2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/config.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/init.h>
40 #include <linux/list.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/blkdev.h>
45 #include <linux/delay.h>
46 #include <linux/timer.h>
47 #include <linux/interrupt.h>
48 #include <linux/completion.h>
49 #include <linux/suspend.h>
50 #include <linux/workqueue.h>
51 #include <scsi/scsi.h>
53 #include "scsi_priv.h"
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
62 static unsigned int ata_busy_sleep (struct ata_port *ap,
63 unsigned long tmout_pat,
65 static void ata_set_mode(struct ata_port *ap);
66 static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev);
67 static unsigned int ata_get_mode_mask(struct ata_port *ap, int shift);
68 static int fgb(u32 bitmap);
69 static int ata_choose_xfer_mode(struct ata_port *ap,
71 unsigned int *xfer_shift_out);
72 static int ata_qc_complete_noop(struct ata_queued_cmd *qc, u8 drv_stat);
73 static void __ata_qc_complete(struct ata_queued_cmd *qc);
75 static unsigned int ata_unique_id = 1;
76 static struct workqueue_struct *ata_wq;
78 int atapi_enabled = 0;
79 module_param(atapi_enabled, int, 0444);
80 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
82 MODULE_AUTHOR("Jeff Garzik");
83 MODULE_DESCRIPTION("Library module for ATA devices");
84 MODULE_LICENSE("GPL");
85 MODULE_VERSION(DRV_VERSION);
88 * ata_tf_load - send taskfile registers to host controller
89 * @ap: Port to which output is sent
90 * @tf: ATA taskfile register set
92 * Outputs ATA taskfile to standard ATA host controller.
95 * Inherited from caller.
98 static void ata_tf_load_pio(struct ata_port *ap, struct ata_taskfile *tf)
100 struct ata_ioports *ioaddr = &ap->ioaddr;
101 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
103 if (tf->ctl != ap->last_ctl) {
104 outb(tf->ctl, ioaddr->ctl_addr);
105 ap->last_ctl = tf->ctl;
109 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
110 outb(tf->hob_feature, ioaddr->feature_addr);
111 outb(tf->hob_nsect, ioaddr->nsect_addr);
112 outb(tf->hob_lbal, ioaddr->lbal_addr);
113 outb(tf->hob_lbam, ioaddr->lbam_addr);
114 outb(tf->hob_lbah, ioaddr->lbah_addr);
115 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
124 outb(tf->feature, ioaddr->feature_addr);
125 outb(tf->nsect, ioaddr->nsect_addr);
126 outb(tf->lbal, ioaddr->lbal_addr);
127 outb(tf->lbam, ioaddr->lbam_addr);
128 outb(tf->lbah, ioaddr->lbah_addr);
129 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
137 if (tf->flags & ATA_TFLAG_DEVICE) {
138 outb(tf->device, ioaddr->device_addr);
139 VPRINTK("device 0x%X\n", tf->device);
146 * ata_tf_load_mmio - send taskfile registers to host controller
147 * @ap: Port to which output is sent
148 * @tf: ATA taskfile register set
150 * Outputs ATA taskfile to standard ATA host controller using MMIO.
153 * Inherited from caller.
156 static void ata_tf_load_mmio(struct ata_port *ap, struct ata_taskfile *tf)
158 struct ata_ioports *ioaddr = &ap->ioaddr;
159 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
161 if (tf->ctl != ap->last_ctl) {
162 writeb(tf->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
163 ap->last_ctl = tf->ctl;
167 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
168 writeb(tf->hob_feature, (void __iomem *) ioaddr->feature_addr);
169 writeb(tf->hob_nsect, (void __iomem *) ioaddr->nsect_addr);
170 writeb(tf->hob_lbal, (void __iomem *) ioaddr->lbal_addr);
171 writeb(tf->hob_lbam, (void __iomem *) ioaddr->lbam_addr);
172 writeb(tf->hob_lbah, (void __iomem *) ioaddr->lbah_addr);
173 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
182 writeb(tf->feature, (void __iomem *) ioaddr->feature_addr);
183 writeb(tf->nsect, (void __iomem *) ioaddr->nsect_addr);
184 writeb(tf->lbal, (void __iomem *) ioaddr->lbal_addr);
185 writeb(tf->lbam, (void __iomem *) ioaddr->lbam_addr);
186 writeb(tf->lbah, (void __iomem *) ioaddr->lbah_addr);
187 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
195 if (tf->flags & ATA_TFLAG_DEVICE) {
196 writeb(tf->device, (void __iomem *) ioaddr->device_addr);
197 VPRINTK("device 0x%X\n", tf->device);
205 * ata_tf_load - send taskfile registers to host controller
206 * @ap: Port to which output is sent
207 * @tf: ATA taskfile register set
209 * Outputs ATA taskfile to standard ATA host controller using MMIO
210 * or PIO as indicated by the ATA_FLAG_MMIO flag.
211 * Writes the control, feature, nsect, lbal, lbam, and lbah registers.
212 * Optionally (ATA_TFLAG_LBA48) writes hob_feature, hob_nsect,
213 * hob_lbal, hob_lbam, and hob_lbah.
215 * This function waits for idle (!BUSY and !DRQ) after writing
216 * registers. If the control register has a new value, this
217 * function also waits for idle after writing control and before
218 * writing the remaining registers.
220 * May be used as the tf_load() entry in ata_port_operations.
223 * Inherited from caller.
225 void ata_tf_load(struct ata_port *ap, struct ata_taskfile *tf)
227 if (ap->flags & ATA_FLAG_MMIO)
228 ata_tf_load_mmio(ap, tf);
230 ata_tf_load_pio(ap, tf);
234 * ata_exec_command_pio - issue ATA command to host controller
235 * @ap: port to which command is being issued
236 * @tf: ATA taskfile register set
238 * Issues PIO write to ATA command register, with proper
239 * synchronization with interrupt handler / other threads.
242 * spin_lock_irqsave(host_set lock)
245 static void ata_exec_command_pio(struct ata_port *ap, struct ata_taskfile *tf)
247 DPRINTK("ata%u: cmd 0x%X\n", ap->id, tf->command);
249 outb(tf->command, ap->ioaddr.command_addr);
255 * ata_exec_command_mmio - issue ATA command to host controller
256 * @ap: port to which command is being issued
257 * @tf: ATA taskfile register set
259 * Issues MMIO write to ATA command register, with proper
260 * synchronization with interrupt handler / other threads.
263 * spin_lock_irqsave(host_set lock)
266 static void ata_exec_command_mmio(struct ata_port *ap, struct ata_taskfile *tf)
268 DPRINTK("ata%u: cmd 0x%X\n", ap->id, tf->command);
270 writeb(tf->command, (void __iomem *) ap->ioaddr.command_addr);
276 * ata_exec_command - issue ATA command to host controller
277 * @ap: port to which command is being issued
278 * @tf: ATA taskfile register set
280 * Issues PIO/MMIO write to ATA command register, with proper
281 * synchronization with interrupt handler / other threads.
284 * spin_lock_irqsave(host_set lock)
286 void ata_exec_command(struct ata_port *ap, struct ata_taskfile *tf)
288 if (ap->flags & ATA_FLAG_MMIO)
289 ata_exec_command_mmio(ap, tf);
291 ata_exec_command_pio(ap, tf);
295 * ata_exec - issue ATA command to host controller
296 * @ap: port to which command is being issued
297 * @tf: ATA taskfile register set
299 * Issues PIO/MMIO write to ATA command register, with proper
300 * synchronization with interrupt handler / other threads.
303 * Obtains host_set lock.
306 static inline void ata_exec(struct ata_port *ap, struct ata_taskfile *tf)
310 DPRINTK("ata%u: cmd 0x%X\n", ap->id, tf->command);
311 spin_lock_irqsave(&ap->host_set->lock, flags);
312 ap->ops->exec_command(ap, tf);
313 spin_unlock_irqrestore(&ap->host_set->lock, flags);
317 * ata_tf_to_host - issue ATA taskfile to host controller
318 * @ap: port to which command is being issued
319 * @tf: ATA taskfile register set
321 * Issues ATA taskfile register set to ATA host controller,
322 * with proper synchronization with interrupt handler and
326 * Obtains host_set lock.
329 static void ata_tf_to_host(struct ata_port *ap, struct ata_taskfile *tf)
331 ap->ops->tf_load(ap, tf);
337 * ata_tf_to_host_nolock - issue ATA taskfile to host controller
338 * @ap: port to which command is being issued
339 * @tf: ATA taskfile register set
341 * Issues ATA taskfile register set to ATA host controller,
342 * with proper synchronization with interrupt handler and
346 * spin_lock_irqsave(host_set lock)
349 void ata_tf_to_host_nolock(struct ata_port *ap, struct ata_taskfile *tf)
351 ap->ops->tf_load(ap, tf);
352 ap->ops->exec_command(ap, tf);
356 * ata_tf_read_pio - input device's ATA taskfile shadow registers
357 * @ap: Port from which input is read
358 * @tf: ATA taskfile register set for storing input
360 * Reads ATA taskfile registers for currently-selected device
364 * Inherited from caller.
367 static void ata_tf_read_pio(struct ata_port *ap, struct ata_taskfile *tf)
369 struct ata_ioports *ioaddr = &ap->ioaddr;
371 tf->nsect = inb(ioaddr->nsect_addr);
372 tf->lbal = inb(ioaddr->lbal_addr);
373 tf->lbam = inb(ioaddr->lbam_addr);
374 tf->lbah = inb(ioaddr->lbah_addr);
375 tf->device = inb(ioaddr->device_addr);
377 if (tf->flags & ATA_TFLAG_LBA48) {
378 outb(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
379 tf->hob_feature = inb(ioaddr->error_addr);
380 tf->hob_nsect = inb(ioaddr->nsect_addr);
381 tf->hob_lbal = inb(ioaddr->lbal_addr);
382 tf->hob_lbam = inb(ioaddr->lbam_addr);
383 tf->hob_lbah = inb(ioaddr->lbah_addr);
388 * ata_tf_read_mmio - input device's ATA taskfile shadow registers
389 * @ap: Port from which input is read
390 * @tf: ATA taskfile register set for storing input
392 * Reads ATA taskfile registers for currently-selected device
396 * Inherited from caller.
399 static void ata_tf_read_mmio(struct ata_port *ap, struct ata_taskfile *tf)
401 struct ata_ioports *ioaddr = &ap->ioaddr;
403 tf->nsect = readb((void __iomem *)ioaddr->nsect_addr);
404 tf->lbal = readb((void __iomem *)ioaddr->lbal_addr);
405 tf->lbam = readb((void __iomem *)ioaddr->lbam_addr);
406 tf->lbah = readb((void __iomem *)ioaddr->lbah_addr);
407 tf->device = readb((void __iomem *)ioaddr->device_addr);
409 if (tf->flags & ATA_TFLAG_LBA48) {
410 writeb(tf->ctl | ATA_HOB, (void __iomem *) ap->ioaddr.ctl_addr);
411 tf->hob_feature = readb((void __iomem *)ioaddr->error_addr);
412 tf->hob_nsect = readb((void __iomem *)ioaddr->nsect_addr);
413 tf->hob_lbal = readb((void __iomem *)ioaddr->lbal_addr);
414 tf->hob_lbam = readb((void __iomem *)ioaddr->lbam_addr);
415 tf->hob_lbah = readb((void __iomem *)ioaddr->lbah_addr);
421 * ata_tf_read - input device's ATA taskfile shadow registers
422 * @ap: Port from which input is read
423 * @tf: ATA taskfile register set for storing input
425 * Reads ATA taskfile registers for currently-selected device
428 * Reads nsect, lbal, lbam, lbah, and device. If ATA_TFLAG_LBA48
429 * is set, also reads the hob registers.
431 * May be used as the tf_read() entry in ata_port_operations.
434 * Inherited from caller.
436 void ata_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
438 if (ap->flags & ATA_FLAG_MMIO)
439 ata_tf_read_mmio(ap, tf);
441 ata_tf_read_pio(ap, tf);
445 * ata_check_status_pio - Read device status reg & clear interrupt
446 * @ap: port where the device is
448 * Reads ATA taskfile status register for currently-selected device
449 * and return its value. This also clears pending interrupts
453 * Inherited from caller.
455 static u8 ata_check_status_pio(struct ata_port *ap)
457 return inb(ap->ioaddr.status_addr);
461 * ata_check_status_mmio - Read device status reg & clear interrupt
462 * @ap: port where the device is
464 * Reads ATA taskfile status register for currently-selected device
465 * via MMIO and return its value. This also clears pending interrupts
469 * Inherited from caller.
471 static u8 ata_check_status_mmio(struct ata_port *ap)
473 return readb((void __iomem *) ap->ioaddr.status_addr);
478 * ata_check_status - Read device status reg & clear interrupt
479 * @ap: port where the device is
481 * Reads ATA taskfile status register for currently-selected device
482 * and return its value. This also clears pending interrupts
485 * May be used as the check_status() entry in ata_port_operations.
488 * Inherited from caller.
490 u8 ata_check_status(struct ata_port *ap)
492 if (ap->flags & ATA_FLAG_MMIO)
493 return ata_check_status_mmio(ap);
494 return ata_check_status_pio(ap);
499 * ata_altstatus - Read device alternate status reg
500 * @ap: port where the device is
502 * Reads ATA taskfile alternate status register for
503 * currently-selected device and return its value.
505 * Note: may NOT be used as the check_altstatus() entry in
506 * ata_port_operations.
509 * Inherited from caller.
511 u8 ata_altstatus(struct ata_port *ap)
513 if (ap->ops->check_altstatus)
514 return ap->ops->check_altstatus(ap);
516 if (ap->flags & ATA_FLAG_MMIO)
517 return readb((void __iomem *)ap->ioaddr.altstatus_addr);
518 return inb(ap->ioaddr.altstatus_addr);
523 * ata_chk_err - Read device error reg
524 * @ap: port where the device is
526 * Reads ATA taskfile error register for
527 * currently-selected device and return its value.
529 * Note: may NOT be used as the check_err() entry in
530 * ata_port_operations.
533 * Inherited from caller.
535 u8 ata_chk_err(struct ata_port *ap)
537 if (ap->ops->check_err)
538 return ap->ops->check_err(ap);
540 if (ap->flags & ATA_FLAG_MMIO) {
541 return readb((void __iomem *) ap->ioaddr.error_addr);
543 return inb(ap->ioaddr.error_addr);
547 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
548 * @tf: Taskfile to convert
549 * @fis: Buffer into which data will output
550 * @pmp: Port multiplier port
552 * Converts a standard ATA taskfile to a Serial ATA
553 * FIS structure (Register - Host to Device).
556 * Inherited from caller.
559 void ata_tf_to_fis(struct ata_taskfile *tf, u8 *fis, u8 pmp)
561 fis[0] = 0x27; /* Register - Host to Device FIS */
562 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
563 bit 7 indicates Command FIS */
564 fis[2] = tf->command;
565 fis[3] = tf->feature;
572 fis[8] = tf->hob_lbal;
573 fis[9] = tf->hob_lbam;
574 fis[10] = tf->hob_lbah;
575 fis[11] = tf->hob_feature;
578 fis[13] = tf->hob_nsect;
589 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
590 * @fis: Buffer from which data will be input
591 * @tf: Taskfile to output
593 * Converts a standard ATA taskfile to a Serial ATA
594 * FIS structure (Register - Host to Device).
597 * Inherited from caller.
600 void ata_tf_from_fis(u8 *fis, struct ata_taskfile *tf)
602 tf->command = fis[2]; /* status */
603 tf->feature = fis[3]; /* error */
610 tf->hob_lbal = fis[8];
611 tf->hob_lbam = fis[9];
612 tf->hob_lbah = fis[10];
615 tf->hob_nsect = fis[13];
619 * ata_prot_to_cmd - determine which read/write opcodes to use
620 * @protocol: ATA_PROT_xxx taskfile protocol
621 * @lba48: true is lba48 is present
623 * Given necessary input, determine which read/write commands
624 * to use to transfer data.
629 static int ata_prot_to_cmd(int protocol, int lba48)
631 int rcmd = 0, wcmd = 0;
636 rcmd = ATA_CMD_PIO_READ_EXT;
637 wcmd = ATA_CMD_PIO_WRITE_EXT;
639 rcmd = ATA_CMD_PIO_READ;
640 wcmd = ATA_CMD_PIO_WRITE;
646 rcmd = ATA_CMD_READ_EXT;
647 wcmd = ATA_CMD_WRITE_EXT;
650 wcmd = ATA_CMD_WRITE;
658 return rcmd | (wcmd << 8);
662 * ata_dev_set_protocol - set taskfile protocol and r/w commands
663 * @dev: device to examine and configure
665 * Examine the device configuration, after we have
666 * read the identify-device page and configured the
667 * data transfer mode. Set internal state related to
668 * the ATA taskfile protocol (pio, pio mult, dma, etc.)
669 * and calculate the proper read/write commands to use.
674 static void ata_dev_set_protocol(struct ata_device *dev)
676 int pio = (dev->flags & ATA_DFLAG_PIO);
677 int lba48 = (dev->flags & ATA_DFLAG_LBA48);
681 proto = dev->xfer_protocol = ATA_PROT_PIO;
683 proto = dev->xfer_protocol = ATA_PROT_DMA;
685 cmd = ata_prot_to_cmd(proto, lba48);
689 dev->read_cmd = cmd & 0xff;
690 dev->write_cmd = (cmd >> 8) & 0xff;
693 static const char * xfer_mode_str[] = {
713 * ata_udma_string - convert UDMA bit offset to string
714 * @mask: mask of bits supported; only highest bit counts.
716 * Determine string which represents the highest speed
717 * (highest bit in @udma_mask).
723 * Constant C string representing highest speed listed in
724 * @udma_mask, or the constant C string "<n/a>".
727 static const char *ata_mode_string(unsigned int mask)
731 for (i = 7; i >= 0; i--)
734 for (i = ATA_SHIFT_MWDMA + 2; i >= ATA_SHIFT_MWDMA; i--)
737 for (i = ATA_SHIFT_PIO + 4; i >= ATA_SHIFT_PIO; i--)
744 return xfer_mode_str[i];
748 * ata_pio_devchk - PATA device presence detection
749 * @ap: ATA channel to examine
750 * @device: Device to examine (starting at zero)
752 * This technique was originally described in
753 * Hale Landis's ATADRVR (www.ata-atapi.com), and
754 * later found its way into the ATA/ATAPI spec.
756 * Write a pattern to the ATA shadow registers,
757 * and if a device is present, it will respond by
758 * correctly storing and echoing back the
759 * ATA shadow register contents.
765 static unsigned int ata_pio_devchk(struct ata_port *ap,
768 struct ata_ioports *ioaddr = &ap->ioaddr;
771 ap->ops->dev_select(ap, device);
773 outb(0x55, ioaddr->nsect_addr);
774 outb(0xaa, ioaddr->lbal_addr);
776 outb(0xaa, ioaddr->nsect_addr);
777 outb(0x55, ioaddr->lbal_addr);
779 outb(0x55, ioaddr->nsect_addr);
780 outb(0xaa, ioaddr->lbal_addr);
782 nsect = inb(ioaddr->nsect_addr);
783 lbal = inb(ioaddr->lbal_addr);
785 if ((nsect == 0x55) && (lbal == 0xaa))
786 return 1; /* we found a device */
788 return 0; /* nothing found */
792 * ata_mmio_devchk - PATA device presence detection
793 * @ap: ATA channel to examine
794 * @device: Device to examine (starting at zero)
796 * This technique was originally described in
797 * Hale Landis's ATADRVR (www.ata-atapi.com), and
798 * later found its way into the ATA/ATAPI spec.
800 * Write a pattern to the ATA shadow registers,
801 * and if a device is present, it will respond by
802 * correctly storing and echoing back the
803 * ATA shadow register contents.
809 static unsigned int ata_mmio_devchk(struct ata_port *ap,
812 struct ata_ioports *ioaddr = &ap->ioaddr;
815 ap->ops->dev_select(ap, device);
817 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
818 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
820 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
821 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
823 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
824 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
826 nsect = readb((void __iomem *) ioaddr->nsect_addr);
827 lbal = readb((void __iomem *) ioaddr->lbal_addr);
829 if ((nsect == 0x55) && (lbal == 0xaa))
830 return 1; /* we found a device */
832 return 0; /* nothing found */
836 * ata_devchk - PATA device presence detection
837 * @ap: ATA channel to examine
838 * @device: Device to examine (starting at zero)
840 * Dispatch ATA device presence detection, depending
841 * on whether we are using PIO or MMIO to talk to the
842 * ATA shadow registers.
848 static unsigned int ata_devchk(struct ata_port *ap,
851 if (ap->flags & ATA_FLAG_MMIO)
852 return ata_mmio_devchk(ap, device);
853 return ata_pio_devchk(ap, device);
857 * ata_dev_classify - determine device type based on ATA-spec signature
858 * @tf: ATA taskfile register set for device to be identified
860 * Determine from taskfile register contents whether a device is
861 * ATA or ATAPI, as per "Signature and persistence" section
862 * of ATA/PI spec (volume 1, sect 5.14).
868 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
869 * the event of failure.
872 unsigned int ata_dev_classify(struct ata_taskfile *tf)
874 /* Apple's open source Darwin code hints that some devices only
875 * put a proper signature into the LBA mid/high registers,
876 * So, we only check those. It's sufficient for uniqueness.
879 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
880 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
881 DPRINTK("found ATA device by sig\n");
885 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
886 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
887 DPRINTK("found ATAPI device by sig\n");
888 return ATA_DEV_ATAPI;
891 DPRINTK("unknown device\n");
892 return ATA_DEV_UNKNOWN;
896 * ata_dev_try_classify - Parse returned ATA device signature
897 * @ap: ATA channel to examine
898 * @device: Device to examine (starting at zero)
900 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
901 * an ATA/ATAPI-defined set of values is placed in the ATA
902 * shadow registers, indicating the results of device detection
905 * Select the ATA device, and read the values from the ATA shadow
906 * registers. Then parse according to the Error register value,
907 * and the spec-defined values examined by ata_dev_classify().
913 static u8 ata_dev_try_classify(struct ata_port *ap, unsigned int device)
915 struct ata_device *dev = &ap->device[device];
916 struct ata_taskfile tf;
920 ap->ops->dev_select(ap, device);
922 memset(&tf, 0, sizeof(tf));
924 err = ata_chk_err(ap);
925 ap->ops->tf_read(ap, &tf);
927 dev->class = ATA_DEV_NONE;
929 /* see if device passed diags */
932 else if ((device == 0) && (err == 0x81))
937 /* determine if device if ATA or ATAPI */
938 class = ata_dev_classify(&tf);
939 if (class == ATA_DEV_UNKNOWN)
941 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
950 * ata_dev_id_string - Convert IDENTIFY DEVICE page into string
951 * @id: IDENTIFY DEVICE results we will examine
952 * @s: string into which data is output
953 * @ofs: offset into identify device page
954 * @len: length of string to return. must be an even number.
956 * The strings in the IDENTIFY DEVICE page are broken up into
957 * 16-bit chunks. Run through the string, and output each
958 * 8-bit chunk linearly, regardless of platform.
964 void ata_dev_id_string(u16 *id, unsigned char *s,
965 unsigned int ofs, unsigned int len)
985 * ata_noop_dev_select - Select device 0/1 on ATA bus
986 * @ap: ATA channel to manipulate
987 * @device: ATA device (numbered from zero) to select
989 * This function performs no actual function.
991 * May be used as the dev_select() entry in ata_port_operations.
996 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
1002 * ata_std_dev_select - Select device 0/1 on ATA bus
1003 * @ap: ATA channel to manipulate
1004 * @device: ATA device (numbered from zero) to select
1006 * Use the method defined in the ATA specification to
1007 * make either device 0, or device 1, active on the
1008 * ATA channel. Works with both PIO and MMIO.
1010 * May be used as the dev_select() entry in ata_port_operations.
1016 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
1021 tmp = ATA_DEVICE_OBS;
1023 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1025 if (ap->flags & ATA_FLAG_MMIO) {
1026 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
1028 outb(tmp, ap->ioaddr.device_addr);
1030 ata_pause(ap); /* needed; also flushes, for mmio */
1034 * ata_dev_select - Select device 0/1 on ATA bus
1035 * @ap: ATA channel to manipulate
1036 * @device: ATA device (numbered from zero) to select
1037 * @wait: non-zero to wait for Status register BSY bit to clear
1038 * @can_sleep: non-zero if context allows sleeping
1040 * Use the method defined in the ATA specification to
1041 * make either device 0, or device 1, active on the
1044 * This is a high-level version of ata_std_dev_select(),
1045 * which additionally provides the services of inserting
1046 * the proper pauses and status polling, where needed.
1052 void ata_dev_select(struct ata_port *ap, unsigned int device,
1053 unsigned int wait, unsigned int can_sleep)
1055 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
1056 ap->id, device, wait);
1061 ap->ops->dev_select(ap, device);
1064 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
1071 * ata_dump_id - IDENTIFY DEVICE info debugging output
1072 * @dev: Device whose IDENTIFY DEVICE page we will dump
1074 * Dump selected 16-bit words from a detected device's
1075 * IDENTIFY PAGE page.
1081 static inline void ata_dump_id(struct ata_device *dev)
1083 DPRINTK("49==0x%04x "
1093 DPRINTK("80==0x%04x "
1103 DPRINTK("88==0x%04x "
1110 * ata_dev_identify - obtain IDENTIFY x DEVICE page
1111 * @ap: port on which device we wish to probe resides
1112 * @device: device bus address, starting at zero
1114 * Following bus reset, we issue the IDENTIFY [PACKET] DEVICE
1115 * command, and read back the 512-byte device information page.
1116 * The device information page is fed to us via the standard
1117 * PIO-IN protocol, but we hand-code it here. (TODO: investigate
1118 * using standard PIO-IN paths)
1120 * After reading the device information page, we use several
1121 * bits of information from it to initialize data structures
1122 * that will be used during the lifetime of the ata_device.
1123 * Other data from the info page is used to disqualify certain
1124 * older ATA devices we do not wish to support.
1127 * Inherited from caller. Some functions called by this function
1128 * obtain the host_set lock.
1131 static void ata_dev_identify(struct ata_port *ap, unsigned int device)
1133 struct ata_device *dev = &ap->device[device];
1136 unsigned long xfer_modes;
1138 unsigned int using_edd;
1139 DECLARE_COMPLETION(wait);
1140 struct ata_queued_cmd *qc;
1141 unsigned long flags;
1144 if (!ata_dev_present(dev)) {
1145 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
1150 if (ap->flags & (ATA_FLAG_SRST | ATA_FLAG_SATA_RESET))
1155 DPRINTK("ENTER, host %u, dev %u\n", ap->id, device);
1157 assert (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ATAPI ||
1158 dev->class == ATA_DEV_NONE);
1160 ata_dev_select(ap, device, 1, 1); /* select device 0/1 */
1162 qc = ata_qc_new_init(ap, dev);
1165 ata_sg_init_one(qc, dev->id, sizeof(dev->id));
1166 qc->dma_dir = DMA_FROM_DEVICE;
1167 qc->tf.protocol = ATA_PROT_PIO;
1171 if (dev->class == ATA_DEV_ATA) {
1172 qc->tf.command = ATA_CMD_ID_ATA;
1173 DPRINTK("do ATA identify\n");
1175 qc->tf.command = ATA_CMD_ID_ATAPI;
1176 DPRINTK("do ATAPI identify\n");
1179 qc->waiting = &wait;
1180 qc->complete_fn = ata_qc_complete_noop;
1182 spin_lock_irqsave(&ap->host_set->lock, flags);
1183 rc = ata_qc_issue(qc);
1184 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1189 wait_for_completion(&wait);
1191 status = ata_chk_status(ap);
1192 if (status & ATA_ERR) {
1194 * arg! EDD works for all test cases, but seems to return
1195 * the ATA signature for some ATAPI devices. Until the
1196 * reason for this is found and fixed, we fix up the mess
1197 * here. If IDENTIFY DEVICE returns command aborted
1198 * (as ATAPI devices do), then we issue an
1199 * IDENTIFY PACKET DEVICE.
1201 * ATA software reset (SRST, the default) does not appear
1202 * to have this problem.
1204 if ((using_edd) && (qc->tf.command == ATA_CMD_ID_ATA)) {
1205 u8 err = ata_chk_err(ap);
1206 if (err & ATA_ABORTED) {
1207 dev->class = ATA_DEV_ATAPI;
1218 swap_buf_le16(dev->id, ATA_ID_WORDS);
1220 /* print device capabilities */
1221 printk(KERN_DEBUG "ata%u: dev %u cfg "
1222 "49:%04x 82:%04x 83:%04x 84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1223 ap->id, device, dev->id[49],
1224 dev->id[82], dev->id[83], dev->id[84],
1225 dev->id[85], dev->id[86], dev->id[87],
1229 * common ATA, ATAPI feature tests
1232 /* we require LBA and DMA support (bits 8 & 9 of word 49) */
1233 if (!ata_id_has_dma(dev->id) || !ata_id_has_lba(dev->id)) {
1234 printk(KERN_DEBUG "ata%u: no dma/lba\n", ap->id);
1238 /* quick-n-dirty find max transfer mode; for printk only */
1239 xfer_modes = dev->id[ATA_ID_UDMA_MODES];
1241 xfer_modes = (dev->id[ATA_ID_MWDMA_MODES]) << ATA_SHIFT_MWDMA;
1243 xfer_modes = (dev->id[ATA_ID_PIO_MODES]) << (ATA_SHIFT_PIO + 3);
1244 xfer_modes |= (0x7 << ATA_SHIFT_PIO);
1249 /* ATA-specific feature tests */
1250 if (dev->class == ATA_DEV_ATA) {
1251 if (!ata_id_is_ata(dev->id)) /* sanity check */
1254 tmp = dev->id[ATA_ID_MAJOR_VER];
1255 for (i = 14; i >= 1; i--)
1259 /* we require at least ATA-3 */
1261 printk(KERN_DEBUG "ata%u: no ATA-3\n", ap->id);
1265 if (ata_id_has_lba48(dev->id)) {
1266 dev->flags |= ATA_DFLAG_LBA48;
1267 dev->n_sectors = ata_id_u64(dev->id, 100);
1269 dev->n_sectors = ata_id_u32(dev->id, 60);
1272 ap->host->max_cmd_len = 16;
1274 /* print device info to dmesg */
1275 printk(KERN_INFO "ata%u: dev %u ATA, max %s, %Lu sectors:%s\n",
1277 ata_mode_string(xfer_modes),
1278 (unsigned long long)dev->n_sectors,
1279 dev->flags & ATA_DFLAG_LBA48 ? " lba48" : "");
1282 /* ATAPI-specific feature tests */
1284 if (ata_id_is_ata(dev->id)) /* sanity check */
1287 rc = atapi_cdb_len(dev->id);
1288 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1289 printk(KERN_WARNING "ata%u: unsupported CDB len\n", ap->id);
1292 ap->cdb_len = (unsigned int) rc;
1293 ap->host->max_cmd_len = (unsigned char) ap->cdb_len;
1295 /* print device info to dmesg */
1296 printk(KERN_INFO "ata%u: dev %u ATAPI, max %s\n",
1298 ata_mode_string(xfer_modes));
1301 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
1305 printk(KERN_WARNING "ata%u: dev %u not supported, ignoring\n",
1308 dev->class++; /* converts ATA_DEV_xxx into ATA_DEV_xxx_UNSUP */
1309 DPRINTK("EXIT, err\n");
1313 static inline u8 ata_dev_knobble(struct ata_port *ap)
1315 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(ap->device->id)));
1319 * ata_dev_config - Run device specific handlers and check for
1320 * SATA->PATA bridges
1327 void ata_dev_config(struct ata_port *ap, unsigned int i)
1329 /* limit bridge transfers to udma5, 200 sectors */
1330 if (ata_dev_knobble(ap)) {
1331 printk(KERN_INFO "ata%u(%u): applying bridge limits\n",
1332 ap->id, ap->device->devno);
1333 ap->udma_mask &= ATA_UDMA5;
1334 ap->host->max_sectors = ATA_MAX_SECTORS;
1335 ap->host->hostt->max_sectors = ATA_MAX_SECTORS;
1336 ap->device->flags |= ATA_DFLAG_LOCK_SECTORS;
1339 if (ap->ops->dev_config)
1340 ap->ops->dev_config(ap, &ap->device[i]);
1344 * ata_bus_probe - Reset and probe ATA bus
1347 * Master ATA bus probing function. Initiates a hardware-dependent
1348 * bus reset, then attempts to identify any devices found on
1352 * PCI/etc. bus probe sem.
1355 * Zero on success, non-zero on error.
1358 static int ata_bus_probe(struct ata_port *ap)
1360 unsigned int i, found = 0;
1362 ap->ops->phy_reset(ap);
1363 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1366 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1367 ata_dev_identify(ap, i);
1368 if (ata_dev_present(&ap->device[i])) {
1370 ata_dev_config(ap,i);
1374 if ((!found) || (ap->flags & ATA_FLAG_PORT_DISABLED))
1375 goto err_out_disable;
1378 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1379 goto err_out_disable;
1384 ap->ops->port_disable(ap);
1390 * ata_port_probe - Mark port as enabled
1391 * @ap: Port for which we indicate enablement
1393 * Modify @ap data structure such that the system
1394 * thinks that the entire port is enabled.
1396 * LOCKING: host_set lock, or some other form of
1400 void ata_port_probe(struct ata_port *ap)
1402 ap->flags &= ~ATA_FLAG_PORT_DISABLED;
1406 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1407 * @ap: SATA port associated with target SATA PHY.
1409 * This function issues commands to standard SATA Sxxx
1410 * PHY registers, to wake up the phy (and device), and
1411 * clear any reset condition.
1414 * PCI/etc. bus probe sem.
1417 void __sata_phy_reset(struct ata_port *ap)
1420 unsigned long timeout = jiffies + (HZ * 5);
1422 if (ap->flags & ATA_FLAG_SATA_RESET) {
1423 /* issue phy wake/reset */
1424 scr_write_flush(ap, SCR_CONTROL, 0x301);
1425 /* Couldn't find anything in SATA I/II specs, but
1426 * AHCI-1.1 10.4.2 says at least 1 ms. */
1429 scr_write_flush(ap, SCR_CONTROL, 0x300); /* phy wake/clear reset */
1431 /* wait for phy to become ready, if necessary */
1434 sstatus = scr_read(ap, SCR_STATUS);
1435 if ((sstatus & 0xf) != 1)
1437 } while (time_before(jiffies, timeout));
1439 /* TODO: phy layer with polling, timeouts, etc. */
1440 if (sata_dev_present(ap))
1443 sstatus = scr_read(ap, SCR_STATUS);
1444 printk(KERN_INFO "ata%u: no device found (phy stat %08x)\n",
1446 ata_port_disable(ap);
1449 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1452 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1453 ata_port_disable(ap);
1457 ap->cbl = ATA_CBL_SATA;
1461 * sata_phy_reset - Reset SATA bus.
1462 * @ap: SATA port associated with target SATA PHY.
1464 * This function resets the SATA bus, and then probes
1465 * the bus for devices.
1468 * PCI/etc. bus probe sem.
1471 void sata_phy_reset(struct ata_port *ap)
1473 __sata_phy_reset(ap);
1474 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1480 * ata_port_disable - Disable port.
1481 * @ap: Port to be disabled.
1483 * Modify @ap data structure such that the system
1484 * thinks that the entire port is disabled, and should
1485 * never attempt to probe or communicate with devices
1488 * LOCKING: host_set lock, or some other form of
1492 void ata_port_disable(struct ata_port *ap)
1494 ap->device[0].class = ATA_DEV_NONE;
1495 ap->device[1].class = ATA_DEV_NONE;
1496 ap->flags |= ATA_FLAG_PORT_DISABLED;
1502 } xfer_mode_classes[] = {
1503 { ATA_SHIFT_UDMA, XFER_UDMA_0 },
1504 { ATA_SHIFT_MWDMA, XFER_MW_DMA_0 },
1505 { ATA_SHIFT_PIO, XFER_PIO_0 },
1508 static inline u8 base_from_shift(unsigned int shift)
1512 for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++)
1513 if (xfer_mode_classes[i].shift == shift)
1514 return xfer_mode_classes[i].base;
1519 static void ata_dev_set_mode(struct ata_port *ap, struct ata_device *dev)
1524 if (!ata_dev_present(dev) || (ap->flags & ATA_FLAG_PORT_DISABLED))
1527 if (dev->xfer_shift == ATA_SHIFT_PIO)
1528 dev->flags |= ATA_DFLAG_PIO;
1530 ata_dev_set_xfermode(ap, dev);
1532 base = base_from_shift(dev->xfer_shift);
1533 ofs = dev->xfer_mode - base;
1534 idx = ofs + dev->xfer_shift;
1535 WARN_ON(idx >= ARRAY_SIZE(xfer_mode_str));
1537 DPRINTK("idx=%d xfer_shift=%u, xfer_mode=0x%x, base=0x%x, offset=%d\n",
1538 idx, dev->xfer_shift, (int)dev->xfer_mode, (int)base, ofs);
1540 printk(KERN_INFO "ata%u: dev %u configured for %s\n",
1541 ap->id, dev->devno, xfer_mode_str[idx]);
1544 static int ata_host_set_pio(struct ata_port *ap)
1550 mask = ata_get_mode_mask(ap, ATA_SHIFT_PIO);
1553 printk(KERN_WARNING "ata%u: no PIO support\n", ap->id);
1557 base = base_from_shift(ATA_SHIFT_PIO);
1558 xfer_mode = base + x;
1560 DPRINTK("base 0x%x xfer_mode 0x%x mask 0x%x x %d\n",
1561 (int)base, (int)xfer_mode, mask, x);
1563 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1564 struct ata_device *dev = &ap->device[i];
1565 if (ata_dev_present(dev)) {
1566 dev->pio_mode = xfer_mode;
1567 dev->xfer_mode = xfer_mode;
1568 dev->xfer_shift = ATA_SHIFT_PIO;
1569 if (ap->ops->set_piomode)
1570 ap->ops->set_piomode(ap, dev);
1577 static void ata_host_set_dma(struct ata_port *ap, u8 xfer_mode,
1578 unsigned int xfer_shift)
1582 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1583 struct ata_device *dev = &ap->device[i];
1584 if (ata_dev_present(dev)) {
1585 dev->dma_mode = xfer_mode;
1586 dev->xfer_mode = xfer_mode;
1587 dev->xfer_shift = xfer_shift;
1588 if (ap->ops->set_dmamode)
1589 ap->ops->set_dmamode(ap, dev);
1595 * ata_set_mode - Program timings and issue SET FEATURES - XFER
1596 * @ap: port on which timings will be programmed
1598 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.).
1601 * PCI/etc. bus probe sem.
1604 static void ata_set_mode(struct ata_port *ap)
1606 unsigned int i, xfer_shift;
1610 /* step 1: always set host PIO timings */
1611 rc = ata_host_set_pio(ap);
1615 /* step 2: choose the best data xfer mode */
1616 xfer_mode = xfer_shift = 0;
1617 rc = ata_choose_xfer_mode(ap, &xfer_mode, &xfer_shift);
1621 /* step 3: if that xfer mode isn't PIO, set host DMA timings */
1622 if (xfer_shift != ATA_SHIFT_PIO)
1623 ata_host_set_dma(ap, xfer_mode, xfer_shift);
1625 /* step 4: update devices' xfer mode */
1626 ata_dev_set_mode(ap, &ap->device[0]);
1627 ata_dev_set_mode(ap, &ap->device[1]);
1629 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1632 if (ap->ops->post_set_mode)
1633 ap->ops->post_set_mode(ap);
1635 for (i = 0; i < 2; i++) {
1636 struct ata_device *dev = &ap->device[i];
1637 ata_dev_set_protocol(dev);
1643 ata_port_disable(ap);
1647 * ata_busy_sleep - sleep until BSY clears, or timeout
1648 * @ap: port containing status register to be polled
1649 * @tmout_pat: impatience timeout
1650 * @tmout: overall timeout
1652 * Sleep until ATA Status register bit BSY clears,
1653 * or a timeout occurs.
1659 static unsigned int ata_busy_sleep (struct ata_port *ap,
1660 unsigned long tmout_pat,
1661 unsigned long tmout)
1663 unsigned long timer_start, timeout;
1666 status = ata_busy_wait(ap, ATA_BUSY, 300);
1667 timer_start = jiffies;
1668 timeout = timer_start + tmout_pat;
1669 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1671 status = ata_busy_wait(ap, ATA_BUSY, 3);
1674 if (status & ATA_BUSY)
1675 printk(KERN_WARNING "ata%u is slow to respond, "
1676 "please be patient\n", ap->id);
1678 timeout = timer_start + tmout;
1679 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1681 status = ata_chk_status(ap);
1684 if (status & ATA_BUSY) {
1685 printk(KERN_ERR "ata%u failed to respond (%lu secs)\n",
1686 ap->id, tmout / HZ);
1693 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
1695 struct ata_ioports *ioaddr = &ap->ioaddr;
1696 unsigned int dev0 = devmask & (1 << 0);
1697 unsigned int dev1 = devmask & (1 << 1);
1698 unsigned long timeout;
1700 /* if device 0 was found in ata_devchk, wait for its
1704 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1706 /* if device 1 was found in ata_devchk, wait for
1707 * register access, then wait for BSY to clear
1709 timeout = jiffies + ATA_TMOUT_BOOT;
1713 ap->ops->dev_select(ap, 1);
1714 if (ap->flags & ATA_FLAG_MMIO) {
1715 nsect = readb((void __iomem *) ioaddr->nsect_addr);
1716 lbal = readb((void __iomem *) ioaddr->lbal_addr);
1718 nsect = inb(ioaddr->nsect_addr);
1719 lbal = inb(ioaddr->lbal_addr);
1721 if ((nsect == 1) && (lbal == 1))
1723 if (time_after(jiffies, timeout)) {
1727 msleep(50); /* give drive a breather */
1730 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1732 /* is all this really necessary? */
1733 ap->ops->dev_select(ap, 0);
1735 ap->ops->dev_select(ap, 1);
1737 ap->ops->dev_select(ap, 0);
1741 * ata_bus_edd - Issue EXECUTE DEVICE DIAGNOSTIC command.
1742 * @ap: Port to reset and probe
1744 * Use the EXECUTE DEVICE DIAGNOSTIC command to reset and
1745 * probe the bus. Not often used these days.
1748 * PCI/etc. bus probe sem.
1752 static unsigned int ata_bus_edd(struct ata_port *ap)
1754 struct ata_taskfile tf;
1756 /* set up execute-device-diag (bus reset) taskfile */
1757 /* also, take interrupts to a known state (disabled) */
1758 DPRINTK("execute-device-diag\n");
1759 ata_tf_init(ap, &tf, 0);
1761 tf.command = ATA_CMD_EDD;
1762 tf.protocol = ATA_PROT_NODATA;
1765 ata_tf_to_host(ap, &tf);
1767 /* spec says at least 2ms. but who knows with those
1768 * crazy ATAPI devices...
1772 return ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1775 static unsigned int ata_bus_softreset(struct ata_port *ap,
1776 unsigned int devmask)
1778 struct ata_ioports *ioaddr = &ap->ioaddr;
1780 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
1782 /* software reset. causes dev0 to be selected */
1783 if (ap->flags & ATA_FLAG_MMIO) {
1784 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1785 udelay(20); /* FIXME: flush */
1786 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
1787 udelay(20); /* FIXME: flush */
1788 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1790 outb(ap->ctl, ioaddr->ctl_addr);
1792 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1794 outb(ap->ctl, ioaddr->ctl_addr);
1797 /* spec mandates ">= 2ms" before checking status.
1798 * We wait 150ms, because that was the magic delay used for
1799 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
1800 * between when the ATA command register is written, and then
1801 * status is checked. Because waiting for "a while" before
1802 * checking status is fine, post SRST, we perform this magic
1803 * delay here as well.
1807 ata_bus_post_reset(ap, devmask);
1813 * ata_bus_reset - reset host port and associated ATA channel
1814 * @ap: port to reset
1816 * This is typically the first time we actually start issuing
1817 * commands to the ATA channel. We wait for BSY to clear, then
1818 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
1819 * result. Determine what devices, if any, are on the channel
1820 * by looking at the device 0/1 error register. Look at the signature
1821 * stored in each device's taskfile registers, to determine if
1822 * the device is ATA or ATAPI.
1825 * PCI/etc. bus probe sem.
1826 * Obtains host_set lock.
1829 * Sets ATA_FLAG_PORT_DISABLED if bus reset fails.
1832 void ata_bus_reset(struct ata_port *ap)
1834 struct ata_ioports *ioaddr = &ap->ioaddr;
1835 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
1837 unsigned int dev0, dev1 = 0, rc = 0, devmask = 0;
1839 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
1841 /* determine if device 0/1 are present */
1842 if (ap->flags & ATA_FLAG_SATA_RESET)
1845 dev0 = ata_devchk(ap, 0);
1847 dev1 = ata_devchk(ap, 1);
1851 devmask |= (1 << 0);
1853 devmask |= (1 << 1);
1855 /* select device 0 again */
1856 ap->ops->dev_select(ap, 0);
1858 /* issue bus reset */
1859 if (ap->flags & ATA_FLAG_SRST)
1860 rc = ata_bus_softreset(ap, devmask);
1861 else if ((ap->flags & ATA_FLAG_SATA_RESET) == 0) {
1862 /* set up device control */
1863 if (ap->flags & ATA_FLAG_MMIO)
1864 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1866 outb(ap->ctl, ioaddr->ctl_addr);
1867 rc = ata_bus_edd(ap);
1874 * determine by signature whether we have ATA or ATAPI devices
1876 err = ata_dev_try_classify(ap, 0);
1877 if ((slave_possible) && (err != 0x81))
1878 ata_dev_try_classify(ap, 1);
1880 /* re-enable interrupts */
1881 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
1884 /* is double-select really necessary? */
1885 if (ap->device[1].class != ATA_DEV_NONE)
1886 ap->ops->dev_select(ap, 1);
1887 if (ap->device[0].class != ATA_DEV_NONE)
1888 ap->ops->dev_select(ap, 0);
1890 /* if no devices were detected, disable this port */
1891 if ((ap->device[0].class == ATA_DEV_NONE) &&
1892 (ap->device[1].class == ATA_DEV_NONE))
1895 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
1896 /* set up device control for ATA_FLAG_SATA_RESET */
1897 if (ap->flags & ATA_FLAG_MMIO)
1898 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1900 outb(ap->ctl, ioaddr->ctl_addr);
1907 printk(KERN_ERR "ata%u: disabling port\n", ap->id);
1908 ap->ops->port_disable(ap);
1913 static void ata_pr_blacklisted(struct ata_port *ap, struct ata_device *dev)
1915 printk(KERN_WARNING "ata%u: dev %u is on DMA blacklist, disabling DMA\n",
1916 ap->id, dev->devno);
1919 static const char * ata_dma_blacklist [] = {
1938 "Toshiba CD-ROM XM-6202B",
1939 "TOSHIBA CD-ROM XM-1702BC",
1941 "E-IDE CD-ROM CR-840",
1944 "SAMSUNG CD-ROM SC-148C",
1945 "SAMSUNG CD-ROM SC",
1947 "ATAPI CD-ROM DRIVE 40X MAXIMUM",
1951 static int ata_dma_blacklisted(struct ata_port *ap, struct ata_device *dev)
1953 unsigned char model_num[40];
1958 ata_dev_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
1961 len = strnlen(s, sizeof(model_num));
1963 /* ATAPI specifies that empty space is blank-filled; remove blanks */
1964 while ((len > 0) && (s[len - 1] == ' ')) {
1969 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i++)
1970 if (!strncmp(ata_dma_blacklist[i], s, len))
1976 static unsigned int ata_get_mode_mask(struct ata_port *ap, int shift)
1978 struct ata_device *master, *slave;
1981 master = &ap->device[0];
1982 slave = &ap->device[1];
1984 assert (ata_dev_present(master) || ata_dev_present(slave));
1986 if (shift == ATA_SHIFT_UDMA) {
1987 mask = ap->udma_mask;
1988 if (ata_dev_present(master)) {
1989 mask &= (master->id[ATA_ID_UDMA_MODES] & 0xff);
1990 if (ata_dma_blacklisted(ap, master)) {
1992 ata_pr_blacklisted(ap, master);
1995 if (ata_dev_present(slave)) {
1996 mask &= (slave->id[ATA_ID_UDMA_MODES] & 0xff);
1997 if (ata_dma_blacklisted(ap, slave)) {
1999 ata_pr_blacklisted(ap, slave);
2003 else if (shift == ATA_SHIFT_MWDMA) {
2004 mask = ap->mwdma_mask;
2005 if (ata_dev_present(master)) {
2006 mask &= (master->id[ATA_ID_MWDMA_MODES] & 0x07);
2007 if (ata_dma_blacklisted(ap, master)) {
2009 ata_pr_blacklisted(ap, master);
2012 if (ata_dev_present(slave)) {
2013 mask &= (slave->id[ATA_ID_MWDMA_MODES] & 0x07);
2014 if (ata_dma_blacklisted(ap, slave)) {
2016 ata_pr_blacklisted(ap, slave);
2020 else if (shift == ATA_SHIFT_PIO) {
2021 mask = ap->pio_mask;
2022 if (ata_dev_present(master)) {
2023 /* spec doesn't return explicit support for
2024 * PIO0-2, so we fake it
2026 u16 tmp_mode = master->id[ATA_ID_PIO_MODES] & 0x03;
2031 if (ata_dev_present(slave)) {
2032 /* spec doesn't return explicit support for
2033 * PIO0-2, so we fake it
2035 u16 tmp_mode = slave->id[ATA_ID_PIO_MODES] & 0x03;
2042 mask = 0xffffffff; /* shut up compiler warning */
2049 /* find greatest bit */
2050 static int fgb(u32 bitmap)
2055 for (i = 0; i < 32; i++)
2056 if (bitmap & (1 << i))
2063 * ata_choose_xfer_mode - attempt to find best transfer mode
2064 * @ap: Port for which an xfer mode will be selected
2065 * @xfer_mode_out: (output) SET FEATURES - XFER MODE code
2066 * @xfer_shift_out: (output) bit shift that selects this mode
2068 * Based on host and device capabilities, determine the
2069 * maximum transfer mode that is amenable to all.
2072 * PCI/etc. bus probe sem.
2075 * Zero on success, negative on error.
2078 static int ata_choose_xfer_mode(struct ata_port *ap,
2080 unsigned int *xfer_shift_out)
2082 unsigned int mask, shift;
2085 for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++) {
2086 shift = xfer_mode_classes[i].shift;
2087 mask = ata_get_mode_mask(ap, shift);
2091 *xfer_mode_out = xfer_mode_classes[i].base + x;
2092 *xfer_shift_out = shift;
2101 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
2102 * @ap: Port associated with device @dev
2103 * @dev: Device to which command will be sent
2105 * Issue SET FEATURES - XFER MODE command to device @dev
2109 * PCI/etc. bus probe sem.
2112 static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev)
2114 DECLARE_COMPLETION(wait);
2115 struct ata_queued_cmd *qc;
2117 unsigned long flags;
2119 /* set up set-features taskfile */
2120 DPRINTK("set features - xfer mode\n");
2122 qc = ata_qc_new_init(ap, dev);
2125 qc->tf.command = ATA_CMD_SET_FEATURES;
2126 qc->tf.feature = SETFEATURES_XFER;
2127 qc->tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2128 qc->tf.protocol = ATA_PROT_NODATA;
2129 qc->tf.nsect = dev->xfer_mode;
2131 qc->waiting = &wait;
2132 qc->complete_fn = ata_qc_complete_noop;
2134 spin_lock_irqsave(&ap->host_set->lock, flags);
2135 rc = ata_qc_issue(qc);
2136 spin_unlock_irqrestore(&ap->host_set->lock, flags);
2139 ata_port_disable(ap);
2141 wait_for_completion(&wait);
2147 * ata_sg_clean - Unmap DMA memory associated with command
2148 * @qc: Command containing DMA memory to be released
2150 * Unmap all mapped DMA memory associated with this command.
2153 * spin_lock_irqsave(host_set lock)
2156 static void ata_sg_clean(struct ata_queued_cmd *qc)
2158 struct ata_port *ap = qc->ap;
2159 struct scatterlist *sg = qc->sg;
2160 int dir = qc->dma_dir;
2162 assert(qc->flags & ATA_QCFLAG_DMAMAP);
2165 if (qc->flags & ATA_QCFLAG_SINGLE)
2166 assert(qc->n_elem == 1);
2168 DPRINTK("unmapping %u sg elements\n", qc->n_elem);
2170 if (qc->flags & ATA_QCFLAG_SG)
2171 dma_unmap_sg(ap->host_set->dev, sg, qc->n_elem, dir);
2173 dma_unmap_single(ap->host_set->dev, sg_dma_address(&sg[0]),
2174 sg_dma_len(&sg[0]), dir);
2176 qc->flags &= ~ATA_QCFLAG_DMAMAP;
2181 * ata_fill_sg - Fill PCI IDE PRD table
2182 * @qc: Metadata associated with taskfile to be transferred
2184 * Fill PCI IDE PRD (scatter-gather) table with segments
2185 * associated with the current disk command.
2188 * spin_lock_irqsave(host_set lock)
2191 static void ata_fill_sg(struct ata_queued_cmd *qc)
2193 struct scatterlist *sg = qc->sg;
2194 struct ata_port *ap = qc->ap;
2195 unsigned int idx, nelem;
2198 assert(qc->n_elem > 0);
2201 for (nelem = qc->n_elem; nelem; nelem--,sg++) {
2205 /* determine if physical DMA addr spans 64K boundary.
2206 * Note h/w doesn't support 64-bit, so we unconditionally
2207 * truncate dma_addr_t to u32.
2209 addr = (u32) sg_dma_address(sg);
2210 sg_len = sg_dma_len(sg);
2213 offset = addr & 0xffff;
2215 if ((offset + sg_len) > 0x10000)
2216 len = 0x10000 - offset;
2218 ap->prd[idx].addr = cpu_to_le32(addr);
2219 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
2220 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
2229 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2232 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
2233 * @qc: Metadata associated with taskfile to check
2235 * Allow low-level driver to filter ATA PACKET commands, returning
2236 * a status indicating whether or not it is OK to use DMA for the
2237 * supplied PACKET command.
2240 * spin_lock_irqsave(host_set lock)
2242 * RETURNS: 0 when ATAPI DMA can be used
2245 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
2247 struct ata_port *ap = qc->ap;
2248 int rc = 0; /* Assume ATAPI DMA is OK by default */
2250 if (ap->ops->check_atapi_dma)
2251 rc = ap->ops->check_atapi_dma(qc);
2256 * ata_qc_prep - Prepare taskfile for submission
2257 * @qc: Metadata associated with taskfile to be prepared
2259 * Prepare ATA taskfile for submission.
2262 * spin_lock_irqsave(host_set lock)
2264 void ata_qc_prep(struct ata_queued_cmd *qc)
2266 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2273 * ata_sg_init_one - Associate command with memory buffer
2274 * @qc: Command to be associated
2275 * @buf: Memory buffer
2276 * @buflen: Length of memory buffer, in bytes.
2278 * Initialize the data-related elements of queued_cmd @qc
2279 * to point to a single memory buffer, @buf of byte length @buflen.
2282 * spin_lock_irqsave(host_set lock)
2285 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
2287 struct scatterlist *sg;
2289 qc->flags |= ATA_QCFLAG_SINGLE;
2291 memset(&qc->sgent, 0, sizeof(qc->sgent));
2292 qc->sg = &qc->sgent;
2297 sg->page = virt_to_page(buf);
2298 sg->offset = (unsigned long) buf & ~PAGE_MASK;
2299 sg->length = buflen;
2303 * ata_sg_init - Associate command with scatter-gather table.
2304 * @qc: Command to be associated
2305 * @sg: Scatter-gather table.
2306 * @n_elem: Number of elements in s/g table.
2308 * Initialize the data-related elements of queued_cmd @qc
2309 * to point to a scatter-gather table @sg, containing @n_elem
2313 * spin_lock_irqsave(host_set lock)
2316 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
2317 unsigned int n_elem)
2319 qc->flags |= ATA_QCFLAG_SG;
2321 qc->n_elem = n_elem;
2325 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
2326 * @qc: Command with memory buffer to be mapped.
2328 * DMA-map the memory buffer associated with queued_cmd @qc.
2331 * spin_lock_irqsave(host_set lock)
2334 * Zero on success, negative on error.
2337 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
2339 struct ata_port *ap = qc->ap;
2340 int dir = qc->dma_dir;
2341 struct scatterlist *sg = qc->sg;
2342 dma_addr_t dma_address;
2344 dma_address = dma_map_single(ap->host_set->dev, qc->buf_virt,
2346 if (dma_mapping_error(dma_address))
2349 sg_dma_address(sg) = dma_address;
2350 sg_dma_len(sg) = sg->length;
2352 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
2353 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
2359 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
2360 * @qc: Command with scatter-gather table to be mapped.
2362 * DMA-map the scatter-gather table associated with queued_cmd @qc.
2365 * spin_lock_irqsave(host_set lock)
2368 * Zero on success, negative on error.
2372 static int ata_sg_setup(struct ata_queued_cmd *qc)
2374 struct ata_port *ap = qc->ap;
2375 struct scatterlist *sg = qc->sg;
2378 VPRINTK("ENTER, ata%u\n", ap->id);
2379 assert(qc->flags & ATA_QCFLAG_SG);
2382 n_elem = dma_map_sg(ap->host_set->dev, sg, qc->n_elem, dir);
2386 DPRINTK("%d sg elements mapped\n", n_elem);
2388 qc->n_elem = n_elem;
2394 * ata_poll_qc_complete - turn irq back on and finish qc
2395 * @qc: Command to complete
2396 * @drv_stat: ATA status register content
2399 * None. (grabs host lock)
2402 void ata_poll_qc_complete(struct ata_queued_cmd *qc, u8 drv_stat)
2404 struct ata_port *ap = qc->ap;
2405 unsigned long flags;
2407 spin_lock_irqsave(&ap->host_set->lock, flags);
2408 ap->flags &= ~ATA_FLAG_NOINTR;
2410 ata_qc_complete(qc, drv_stat);
2411 spin_unlock_irqrestore(&ap->host_set->lock, flags);
2419 * None. (executing in kernel thread context)
2425 static unsigned long ata_pio_poll(struct ata_port *ap)
2428 unsigned int poll_state = PIO_ST_UNKNOWN;
2429 unsigned int reg_state = PIO_ST_UNKNOWN;
2430 const unsigned int tmout_state = PIO_ST_TMOUT;
2432 switch (ap->pio_task_state) {
2435 poll_state = PIO_ST_POLL;
2439 case PIO_ST_LAST_POLL:
2440 poll_state = PIO_ST_LAST_POLL;
2441 reg_state = PIO_ST_LAST;
2448 status = ata_chk_status(ap);
2449 if (status & ATA_BUSY) {
2450 if (time_after(jiffies, ap->pio_task_timeout)) {
2451 ap->pio_task_state = tmout_state;
2454 ap->pio_task_state = poll_state;
2455 return ATA_SHORT_PAUSE;
2458 ap->pio_task_state = reg_state;
2463 * ata_pio_complete -
2467 * None. (executing in kernel thread context)
2470 static void ata_pio_complete (struct ata_port *ap)
2472 struct ata_queued_cmd *qc;
2476 * This is purely heuristic. This is a fast path. Sometimes when
2477 * we enter, BSY will be cleared in a chk-status or two. If not,
2478 * the drive is probably seeking or something. Snooze for a couple
2479 * msecs, then chk-status again. If still busy, fall back to
2480 * PIO_ST_POLL state.
2482 drv_stat = ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 10);
2483 if (drv_stat & (ATA_BUSY | ATA_DRQ)) {
2485 drv_stat = ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 10);
2486 if (drv_stat & (ATA_BUSY | ATA_DRQ)) {
2487 ap->pio_task_state = PIO_ST_LAST_POLL;
2488 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
2493 drv_stat = ata_wait_idle(ap);
2494 if (!ata_ok(drv_stat)) {
2495 ap->pio_task_state = PIO_ST_ERR;
2499 qc = ata_qc_from_tag(ap, ap->active_tag);
2502 ap->pio_task_state = PIO_ST_IDLE;
2504 ata_poll_qc_complete(qc, drv_stat);
2510 * @buf: Buffer to swap
2511 * @buf_words: Number of 16-bit words in buffer.
2513 * Swap halves of 16-bit words if needed to convert from
2514 * little-endian byte order to native cpu byte order, or
2519 void swap_buf_le16(u16 *buf, unsigned int buf_words)
2524 for (i = 0; i < buf_words; i++)
2525 buf[i] = le16_to_cpu(buf[i]);
2526 #endif /* __BIG_ENDIAN */
2530 * ata_mmio_data_xfer - Transfer data by MMIO
2531 * @ap: port to read/write
2533 * @buflen: buffer length
2534 * @write_data: read/write
2536 * Transfer data from/to the device data register by MMIO.
2539 * Inherited from caller.
2543 static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
2544 unsigned int buflen, int write_data)
2547 unsigned int words = buflen >> 1;
2548 u16 *buf16 = (u16 *) buf;
2549 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
2551 /* Transfer multiple of 2 bytes */
2553 for (i = 0; i < words; i++)
2554 writew(le16_to_cpu(buf16[i]), mmio);
2556 for (i = 0; i < words; i++)
2557 buf16[i] = cpu_to_le16(readw(mmio));
2560 /* Transfer trailing 1 byte, if any. */
2561 if (unlikely(buflen & 0x01)) {
2562 u16 align_buf[1] = { 0 };
2563 unsigned char *trailing_buf = buf + buflen - 1;
2566 memcpy(align_buf, trailing_buf, 1);
2567 writew(le16_to_cpu(align_buf[0]), mmio);
2569 align_buf[0] = cpu_to_le16(readw(mmio));
2570 memcpy(trailing_buf, align_buf, 1);
2576 * ata_pio_data_xfer - Transfer data by PIO
2577 * @ap: port to read/write
2579 * @buflen: buffer length
2580 * @write_data: read/write
2582 * Transfer data from/to the device data register by PIO.
2585 * Inherited from caller.
2589 static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
2590 unsigned int buflen, int write_data)
2592 unsigned int words = buflen >> 1;
2594 /* Transfer multiple of 2 bytes */
2596 outsw(ap->ioaddr.data_addr, buf, words);
2598 insw(ap->ioaddr.data_addr, buf, words);
2600 /* Transfer trailing 1 byte, if any. */
2601 if (unlikely(buflen & 0x01)) {
2602 u16 align_buf[1] = { 0 };
2603 unsigned char *trailing_buf = buf + buflen - 1;
2606 memcpy(align_buf, trailing_buf, 1);
2607 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
2609 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
2610 memcpy(trailing_buf, align_buf, 1);
2616 * ata_data_xfer - Transfer data from/to the data register.
2617 * @ap: port to read/write
2619 * @buflen: buffer length
2620 * @do_write: read/write
2622 * Transfer data from/to the device data register.
2625 * Inherited from caller.
2629 static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
2630 unsigned int buflen, int do_write)
2632 if (ap->flags & ATA_FLAG_MMIO)
2633 ata_mmio_data_xfer(ap, buf, buflen, do_write);
2635 ata_pio_data_xfer(ap, buf, buflen, do_write);
2639 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
2640 * @qc: Command on going
2642 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
2645 * Inherited from caller.
2648 static void ata_pio_sector(struct ata_queued_cmd *qc)
2650 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
2651 struct scatterlist *sg = qc->sg;
2652 struct ata_port *ap = qc->ap;
2654 unsigned int offset;
2657 if (qc->cursect == (qc->nsect - 1))
2658 ap->pio_task_state = PIO_ST_LAST;
2660 page = sg[qc->cursg].page;
2661 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
2663 /* get the current page and offset */
2664 page = nth_page(page, (offset >> PAGE_SHIFT));
2665 offset %= PAGE_SIZE;
2667 buf = kmap(page) + offset;
2672 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
2677 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
2679 /* do the actual data transfer */
2680 do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
2681 ata_data_xfer(ap, buf, ATA_SECT_SIZE, do_write);
2687 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
2688 * @qc: Command on going
2689 * @bytes: number of bytes
2691 * Transfer Transfer data from/to the ATAPI device.
2694 * Inherited from caller.
2698 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
2700 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
2701 struct scatterlist *sg = qc->sg;
2702 struct ata_port *ap = qc->ap;
2705 unsigned int offset, count;
2707 if (qc->curbytes + bytes >= qc->nbytes)
2708 ap->pio_task_state = PIO_ST_LAST;
2711 if (unlikely(qc->cursg >= qc->n_elem)) {
2713 * The end of qc->sg is reached and the device expects
2714 * more data to transfer. In order not to overrun qc->sg
2715 * and fulfill length specified in the byte count register,
2716 * - for read case, discard trailing data from the device
2717 * - for write case, padding zero data to the device
2719 u16 pad_buf[1] = { 0 };
2720 unsigned int words = bytes >> 1;
2723 if (words) /* warning if bytes > 1 */
2724 printk(KERN_WARNING "ata%u: %u bytes trailing data\n",
2727 for (i = 0; i < words; i++)
2728 ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
2730 ap->pio_task_state = PIO_ST_LAST;
2734 sg = &qc->sg[qc->cursg];
2737 offset = sg->offset + qc->cursg_ofs;
2739 /* get the current page and offset */
2740 page = nth_page(page, (offset >> PAGE_SHIFT));
2741 offset %= PAGE_SIZE;
2743 /* don't overrun current sg */
2744 count = min(sg->length - qc->cursg_ofs, bytes);
2746 /* don't cross page boundaries */
2747 count = min(count, (unsigned int)PAGE_SIZE - offset);
2749 buf = kmap(page) + offset;
2752 qc->curbytes += count;
2753 qc->cursg_ofs += count;
2755 if (qc->cursg_ofs == sg->length) {
2760 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
2762 /* do the actual data transfer */
2763 ata_data_xfer(ap, buf, count, do_write);
2772 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
2773 * @qc: Command on going
2775 * Transfer Transfer data from/to the ATAPI device.
2778 * Inherited from caller.
2782 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
2784 struct ata_port *ap = qc->ap;
2785 struct ata_device *dev = qc->dev;
2786 unsigned int ireason, bc_lo, bc_hi, bytes;
2787 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
2789 ap->ops->tf_read(ap, &qc->tf);
2790 ireason = qc->tf.nsect;
2791 bc_lo = qc->tf.lbam;
2792 bc_hi = qc->tf.lbah;
2793 bytes = (bc_hi << 8) | bc_lo;
2795 /* shall be cleared to zero, indicating xfer of data */
2796 if (ireason & (1 << 0))
2799 /* make sure transfer direction matches expected */
2800 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
2801 if (do_write != i_write)
2804 __atapi_pio_bytes(qc, bytes);
2809 printk(KERN_INFO "ata%u: dev %u: ATAPI check failed\n",
2810 ap->id, dev->devno);
2811 ap->pio_task_state = PIO_ST_ERR;
2819 * None. (executing in kernel thread context)
2822 static void ata_pio_block(struct ata_port *ap)
2824 struct ata_queued_cmd *qc;
2828 * This is purely hueristic. This is a fast path.
2829 * Sometimes when we enter, BSY will be cleared in
2830 * a chk-status or two. If not, the drive is probably seeking
2831 * or something. Snooze for a couple msecs, then
2832 * chk-status again. If still busy, fall back to
2833 * PIO_ST_POLL state.
2835 status = ata_busy_wait(ap, ATA_BUSY, 5);
2836 if (status & ATA_BUSY) {
2838 status = ata_busy_wait(ap, ATA_BUSY, 10);
2839 if (status & ATA_BUSY) {
2840 ap->pio_task_state = PIO_ST_POLL;
2841 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
2846 qc = ata_qc_from_tag(ap, ap->active_tag);
2849 if (is_atapi_taskfile(&qc->tf)) {
2850 /* no more data to transfer or unsupported ATAPI command */
2851 if ((status & ATA_DRQ) == 0) {
2852 ap->pio_task_state = PIO_ST_IDLE;
2854 ata_poll_qc_complete(qc, status);
2858 atapi_pio_bytes(qc);
2860 /* handle BSY=0, DRQ=0 as error */
2861 if ((status & ATA_DRQ) == 0) {
2862 ap->pio_task_state = PIO_ST_ERR;
2870 static void ata_pio_error(struct ata_port *ap)
2872 struct ata_queued_cmd *qc;
2875 qc = ata_qc_from_tag(ap, ap->active_tag);
2878 drv_stat = ata_chk_status(ap);
2879 printk(KERN_WARNING "ata%u: PIO error, drv_stat 0x%x\n",
2882 ap->pio_task_state = PIO_ST_IDLE;
2884 ata_poll_qc_complete(qc, drv_stat | ATA_ERR);
2887 static void ata_pio_task(void *_data)
2889 struct ata_port *ap = _data;
2890 unsigned long timeout = 0;
2892 switch (ap->pio_task_state) {
2901 ata_pio_complete(ap);
2905 case PIO_ST_LAST_POLL:
2906 timeout = ata_pio_poll(ap);
2916 queue_delayed_work(ata_wq, &ap->pio_task,
2919 queue_work(ata_wq, &ap->pio_task);
2922 static void atapi_request_sense(struct ata_port *ap, struct ata_device *dev,
2923 struct scsi_cmnd *cmd)
2925 DECLARE_COMPLETION(wait);
2926 struct ata_queued_cmd *qc;
2927 unsigned long flags;
2930 DPRINTK("ATAPI request sense\n");
2932 qc = ata_qc_new_init(ap, dev);
2935 /* FIXME: is this needed? */
2936 memset(cmd->sense_buffer, 0, sizeof(cmd->sense_buffer));
2938 ata_sg_init_one(qc, cmd->sense_buffer, sizeof(cmd->sense_buffer));
2939 qc->dma_dir = DMA_FROM_DEVICE;
2941 memset(&qc->cdb, 0, ap->cdb_len);
2942 qc->cdb[0] = REQUEST_SENSE;
2943 qc->cdb[4] = SCSI_SENSE_BUFFERSIZE;
2945 qc->tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2946 qc->tf.command = ATA_CMD_PACKET;
2948 qc->tf.protocol = ATA_PROT_ATAPI;
2949 qc->tf.lbam = (8 * 1024) & 0xff;
2950 qc->tf.lbah = (8 * 1024) >> 8;
2951 qc->nbytes = SCSI_SENSE_BUFFERSIZE;
2953 qc->waiting = &wait;
2954 qc->complete_fn = ata_qc_complete_noop;
2956 spin_lock_irqsave(&ap->host_set->lock, flags);
2957 rc = ata_qc_issue(qc);
2958 spin_unlock_irqrestore(&ap->host_set->lock, flags);
2961 ata_port_disable(ap);
2963 wait_for_completion(&wait);
2969 * ata_qc_timeout - Handle timeout of queued command
2970 * @qc: Command that timed out
2972 * Some part of the kernel (currently, only the SCSI layer)
2973 * has noticed that the active command on port @ap has not
2974 * completed after a specified length of time. Handle this
2975 * condition by disabling DMA (if necessary) and completing
2976 * transactions, with error if necessary.
2978 * This also handles the case of the "lost interrupt", where
2979 * for some reason (possibly hardware bug, possibly driver bug)
2980 * an interrupt was not delivered to the driver, even though the
2981 * transaction completed successfully.
2984 * Inherited from SCSI layer (none, can sleep)
2987 static void ata_qc_timeout(struct ata_queued_cmd *qc)
2989 struct ata_port *ap = qc->ap;
2990 struct ata_host_set *host_set = ap->host_set;
2991 struct ata_device *dev = qc->dev;
2992 u8 host_stat = 0, drv_stat;
2993 unsigned long flags;
2997 /* FIXME: doesn't this conflict with timeout handling? */
2998 if (qc->dev->class == ATA_DEV_ATAPI && qc->scsicmd) {
2999 struct scsi_cmnd *cmd = qc->scsicmd;
3001 if (!(cmd->eh_eflags & SCSI_EH_CANCEL_CMD)) {
3003 /* finish completing original command */
3004 spin_lock_irqsave(&host_set->lock, flags);
3005 __ata_qc_complete(qc);
3006 spin_unlock_irqrestore(&host_set->lock, flags);
3008 atapi_request_sense(ap, dev, cmd);
3010 cmd->result = (CHECK_CONDITION << 1) | (DID_OK << 16);
3011 scsi_finish_command(cmd);
3017 spin_lock_irqsave(&host_set->lock, flags);
3019 /* hack alert! We cannot use the supplied completion
3020 * function from inside the ->eh_strategy_handler() thread.
3021 * libata is the only user of ->eh_strategy_handler() in
3022 * any kernel, so the default scsi_done() assumes it is
3023 * not being called from the SCSI EH.
3025 qc->scsidone = scsi_finish_command;
3027 switch (qc->tf.protocol) {
3030 case ATA_PROT_ATAPI_DMA:
3031 host_stat = ap->ops->bmdma_status(ap);
3033 /* before we do anything else, clear DMA-Start bit */
3034 ap->ops->bmdma_stop(qc);
3040 drv_stat = ata_chk_status(ap);
3042 /* ack bmdma irq events */
3043 ap->ops->irq_clear(ap);
3045 printk(KERN_ERR "ata%u: command 0x%x timeout, stat 0x%x host_stat 0x%x\n",
3046 ap->id, qc->tf.command, drv_stat, host_stat);
3048 /* complete taskfile transaction */
3049 ata_qc_complete(qc, drv_stat);
3053 spin_unlock_irqrestore(&host_set->lock, flags);
3060 * ata_eng_timeout - Handle timeout of queued command
3061 * @ap: Port on which timed-out command is active
3063 * Some part of the kernel (currently, only the SCSI layer)
3064 * has noticed that the active command on port @ap has not
3065 * completed after a specified length of time. Handle this
3066 * condition by disabling DMA (if necessary) and completing
3067 * transactions, with error if necessary.
3069 * This also handles the case of the "lost interrupt", where
3070 * for some reason (possibly hardware bug, possibly driver bug)
3071 * an interrupt was not delivered to the driver, even though the
3072 * transaction completed successfully.
3075 * Inherited from SCSI layer (none, can sleep)
3078 void ata_eng_timeout(struct ata_port *ap)
3080 struct ata_queued_cmd *qc;
3084 qc = ata_qc_from_tag(ap, ap->active_tag);
3086 printk(KERN_ERR "ata%u: BUG: timeout without command\n",
3098 * ata_qc_new - Request an available ATA command, for queueing
3099 * @ap: Port associated with device @dev
3100 * @dev: Device from whom we request an available command structure
3106 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
3108 struct ata_queued_cmd *qc = NULL;
3111 for (i = 0; i < ATA_MAX_QUEUE; i++)
3112 if (!test_and_set_bit(i, &ap->qactive)) {
3113 qc = ata_qc_from_tag(ap, i);
3124 * ata_qc_new_init - Request an available ATA command, and initialize it
3125 * @ap: Port associated with device @dev
3126 * @dev: Device from whom we request an available command structure
3132 struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap,
3133 struct ata_device *dev)
3135 struct ata_queued_cmd *qc;
3137 qc = ata_qc_new(ap);
3144 qc->cursect = qc->cursg = qc->cursg_ofs = 0;
3146 qc->nbytes = qc->curbytes = 0;
3148 ata_tf_init(ap, &qc->tf, dev->devno);
3150 if (dev->flags & ATA_DFLAG_LBA48)
3151 qc->tf.flags |= ATA_TFLAG_LBA48;
3157 static int ata_qc_complete_noop(struct ata_queued_cmd *qc, u8 drv_stat)
3162 static void __ata_qc_complete(struct ata_queued_cmd *qc)
3164 struct ata_port *ap = qc->ap;
3165 unsigned int tag, do_clear = 0;
3169 if (likely(ata_tag_valid(tag))) {
3170 if (tag == ap->active_tag)
3171 ap->active_tag = ATA_TAG_POISON;
3172 qc->tag = ATA_TAG_POISON;
3177 struct completion *waiting = qc->waiting;
3182 if (likely(do_clear))
3183 clear_bit(tag, &ap->qactive);
3187 * ata_qc_free - free unused ata_queued_cmd
3188 * @qc: Command to complete
3190 * Designed to free unused ata_queued_cmd object
3191 * in case something prevents using it.
3194 * spin_lock_irqsave(host_set lock)
3197 void ata_qc_free(struct ata_queued_cmd *qc)
3199 assert(qc != NULL); /* ata_qc_from_tag _might_ return NULL */
3200 assert(qc->waiting == NULL); /* nothing should be waiting */
3202 __ata_qc_complete(qc);
3206 * ata_qc_complete - Complete an active ATA command
3207 * @qc: Command to complete
3208 * @drv_stat: ATA Status register contents
3210 * Indicate to the mid and upper layers that an ATA
3211 * command has completed, with either an ok or not-ok status.
3214 * spin_lock_irqsave(host_set lock)
3218 void ata_qc_complete(struct ata_queued_cmd *qc, u8 drv_stat)
3222 assert(qc != NULL); /* ata_qc_from_tag _might_ return NULL */
3223 assert(qc->flags & ATA_QCFLAG_ACTIVE);
3225 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
3228 /* atapi: mark qc as inactive to prevent the interrupt handler
3229 * from completing the command twice later, before the error handler
3230 * is called. (when rc != 0 and atapi request sense is needed)
3232 qc->flags &= ~ATA_QCFLAG_ACTIVE;
3234 /* call completion callback */
3235 rc = qc->complete_fn(qc, drv_stat);
3237 /* if callback indicates not to complete command (non-zero),
3238 * return immediately
3243 __ata_qc_complete(qc);
3248 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
3250 struct ata_port *ap = qc->ap;
3252 switch (qc->tf.protocol) {
3254 case ATA_PROT_ATAPI_DMA:
3257 case ATA_PROT_ATAPI:
3259 case ATA_PROT_PIO_MULT:
3260 if (ap->flags & ATA_FLAG_PIO_DMA)
3273 * ata_qc_issue - issue taskfile to device
3274 * @qc: command to issue to device
3276 * Prepare an ATA command to submission to device.
3277 * This includes mapping the data into a DMA-able
3278 * area, filling in the S/G table, and finally
3279 * writing the taskfile to hardware, starting the command.
3282 * spin_lock_irqsave(host_set lock)
3285 * Zero on success, negative on error.
3288 int ata_qc_issue(struct ata_queued_cmd *qc)
3290 struct ata_port *ap = qc->ap;
3292 if (ata_should_dma_map(qc)) {
3293 if (qc->flags & ATA_QCFLAG_SG) {
3294 if (ata_sg_setup(qc))
3296 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
3297 if (ata_sg_setup_one(qc))
3301 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3304 ap->ops->qc_prep(qc);
3306 qc->ap->active_tag = qc->tag;
3307 qc->flags |= ATA_QCFLAG_ACTIVE;
3309 return ap->ops->qc_issue(qc);
3317 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
3318 * @qc: command to issue to device
3320 * Using various libata functions and hooks, this function
3321 * starts an ATA command. ATA commands are grouped into
3322 * classes called "protocols", and issuing each type of protocol
3323 * is slightly different.
3325 * May be used as the qc_issue() entry in ata_port_operations.
3328 * spin_lock_irqsave(host_set lock)
3331 * Zero on success, negative on error.
3334 int ata_qc_issue_prot(struct ata_queued_cmd *qc)
3336 struct ata_port *ap = qc->ap;
3338 ata_dev_select(ap, qc->dev->devno, 1, 0);
3340 switch (qc->tf.protocol) {
3341 case ATA_PROT_NODATA:
3342 ata_tf_to_host_nolock(ap, &qc->tf);
3346 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
3347 ap->ops->bmdma_setup(qc); /* set up bmdma */
3348 ap->ops->bmdma_start(qc); /* initiate bmdma */
3351 case ATA_PROT_PIO: /* load tf registers, initiate polling pio */
3352 ata_qc_set_polling(qc);
3353 ata_tf_to_host_nolock(ap, &qc->tf);
3354 ap->pio_task_state = PIO_ST;
3355 queue_work(ata_wq, &ap->pio_task);