->ex_dev;
1760         int res = 0;
1761         int i;
1762
1763         for (i = from_phy; i < ex->num_phys; i++) {
1764                 int phy_change_count = 0;
1765
1766                 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1767                 switch (res) {
1768                 case SMP_RESP_PHY_VACANT:
1769                 case SMP_RESP_NO_PHY:
1770                         continue;
1771                 case SMP_RESP_FUNC_ACC:
1772                         break;
1773                 default:
1774                         return res;
1775                 }
1776
1777                 if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1778                         if (update)
1779                                 ex->ex_phy[i].phy_change_count =
1780                                         phy_change_count;
1781                         *phy_id = i;
1782                         return 0;
1783                 }
1784         }
1785         return 0;
1786 }
1787
1788 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1789 {
1790         int res;
1791         u8  *rg_req;
1792         struct smp_resp  *rg_resp;
1793
1794         rg_req = alloc_smp_req(RG_REQ_SIZE);
1795         if (!rg_req)
1796                 return -ENOMEM;
1797
1798         rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1799         if (!rg_resp) {
1800                 kfree(rg_req);
1801                 return -ENOMEM;
1802         }
1803
1804         rg_req[1] = SMP_REPORT_GENERAL;
1805
1806         res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1807                                RG_RESP_SIZE);
1808         if (res)
1809                 goto out;
1810         if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1811                 res = rg_resp->result;
1812                 goto out;
1813         }
1814
1815         *ecc = be16_to_cpu(rg_resp->rg.change_count);
1816 out:
1817         kfree(rg_resp);
1818         kfree(rg_req);
1819         return res;
1820 }
1821 /**
1822  * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1823  * @dev:domain device to be detect.
1824  * @src_dev: the device which originated BROADCAST(CHANGE).
1825  *
1826  * Add self-configuration expander support. Suppose two expander cascading,
1827  * when the first level expander is self-configuring, hotplug the disks in
1828  * second level expander, BROADCAST(CHANGE) will not only be originated
1829  * in the second level expander, but also be originated in the first level
1830  * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1831  * expander changed count in two level expanders will all increment at least
1832  * once, but the phy which chang count has changed is the source device which
1833  * we concerned.
1834  */
1835
1836 static int sas_find_bcast_dev(struct domain_device *dev,
1837                               struct domain_device **src_dev)
1838 {
1839         struct expander_device *ex = &dev->ex_dev;
1840         int ex_change_count = -1;
1841         int phy_id = -1;
1842         int res;
1843         struct domain_device *ch;
1844
1845         res = sas_get_ex_change_count(dev, &ex_change_count);
1846         if (res)
1847                 goto out;
1848         if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1849                 /* Just detect if this expander phys phy change count changed,
1850                 * in order to determine if this expander originate BROADCAST,
1851                 * and do not update phy change count field in our structure.
1852                 */
1853                 res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1854                 if (phy_id != -1) {
1855                         *src_dev = dev;
1856                         ex->ex_change_count = ex_change_count;
1857                         SAS_DPRINTK("Expander phy change count has changed\n");
1858                         return res;
1859                 } else
1860                         SAS_DPRINTK("Expander phys DID NOT change\n");
1861         }
1862         list_for_each_entry(ch, &ex->children, siblings) {
1863                 if (ch->dev_type == SAS_EDGE_EXPANDER_DEVICE || ch->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1864                         res = sas_find_bcast_dev(ch, src_dev);
1865                         if (*src_dev)
1866                                 return res;
1867                 }
1868         }
1869 out:
1870         return res;
1871 }
1872
1873 static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1874 {
1875         struct expander_device *ex = &dev->ex_dev;
1876         struct domain_device *child, *n;
1877
1878         list_for_each_entry_safe(child, n, &ex->children, siblings) {
1879                 set_bit(SAS_DEV_GONE, &child->state);
1880                 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1881                     child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1882                         sas_unregister_ex_tree(port, child);
1883                 else
1884                         sas_unregister_dev(port, child);
1885         }
1886         sas_unregister_dev(port, dev);
1887 }
1888
1889 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1890                                          int phy_id, bool last)
1891 {
1892         struct expander_device *ex_dev = &parent->ex_dev;
1893         struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1894         struct domain_device *child, *n, *found = NULL;
1895         if (last) {
1896                 list_for_each_entry_safe(child, n,
1897                         &ex_dev->children, siblings) {
1898                         if (SAS_ADDR(child->sas_addr) ==
1899                             SAS_ADDR(phy->attached_sas_addr)) {
1900                                 set_bit(SAS_DEV_GONE, &child->state);
1901                                 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1902                                     child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1903                                         sas_unregister_ex_tree(parent->port, child);
1904                                 else
1905                                         sas_unregister_dev(parent->port, child);
1906                                 found = child;
1907                                 break;
1908                         }
1909                 }
1910                 sas_disable_routing(parent, phy->attached_sas_addr);
1911         }
1912         memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1913         if (phy->port) {
1914                 sas_port_delete_phy(phy->port, phy->phy);
1915                 sas_device_set_phy(found, phy->port);
1916                 if (phy->port->num_phys == 0)
1917                         sas_port_delete(phy->port);
1918                 phy->port = NULL;
1919         }
1920 }
1921
1922 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1923                                           const int level)
1924 {
1925         struct expander_device *ex_root = &root->ex_dev;
1926         struct domain_device *child;
1927         int res = 0;
1928
1929         list_for_each_entry(child, &ex_root->children, siblings) {
1930                 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1931                     child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1932                         struct sas_expander_device *ex =
1933                                 rphy_to_expander_device(child->rphy);
1934
1935                         if (level > ex->level)
1936                                 res = sas_discover_bfs_by_root_level(child,
1937                                                                      level);
1938                         else if (level == ex->level)
1939                                 res = sas_ex_discover_devices(child, -1);
1940                 }
1941         }
1942         return res;
1943 }
1944
1945 static int sas_discover_bfs_by_root(struct domain_device *dev)
1946 {
1947         int res;
1948         struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1949         int level = ex->level+1;
1950
1951         res = sas_ex_discover_devices(dev, -1);
1952         if (res)
1953                 goto out;
1954         do {
1955                 res = sas_discover_bfs_by_root_level(dev, level);
1956                 mb();
1957                 level += 1;
1958         } while (level <= dev->port->disc.max_level);
1959 out:
1960         return res;
1961 }
1962
1963 static int sas_discover_new(struct domain_device *dev, int phy_id)
1964 {
1965         struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1966         struct domain_device *child;
1967         int res;
1968
1969         SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1970                     SAS_ADDR(dev->sas_addr), phy_id);
1971         res = sas_ex_phy_discover(dev, phy_id);
1972         if (res)
1973                 return res;
1974
1975         if (sas_ex_join_wide_port(dev, phy_id))
1976                 return 0;
1977
1978         res = sas_ex_discover_devices(dev, phy_id);
1979         if (res)
1980                 return res;
1981         list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1982                 if (SAS_ADDR(child->sas_addr) ==
1983                     SAS_ADDR(ex_phy->attached_sas_addr)) {
1984                         if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1985                             child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1986                                 res = sas_discover_bfs_by_root(child);
1987                         break;
1988                 }
1989         }
1990         return res;
1991 }
1992
1993 static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
1994 {
1995         if (old == new)
1996                 return true;
1997
1998         /* treat device directed resets as flutter, if we went
1999          * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
2000          */
2001         if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
2002             (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
2003                 return true;
2004
2005         return false;
2006 }
2007
2008 static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
2009 {
2010         struct expander_device *ex = &dev->ex_dev;
2011         struct ex_phy *phy = &ex->ex_phy[phy_id];
2012         enum sas_device_type type = SAS_PHY_UNUSED;
2013         u8 sas_addr[8];
2014         int res;
2015
2016         memset(sas_addr, 0, 8);
2017         res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
2018         switch (res) {
2019         case SMP_RESP_NO_PHY:
2020                 phy->phy_state = PHY_NOT_PRESENT;
2021                 sas_unregister_devs_sas_addr(dev, phy_id, last);
2022                 return res;
2023         case SMP_RESP_PHY_VACANT:
2024                 phy->phy_state = PHY_VACANT;
2025                 sas_unregister_devs_sas_addr(dev, phy_id, last);
2026                 return res;
2027         case SMP_RESP_FUNC_ACC:
2028                 break;
2029         case -ECOMM:
2030                 break;
2031         default:
2032                 return res;
2033         }
2034
2035         if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
2036                 phy->phy_state = PHY_EMPTY;
2037                 sas_unregister_devs_sas_addr(dev, phy_id, last);
2038                 return res;
2039         } else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2040                    dev_type_flutter(type, phy->attached_dev_type)) {
2041                 struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2042                 char *action = "";
2043
2044                 sas_ex_phy_discover(dev, phy_id);
2045
2046                 if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
2047                         action = ", needs recovery";
2048                 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter%s\n",
2049                             SAS_ADDR(dev->sas_addr), phy_id, action);
2050                 return res;
2051         }
2052
2053         /* delete the old link */
2054         if (SAS_ADDR(phy->attached_sas_addr) &&
2055             SAS_ADDR(sas_addr) != SAS_ADDR(phy->attached_sas_addr)) {
2056                 SAS_DPRINTK("ex %016llx phy 0x%x replace %016llx\n",
2057                             SAS_ADDR(dev->sas_addr), phy_id,
2058                             SAS_ADDR(phy->attached_sas_addr));
2059                 sas_unregister_devs_sas_addr(dev, phy_id, last);
2060         }
2061
2062         return sas_discover_new(dev, phy_id);
2063 }
2064
2065 /**
2066  * sas_rediscover - revalidate the domain.
2067  * @dev:domain device to be detect.
2068  * @phy_id: the phy id will be detected.
2069  *
2070  * NOTE: this process _must_ quit (return) as soon as any connection
2071  * errors are encountered.  Connection recovery is done elsewhere.
2072  * Discover process only interrogates devices in order to discover the
2073  * domain.For plugging out, we un-register the device only when it is
2074  * the last phy in the port, for other phys in this port, we just delete it
2075  * from the port.For inserting, we do discovery when it is the
2076  * first phy,for other phys in this port, we add it to the port to
2077  * forming the wide-port.
2078  */
2079 static int sas_rediscover(struct domain_device *dev, const int phy_id)
2080 {
2081         struct expander_device *ex = &dev->ex_dev;
2082         struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2083         int res = 0;
2084         int i;
2085         bool last = true;       /* is this the last phy of the port */
2086
2087         SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
2088                     SAS_ADDR(dev->sas_addr), phy_id);
2089
2090         if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2091                 for (i = 0; i < ex->num_phys; i++) {
2092                         struct ex_phy *phy = &ex->ex_phy[i];
2093
2094                         if (i == phy_id)
2095                                 continue;
2096                         if (SAS_ADDR(phy->attached_sas_addr) ==
2097                             SAS_ADDR(changed_phy->attached_sas_addr)) {
2098                                 SAS_DPRINTK("phy%d part of wide port with "
2099                                             "phy%d\n", phy_id, i);
2100                                 last = false;
2101                                 break;
2102                         }
2103                 }
2104                 res = sas_rediscover_dev(dev, phy_id, last);
2105         } else
2106                 res = sas_discover_new(dev, phy_id);
2107         return res;
2108 }
2109
2110 /**
2111  * sas_revalidate_domain -- revalidate the domain
2112  * @port: port to the domain of interest
2113  *
2114  * NOTE: this process _must_ quit (return) as soon as any connection
2115  * errors are encountered.  Connection recovery is done elsewhere.
2116  * Discover process only interrogates devices in order to discover the
2117  * domain.
2118  */
2119 int sas_ex_revalidate_domain(struct domain_device *port_dev)
2120 {
2121         int res;
2122         struct domain_device *dev = NULL;
2123
2124         res = sas_find_bcast_dev(port_dev, &dev);
2125         while (res == 0 && dev) {
2126                 struct expander_device *ex = &dev->ex_dev;
2127                 int i = 0, phy_id;
2128
2129                 do {
2130                         phy_id = -1;
2131                         res = sas_find_bcast_phy(dev, &phy_id, i, true);
2132                         if (phy_id == -1)
2133                                 break;
2134                         res = sas_rediscover(dev, phy_id);
2135                         i = phy_id + 1;
2136                 } while (i < ex->num_phys);
2137
2138                 dev = NULL;
2139                 res = sas_find_bcast_dev(port_dev, &dev);
2140         }
2141         return res;
2142 }
2143
2144 void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost,
2145                 struct sas_rphy *rphy)
2146 {
2147         struct domain_device *dev;
2148         unsigned int reslen = 0;
2149         int ret = -EINVAL;
2150
2151         /* no rphy means no smp target support (ie aic94xx host) */
2152         if (!rphy)
2153                 return sas_smp_host_handler(job, shost);
2154
2155         switch (rphy->identify.device_type) {
2156         case SAS_EDGE_EXPANDER_DEVICE:
2157         case SAS_FANOUT_EXPANDER_DEVICE:
2158                 break;
2159         default:
2160                 printk("%s: can we send a smp request to a device?\n",
2161                        __func__);
2162                 goto out;
2163         }
2164
2165         dev = sas_find_dev_by_rphy(rphy);
2166         if (!dev) {
2167                 printk("%s: fail to find a domain_device?\n", __func__);
2168                 goto out;
2169         }
2170
2171         /* do we need to support multiple segments? */
2172         if (job->request_payload.sg_cnt > 1 ||
2173             job->reply_payload.sg_cnt > 1) {
2174                 printk("%s: multiple segments req %u, rsp %u\n",
2175                        __func__, job->request_payload.payload_len,
2176                        job->reply_payload.payload_len);
2177                 goto out;
2178         }
2179
2180         ret = smp_execute_task_sg(dev, job->request_payload.sg_list,
2181                         job->reply_payload.sg_list);
2182         if (ret > 0) {
2183                 /* positive number is the untransferred residual */
2184                 reslen = ret;
2185                 ret = 0;
2186         }
2187
2188 out:
2189         bsg_job_done(job, ret, reslen);
2190 }