Merge branch 'fixes' into misc
[sfrench/cifs-2.6.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2016 Microsemi Corporation
4  *    Copyright 2014-2015 PMC-Sierra, Inc.
5  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6  *
7  *    This program is free software; you can redistribute it and/or modify
8  *    it under the terms of the GNU General Public License as published by
9  *    the Free Software Foundation; version 2 of the License.
10  *
11  *    This program is distributed in the hope that it will be useful,
12  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
15  *
16  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
17  *
18  */
19
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58
59 /*
60  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61  * with an optional trailing '-' followed by a byte value (0-255).
62  */
63 #define HPSA_DRIVER_VERSION "3.4.20-125"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
66
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20    /* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10    /* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000      /* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000       /* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
73
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76
77 /* Embedded module documentation macros - see modules.h */
78 MODULE_AUTHOR("Hewlett-Packard Company");
79 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
80         HPSA_DRIVER_VERSION);
81 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
82 MODULE_VERSION(HPSA_DRIVER_VERSION);
83 MODULE_LICENSE("GPL");
84 MODULE_ALIAS("cciss");
85
86 static int hpsa_simple_mode;
87 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
88 MODULE_PARM_DESC(hpsa_simple_mode,
89         "Use 'simple mode' rather than 'performant mode'");
90
91 /* define the PCI info for the cards we can control */
92 static const struct pci_device_id hpsa_pci_device_id[] = {
93         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
110         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
111         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
112         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
113         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
114         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
115         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
116         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
117         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
118         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
119         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
120         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
121         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
122         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
123         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
124         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
125         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
126         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
127         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
128         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
129         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
130         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
131         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
132         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
133         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
134         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
135         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
136         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
137         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
138         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
139         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
140         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
141         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
142         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
143         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
144         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
145         {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
146         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
147                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
148         {PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,  PCI_ANY_ID, PCI_ANY_ID,
149                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
150         {0,}
151 };
152
153 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
154
155 /*  board_id = Subsystem Device ID & Vendor ID
156  *  product = Marketing Name for the board
157  *  access = Address of the struct of function pointers
158  */
159 static struct board_type products[] = {
160         {0x40700E11, "Smart Array 5300", &SA5A_access},
161         {0x40800E11, "Smart Array 5i", &SA5B_access},
162         {0x40820E11, "Smart Array 532", &SA5B_access},
163         {0x40830E11, "Smart Array 5312", &SA5B_access},
164         {0x409A0E11, "Smart Array 641", &SA5A_access},
165         {0x409B0E11, "Smart Array 642", &SA5A_access},
166         {0x409C0E11, "Smart Array 6400", &SA5A_access},
167         {0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
168         {0x40910E11, "Smart Array 6i", &SA5A_access},
169         {0x3225103C, "Smart Array P600", &SA5A_access},
170         {0x3223103C, "Smart Array P800", &SA5A_access},
171         {0x3234103C, "Smart Array P400", &SA5A_access},
172         {0x3235103C, "Smart Array P400i", &SA5A_access},
173         {0x3211103C, "Smart Array E200i", &SA5A_access},
174         {0x3212103C, "Smart Array E200", &SA5A_access},
175         {0x3213103C, "Smart Array E200i", &SA5A_access},
176         {0x3214103C, "Smart Array E200i", &SA5A_access},
177         {0x3215103C, "Smart Array E200i", &SA5A_access},
178         {0x3237103C, "Smart Array E500", &SA5A_access},
179         {0x323D103C, "Smart Array P700m", &SA5A_access},
180         {0x3241103C, "Smart Array P212", &SA5_access},
181         {0x3243103C, "Smart Array P410", &SA5_access},
182         {0x3245103C, "Smart Array P410i", &SA5_access},
183         {0x3247103C, "Smart Array P411", &SA5_access},
184         {0x3249103C, "Smart Array P812", &SA5_access},
185         {0x324A103C, "Smart Array P712m", &SA5_access},
186         {0x324B103C, "Smart Array P711m", &SA5_access},
187         {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
188         {0x3350103C, "Smart Array P222", &SA5_access},
189         {0x3351103C, "Smart Array P420", &SA5_access},
190         {0x3352103C, "Smart Array P421", &SA5_access},
191         {0x3353103C, "Smart Array P822", &SA5_access},
192         {0x3354103C, "Smart Array P420i", &SA5_access},
193         {0x3355103C, "Smart Array P220i", &SA5_access},
194         {0x3356103C, "Smart Array P721m", &SA5_access},
195         {0x1920103C, "Smart Array P430i", &SA5_access},
196         {0x1921103C, "Smart Array P830i", &SA5_access},
197         {0x1922103C, "Smart Array P430", &SA5_access},
198         {0x1923103C, "Smart Array P431", &SA5_access},
199         {0x1924103C, "Smart Array P830", &SA5_access},
200         {0x1925103C, "Smart Array P831", &SA5_access},
201         {0x1926103C, "Smart Array P731m", &SA5_access},
202         {0x1928103C, "Smart Array P230i", &SA5_access},
203         {0x1929103C, "Smart Array P530", &SA5_access},
204         {0x21BD103C, "Smart Array P244br", &SA5_access},
205         {0x21BE103C, "Smart Array P741m", &SA5_access},
206         {0x21BF103C, "Smart HBA H240ar", &SA5_access},
207         {0x21C0103C, "Smart Array P440ar", &SA5_access},
208         {0x21C1103C, "Smart Array P840ar", &SA5_access},
209         {0x21C2103C, "Smart Array P440", &SA5_access},
210         {0x21C3103C, "Smart Array P441", &SA5_access},
211         {0x21C4103C, "Smart Array", &SA5_access},
212         {0x21C5103C, "Smart Array P841", &SA5_access},
213         {0x21C6103C, "Smart HBA H244br", &SA5_access},
214         {0x21C7103C, "Smart HBA H240", &SA5_access},
215         {0x21C8103C, "Smart HBA H241", &SA5_access},
216         {0x21C9103C, "Smart Array", &SA5_access},
217         {0x21CA103C, "Smart Array P246br", &SA5_access},
218         {0x21CB103C, "Smart Array P840", &SA5_access},
219         {0x21CC103C, "Smart Array", &SA5_access},
220         {0x21CD103C, "Smart Array", &SA5_access},
221         {0x21CE103C, "Smart HBA", &SA5_access},
222         {0x05809005, "SmartHBA-SA", &SA5_access},
223         {0x05819005, "SmartHBA-SA 8i", &SA5_access},
224         {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
225         {0x05839005, "SmartHBA-SA 8e", &SA5_access},
226         {0x05849005, "SmartHBA-SA 16i", &SA5_access},
227         {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
228         {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
229         {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
230         {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
231         {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
232         {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
233         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
234 };
235
236 static struct scsi_transport_template *hpsa_sas_transport_template;
237 static int hpsa_add_sas_host(struct ctlr_info *h);
238 static void hpsa_delete_sas_host(struct ctlr_info *h);
239 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
240                         struct hpsa_scsi_dev_t *device);
241 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
242 static struct hpsa_scsi_dev_t
243         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
244                 struct sas_rphy *rphy);
245
246 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
247 static const struct scsi_cmnd hpsa_cmd_busy;
248 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
249 static const struct scsi_cmnd hpsa_cmd_idle;
250 static int number_of_controllers;
251
252 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
253 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
254 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
255
256 #ifdef CONFIG_COMPAT
257 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
258         void __user *arg);
259 #endif
260
261 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
262 static struct CommandList *cmd_alloc(struct ctlr_info *h);
263 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
264 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
265                                             struct scsi_cmnd *scmd);
266 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
267         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
268         int cmd_type);
269 static void hpsa_free_cmd_pool(struct ctlr_info *h);
270 #define VPD_PAGE (1 << 8)
271 #define HPSA_SIMPLE_ERROR_BITS 0x03
272
273 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
274 static void hpsa_scan_start(struct Scsi_Host *);
275 static int hpsa_scan_finished(struct Scsi_Host *sh,
276         unsigned long elapsed_time);
277 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
278
279 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
280 static int hpsa_slave_alloc(struct scsi_device *sdev);
281 static int hpsa_slave_configure(struct scsi_device *sdev);
282 static void hpsa_slave_destroy(struct scsi_device *sdev);
283
284 static void hpsa_update_scsi_devices(struct ctlr_info *h);
285 static int check_for_unit_attention(struct ctlr_info *h,
286         struct CommandList *c);
287 static void check_ioctl_unit_attention(struct ctlr_info *h,
288         struct CommandList *c);
289 /* performant mode helper functions */
290 static void calc_bucket_map(int *bucket, int num_buckets,
291         int nsgs, int min_blocks, u32 *bucket_map);
292 static void hpsa_free_performant_mode(struct ctlr_info *h);
293 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
294 static inline u32 next_command(struct ctlr_info *h, u8 q);
295 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
296                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
297                                u64 *cfg_offset);
298 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
299                                     unsigned long *memory_bar);
300 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
301                                 bool *legacy_board);
302 static int wait_for_device_to_become_ready(struct ctlr_info *h,
303                                            unsigned char lunaddr[],
304                                            int reply_queue);
305 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
306                                      int wait_for_ready);
307 static inline void finish_cmd(struct CommandList *c);
308 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
309 #define BOARD_NOT_READY 0
310 #define BOARD_READY 1
311 static void hpsa_drain_accel_commands(struct ctlr_info *h);
312 static void hpsa_flush_cache(struct ctlr_info *h);
313 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
314         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
315         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
316 static void hpsa_command_resubmit_worker(struct work_struct *work);
317 static u32 lockup_detected(struct ctlr_info *h);
318 static int detect_controller_lockup(struct ctlr_info *h);
319 static void hpsa_disable_rld_caching(struct ctlr_info *h);
320 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
321         struct ReportExtendedLUNdata *buf, int bufsize);
322 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
323         unsigned char scsi3addr[], u8 page);
324 static int hpsa_luns_changed(struct ctlr_info *h);
325 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
326                                struct hpsa_scsi_dev_t *dev,
327                                unsigned char *scsi3addr);
328
329 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
330 {
331         unsigned long *priv = shost_priv(sdev->host);
332         return (struct ctlr_info *) *priv;
333 }
334
335 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
336 {
337         unsigned long *priv = shost_priv(sh);
338         return (struct ctlr_info *) *priv;
339 }
340
341 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
342 {
343         return c->scsi_cmd == SCSI_CMD_IDLE;
344 }
345
346 static inline bool hpsa_is_pending_event(struct CommandList *c)
347 {
348         return c->reset_pending;
349 }
350
351 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
352 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
353                         u8 *sense_key, u8 *asc, u8 *ascq)
354 {
355         struct scsi_sense_hdr sshdr;
356         bool rc;
357
358         *sense_key = -1;
359         *asc = -1;
360         *ascq = -1;
361
362         if (sense_data_len < 1)
363                 return;
364
365         rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
366         if (rc) {
367                 *sense_key = sshdr.sense_key;
368                 *asc = sshdr.asc;
369                 *ascq = sshdr.ascq;
370         }
371 }
372
373 static int check_for_unit_attention(struct ctlr_info *h,
374         struct CommandList *c)
375 {
376         u8 sense_key, asc, ascq;
377         int sense_len;
378
379         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
380                 sense_len = sizeof(c->err_info->SenseInfo);
381         else
382                 sense_len = c->err_info->SenseLen;
383
384         decode_sense_data(c->err_info->SenseInfo, sense_len,
385                                 &sense_key, &asc, &ascq);
386         if (sense_key != UNIT_ATTENTION || asc == 0xff)
387                 return 0;
388
389         switch (asc) {
390         case STATE_CHANGED:
391                 dev_warn(&h->pdev->dev,
392                         "%s: a state change detected, command retried\n",
393                         h->devname);
394                 break;
395         case LUN_FAILED:
396                 dev_warn(&h->pdev->dev,
397                         "%s: LUN failure detected\n", h->devname);
398                 break;
399         case REPORT_LUNS_CHANGED:
400                 dev_warn(&h->pdev->dev,
401                         "%s: report LUN data changed\n", h->devname);
402         /*
403          * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
404          * target (array) devices.
405          */
406                 break;
407         case POWER_OR_RESET:
408                 dev_warn(&h->pdev->dev,
409                         "%s: a power on or device reset detected\n",
410                         h->devname);
411                 break;
412         case UNIT_ATTENTION_CLEARED:
413                 dev_warn(&h->pdev->dev,
414                         "%s: unit attention cleared by another initiator\n",
415                         h->devname);
416                 break;
417         default:
418                 dev_warn(&h->pdev->dev,
419                         "%s: unknown unit attention detected\n",
420                         h->devname);
421                 break;
422         }
423         return 1;
424 }
425
426 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
427 {
428         if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
429                 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
430                  c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
431                 return 0;
432         dev_warn(&h->pdev->dev, HPSA "device busy");
433         return 1;
434 }
435
436 static u32 lockup_detected(struct ctlr_info *h);
437 static ssize_t host_show_lockup_detected(struct device *dev,
438                 struct device_attribute *attr, char *buf)
439 {
440         int ld;
441         struct ctlr_info *h;
442         struct Scsi_Host *shost = class_to_shost(dev);
443
444         h = shost_to_hba(shost);
445         ld = lockup_detected(h);
446
447         return sprintf(buf, "ld=%d\n", ld);
448 }
449
450 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
451                                          struct device_attribute *attr,
452                                          const char *buf, size_t count)
453 {
454         int status, len;
455         struct ctlr_info *h;
456         struct Scsi_Host *shost = class_to_shost(dev);
457         char tmpbuf[10];
458
459         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
460                 return -EACCES;
461         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
462         strncpy(tmpbuf, buf, len);
463         tmpbuf[len] = '\0';
464         if (sscanf(tmpbuf, "%d", &status) != 1)
465                 return -EINVAL;
466         h = shost_to_hba(shost);
467         h->acciopath_status = !!status;
468         dev_warn(&h->pdev->dev,
469                 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
470                 h->acciopath_status ? "enabled" : "disabled");
471         return count;
472 }
473
474 static ssize_t host_store_raid_offload_debug(struct device *dev,
475                                          struct device_attribute *attr,
476                                          const char *buf, size_t count)
477 {
478         int debug_level, len;
479         struct ctlr_info *h;
480         struct Scsi_Host *shost = class_to_shost(dev);
481         char tmpbuf[10];
482
483         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
484                 return -EACCES;
485         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
486         strncpy(tmpbuf, buf, len);
487         tmpbuf[len] = '\0';
488         if (sscanf(tmpbuf, "%d", &debug_level) != 1)
489                 return -EINVAL;
490         if (debug_level < 0)
491                 debug_level = 0;
492         h = shost_to_hba(shost);
493         h->raid_offload_debug = debug_level;
494         dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
495                 h->raid_offload_debug);
496         return count;
497 }
498
499 static ssize_t host_store_rescan(struct device *dev,
500                                  struct device_attribute *attr,
501                                  const char *buf, size_t count)
502 {
503         struct ctlr_info *h;
504         struct Scsi_Host *shost = class_to_shost(dev);
505         h = shost_to_hba(shost);
506         hpsa_scan_start(h->scsi_host);
507         return count;
508 }
509
510 static ssize_t host_show_firmware_revision(struct device *dev,
511              struct device_attribute *attr, char *buf)
512 {
513         struct ctlr_info *h;
514         struct Scsi_Host *shost = class_to_shost(dev);
515         unsigned char *fwrev;
516
517         h = shost_to_hba(shost);
518         if (!h->hba_inquiry_data)
519                 return 0;
520         fwrev = &h->hba_inquiry_data[32];
521         return snprintf(buf, 20, "%c%c%c%c\n",
522                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
523 }
524
525 static ssize_t host_show_commands_outstanding(struct device *dev,
526              struct device_attribute *attr, char *buf)
527 {
528         struct Scsi_Host *shost = class_to_shost(dev);
529         struct ctlr_info *h = shost_to_hba(shost);
530
531         return snprintf(buf, 20, "%d\n",
532                         atomic_read(&h->commands_outstanding));
533 }
534
535 static ssize_t host_show_transport_mode(struct device *dev,
536         struct device_attribute *attr, char *buf)
537 {
538         struct ctlr_info *h;
539         struct Scsi_Host *shost = class_to_shost(dev);
540
541         h = shost_to_hba(shost);
542         return snprintf(buf, 20, "%s\n",
543                 h->transMethod & CFGTBL_Trans_Performant ?
544                         "performant" : "simple");
545 }
546
547 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
548         struct device_attribute *attr, char *buf)
549 {
550         struct ctlr_info *h;
551         struct Scsi_Host *shost = class_to_shost(dev);
552
553         h = shost_to_hba(shost);
554         return snprintf(buf, 30, "HP SSD Smart Path %s\n",
555                 (h->acciopath_status == 1) ?  "enabled" : "disabled");
556 }
557
558 /* List of controllers which cannot be hard reset on kexec with reset_devices */
559 static u32 unresettable_controller[] = {
560         0x324a103C, /* Smart Array P712m */
561         0x324b103C, /* Smart Array P711m */
562         0x3223103C, /* Smart Array P800 */
563         0x3234103C, /* Smart Array P400 */
564         0x3235103C, /* Smart Array P400i */
565         0x3211103C, /* Smart Array E200i */
566         0x3212103C, /* Smart Array E200 */
567         0x3213103C, /* Smart Array E200i */
568         0x3214103C, /* Smart Array E200i */
569         0x3215103C, /* Smart Array E200i */
570         0x3237103C, /* Smart Array E500 */
571         0x323D103C, /* Smart Array P700m */
572         0x40800E11, /* Smart Array 5i */
573         0x409C0E11, /* Smart Array 6400 */
574         0x409D0E11, /* Smart Array 6400 EM */
575         0x40700E11, /* Smart Array 5300 */
576         0x40820E11, /* Smart Array 532 */
577         0x40830E11, /* Smart Array 5312 */
578         0x409A0E11, /* Smart Array 641 */
579         0x409B0E11, /* Smart Array 642 */
580         0x40910E11, /* Smart Array 6i */
581 };
582
583 /* List of controllers which cannot even be soft reset */
584 static u32 soft_unresettable_controller[] = {
585         0x40800E11, /* Smart Array 5i */
586         0x40700E11, /* Smart Array 5300 */
587         0x40820E11, /* Smart Array 532 */
588         0x40830E11, /* Smart Array 5312 */
589         0x409A0E11, /* Smart Array 641 */
590         0x409B0E11, /* Smart Array 642 */
591         0x40910E11, /* Smart Array 6i */
592         /* Exclude 640x boards.  These are two pci devices in one slot
593          * which share a battery backed cache module.  One controls the
594          * cache, the other accesses the cache through the one that controls
595          * it.  If we reset the one controlling the cache, the other will
596          * likely not be happy.  Just forbid resetting this conjoined mess.
597          * The 640x isn't really supported by hpsa anyway.
598          */
599         0x409C0E11, /* Smart Array 6400 */
600         0x409D0E11, /* Smart Array 6400 EM */
601 };
602
603 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
604 {
605         int i;
606
607         for (i = 0; i < nelems; i++)
608                 if (a[i] == board_id)
609                         return 1;
610         return 0;
611 }
612
613 static int ctlr_is_hard_resettable(u32 board_id)
614 {
615         return !board_id_in_array(unresettable_controller,
616                         ARRAY_SIZE(unresettable_controller), board_id);
617 }
618
619 static int ctlr_is_soft_resettable(u32 board_id)
620 {
621         return !board_id_in_array(soft_unresettable_controller,
622                         ARRAY_SIZE(soft_unresettable_controller), board_id);
623 }
624
625 static int ctlr_is_resettable(u32 board_id)
626 {
627         return ctlr_is_hard_resettable(board_id) ||
628                 ctlr_is_soft_resettable(board_id);
629 }
630
631 static ssize_t host_show_resettable(struct device *dev,
632         struct device_attribute *attr, char *buf)
633 {
634         struct ctlr_info *h;
635         struct Scsi_Host *shost = class_to_shost(dev);
636
637         h = shost_to_hba(shost);
638         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
639 }
640
641 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
642 {
643         return (scsi3addr[3] & 0xC0) == 0x40;
644 }
645
646 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
647         "1(+0)ADM", "UNKNOWN", "PHYS DRV"
648 };
649 #define HPSA_RAID_0     0
650 #define HPSA_RAID_4     1
651 #define HPSA_RAID_1     2       /* also used for RAID 10 */
652 #define HPSA_RAID_5     3       /* also used for RAID 50 */
653 #define HPSA_RAID_51    4
654 #define HPSA_RAID_6     5       /* also used for RAID 60 */
655 #define HPSA_RAID_ADM   6       /* also used for RAID 1+0 ADM */
656 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
657 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
658
659 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
660 {
661         return !device->physical_device;
662 }
663
664 static ssize_t raid_level_show(struct device *dev,
665              struct device_attribute *attr, char *buf)
666 {
667         ssize_t l = 0;
668         unsigned char rlevel;
669         struct ctlr_info *h;
670         struct scsi_device *sdev;
671         struct hpsa_scsi_dev_t *hdev;
672         unsigned long flags;
673
674         sdev = to_scsi_device(dev);
675         h = sdev_to_hba(sdev);
676         spin_lock_irqsave(&h->lock, flags);
677         hdev = sdev->hostdata;
678         if (!hdev) {
679                 spin_unlock_irqrestore(&h->lock, flags);
680                 return -ENODEV;
681         }
682
683         /* Is this even a logical drive? */
684         if (!is_logical_device(hdev)) {
685                 spin_unlock_irqrestore(&h->lock, flags);
686                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
687                 return l;
688         }
689
690         rlevel = hdev->raid_level;
691         spin_unlock_irqrestore(&h->lock, flags);
692         if (rlevel > RAID_UNKNOWN)
693                 rlevel = RAID_UNKNOWN;
694         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
695         return l;
696 }
697
698 static ssize_t lunid_show(struct device *dev,
699              struct device_attribute *attr, char *buf)
700 {
701         struct ctlr_info *h;
702         struct scsi_device *sdev;
703         struct hpsa_scsi_dev_t *hdev;
704         unsigned long flags;
705         unsigned char lunid[8];
706
707         sdev = to_scsi_device(dev);
708         h = sdev_to_hba(sdev);
709         spin_lock_irqsave(&h->lock, flags);
710         hdev = sdev->hostdata;
711         if (!hdev) {
712                 spin_unlock_irqrestore(&h->lock, flags);
713                 return -ENODEV;
714         }
715         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
716         spin_unlock_irqrestore(&h->lock, flags);
717         return snprintf(buf, 20, "0x%8phN\n", lunid);
718 }
719
720 static ssize_t unique_id_show(struct device *dev,
721              struct device_attribute *attr, char *buf)
722 {
723         struct ctlr_info *h;
724         struct scsi_device *sdev;
725         struct hpsa_scsi_dev_t *hdev;
726         unsigned long flags;
727         unsigned char sn[16];
728
729         sdev = to_scsi_device(dev);
730         h = sdev_to_hba(sdev);
731         spin_lock_irqsave(&h->lock, flags);
732         hdev = sdev->hostdata;
733         if (!hdev) {
734                 spin_unlock_irqrestore(&h->lock, flags);
735                 return -ENODEV;
736         }
737         memcpy(sn, hdev->device_id, sizeof(sn));
738         spin_unlock_irqrestore(&h->lock, flags);
739         return snprintf(buf, 16 * 2 + 2,
740                         "%02X%02X%02X%02X%02X%02X%02X%02X"
741                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
742                         sn[0], sn[1], sn[2], sn[3],
743                         sn[4], sn[5], sn[6], sn[7],
744                         sn[8], sn[9], sn[10], sn[11],
745                         sn[12], sn[13], sn[14], sn[15]);
746 }
747
748 static ssize_t sas_address_show(struct device *dev,
749               struct device_attribute *attr, char *buf)
750 {
751         struct ctlr_info *h;
752         struct scsi_device *sdev;
753         struct hpsa_scsi_dev_t *hdev;
754         unsigned long flags;
755         u64 sas_address;
756
757         sdev = to_scsi_device(dev);
758         h = sdev_to_hba(sdev);
759         spin_lock_irqsave(&h->lock, flags);
760         hdev = sdev->hostdata;
761         if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
762                 spin_unlock_irqrestore(&h->lock, flags);
763                 return -ENODEV;
764         }
765         sas_address = hdev->sas_address;
766         spin_unlock_irqrestore(&h->lock, flags);
767
768         return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
769 }
770
771 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
772              struct device_attribute *attr, char *buf)
773 {
774         struct ctlr_info *h;
775         struct scsi_device *sdev;
776         struct hpsa_scsi_dev_t *hdev;
777         unsigned long flags;
778         int offload_enabled;
779
780         sdev = to_scsi_device(dev);
781         h = sdev_to_hba(sdev);
782         spin_lock_irqsave(&h->lock, flags);
783         hdev = sdev->hostdata;
784         if (!hdev) {
785                 spin_unlock_irqrestore(&h->lock, flags);
786                 return -ENODEV;
787         }
788         offload_enabled = hdev->offload_enabled;
789         spin_unlock_irqrestore(&h->lock, flags);
790
791         if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
792                 return snprintf(buf, 20, "%d\n", offload_enabled);
793         else
794                 return snprintf(buf, 40, "%s\n",
795                                 "Not applicable for a controller");
796 }
797
798 #define MAX_PATHS 8
799 static ssize_t path_info_show(struct device *dev,
800              struct device_attribute *attr, char *buf)
801 {
802         struct ctlr_info *h;
803         struct scsi_device *sdev;
804         struct hpsa_scsi_dev_t *hdev;
805         unsigned long flags;
806         int i;
807         int output_len = 0;
808         u8 box;
809         u8 bay;
810         u8 path_map_index = 0;
811         char *active;
812         unsigned char phys_connector[2];
813
814         sdev = to_scsi_device(dev);
815         h = sdev_to_hba(sdev);
816         spin_lock_irqsave(&h->devlock, flags);
817         hdev = sdev->hostdata;
818         if (!hdev) {
819                 spin_unlock_irqrestore(&h->devlock, flags);
820                 return -ENODEV;
821         }
822
823         bay = hdev->bay;
824         for (i = 0; i < MAX_PATHS; i++) {
825                 path_map_index = 1<<i;
826                 if (i == hdev->active_path_index)
827                         active = "Active";
828                 else if (hdev->path_map & path_map_index)
829                         active = "Inactive";
830                 else
831                         continue;
832
833                 output_len += scnprintf(buf + output_len,
834                                 PAGE_SIZE - output_len,
835                                 "[%d:%d:%d:%d] %20.20s ",
836                                 h->scsi_host->host_no,
837                                 hdev->bus, hdev->target, hdev->lun,
838                                 scsi_device_type(hdev->devtype));
839
840                 if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
841                         output_len += scnprintf(buf + output_len,
842                                                 PAGE_SIZE - output_len,
843                                                 "%s\n", active);
844                         continue;
845                 }
846
847                 box = hdev->box[i];
848                 memcpy(&phys_connector, &hdev->phys_connector[i],
849                         sizeof(phys_connector));
850                 if (phys_connector[0] < '0')
851                         phys_connector[0] = '0';
852                 if (phys_connector[1] < '0')
853                         phys_connector[1] = '0';
854                 output_len += scnprintf(buf + output_len,
855                                 PAGE_SIZE - output_len,
856                                 "PORT: %.2s ",
857                                 phys_connector);
858                 if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
859                         hdev->expose_device) {
860                         if (box == 0 || box == 0xFF) {
861                                 output_len += scnprintf(buf + output_len,
862                                         PAGE_SIZE - output_len,
863                                         "BAY: %hhu %s\n",
864                                         bay, active);
865                         } else {
866                                 output_len += scnprintf(buf + output_len,
867                                         PAGE_SIZE - output_len,
868                                         "BOX: %hhu BAY: %hhu %s\n",
869                                         box, bay, active);
870                         }
871                 } else if (box != 0 && box != 0xFF) {
872                         output_len += scnprintf(buf + output_len,
873                                 PAGE_SIZE - output_len, "BOX: %hhu %s\n",
874                                 box, active);
875                 } else
876                         output_len += scnprintf(buf + output_len,
877                                 PAGE_SIZE - output_len, "%s\n", active);
878         }
879
880         spin_unlock_irqrestore(&h->devlock, flags);
881         return output_len;
882 }
883
884 static ssize_t host_show_ctlr_num(struct device *dev,
885         struct device_attribute *attr, char *buf)
886 {
887         struct ctlr_info *h;
888         struct Scsi_Host *shost = class_to_shost(dev);
889
890         h = shost_to_hba(shost);
891         return snprintf(buf, 20, "%d\n", h->ctlr);
892 }
893
894 static ssize_t host_show_legacy_board(struct device *dev,
895         struct device_attribute *attr, char *buf)
896 {
897         struct ctlr_info *h;
898         struct Scsi_Host *shost = class_to_shost(dev);
899
900         h = shost_to_hba(shost);
901         return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
902 }
903
904 static DEVICE_ATTR_RO(raid_level);
905 static DEVICE_ATTR_RO(lunid);
906 static DEVICE_ATTR_RO(unique_id);
907 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
908 static DEVICE_ATTR_RO(sas_address);
909 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
910                         host_show_hp_ssd_smart_path_enabled, NULL);
911 static DEVICE_ATTR_RO(path_info);
912 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
913                 host_show_hp_ssd_smart_path_status,
914                 host_store_hp_ssd_smart_path_status);
915 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
916                         host_store_raid_offload_debug);
917 static DEVICE_ATTR(firmware_revision, S_IRUGO,
918         host_show_firmware_revision, NULL);
919 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
920         host_show_commands_outstanding, NULL);
921 static DEVICE_ATTR(transport_mode, S_IRUGO,
922         host_show_transport_mode, NULL);
923 static DEVICE_ATTR(resettable, S_IRUGO,
924         host_show_resettable, NULL);
925 static DEVICE_ATTR(lockup_detected, S_IRUGO,
926         host_show_lockup_detected, NULL);
927 static DEVICE_ATTR(ctlr_num, S_IRUGO,
928         host_show_ctlr_num, NULL);
929 static DEVICE_ATTR(legacy_board, S_IRUGO,
930         host_show_legacy_board, NULL);
931
932 static struct device_attribute *hpsa_sdev_attrs[] = {
933         &dev_attr_raid_level,
934         &dev_attr_lunid,
935         &dev_attr_unique_id,
936         &dev_attr_hp_ssd_smart_path_enabled,
937         &dev_attr_path_info,
938         &dev_attr_sas_address,
939         NULL,
940 };
941
942 static struct device_attribute *hpsa_shost_attrs[] = {
943         &dev_attr_rescan,
944         &dev_attr_firmware_revision,
945         &dev_attr_commands_outstanding,
946         &dev_attr_transport_mode,
947         &dev_attr_resettable,
948         &dev_attr_hp_ssd_smart_path_status,
949         &dev_attr_raid_offload_debug,
950         &dev_attr_lockup_detected,
951         &dev_attr_ctlr_num,
952         &dev_attr_legacy_board,
953         NULL,
954 };
955
956 #define HPSA_NRESERVED_CMDS     (HPSA_CMDS_RESERVED_FOR_DRIVER +\
957                                  HPSA_MAX_CONCURRENT_PASSTHRUS)
958
959 static struct scsi_host_template hpsa_driver_template = {
960         .module                 = THIS_MODULE,
961         .name                   = HPSA,
962         .proc_name              = HPSA,
963         .queuecommand           = hpsa_scsi_queue_command,
964         .scan_start             = hpsa_scan_start,
965         .scan_finished          = hpsa_scan_finished,
966         .change_queue_depth     = hpsa_change_queue_depth,
967         .this_id                = -1,
968         .use_clustering         = ENABLE_CLUSTERING,
969         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
970         .ioctl                  = hpsa_ioctl,
971         .slave_alloc            = hpsa_slave_alloc,
972         .slave_configure        = hpsa_slave_configure,
973         .slave_destroy          = hpsa_slave_destroy,
974 #ifdef CONFIG_COMPAT
975         .compat_ioctl           = hpsa_compat_ioctl,
976 #endif
977         .sdev_attrs = hpsa_sdev_attrs,
978         .shost_attrs = hpsa_shost_attrs,
979         .max_sectors = 1024,
980         .no_write_same = 1,
981 };
982
983 static inline u32 next_command(struct ctlr_info *h, u8 q)
984 {
985         u32 a;
986         struct reply_queue_buffer *rq = &h->reply_queue[q];
987
988         if (h->transMethod & CFGTBL_Trans_io_accel1)
989                 return h->access.command_completed(h, q);
990
991         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
992                 return h->access.command_completed(h, q);
993
994         if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
995                 a = rq->head[rq->current_entry];
996                 rq->current_entry++;
997                 atomic_dec(&h->commands_outstanding);
998         } else {
999                 a = FIFO_EMPTY;
1000         }
1001         /* Check for wraparound */
1002         if (rq->current_entry == h->max_commands) {
1003                 rq->current_entry = 0;
1004                 rq->wraparound ^= 1;
1005         }
1006         return a;
1007 }
1008
1009 /*
1010  * There are some special bits in the bus address of the
1011  * command that we have to set for the controller to know
1012  * how to process the command:
1013  *
1014  * Normal performant mode:
1015  * bit 0: 1 means performant mode, 0 means simple mode.
1016  * bits 1-3 = block fetch table entry
1017  * bits 4-6 = command type (== 0)
1018  *
1019  * ioaccel1 mode:
1020  * bit 0 = "performant mode" bit.
1021  * bits 1-3 = block fetch table entry
1022  * bits 4-6 = command type (== 110)
1023  * (command type is needed because ioaccel1 mode
1024  * commands are submitted through the same register as normal
1025  * mode commands, so this is how the controller knows whether
1026  * the command is normal mode or ioaccel1 mode.)
1027  *
1028  * ioaccel2 mode:
1029  * bit 0 = "performant mode" bit.
1030  * bits 1-4 = block fetch table entry (note extra bit)
1031  * bits 4-6 = not needed, because ioaccel2 mode has
1032  * a separate special register for submitting commands.
1033  */
1034
1035 /*
1036  * set_performant_mode: Modify the tag for cciss performant
1037  * set bit 0 for pull model, bits 3-1 for block fetch
1038  * register number
1039  */
1040 #define DEFAULT_REPLY_QUEUE (-1)
1041 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1042                                         int reply_queue)
1043 {
1044         if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1045                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1046                 if (unlikely(!h->msix_vectors))
1047                         return;
1048                 c->Header.ReplyQueue = reply_queue;
1049         }
1050 }
1051
1052 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1053                                                 struct CommandList *c,
1054                                                 int reply_queue)
1055 {
1056         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1057
1058         /*
1059          * Tell the controller to post the reply to the queue for this
1060          * processor.  This seems to give the best I/O throughput.
1061          */
1062         cp->ReplyQueue = reply_queue;
1063         /*
1064          * Set the bits in the address sent down to include:
1065          *  - performant mode bit (bit 0)
1066          *  - pull count (bits 1-3)
1067          *  - command type (bits 4-6)
1068          */
1069         c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1070                                         IOACCEL1_BUSADDR_CMDTYPE;
1071 }
1072
1073 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1074                                                 struct CommandList *c,
1075                                                 int reply_queue)
1076 {
1077         struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1078                 &h->ioaccel2_cmd_pool[c->cmdindex];
1079
1080         /* Tell the controller to post the reply to the queue for this
1081          * processor.  This seems to give the best I/O throughput.
1082          */
1083         cp->reply_queue = reply_queue;
1084         /* Set the bits in the address sent down to include:
1085          *  - performant mode bit not used in ioaccel mode 2
1086          *  - pull count (bits 0-3)
1087          *  - command type isn't needed for ioaccel2
1088          */
1089         c->busaddr |= h->ioaccel2_blockFetchTable[0];
1090 }
1091
1092 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1093                                                 struct CommandList *c,
1094                                                 int reply_queue)
1095 {
1096         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1097
1098         /*
1099          * Tell the controller to post the reply to the queue for this
1100          * processor.  This seems to give the best I/O throughput.
1101          */
1102         cp->reply_queue = reply_queue;
1103         /*
1104          * Set the bits in the address sent down to include:
1105          *  - performant mode bit not used in ioaccel mode 2
1106          *  - pull count (bits 0-3)
1107          *  - command type isn't needed for ioaccel2
1108          */
1109         c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1110 }
1111
1112 static int is_firmware_flash_cmd(u8 *cdb)
1113 {
1114         return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1115 }
1116
1117 /*
1118  * During firmware flash, the heartbeat register may not update as frequently
1119  * as it should.  So we dial down lockup detection during firmware flash. and
1120  * dial it back up when firmware flash completes.
1121  */
1122 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1123 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1124 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1125 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1126                 struct CommandList *c)
1127 {
1128         if (!is_firmware_flash_cmd(c->Request.CDB))
1129                 return;
1130         atomic_inc(&h->firmware_flash_in_progress);
1131         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1132 }
1133
1134 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1135                 struct CommandList *c)
1136 {
1137         if (is_firmware_flash_cmd(c->Request.CDB) &&
1138                 atomic_dec_and_test(&h->firmware_flash_in_progress))
1139                 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1140 }
1141
1142 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1143         struct CommandList *c, int reply_queue)
1144 {
1145         dial_down_lockup_detection_during_fw_flash(h, c);
1146         atomic_inc(&h->commands_outstanding);
1147
1148         reply_queue = h->reply_map[raw_smp_processor_id()];
1149         switch (c->cmd_type) {
1150         case CMD_IOACCEL1:
1151                 set_ioaccel1_performant_mode(h, c, reply_queue);
1152                 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1153                 break;
1154         case CMD_IOACCEL2:
1155                 set_ioaccel2_performant_mode(h, c, reply_queue);
1156                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1157                 break;
1158         case IOACCEL2_TMF:
1159                 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1160                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1161                 break;
1162         default:
1163                 set_performant_mode(h, c, reply_queue);
1164                 h->access.submit_command(h, c);
1165         }
1166 }
1167
1168 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1169 {
1170         if (unlikely(hpsa_is_pending_event(c)))
1171                 return finish_cmd(c);
1172
1173         __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1174 }
1175
1176 static inline int is_hba_lunid(unsigned char scsi3addr[])
1177 {
1178         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1179 }
1180
1181 static inline int is_scsi_rev_5(struct ctlr_info *h)
1182 {
1183         if (!h->hba_inquiry_data)
1184                 return 0;
1185         if ((h->hba_inquiry_data[2] & 0x07) == 5)
1186                 return 1;
1187         return 0;
1188 }
1189
1190 static int hpsa_find_target_lun(struct ctlr_info *h,
1191         unsigned char scsi3addr[], int bus, int *target, int *lun)
1192 {
1193         /* finds an unused bus, target, lun for a new physical device
1194          * assumes h->devlock is held
1195          */
1196         int i, found = 0;
1197         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1198
1199         bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1200
1201         for (i = 0; i < h->ndevices; i++) {
1202                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1203                         __set_bit(h->dev[i]->target, lun_taken);
1204         }
1205
1206         i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1207         if (i < HPSA_MAX_DEVICES) {
1208                 /* *bus = 1; */
1209                 *target = i;
1210                 *lun = 0;
1211                 found = 1;
1212         }
1213         return !found;
1214 }
1215
1216 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1217         struct hpsa_scsi_dev_t *dev, char *description)
1218 {
1219 #define LABEL_SIZE 25
1220         char label[LABEL_SIZE];
1221
1222         if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1223                 return;
1224
1225         switch (dev->devtype) {
1226         case TYPE_RAID:
1227                 snprintf(label, LABEL_SIZE, "controller");
1228                 break;
1229         case TYPE_ENCLOSURE:
1230                 snprintf(label, LABEL_SIZE, "enclosure");
1231                 break;
1232         case TYPE_DISK:
1233         case TYPE_ZBC:
1234                 if (dev->external)
1235                         snprintf(label, LABEL_SIZE, "external");
1236                 else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1237                         snprintf(label, LABEL_SIZE, "%s",
1238                                 raid_label[PHYSICAL_DRIVE]);
1239                 else
1240                         snprintf(label, LABEL_SIZE, "RAID-%s",
1241                                 dev->raid_level > RAID_UNKNOWN ? "?" :
1242                                 raid_label[dev->raid_level]);
1243                 break;
1244         case TYPE_ROM:
1245                 snprintf(label, LABEL_SIZE, "rom");
1246                 break;
1247         case TYPE_TAPE:
1248                 snprintf(label, LABEL_SIZE, "tape");
1249                 break;
1250         case TYPE_MEDIUM_CHANGER:
1251                 snprintf(label, LABEL_SIZE, "changer");
1252                 break;
1253         default:
1254                 snprintf(label, LABEL_SIZE, "UNKNOWN");
1255                 break;
1256         }
1257
1258         dev_printk(level, &h->pdev->dev,
1259                         "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1260                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1261                         description,
1262                         scsi_device_type(dev->devtype),
1263                         dev->vendor,
1264                         dev->model,
1265                         label,
1266                         dev->offload_config ? '+' : '-',
1267                         dev->offload_to_be_enabled ? '+' : '-',
1268                         dev->expose_device);
1269 }
1270
1271 /* Add an entry into h->dev[] array. */
1272 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1273                 struct hpsa_scsi_dev_t *device,
1274                 struct hpsa_scsi_dev_t *added[], int *nadded)
1275 {
1276         /* assumes h->devlock is held */
1277         int n = h->ndevices;
1278         int i;
1279         unsigned char addr1[8], addr2[8];
1280         struct hpsa_scsi_dev_t *sd;
1281
1282         if (n >= HPSA_MAX_DEVICES) {
1283                 dev_err(&h->pdev->dev, "too many devices, some will be "
1284                         "inaccessible.\n");
1285                 return -1;
1286         }
1287
1288         /* physical devices do not have lun or target assigned until now. */
1289         if (device->lun != -1)
1290                 /* Logical device, lun is already assigned. */
1291                 goto lun_assigned;
1292
1293         /* If this device a non-zero lun of a multi-lun device
1294          * byte 4 of the 8-byte LUN addr will contain the logical
1295          * unit no, zero otherwise.
1296          */
1297         if (device->scsi3addr[4] == 0) {
1298                 /* This is not a non-zero lun of a multi-lun device */
1299                 if (hpsa_find_target_lun(h, device->scsi3addr,
1300                         device->bus, &device->target, &device->lun) != 0)
1301                         return -1;
1302                 goto lun_assigned;
1303         }
1304
1305         /* This is a non-zero lun of a multi-lun device.
1306          * Search through our list and find the device which
1307          * has the same 8 byte LUN address, excepting byte 4 and 5.
1308          * Assign the same bus and target for this new LUN.
1309          * Use the logical unit number from the firmware.
1310          */
1311         memcpy(addr1, device->scsi3addr, 8);
1312         addr1[4] = 0;
1313         addr1[5] = 0;
1314         for (i = 0; i < n; i++) {
1315                 sd = h->dev[i];
1316                 memcpy(addr2, sd->scsi3addr, 8);
1317                 addr2[4] = 0;
1318                 addr2[5] = 0;
1319                 /* differ only in byte 4 and 5? */
1320                 if (memcmp(addr1, addr2, 8) == 0) {
1321                         device->bus = sd->bus;
1322                         device->target = sd->target;
1323                         device->lun = device->scsi3addr[4];
1324                         break;
1325                 }
1326         }
1327         if (device->lun == -1) {
1328                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1329                         " suspect firmware bug or unsupported hardware "
1330                         "configuration.\n");
1331                         return -1;
1332         }
1333
1334 lun_assigned:
1335
1336         h->dev[n] = device;
1337         h->ndevices++;
1338         added[*nadded] = device;
1339         (*nadded)++;
1340         hpsa_show_dev_msg(KERN_INFO, h, device,
1341                 device->expose_device ? "added" : "masked");
1342         return 0;
1343 }
1344
1345 /*
1346  * Called during a scan operation.
1347  *
1348  * Update an entry in h->dev[] array.
1349  */
1350 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1351         int entry, struct hpsa_scsi_dev_t *new_entry)
1352 {
1353         /* assumes h->devlock is held */
1354         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1355
1356         /* Raid level changed. */
1357         h->dev[entry]->raid_level = new_entry->raid_level;
1358
1359         /*
1360          * ioacccel_handle may have changed for a dual domain disk
1361          */
1362         h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1363
1364         /* Raid offload parameters changed.  Careful about the ordering. */
1365         if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
1366                 /*
1367                  * if drive is newly offload_enabled, we want to copy the
1368                  * raid map data first.  If previously offload_enabled and
1369                  * offload_config were set, raid map data had better be
1370                  * the same as it was before. If raid map data has changed
1371                  * then it had better be the case that
1372                  * h->dev[entry]->offload_enabled is currently 0.
1373                  */
1374                 h->dev[entry]->raid_map = new_entry->raid_map;
1375                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1376         }
1377         if (new_entry->offload_to_be_enabled) {
1378                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1379                 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1380         }
1381         h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1382         h->dev[entry]->offload_config = new_entry->offload_config;
1383         h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1384         h->dev[entry]->queue_depth = new_entry->queue_depth;
1385
1386         /*
1387          * We can turn off ioaccel offload now, but need to delay turning
1388          * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1389          * can't do that until all the devices are updated.
1390          */
1391         h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
1392
1393         /*
1394          * turn ioaccel off immediately if told to do so.
1395          */
1396         if (!new_entry->offload_to_be_enabled)
1397                 h->dev[entry]->offload_enabled = 0;
1398
1399         hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1400 }
1401
1402 /* Replace an entry from h->dev[] array. */
1403 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1404         int entry, struct hpsa_scsi_dev_t *new_entry,
1405         struct hpsa_scsi_dev_t *added[], int *nadded,
1406         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1407 {
1408         /* assumes h->devlock is held */
1409         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1410         removed[*nremoved] = h->dev[entry];
1411         (*nremoved)++;
1412
1413         /*
1414          * New physical devices won't have target/lun assigned yet
1415          * so we need to preserve the values in the slot we are replacing.
1416          */
1417         if (new_entry->target == -1) {
1418                 new_entry->target = h->dev[entry]->target;
1419                 new_entry->lun = h->dev[entry]->lun;
1420         }
1421
1422         h->dev[entry] = new_entry;
1423         added[*nadded] = new_entry;
1424         (*nadded)++;
1425
1426         hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1427 }
1428
1429 /* Remove an entry from h->dev[] array. */
1430 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1431         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1432 {
1433         /* assumes h->devlock is held */
1434         int i;
1435         struct hpsa_scsi_dev_t *sd;
1436
1437         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1438
1439         sd = h->dev[entry];
1440         removed[*nremoved] = h->dev[entry];
1441         (*nremoved)++;
1442
1443         for (i = entry; i < h->ndevices-1; i++)
1444                 h->dev[i] = h->dev[i+1];
1445         h->ndevices--;
1446         hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1447 }
1448
1449 #define SCSI3ADDR_EQ(a, b) ( \
1450         (a)[7] == (b)[7] && \
1451         (a)[6] == (b)[6] && \
1452         (a)[5] == (b)[5] && \
1453         (a)[4] == (b)[4] && \
1454         (a)[3] == (b)[3] && \
1455         (a)[2] == (b)[2] && \
1456         (a)[1] == (b)[1] && \
1457         (a)[0] == (b)[0])
1458
1459 static void fixup_botched_add(struct ctlr_info *h,
1460         struct hpsa_scsi_dev_t *added)
1461 {
1462         /* called when scsi_add_device fails in order to re-adjust
1463          * h->dev[] to match the mid layer's view.
1464          */
1465         unsigned long flags;
1466         int i, j;
1467
1468         spin_lock_irqsave(&h->lock, flags);
1469         for (i = 0; i < h->ndevices; i++) {
1470                 if (h->dev[i] == added) {
1471                         for (j = i; j < h->ndevices-1; j++)
1472                                 h->dev[j] = h->dev[j+1];
1473                         h->ndevices--;
1474                         break;
1475                 }
1476         }
1477         spin_unlock_irqrestore(&h->lock, flags);
1478         kfree(added);
1479 }
1480
1481 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1482         struct hpsa_scsi_dev_t *dev2)
1483 {
1484         /* we compare everything except lun and target as these
1485          * are not yet assigned.  Compare parts likely
1486          * to differ first
1487          */
1488         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1489                 sizeof(dev1->scsi3addr)) != 0)
1490                 return 0;
1491         if (memcmp(dev1->device_id, dev2->device_id,
1492                 sizeof(dev1->device_id)) != 0)
1493                 return 0;
1494         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1495                 return 0;
1496         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1497                 return 0;
1498         if (dev1->devtype != dev2->devtype)
1499                 return 0;
1500         if (dev1->bus != dev2->bus)
1501                 return 0;
1502         return 1;
1503 }
1504
1505 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1506         struct hpsa_scsi_dev_t *dev2)
1507 {
1508         /* Device attributes that can change, but don't mean
1509          * that the device is a different device, nor that the OS
1510          * needs to be told anything about the change.
1511          */
1512         if (dev1->raid_level != dev2->raid_level)
1513                 return 1;
1514         if (dev1->offload_config != dev2->offload_config)
1515                 return 1;
1516         if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
1517                 return 1;
1518         if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1519                 if (dev1->queue_depth != dev2->queue_depth)
1520                         return 1;
1521         /*
1522          * This can happen for dual domain devices. An active
1523          * path change causes the ioaccel handle to change
1524          *
1525          * for example note the handle differences between p0 and p1
1526          * Device                    WWN               ,WWN hash,Handle
1527          * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1528          *      p1                   0x5000C5005FC4DAC9,0x6798C0,0x00040004
1529          */
1530         if (dev1->ioaccel_handle != dev2->ioaccel_handle)
1531                 return 1;
1532         return 0;
1533 }
1534
1535 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1536  * and return needle location in *index.  If scsi3addr matches, but not
1537  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1538  * location in *index.
1539  * In the case of a minor device attribute change, such as RAID level, just
1540  * return DEVICE_UPDATED, along with the updated device's location in index.
1541  * If needle not found, return DEVICE_NOT_FOUND.
1542  */
1543 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1544         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1545         int *index)
1546 {
1547         int i;
1548 #define DEVICE_NOT_FOUND 0
1549 #define DEVICE_CHANGED 1
1550 #define DEVICE_SAME 2
1551 #define DEVICE_UPDATED 3
1552         if (needle == NULL)
1553                 return DEVICE_NOT_FOUND;
1554
1555         for (i = 0; i < haystack_size; i++) {
1556                 if (haystack[i] == NULL) /* previously removed. */
1557                         continue;
1558                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1559                         *index = i;
1560                         if (device_is_the_same(needle, haystack[i])) {
1561                                 if (device_updated(needle, haystack[i]))
1562                                         return DEVICE_UPDATED;
1563                                 return DEVICE_SAME;
1564                         } else {
1565                                 /* Keep offline devices offline */
1566                                 if (needle->volume_offline)
1567                                         return DEVICE_NOT_FOUND;
1568                                 return DEVICE_CHANGED;
1569                         }
1570                 }
1571         }
1572         *index = -1;
1573         return DEVICE_NOT_FOUND;
1574 }
1575
1576 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1577                                         unsigned char scsi3addr[])
1578 {
1579         struct offline_device_entry *device;
1580         unsigned long flags;
1581
1582         /* Check to see if device is already on the list */
1583         spin_lock_irqsave(&h->offline_device_lock, flags);
1584         list_for_each_entry(device, &h->offline_device_list, offline_list) {
1585                 if (memcmp(device->scsi3addr, scsi3addr,
1586                         sizeof(device->scsi3addr)) == 0) {
1587                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1588                         return;
1589                 }
1590         }
1591         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1592
1593         /* Device is not on the list, add it. */
1594         device = kmalloc(sizeof(*device), GFP_KERNEL);
1595         if (!device)
1596                 return;
1597
1598         memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1599         spin_lock_irqsave(&h->offline_device_lock, flags);
1600         list_add_tail(&device->offline_list, &h->offline_device_list);
1601         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1602 }
1603
1604 /* Print a message explaining various offline volume states */
1605 static void hpsa_show_volume_status(struct ctlr_info *h,
1606         struct hpsa_scsi_dev_t *sd)
1607 {
1608         if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1609                 dev_info(&h->pdev->dev,
1610                         "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1611                         h->scsi_host->host_no,
1612                         sd->bus, sd->target, sd->lun);
1613         switch (sd->volume_offline) {
1614         case HPSA_LV_OK:
1615                 break;
1616         case HPSA_LV_UNDERGOING_ERASE:
1617                 dev_info(&h->pdev->dev,
1618                         "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1619                         h->scsi_host->host_no,
1620                         sd->bus, sd->target, sd->lun);
1621                 break;
1622         case HPSA_LV_NOT_AVAILABLE:
1623                 dev_info(&h->pdev->dev,
1624                         "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1625                         h->scsi_host->host_no,
1626                         sd->bus, sd->target, sd->lun);
1627                 break;
1628         case HPSA_LV_UNDERGOING_RPI:
1629                 dev_info(&h->pdev->dev,
1630                         "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1631                         h->scsi_host->host_no,
1632                         sd->bus, sd->target, sd->lun);
1633                 break;
1634         case HPSA_LV_PENDING_RPI:
1635                 dev_info(&h->pdev->dev,
1636                         "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1637                         h->scsi_host->host_no,
1638                         sd->bus, sd->target, sd->lun);
1639                 break;
1640         case HPSA_LV_ENCRYPTED_NO_KEY:
1641                 dev_info(&h->pdev->dev,
1642                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1643                         h->scsi_host->host_no,
1644                         sd->bus, sd->target, sd->lun);
1645                 break;
1646         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1647                 dev_info(&h->pdev->dev,
1648                         "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1649                         h->scsi_host->host_no,
1650                         sd->bus, sd->target, sd->lun);
1651                 break;
1652         case HPSA_LV_UNDERGOING_ENCRYPTION:
1653                 dev_info(&h->pdev->dev,
1654                         "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1655                         h->scsi_host->host_no,
1656                         sd->bus, sd->target, sd->lun);
1657                 break;
1658         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1659                 dev_info(&h->pdev->dev,
1660                         "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1661                         h->scsi_host->host_no,
1662                         sd->bus, sd->target, sd->lun);
1663                 break;
1664         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1665                 dev_info(&h->pdev->dev,
1666                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1667                         h->scsi_host->host_no,
1668                         sd->bus, sd->target, sd->lun);
1669                 break;
1670         case HPSA_LV_PENDING_ENCRYPTION:
1671                 dev_info(&h->pdev->dev,
1672                         "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1673                         h->scsi_host->host_no,
1674                         sd->bus, sd->target, sd->lun);
1675                 break;
1676         case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1677                 dev_info(&h->pdev->dev,
1678                         "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1679                         h->scsi_host->host_no,
1680                         sd->bus, sd->target, sd->lun);
1681                 break;
1682         }
1683 }
1684
1685 /*
1686  * Figure the list of physical drive pointers for a logical drive with
1687  * raid offload configured.
1688  */
1689 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1690                                 struct hpsa_scsi_dev_t *dev[], int ndevices,
1691                                 struct hpsa_scsi_dev_t *logical_drive)
1692 {
1693         struct raid_map_data *map = &logical_drive->raid_map;
1694         struct raid_map_disk_data *dd = &map->data[0];
1695         int i, j;
1696         int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1697                                 le16_to_cpu(map->metadata_disks_per_row);
1698         int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1699                                 le16_to_cpu(map->layout_map_count) *
1700                                 total_disks_per_row;
1701         int nphys_disk = le16_to_cpu(map->layout_map_count) *
1702                                 total_disks_per_row;
1703         int qdepth;
1704
1705         if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1706                 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1707
1708         logical_drive->nphysical_disks = nraid_map_entries;
1709
1710         qdepth = 0;
1711         for (i = 0; i < nraid_map_entries; i++) {
1712                 logical_drive->phys_disk[i] = NULL;
1713                 if (!logical_drive->offload_config)
1714                         continue;
1715                 for (j = 0; j < ndevices; j++) {
1716                         if (dev[j] == NULL)
1717                                 continue;
1718                         if (dev[j]->devtype != TYPE_DISK &&
1719                             dev[j]->devtype != TYPE_ZBC)
1720                                 continue;
1721                         if (is_logical_device(dev[j]))
1722                                 continue;
1723                         if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1724                                 continue;
1725
1726                         logical_drive->phys_disk[i] = dev[j];
1727                         if (i < nphys_disk)
1728                                 qdepth = min(h->nr_cmds, qdepth +
1729                                     logical_drive->phys_disk[i]->queue_depth);
1730                         break;
1731                 }
1732
1733                 /*
1734                  * This can happen if a physical drive is removed and
1735                  * the logical drive is degraded.  In that case, the RAID
1736                  * map data will refer to a physical disk which isn't actually
1737                  * present.  And in that case offload_enabled should already
1738                  * be 0, but we'll turn it off here just in case
1739                  */
1740                 if (!logical_drive->phys_disk[i]) {
1741                         dev_warn(&h->pdev->dev,
1742                                 "%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1743                                 __func__,
1744                                 h->scsi_host->host_no, logical_drive->bus,
1745                                 logical_drive->target, logical_drive->lun);
1746                         logical_drive->offload_enabled = 0;
1747                         logical_drive->offload_to_be_enabled = 0;
1748                         logical_drive->queue_depth = 8;
1749                 }
1750         }
1751         if (nraid_map_entries)
1752                 /*
1753                  * This is correct for reads, too high for full stripe writes,
1754                  * way too high for partial stripe writes
1755                  */
1756                 logical_drive->queue_depth = qdepth;
1757         else {
1758                 if (logical_drive->external)
1759                         logical_drive->queue_depth = EXTERNAL_QD;
1760                 else
1761                         logical_drive->queue_depth = h->nr_cmds;
1762         }
1763 }
1764
1765 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1766                                 struct hpsa_scsi_dev_t *dev[], int ndevices)
1767 {
1768         int i;
1769
1770         for (i = 0; i < ndevices; i++) {
1771                 if (dev[i] == NULL)
1772                         continue;
1773                 if (dev[i]->devtype != TYPE_DISK &&
1774                     dev[i]->devtype != TYPE_ZBC)
1775                         continue;
1776                 if (!is_logical_device(dev[i]))
1777                         continue;
1778
1779                 /*
1780                  * If offload is currently enabled, the RAID map and
1781                  * phys_disk[] assignment *better* not be changing
1782                  * because we would be changing ioaccel phsy_disk[] pointers
1783                  * on a ioaccel volume processing I/O requests.
1784                  *
1785                  * If an ioaccel volume status changed, initially because it was
1786                  * re-configured and thus underwent a transformation, or
1787                  * a drive failed, we would have received a state change
1788                  * request and ioaccel should have been turned off. When the
1789                  * transformation completes, we get another state change
1790                  * request to turn ioaccel back on. In this case, we need
1791                  * to update the ioaccel information.
1792                  *
1793                  * Thus: If it is not currently enabled, but will be after
1794                  * the scan completes, make sure the ioaccel pointers
1795                  * are up to date.
1796                  */
1797
1798                 if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
1799                         hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1800         }
1801 }
1802
1803 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1804 {
1805         int rc = 0;
1806
1807         if (!h->scsi_host)
1808                 return 1;
1809
1810         if (is_logical_device(device)) /* RAID */
1811                 rc = scsi_add_device(h->scsi_host, device->bus,
1812                                         device->target, device->lun);
1813         else /* HBA */
1814                 rc = hpsa_add_sas_device(h->sas_host, device);
1815
1816         return rc;
1817 }
1818
1819 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1820                                                 struct hpsa_scsi_dev_t *dev)
1821 {
1822         int i;
1823         int count = 0;
1824
1825         for (i = 0; i < h->nr_cmds; i++) {
1826                 struct CommandList *c = h->cmd_pool + i;
1827                 int refcount = atomic_inc_return(&c->refcount);
1828
1829                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1830                                 dev->scsi3addr)) {
1831                         unsigned long flags;
1832
1833                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
1834                         if (!hpsa_is_cmd_idle(c))
1835                                 ++count;
1836                         spin_unlock_irqrestore(&h->lock, flags);
1837                 }
1838
1839                 cmd_free(h, c);
1840         }
1841
1842         return count;
1843 }
1844
1845 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1846                                                 struct hpsa_scsi_dev_t *device)
1847 {
1848         int cmds = 0;
1849         int waits = 0;
1850
1851         while (1) {
1852                 cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1853                 if (cmds == 0)
1854                         break;
1855                 if (++waits > 20)
1856                         break;
1857                 msleep(1000);
1858         }
1859
1860         if (waits > 20)
1861                 dev_warn(&h->pdev->dev,
1862                         "%s: removing device with %d outstanding commands!\n",
1863                         __func__, cmds);
1864 }
1865
1866 static void hpsa_remove_device(struct ctlr_info *h,
1867                         struct hpsa_scsi_dev_t *device)
1868 {
1869         struct scsi_device *sdev = NULL;
1870
1871         if (!h->scsi_host)
1872                 return;
1873
1874         /*
1875          * Allow for commands to drain
1876          */
1877         device->removed = 1;
1878         hpsa_wait_for_outstanding_commands_for_dev(h, device);
1879
1880         if (is_logical_device(device)) { /* RAID */
1881                 sdev = scsi_device_lookup(h->scsi_host, device->bus,
1882                                                 device->target, device->lun);
1883                 if (sdev) {
1884                         scsi_remove_device(sdev);
1885                         scsi_device_put(sdev);
1886                 } else {
1887                         /*
1888                          * We don't expect to get here.  Future commands
1889                          * to this device will get a selection timeout as
1890                          * if the device were gone.
1891                          */
1892                         hpsa_show_dev_msg(KERN_WARNING, h, device,
1893                                         "didn't find device for removal.");
1894                 }
1895         } else { /* HBA */
1896
1897                 hpsa_remove_sas_device(device);
1898         }
1899 }
1900
1901 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1902         struct hpsa_scsi_dev_t *sd[], int nsds)
1903 {
1904         /* sd contains scsi3 addresses and devtypes, and inquiry
1905          * data.  This function takes what's in sd to be the current
1906          * reality and updates h->dev[] to reflect that reality.
1907          */
1908         int i, entry, device_change, changes = 0;
1909         struct hpsa_scsi_dev_t *csd;
1910         unsigned long flags;
1911         struct hpsa_scsi_dev_t **added, **removed;
1912         int nadded, nremoved;
1913
1914         /*
1915          * A reset can cause a device status to change
1916          * re-schedule the scan to see what happened.
1917          */
1918         spin_lock_irqsave(&h->reset_lock, flags);
1919         if (h->reset_in_progress) {
1920                 h->drv_req_rescan = 1;
1921                 spin_unlock_irqrestore(&h->reset_lock, flags);
1922                 return;
1923         }
1924         spin_unlock_irqrestore(&h->reset_lock, flags);
1925
1926         added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1927         removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1928
1929         if (!added || !removed) {
1930                 dev_warn(&h->pdev->dev, "out of memory in "
1931                         "adjust_hpsa_scsi_table\n");
1932                 goto free_and_out;
1933         }
1934
1935         spin_lock_irqsave(&h->devlock, flags);
1936
1937         /* find any devices in h->dev[] that are not in
1938          * sd[] and remove them from h->dev[], and for any
1939          * devices which have changed, remove the old device
1940          * info and add the new device info.
1941          * If minor device attributes change, just update
1942          * the existing device structure.
1943          */
1944         i = 0;
1945         nremoved = 0;
1946         nadded = 0;
1947         while (i < h->ndevices) {
1948                 csd = h->dev[i];
1949                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1950                 if (device_change == DEVICE_NOT_FOUND) {
1951                         changes++;
1952                         hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1953                         continue; /* remove ^^^, hence i not incremented */
1954                 } else if (device_change == DEVICE_CHANGED) {
1955                         changes++;
1956                         hpsa_scsi_replace_entry(h, i, sd[entry],
1957                                 added, &nadded, removed, &nremoved);
1958                         /* Set it to NULL to prevent it from being freed
1959                          * at the bottom of hpsa_update_scsi_devices()
1960                          */
1961                         sd[entry] = NULL;
1962                 } else if (device_change == DEVICE_UPDATED) {
1963                         hpsa_scsi_update_entry(h, i, sd[entry]);
1964                 }
1965                 i++;
1966         }
1967
1968         /* Now, make sure every device listed in sd[] is also
1969          * listed in h->dev[], adding them if they aren't found
1970          */
1971
1972         for (i = 0; i < nsds; i++) {
1973                 if (!sd[i]) /* if already added above. */
1974                         continue;
1975
1976                 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1977                  * as the SCSI mid-layer does not handle such devices well.
1978                  * It relentlessly loops sending TUR at 3Hz, then READ(10)
1979                  * at 160Hz, and prevents the system from coming up.
1980                  */
1981                 if (sd[i]->volume_offline) {
1982                         hpsa_show_volume_status(h, sd[i]);
1983                         hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1984                         continue;
1985                 }
1986
1987                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1988                                         h->ndevices, &entry);
1989                 if (device_change == DEVICE_NOT_FOUND) {
1990                         changes++;
1991                         if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1992                                 break;
1993                         sd[i] = NULL; /* prevent from being freed later. */
1994                 } else if (device_change == DEVICE_CHANGED) {
1995                         /* should never happen... */
1996                         changes++;
1997                         dev_warn(&h->pdev->dev,
1998                                 "device unexpectedly changed.\n");
1999                         /* but if it does happen, we just ignore that device */
2000                 }
2001         }
2002         hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
2003
2004         /*
2005          * Now that h->dev[]->phys_disk[] is coherent, we can enable
2006          * any logical drives that need it enabled.
2007          *
2008          * The raid map should be current by now.
2009          *
2010          * We are updating the device list used for I/O requests.
2011          */
2012         for (i = 0; i < h->ndevices; i++) {
2013                 if (h->dev[i] == NULL)
2014                         continue;
2015                 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
2016         }
2017
2018         spin_unlock_irqrestore(&h->devlock, flags);
2019
2020         /* Monitor devices which are in one of several NOT READY states to be
2021          * brought online later. This must be done without holding h->devlock,
2022          * so don't touch h->dev[]
2023          */
2024         for (i = 0; i < nsds; i++) {
2025                 if (!sd[i]) /* if already added above. */
2026                         continue;
2027                 if (sd[i]->volume_offline)
2028                         hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
2029         }
2030
2031         /* Don't notify scsi mid layer of any changes the first time through
2032          * (or if there are no changes) scsi_scan_host will do it later the
2033          * first time through.
2034          */
2035         if (!changes)
2036                 goto free_and_out;
2037
2038         /* Notify scsi mid layer of any removed devices */
2039         for (i = 0; i < nremoved; i++) {
2040                 if (removed[i] == NULL)
2041                         continue;
2042                 if (removed[i]->expose_device)
2043                         hpsa_remove_device(h, removed[i]);
2044                 kfree(removed[i]);
2045                 removed[i] = NULL;
2046         }
2047
2048         /* Notify scsi mid layer of any added devices */
2049         for (i = 0; i < nadded; i++) {
2050                 int rc = 0;
2051
2052                 if (added[i] == NULL)
2053                         continue;
2054                 if (!(added[i]->expose_device))
2055                         continue;
2056                 rc = hpsa_add_device(h, added[i]);
2057                 if (!rc)
2058                         continue;
2059                 dev_warn(&h->pdev->dev,
2060                         "addition failed %d, device not added.", rc);
2061                 /* now we have to remove it from h->dev,
2062                  * since it didn't get added to scsi mid layer
2063                  */
2064                 fixup_botched_add(h, added[i]);
2065                 h->drv_req_rescan = 1;
2066         }
2067
2068 free_and_out:
2069         kfree(added);
2070         kfree(removed);
2071 }
2072
2073 /*
2074  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2075  * Assume's h->devlock is held.
2076  */
2077 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2078         int bus, int target, int lun)
2079 {
2080         int i;
2081         struct hpsa_scsi_dev_t *sd;
2082
2083         for (i = 0; i < h->ndevices; i++) {
2084                 sd = h->dev[i];
2085                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
2086                         return sd;
2087         }
2088         return NULL;
2089 }
2090
2091 static int hpsa_slave_alloc(struct scsi_device *sdev)
2092 {
2093         struct hpsa_scsi_dev_t *sd = NULL;
2094         unsigned long flags;
2095         struct ctlr_info *h;
2096
2097         h = sdev_to_hba(sdev);
2098         spin_lock_irqsave(&h->devlock, flags);
2099         if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2100                 struct scsi_target *starget;
2101                 struct sas_rphy *rphy;
2102
2103                 starget = scsi_target(sdev);
2104                 rphy = target_to_rphy(starget);
2105                 sd = hpsa_find_device_by_sas_rphy(h, rphy);
2106                 if (sd) {
2107                         sd->target = sdev_id(sdev);
2108                         sd->lun = sdev->lun;
2109                 }
2110         }
2111         if (!sd)
2112                 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2113                                         sdev_id(sdev), sdev->lun);
2114
2115         if (sd && sd->expose_device) {
2116                 atomic_set(&sd->ioaccel_cmds_out, 0);
2117                 sdev->hostdata = sd;
2118         } else
2119                 sdev->hostdata = NULL;
2120         spin_unlock_irqrestore(&h->devlock, flags);
2121         return 0;
2122 }
2123
2124 /* configure scsi device based on internal per-device structure */
2125 static int hpsa_slave_configure(struct scsi_device *sdev)
2126 {
2127         struct hpsa_scsi_dev_t *sd;
2128         int queue_depth;
2129
2130         sd = sdev->hostdata;
2131         sdev->no_uld_attach = !sd || !sd->expose_device;
2132
2133         if (sd) {
2134                 if (sd->external)
2135                         queue_depth = EXTERNAL_QD;
2136                 else
2137                         queue_depth = sd->queue_depth != 0 ?
2138                                         sd->queue_depth : sdev->host->can_queue;
2139         } else
2140                 queue_depth = sdev->host->can_queue;
2141
2142         scsi_change_queue_depth(sdev, queue_depth);
2143
2144         return 0;
2145 }
2146
2147 static void hpsa_slave_destroy(struct scsi_device *sdev)
2148 {
2149         /* nothing to do. */
2150 }
2151
2152 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2153 {
2154         int i;
2155
2156         if (!h->ioaccel2_cmd_sg_list)
2157                 return;
2158         for (i = 0; i < h->nr_cmds; i++) {
2159                 kfree(h->ioaccel2_cmd_sg_list[i]);
2160                 h->ioaccel2_cmd_sg_list[i] = NULL;
2161         }
2162         kfree(h->ioaccel2_cmd_sg_list);
2163         h->ioaccel2_cmd_sg_list = NULL;
2164 }
2165
2166 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2167 {
2168         int i;
2169
2170         if (h->chainsize <= 0)
2171                 return 0;
2172
2173         h->ioaccel2_cmd_sg_list =
2174                 kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
2175                                         GFP_KERNEL);
2176         if (!h->ioaccel2_cmd_sg_list)
2177                 return -ENOMEM;
2178         for (i = 0; i < h->nr_cmds; i++) {
2179                 h->ioaccel2_cmd_sg_list[i] =
2180                         kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
2181                                         h->maxsgentries, GFP_KERNEL);
2182                 if (!h->ioaccel2_cmd_sg_list[i])
2183                         goto clean;
2184         }
2185         return 0;
2186
2187 clean:
2188         hpsa_free_ioaccel2_sg_chain_blocks(h);
2189         return -ENOMEM;
2190 }
2191
2192 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2193 {
2194         int i;
2195
2196         if (!h->cmd_sg_list)
2197                 return;
2198         for (i = 0; i < h->nr_cmds; i++) {
2199                 kfree(h->cmd_sg_list[i]);
2200                 h->cmd_sg_list[i] = NULL;
2201         }
2202         kfree(h->cmd_sg_list);
2203         h->cmd_sg_list = NULL;
2204 }
2205
2206 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2207 {
2208         int i;
2209
2210         if (h->chainsize <= 0)
2211                 return 0;
2212
2213         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
2214                                 GFP_KERNEL);
2215         if (!h->cmd_sg_list)
2216                 return -ENOMEM;
2217
2218         for (i = 0; i < h->nr_cmds; i++) {
2219                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
2220                                                 h->chainsize, GFP_KERNEL);
2221                 if (!h->cmd_sg_list[i])
2222                         goto clean;
2223
2224         }
2225         return 0;
2226
2227 clean:
2228         hpsa_free_sg_chain_blocks(h);
2229         return -ENOMEM;
2230 }
2231
2232 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2233         struct io_accel2_cmd *cp, struct CommandList *c)
2234 {
2235         struct ioaccel2_sg_element *chain_block;
2236         u64 temp64;
2237         u32 chain_size;
2238
2239         chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2240         chain_size = le32_to_cpu(cp->sg[0].length);
2241         temp64 = pci_map_single(h->pdev, chain_block, chain_size,
2242                                 PCI_DMA_TODEVICE);
2243         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2244                 /* prevent subsequent unmapping */
2245                 cp->sg->address = 0;
2246                 return -1;
2247         }
2248         cp->sg->address = cpu_to_le64(temp64);
2249         return 0;
2250 }
2251
2252 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2253         struct io_accel2_cmd *cp)
2254 {
2255         struct ioaccel2_sg_element *chain_sg;
2256         u64 temp64;
2257         u32 chain_size;
2258
2259         chain_sg = cp->sg;
2260         temp64 = le64_to_cpu(chain_sg->address);
2261         chain_size = le32_to_cpu(cp->sg[0].length);
2262         pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
2263 }
2264
2265 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2266         struct CommandList *c)
2267 {
2268         struct SGDescriptor *chain_sg, *chain_block;
2269         u64 temp64;
2270         u32 chain_len;
2271
2272         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2273         chain_block = h->cmd_sg_list[c->cmdindex];
2274         chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2275         chain_len = sizeof(*chain_sg) *
2276                 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2277         chain_sg->Len = cpu_to_le32(chain_len);
2278         temp64 = pci_map_single(h->pdev, chain_block, chain_len,
2279                                 PCI_DMA_TODEVICE);
2280         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2281                 /* prevent subsequent unmapping */
2282                 chain_sg->Addr = cpu_to_le64(0);
2283                 return -1;
2284         }
2285         chain_sg->Addr = cpu_to_le64(temp64);
2286         return 0;
2287 }
2288
2289 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2290         struct CommandList *c)
2291 {
2292         struct SGDescriptor *chain_sg;
2293
2294         if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2295                 return;
2296
2297         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2298         pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2299                         le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2300 }
2301
2302
2303 /* Decode the various types of errors on ioaccel2 path.
2304  * Return 1 for any error that should generate a RAID path retry.
2305  * Return 0 for errors that don't require a RAID path retry.
2306  */
2307 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2308                                         struct CommandList *c,
2309                                         struct scsi_cmnd *cmd,
2310                                         struct io_accel2_cmd *c2,
2311                                         struct hpsa_scsi_dev_t *dev)
2312 {
2313         int data_len;
2314         int retry = 0;
2315         u32 ioaccel2_resid = 0;
2316
2317         switch (c2->error_data.serv_response) {
2318         case IOACCEL2_SERV_RESPONSE_COMPLETE:
2319                 switch (c2->error_data.status) {
2320                 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2321                         break;
2322                 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2323                         cmd->result |= SAM_STAT_CHECK_CONDITION;
2324                         if (c2->error_data.data_present !=
2325                                         IOACCEL2_SENSE_DATA_PRESENT) {
2326                                 memset(cmd->sense_buffer, 0,
2327                                         SCSI_SENSE_BUFFERSIZE);
2328                                 break;
2329                         }
2330                         /* copy the sense data */
2331                         data_len = c2->error_data.sense_data_len;
2332                         if (data_len > SCSI_SENSE_BUFFERSIZE)
2333                                 data_len = SCSI_SENSE_BUFFERSIZE;
2334                         if (data_len > sizeof(c2->error_data.sense_data_buff))
2335                                 data_len =
2336                                         sizeof(c2->error_data.sense_data_buff);
2337                         memcpy(cmd->sense_buffer,
2338                                 c2->error_data.sense_data_buff, data_len);
2339                         retry = 1;
2340                         break;
2341                 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2342                         retry = 1;
2343                         break;
2344                 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2345                         retry = 1;
2346                         break;
2347                 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2348                         retry = 1;
2349                         break;
2350                 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2351                         retry = 1;
2352                         break;
2353                 default:
2354                         retry = 1;
2355                         break;
2356                 }
2357                 break;
2358         case IOACCEL2_SERV_RESPONSE_FAILURE:
2359                 switch (c2->error_data.status) {
2360                 case IOACCEL2_STATUS_SR_IO_ERROR:
2361                 case IOACCEL2_STATUS_SR_IO_ABORTED:
2362                 case IOACCEL2_STATUS_SR_OVERRUN:
2363                         retry = 1;
2364                         break;
2365                 case IOACCEL2_STATUS_SR_UNDERRUN:
2366                         cmd->result = (DID_OK << 16);           /* host byte */
2367                         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2368                         ioaccel2_resid = get_unaligned_le32(
2369                                                 &c2->error_data.resid_cnt[0]);
2370                         scsi_set_resid(cmd, ioaccel2_resid);
2371                         break;
2372                 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2373                 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2374                 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2375                         /*
2376                          * Did an HBA disk disappear? We will eventually
2377                          * get a state change event from the controller but
2378                          * in the meantime, we need to tell the OS that the
2379                          * HBA disk is no longer there and stop I/O
2380                          * from going down. This allows the potential re-insert
2381                          * of the disk to get the same device node.
2382                          */
2383                         if (dev->physical_device && dev->expose_device) {
2384                                 cmd->result = DID_NO_CONNECT << 16;
2385                                 dev->removed = 1;
2386                                 h->drv_req_rescan = 1;
2387                                 dev_warn(&h->pdev->dev,
2388                                         "%s: device is gone!\n", __func__);
2389                         } else
2390                                 /*
2391                                  * Retry by sending down the RAID path.
2392                                  * We will get an event from ctlr to
2393                                  * trigger rescan regardless.
2394                                  */
2395                                 retry = 1;
2396                         break;
2397                 default:
2398                         retry = 1;
2399                 }
2400                 break;
2401         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2402                 break;
2403         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2404                 break;
2405         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2406                 retry = 1;
2407                 break;
2408         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2409                 break;
2410         default:
2411                 retry = 1;
2412                 break;
2413         }
2414
2415         return retry;   /* retry on raid path? */
2416 }
2417
2418 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2419                 struct CommandList *c)
2420 {
2421         bool do_wake = false;
2422
2423         /*
2424          * Reset c->scsi_cmd here so that the reset handler will know
2425          * this command has completed.  Then, check to see if the handler is
2426          * waiting for this command, and, if so, wake it.
2427          */
2428         c->scsi_cmd = SCSI_CMD_IDLE;
2429         mb();   /* Declare command idle before checking for pending events. */
2430         if (c->reset_pending) {
2431                 unsigned long flags;
2432                 struct hpsa_scsi_dev_t *dev;
2433
2434                 /*
2435                  * There appears to be a reset pending; lock the lock and
2436                  * reconfirm.  If so, then decrement the count of outstanding
2437                  * commands and wake the reset command if this is the last one.
2438                  */
2439                 spin_lock_irqsave(&h->lock, flags);
2440                 dev = c->reset_pending;         /* Re-fetch under the lock. */
2441                 if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2442                         do_wake = true;
2443                 c->reset_pending = NULL;
2444                 spin_unlock_irqrestore(&h->lock, flags);
2445         }
2446
2447         if (do_wake)
2448                 wake_up_all(&h->event_sync_wait_queue);
2449 }
2450
2451 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2452                                       struct CommandList *c)
2453 {
2454         hpsa_cmd_resolve_events(h, c);
2455         cmd_tagged_free(h, c);
2456 }
2457
2458 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2459                 struct CommandList *c, struct scsi_cmnd *cmd)
2460 {
2461         hpsa_cmd_resolve_and_free(h, c);
2462         if (cmd && cmd->scsi_done)
2463                 cmd->scsi_done(cmd);
2464 }
2465
2466 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2467 {
2468         INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2469         queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2470 }
2471
2472 static void process_ioaccel2_completion(struct ctlr_info *h,
2473                 struct CommandList *c, struct scsi_cmnd *cmd,
2474                 struct hpsa_scsi_dev_t *dev)
2475 {
2476         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2477
2478         /* check for good status */
2479         if (likely(c2->error_data.serv_response == 0 &&
2480                         c2->error_data.status == 0))
2481                 return hpsa_cmd_free_and_done(h, c, cmd);
2482
2483         /*
2484          * Any RAID offload error results in retry which will use
2485          * the normal I/O path so the controller can handle whatever is
2486          * wrong.
2487          */
2488         if (is_logical_device(dev) &&
2489                 c2->error_data.serv_response ==
2490                         IOACCEL2_SERV_RESPONSE_FAILURE) {
2491                 if (c2->error_data.status ==
2492                         IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2493                         dev->offload_enabled = 0;
2494                         dev->offload_to_be_enabled = 0;
2495                 }
2496
2497                 return hpsa_retry_cmd(h, c);
2498         }
2499
2500         if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2501                 return hpsa_retry_cmd(h, c);
2502
2503         return hpsa_cmd_free_and_done(h, c, cmd);
2504 }
2505
2506 /* Returns 0 on success, < 0 otherwise. */
2507 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2508                                         struct CommandList *cp)
2509 {
2510         u8 tmf_status = cp->err_info->ScsiStatus;
2511
2512         switch (tmf_status) {
2513         case CISS_TMF_COMPLETE:
2514                 /*
2515                  * CISS_TMF_COMPLETE never happens, instead,
2516                  * ei->CommandStatus == 0 for this case.
2517                  */
2518         case CISS_TMF_SUCCESS:
2519                 return 0;
2520         case CISS_TMF_INVALID_FRAME:
2521         case CISS_TMF_NOT_SUPPORTED:
2522         case CISS_TMF_FAILED:
2523         case CISS_TMF_WRONG_LUN:
2524         case CISS_TMF_OVERLAPPED_TAG:
2525                 break;
2526         default:
2527                 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2528                                 tmf_status);
2529                 break;
2530         }
2531         return -tmf_status;
2532 }
2533
2534 static void complete_scsi_command(struct CommandList *cp)
2535 {
2536         struct scsi_cmnd *cmd;
2537         struct ctlr_info *h;
2538         struct ErrorInfo *ei;
2539         struct hpsa_scsi_dev_t *dev;
2540         struct io_accel2_cmd *c2;
2541
2542         u8 sense_key;
2543         u8 asc;      /* additional sense code */
2544         u8 ascq;     /* additional sense code qualifier */
2545         unsigned long sense_data_size;
2546
2547         ei = cp->err_info;
2548         cmd = cp->scsi_cmd;
2549         h = cp->h;
2550
2551         if (!cmd->device) {
2552                 cmd->result = DID_NO_CONNECT << 16;
2553                 return hpsa_cmd_free_and_done(h, cp, cmd);
2554         }
2555
2556         dev = cmd->device->hostdata;
2557         if (!dev) {
2558                 cmd->result = DID_NO_CONNECT << 16;
2559                 return hpsa_cmd_free_and_done(h, cp, cmd);
2560         }
2561         c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2562
2563         scsi_dma_unmap(cmd); /* undo the DMA mappings */
2564         if ((cp->cmd_type == CMD_SCSI) &&
2565                 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2566                 hpsa_unmap_sg_chain_block(h, cp);
2567
2568         if ((cp->cmd_type == CMD_IOACCEL2) &&
2569                 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2570                 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2571
2572         cmd->result = (DID_OK << 16);           /* host byte */
2573         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2574
2575         if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2576                 if (dev->physical_device && dev->expose_device &&
2577                         dev->removed) {
2578                         cmd->result = DID_NO_CONNECT << 16;
2579                         return hpsa_cmd_free_and_done(h, cp, cmd);
2580                 }
2581                 if (likely(cp->phys_disk != NULL))
2582                         atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2583         }
2584
2585         /*
2586          * We check for lockup status here as it may be set for
2587          * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2588          * fail_all_oustanding_cmds()
2589          */
2590         if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2591                 /* DID_NO_CONNECT will prevent a retry */
2592                 cmd->result = DID_NO_CONNECT << 16;
2593                 return hpsa_cmd_free_and_done(h, cp, cmd);
2594         }
2595
2596         if ((unlikely(hpsa_is_pending_event(cp))))
2597                 if (cp->reset_pending)
2598                         return hpsa_cmd_free_and_done(h, cp, cmd);
2599
2600         if (cp->cmd_type == CMD_IOACCEL2)
2601                 return process_ioaccel2_completion(h, cp, cmd, dev);
2602
2603         scsi_set_resid(cmd, ei->ResidualCnt);
2604         if (ei->CommandStatus == 0)
2605                 return hpsa_cmd_free_and_done(h, cp, cmd);
2606
2607         /* For I/O accelerator commands, copy over some fields to the normal
2608          * CISS header used below for error handling.
2609          */
2610         if (cp->cmd_type == CMD_IOACCEL1) {
2611                 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2612                 cp->Header.SGList = scsi_sg_count(cmd);
2613                 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2614                 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2615                         IOACCEL1_IOFLAGS_CDBLEN_MASK;
2616                 cp->Header.tag = c->tag;
2617                 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2618                 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2619
2620                 /* Any RAID offload error results in retry which will use
2621                  * the normal I/O path so the controller can handle whatever's
2622                  * wrong.
2623                  */
2624                 if (is_logical_device(dev)) {
2625                         if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2626                                 dev->offload_enabled = 0;
2627                         return hpsa_retry_cmd(h, cp);
2628                 }
2629         }
2630
2631         /* an error has occurred */
2632         switch (ei->CommandStatus) {
2633
2634         case CMD_TARGET_STATUS:
2635                 cmd->result |= ei->ScsiStatus;
2636                 /* copy the sense data */
2637                 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2638                         sense_data_size = SCSI_SENSE_BUFFERSIZE;
2639                 else
2640                         sense_data_size = sizeof(ei->SenseInfo);
2641                 if (ei->SenseLen < sense_data_size)
2642                         sense_data_size = ei->SenseLen;
2643                 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2644                 if (ei->ScsiStatus)
2645                         decode_sense_data(ei->SenseInfo, sense_data_size,
2646                                 &sense_key, &asc, &ascq);
2647                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2648                         if (sense_key == ABORTED_COMMAND) {
2649                                 cmd->result |= DID_SOFT_ERROR << 16;
2650                                 break;
2651                         }
2652                         break;
2653                 }
2654                 /* Problem was not a check condition
2655                  * Pass it up to the upper layers...
2656                  */
2657                 if (ei->ScsiStatus) {
2658                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2659                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2660                                 "Returning result: 0x%x\n",
2661                                 cp, ei->ScsiStatus,
2662                                 sense_key, asc, ascq,
2663                                 cmd->result);
2664                 } else {  /* scsi status is zero??? How??? */
2665                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2666                                 "Returning no connection.\n", cp),
2667
2668                         /* Ordinarily, this case should never happen,
2669                          * but there is a bug in some released firmware
2670                          * revisions that allows it to happen if, for
2671                          * example, a 4100 backplane loses power and
2672                          * the tape drive is in it.  We assume that
2673                          * it's a fatal error of some kind because we
2674                          * can't show that it wasn't. We will make it
2675                          * look like selection timeout since that is
2676                          * the most common reason for this to occur,
2677                          * and it's severe enough.
2678                          */
2679
2680                         cmd->result = DID_NO_CONNECT << 16;
2681                 }
2682                 break;
2683
2684         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2685                 break;
2686         case CMD_DATA_OVERRUN:
2687                 dev_warn(&h->pdev->dev,
2688                         "CDB %16phN data overrun\n", cp->Request.CDB);
2689                 break;
2690         case CMD_INVALID: {
2691                 /* print_bytes(cp, sizeof(*cp), 1, 0);
2692                 print_cmd(cp); */
2693                 /* We get CMD_INVALID if you address a non-existent device
2694                  * instead of a selection timeout (no response).  You will
2695                  * see this if you yank out a drive, then try to access it.
2696                  * This is kind of a shame because it means that any other
2697                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
2698                  * missing target. */
2699                 cmd->result = DID_NO_CONNECT << 16;
2700         }
2701                 break;
2702         case CMD_PROTOCOL_ERR:
2703                 cmd->result = DID_ERROR << 16;
2704                 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2705                                 cp->Request.CDB);
2706                 break;
2707         case CMD_HARDWARE_ERR:
2708                 cmd->result = DID_ERROR << 16;
2709                 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2710                         cp->Request.CDB);
2711                 break;
2712         case CMD_CONNECTION_LOST:
2713                 cmd->result = DID_ERROR << 16;
2714                 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2715                         cp->Request.CDB);
2716                 break;
2717         case CMD_ABORTED:
2718                 cmd->result = DID_ABORT << 16;
2719                 break;
2720         case CMD_ABORT_FAILED:
2721                 cmd->result = DID_ERROR << 16;
2722                 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2723                         cp->Request.CDB);
2724                 break;
2725         case CMD_UNSOLICITED_ABORT:
2726                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2727                 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2728                         cp->Request.CDB);
2729                 break;
2730         case CMD_TIMEOUT:
2731                 cmd->result = DID_TIME_OUT << 16;
2732                 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2733                         cp->Request.CDB);
2734                 break;
2735         case CMD_UNABORTABLE:
2736                 cmd->result = DID_ERROR << 16;
2737                 dev_warn(&h->pdev->dev, "Command unabortable\n");
2738                 break;
2739         case CMD_TMF_STATUS:
2740                 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2741                         cmd->result = DID_ERROR << 16;
2742                 break;
2743         case CMD_IOACCEL_DISABLED:
2744                 /* This only handles the direct pass-through case since RAID
2745                  * offload is handled above.  Just attempt a retry.
2746                  */
2747                 cmd->result = DID_SOFT_ERROR << 16;
2748                 dev_warn(&h->pdev->dev,
2749                                 "cp %p had HP SSD Smart Path error\n", cp);
2750                 break;
2751         default:
2752                 cmd->result = DID_ERROR << 16;
2753                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2754                                 cp, ei->CommandStatus);
2755         }
2756
2757         return hpsa_cmd_free_and_done(h, cp, cmd);
2758 }
2759
2760 static void hpsa_pci_unmap(struct pci_dev *pdev,
2761         struct CommandList *c, int sg_used, int data_direction)
2762 {
2763         int i;
2764
2765         for (i = 0; i < sg_used; i++)
2766                 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2767                                 le32_to_cpu(c->SG[i].Len),
2768                                 data_direction);
2769 }
2770
2771 static int hpsa_map_one(struct pci_dev *pdev,
2772                 struct CommandList *cp,
2773                 unsigned char *buf,
2774                 size_t buflen,
2775                 int data_direction)
2776 {
2777         u64 addr64;
2778
2779         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2780                 cp->Header.SGList = 0;
2781                 cp->Header.SGTotal = cpu_to_le16(0);
2782                 return 0;
2783         }
2784
2785         addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2786         if (dma_mapping_error(&pdev->dev, addr64)) {
2787                 /* Prevent subsequent unmap of something never mapped */
2788                 cp->Header.SGList = 0;
2789                 cp->Header.SGTotal = cpu_to_le16(0);
2790                 return -1;
2791         }
2792         cp->SG[0].Addr = cpu_to_le64(addr64);
2793         cp->SG[0].Len = cpu_to_le32(buflen);
2794         cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2795         cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2796         cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2797         return 0;
2798 }
2799
2800 #define NO_TIMEOUT ((unsigned long) -1)
2801 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2802 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2803         struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2804 {
2805         DECLARE_COMPLETION_ONSTACK(wait);
2806
2807         c->waiting = &wait;
2808         __enqueue_cmd_and_start_io(h, c, reply_queue);
2809         if (timeout_msecs == NO_TIMEOUT) {
2810                 /* TODO: get rid of this no-timeout thing */
2811                 wait_for_completion_io(&wait);
2812                 return IO_OK;
2813         }
2814         if (!wait_for_completion_io_timeout(&wait,
2815                                         msecs_to_jiffies(timeout_msecs))) {
2816                 dev_warn(&h->pdev->dev, "Command timed out.\n");
2817                 return -ETIMEDOUT;
2818         }
2819         return IO_OK;
2820 }
2821
2822 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2823                                    int reply_queue, unsigned long timeout_msecs)
2824 {
2825         if (unlikely(lockup_detected(h))) {
2826                 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2827                 return IO_OK;
2828         }
2829         return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2830 }
2831
2832 static u32 lockup_detected(struct ctlr_info *h)
2833 {
2834         int cpu;
2835         u32 rc, *lockup_detected;
2836
2837         cpu = get_cpu();
2838         lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2839         rc = *lockup_detected;
2840         put_cpu();
2841         return rc;
2842 }
2843
2844 #define MAX_DRIVER_CMD_RETRIES 25
2845 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2846         struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2847 {
2848         int backoff_time = 10, retry_count = 0;
2849         int rc;
2850
2851         do {
2852                 memset(c->err_info, 0, sizeof(*c->err_info));
2853                 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2854                                                   timeout_msecs);
2855                 if (rc)
2856                         break;
2857                 retry_count++;
2858                 if (retry_count > 3) {
2859                         msleep(backoff_time);
2860                         if (backoff_time < 1000)
2861                                 backoff_time *= 2;
2862                 }
2863         } while ((check_for_unit_attention(h, c) ||
2864                         check_for_busy(h, c)) &&
2865                         retry_count <= MAX_DRIVER_CMD_RETRIES);
2866         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2867         if (retry_count > MAX_DRIVER_CMD_RETRIES)
2868                 rc = -EIO;
2869         return rc;
2870 }
2871
2872 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2873                                 struct CommandList *c)
2874 {
2875         const u8 *cdb = c->Request.CDB;
2876         const u8 *lun = c->Header.LUN.LunAddrBytes;
2877
2878         dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2879                  txt, lun, cdb);
2880 }
2881
2882 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2883                         struct CommandList *cp)
2884 {
2885         const struct ErrorInfo *ei = cp->err_info;
2886         struct device *d = &cp->h->pdev->dev;
2887         u8 sense_key, asc, ascq;
2888         int sense_len;
2889
2890         switch (ei->CommandStatus) {
2891         case CMD_TARGET_STATUS:
2892                 if (ei->SenseLen > sizeof(ei->SenseInfo))
2893                         sense_len = sizeof(ei->SenseInfo);
2894                 else
2895                         sense_len = ei->SenseLen;
2896                 decode_sense_data(ei->SenseInfo, sense_len,
2897                                         &sense_key, &asc, &ascq);
2898                 hpsa_print_cmd(h, "SCSI status", cp);
2899                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2900                         dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2901                                 sense_key, asc, ascq);
2902                 else
2903                         dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2904                 if (ei->ScsiStatus == 0)
2905                         dev_warn(d, "SCSI status is abnormally zero.  "
2906                         "(probably indicates selection timeout "
2907                         "reported incorrectly due to a known "
2908                         "firmware bug, circa July, 2001.)\n");
2909                 break;
2910         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2911                 break;
2912         case CMD_DATA_OVERRUN:
2913                 hpsa_print_cmd(h, "overrun condition", cp);
2914                 break;
2915         case CMD_INVALID: {
2916                 /* controller unfortunately reports SCSI passthru's
2917                  * to non-existent targets as invalid commands.
2918                  */
2919                 hpsa_print_cmd(h, "invalid command", cp);
2920                 dev_warn(d, "probably means device no longer present\n");
2921                 }
2922                 break;
2923         case CMD_PROTOCOL_ERR:
2924                 hpsa_print_cmd(h, "protocol error", cp);
2925                 break;
2926         case CMD_HARDWARE_ERR:
2927                 hpsa_print_cmd(h, "hardware error", cp);
2928                 break;
2929         case CMD_CONNECTION_LOST:
2930                 hpsa_print_cmd(h, "connection lost", cp);
2931                 break;
2932         case CMD_ABORTED:
2933                 hpsa_print_cmd(h, "aborted", cp);
2934                 break;
2935         case CMD_ABORT_FAILED:
2936                 hpsa_print_cmd(h, "abort failed", cp);
2937                 break;
2938         case CMD_UNSOLICITED_ABORT:
2939                 hpsa_print_cmd(h, "unsolicited abort", cp);
2940                 break;
2941         case CMD_TIMEOUT:
2942                 hpsa_print_cmd(h, "timed out", cp);
2943                 break;
2944         case CMD_UNABORTABLE:
2945                 hpsa_print_cmd(h, "unabortable", cp);
2946                 break;
2947         case CMD_CTLR_LOCKUP:
2948                 hpsa_print_cmd(h, "controller lockup detected", cp);
2949                 break;
2950         default:
2951                 hpsa_print_cmd(h, "unknown status", cp);
2952                 dev_warn(d, "Unknown command status %x\n",
2953                                 ei->CommandStatus);
2954         }
2955 }
2956
2957 static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
2958                                         u8 page, u8 *buf, size_t bufsize)
2959 {
2960         int rc = IO_OK;
2961         struct CommandList *c;
2962         struct ErrorInfo *ei;
2963
2964         c = cmd_alloc(h);
2965         if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
2966                         page, scsi3addr, TYPE_CMD)) {
2967                 rc = -1;
2968                 goto out;
2969         }
2970         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2971                 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2972         if (rc)
2973                 goto out;
2974         ei = c->err_info;
2975         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2976                 hpsa_scsi_interpret_error(h, c);
2977                 rc = -1;
2978         }
2979 out:
2980         cmd_free(h, c);
2981         return rc;
2982 }
2983
2984 static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
2985                                                 u8 *scsi3addr)
2986 {
2987         u8 *buf;
2988         u64 sa = 0;
2989         int rc = 0;
2990
2991         buf = kzalloc(1024, GFP_KERNEL);
2992         if (!buf)
2993                 return 0;
2994
2995         rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
2996                                         buf, 1024);
2997
2998         if (rc)
2999                 goto out;
3000
3001         sa = get_unaligned_be64(buf+12);
3002
3003 out:
3004         kfree(buf);
3005         return sa;
3006 }
3007
3008 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
3009                         u16 page, unsigned char *buf,
3010                         unsigned char bufsize)
3011 {
3012         int rc = IO_OK;
3013         struct CommandList *c;
3014         struct ErrorInfo *ei;
3015
3016         c = cmd_alloc(h);
3017
3018         if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
3019                         page, scsi3addr, TYPE_CMD)) {
3020                 rc = -1;
3021                 goto out;
3022         }
3023         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3024                                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3025         if (rc)
3026                 goto out;
3027         ei = c->err_info;
3028         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3029                 hpsa_scsi_interpret_error(h, c);
3030                 rc = -1;
3031         }
3032 out:
3033         cmd_free(h, c);
3034         return rc;
3035 }
3036
3037 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
3038         u8 reset_type, int reply_queue)
3039 {
3040         int rc = IO_OK;
3041         struct CommandList *c;
3042         struct ErrorInfo *ei;
3043
3044         c = cmd_alloc(h);
3045
3046
3047         /* fill_cmd can't fail here, no data buffer to map. */
3048         (void) fill_cmd(c, reset_type, h, NULL, 0, 0,
3049                         scsi3addr, TYPE_MSG);
3050         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
3051         if (rc) {
3052                 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
3053                 goto out;
3054         }
3055         /* no unmap needed here because no data xfer. */
3056
3057         ei = c->err_info;
3058         if (ei->CommandStatus != 0) {
3059                 hpsa_scsi_interpret_error(h, c);
3060                 rc = -1;
3061         }
3062 out:
3063         cmd_free(h, c);
3064         return rc;
3065 }
3066
3067 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
3068                                struct hpsa_scsi_dev_t *dev,
3069                                unsigned char *scsi3addr)
3070 {
3071         int i;
3072         bool match = false;
3073         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
3074         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
3075
3076         if (hpsa_is_cmd_idle(c))
3077                 return false;
3078
3079         switch (c->cmd_type) {
3080         case CMD_SCSI:
3081         case CMD_IOCTL_PEND:
3082                 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
3083                                 sizeof(c->Header.LUN.LunAddrBytes));
3084                 break;
3085
3086         case CMD_IOACCEL1:
3087         case CMD_IOACCEL2:
3088                 if (c->phys_disk == dev) {
3089                         /* HBA mode match */
3090                         match = true;
3091                 } else {
3092                         /* Possible RAID mode -- check each phys dev. */
3093                         /* FIXME:  Do we need to take out a lock here?  If
3094                          * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3095                          * instead. */
3096                         for (i = 0; i < dev->nphysical_disks && !match; i++) {
3097                                 /* FIXME: an alternate test might be
3098                                  *
3099                                  * match = dev->phys_disk[i]->ioaccel_handle
3100                                  *              == c2->scsi_nexus;      */
3101                                 match = dev->phys_disk[i] == c->phys_disk;
3102                         }
3103                 }
3104                 break;
3105
3106         case IOACCEL2_TMF:
3107                 for (i = 0; i < dev->nphysical_disks && !match; i++) {
3108                         match = dev->phys_disk[i]->ioaccel_handle ==
3109                                         le32_to_cpu(ac->it_nexus);
3110                 }
3111                 break;
3112
3113         case 0:         /* The command is in the middle of being initialized. */
3114                 match = false;
3115                 break;
3116
3117         default:
3118                 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3119                         c->cmd_type);
3120                 BUG();
3121         }
3122
3123         return match;
3124 }
3125
3126 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3127         unsigned char *scsi3addr, u8 reset_type, int reply_queue)
3128 {
3129         int i;
3130         int rc = 0;
3131
3132         /* We can really only handle one reset at a time */
3133         if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3134                 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3135                 return -EINTR;
3136         }
3137
3138         BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
3139
3140         for (i = 0; i < h->nr_cmds; i++) {
3141                 struct CommandList *c = h->cmd_pool + i;
3142                 int refcount = atomic_inc_return(&c->refcount);
3143
3144                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
3145                         unsigned long flags;
3146
3147                         /*
3148                          * Mark the target command as having a reset pending,
3149                          * then lock a lock so that the command cannot complete
3150                          * while we're considering it.  If the command is not
3151                          * idle then count it; otherwise revoke the event.
3152                          */
3153                         c->reset_pending = dev;
3154                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
3155                         if (!hpsa_is_cmd_idle(c))
3156                                 atomic_inc(&dev->reset_cmds_out);
3157                         else
3158                                 c->reset_pending = NULL;
3159                         spin_unlock_irqrestore(&h->lock, flags);
3160                 }
3161
3162                 cmd_free(h, c);
3163         }
3164
3165         rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
3166         if (!rc)
3167                 wait_event(h->event_sync_wait_queue,
3168                         atomic_read(&dev->reset_cmds_out) == 0 ||
3169                         lockup_detected(h));
3170
3171         if (unlikely(lockup_detected(h))) {
3172                 dev_warn(&h->pdev->dev,
3173                          "Controller lockup detected during reset wait\n");
3174                 rc = -ENODEV;
3175         }
3176
3177         if (unlikely(rc))
3178                 atomic_set(&dev->reset_cmds_out, 0);
3179         else
3180                 rc = wait_for_device_to_become_ready(h, scsi3addr, 0);
3181
3182         mutex_unlock(&h->reset_mutex);
3183         return rc;
3184 }
3185
3186 static void hpsa_get_raid_level(struct ctlr_info *h,
3187         unsigned char *scsi3addr, unsigned char *raid_level)
3188 {
3189         int rc;
3190         unsigned char *buf;
3191
3192         *raid_level = RAID_UNKNOWN;
3193         buf = kzalloc(64, GFP_KERNEL);
3194         if (!buf)
3195                 return;
3196
3197         if (!hpsa_vpd_page_supported(h, scsi3addr,
3198                 HPSA_VPD_LV_DEVICE_GEOMETRY))
3199                 goto exit;
3200
3201         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3202                 HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3203
3204         if (rc == 0)
3205                 *raid_level = buf[8];
3206         if (*raid_level > RAID_UNKNOWN)
3207                 *raid_level = RAID_UNKNOWN;
3208 exit:
3209         kfree(buf);
3210         return;
3211 }
3212
3213 #define HPSA_MAP_DEBUG
3214 #ifdef HPSA_MAP_DEBUG
3215 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3216                                 struct raid_map_data *map_buff)
3217 {
3218         struct raid_map_disk_data *dd = &map_buff->data[0];
3219         int map, row, col;
3220         u16 map_cnt, row_cnt, disks_per_row;
3221
3222         if (rc != 0)
3223                 return;
3224
3225         /* Show details only if debugging has been activated. */
3226         if (h->raid_offload_debug < 2)
3227                 return;
3228
3229         dev_info(&h->pdev->dev, "structure_size = %u\n",
3230                                 le32_to_cpu(map_buff->structure_size));
3231         dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3232                         le32_to_cpu(map_buff->volume_blk_size));
3233         dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3234                         le64_to_cpu(map_buff->volume_blk_cnt));
3235         dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3236                         map_buff->phys_blk_shift);
3237         dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3238                         map_buff->parity_rotation_shift);
3239         dev_info(&h->pdev->dev, "strip_size = %u\n",
3240                         le16_to_cpu(map_buff->strip_size));
3241         dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3242                         le64_to_cpu(map_buff->disk_starting_blk));
3243         dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3244                         le64_to_cpu(map_buff->disk_blk_cnt));
3245         dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3246                         le16_to_cpu(map_buff->data_disks_per_row));
3247         dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3248                         le16_to_cpu(map_buff->metadata_disks_per_row));
3249         dev_info(&h->pdev->dev, "row_cnt = %u\n",
3250                         le16_to_cpu(map_buff->row_cnt));
3251         dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3252                         le16_to_cpu(map_buff->layout_map_count));
3253         dev_info(&h->pdev->dev, "flags = 0x%x\n",
3254                         le16_to_cpu(map_buff->flags));
3255         dev_info(&h->pdev->dev, "encryption = %s\n",
3256                         le16_to_cpu(map_buff->flags) &
3257                         RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3258         dev_info(&h->pdev->dev, "dekindex = %u\n",
3259                         le16_to_cpu(map_buff->dekindex));
3260         map_cnt = le16_to_cpu(map_buff->layout_map_count);
3261         for (map = 0; map < map_cnt; map++) {
3262                 dev_info(&h->pdev->dev, "Map%u:\n", map);
3263                 row_cnt = le16_to_cpu(map_buff->row_cnt);
3264                 for (row = 0; row < row_cnt; row++) {
3265                         dev_info(&h->pdev->dev, "  Row%u:\n", row);
3266                         disks_per_row =
3267                                 le16_to_cpu(map_buff->data_disks_per_row);
3268                         for (col = 0; col < disks_per_row; col++, dd++)
3269                                 dev_info(&h->pdev->dev,
3270                                         "    D%02u: h=0x%04x xor=%u,%u\n",
3271                                         col, dd->ioaccel_handle,
3272                                         dd->xor_mult[0], dd->xor_mult[1]);
3273                         disks_per_row =
3274                                 le16_to_cpu(map_buff->metadata_disks_per_row);
3275                         for (col = 0; col < disks_per_row; col++, dd++)
3276                                 dev_info(&h->pdev->dev,
3277                                         "    M%02u: h=0x%04x xor=%u,%u\n",
3278                                         col, dd->ioaccel_handle,
3279                                         dd->xor_mult[0], dd->xor_mult[1]);
3280                 }
3281         }
3282 }
3283 #else
3284 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3285                         __attribute__((unused)) int rc,
3286                         __attribute__((unused)) struct raid_map_data *map_buff)
3287 {
3288 }
3289 #endif
3290
3291 static int hpsa_get_raid_map(struct ctlr_info *h,
3292         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3293 {
3294         int rc = 0;
3295         struct CommandList *c;
3296         struct ErrorInfo *ei;
3297
3298         c = cmd_alloc(h);
3299
3300         if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3301                         sizeof(this_device->raid_map), 0,
3302                         scsi3addr, TYPE_CMD)) {
3303                 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3304                 cmd_free(h, c);
3305                 return -1;
3306         }
3307         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3308                                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3309         if (rc)
3310                 goto out;
3311         ei = c->err_info;
3312         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3313                 hpsa_scsi_interpret_error(h, c);
3314                 rc = -1;
3315                 goto out;
3316         }
3317         cmd_free(h, c);
3318
3319         /* @todo in the future, dynamically allocate RAID map memory */
3320         if (le32_to_cpu(this_device->raid_map.structure_size) >
3321                                 sizeof(this_device->raid_map)) {
3322                 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3323                 rc = -1;
3324         }
3325         hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3326         return rc;
3327 out:
3328         cmd_free(h, c);
3329         return rc;
3330 }
3331
3332 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3333                 unsigned char scsi3addr[], u16 bmic_device_index,
3334                 struct bmic_sense_subsystem_info *buf, size_t bufsize)
3335 {
3336         int rc = IO_OK;
3337         struct CommandList *c;
3338         struct ErrorInfo *ei;
3339
3340         c = cmd_alloc(h);
3341
3342         rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3343                 0, RAID_CTLR_LUNID, TYPE_CMD);
3344         if (rc)
3345                 goto out;
3346
3347         c->Request.CDB[2] = bmic_device_index & 0xff;
3348         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3349
3350         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3351                                 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3352         if (rc)
3353                 goto out;
3354         ei = c->err_info;
3355         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3356                 hpsa_scsi_interpret_error(h, c);
3357                 rc = -1;
3358         }
3359 out:
3360         cmd_free(h, c);
3361         return rc;
3362 }
3363
3364 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3365         struct bmic_identify_controller *buf, size_t bufsize)
3366 {
3367         int rc = IO_OK;
3368         struct CommandList *c;
3369         struct ErrorInfo *ei;
3370
3371         c = cmd_alloc(h);
3372
3373         rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3374                 0, RAID_CTLR_LUNID, TYPE_CMD);
3375         if (rc)
3376                 goto out;
3377
3378         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3379                 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3380         if (rc)
3381                 goto out;
3382         ei = c->err_info;
3383         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3384                 hpsa_scsi_interpret_error(h, c);
3385                 rc = -1;
3386         }
3387 out:
3388         cmd_free(h, c);
3389         return rc;
3390 }
3391
3392 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3393                 unsigned char scsi3addr[], u16 bmic_device_index,
3394                 struct bmic_identify_physical_device *buf, size_t bufsize)
3395 {
3396         int rc = IO_OK;
3397         struct CommandList *c;
3398         struct ErrorInfo *ei;
3399
3400         c = cmd_alloc(h);
3401         rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3402                 0, RAID_CTLR_LUNID, TYPE_CMD);
3403         if (rc)
3404                 goto out;
3405
3406         c->Request.CDB[2] = bmic_device_index & 0xff;
3407         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3408
3409         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3410                                                 NO_TIMEOUT);
3411         ei = c->err_info;
3412         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3413                 hpsa_scsi_interpret_error(h, c);
3414                 rc = -1;
3415         }
3416 out:
3417         cmd_free(h, c);
3418
3419         return rc;
3420 }
3421
3422 /*
3423  * get enclosure information
3424  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3425  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3426  * Uses id_physical_device to determine the box_index.
3427  */
3428 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3429                         unsigned char *scsi3addr,
3430                         struct ReportExtendedLUNdata *rlep, int rle_index,
3431                         struct hpsa_scsi_dev_t *encl_dev)
3432 {
3433         int rc = -1;
3434         struct CommandList *c = NULL;
3435         struct ErrorInfo *ei = NULL;
3436         struct bmic_sense_storage_box_params *bssbp = NULL;
3437         struct bmic_identify_physical_device *id_phys = NULL;
3438         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3439         u16 bmic_device_index = 0;
3440
3441         bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3442
3443         encl_dev->sas_address =
3444                 hpsa_get_enclosure_logical_identifier(h, scsi3addr);
3445
3446         if (encl_dev->target == -1 || encl_dev->lun == -1) {
3447                 rc = IO_OK;
3448                 goto out;
3449         }
3450
3451         if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3452                 rc = IO_OK;
3453                 goto out;
3454         }
3455
3456         bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3457         if (!bssbp)
3458                 goto out;
3459
3460         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3461         if (!id_phys)
3462                 goto out;
3463
3464         rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3465                                                 id_phys, sizeof(*id_phys));
3466         if (rc) {
3467                 dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3468                         __func__, encl_dev->external, bmic_device_index);
3469                 goto out;
3470         }
3471
3472         c = cmd_alloc(h);
3473
3474         rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3475                         sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3476
3477         if (rc)
3478                 goto out;
3479
3480         if (id_phys->phys_connector[1] == 'E')
3481                 c->Request.CDB[5] = id_phys->box_index;
3482         else
3483                 c->Request.CDB[5] = 0;
3484
3485         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3486                                                 NO_TIMEOUT);
3487         if (rc)
3488                 goto out;
3489
3490         ei = c->err_info;
3491         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3492                 rc = -1;
3493                 goto out;
3494         }
3495
3496         encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3497         memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3498                 bssbp->phys_connector, sizeof(bssbp->phys_connector));
3499
3500         rc = IO_OK;
3501 out:
3502         kfree(bssbp);
3503         kfree(id_phys);
3504
3505         if (c)
3506                 cmd_free(h, c);
3507
3508         if (rc != IO_OK)
3509                 hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3510                         "Error, could not get enclosure information");
3511 }
3512
3513 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3514                                                 unsigned char *scsi3addr)
3515 {
3516         struct ReportExtendedLUNdata *physdev;
3517         u32 nphysicals;
3518         u64 sa = 0;
3519         int i;
3520
3521         physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3522         if (!physdev)
3523                 return 0;
3524
3525         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3526                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3527                 kfree(physdev);
3528                 return 0;
3529         }
3530         nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3531
3532         for (i = 0; i < nphysicals; i++)
3533                 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3534                         sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3535                         break;
3536                 }
3537
3538         kfree(physdev);
3539
3540         return sa;
3541 }
3542
3543 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3544                                         struct hpsa_scsi_dev_t *dev)
3545 {
3546         int rc;
3547         u64 sa = 0;
3548
3549         if (is_hba_lunid(scsi3addr)) {
3550                 struct bmic_sense_subsystem_info *ssi;
3551
3552                 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3553                 if (!ssi)
3554                         return;
3555
3556                 rc = hpsa_bmic_sense_subsystem_information(h,
3557                                         scsi3addr, 0, ssi, sizeof(*ssi));
3558                 if (rc == 0) {
3559                         sa = get_unaligned_be64(ssi->primary_world_wide_id);
3560                         h->sas_address = sa;
3561                 }
3562
3563                 kfree(ssi);
3564         } else
3565                 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3566
3567         dev->sas_address = sa;
3568 }
3569
3570 static void hpsa_ext_ctrl_present(struct ctlr_info *h,
3571         struct ReportExtendedLUNdata *physdev)
3572 {
3573         u32 nphysicals;
3574         int i;
3575
3576         if (h->discovery_polling)
3577                 return;
3578
3579         nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
3580
3581         for (i = 0; i < nphysicals; i++) {
3582                 if (physdev->LUN[i].device_type ==
3583                         BMIC_DEVICE_TYPE_CONTROLLER
3584                         && !is_hba_lunid(physdev->LUN[i].lunid)) {
3585                         dev_info(&h->pdev->dev,
3586                                 "External controller present, activate discovery polling and disable rld caching\n");
3587                         hpsa_disable_rld_caching(h);
3588                         h->discovery_polling = 1;
3589                         break;
3590                 }
3591         }
3592 }
3593
3594 /* Get a device id from inquiry page 0x83 */
3595 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3596         unsigned char scsi3addr[], u8 page)
3597 {
3598         int rc;
3599         int i;
3600         int pages;
3601         unsigned char *buf, bufsize;
3602
3603         buf = kzalloc(256, GFP_KERNEL);
3604         if (!buf)
3605                 return false;
3606
3607         /* Get the size of the page list first */
3608         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3609                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3610                                 buf, HPSA_VPD_HEADER_SZ);
3611         if (rc != 0)
3612                 goto exit_unsupported;
3613         pages = buf[3];
3614         if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3615                 bufsize = pages + HPSA_VPD_HEADER_SZ;
3616         else
3617                 bufsize = 255;
3618
3619         /* Get the whole VPD page list */
3620         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3621                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3622                                 buf, bufsize);
3623         if (rc != 0)
3624                 goto exit_unsupported;
3625
3626         pages = buf[3];
3627         for (i = 1; i <= pages; i++)
3628                 if (buf[3 + i] == page)
3629                         goto exit_supported;
3630 exit_unsupported:
3631         kfree(buf);
3632         return false;
3633 exit_supported:
3634         kfree(buf);
3635         return true;
3636 }
3637
3638 /*
3639  * Called during a scan operation.
3640  * Sets ioaccel status on the new device list, not the existing device list
3641  *
3642  * The device list used during I/O will be updated later in
3643  * adjust_hpsa_scsi_table.
3644  */
3645 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3646         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3647 {
3648         int rc;
3649         unsigned char *buf;
3650         u8 ioaccel_status;
3651
3652         this_device->offload_config = 0;
3653         this_device->offload_enabled = 0;
3654         this_device->offload_to_be_enabled = 0;
3655
3656         buf = kzalloc(64, GFP_KERNEL);
3657         if (!buf)
3658                 return;
3659         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3660                 goto out;
3661         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3662                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3663         if (rc != 0)
3664                 goto out;
3665
3666 #define IOACCEL_STATUS_BYTE 4
3667 #define OFFLOAD_CONFIGURED_BIT 0x01
3668 #define OFFLOAD_ENABLED_BIT 0x02
3669         ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3670         this_device->offload_config =
3671                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3672         if (this_device->offload_config) {
3673                 this_device->offload_to_be_enabled =
3674                         !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3675                 if (hpsa_get_raid_map(h, scsi3addr, this_device))
3676                         this_device->offload_to_be_enabled = 0;
3677         }
3678
3679 out:
3680         kfree(buf);
3681         return;
3682 }
3683
3684 /* Get the device id from inquiry page 0x83 */
3685 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3686         unsigned char *device_id, int index, int buflen)
3687 {
3688         int rc;
3689         unsigned char *buf;
3690
3691         /* Does controller have VPD for device id? */
3692         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3693                 return 1; /* not supported */
3694
3695         buf = kzalloc(64, GFP_KERNEL);
3696         if (!buf)
3697                 return -ENOMEM;
3698
3699         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3700                                         HPSA_VPD_LV_DEVICE_ID, buf, 64);
3701         if (rc == 0) {
3702                 if (buflen > 16)
3703                         buflen = 16;
3704                 memcpy(device_id, &buf[8], buflen);
3705         }
3706
3707         kfree(buf);
3708
3709         return rc; /*0 - got id,  otherwise, didn't */
3710 }
3711
3712 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3713                 void *buf, int bufsize,
3714                 int extended_response)
3715 {
3716         int rc = IO_OK;
3717         struct CommandList *c;
3718         unsigned char scsi3addr[8];
3719         struct ErrorInfo *ei;
3720
3721         c = cmd_alloc(h);
3722
3723         /* address the controller */
3724         memset(scsi3addr, 0, sizeof(scsi3addr));
3725         if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3726                 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3727                 rc = -EAGAIN;
3728                 goto out;
3729         }
3730         if (extended_response)
3731                 c->Request.CDB[1] = extended_response;
3732         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3733                                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3734         if (rc)
3735                 goto out;
3736         ei = c->err_info;
3737         if (ei->CommandStatus != 0 &&
3738             ei->CommandStatus != CMD_DATA_UNDERRUN) {
3739                 hpsa_scsi_interpret_error(h, c);
3740                 rc = -EIO;
3741         } else {
3742                 struct ReportLUNdata *rld = buf;
3743
3744                 if (rld->extended_response_flag != extended_response) {
3745                         if (!h->legacy_board) {
3746                                 dev_err(&h->pdev->dev,
3747                                         "report luns requested format %u, got %u\n",
3748                                         extended_response,
3749                                         rld->extended_response_flag);
3750                                 rc = -EINVAL;
3751                         } else
3752                                 rc = -EOPNOTSUPP;
3753                 }
3754         }
3755 out:
3756         cmd_free(h, c);
3757         return rc;
3758 }
3759
3760 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3761                 struct ReportExtendedLUNdata *buf, int bufsize)
3762 {
3763         int rc;
3764         struct ReportLUNdata *lbuf;
3765
3766         rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3767                                       HPSA_REPORT_PHYS_EXTENDED);
3768         if (!rc || rc != -EOPNOTSUPP)
3769                 return rc;
3770
3771         /* REPORT PHYS EXTENDED is not supported */
3772         lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3773         if (!lbuf)
3774                 return -ENOMEM;
3775
3776         rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3777         if (!rc) {
3778                 int i;
3779                 u32 nphys;
3780
3781                 /* Copy ReportLUNdata header */
3782                 memcpy(buf, lbuf, 8);
3783                 nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3784                 for (i = 0; i < nphys; i++)
3785                         memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3786         }
3787         kfree(lbuf);
3788         return rc;
3789 }
3790
3791 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3792                 struct ReportLUNdata *buf, int bufsize)
3793 {
3794         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3795 }
3796
3797 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3798         int bus, int target, int lun)
3799 {
3800         device->bus = bus;
3801         device->target = target;
3802         device->lun = lun;
3803 }
3804
3805 /* Use VPD inquiry to get details of volume status */
3806 static int hpsa_get_volume_status(struct ctlr_info *h,
3807                                         unsigned char scsi3addr[])
3808 {
3809         int rc;
3810         int status;
3811         int size;
3812         unsigned char *buf;
3813
3814         buf = kzalloc(64, GFP_KERNEL);
3815         if (!buf)
3816                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3817
3818         /* Does controller have VPD for logical volume status? */
3819         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3820                 goto exit_failed;
3821
3822         /* Get the size of the VPD return buffer */
3823         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3824                                         buf, HPSA_VPD_HEADER_SZ);
3825         if (rc != 0)
3826                 goto exit_failed;
3827         size = buf[3];
3828
3829         /* Now get the whole VPD buffer */
3830         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3831                                         buf, size + HPSA_VPD_HEADER_SZ);
3832         if (rc != 0)
3833                 goto exit_failed;
3834         status = buf[4]; /* status byte */
3835
3836         kfree(buf);
3837         return status;
3838 exit_failed:
3839         kfree(buf);
3840         return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3841 }
3842
3843 /* Determine offline status of a volume.
3844  * Return either:
3845  *  0 (not offline)
3846  *  0xff (offline for unknown reasons)
3847  *  # (integer code indicating one of several NOT READY states
3848  *     describing why a volume is to be kept offline)
3849  */
3850 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3851                                         unsigned char scsi3addr[])
3852 {
3853         struct CommandList *c;
3854         unsigned char *sense;
3855         u8 sense_key, asc, ascq;
3856         int sense_len;
3857         int rc, ldstat = 0;
3858         u16 cmd_status;
3859         u8 scsi_status;
3860 #define ASC_LUN_NOT_READY 0x04
3861 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3862 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3863
3864         c = cmd_alloc(h);
3865
3866         (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3867         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3868                                         NO_TIMEOUT);
3869         if (rc) {
3870                 cmd_free(h, c);
3871                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3872         }
3873         sense = c->err_info->SenseInfo;
3874         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3875                 sense_len = sizeof(c->err_info->SenseInfo);
3876         else
3877                 sense_len = c->err_info->SenseLen;
3878         decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3879         cmd_status = c->err_info->CommandStatus;
3880         scsi_status = c->err_info->ScsiStatus;
3881         cmd_free(h, c);
3882
3883         /* Determine the reason for not ready state */
3884         ldstat = hpsa_get_volume_status(h, scsi3addr);
3885
3886         /* Keep volume offline in certain cases: */
3887         switch (ldstat) {
3888         case HPSA_LV_FAILED:
3889         case HPSA_LV_UNDERGOING_ERASE:
3890         case HPSA_LV_NOT_AVAILABLE:
3891         case HPSA_LV_UNDERGOING_RPI:
3892         case HPSA_LV_PENDING_RPI:
3893         case HPSA_LV_ENCRYPTED_NO_KEY:
3894         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3895         case HPSA_LV_UNDERGOING_ENCRYPTION:
3896         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3897         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3898                 return ldstat;
3899         case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3900                 /* If VPD status page isn't available,
3901                  * use ASC/ASCQ to determine state
3902                  */
3903                 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3904                         (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3905                         return ldstat;
3906                 break;
3907         default:
3908                 break;
3909         }
3910         return HPSA_LV_OK;
3911 }
3912
3913 static int hpsa_update_device_info(struct ctlr_info *h,
3914         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3915         unsigned char *is_OBDR_device)
3916 {
3917
3918 #define OBDR_SIG_OFFSET 43
3919 #define OBDR_TAPE_SIG "$DR-10"
3920 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3921 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3922
3923         unsigned char *inq_buff;
3924         unsigned char *obdr_sig;
3925         int rc = 0;
3926
3927         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3928         if (!inq_buff) {
3929                 rc = -ENOMEM;
3930                 goto bail_out;
3931         }
3932
3933         /* Do an inquiry to the device to see what it is. */
3934         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3935                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3936                 dev_err(&h->pdev->dev,
3937                         "%s: inquiry failed, device will be skipped.\n",
3938                         __func__);
3939                 rc = HPSA_INQUIRY_FAILED;
3940                 goto bail_out;
3941         }
3942
3943         scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3944         scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3945
3946         this_device->devtype = (inq_buff[0] & 0x1f);
3947         memcpy(this_device->scsi3addr, scsi3addr, 8);
3948         memcpy(this_device->vendor, &inq_buff[8],
3949                 sizeof(this_device->vendor));
3950         memcpy(this_device->model, &inq_buff[16],
3951                 sizeof(this_device->model));
3952         this_device->rev = inq_buff[2];
3953         memset(this_device->device_id, 0,
3954                 sizeof(this_device->device_id));
3955         if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3956                 sizeof(this_device->device_id)) < 0)
3957                 dev_err(&h->pdev->dev,
3958                         "hpsa%d: %s: can't get device id for host %d:C0:T%d:L%d\t%s\t%.16s\n",
3959                         h->ctlr, __func__,
3960                         h->scsi_host->host_no,
3961                         this_device->target, this_device->lun,
3962                         scsi_device_type(this_device->devtype),
3963                         this_device->model);
3964
3965         if ((this_device->devtype == TYPE_DISK ||
3966                 this_device->devtype == TYPE_ZBC) &&
3967                 is_logical_dev_addr_mode(scsi3addr)) {
3968                 unsigned char volume_offline;
3969
3970                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3971                 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3972                         hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3973                 volume_offline = hpsa_volume_offline(h, scsi3addr);
3974                 if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
3975                     h->legacy_board) {
3976                         /*
3977                          * Legacy boards might not support volume status
3978                          */
3979                         dev_info(&h->pdev->dev,
3980                                  "C0:T%d:L%d Volume status not available, assuming online.\n",
3981                                  this_device->target, this_device->lun);
3982                         volume_offline = 0;
3983                 }
3984                 this_device->volume_offline = volume_offline;
3985                 if (volume_offline == HPSA_LV_FAILED) {
3986                         rc = HPSA_LV_FAILED;
3987                         dev_err(&h->pdev->dev,
3988                                 "%s: LV failed, device will be skipped.\n",
3989                                 __func__);
3990                         goto bail_out;
3991                 }
3992         } else {
3993                 this_device->raid_level = RAID_UNKNOWN;
3994                 this_device->offload_config = 0;
3995                 this_device->offload_enabled = 0;
3996                 this_device->offload_to_be_enabled = 0;
3997                 this_device->hba_ioaccel_enabled = 0;
3998                 this_device->volume_offline = 0;
3999                 this_device->queue_depth = h->nr_cmds;
4000         }
4001
4002         if (this_device->external)
4003                 this_device->queue_depth = EXTERNAL_QD;
4004
4005         if (is_OBDR_device) {
4006                 /* See if this is a One-Button-Disaster-Recovery device
4007                  * by looking for "$DR-10" at offset 43 in inquiry data.
4008                  */
4009                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
4010                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
4011                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
4012                                                 OBDR_SIG_LEN) == 0);
4013         }
4014         kfree(inq_buff);
4015         return 0;
4016
4017 bail_out:
4018         kfree(inq_buff);
4019         return rc;
4020 }
4021
4022 /*
4023  * Helper function to assign bus, target, lun mapping of devices.
4024  * Logical drive target and lun are assigned at this time, but
4025  * physical device lun and target assignment are deferred (assigned
4026  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4027 */
4028 static void figure_bus_target_lun(struct ctlr_info *h,
4029         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
4030 {
4031         u32 lunid = get_unaligned_le32(lunaddrbytes);
4032
4033         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
4034                 /* physical device, target and lun filled in later */
4035                 if (is_hba_lunid(lunaddrbytes)) {
4036                         int bus = HPSA_HBA_BUS;
4037
4038                         if (!device->rev)
4039                                 bus = HPSA_LEGACY_HBA_BUS;
4040                         hpsa_set_bus_target_lun(device,
4041                                         bus, 0, lunid & 0x3fff);
4042                 } else
4043                         /* defer target, lun assignment for physical devices */
4044                         hpsa_set_bus_target_lun(device,
4045                                         HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
4046                 return;
4047         }
4048         /* It's a logical device */
4049         if (device->external) {
4050                 hpsa_set_bus_target_lun(device,
4051                         HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
4052                         lunid & 0x00ff);
4053                 return;
4054         }
4055         hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
4056                                 0, lunid & 0x3fff);
4057 }
4058
4059 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4060         int i, int nphysicals, int nlocal_logicals)
4061 {
4062         /* In report logicals, local logicals are listed first,
4063         * then any externals.
4064         */
4065         int logicals_start = nphysicals + (raid_ctlr_position == 0);
4066
4067         if (i == raid_ctlr_position)
4068                 return 0;
4069
4070         if (i < logicals_start)
4071                 return 0;
4072
4073         /* i is in logicals range, but still within local logicals */
4074         if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4075                 return 0;
4076
4077         return 1; /* it's an external lun */
4078 }
4079
4080 /*
4081  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
4082  * logdev.  The number of luns in physdev and logdev are returned in
4083  * *nphysicals and *nlogicals, respectively.
4084  * Returns 0 on success, -1 otherwise.
4085  */
4086 static int hpsa_gather_lun_info(struct ctlr_info *h,
4087         struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4088         struct ReportLUNdata *logdev, u32 *nlogicals)
4089 {
4090         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4091                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4092                 return -1;
4093         }
4094         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4095         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4096                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4097                         HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4098                 *nphysicals = HPSA_MAX_PHYS_LUN;
4099         }
4100         if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4101                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4102                 return -1;
4103         }
4104         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4105         /* Reject Logicals in excess of our max capability. */
4106         if (*nlogicals > HPSA_MAX_LUN) {
4107                 dev_warn(&h->pdev->dev,
4108                         "maximum logical LUNs (%d) exceeded.  "
4109                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
4110                         *nlogicals - HPSA_MAX_LUN);
4111                         *nlogicals = HPSA_MAX_LUN;
4112         }
4113         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4114                 dev_warn(&h->pdev->dev,
4115                         "maximum logical + physical LUNs (%d) exceeded. "
4116                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4117                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4118                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4119         }
4120         return 0;
4121 }
4122
4123 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4124         int i, int nphysicals, int nlogicals,
4125         struct ReportExtendedLUNdata *physdev_list,
4126         struct ReportLUNdata *logdev_list)
4127 {
4128         /* Helper function, figure out where the LUN ID info is coming from
4129          * given index i, lists of physical and logical devices, where in
4130          * the list the raid controller is supposed to appear (first or last)
4131          */
4132
4133         int logicals_start = nphysicals + (raid_ctlr_position == 0);
4134         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4135
4136         if (i == raid_ctlr_position)
4137                 return RAID_CTLR_LUNID;
4138
4139         if (i < logicals_start)
4140                 return &physdev_list->LUN[i -
4141                                 (raid_ctlr_position == 0)].lunid[0];
4142
4143         if (i < last_device)
4144                 return &logdev_list->LUN[i - nphysicals -
4145                         (raid_ctlr_position == 0)][0];
4146         BUG();
4147         return NULL;
4148 }
4149
4150 /* get physical drive ioaccel handle and queue depth */
4151 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4152                 struct hpsa_scsi_dev_t *dev,
4153                 struct ReportExtendedLUNdata *rlep, int rle_index,
4154                 struct bmic_identify_physical_device *id_phys)
4155 {
4156         int rc;
4157         struct ext_report_lun_entry *rle;
4158
4159         rle = &rlep->LUN[rle_index];
4160
4161         dev->ioaccel_handle = rle->ioaccel_handle;
4162         if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4163                 dev->hba_ioaccel_enabled = 1;
4164         memset(id_phys, 0, sizeof(*id_phys));
4165         rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4166                         GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4167                         sizeof(*id_phys));
4168         if (!rc)
4169                 /* Reserve space for FW operations */
4170 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4171 #define DRIVE_QUEUE_DEPTH 7
4172                 dev->queue_depth =
4173                         le16_to_cpu(id_phys->current_queue_depth_limit) -
4174                                 DRIVE_CMDS_RESERVED_FOR_FW;
4175         else
4176                 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4177 }
4178
4179 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4180         struct ReportExtendedLUNdata *rlep, int rle_index,
4181         struct bmic_identify_physical_device *id_phys)
4182 {
4183         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4184
4185         if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4186                 this_device->hba_ioaccel_enabled = 1;
4187
4188         memcpy(&this_device->active_path_index,
4189                 &id_phys->active_path_number,
4190                 sizeof(this_device->active_path_index));
4191         memcpy(&this_device->path_map,
4192                 &id_phys->redundant_path_present_map,
4193                 sizeof(this_device->path_map));
4194         memcpy(&this_device->box,
4195                 &id_phys->alternate_paths_phys_box_on_port,
4196                 sizeof(this_device->box));
4197         memcpy(&this_device->phys_connector,
4198                 &id_phys->alternate_paths_phys_connector,
4199                 sizeof(this_device->phys_connector));
4200         memcpy(&this_device->bay,
4201                 &id_phys->phys_bay_in_box,
4202                 sizeof(this_device->bay));
4203 }
4204
4205 /* get number of local logical disks. */
4206 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4207         struct bmic_identify_controller *id_ctlr,
4208         u32 *nlocals)
4209 {
4210         int rc;
4211
4212         if (!id_ctlr) {
4213                 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4214                         __func__);
4215                 return -ENOMEM;
4216         }
4217         memset(id_ctlr, 0, sizeof(*id_ctlr));
4218         rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4219         if (!rc)
4220                 if (id_ctlr->configured_logical_drive_count < 255)
4221                         *nlocals = id_ctlr->configured_logical_drive_count;
4222                 else
4223                         *nlocals = le16_to_cpu(
4224                                         id_ctlr->extended_logical_unit_count);
4225         else
4226                 *nlocals = -1;
4227         return rc;
4228 }
4229
4230 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4231 {
4232         struct bmic_identify_physical_device *id_phys;
4233         bool is_spare = false;
4234         int rc;
4235
4236         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4237         if (!id_phys)
4238                 return false;
4239
4240         rc = hpsa_bmic_id_physical_device(h,
4241                                         lunaddrbytes,
4242                                         GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4243                                         id_phys, sizeof(*id_phys));
4244         if (rc == 0)
4245                 is_spare = (id_phys->more_flags >> 6) & 0x01;
4246
4247         kfree(id_phys);
4248         return is_spare;
4249 }
4250
4251 #define RPL_DEV_FLAG_NON_DISK                           0x1
4252 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4253 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4254
4255 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
4256
4257 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4258                                 struct ext_report_lun_entry *rle)
4259 {
4260         u8 device_flags;
4261         u8 device_type;
4262
4263         if (!MASKED_DEVICE(lunaddrbytes))
4264                 return false;
4265
4266         device_flags = rle->device_flags;
4267         device_type = rle->device_type;
4268
4269         if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4270                 if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4271                         return false;
4272                 return true;
4273         }
4274
4275         if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4276                 return false;
4277
4278         if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4279                 return false;
4280
4281         /*
4282          * Spares may be spun down, we do not want to
4283          * do an Inquiry to a RAID set spare drive as
4284          * that would have them spun up, that is a
4285          * performance hit because I/O to the RAID device
4286          * stops while the spin up occurs which can take
4287          * over 50 seconds.
4288          */
4289         if (hpsa_is_disk_spare(h, lunaddrbytes))
4290                 return true;
4291
4292         return false;
4293 }
4294
4295 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4296 {
4297         /* the idea here is we could get notified
4298          * that some devices have changed, so we do a report
4299          * physical luns and report logical luns cmd, and adjust
4300          * our list of devices accordingly.
4301          *
4302          * The scsi3addr's of devices won't change so long as the
4303          * adapter is not reset.  That means we can rescan and
4304          * tell which devices we already know about, vs. new
4305          * devices, vs.  disappearing devices.
4306          */
4307         struct ReportExtendedLUNdata *physdev_list = NULL;
4308         struct ReportLUNdata *logdev_list = NULL;
4309         struct bmic_identify_physical_device *id_phys = NULL;
4310         struct bmic_identify_controller *id_ctlr = NULL;
4311         u32 nphysicals = 0;
4312         u32 nlogicals = 0;
4313         u32 nlocal_logicals = 0;
4314         u32 ndev_allocated = 0;
4315         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4316         int ncurrent = 0;
4317         int i, n_ext_target_devs, ndevs_to_allocate;
4318         int raid_ctlr_position;
4319         bool physical_device;
4320         DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4321
4322         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
4323         physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4324         logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4325         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4326         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4327         id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4328
4329         if (!currentsd || !physdev_list || !logdev_list ||
4330                 !tmpdevice || !id_phys || !id_ctlr) {
4331                 dev_err(&h->pdev->dev, "out of memory\n");
4332                 goto out;
4333         }
4334         memset(lunzerobits, 0, sizeof(lunzerobits));
4335
4336         h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4337
4338         if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4339                         logdev_list, &nlogicals)) {
4340                 h->drv_req_rescan = 1;
4341                 goto out;
4342         }
4343
4344         /* Set number of local logicals (non PTRAID) */
4345         if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4346                 dev_warn(&h->pdev->dev,
4347                         "%s: Can't determine number of local logical devices.\n",
4348                         __func__);
4349         }
4350
4351         /* We might see up to the maximum number of logical and physical disks
4352          * plus external target devices, and a device for the local RAID
4353          * controller.
4354          */
4355         ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4356
4357         hpsa_ext_ctrl_present(h, physdev_list);
4358
4359         /* Allocate the per device structures */
4360         for (i = 0; i < ndevs_to_allocate; i++) {
4361                 if (i >= HPSA_MAX_DEVICES) {
4362                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4363                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
4364                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
4365                         break;
4366                 }
4367
4368                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4369                 if (!currentsd[i]) {
4370                         h->drv_req_rescan = 1;
4371                         goto out;
4372                 }
4373                 ndev_allocated++;
4374         }
4375
4376         if (is_scsi_rev_5(h))
4377                 raid_ctlr_position = 0;
4378         else
4379                 raid_ctlr_position = nphysicals + nlogicals;
4380
4381         /* adjust our table of devices */
4382         n_ext_target_devs = 0;
4383         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4384                 u8 *lunaddrbytes, is_OBDR = 0;
4385                 int rc = 0;
4386                 int phys_dev_index = i - (raid_ctlr_position == 0);
4387                 bool skip_device = false;
4388
4389                 memset(tmpdevice, 0, sizeof(*tmpdevice));
4390
4391                 physical_device = i < nphysicals + (raid_ctlr_position == 0);
4392
4393                 /* Figure out where the LUN ID info is coming from */
4394                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4395                         i, nphysicals, nlogicals, physdev_list, logdev_list);
4396
4397                 /* Determine if this is a lun from an external target array */
4398                 tmpdevice->external =
4399                         figure_external_status(h, raid_ctlr_position, i,
4400                                                 nphysicals, nlocal_logicals);
4401
4402                 /*
4403                  * Skip over some devices such as a spare.
4404                  */
4405                 if (!tmpdevice->external && physical_device) {
4406                         skip_device = hpsa_skip_device(h, lunaddrbytes,
4407                                         &physdev_list->LUN[phys_dev_index]);
4408                         if (skip_device)
4409                                 continue;
4410                 }
4411
4412                 /* Get device type, vendor, model, device id, raid_map */
4413                 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4414                                                         &is_OBDR);
4415                 if (rc == -ENOMEM) {
4416                         dev_warn(&h->pdev->dev,
4417                                 "Out of memory, rescan deferred.\n");
4418                         h->drv_req_rescan = 1;
4419                         goto out;
4420                 }
4421                 if (rc) {
4422                         h->drv_req_rescan = 1;
4423                         continue;
4424                 }
4425
4426                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4427                 this_device = currentsd[ncurrent];
4428
4429                 *this_device = *tmpdevice;
4430                 this_device->physical_device = physical_device;
4431
4432                 /*
4433                  * Expose all devices except for physical devices that
4434                  * are masked.
4435                  */
4436                 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4437                         this_device->expose_device = 0;
4438                 else
4439                         this_device->expose_device = 1;
4440
4441
4442                 /*
4443                  * Get the SAS address for physical devices that are exposed.
4444                  */
4445                 if (this_device->physical_device && this_device->expose_device)
4446                         hpsa_get_sas_address(h, lunaddrbytes, this_device);
4447
4448                 switch (this_device->devtype) {
4449                 case TYPE_ROM:
4450                         /* We don't *really* support actual CD-ROM devices,
4451                          * just "One Button Disaster Recovery" tape drive
4452                          * which temporarily pretends to be a CD-ROM drive.
4453                          * So we check that the device is really an OBDR tape
4454                          * device by checking for "$DR-10" in bytes 43-48 of
4455                          * the inquiry data.
4456                          */
4457                         if (is_OBDR)
4458                                 ncurrent++;
4459                         break;
4460                 case TYPE_DISK:
4461                 case TYPE_ZBC:
4462                         if (this_device->physical_device) {
4463                                 /* The disk is in HBA mode. */
4464                                 /* Never use RAID mapper in HBA mode. */
4465                                 this_device->offload_enabled = 0;
4466                                 hpsa_get_ioaccel_drive_info(h, this_device,
4467                                         physdev_list, phys_dev_index, id_phys);
4468                                 hpsa_get_path_info(this_device,
4469                                         physdev_list, phys_dev_index, id_phys);
4470                         }
4471                         ncurrent++;
4472                         break;
4473                 case TYPE_TAPE:
4474                 case TYPE_MEDIUM_CHANGER:
4475                         ncurrent++;
4476                         break;
4477                 case TYPE_ENCLOSURE:
4478                         if (!this_device->external)
4479                                 hpsa_get_enclosure_info(h, lunaddrbytes,
4480                                                 physdev_list, phys_dev_index,
4481                                                 this_device);
4482                         ncurrent++;
4483                         break;
4484                 case TYPE_RAID:
4485                         /* Only present the Smartarray HBA as a RAID controller.
4486                          * If it's a RAID controller other than the HBA itself
4487                          * (an external RAID controller, MSA500 or similar)
4488                          * don't present it.
4489                          */
4490                         if (!is_hba_lunid(lunaddrbytes))
4491                                 break;
4492                         ncurrent++;
4493                         break;
4494                 default:
4495                         break;
4496                 }
4497                 if (ncurrent >= HPSA_MAX_DEVICES)
4498                         break;
4499         }
4500
4501         if (h->sas_host == NULL) {
4502                 int rc = 0;
4503
4504                 rc = hpsa_add_sas_host(h);
4505                 if (rc) {
4506                         dev_warn(&h->pdev->dev,
4507                                 "Could not add sas host %d\n", rc);
4508                         goto out;
4509                 }
4510         }
4511
4512         adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4513 out:
4514         kfree(tmpdevice);
4515         for (i = 0; i < ndev_allocated; i++)
4516                 kfree(currentsd[i]);
4517         kfree(currentsd);
4518         kfree(physdev_list);
4519         kfree(logdev_list);
4520         kfree(id_ctlr);
4521         kfree(id_phys);
4522 }
4523
4524 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4525                                    struct scatterlist *sg)
4526 {
4527         u64 addr64 = (u64) sg_dma_address(sg);
4528         unsigned int len = sg_dma_len(sg);
4529
4530         desc->Addr = cpu_to_le64(addr64);
4531         desc->Len = cpu_to_le32(len);
4532         desc->Ext = 0;
4533 }
4534
4535 /*
4536  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4537  * dma mapping  and fills in the scatter gather entries of the
4538  * hpsa command, cp.
4539  */
4540 static int hpsa_scatter_gather(struct ctlr_info *h,
4541                 struct CommandList *cp,
4542                 struct scsi_cmnd *cmd)
4543 {
4544         struct scatterlist *sg;
4545         int use_sg, i, sg_limit, chained, last_sg;
4546         struct SGDescriptor *curr_sg;
4547
4548         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4549
4550         use_sg = scsi_dma_map(cmd);
4551         if (use_sg < 0)
4552                 return use_sg;
4553
4554         if (!use_sg)
4555                 goto sglist_finished;
4556
4557         /*
4558          * If the number of entries is greater than the max for a single list,
4559          * then we have a chained list; we will set up all but one entry in the
4560          * first list (the last entry is saved for link information);
4561          * otherwise, we don't have a chained list and we'll set up at each of
4562          * the entries in the one list.
4563          */
4564         curr_sg = cp->SG;
4565         chained = use_sg > h->max_cmd_sg_entries;
4566         sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4567         last_sg = scsi_sg_count(cmd) - 1;
4568         scsi_for_each_sg(cmd, sg, sg_limit, i) {
4569                 hpsa_set_sg_descriptor(curr_sg, sg);
4570                 curr_sg++;
4571         }
4572
4573         if (chained) {
4574                 /*
4575                  * Continue with the chained list.  Set curr_sg to the chained
4576                  * list.  Modify the limit to the total count less the entries
4577                  * we've already set up.  Resume the scan at the list entry
4578                  * where the previous loop left off.
4579                  */
4580                 curr_sg = h->cmd_sg_list[cp->cmdindex];
4581                 sg_limit = use_sg - sg_limit;
4582                 for_each_sg(sg, sg, sg_limit, i) {
4583                         hpsa_set_sg_descriptor(curr_sg, sg);
4584                         curr_sg++;
4585                 }
4586         }
4587
4588         /* Back the pointer up to the last entry and mark it as "last". */
4589         (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4590
4591         if (use_sg + chained > h->maxSG)
4592                 h->maxSG = use_sg + chained;
4593
4594         if (chained) {
4595                 cp->Header.SGList = h->max_cmd_sg_entries;
4596                 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4597                 if (hpsa_map_sg_chain_block(h, cp)) {
4598                         scsi_dma_unmap(cmd);
4599                         return -1;
4600                 }
4601                 return 0;
4602         }
4603
4604 sglist_finished:
4605
4606         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4607         cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4608         return 0;
4609 }
4610
4611 static inline void warn_zero_length_transfer(struct ctlr_info *h,
4612                                                 u8 *cdb, int cdb_len,
4613                                                 const char *func)
4614 {
4615         dev_warn(&h->pdev->dev,
4616                  "%s: Blocking zero-length request: CDB:%*phN\n",
4617                  func, cdb_len, cdb);
4618 }
4619
4620 #define IO_ACCEL_INELIGIBLE 1
4621 /* zero-length transfers trigger hardware errors. */
4622 static bool is_zero_length_transfer(u8 *cdb)
4623 {
4624         u32 block_cnt;
4625
4626         /* Block zero-length transfer sizes on certain commands. */
4627         switch (cdb[0]) {
4628         case READ_10:
4629         case WRITE_10:
4630         case VERIFY:            /* 0x2F */
4631         case WRITE_VERIFY:      /* 0x2E */
4632                 block_cnt = get_unaligned_be16(&cdb[7]);
4633                 break;
4634         case READ_12:
4635         case WRITE_12:
4636         case VERIFY_12: /* 0xAF */
4637         case WRITE_VERIFY_12:   /* 0xAE */
4638                 block_cnt = get_unaligned_be32(&cdb[6]);
4639                 break;
4640         case READ_16:
4641         case WRITE_16:
4642         case VERIFY_16:         /* 0x8F */
4643                 block_cnt = get_unaligned_be32(&cdb[10]);
4644                 break;
4645         default:
4646                 return false;
4647         }
4648
4649         return block_cnt == 0;
4650 }
4651
4652 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4653 {
4654         int is_write = 0;
4655         u32 block;
4656         u32 block_cnt;
4657
4658         /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4659         switch (cdb[0]) {
4660         case WRITE_6:
4661         case WRITE_12:
4662                 is_write = 1;
4663         case READ_6:
4664         case READ_12:
4665                 if (*cdb_len == 6) {
4666                         block = (((cdb[1] & 0x1F) << 16) |
4667                                 (cdb[2] << 8) |
4668                                 cdb[3]);
4669                         block_cnt = cdb[4];
4670                         if (block_cnt == 0)
4671                                 block_cnt = 256;
4672                 } else {
4673                         BUG_ON(*cdb_len != 12);
4674                         block = get_unaligned_be32(&cdb[2]);
4675                         block_cnt = get_unaligned_be32(&cdb[6]);
4676                 }
4677                 if (block_cnt > 0xffff)
4678                         return IO_ACCEL_INELIGIBLE;
4679
4680                 cdb[0] = is_write ? WRITE_10 : READ_10;
4681                 cdb[1] = 0;
4682                 cdb[2] = (u8) (block >> 24);
4683                 cdb[3] = (u8) (block >> 16);
4684                 cdb[4] = (u8) (block >> 8);
4685                 cdb[5] = (u8) (block);
4686                 cdb[6] = 0;
4687                 cdb[7] = (u8) (block_cnt >> 8);
4688                 cdb[8] = (u8) (block_cnt);
4689                 cdb[9] = 0;
4690                 *cdb_len = 10;
4691                 break;
4692         }
4693         return 0;
4694 }
4695
4696 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4697         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4698         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4699 {
4700         struct scsi_cmnd *cmd = c->scsi_cmd;
4701         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4702         unsigned int len;
4703         unsigned int total_len = 0;
4704         struct scatterlist *sg;
4705         u64 addr64;
4706         int use_sg, i;
4707         struct SGDescriptor *curr_sg;
4708         u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4709
4710         /* TODO: implement chaining support */
4711         if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4712                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4713                 return IO_ACCEL_INELIGIBLE;
4714         }
4715
4716         BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4717
4718         if (is_zero_length_transfer(cdb)) {
4719                 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4720                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4721                 return IO_ACCEL_INELIGIBLE;
4722         }
4723
4724         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4725                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4726                 return IO_ACCEL_INELIGIBLE;
4727         }
4728
4729         c->cmd_type = CMD_IOACCEL1;
4730
4731         /* Adjust the DMA address to point to the accelerated command buffer */
4732         c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4733                                 (c->cmdindex * sizeof(*cp));
4734         BUG_ON(c->busaddr & 0x0000007F);
4735
4736         use_sg = scsi_dma_map(cmd);
4737         if (use_sg < 0) {
4738                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4739                 return use_sg;
4740         }
4741
4742         if (use_sg) {
4743                 curr_sg = cp->SG;
4744                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4745                         addr64 = (u64) sg_dma_address(sg);
4746                         len  = sg_dma_len(sg);
4747                         total_len += len;
4748                         curr_sg->Addr = cpu_to_le64(addr64);
4749                         curr_sg->Len = cpu_to_le32(len);
4750                         curr_sg->Ext = cpu_to_le32(0);
4751                         curr_sg++;
4752                 }
4753                 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4754
4755                 switch (cmd->sc_data_direction) {
4756                 case DMA_TO_DEVICE:
4757                         control |= IOACCEL1_CONTROL_DATA_OUT;
4758                         break;
4759                 case DMA_FROM_DEVICE:
4760                         control |= IOACCEL1_CONTROL_DATA_IN;
4761                         break;
4762                 case DMA_NONE:
4763                         control |= IOACCEL1_CONTROL_NODATAXFER;
4764                         break;
4765                 default:
4766                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4767                         cmd->sc_data_direction);
4768                         BUG();
4769                         break;
4770                 }
4771         } else {
4772                 control |= IOACCEL1_CONTROL_NODATAXFER;
4773         }
4774
4775         c->Header.SGList = use_sg;
4776         /* Fill out the command structure to submit */
4777         cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4778         cp->transfer_len = cpu_to_le32(total_len);
4779         cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4780                         (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4781         cp->control = cpu_to_le32(control);
4782         memcpy(cp->CDB, cdb, cdb_len);
4783         memcpy(cp->CISS_LUN, scsi3addr, 8);
4784         /* Tag was already set at init time. */
4785         enqueue_cmd_and_start_io(h, c);
4786         return 0;
4787 }
4788
4789 /*
4790  * Queue a command directly to a device behind the controller using the
4791  * I/O accelerator path.
4792  */
4793 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4794         struct CommandList *c)
4795 {
4796         struct scsi_cmnd *cmd = c->scsi_cmd;
4797         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4798
4799         if (!dev)
4800                 return -1;
4801
4802         c->phys_disk = dev;
4803
4804         return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4805                 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4806 }
4807
4808 /*
4809  * Set encryption parameters for the ioaccel2 request
4810  */
4811 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4812         struct CommandList *c, struct io_accel2_cmd *cp)
4813 {
4814         struct scsi_cmnd *cmd = c->scsi_cmd;
4815         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4816         struct raid_map_data *map = &dev->raid_map;
4817         u64 first_block;
4818
4819         /* Are we doing encryption on this device */
4820         if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4821                 return;
4822         /* Set the data encryption key index. */
4823         cp->dekindex = map->dekindex;
4824
4825         /* Set the encryption enable flag, encoded into direction field. */
4826         cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4827
4828         /* Set encryption tweak values based on logical block address
4829          * If block size is 512, tweak value is LBA.
4830          * For other block sizes, tweak is (LBA * block size)/ 512)
4831          */
4832         switch (cmd->cmnd[0]) {
4833         /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4834         case READ_6:
4835         case WRITE_6:
4836                 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4837                                 (cmd->cmnd[2] << 8) |
4838                                 cmd->cmnd[3]);
4839                 break;
4840         case WRITE_10:
4841         case READ_10:
4842         /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4843         case WRITE_12:
4844         case READ_12:
4845                 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4846                 break;
4847         case WRITE_16:
4848         case READ_16:
4849                 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4850                 break;
4851         default:
4852                 dev_err(&h->pdev->dev,
4853                         "ERROR: %s: size (0x%x) not supported for encryption\n",
4854                         __func__, cmd->cmnd[0]);
4855                 BUG();
4856                 break;
4857         }
4858
4859         if (le32_to_cpu(map->volume_blk_size) != 512)
4860                 first_block = first_block *
4861                                 le32_to_cpu(map->volume_blk_size)/512;
4862
4863         cp->tweak_lower = cpu_to_le32(first_block);
4864         cp->tweak_upper = cpu_to_le32(first_block >> 32);
4865 }
4866
4867 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4868         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4869         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4870 {
4871         struct scsi_cmnd *cmd = c->scsi_cmd;
4872         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4873         struct ioaccel2_sg_element *curr_sg;
4874         int use_sg, i;
4875         struct scatterlist *sg;
4876         u64 addr64;
4877         u32 len;
4878         u32 total_len = 0;
4879
4880         if (!cmd->device)
4881                 return -1;
4882
4883         if (!cmd->device->hostdata)
4884                 return -1;
4885
4886         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4887
4888         if (is_zero_length_transfer(cdb)) {
4889                 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4890                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4891                 return IO_ACCEL_INELIGIBLE;
4892         }
4893
4894         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4895                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4896                 return IO_ACCEL_INELIGIBLE;
4897         }
4898
4899         c->cmd_type = CMD_IOACCEL2;
4900         /* Adjust the DMA address to point to the accelerated command buffer */
4901         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4902                                 (c->cmdindex * sizeof(*cp));
4903         BUG_ON(c->busaddr & 0x0000007F);
4904
4905         memset(cp, 0, sizeof(*cp));
4906         cp->IU_type = IOACCEL2_IU_TYPE;
4907
4908         use_sg = scsi_dma_map(cmd);
4909         if (use_sg < 0) {
4910                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4911                 return use_sg;
4912         }
4913
4914         if (use_sg) {
4915                 curr_sg = cp->sg;
4916                 if (use_sg > h->ioaccel_maxsg) {
4917                         addr64 = le64_to_cpu(
4918                                 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4919                         curr_sg->address = cpu_to_le64(addr64);
4920                         curr_sg->length = 0;
4921                         curr_sg->reserved[0] = 0;
4922                         curr_sg->reserved[1] = 0;
4923                         curr_sg->reserved[2] = 0;
4924                         curr_sg->chain_indicator = 0x80;
4925
4926                         curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4927                 }
4928                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4929                         addr64 = (u64) sg_dma_address(sg);
4930                         len  = sg_dma_len(sg);
4931                         total_len += len;
4932                         curr_sg->address = cpu_to_le64(addr64);
4933                         curr_sg->length = cpu_to_le32(len);
4934                         curr_sg->reserved[0] = 0;
4935                         curr_sg->reserved[1] = 0;
4936                         curr_sg->reserved[2] = 0;
4937                         curr_sg->chain_indicator = 0;
4938                         curr_sg++;
4939                 }
4940
4941                 switch (cmd->sc_data_direction) {
4942                 case DMA_TO_DEVICE:
4943                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4944                         cp->direction |= IOACCEL2_DIR_DATA_OUT;
4945                         break;
4946                 case DMA_FROM_DEVICE:
4947                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4948                         cp->direction |= IOACCEL2_DIR_DATA_IN;
4949                         break;
4950                 case DMA_NONE:
4951                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4952                         cp->direction |= IOACCEL2_DIR_NO_DATA;
4953                         break;
4954                 default:
4955                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4956                                 cmd->sc_data_direction);
4957                         BUG();
4958                         break;
4959                 }
4960         } else {
4961                 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4962                 cp->direction |= IOACCEL2_DIR_NO_DATA;
4963         }
4964
4965         /* Set encryption parameters, if necessary */
4966         set_encrypt_ioaccel2(h, c, cp);
4967
4968         cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4969         cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4970         memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4971
4972         cp->data_len = cpu_to_le32(total_len);
4973         cp->err_ptr = cpu_to_le64(c->busaddr +
4974                         offsetof(struct io_accel2_cmd, error_data));
4975         cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4976
4977         /* fill in sg elements */
4978         if (use_sg > h->ioaccel_maxsg) {
4979                 cp->sg_count = 1;
4980                 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4981                 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4982                         atomic_dec(&phys_disk->ioaccel_cmds_out);
4983                         scsi_dma_unmap(cmd);
4984                         return -1;
4985                 }
4986         } else
4987                 cp->sg_count = (u8) use_sg;
4988
4989         enqueue_cmd_and_start_io(h, c);
4990         return 0;
4991 }
4992
4993 /*
4994  * Queue a command to the correct I/O accelerator path.
4995  */
4996 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4997         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4998         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4999 {
5000         if (!c->scsi_cmd->device)
5001                 return -1;
5002
5003         if (!c->scsi_cmd->device->hostdata)
5004                 return -1;
5005
5006         /* Try to honor the device's queue depth */
5007         if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
5008                                         phys_disk->queue_depth) {
5009                 atomic_dec(&phys_disk->ioaccel_cmds_out);
5010                 return IO_ACCEL_INELIGIBLE;
5011         }
5012         if (h->transMethod & CFGTBL_Trans_io_accel1)
5013                 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
5014                                                 cdb, cdb_len, scsi3addr,
5015                                                 phys_disk);
5016         else
5017                 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
5018                                                 cdb, cdb_len, scsi3addr,
5019                                                 phys_disk);
5020 }
5021
5022 static void raid_map_helper(struct raid_map_data *map,
5023                 int offload_to_mirror, u32 *map_index, u32 *current_group)
5024 {
5025         if (offload_to_mirror == 0)  {
5026                 /* use physical disk in the first mirrored group. */
5027                 *map_index %= le16_to_cpu(map->data_disks_per_row);
5028                 return;
5029         }
5030         do {
5031                 /* determine mirror group that *map_index indicates */
5032                 *current_group = *map_index /
5033                         le16_to_cpu(map->data_disks_per_row);
5034                 if (offload_to_mirror == *current_group)
5035                         continue;
5036                 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
5037                         /* select map index from next group */
5038                         *map_index += le16_to_cpu(map->data_disks_per_row);
5039                         (*current_group)++;
5040                 } else {
5041                         /* select map index from first group */
5042                         *map_index %= le16_to_cpu(map->data_disks_per_row);
5043                         *current_group = 0;
5044                 }
5045         } while (offload_to_mirror != *current_group);
5046 }
5047
5048 /*
5049  * Attempt to perform offload RAID mapping for a logical volume I/O.
5050  */
5051 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
5052         struct CommandList *c)
5053 {
5054         struct scsi_cmnd *cmd = c->scsi_cmd;
5055         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5056         struct raid_map_data *map = &dev->raid_map;
5057         struct raid_map_disk_data *dd = &map->data[0];
5058         int is_write = 0;
5059         u32 map_index;
5060         u64 first_block, last_block;
5061         u32 block_cnt;
5062         u32 blocks_per_row;
5063         u64 first_row, last_row;
5064         u32 first_row_offset, last_row_offset;
5065         u32 first_column, last_column;
5066         u64 r0_first_row, r0_last_row;
5067         u32 r5or6_blocks_per_row;
5068         u64 r5or6_first_row, r5or6_last_row;
5069         u32 r5or6_first_row_offset, r5or6_last_row_offset;
5070         u32 r5or6_first_column, r5or6_last_column;
5071         u32 total_disks_per_row;
5072         u32 stripesize;
5073         u32 first_group, last_group, current_group;
5074         u32 map_row;
5075         u32 disk_handle;
5076         u64 disk_block;
5077         u32 disk_block_cnt;
5078         u8 cdb[16];
5079         u8 cdb_len;
5080         u16 strip_size;
5081 #if BITS_PER_LONG == 32
5082         u64 tmpdiv;
5083 #endif
5084         int offload_to_mirror;
5085
5086         if (!dev)
5087                 return -1;
5088
5089         /* check for valid opcode, get LBA and block count */
5090         switch (cmd->cmnd[0]) {
5091         case WRITE_6:
5092                 is_write = 1;
5093         case READ_6:
5094                 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5095                                 (cmd->cmnd[2] << 8) |
5096                                 cmd->cmnd[3]);
5097                 block_cnt = cmd->cmnd[4];
5098                 if (block_cnt == 0)
5099                         block_cnt = 256;
5100                 break;
5101         case WRITE_10:
5102                 is_write = 1;
5103         case READ_10:
5104                 first_block =
5105                         (((u64) cmd->cmnd[2]) << 24) |
5106                         (((u64) cmd->cmnd[3]) << 16) |
5107                         (((u64) cmd->cmnd[4]) << 8) |
5108                         cmd->cmnd[5];
5109                 block_cnt =
5110                         (((u32) cmd->cmnd[7]) << 8) |
5111                         cmd->cmnd[8];
5112                 break;
5113         case WRITE_12:
5114                 is_write = 1;
5115         case READ_12:
5116                 first_block =
5117                         (((u64) cmd->cmnd[2]) << 24) |
5118                         (((u64) cmd->cmnd[3]) << 16) |
5119                         (((u64) cmd->cmnd[4]) << 8) |
5120                         cmd->cmnd[5];
5121                 block_cnt =
5122                         (((u32) cmd->cmnd[6]) << 24) |
5123                         (((u32) cmd->cmnd[7]) << 16) |
5124                         (((u32) cmd->cmnd[8]) << 8) |
5125                 cmd->cmnd[9];
5126                 break;
5127         case WRITE_16:
5128                 is_write = 1;
5129         case READ_16:
5130                 first_block =
5131                         (((u64) cmd->cmnd[2]) << 56) |
5132                         (((u64) cmd->cmnd[3]) << 48) |
5133                         (((u64) cmd->cmnd[4]) << 40) |
5134                         (((u64) cmd->cmnd[5]) << 32) |
5135                         (((u64) cmd->cmnd[6]) << 24) |
5136                         (((u64) cmd->cmnd[7]) << 16) |
5137                         (((u64) cmd->cmnd[8]) << 8) |
5138                         cmd->cmnd[9];
5139                 block_cnt =
5140                         (((u32) cmd->cmnd[10]) << 24) |
5141                         (((u32) cmd->cmnd[11]) << 16) |
5142                         (((u32) cmd->cmnd[12]) << 8) |
5143                         cmd->cmnd[13];
5144                 break;
5145         default:
5146                 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5147         }
5148         last_block = first_block + block_cnt - 1;
5149
5150         /* check for write to non-RAID-0 */
5151         if (is_write && dev->raid_level != 0)
5152                 return IO_ACCEL_INELIGIBLE;
5153
5154         /* check for invalid block or wraparound */
5155         if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5156                 last_block < first_block)
5157                 return IO_ACCEL_INELIGIBLE;
5158
5159         /* calculate stripe information for the request */
5160         blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5161                                 le16_to_cpu(map->strip_size);
5162         strip_size = le16_to_cpu(map->strip_size);
5163 #if BITS_PER_LONG == 32
5164         tmpdiv = first_block;
5165         (void) do_div(tmpdiv, blocks_per_row);
5166         first_row = tmpdiv;
5167         tmpdiv = last_block;
5168         (void) do_div(tmpdiv, blocks_per_row);
5169         last_row = tmpdiv;
5170         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5171         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5172         tmpdiv = first_row_offset;
5173         (void) do_div(tmpdiv, strip_size);
5174         first_column = tmpdiv;
5175         tmpdiv = last_row_offset;
5176         (void) do_div(tmpdiv, strip_size);
5177         last_column = tmpdiv;
5178 #else
5179         first_row = first_block / blocks_per_row;
5180         last_row = last_block / blocks_per_row;
5181         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5182         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5183         first_column = first_row_offset / strip_size;
5184         last_column = last_row_offset / strip_size;
5185 #endif
5186
5187         /* if this isn't a single row/column then give to the controller */
5188         if ((first_row != last_row) || (first_column != last_column))
5189                 return IO_ACCEL_INELIGIBLE;
5190
5191         /* proceeding with driver mapping */
5192         total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5193                                 le16_to_cpu(map->metadata_disks_per_row);
5194         map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5195                                 le16_to_cpu(map->row_cnt);
5196         map_index = (map_row * total_disks_per_row) + first_column;
5197
5198         switch (dev->raid_level) {
5199         case HPSA_RAID_0:
5200                 break; /* nothing special to do */
5201         case HPSA_RAID_1:
5202                 /* Handles load balance across RAID 1 members.
5203                  * (2-drive R1 and R10 with even # of drives.)
5204                  * Appropriate for SSDs, not optimal for HDDs
5205                  */
5206                 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
5207                 if (dev->offload_to_mirror)
5208                         map_index += le16_to_cpu(map->data_disks_per_row);
5209                 dev->offload_to_mirror = !dev->offload_to_mirror;
5210                 break;
5211         case HPSA_RAID_ADM:
5212                 /* Handles N-way mirrors  (R1-ADM)
5213                  * and R10 with # of drives divisible by 3.)
5214                  */
5215                 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
5216
5217                 offload_to_mirror = dev->offload_to_mirror;
5218                 raid_map_helper(map, offload_to_mirror,
5219                                 &map_index, &current_group);
5220                 /* set mirror group to use next time */
5221                 offload_to_mirror =
5222                         (offload_to_mirror >=
5223                         le16_to_cpu(map->layout_map_count) - 1)
5224                         ? 0 : offload_to_mirror + 1;
5225                 dev->offload_to_mirror = offload_to_mirror;
5226                 /* Avoid direct use of dev->offload_to_mirror within this
5227                  * function since multiple threads might simultaneously
5228                  * increment it beyond the range of dev->layout_map_count -1.
5229                  */
5230                 break;
5231         case HPSA_RAID_5:
5232         case HPSA_RAID_6:
5233                 if (le16_to_cpu(map->layout_map_count) <= 1)
5234                         break;
5235
5236                 /* Verify first and last block are in same RAID group */
5237                 r5or6_blocks_per_row =
5238                         le16_to_cpu(map->strip_size) *
5239                         le16_to_cpu(map->data_disks_per_row);
5240                 BUG_ON(r5or6_blocks_per_row == 0);
5241                 stripesize = r5or6_blocks_per_row *
5242                         le16_to_cpu(map->layout_map_count);
5243 #if BITS_PER_LONG == 32
5244                 tmpdiv = first_block;
5245                 first_group = do_div(tmpdiv, stripesize);
5246                 tmpdiv = first_group;
5247                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5248                 first_group = tmpdiv;
5249                 tmpdiv = last_block;
5250                 last_group = do_div(tmpdiv, stripesize);
5251                 tmpdiv = last_group;
5252                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5253                 last_group = tmpdiv;
5254 #else
5255                 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5256                 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5257 #endif
5258                 if (first_group != last_group)
5259                         return IO_ACCEL_INELIGIBLE;
5260
5261                 /* Verify request is in a single row of RAID 5/6 */
5262 #if BITS_PER_LONG == 32
5263                 tmpdiv = first_block;
5264                 (void) do_div(tmpdiv, stripesize);
5265                 first_row = r5or6_first_row = r0_first_row = tmpdiv;
5266                 tmpdiv = last_block;
5267                 (void) do_div(tmpdiv, stripesize);
5268                 r5or6_last_row = r0_last_row = tmpdiv;
5269 #else
5270                 first_row = r5or6_first_row = r0_first_row =
5271                                                 first_block / stripesize;
5272                 r5or6_last_row = r0_last_row = last_block / stripesize;
5273 #endif
5274                 if (r5or6_first_row != r5or6_last_row)
5275                         return IO_ACCEL_INELIGIBLE;
5276
5277
5278                 /* Verify request is in a single column */
5279 #if BITS_PER_LONG == 32
5280                 tmpdiv = first_block;
5281                 first_row_offset = do_div(tmpdiv, stripesize);
5282                 tmpdiv = first_row_offset;
5283                 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5284                 r5or6_first_row_offset = first_row_offset;
5285                 tmpdiv = last_block;
5286                 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5287                 tmpdiv = r5or6_last_row_offset;
5288                 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5289                 tmpdiv = r5or6_first_row_offset;
5290                 (void) do_div(tmpdiv, map->strip_size);
5291                 first_column = r5or6_first_column = tmpdiv;
5292                 tmpdiv = r5or6_last_row_offset;
5293                 (void) do_div(tmpdiv, map->strip_size);
5294                 r5or6_last_column = tmpdiv;
5295 #else
5296                 first_row_offset = r5or6_first_row_offset =
5297                         (u32)((first_block % stripesize) %
5298                                                 r5or6_blocks_per_row);
5299
5300                 r5or6_last_row_offset =
5301                         (u32)((last_block % stripesize) %
5302                                                 r5or6_blocks_per_row);
5303
5304                 first_column = r5or6_first_column =
5305                         r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5306                 r5or6_last_column =
5307                         r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5308 #endif
5309                 if (r5or6_first_column != r5or6_last_column)
5310                         return IO_ACCEL_INELIGIBLE;
5311
5312                 /* Request is eligible */
5313                 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5314                         le16_to_cpu(map->row_cnt);
5315
5316                 map_index = (first_group *
5317                         (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5318                         (map_row * total_disks_per_row) + first_column;
5319                 break;
5320         default:
5321                 return IO_ACCEL_INELIGIBLE;
5322         }
5323
5324         if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5325                 return IO_ACCEL_INELIGIBLE;
5326
5327         c->phys_disk = dev->phys_disk[map_index];
5328         if (!c->phys_disk)
5329                 return IO_ACCEL_INELIGIBLE;
5330
5331         disk_handle = dd[map_index].ioaccel_handle;
5332         disk_block = le64_to_cpu(map->disk_starting_blk) +
5333                         first_row * le16_to_cpu(map->strip_size) +
5334                         (first_row_offset - first_column *
5335                         le16_to_cpu(map->strip_size));
5336         disk_block_cnt = block_cnt;
5337
5338         /* handle differing logical/physical block sizes */
5339         if (map->phys_blk_shift) {
5340                 disk_block <<= map->phys_blk_shift;
5341                 disk_block_cnt <<= map->phys_blk_shift;
5342         }
5343         BUG_ON(disk_block_cnt > 0xffff);
5344
5345         /* build the new CDB for the physical disk I/O */
5346         if (disk_block > 0xffffffff) {
5347                 cdb[0] = is_write ? WRITE_16 : READ_16;
5348                 cdb[1] = 0;
5349                 cdb[2] = (u8) (disk_block >> 56);
5350                 cdb[3] = (u8) (disk_block >> 48);
5351                 cdb[4] = (u8) (disk_block >> 40);
5352                 cdb[5] = (u8) (disk_block >> 32);
5353                 cdb[6] = (u8) (disk_block >> 24);
5354                 cdb[7] = (u8) (disk_block >> 16);
5355                 cdb[8] = (u8) (disk_block >> 8);
5356                 cdb[9] = (u8) (disk_block);
5357                 cdb[10] = (u8) (disk_block_cnt >> 24);
5358                 cdb[11] = (u8) (disk_block_cnt >> 16);
5359                 cdb[12] = (u8) (disk_block_cnt >> 8);
5360                 cdb[13] = (u8) (disk_block_cnt);
5361                 cdb[14] = 0;
5362                 cdb[15] = 0;
5363                 cdb_len = 16;
5364         } else {
5365                 cdb[0] = is_write ? WRITE_10 : READ_10;
5366                 cdb[1] = 0;
5367                 cdb[2] = (u8) (disk_block >> 24);
5368                 cdb[3] = (u8) (disk_block >> 16);
5369                 cdb[4] = (u8) (disk_block >> 8);
5370                 cdb[5] = (u8) (disk_block);
5371                 cdb[6] = 0;
5372                 cdb[7] = (u8) (disk_block_cnt >> 8);
5373                 cdb[8] = (u8) (disk_block_cnt);
5374                 cdb[9] = 0;
5375                 cdb_len = 10;
5376         }
5377         return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5378                                                 dev->scsi3addr,
5379                                                 dev->phys_disk[map_index]);
5380 }
5381
5382 /*
5383  * Submit commands down the "normal" RAID stack path
5384  * All callers to hpsa_ciss_submit must check lockup_detected
5385  * beforehand, before (opt.) and after calling cmd_alloc
5386  */
5387 static int hpsa_ciss_submit(struct ctlr_info *h,
5388         struct CommandList *c, struct scsi_cmnd *cmd,
5389         unsigned char scsi3addr[])
5390 {
5391         cmd->host_scribble = (unsigned char *) c;
5392         c->cmd_type = CMD_SCSI;
5393         c->scsi_cmd = cmd;
5394         c->Header.ReplyQueue = 0;  /* unused in simple mode */
5395         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
5396         c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5397
5398         /* Fill in the request block... */
5399
5400         c->Request.Timeout = 0;
5401         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5402         c->Request.CDBLen = cmd->cmd_len;
5403         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5404         switch (cmd->sc_data_direction) {
5405         case DMA_TO_DEVICE:
5406                 c->Request.type_attr_dir =
5407                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5408                 break;
5409         case DMA_FROM_DEVICE:
5410                 c->Request.type_attr_dir =
5411                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5412                 break;
5413         case DMA_NONE:
5414                 c->Request.type_attr_dir =
5415                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5416                 break;
5417         case DMA_BIDIRECTIONAL:
5418                 /* This can happen if a buggy application does a scsi passthru
5419                  * and sets both inlen and outlen to non-zero. ( see
5420                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5421                  */
5422
5423                 c->Request.type_attr_dir =
5424                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5425                 /* This is technically wrong, and hpsa controllers should
5426                  * reject it with CMD_INVALID, which is the most correct
5427                  * response, but non-fibre backends appear to let it
5428                  * slide by, and give the same results as if this field
5429                  * were set correctly.  Either way is acceptable for
5430                  * our purposes here.
5431                  */
5432
5433                 break;
5434
5435         default:
5436                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5437                         cmd->sc_data_direction);
5438                 BUG();
5439                 break;
5440         }
5441
5442         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5443                 hpsa_cmd_resolve_and_free(h, c);
5444                 return SCSI_MLQUEUE_HOST_BUSY;
5445         }
5446         enqueue_cmd_and_start_io(h, c);
5447         /* the cmd'll come back via intr handler in complete_scsi_command()  */
5448         return 0;
5449 }
5450
5451 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5452                                 struct CommandList *c)
5453 {
5454         dma_addr_t cmd_dma_handle, err_dma_handle;
5455
5456         /* Zero out all of commandlist except the last field, refcount */
5457         memset(c, 0, offsetof(struct CommandList, refcount));
5458         c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5459         cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5460         c->err_info = h->errinfo_pool + index;
5461         memset(c->err_info, 0, sizeof(*c->err_info));
5462         err_dma_handle = h->errinfo_pool_dhandle
5463             + index * sizeof(*c->err_info);
5464         c->cmdindex = index;
5465         c->busaddr = (u32) cmd_dma_handle;
5466         c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5467         c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5468         c->h = h;
5469         c->scsi_cmd = SCSI_CMD_IDLE;
5470 }
5471
5472 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5473 {
5474         int i;
5475
5476         for (i = 0; i < h->nr_cmds; i++) {
5477                 struct CommandList *c = h->cmd_pool + i;
5478
5479                 hpsa_cmd_init(h, i, c);
5480                 atomic_set(&c->refcount, 0);
5481         }
5482 }
5483
5484 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5485                                 struct CommandList *c)
5486 {
5487         dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5488
5489         BUG_ON(c->cmdindex != index);
5490
5491         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5492         memset(c->err_info, 0, sizeof(*c->err_info));
5493         c->busaddr = (u32) cmd_dma_handle;
5494 }
5495
5496 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5497                 struct CommandList *c, struct scsi_cmnd *cmd,
5498                 unsigned char *scsi3addr)
5499 {
5500         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5501         int rc = IO_ACCEL_INELIGIBLE;
5502
5503         if (!dev)
5504                 return SCSI_MLQUEUE_HOST_BUSY;
5505
5506         cmd->host_scribble = (unsigned char *) c;
5507
5508         if (dev->offload_enabled) {
5509                 hpsa_cmd_init(h, c->cmdindex, c);
5510                 c->cmd_type = CMD_SCSI;
5511                 c->scsi_cmd = cmd;
5512                 rc = hpsa_scsi_ioaccel_raid_map(h, c);
5513                 if (rc < 0)     /* scsi_dma_map failed. */
5514                         rc = SCSI_MLQUEUE_HOST_BUSY;
5515         } else if (dev->hba_ioaccel_enabled) {
5516                 hpsa_cmd_init(h, c->cmdindex, c);
5517                 c->cmd_type = CMD_SCSI;
5518                 c->scsi_cmd = cmd;
5519                 rc = hpsa_scsi_ioaccel_direct_map(h, c);
5520                 if (rc < 0)     /* scsi_dma_map failed. */
5521                         rc = SCSI_MLQUEUE_HOST_BUSY;
5522         }
5523         return rc;
5524 }
5525
5526 static void hpsa_command_resubmit_worker(struct work_struct *work)
5527 {
5528         struct scsi_cmnd *cmd;
5529         struct hpsa_scsi_dev_t *dev;
5530         struct CommandList *c = container_of(work, struct CommandList, work);
5531
5532         cmd = c->scsi_cmd;
5533         dev = cmd->device->hostdata;
5534         if (!dev) {
5535                 cmd->result = DID_NO_CONNECT << 16;
5536                 return hpsa_cmd_free_and_done(c->h, c, cmd);
5537         }
5538         if (c->reset_pending)
5539                 return hpsa_cmd_free_and_done(c->h, c, cmd);
5540         if (c->cmd_type == CMD_IOACCEL2) {
5541                 struct ctlr_info *h = c->h;
5542                 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5543                 int rc;
5544
5545                 if (c2->error_data.serv_response ==
5546                                 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5547                         rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5548                         if (rc == 0)
5549                                 return;
5550                         if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5551                                 /*
5552                                  * If we get here, it means dma mapping failed.
5553                                  * Try again via scsi mid layer, which will
5554                                  * then get SCSI_MLQUEUE_HOST_BUSY.
5555                                  */
5556                                 cmd->result = DID_IMM_RETRY << 16;
5557                                 return hpsa_cmd_free_and_done(h, c, cmd);
5558                         }
5559                         /* else, fall thru and resubmit down CISS path */
5560                 }
5561         }
5562         hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5563         if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5564                 /*
5565                  * If we get here, it means dma mapping failed. Try
5566                  * again via scsi mid layer, which will then get
5567                  * SCSI_MLQUEUE_HOST_BUSY.
5568                  *
5569                  * hpsa_ciss_submit will have already freed c
5570                  * if it encountered a dma mapping failure.
5571                  */
5572                 cmd->result = DID_IMM_RETRY << 16;
5573                 cmd->scsi_done(cmd);
5574         }
5575 }
5576
5577 /* Running in struct Scsi_Host->host_lock less mode */
5578 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5579 {
5580         struct ctlr_info *h;
5581         struct hpsa_scsi_dev_t *dev;
5582         unsigned char scsi3addr[8];
5583         struct CommandList *c;
5584         int rc = 0;
5585
5586         /* Get the ptr to our adapter structure out of cmd->host. */
5587         h = sdev_to_hba(cmd->device);
5588
5589         BUG_ON(cmd->request->tag < 0);
5590
5591         dev = cmd->device->hostdata;
5592         if (!dev) {
5593                 cmd->result = DID_NO_CONNECT << 16;
5594                 cmd->scsi_done(cmd);
5595                 return 0;
5596         }
5597
5598         if (dev->removed) {
5599                 cmd->result = DID_NO_CONNECT << 16;
5600                 cmd->scsi_done(cmd);
5601                 return 0;
5602         }
5603
5604         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5605
5606         if (unlikely(lockup_detected(h))) {
5607                 cmd->result = DID_NO_CONNECT << 16;
5608                 cmd->scsi_done(cmd);
5609                 return 0;
5610         }
5611         c = cmd_tagged_alloc(h, cmd);
5612
5613         /*
5614          * Call alternate submit routine for I/O accelerated commands.
5615          * Retries always go down the normal I/O path.
5616          */
5617         if (likely(cmd->retries == 0 &&
5618                         !blk_rq_is_passthrough(cmd->request) &&
5619                         h->acciopath_status)) {
5620                 rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5621                 if (rc == 0)
5622                         return 0;
5623                 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5624                         hpsa_cmd_resolve_and_free(h, c);
5625                         return SCSI_MLQUEUE_HOST_BUSY;
5626                 }
5627         }
5628         return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5629 }
5630
5631 static void hpsa_scan_complete(struct ctlr_info *h)
5632 {
5633         unsigned long flags;
5634
5635         spin_lock_irqsave(&h->scan_lock, flags);
5636         h->scan_finished = 1;
5637         wake_up(&h->scan_wait_queue);
5638         spin_unlock_irqrestore(&h->scan_lock, flags);
5639 }
5640
5641 static void hpsa_scan_start(struct Scsi_Host *sh)
5642 {
5643         struct ctlr_info *h = shost_to_hba(sh);
5644         unsigned long flags;
5645
5646         /*
5647          * Don't let rescans be initiated on a controller known to be locked
5648          * up.  If the controller locks up *during* a rescan, that thread is
5649          * probably hosed, but at least we can prevent new rescan threads from
5650          * piling up on a locked up controller.
5651          */
5652         if (unlikely(lockup_detected(h)))
5653                 return hpsa_scan_complete(h);
5654
5655         /*
5656          * If a scan is already waiting to run, no need to add another
5657          */
5658         spin_lock_irqsave(&h->scan_lock, flags);
5659         if (h->scan_waiting) {
5660                 spin_unlock_irqrestore(&h->scan_lock, flags);
5661                 return;
5662         }
5663
5664         spin_unlock_irqrestore(&h->scan_lock, flags);
5665
5666         /* wait until any scan already in progress is finished. */
5667         while (1) {
5668                 spin_lock_irqsave(&h->scan_lock, flags);
5669                 if (h->scan_finished)
5670                         break;
5671                 h->scan_waiting = 1;
5672                 spin_unlock_irqrestore(&h->scan_lock, flags);
5673                 wait_event(h->scan_wait_queue, h->scan_finished);
5674                 /* Note: We don't need to worry about a race between this
5675                  * thread and driver unload because the midlayer will
5676                  * have incremented the reference count, so unload won't
5677                  * happen if we're in here.
5678                  */
5679         }
5680         h->scan_finished = 0; /* mark scan as in progress */
5681         h->scan_waiting = 0;
5682         spin_unlock_irqrestore(&h->scan_lock, flags);
5683
5684         if (unlikely(lockup_detected(h)))
5685                 return hpsa_scan_complete(h);
5686
5687         /*
5688          * Do the scan after a reset completion
5689          */
5690         spin_lock_irqsave(&h->reset_lock, flags);
5691         if (h->reset_in_progress) {
5692                 h->drv_req_rescan = 1;
5693                 spin_unlock_irqrestore(&h->reset_lock, flags);
5694                 hpsa_scan_complete(h);
5695                 return;
5696         }
5697         spin_unlock_irqrestore(&h->reset_lock, flags);
5698
5699         hpsa_update_scsi_devices(h);
5700
5701         hpsa_scan_complete(h);
5702 }
5703
5704 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5705 {
5706         struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5707
5708         if (!logical_drive)
5709                 return -ENODEV;
5710
5711         if (qdepth < 1)
5712                 qdepth = 1;
5713         else if (qdepth > logical_drive->queue_depth)
5714                 qdepth = logical_drive->queue_depth;
5715
5716         return scsi_change_queue_depth(sdev, qdepth);
5717 }
5718
5719 static int hpsa_scan_finished(struct Scsi_Host *sh,
5720         unsigned long elapsed_time)
5721 {
5722         struct ctlr_info *h = shost_to_hba(sh);
5723         unsigned long flags;
5724         int finished;
5725
5726         spin_lock_irqsave(&h->scan_lock, flags);
5727         finished = h->scan_finished;
5728         spin_unlock_irqrestore(&h->scan_lock, flags);
5729         return finished;
5730 }
5731
5732 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5733 {
5734         struct Scsi_Host *sh;
5735
5736         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5737         if (sh == NULL) {
5738                 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5739                 return -ENOMEM;
5740         }
5741
5742         sh->io_port = 0;
5743         sh->n_io_port = 0;
5744         sh->this_id = -1;
5745         sh->max_channel = 3;
5746         sh->max_cmd_len = MAX_COMMAND_SIZE;
5747         sh->max_lun = HPSA_MAX_LUN;
5748         sh->max_id = HPSA_MAX_LUN;
5749         sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5750         sh->cmd_per_lun = sh->can_queue;
5751         sh->sg_tablesize = h->maxsgentries;
5752         sh->transportt = hpsa_sas_transport_template;
5753         sh->hostdata[0] = (unsigned long) h;
5754         sh->irq = pci_irq_vector(h->pdev, 0);
5755         sh->unique_id = sh->irq;
5756
5757         h->scsi_host = sh;
5758         return 0;
5759 }
5760
5761 static int hpsa_scsi_add_host(struct ctlr_info *h)
5762 {
5763         int rv;
5764
5765         rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5766         if (rv) {
5767                 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5768                 return rv;
5769         }
5770         scsi_scan_host(h->scsi_host);
5771         return 0;
5772 }
5773
5774 /*
5775  * The block layer has already gone to the trouble of picking out a unique,
5776  * small-integer tag for this request.  We use an offset from that value as
5777  * an index to select our command block.  (The offset allows us to reserve the
5778  * low-numbered entries for our own uses.)
5779  */
5780 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5781 {
5782         int idx = scmd->request->tag;
5783
5784         if (idx < 0)
5785                 return idx;
5786
5787         /* Offset to leave space for internal cmds. */
5788         return idx += HPSA_NRESERVED_CMDS;
5789 }
5790
5791 /*
5792  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5793  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5794  */
5795 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5796                                 struct CommandList *c, unsigned char lunaddr[],
5797                                 int reply_queue)
5798 {
5799         int rc;
5800
5801         /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5802         (void) fill_cmd(c, TEST_UNIT_READY, h,
5803                         NULL, 0, 0, lunaddr, TYPE_CMD);
5804         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5805         if (rc)
5806                 return rc;
5807         /* no unmap needed here because no data xfer. */
5808
5809         /* Check if the unit is already ready. */
5810         if (c->err_info->CommandStatus == CMD_SUCCESS)
5811                 return 0;
5812
5813         /*
5814          * The first command sent after reset will receive "unit attention" to
5815          * indicate that the LUN has been reset...this is actually what we're
5816          * looking for (but, success is good too).
5817          */
5818         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5819                 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5820                         (c->err_info->SenseInfo[2] == NO_SENSE ||
5821                          c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5822                 return 0;
5823
5824         return 1;
5825 }
5826
5827 /*
5828  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5829  * returns zero when the unit is ready, and non-zero when giving up.
5830  */
5831 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5832                                 struct CommandList *c,
5833                                 unsigned char lunaddr[], int reply_queue)
5834 {
5835         int rc;
5836         int count = 0;
5837         int waittime = 1; /* seconds */
5838
5839         /* Send test unit ready until device ready, or give up. */
5840         for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5841
5842                 /*
5843                  * Wait for a bit.  do this first, because if we send
5844                  * the TUR right away, the reset will just abort it.
5845                  */
5846                 msleep(1000 * waittime);
5847
5848                 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5849                 if (!rc)
5850                         break;
5851
5852                 /* Increase wait time with each try, up to a point. */
5853                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5854                         waittime *= 2;
5855
5856                 dev_warn(&h->pdev->dev,
5857                          "waiting %d secs for device to become ready.\n",
5858                          waittime);
5859         }
5860
5861         return rc;
5862 }
5863
5864 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5865                                            unsigned char lunaddr[],
5866                                            int reply_queue)
5867 {
5868         int first_queue;
5869         int last_queue;
5870         int rq;
5871         int rc = 0;
5872         struct CommandList *c;
5873
5874         c = cmd_alloc(h);
5875
5876         /*
5877          * If no specific reply queue was requested, then send the TUR
5878          * repeatedly, requesting a reply on each reply queue; otherwise execute
5879          * the loop exactly once using only the specified queue.
5880          */
5881         if (reply_queue == DEFAULT_REPLY_QUEUE) {
5882                 first_queue = 0;
5883                 last_queue = h->nreply_queues - 1;
5884         } else {
5885                 first_queue = reply_queue;
5886                 last_queue = reply_queue;
5887         }
5888
5889         for (rq = first_queue; rq <= last_queue; rq++) {
5890                 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5891                 if (rc)
5892                         break;
5893         }
5894
5895         if (rc)
5896                 dev_warn(&h->pdev->dev, "giving up on device.\n");
5897         else
5898                 dev_warn(&h->pdev->dev, "device is ready.\n");
5899
5900         cmd_free(h, c);
5901         return rc;
5902 }
5903
5904 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5905  * complaining.  Doing a host- or bus-reset can't do anything good here.
5906  */
5907 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5908 {
5909         int rc = SUCCESS;
5910         struct ctlr_info *h;
5911         struct hpsa_scsi_dev_t *dev;
5912         u8 reset_type;
5913         char msg[48];
5914         unsigned long flags;
5915
5916         /* find the controller to which the command to be aborted was sent */
5917         h = sdev_to_hba(scsicmd->device);
5918         if (h == NULL) /* paranoia */
5919                 return FAILED;
5920
5921         spin_lock_irqsave(&h->reset_lock, flags);
5922         h->reset_in_progress = 1;
5923         spin_unlock_irqrestore(&h->reset_lock, flags);
5924
5925         if (lockup_detected(h)) {
5926                 rc = FAILED;
5927                 goto return_reset_status;
5928         }
5929
5930         dev = scsicmd->device->hostdata;
5931         if (!dev) {
5932                 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5933                 rc = FAILED;
5934                 goto return_reset_status;
5935         }
5936
5937         if (dev->devtype == TYPE_ENCLOSURE) {
5938                 rc = SUCCESS;
5939                 goto return_reset_status;
5940         }
5941
5942         /* if controller locked up, we can guarantee command won't complete */
5943         if (lockup_detected(h)) {
5944                 snprintf(msg, sizeof(msg),
5945                          "cmd %d RESET FAILED, lockup detected",
5946                          hpsa_get_cmd_index(scsicmd));
5947                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5948                 rc = FAILED;
5949                 goto return_reset_status;
5950         }
5951
5952         /* this reset request might be the result of a lockup; check */
5953         if (detect_controller_lockup(h)) {
5954                 snprintf(msg, sizeof(msg),
5955                          "cmd %d RESET FAILED, new lockup detected",
5956                          hpsa_get_cmd_index(scsicmd));
5957                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5958                 rc = FAILED;
5959                 goto return_reset_status;
5960         }
5961
5962         /* Do not attempt on controller */
5963         if (is_hba_lunid(dev->scsi3addr)) {
5964                 rc = SUCCESS;
5965                 goto return_reset_status;
5966         }
5967
5968         if (is_logical_dev_addr_mode(dev->scsi3addr))
5969                 reset_type = HPSA_DEVICE_RESET_MSG;
5970         else
5971                 reset_type = HPSA_PHYS_TARGET_RESET;
5972
5973         sprintf(msg, "resetting %s",
5974                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5975         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5976
5977         /* send a reset to the SCSI LUN which the command was sent to */
5978         rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5979                            DEFAULT_REPLY_QUEUE);
5980         if (rc == 0)
5981                 rc = SUCCESS;
5982         else
5983                 rc = FAILED;
5984
5985         sprintf(msg, "reset %s %s",
5986                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5987                 rc == SUCCESS ? "completed successfully" : "failed");
5988         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5989
5990 return_reset_status:
5991         spin_lock_irqsave(&h->reset_lock, flags);
5992         h->reset_in_progress = 0;
5993         spin_unlock_irqrestore(&h->reset_lock, flags);
5994         return rc;
5995 }
5996
5997 /*
5998  * For operations with an associated SCSI command, a command block is allocated
5999  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6000  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6001  * the complement, although cmd_free() may be called instead.
6002  */
6003 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6004                                             struct scsi_cmnd *scmd)
6005 {
6006         int idx = hpsa_get_cmd_index(scmd);
6007         struct CommandList *c = h->cmd_pool + idx;
6008
6009         if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6010                 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6011                         idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6012                 /* The index value comes from the block layer, so if it's out of
6013                  * bounds, it's probably not our bug.
6014                  */
6015                 BUG();
6016         }
6017
6018         atomic_inc(&c->refcount);
6019         if (unlikely(!hpsa_is_cmd_idle(c))) {
6020                 /*
6021                  * We expect that the SCSI layer will hand us a unique tag
6022                  * value.  Thus, there should never be a collision here between
6023                  * two requests...because if the selected command isn't idle
6024                  * then someone is going to be very disappointed.
6025                  */
6026                 dev_err(&h->pdev->dev,
6027                         "tag collision (tag=%d) in cmd_tagged_alloc().\n",
6028                         idx);
6029                 if (c->scsi_cmd != NULL)
6030                         scsi_print_command(c->scsi_cmd);
6031                 scsi_print_command(scmd);
6032         }
6033
6034         hpsa_cmd_partial_init(h, idx, c);
6035         return c;
6036 }
6037
6038 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6039 {
6040         /*
6041          * Release our reference to the block.  We don't need to do anything
6042          * else to free it, because it is accessed by index.
6043          */
6044         (void)atomic_dec(&c->refcount);
6045 }
6046
6047 /*
6048  * For operations that cannot sleep, a command block is allocated at init,
6049  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6050  * which ones are free or in use.  Lock must be held when calling this.
6051  * cmd_free() is the complement.
6052  * This function never gives up and returns NULL.  If it hangs,
6053  * another thread must call cmd_free() to free some tags.
6054  */
6055
6056 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6057 {
6058         struct CommandList *c;
6059         int refcount, i;
6060         int offset = 0;
6061
6062         /*
6063          * There is some *extremely* small but non-zero chance that that
6064          * multiple threads could get in here, and one thread could
6065          * be scanning through the list of bits looking for a free
6066          * one, but the free ones are always behind him, and other
6067          * threads sneak in behind him and eat them before he can
6068          * get to them, so that while there is always a free one, a
6069          * very unlucky thread might be starved anyway, never able to
6070          * beat the other threads.  In reality, this happens so
6071          * infrequently as to be indistinguishable from never.
6072          *
6073          * Note that we start allocating commands before the SCSI host structure
6074          * is initialized.  Since the search starts at bit zero, this
6075          * all works, since we have at least one command structure available;
6076          * however, it means that the structures with the low indexes have to be
6077          * reserved for driver-initiated requests, while requests from the block
6078          * layer will use the higher indexes.
6079          */
6080
6081         for (;;) {
6082                 i = find_next_zero_bit(h->cmd_pool_bits,
6083                                         HPSA_NRESERVED_CMDS,
6084                                         offset);
6085                 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6086                         offset = 0;
6087                         continue;
6088                 }
6089                 c = h->cmd_pool + i;
6090                 refcount = atomic_inc_return(&c->refcount);
6091                 if (unlikely(refcount > 1)) {
6092                         cmd_free(h, c); /* already in use */
6093                         offset = (i + 1) % HPSA_NRESERVED_CMDS;
6094                         continue;
6095                 }
6096                 set_bit(i & (BITS_PER_LONG - 1),
6097                         h->cmd_pool_bits + (i / BITS_PER_LONG));
6098                 break; /* it's ours now. */
6099         }
6100         hpsa_cmd_partial_init(h, i, c);
6101         return c;
6102 }
6103
6104 /*
6105  * This is the complementary operation to cmd_alloc().  Note, however, in some
6106  * corner cases it may also be used to free blocks allocated by
6107  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6108  * the clear-bit is harmless.
6109  */
6110 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6111 {
6112         if (atomic_dec_and_test(&c->refcount)) {
6113                 int i;
6114
6115                 i = c - h->cmd_pool;
6116                 clear_bit(i & (BITS_PER_LONG - 1),
6117                           h->cmd_pool_bits + (i / BITS_PER_LONG));
6118         }
6119 }
6120
6121 #ifdef CONFIG_COMPAT
6122
6123 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
6124         void __user *arg)
6125 {
6126         IOCTL32_Command_struct __user *arg32 =
6127             (IOCTL32_Command_struct __user *) arg;
6128         IOCTL_Command_struct arg64;
6129         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6130         int err;
6131         u32 cp;
6132
6133         memset(&arg64, 0, sizeof(arg64));
6134         err = 0;
6135         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6136                            sizeof(arg64.LUN_info));
6137         err |= copy_from_user(&arg64.Request, &arg32->Request,
6138                            sizeof(arg64.Request));
6139         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6140                            sizeof(arg64.error_info));
6141         err |= get_user(arg64.buf_size, &arg32->buf_size);
6142         err |= get_user(cp, &arg32->buf);
6143         arg64.buf = compat_ptr(cp);
6144         err |= copy_to_user(p, &arg64, sizeof(arg64));
6145
6146         if (err)
6147                 return -EFAULT;
6148
6149         err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6150         if (err)
6151                 return err;
6152         err |= copy_in_user(&arg32->error_info, &p->error_info,
6153                          sizeof(arg32->error_info));
6154         if (err)
6155                 return -EFAULT;
6156         return err;
6157 }
6158
6159 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6160         int cmd, void __user *arg)
6161 {
6162         BIG_IOCTL32_Command_struct __user *arg32 =
6163             (BIG_IOCTL32_Command_struct __user *) arg;
6164         BIG_IOCTL_Command_struct arg64;
6165         BIG_IOCTL_Command_struct __user *p =
6166             compat_alloc_user_space(sizeof(arg64));
6167         int err;
6168         u32 cp;
6169
6170         memset(&arg64, 0, sizeof(arg64));
6171         err = 0;
6172         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6173                            sizeof(arg64.LUN_info));
6174         err |= copy_from_user(&arg64.Request, &arg32->Request,
6175                            sizeof(arg64.Request));
6176         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6177                            sizeof(arg64.error_info));
6178         err |= get_user(arg64.buf_size, &arg32->buf_size);
6179         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6180         err |= get_user(cp, &arg32->buf);
6181         arg64.buf = compat_ptr(cp);
6182         err |= copy_to_user(p, &arg64, sizeof(arg64));
6183
6184         if (err)
6185                 return -EFAULT;
6186
6187         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6188         if (err)
6189                 return err;
6190         err |= copy_in_user(&arg32->error_info, &p->error_info,
6191                          sizeof(arg32->error_info));
6192         if (err)
6193                 return -EFAULT;
6194         return err;
6195 }
6196
6197 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6198 {
6199         switch (cmd) {
6200         case CCISS_GETPCIINFO:
6201         case CCISS_GETINTINFO:
6202         case CCISS_SETINTINFO:
6203         case CCISS_GETNODENAME:
6204         case CCISS_SETNODENAME:
6205         case CCISS_GETHEARTBEAT:
6206         case CCISS_GETBUSTYPES:
6207         case CCISS_GETFIRMVER:
6208         case CCISS_GETDRIVVER:
6209         case CCISS_REVALIDVOLS:
6210         case CCISS_DEREGDISK:
6211         case CCISS_REGNEWDISK:
6212         case CCISS_REGNEWD:
6213         case CCISS_RESCANDISK:
6214         case CCISS_GETLUNINFO:
6215                 return hpsa_ioctl(dev, cmd, arg);
6216
6217         case CCISS_PASSTHRU32:
6218                 return hpsa_ioctl32_passthru(dev, cmd, arg);
6219         case CCISS_BIG_PASSTHRU32:
6220                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6221
6222         default:
6223                 return -ENOIOCTLCMD;
6224         }
6225 }
6226 #endif
6227
6228 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6229 {
6230         struct hpsa_pci_info pciinfo;
6231
6232         if (!argp)
6233                 return -EINVAL;
6234         pciinfo.domain = pci_domain_nr(h->pdev->bus);
6235         pciinfo.bus = h->pdev->bus->number;
6236         pciinfo.dev_fn = h->pdev->devfn;
6237         pciinfo.board_id = h->board_id;
6238         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6239                 return -EFAULT;
6240         return 0;
6241 }
6242
6243 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6244 {
6245         DriverVer_type DriverVer;
6246         unsigned char vmaj, vmin, vsubmin;
6247         int rc;
6248
6249         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6250                 &vmaj, &vmin, &vsubmin);
6251         if (rc != 3) {
6252                 dev_info(&h->pdev->dev, "driver version string '%s' "
6253                         "unrecognized.", HPSA_DRIVER_VERSION);
6254                 vmaj = 0;
6255                 vmin = 0;
6256                 vsubmin = 0;
6257         }
6258         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6259         if (!argp)
6260                 return -EINVAL;
6261         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6262                 return -EFAULT;
6263         return 0;
6264 }
6265
6266 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6267 {
6268         IOCTL_Command_struct iocommand;
6269         struct CommandList *c;
6270         char *buff = NULL;
6271         u64 temp64;
6272         int rc = 0;
6273
6274         if (!argp)
6275                 return -EINVAL;
6276         if (!capable(CAP_SYS_RAWIO))
6277                 return -EPERM;
6278         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6279                 return -EFAULT;
6280         if ((iocommand.buf_size < 1) &&
6281             (iocommand.Request.Type.Direction != XFER_NONE)) {
6282                 return -EINVAL;
6283         }
6284         if (iocommand.buf_size > 0) {
6285                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6286                 if (buff == NULL)
6287                         return -ENOMEM;
6288                 if (iocommand.Request.Type.Direction & XFER_WRITE) {
6289                         /* Copy the data into the buffer we created */
6290                         if (copy_from_user(buff, iocommand.buf,
6291                                 iocommand.buf_size)) {
6292                                 rc = -EFAULT;
6293                                 goto out_kfree;
6294                         }
6295                 } else {
6296                         memset(buff, 0, iocommand.buf_size);
6297                 }
6298         }
6299         c = cmd_alloc(h);
6300
6301         /* Fill in the command type */
6302         c->cmd_type = CMD_IOCTL_PEND;
6303         c->scsi_cmd = SCSI_CMD_BUSY;
6304         /* Fill in Command Header */
6305         c->Header.ReplyQueue = 0; /* unused in simple mode */
6306         if (iocommand.buf_size > 0) {   /* buffer to fill */
6307                 c->Header.SGList = 1;
6308                 c->Header.SGTotal = cpu_to_le16(1);
6309         } else  { /* no buffers to fill */
6310                 c->Header.SGList = 0;
6311                 c->Header.SGTotal = cpu_to_le16(0);
6312         }
6313         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6314
6315         /* Fill in Request block */
6316         memcpy(&c->Request, &iocommand.Request,
6317                 sizeof(c->Request));
6318
6319         /* Fill in the scatter gather information */
6320         if (iocommand.buf_size > 0) {
6321                 temp64 = pci_map_single(h->pdev, buff,
6322                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
6323                 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6324                         c->SG[0].Addr = cpu_to_le64(0);
6325                         c->SG[0].Len = cpu_to_le32(0);
6326                         rc = -ENOMEM;
6327                         goto out;
6328                 }
6329                 c->SG[0].Addr = cpu_to_le64(temp64);
6330                 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6331                 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6332         }
6333         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6334                                         NO_TIMEOUT);
6335         if (iocommand.buf_size > 0)
6336                 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
6337         check_ioctl_unit_attention(h, c);
6338         if (rc) {
6339                 rc = -EIO;
6340                 goto out;
6341         }
6342
6343         /* Copy the error information out */
6344         memcpy(&iocommand.error_info, c->err_info,
6345                 sizeof(iocommand.error_info));
6346         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6347                 rc = -EFAULT;
6348                 goto out;
6349         }
6350         if ((iocommand.Request.Type.Direction & XFER_READ) &&
6351                 iocommand.buf_size > 0) {
6352                 /* Copy the data out of the buffer we created */
6353                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6354                         rc = -EFAULT;
6355                         goto out;
6356                 }
6357         }
6358 out:
6359         cmd_free(h, c);
6360 out_kfree:
6361         kfree(buff);
6362         return rc;
6363 }
6364
6365 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6366 {
6367         BIG_IOCTL_Command_struct *ioc;
6368         struct CommandList *c;
6369         unsigned char **buff = NULL;
6370         int *buff_size = NULL;
6371         u64 temp64;
6372         BYTE sg_used = 0;
6373         int status = 0;
6374         u32 left;
6375         u32 sz;
6376         BYTE __user *data_ptr;
6377
6378         if (!argp)
6379                 return -EINVAL;
6380         if (!capable(CAP_SYS_RAWIO))
6381                 return -EPERM;
6382         ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
6383         if (!ioc) {
6384                 status = -ENOMEM;
6385                 goto cleanup1;
6386         }
6387         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6388                 status = -EFAULT;
6389                 goto cleanup1;
6390         }
6391         if ((ioc->buf_size < 1) &&
6392             (ioc->Request.Type.Direction != XFER_NONE)) {
6393                 status = -EINVAL;
6394                 goto cleanup1;
6395         }
6396         /* Check kmalloc limits  using all SGs */
6397         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6398                 status = -EINVAL;
6399                 goto cleanup1;
6400         }
6401         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6402                 status = -EINVAL;
6403                 goto cleanup1;
6404         }
6405         buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
6406         if (!buff) {
6407                 status = -ENOMEM;
6408                 goto cleanup1;
6409         }
6410         buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
6411         if (!buff_size) {
6412                 status = -ENOMEM;
6413                 goto cleanup1;
6414         }
6415         left = ioc->buf_size;
6416         data_ptr = ioc->buf;
6417         while (left) {
6418                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6419                 buff_size[sg_used] = sz;
6420                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6421                 if (buff[sg_used] == NULL) {
6422                         status = -ENOMEM;
6423                         goto cleanup1;
6424                 }
6425                 if (ioc->Request.Type.Direction & XFER_WRITE) {
6426                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6427                                 status = -EFAULT;
6428                                 goto cleanup1;
6429                         }
6430                 } else
6431                         memset(buff[sg_used], 0, sz);
6432                 left -= sz;
6433                 data_ptr += sz;
6434                 sg_used++;
6435         }
6436         c = cmd_alloc(h);
6437
6438         c->cmd_type = CMD_IOCTL_PEND;
6439         c->scsi_cmd = SCSI_CMD_BUSY;
6440         c->Header.ReplyQueue = 0;
6441         c->Header.SGList = (u8) sg_used;
6442         c->Header.SGTotal = cpu_to_le16(sg_used);
6443         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6444         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6445         if (ioc->buf_size > 0) {
6446                 int i;
6447                 for (i = 0; i < sg_used; i++) {
6448                         temp64 = pci_map_single(h->pdev, buff[i],
6449                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
6450                         if (dma_mapping_error(&h->pdev->dev,
6451                                                         (dma_addr_t) temp64)) {
6452                                 c->SG[i].Addr = cpu_to_le64(0);
6453                                 c->SG[i].Len = cpu_to_le32(0);
6454                                 hpsa_pci_unmap(h->pdev, c, i,
6455                                         PCI_DMA_BIDIRECTIONAL);
6456                                 status = -ENOMEM;
6457                                 goto cleanup0;
6458                         }
6459                         c->SG[i].Addr = cpu_to_le64(temp64);
6460                         c->SG[i].Len = cpu_to_le32(buff_size[i]);
6461                         c->SG[i].Ext = cpu_to_le32(0);
6462                 }
6463                 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6464         }
6465         status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6466                                                 NO_TIMEOUT);
6467         if (sg_used)
6468                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6469         check_ioctl_unit_attention(h, c);
6470         if (status) {
6471                 status = -EIO;
6472                 goto cleanup0;
6473         }
6474
6475         /* Copy the error information out */
6476         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6477         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6478                 status = -EFAULT;
6479                 goto cleanup0;
6480         }
6481         if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6482                 int i;
6483
6484                 /* Copy the data out of the buffer we created */
6485                 BYTE __user *ptr = ioc->buf;
6486                 for (i = 0; i < sg_used; i++) {
6487                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
6488                                 status = -EFAULT;
6489                                 goto cleanup0;
6490                         }
6491                         ptr += buff_size[i];
6492                 }
6493         }
6494         status = 0;
6495 cleanup0:
6496         cmd_free(h, c);
6497 cleanup1:
6498         if (buff) {
6499                 int i;
6500
6501                 for (i = 0; i < sg_used; i++)
6502                         kfree(buff[i]);
6503                 kfree(buff);
6504         }
6505         kfree(buff_size);
6506         kfree(ioc);
6507         return status;
6508 }
6509
6510 static void check_ioctl_unit_attention(struct ctlr_info *h,
6511         struct CommandList *c)
6512 {
6513         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6514                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6515                 (void) check_for_unit_attention(h, c);
6516 }
6517
6518 /*
6519  * ioctl
6520  */
6521 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6522 {
6523         struct ctlr_info *h;
6524         void __user *argp = (void __user *)arg;
6525         int rc;
6526
6527         h = sdev_to_hba(dev);
6528
6529         switch (cmd) {
6530         case CCISS_DEREGDISK:
6531         case CCISS_REGNEWDISK:
6532         case CCISS_REGNEWD:
6533                 hpsa_scan_start(h->scsi_host);
6534                 return 0;
6535         case CCISS_GETPCIINFO:
6536                 return hpsa_getpciinfo_ioctl(h, argp);
6537         case CCISS_GETDRIVVER:
6538                 return hpsa_getdrivver_ioctl(h, argp);
6539         case CCISS_PASSTHRU:
6540                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6541                         return -EAGAIN;
6542                 rc = hpsa_passthru_ioctl(h, argp);
6543                 atomic_inc(&h->passthru_cmds_avail);
6544                 return rc;
6545         case CCISS_BIG_PASSTHRU:
6546                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6547                         return -EAGAIN;
6548                 rc = hpsa_big_passthru_ioctl(h, argp);
6549                 atomic_inc(&h->passthru_cmds_avail);
6550                 return rc;
6551         default:
6552                 return -ENOTTY;
6553         }
6554 }
6555
6556 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6557                                 u8 reset_type)
6558 {
6559         struct CommandList *c;
6560
6561         c = cmd_alloc(h);
6562
6563         /* fill_cmd can't fail here, no data buffer to map */
6564         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6565                 RAID_CTLR_LUNID, TYPE_MSG);
6566         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6567         c->waiting = NULL;
6568         enqueue_cmd_and_start_io(h, c);
6569         /* Don't wait for completion, the reset won't complete.  Don't free
6570          * the command either.  This is the last command we will send before
6571          * re-initializing everything, so it doesn't matter and won't leak.
6572          */
6573         return;
6574 }
6575
6576 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6577         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6578         int cmd_type)
6579 {
6580         int pci_dir = XFER_NONE;
6581
6582         c->cmd_type = CMD_IOCTL_PEND;
6583         c->scsi_cmd = SCSI_CMD_BUSY;
6584         c->Header.ReplyQueue = 0;
6585         if (buff != NULL && size > 0) {
6586                 c->Header.SGList = 1;
6587                 c->Header.SGTotal = cpu_to_le16(1);
6588         } else {
6589                 c->Header.SGList = 0;
6590                 c->Header.SGTotal = cpu_to_le16(0);
6591         }
6592         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6593
6594         if (cmd_type == TYPE_CMD) {
6595                 switch (cmd) {
6596                 case HPSA_INQUIRY:
6597                         /* are we trying to read a vital product page */
6598                         if (page_code & VPD_PAGE) {
6599                                 c->Request.CDB[1] = 0x01;
6600                                 c->Request.CDB[2] = (page_code & 0xff);
6601                         }
6602                         c->Request.CDBLen = 6;
6603                         c->Request.type_attr_dir =
6604                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6605                         c->Request.Timeout = 0;
6606                         c->Request.CDB[0] = HPSA_INQUIRY;
6607                         c->Request.CDB[4] = size & 0xFF;
6608                         break;
6609                 case RECEIVE_DIAGNOSTIC:
6610                         c->Request.CDBLen = 6;
6611                         c->Request.type_attr_dir =
6612                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6613                         c->Request.Timeout = 0;
6614                         c->Request.CDB[0] = cmd;
6615                         c->Request.CDB[1] = 1;
6616                         c->Request.CDB[2] = 1;
6617                         c->Request.CDB[3] = (size >> 8) & 0xFF;
6618                         c->Request.CDB[4] = size & 0xFF;
6619                         break;
6620                 case HPSA_REPORT_LOG:
6621                 case HPSA_REPORT_PHYS:
6622                         /* Talking to controller so It's a physical command
6623                            mode = 00 target = 0.  Nothing to write.
6624                          */
6625                         c->Request.CDBLen = 12;
6626                         c->Request.type_attr_dir =
6627                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6628                         c->Request.Timeout = 0;
6629                         c->Request.CDB[0] = cmd;
6630                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6631                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6632                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6633                         c->Request.CDB[9] = size & 0xFF;
6634                         break;
6635                 case BMIC_SENSE_DIAG_OPTIONS:
6636                         c->Request.CDBLen = 16;
6637                         c->Request.type_attr_dir =
6638                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6639                         c->Request.Timeout = 0;
6640                         /* Spec says this should be BMIC_WRITE */
6641                         c->Request.CDB[0] = BMIC_READ;
6642                         c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6643                         break;
6644                 case BMIC_SET_DIAG_OPTIONS:
6645                         c->Request.CDBLen = 16;
6646                         c->Request.type_attr_dir =
6647                                         TYPE_ATTR_DIR(cmd_type,
6648                                                 ATTR_SIMPLE, XFER_WRITE);
6649                         c->Request.Timeout = 0;
6650                         c->Request.CDB[0] = BMIC_WRITE;
6651                         c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6652                         break;
6653                 case HPSA_CACHE_FLUSH:
6654                         c->Request.CDBLen = 12;
6655                         c->Request.type_attr_dir =
6656                                         TYPE_ATTR_DIR(cmd_type,
6657                                                 ATTR_SIMPLE, XFER_WRITE);
6658                         c->Request.Timeout = 0;
6659                         c->Request.CDB[0] = BMIC_WRITE;
6660                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6661                         c->Request.CDB[7] = (size >> 8) & 0xFF;
6662                         c->Request.CDB[8] = size & 0xFF;
6663                         break;
6664                 case TEST_UNIT_READY:
6665                         c->Request.CDBLen = 6;
6666                         c->Request.type_attr_dir =
6667                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6668                         c->Request.Timeout = 0;
6669                         break;
6670                 case HPSA_GET_RAID_MAP:
6671                         c->Request.CDBLen = 12;
6672                         c->Request.type_attr_dir =
6673                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6674                         c->Request.Timeout = 0;
6675                         c->Request.CDB[0] = HPSA_CISS_READ;
6676                         c->Request.CDB[1] = cmd;
6677                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6678                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6679                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6680                         c->Request.CDB[9] = size & 0xFF;
6681                         break;
6682                 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6683                         c->Request.CDBLen = 10;
6684                         c->Request.type_attr_dir =
6685                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6686                         c->Request.Timeout = 0;
6687                         c->Request.CDB[0] = BMIC_READ;
6688                         c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6689                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6690                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6691                         break;
6692                 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6693                         c->Request.CDBLen = 10;
6694                         c->Request.type_attr_dir =
6695                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6696                         c->Request.Timeout = 0;
6697                         c->Request.CDB[0] = BMIC_READ;
6698                         c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6699                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6700                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6701                         break;
6702                 case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6703                         c->Request.CDBLen = 10;
6704                         c->Request.type_attr_dir =
6705                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6706                         c->Request.Timeout = 0;
6707                         c->Request.CDB[0] = BMIC_READ;
6708                         c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6709                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6710                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6711                         break;
6712                 case BMIC_SENSE_STORAGE_BOX_PARAMS:
6713                         c->Request.CDBLen = 10;
6714                         c->Request.type_attr_dir =
6715                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6716                         c->Request.Timeout = 0;
6717                         c->Request.CDB[0] = BMIC_READ;
6718                         c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6719                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6720                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6721                         break;
6722                 case BMIC_IDENTIFY_CONTROLLER:
6723                         c->Request.CDBLen = 10;
6724                         c->Request.type_attr_dir =
6725                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6726                         c->Request.Timeout = 0;
6727                         c->Request.CDB[0] = BMIC_READ;
6728                         c->Request.CDB[1] = 0;
6729                         c->Request.CDB[2] = 0;
6730                         c->Request.CDB[3] = 0;
6731                         c->Request.CDB[4] = 0;
6732                         c->Request.CDB[5] = 0;
6733                         c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6734                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6735                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6736                         c->Request.CDB[9] = 0;
6737                         break;
6738                 default:
6739                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6740                         BUG();
6741                 }
6742         } else if (cmd_type == TYPE_MSG) {
6743                 switch (cmd) {
6744
6745                 case  HPSA_PHYS_TARGET_RESET:
6746                         c->Request.CDBLen = 16;
6747                         c->Request.type_attr_dir =
6748                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6749                         c->Request.Timeout = 0; /* Don't time out */
6750                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6751                         c->Request.CDB[0] = HPSA_RESET;
6752                         c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6753                         /* Physical target reset needs no control bytes 4-7*/
6754                         c->Request.CDB[4] = 0x00;
6755                         c->Request.CDB[5] = 0x00;
6756                         c->Request.CDB[6] = 0x00;
6757                         c->Request.CDB[7] = 0x00;
6758                         break;
6759                 case  HPSA_DEVICE_RESET_MSG:
6760                         c->Request.CDBLen = 16;
6761                         c->Request.type_attr_dir =
6762                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6763                         c->Request.Timeout = 0; /* Don't time out */
6764                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6765                         c->Request.CDB[0] =  cmd;
6766                         c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6767                         /* If bytes 4-7 are zero, it means reset the */
6768                         /* LunID device */
6769                         c->Request.CDB[4] = 0x00;
6770                         c->Request.CDB[5] = 0x00;
6771                         c->Request.CDB[6] = 0x00;
6772                         c->Request.CDB[7] = 0x00;
6773                         break;
6774                 default:
6775                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
6776                                 cmd);
6777                         BUG();
6778                 }
6779         } else {
6780                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6781                 BUG();
6782         }
6783
6784         switch (GET_DIR(c->Request.type_attr_dir)) {
6785         case XFER_READ:
6786                 pci_dir = PCI_DMA_FROMDEVICE;
6787                 break;
6788         case XFER_WRITE:
6789                 pci_dir = PCI_DMA_TODEVICE;
6790                 break;
6791         case XFER_NONE:
6792                 pci_dir = PCI_DMA_NONE;
6793                 break;
6794         default:
6795                 pci_dir = PCI_DMA_BIDIRECTIONAL;
6796         }
6797         if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
6798                 return -1;
6799         return 0;
6800 }
6801
6802 /*
6803  * Map (physical) PCI mem into (virtual) kernel space
6804  */
6805 static void __iomem *remap_pci_mem(ulong base, ulong size)
6806 {
6807         ulong page_base = ((ulong) base) & PAGE_MASK;
6808         ulong page_offs = ((ulong) base) - page_base;
6809         void __iomem *page_remapped = ioremap_nocache(page_base,
6810                 page_offs + size);
6811
6812         return page_remapped ? (page_remapped + page_offs) : NULL;
6813 }
6814
6815 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6816 {
6817         return h->access.command_completed(h, q);
6818 }
6819
6820 static inline bool interrupt_pending(struct ctlr_info *h)
6821 {
6822         return h->access.intr_pending(h);
6823 }
6824
6825 static inline long interrupt_not_for_us(struct ctlr_info *h)
6826 {
6827         return (h->access.intr_pending(h) == 0) ||
6828                 (h->interrupts_enabled == 0);
6829 }
6830
6831 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6832         u32 raw_tag)
6833 {
6834         if (unlikely(tag_index >= h->nr_cmds)) {
6835                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6836                 return 1;
6837         }
6838         return 0;
6839 }
6840
6841 static inline void finish_cmd(struct CommandList *c)
6842 {
6843         dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6844         if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6845                         || c->cmd_type == CMD_IOACCEL2))
6846                 complete_scsi_command(c);
6847         else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6848                 complete(c->waiting);
6849 }
6850
6851 /* process completion of an indexed ("direct lookup") command */
6852 static inline void process_indexed_cmd(struct ctlr_info *h,
6853         u32 raw_tag)
6854 {
6855         u32 tag_index;
6856         struct CommandList *c;
6857
6858         tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6859         if (!bad_tag(h, tag_index, raw_tag)) {
6860                 c = h->cmd_pool + tag_index;
6861                 finish_cmd(c);
6862         }
6863 }
6864
6865 /* Some controllers, like p400, will give us one interrupt
6866  * after a soft reset, even if we turned interrupts off.
6867  * Only need to check for this in the hpsa_xxx_discard_completions
6868  * functions.
6869  */
6870 static int ignore_bogus_interrupt(struct ctlr_info *h)
6871 {
6872         if (likely(!reset_devices))
6873                 return 0;
6874
6875         if (likely(h->interrupts_enabled))
6876                 return 0;
6877
6878         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6879                 "(known firmware bug.)  Ignoring.\n");
6880
6881         return 1;
6882 }
6883
6884 /*
6885  * Convert &h->q[x] (passed to interrupt handlers) back to h.
6886  * Relies on (h-q[x] == x) being true for x such that
6887  * 0 <= x < MAX_REPLY_QUEUES.
6888  */
6889 static struct ctlr_info *queue_to_hba(u8 *queue)
6890 {
6891         return container_of((queue - *queue), struct ctlr_info, q[0]);
6892 }
6893
6894 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6895 {
6896         struct ctlr_info *h = queue_to_hba(queue);
6897         u8 q = *(u8 *) queue;
6898         u32 raw_tag;
6899
6900         if (ignore_bogus_interrupt(h))
6901                 return IRQ_NONE;
6902
6903         if (interrupt_not_for_us(h))
6904                 return IRQ_NONE;
6905         h->last_intr_timestamp = get_jiffies_64();
6906         while (interrupt_pending(h)) {
6907                 raw_tag = get_next_completion(h, q);
6908                 while (raw_tag != FIFO_EMPTY)
6909                         raw_tag = next_command(h, q);
6910         }
6911         return IRQ_HANDLED;
6912 }
6913
6914 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6915 {
6916         struct ctlr_info *h = queue_to_hba(queue);
6917         u32 raw_tag;
6918         u8 q = *(u8 *) queue;
6919
6920         if (ignore_bogus_interrupt(h))
6921                 return IRQ_NONE;
6922
6923         h->last_intr_timestamp = get_jiffies_64();
6924         raw_tag = get_next_completion(h, q);
6925         while (raw_tag != FIFO_EMPTY)
6926                 raw_tag = next_command(h, q);
6927         return IRQ_HANDLED;
6928 }
6929
6930 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6931 {
6932         struct ctlr_info *h = queue_to_hba((u8 *) queue);
6933         u32 raw_tag;
6934         u8 q = *(u8 *) queue;
6935
6936         if (interrupt_not_for_us(h))
6937                 return IRQ_NONE;
6938         h->last_intr_timestamp = get_jiffies_64();
6939         while (interrupt_pending(h)) {
6940                 raw_tag = get_next_completion(h, q);
6941                 while (raw_tag != FIFO_EMPTY) {
6942                         process_indexed_cmd(h, raw_tag);
6943                         raw_tag = next_command(h, q);
6944                 }
6945         }
6946         return IRQ_HANDLED;
6947 }
6948
6949 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
6950 {
6951         struct ctlr_info *h = queue_to_hba(queue);
6952         u32 raw_tag;
6953         u8 q = *(u8 *) queue;
6954
6955         h->last_intr_timestamp = get_jiffies_64();
6956         raw_tag = get_next_completion(h, q);
6957         while (raw_tag != FIFO_EMPTY) {
6958                 process_indexed_cmd(h, raw_tag);
6959                 raw_tag = next_command(h, q);
6960         }
6961         return IRQ_HANDLED;
6962 }
6963
6964 /* Send a message CDB to the firmware. Careful, this only works
6965  * in simple mode, not performant mode due to the tag lookup.
6966  * We only ever use this immediately after a controller reset.
6967  */
6968 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
6969                         unsigned char type)
6970 {
6971         struct Command {
6972                 struct CommandListHeader CommandHeader;
6973                 struct RequestBlock Request;
6974                 struct ErrDescriptor ErrorDescriptor;
6975         };
6976         struct Command *cmd;
6977         static const size_t cmd_sz = sizeof(*cmd) +
6978                                         sizeof(cmd->ErrorDescriptor);
6979         dma_addr_t paddr64;
6980         __le32 paddr32;
6981         u32 tag;
6982         void __iomem *vaddr;
6983         int i, err;
6984
6985         vaddr = pci_ioremap_bar(pdev, 0);
6986         if (vaddr == NULL)
6987                 return -ENOMEM;
6988
6989         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
6990          * CCISS commands, so they must be allocated from the lower 4GiB of
6991          * memory.
6992          */
6993         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
6994         if (err) {
6995                 iounmap(vaddr);
6996                 return err;
6997         }
6998
6999         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
7000         if (cmd == NULL) {
7001                 iounmap(vaddr);
7002                 return -ENOMEM;
7003         }
7004
7005         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
7006          * although there's no guarantee, we assume that the address is at
7007          * least 4-byte aligned (most likely, it's page-aligned).
7008          */
7009         paddr32 = cpu_to_le32(paddr64);
7010
7011         cmd->CommandHeader.ReplyQueue = 0;
7012         cmd->CommandHeader.SGList = 0;
7013         cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7014         cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7015         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7016
7017         cmd->Request.CDBLen = 16;
7018         cmd->Request.type_attr_dir =
7019                         TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7020         cmd->Request.Timeout = 0; /* Don't time out */
7021         cmd->Request.CDB[0] = opcode;
7022         cmd->Request.CDB[1] = type;
7023         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7024         cmd->ErrorDescriptor.Addr =
7025                         cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7026         cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7027
7028         writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7029
7030         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7031                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7032                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7033                         break;
7034                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7035         }
7036
7037         iounmap(vaddr);
7038
7039         /* we leak the DMA buffer here ... no choice since the controller could
7040          *  still complete the command.
7041          */
7042         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7043                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7044                         opcode, type);
7045                 return -ETIMEDOUT;
7046         }
7047
7048         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
7049
7050         if (tag & HPSA_ERROR_BIT) {
7051                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7052                         opcode, type);
7053                 return -EIO;
7054         }
7055
7056         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7057                 opcode, type);
7058         return 0;
7059 }
7060
7061 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7062
7063 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7064         void __iomem *vaddr, u32 use_doorbell)
7065 {
7066
7067         if (use_doorbell) {
7068                 /* For everything after the P600, the PCI power state method
7069                  * of resetting the controller doesn't work, so we have this
7070                  * other way using the doorbell register.
7071                  */
7072                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
7073                 writel(use_doorbell, vaddr + SA5_DOORBELL);
7074
7075                 /* PMC hardware guys tell us we need a 10 second delay after
7076                  * doorbell reset and before any attempt to talk to the board
7077                  * at all to ensure that this actually works and doesn't fall
7078                  * over in some weird corner cases.
7079                  */
7080                 msleep(10000);
7081         } else { /* Try to do it the PCI power state way */
7082
7083                 /* Quoting from the Open CISS Specification: "The Power
7084                  * Management Control/Status Register (CSR) controls the power
7085                  * state of the device.  The normal operating state is D0,
7086                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7087                  * the controller, place the interface device in D3 then to D0,
7088                  * this causes a secondary PCI reset which will reset the
7089                  * controller." */
7090
7091                 int rc = 0;
7092
7093                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7094
7095                 /* enter the D3hot power management state */
7096                 rc = pci_set_power_state(pdev, PCI_D3hot);
7097                 if (rc)
7098                         return rc;
7099
7100                 msleep(500);
7101
7102                 /* enter the D0 power management state */
7103                 rc = pci_set_power_state(pdev, PCI_D0);
7104                 if (rc)
7105                         return rc;
7106
7107                 /*
7108                  * The P600 requires a small delay when changing states.
7109                  * Otherwise we may think the board did not reset and we bail.
7110                  * This for kdump only and is particular to the P600.
7111                  */
7112                 msleep(500);
7113         }
7114         return 0;
7115 }
7116
7117 static void init_driver_version(char *driver_version, int len)
7118 {
7119         memset(driver_version, 0, len);
7120         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7121 }
7122
7123 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7124 {
7125         char *driver_version;
7126         int i, size = sizeof(cfgtable->driver_version);
7127
7128         driver_version = kmalloc(size, GFP_KERNEL);
7129         if (!driver_version)
7130                 return -ENOMEM;
7131
7132         init_driver_version(driver_version, size);
7133         for (i = 0; i < size; i++)
7134                 writeb(driver_version[i], &cfgtable->driver_version[i]);
7135         kfree(driver_version);
7136         return 0;
7137 }
7138
7139 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7140                                           unsigned char *driver_ver)
7141 {
7142         int i;
7143
7144         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7145                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
7146 }
7147
7148 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7149 {
7150
7151         char *driver_ver, *old_driver_ver;
7152         int rc, size = sizeof(cfgtable->driver_version);
7153
7154         old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
7155         if (!old_driver_ver)
7156                 return -ENOMEM;
7157         driver_ver = old_driver_ver + size;
7158
7159         /* After a reset, the 32 bytes of "driver version" in the cfgtable
7160          * should have been changed, otherwise we know the reset failed.
7161          */
7162         init_driver_version(old_driver_ver, size);
7163         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7164         rc = !memcmp(driver_ver, old_driver_ver, size);
7165         kfree(old_driver_ver);
7166         return rc;
7167 }
7168 /* This does a hard reset of the controller using PCI power management
7169  * states or the using the doorbell register.
7170  */
7171 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7172 {
7173         u64 cfg_offset;
7174         u32 cfg_base_addr;
7175         u64 cfg_base_addr_index;
7176         void __iomem *vaddr;
7177         unsigned long paddr;
7178         u32 misc_fw_support;
7179         int rc;
7180         struct CfgTable __iomem *cfgtable;
7181         u32 use_doorbell;
7182         u16 command_register;
7183
7184         /* For controllers as old as the P600, this is very nearly
7185          * the same thing as
7186          *
7187          * pci_save_state(pci_dev);
7188          * pci_set_power_state(pci_dev, PCI_D3hot);
7189          * pci_set_power_state(pci_dev, PCI_D0);
7190          * pci_restore_state(pci_dev);
7191          *
7192          * For controllers newer than the P600, the pci power state
7193          * method of resetting doesn't work so we have another way
7194          * using the doorbell register.
7195          */
7196
7197         if (!ctlr_is_resettable(board_id)) {
7198                 dev_warn(&pdev->dev, "Controller not resettable\n");
7199                 return -ENODEV;
7200         }
7201
7202         /* if controller is soft- but not hard resettable... */
7203         if (!ctlr_is_hard_resettable(board_id))
7204                 return -ENOTSUPP; /* try soft reset later. */
7205
7206         /* Save the PCI command register */
7207         pci_read_config_word(pdev, 4, &command_register);
7208         pci_save_state(pdev);
7209
7210         /* find the first memory BAR, so we can find the cfg table */
7211         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7212         if (rc)
7213                 return rc;
7214         vaddr = remap_pci_mem(paddr, 0x250);
7215         if (!vaddr)
7216                 return -ENOMEM;
7217
7218         /* find cfgtable in order to check if reset via doorbell is supported */
7219         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7220                                         &cfg_base_addr_index, &cfg_offset);
7221         if (rc)
7222                 goto unmap_vaddr;
7223         cfgtable = remap_pci_mem(pci_resource_start(pdev,
7224                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7225         if (!cfgtable) {
7226                 rc = -ENOMEM;
7227                 goto unmap_vaddr;
7228         }
7229         rc = write_driver_ver_to_cfgtable(cfgtable);
7230         if (rc)
7231                 goto unmap_cfgtable;
7232
7233         /* If reset via doorbell register is supported, use that.
7234          * There are two such methods.  Favor the newest method.
7235          */
7236         misc_fw_support = readl(&cfgtable->misc_fw_support);
7237         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7238         if (use_doorbell) {
7239                 use_doorbell = DOORBELL_CTLR_RESET2;
7240         } else {
7241                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7242                 if (use_doorbell) {
7243                         dev_warn(&pdev->dev,
7244                                 "Soft reset not supported. Firmware update is required.\n");
7245                         rc = -ENOTSUPP; /* try soft reset */
7246                         goto unmap_cfgtable;
7247                 }
7248         }
7249
7250         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7251         if (rc)
7252                 goto unmap_cfgtable;
7253
7254         pci_restore_state(pdev);
7255         pci_write_config_word(pdev, 4, command_register);
7256
7257         /* Some devices (notably the HP Smart Array 5i Controller)
7258            need a little pause here */
7259         msleep(HPSA_POST_RESET_PAUSE_MSECS);
7260
7261         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7262         if (rc) {
7263                 dev_warn(&pdev->dev,
7264                         "Failed waiting for board to become ready after hard reset\n");
7265                 goto unmap_cfgtable;
7266         }
7267
7268         rc = controller_reset_failed(vaddr);
7269         if (rc < 0)
7270                 goto unmap_cfgtable;
7271         if (rc) {
7272                 dev_warn(&pdev->dev, "Unable to successfully reset "
7273                         "controller. Will try soft reset.\n");
7274                 rc = -ENOTSUPP;
7275         } else {
7276                 dev_info(&pdev->dev, "board ready after hard reset.\n");
7277         }
7278
7279 unmap_cfgtable:
7280         iounmap(cfgtable);
7281
7282 unmap_vaddr:
7283         iounmap(vaddr);
7284         return rc;
7285 }
7286
7287 /*
7288  *  We cannot read the structure directly, for portability we must use
7289  *   the io functions.
7290  *   This is for debug only.
7291  */
7292 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7293 {
7294 #ifdef HPSA_DEBUG
7295         int i;
7296         char temp_name[17];
7297
7298         dev_info(dev, "Controller Configuration information\n");
7299         dev_info(dev, "------------------------------------\n");
7300         for (i = 0; i < 4; i++)
7301                 temp_name[i] = readb(&(tb->Signature[i]));
7302         temp_name[4] = '\0';
7303         dev_info(dev, "   Signature = %s\n", temp_name);
7304         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7305         dev_info(dev, "   Transport methods supported = 0x%x\n",
7306                readl(&(tb->TransportSupport)));
7307         dev_info(dev, "   Transport methods active = 0x%x\n",
7308                readl(&(tb->TransportActive)));
7309         dev_info(dev, "   Requested transport Method = 0x%x\n",
7310                readl(&(tb->HostWrite.TransportRequest)));
7311         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7312                readl(&(tb->HostWrite.CoalIntDelay)));
7313         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7314                readl(&(tb->HostWrite.CoalIntCount)));
7315         dev_info(dev, "   Max outstanding commands = %d\n",
7316                readl(&(tb->CmdsOutMax)));
7317         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7318         for (i = 0; i < 16; i++)
7319                 temp_name[i] = readb(&(tb->ServerName[i]));
7320         temp_name[16] = '\0';
7321         dev_info(dev, "   Server Name = %s\n", temp_name);
7322         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7323                 readl(&(tb->HeartBeat)));
7324 #endif                          /* HPSA_DEBUG */
7325 }
7326
7327 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7328 {
7329         int i, offset, mem_type, bar_type;
7330
7331         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7332                 return 0;
7333         offset = 0;
7334         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7335                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7336                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7337                         offset += 4;
7338                 else {
7339                         mem_type = pci_resource_flags(pdev, i) &
7340                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7341                         switch (mem_type) {
7342                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
7343                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7344                                 offset += 4;    /* 32 bit */
7345                                 break;
7346                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
7347                                 offset += 8;
7348                                 break;
7349                         default:        /* reserved in PCI 2.2 */
7350                                 dev_warn(&pdev->dev,
7351                                        "base address is invalid\n");
7352                                 return -1;
7353                                 break;
7354                         }
7355                 }
7356                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7357                         return i + 1;
7358         }
7359         return -1;
7360 }
7361
7362 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7363 {
7364         pci_free_irq_vectors(h->pdev);
7365         h->msix_vectors = 0;
7366 }
7367
7368 static void hpsa_setup_reply_map(struct ctlr_info *h)
7369 {
7370         const struct cpumask *mask;
7371         unsigned int queue, cpu;
7372
7373         for (queue = 0; queue < h->msix_vectors; queue++) {
7374                 mask = pci_irq_get_affinity(h->pdev, queue);
7375                 if (!mask)
7376                         goto fallback;
7377
7378                 for_each_cpu(cpu, mask)
7379                         h->reply_map[cpu] = queue;
7380         }
7381         return;
7382
7383 fallback:
7384         for_each_possible_cpu(cpu)
7385                 h->reply_map[cpu] = 0;
7386 }
7387
7388 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7389  * controllers that are capable. If not, we use legacy INTx mode.
7390  */
7391 static int hpsa_interrupt_mode(struct ctlr_info *h)
7392 {
7393         unsigned int flags = PCI_IRQ_LEGACY;
7394         int ret;
7395
7396         /* Some boards advertise MSI but don't really support it */
7397         switch (h->board_id) {
7398         case 0x40700E11:
7399         case 0x40800E11:
7400         case 0x40820E11:
7401         case 0x40830E11:
7402                 break;
7403         default:
7404                 ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7405                                 PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7406                 if (ret > 0) {
7407                         h->msix_vectors = ret;
7408                         return 0;
7409                 }
7410
7411                 flags |= PCI_IRQ_MSI;
7412                 break;
7413         }
7414
7415         ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7416         if (ret < 0)
7417                 return ret;
7418         return 0;
7419 }
7420
7421 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7422                                 bool *legacy_board)
7423 {
7424         int i;
7425         u32 subsystem_vendor_id, subsystem_device_id;
7426
7427         subsystem_vendor_id = pdev->subsystem_vendor;
7428         subsystem_device_id = pdev->subsystem_device;
7429         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7430                     subsystem_vendor_id;
7431
7432         if (legacy_board)
7433                 *legacy_board = false;
7434         for (i = 0; i < ARRAY_SIZE(products); i++)
7435                 if (*board_id == products[i].board_id) {
7436                         if (products[i].access != &SA5A_access &&
7437                             products[i].access != &SA5B_access)
7438                                 return i;
7439                         dev_warn(&pdev->dev,
7440                                  "legacy board ID: 0x%08x\n",
7441                                  *board_id);
7442                         if (legacy_board)
7443                             *legacy_board = true;
7444                         return i;
7445                 }
7446
7447         dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7448         if (legacy_board)
7449                 *legacy_board = true;
7450         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7451 }
7452
7453 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7454                                     unsigned long *memory_bar)
7455 {
7456         int i;
7457
7458         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7459                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7460                         /* addressing mode bits already removed */
7461                         *memory_bar = pci_resource_start(pdev, i);
7462                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7463                                 *memory_bar);
7464                         return 0;
7465                 }
7466         dev_warn(&pdev->dev, "no memory BAR found\n");
7467         return -ENODEV;
7468 }
7469
7470 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7471                                      int wait_for_ready)
7472 {
7473         int i, iterations;
7474         u32 scratchpad;
7475         if (wait_for_ready)
7476                 iterations = HPSA_BOARD_READY_ITERATIONS;
7477         else
7478                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7479
7480         for (i = 0; i < iterations; i++) {
7481                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7482                 if (wait_for_ready) {
7483                         if (scratchpad == HPSA_FIRMWARE_READY)
7484                                 return 0;
7485                 } else {
7486                         if (scratchpad != HPSA_FIRMWARE_READY)
7487                                 return 0;
7488                 }
7489                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7490         }
7491         dev_warn(&pdev->dev, "board not ready, timed out.\n");
7492         return -ENODEV;
7493 }
7494
7495 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7496                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7497                                u64 *cfg_offset)
7498 {
7499         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7500         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7501         *cfg_base_addr &= (u32) 0x0000ffff;
7502         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7503         if (*cfg_base_addr_index == -1) {
7504                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7505                 return -ENODEV;
7506         }
7507         return 0;
7508 }
7509
7510 static void hpsa_free_cfgtables(struct ctlr_info *h)
7511 {
7512         if (h->transtable) {
7513                 iounmap(h->transtable);
7514                 h->transtable = NULL;
7515         }
7516         if (h->cfgtable) {
7517                 iounmap(h->cfgtable);
7518                 h->cfgtable = NULL;
7519         }
7520 }
7521
7522 /* Find and map CISS config table and transfer table
7523 + * several items must be unmapped (freed) later
7524 + * */
7525 static int hpsa_find_cfgtables(struct ctlr_info *h)
7526 {
7527         u64 cfg_offset;
7528         u32 cfg_base_addr;
7529         u64 cfg_base_addr_index;
7530         u32 trans_offset;
7531         int rc;
7532
7533         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7534                 &cfg_base_addr_index, &cfg_offset);
7535         if (rc)
7536                 return rc;
7537         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7538                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7539         if (!h->cfgtable) {
7540                 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7541                 return -ENOMEM;
7542         }
7543         rc = write_driver_ver_to_cfgtable(h->cfgtable);
7544         if (rc)
7545                 return rc;
7546         /* Find performant mode table. */
7547         trans_offset = readl(&h->cfgtable->TransMethodOffset);
7548         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7549                                 cfg_base_addr_index)+cfg_offset+trans_offset,
7550                                 sizeof(*h->transtable));
7551         if (!h->transtable) {
7552                 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7553                 hpsa_free_cfgtables(h);
7554                 return -ENOMEM;
7555         }
7556         return 0;
7557 }
7558
7559 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7560 {
7561 #define MIN_MAX_COMMANDS 16
7562         BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7563
7564         h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7565
7566         /* Limit commands in memory limited kdump scenario. */
7567         if (reset_devices && h->max_commands > 32)
7568                 h->max_commands = 32;
7569
7570         if (h->max_commands < MIN_MAX_COMMANDS) {
7571                 dev_warn(&h->pdev->dev,
7572                         "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7573                         h->max_commands,
7574                         MIN_MAX_COMMANDS);
7575                 h->max_commands = MIN_MAX_COMMANDS;
7576         }
7577 }
7578
7579 /* If the controller reports that the total max sg entries is greater than 512,
7580  * then we know that chained SG blocks work.  (Original smart arrays did not
7581  * support chained SG blocks and would return zero for max sg entries.)
7582  */
7583 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7584 {
7585         return h->maxsgentries > 512;
7586 }
7587
7588 /* Interrogate the hardware for some limits:
7589  * max commands, max SG elements without chaining, and with chaining,
7590  * SG chain block size, etc.
7591  */
7592 static void hpsa_find_board_params(struct ctlr_info *h)
7593 {
7594         hpsa_get_max_perf_mode_cmds(h);
7595         h->nr_cmds = h->max_commands;
7596         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7597         h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7598         if (hpsa_supports_chained_sg_blocks(h)) {
7599                 /* Limit in-command s/g elements to 32 save dma'able memory. */
7600                 h->max_cmd_sg_entries = 32;
7601                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7602                 h->maxsgentries--; /* save one for chain pointer */
7603         } else {
7604                 /*
7605                  * Original smart arrays supported at most 31 s/g entries
7606                  * embedded inline in the command (trying to use more
7607                  * would lock up the controller)
7608                  */
7609                 h->max_cmd_sg_entries = 31;
7610                 h->maxsgentries = 31; /* default to traditional values */
7611                 h->chainsize = 0;
7612         }
7613
7614         /* Find out what task management functions are supported and cache */
7615         h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7616         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7617                 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7618         if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7619                 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7620         if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7621                 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7622 }
7623
7624 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7625 {
7626         if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7627                 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7628                 return false;
7629         }
7630         return true;
7631 }
7632
7633 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7634 {
7635         u32 driver_support;
7636
7637         driver_support = readl(&(h->cfgtable->driver_support));
7638         /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7639 #ifdef CONFIG_X86
7640         driver_support |= ENABLE_SCSI_PREFETCH;
7641 #endif
7642         driver_support |= ENABLE_UNIT_ATTN;
7643         writel(driver_support, &(h->cfgtable->driver_support));
7644 }
7645
7646 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7647  * in a prefetch beyond physical memory.
7648  */
7649 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7650 {
7651         u32 dma_prefetch;
7652
7653         if (h->board_id != 0x3225103C)
7654                 return;
7655         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7656         dma_prefetch |= 0x8000;
7657         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7658 }
7659
7660 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7661 {
7662         int i;
7663         u32 doorbell_value;
7664         unsigned long flags;
7665         /* wait until the clear_event_notify bit 6 is cleared by controller. */
7666         for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7667                 spin_lock_irqsave(&h->lock, flags);
7668                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7669                 spin_unlock_irqrestore(&h->lock, flags);
7670                 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7671                         goto done;
7672                 /* delay and try again */
7673                 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7674         }
7675         return -ENODEV;
7676 done:
7677         return 0;
7678 }
7679
7680 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7681 {
7682         int i;
7683         u32 doorbell_value;
7684         unsigned long flags;
7685
7686         /* under certain very rare conditions, this can take awhile.
7687          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7688          * as we enter this code.)
7689          */
7690         for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7691                 if (h->remove_in_progress)
7692                         goto done;
7693                 spin_lock_irqsave(&h->lock, flags);
7694                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7695                 spin_unlock_irqrestore(&h->lock, flags);
7696                 if (!(doorbell_value & CFGTBL_ChangeReq))
7697                         goto done;
7698                 /* delay and try again */
7699                 msleep(MODE_CHANGE_WAIT_INTERVAL);
7700         }
7701         return -ENODEV;
7702 done:
7703         return 0;
7704 }
7705
7706 /* return -ENODEV or other reason on error, 0 on success */
7707 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7708 {
7709         u32 trans_support;
7710
7711         trans_support = readl(&(h->cfgtable->TransportSupport));
7712         if (!(trans_support & SIMPLE_MODE))
7713                 return -ENOTSUPP;
7714
7715         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7716
7717         /* Update the field, and then ring the doorbell */
7718         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7719         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7720         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7721         if (hpsa_wait_for_mode_change_ack(h))
7722                 goto error;
7723         print_cfg_table(&h->pdev->dev, h->cfgtable);
7724         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7725                 goto error;
7726         h->transMethod = CFGTBL_Trans_Simple;
7727         return 0;
7728 error:
7729         dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7730         return -ENODEV;
7731 }
7732
7733 /* free items allocated or mapped by hpsa_pci_init */
7734 static void hpsa_free_pci_init(struct ctlr_info *h)
7735 {
7736         hpsa_free_cfgtables(h);                 /* pci_init 4 */
7737         iounmap(h->vaddr);                      /* pci_init 3 */
7738         h->vaddr = NULL;
7739         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
7740         /*
7741          * call pci_disable_device before pci_release_regions per
7742          * Documentation/PCI/pci.txt
7743          */
7744         pci_disable_device(h->pdev);            /* pci_init 1 */
7745         pci_release_regions(h->pdev);           /* pci_init 2 */
7746 }
7747
7748 /* several items must be freed later */
7749 static int hpsa_pci_init(struct ctlr_info *h)
7750 {
7751         int prod_index, err;
7752         bool legacy_board;
7753
7754         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7755         if (prod_index < 0)
7756                 return prod_index;
7757         h->product_name = products[prod_index].product_name;
7758         h->access = *(products[prod_index].access);
7759         h->legacy_board = legacy_board;
7760         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7761                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7762
7763         err = pci_enable_device(h->pdev);
7764         if (err) {
7765                 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7766                 pci_disable_device(h->pdev);
7767                 return err;
7768         }
7769
7770         err = pci_request_regions(h->pdev, HPSA);
7771         if (err) {
7772                 dev_err(&h->pdev->dev,
7773                         "failed to obtain PCI resources\n");
7774                 pci_disable_device(h->pdev);
7775                 return err;
7776         }
7777
7778         pci_set_master(h->pdev);
7779
7780         err = hpsa_interrupt_mode(h);
7781         if (err)
7782                 goto clean1;
7783
7784         /* setup mapping between CPU and reply queue */
7785         hpsa_setup_reply_map(h);
7786
7787         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7788         if (err)
7789                 goto clean2;    /* intmode+region, pci */
7790         h->vaddr = remap_pci_mem(h->paddr, 0x250);
7791         if (!h->vaddr) {
7792                 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7793                 err = -ENOMEM;
7794                 goto clean2;    /* intmode+region, pci */
7795         }
7796         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7797         if (err)
7798                 goto clean3;    /* vaddr, intmode+region, pci */
7799         err = hpsa_find_cfgtables(h);
7800         if (err)
7801                 goto clean3;    /* vaddr, intmode+region, pci */
7802         hpsa_find_board_params(h);
7803
7804         if (!hpsa_CISS_signature_present(h)) {
7805                 err = -ENODEV;
7806                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7807         }
7808         hpsa_set_driver_support_bits(h);
7809         hpsa_p600_dma_prefetch_quirk(h);
7810         err = hpsa_enter_simple_mode(h);
7811         if (err)
7812                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7813         return 0;
7814
7815 clean4: /* cfgtables, vaddr, intmode+region, pci */
7816         hpsa_free_cfgtables(h);
7817 clean3: /* vaddr, intmode+region, pci */
7818         iounmap(h->vaddr);
7819         h->vaddr = NULL;
7820 clean2: /* intmode+region, pci */
7821         hpsa_disable_interrupt_mode(h);
7822 clean1:
7823         /*
7824          * call pci_disable_device before pci_release_regions per
7825          * Documentation/PCI/pci.txt
7826          */
7827         pci_disable_device(h->pdev);
7828         pci_release_regions(h->pdev);
7829         return err;
7830 }
7831
7832 static void hpsa_hba_inquiry(struct ctlr_info *h)
7833 {
7834         int rc;
7835
7836 #define HBA_INQUIRY_BYTE_COUNT 64
7837         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7838         if (!h->hba_inquiry_data)
7839                 return;
7840         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7841                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7842         if (rc != 0) {
7843                 kfree(h->hba_inquiry_data);
7844                 h->hba_inquiry_data = NULL;
7845         }
7846 }
7847
7848 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7849 {
7850         int rc, i;
7851         void __iomem *vaddr;
7852
7853         if (!reset_devices)
7854                 return 0;
7855
7856         /* kdump kernel is loading, we don't know in which state is
7857          * the pci interface. The dev->enable_cnt is equal zero
7858          * so we call enable+disable, wait a while and switch it on.
7859          */
7860         rc = pci_enable_device(pdev);
7861         if (rc) {
7862                 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7863                 return -ENODEV;
7864         }
7865         pci_disable_device(pdev);
7866         msleep(260);                    /* a randomly chosen number */
7867         rc = pci_enable_device(pdev);
7868         if (rc) {
7869                 dev_warn(&pdev->dev, "failed to enable device.\n");
7870                 return -ENODEV;
7871         }
7872
7873         pci_set_master(pdev);
7874
7875         vaddr = pci_ioremap_bar(pdev, 0);
7876         if (vaddr == NULL) {
7877                 rc = -ENOMEM;
7878                 goto out_disable;
7879         }
7880         writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7881         iounmap(vaddr);
7882
7883         /* Reset the controller with a PCI power-cycle or via doorbell */
7884         rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7885
7886         /* -ENOTSUPP here means we cannot reset the controller
7887          * but it's already (and still) up and running in
7888          * "performant mode".  Or, it might be 640x, which can't reset
7889          * due to concerns about shared bbwc between 6402/6404 pair.
7890          */
7891         if (rc)
7892                 goto out_disable;
7893
7894         /* Now try to get the controller to respond to a no-op */
7895         dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7896         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7897                 if (hpsa_noop(pdev) == 0)
7898                         break;
7899                 else
7900                         dev_warn(&pdev->dev, "no-op failed%s\n",
7901                                         (i < 11 ? "; re-trying" : ""));
7902         }
7903
7904 out_disable:
7905
7906         pci_disable_device(pdev);
7907         return rc;
7908 }
7909
7910 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7911 {
7912         kfree(h->cmd_pool_bits);
7913         h->cmd_pool_bits = NULL;
7914         if (h->cmd_pool) {
7915                 pci_free_consistent(h->pdev,
7916                                 h->nr_cmds * sizeof(struct CommandList),
7917                                 h->cmd_pool,
7918                                 h->cmd_pool_dhandle);
7919                 h->cmd_pool = NULL;
7920                 h->cmd_pool_dhandle = 0;
7921         }
7922         if (h->errinfo_pool) {
7923                 pci_free_consistent(h->pdev,
7924                                 h->nr_cmds * sizeof(struct ErrorInfo),
7925                                 h->errinfo_pool,
7926                                 h->errinfo_pool_dhandle);
7927                 h->errinfo_pool = NULL;
7928                 h->errinfo_pool_dhandle = 0;
7929         }
7930 }
7931
7932 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7933 {
7934         h->cmd_pool_bits = kzalloc(
7935                 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
7936                 sizeof(unsigned long), GFP_KERNEL);
7937         h->cmd_pool = pci_alloc_consistent(h->pdev,
7938                     h->nr_cmds * sizeof(*h->cmd_pool),
7939                     &(h->cmd_pool_dhandle));
7940         h->errinfo_pool = pci_alloc_consistent(h->pdev,
7941                     h->nr_cmds * sizeof(*h->errinfo_pool),
7942                     &(h->errinfo_pool_dhandle));
7943         if ((h->cmd_pool_bits == NULL)
7944             || (h->cmd_pool == NULL)
7945             || (h->errinfo_pool == NULL)) {
7946                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
7947                 goto clean_up;
7948         }
7949         hpsa_preinitialize_commands(h);
7950         return 0;
7951 clean_up:
7952         hpsa_free_cmd_pool(h);
7953         return -ENOMEM;
7954 }
7955
7956 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7957 static void hpsa_free_irqs(struct ctlr_info *h)
7958 {
7959         int i;
7960
7961         if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
7962                 /* Single reply queue, only one irq to free */
7963                 free_irq(pci_irq_vector(h->pdev, 0), &h->q[h->intr_mode]);
7964                 h->q[h->intr_mode] = 0;
7965                 return;
7966         }
7967
7968         for (i = 0; i < h->msix_vectors; i++) {
7969                 free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
7970                 h->q[i] = 0;
7971         }
7972         for (; i < MAX_REPLY_QUEUES; i++)
7973                 h->q[i] = 0;
7974 }
7975
7976 /* returns 0 on success; cleans up and returns -Enn on error */
7977 static int hpsa_request_irqs(struct ctlr_info *h,
7978         irqreturn_t (*msixhandler)(int, void *),
7979         irqreturn_t (*intxhandler)(int, void *))
7980 {
7981         int rc, i;
7982
7983         /*
7984          * initialize h->q[x] = x so that interrupt handlers know which
7985          * queue to process.
7986          */
7987         for (i = 0; i < MAX_REPLY_QUEUES; i++)
7988                 h->q[i] = (u8) i;
7989
7990         if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
7991                 /* If performant mode and MSI-X, use multiple reply queues */
7992                 for (i = 0; i < h->msix_vectors; i++) {
7993                         sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
7994                         rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
7995                                         0, h->intrname[i],
7996                                         &h->q[i]);
7997                         if (rc) {
7998                                 int j;
7999
8000                                 dev_err(&h->pdev->dev,
8001                                         "failed to get irq %d for %s\n",
8002                                        pci_irq_vector(h->pdev, i), h->devname);
8003                                 for (j = 0; j < i; j++) {
8004                                         free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8005                                         h->q[j] = 0;
8006                                 }
8007                                 for (; j < MAX_REPLY_QUEUES; j++)
8008                                         h->q[j] = 0;
8009                                 return rc;
8010                         }
8011                 }
8012         } else {
8013                 /* Use single reply pool */
8014                 if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8015                         sprintf(h->intrname[0], "%s-msi%s", h->devname,
8016                                 h->msix_vectors ? "x" : "");
8017                         rc = request_irq(pci_irq_vector(h->pdev, 0),
8018                                 msixhandler, 0,
8019                                 h->intrname[0],
8020                                 &h->q[h->intr_mode]);
8021                 } else {
8022                         sprintf(h->intrname[h->intr_mode],
8023                                 "%s-intx", h->devname);
8024                         rc = request_irq(pci_irq_vector(h->pdev, 0),
8025                                 intxhandler, IRQF_SHARED,
8026                                 h->intrname[0],
8027                                 &h->q[h->intr_mode]);
8028                 }
8029         }
8030         if (rc) {
8031                 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8032                        pci_irq_vector(h->pdev, 0), h->devname);
8033                 hpsa_free_irqs(h);
8034                 return -ENODEV;
8035         }
8036         return 0;
8037 }
8038
8039 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8040 {
8041         int rc;
8042         hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
8043
8044         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8045         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8046         if (rc) {
8047                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8048                 return rc;
8049         }
8050
8051         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8052         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8053         if (rc) {
8054                 dev_warn(&h->pdev->dev, "Board failed to become ready "
8055                         "after soft reset.\n");
8056                 return rc;
8057         }
8058
8059         return 0;
8060 }
8061
8062 static void hpsa_free_reply_queues(struct ctlr_info *h)
8063 {
8064         int i;
8065
8066         for (i = 0; i < h->nreply_queues; i++) {
8067                 if (!h->reply_queue[i].head)
8068                         continue;
8069                 pci_free_consistent(h->pdev,
8070                                         h->reply_queue_size,
8071                                         h->reply_queue[i].head,
8072                                         h->reply_queue[i].busaddr);
8073                 h->reply_queue[i].head = NULL;
8074                 h->reply_queue[i].busaddr = 0;
8075         }
8076         h->reply_queue_size = 0;
8077 }
8078
8079 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8080 {
8081         hpsa_free_performant_mode(h);           /* init_one 7 */
8082         hpsa_free_sg_chain_blocks(h);           /* init_one 6 */
8083         hpsa_free_cmd_pool(h);                  /* init_one 5 */
8084         hpsa_free_irqs(h);                      /* init_one 4 */
8085         scsi_host_put(h->scsi_host);            /* init_one 3 */
8086         h->scsi_host = NULL;                    /* init_one 3 */
8087         hpsa_free_pci_init(h);                  /* init_one 2_5 */
8088         free_percpu(h->lockup_detected);        /* init_one 2 */
8089         h->lockup_detected = NULL;              /* init_one 2 */
8090         if (h->resubmit_wq) {
8091                 destroy_workqueue(h->resubmit_wq);      /* init_one 1 */
8092                 h->resubmit_wq = NULL;
8093         }
8094         if (h->rescan_ctlr_wq) {
8095                 destroy_workqueue(h->rescan_ctlr_wq);
8096                 h->rescan_ctlr_wq = NULL;
8097         }
8098         kfree(h);                               /* init_one 1 */
8099 }
8100
8101 /* Called when controller lockup detected. */
8102 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8103 {
8104         int i, refcount;
8105         struct CommandList *c;
8106         int failcount = 0;
8107
8108         flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8109         for (i = 0; i < h->nr_cmds; i++) {
8110                 c = h->cmd_pool + i;
8111                 refcount = atomic_inc_return(&c->refcount);
8112                 if (refcount > 1) {
8113                         c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8114                         finish_cmd(c);
8115                         atomic_dec(&h->commands_outstanding);
8116                         failcount++;
8117                 }
8118                 cmd_free(h, c);
8119         }
8120         dev_warn(&h->pdev->dev,
8121                 "failed %d commands in fail_all\n", failcount);
8122 }
8123
8124 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8125 {
8126         int cpu;
8127
8128         for_each_online_cpu(cpu) {
8129                 u32 *lockup_detected;
8130                 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8131                 *lockup_detected = value;
8132         }
8133         wmb(); /* be sure the per-cpu variables are out to memory */
8134 }
8135
8136 static void controller_lockup_detected(struct ctlr_info *h)
8137 {
8138         unsigned long flags;
8139         u32 lockup_detected;
8140
8141         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8142         spin_lock_irqsave(&h->lock, flags);
8143         lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8144         if (!lockup_detected) {
8145                 /* no heartbeat, but controller gave us a zero. */
8146                 dev_warn(&h->pdev->dev,
8147                         "lockup detected after %d but scratchpad register is zero\n",
8148                         h->heartbeat_sample_interval / HZ);
8149                 lockup_detected = 0xffffffff;
8150         }
8151         set_lockup_detected_for_all_cpus(h, lockup_detected);
8152         spin_unlock_irqrestore(&h->lock, flags);
8153         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8154                         lockup_detected, h->heartbeat_sample_interval / HZ);
8155         if (lockup_detected == 0xffff0000) {
8156                 dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
8157                 writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
8158         }
8159         pci_disable_device(h->pdev);
8160         fail_all_outstanding_cmds(h);
8161 }
8162
8163 static int detect_controller_lockup(struct ctlr_info *h)
8164 {
8165         u64 now;
8166         u32 heartbeat;
8167         unsigned long flags;
8168
8169         now = get_jiffies_64();
8170         /* If we've received an interrupt recently, we're ok. */
8171         if (time_after64(h->last_intr_timestamp +
8172                                 (h->heartbeat_sample_interval), now))
8173                 return false;
8174
8175         /*
8176          * If we've already checked the heartbeat recently, we're ok.
8177          * This could happen if someone sends us a signal. We
8178          * otherwise don't care about signals in this thread.
8179          */
8180         if (time_after64(h->last_heartbeat_timestamp +
8181                                 (h->heartbeat_sample_interval), now))
8182                 return false;
8183
8184         /* If heartbeat has not changed since we last looked, we're not ok. */
8185         spin_lock_irqsave(&h->lock, flags);
8186         heartbeat = readl(&h->cfgtable->HeartBeat);
8187         spin_unlock_irqrestore(&h->lock, flags);
8188         if (h->last_heartbeat == heartbeat) {
8189                 controller_lockup_detected(h);
8190                 return true;
8191         }
8192
8193         /* We're ok. */
8194         h->last_heartbeat = heartbeat;
8195         h->last_heartbeat_timestamp = now;
8196         return false;
8197 }
8198
8199 /*
8200  * Set ioaccel status for all ioaccel volumes.
8201  *
8202  * Called from monitor controller worker (hpsa_event_monitor_worker)
8203  *
8204  * A Volume (or Volumes that comprise an Array set may be undergoing a
8205  * transformation, so we will be turning off ioaccel for all volumes that
8206  * make up the Array.
8207  */
8208 static void hpsa_set_ioaccel_status(struct ctlr_info *h)
8209 {
8210         int rc;
8211         int i;
8212         u8 ioaccel_status;
8213         unsigned char *buf;
8214         struct hpsa_scsi_dev_t *device;
8215
8216         if (!h)
8217                 return;
8218
8219         buf = kmalloc(64, GFP_KERNEL);
8220         if (!buf)
8221                 return;
8222
8223         /*
8224          * Run through current device list used during I/O requests.
8225          */
8226         for (i = 0; i < h->ndevices; i++) {
8227                 device = h->dev[i];
8228
8229                 if (!device)
8230                         continue;
8231                 if (!hpsa_vpd_page_supported(h, device->scsi3addr,
8232                                                 HPSA_VPD_LV_IOACCEL_STATUS))
8233                         continue;
8234
8235                 memset(buf, 0, 64);
8236
8237                 rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
8238                                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
8239                                         buf, 64);
8240                 if (rc != 0)
8241                         continue;
8242
8243                 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
8244                 device->offload_config =
8245                                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
8246                 if (device->offload_config)
8247                         device->offload_to_be_enabled =
8248                                 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
8249
8250                 /*
8251                  * Immediately turn off ioaccel for any volume the
8252                  * controller tells us to. Some of the reasons could be:
8253                  *    transformation - change to the LVs of an Array.
8254                  *    degraded volume - component failure
8255                  *
8256                  * If ioaccel is to be re-enabled, re-enable later during the
8257                  * scan operation so the driver can get a fresh raidmap
8258                  * before turning ioaccel back on.
8259                  *
8260                  */
8261                 if (!device->offload_to_be_enabled)
8262                         device->offload_enabled = 0;
8263         }
8264
8265         kfree(buf);
8266 }
8267
8268 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8269 {
8270         char *event_type;
8271
8272         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8273                 return;
8274
8275         /* Ask the controller to clear the events we're handling. */
8276         if ((h->transMethod & (CFGTBL_Trans_io_accel1
8277                         | CFGTBL_Trans_io_accel2)) &&
8278                 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8279                  h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8280
8281                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8282                         event_type = "state change";
8283                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8284                         event_type = "configuration change";
8285                 /* Stop sending new RAID offload reqs via the IO accelerator */
8286                 scsi_block_requests(h->scsi_host);
8287                 hpsa_set_ioaccel_status(h);
8288                 hpsa_drain_accel_commands(h);
8289                 /* Set 'accelerator path config change' bit */
8290                 dev_warn(&h->pdev->dev,
8291                         "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8292                         h->events, event_type);
8293                 writel(h->events, &(h->cfgtable->clear_event_notify));
8294                 /* Set the "clear event notify field update" bit 6 */
8295                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8296                 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8297                 hpsa_wait_for_clear_event_notify_ack(h);
8298                 scsi_unblock_requests(h->scsi_host);
8299         } else {
8300                 /* Acknowledge controller notification events. */
8301                 writel(h->events, &(h->cfgtable->clear_event_notify));
8302                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8303                 hpsa_wait_for_clear_event_notify_ack(h);
8304         }
8305         return;
8306 }
8307
8308 /* Check a register on the controller to see if there are configuration
8309  * changes (added/changed/removed logical drives, etc.) which mean that
8310  * we should rescan the controller for devices.
8311  * Also check flag for driver-initiated rescan.
8312  */
8313 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8314 {
8315         if (h->drv_req_rescan) {
8316                 h->drv_req_rescan = 0;
8317                 return 1;
8318         }
8319
8320         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8321                 return 0;
8322
8323         h->events = readl(&(h->cfgtable->event_notify));
8324         return h->events & RESCAN_REQUIRED_EVENT_BITS;
8325 }
8326
8327 /*
8328  * Check if any of the offline devices have become ready
8329  */
8330 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8331 {
8332         unsigned long flags;
8333         struct offline_device_entry *d;
8334         struct list_head *this, *tmp;
8335
8336         spin_lock_irqsave(&h->offline_device_lock, flags);
8337         list_for_each_safe(this, tmp, &h->offline_device_list) {
8338                 d = list_entry(this, struct offline_device_entry,
8339                                 offline_list);
8340                 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8341                 if (!hpsa_volume_offline(h, d->scsi3addr)) {
8342                         spin_lock_irqsave(&h->offline_device_lock, flags);
8343                         list_del(&d->offline_list);
8344                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8345                         return 1;
8346                 }
8347                 spin_lock_irqsave(&h->offline_device_lock, flags);
8348         }
8349         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8350         return 0;
8351 }
8352
8353 static int hpsa_luns_changed(struct ctlr_info *h)
8354 {
8355         int rc = 1; /* assume there are changes */
8356         struct ReportLUNdata *logdev = NULL;
8357
8358         /* if we can't find out if lun data has changed,
8359          * assume that it has.
8360          */
8361
8362         if (!h->lastlogicals)
8363                 return rc;
8364
8365         logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8366         if (!logdev)
8367                 return rc;
8368
8369         if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8370                 dev_warn(&h->pdev->dev,
8371                         "report luns failed, can't track lun changes.\n");
8372                 goto out;
8373         }
8374         if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8375                 dev_info(&h->pdev->dev,
8376                         "Lun changes detected.\n");
8377                 memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8378                 goto out;
8379         } else
8380                 rc = 0; /* no changes detected. */
8381 out:
8382         kfree(logdev);
8383         return rc;
8384 }
8385
8386 static void hpsa_perform_rescan(struct ctlr_info *h)
8387 {
8388         struct Scsi_Host *sh = NULL;
8389         unsigned long flags;
8390
8391         /*
8392          * Do the scan after the reset
8393          */
8394         spin_lock_irqsave(&h->reset_lock, flags);
8395         if (h->reset_in_progress) {
8396                 h->drv_req_rescan = 1;
8397                 spin_unlock_irqrestore(&h->reset_lock, flags);
8398                 return;
8399         }
8400         spin_unlock_irqrestore(&h->reset_lock, flags);
8401
8402         sh = scsi_host_get(h->scsi_host);
8403         if (sh != NULL) {
8404                 hpsa_scan_start(sh);
8405                 scsi_host_put(sh);
8406                 h->drv_req_rescan = 0;
8407         }
8408 }
8409
8410 /*
8411  * watch for controller events
8412  */
8413 static void hpsa_event_monitor_worker(struct work_struct *work)
8414 {
8415         struct ctlr_info *h = container_of(to_delayed_work(work),
8416                                         struct ctlr_info, event_monitor_work);
8417         unsigned long flags;
8418
8419         spin_lock_irqsave(&h->lock, flags);
8420         if (h->remove_in_progress) {
8421                 spin_unlock_irqrestore(&h->lock, flags);
8422                 return;
8423         }
8424         spin_unlock_irqrestore(&h->lock, flags);
8425
8426         if (hpsa_ctlr_needs_rescan(h)) {
8427                 hpsa_ack_ctlr_events(h);
8428                 hpsa_perform_rescan(h);
8429         }
8430
8431         spin_lock_irqsave(&h->lock, flags);
8432         if (!h->remove_in_progress)
8433                 schedule_delayed_work(&h->event_monitor_work,
8434                                         HPSA_EVENT_MONITOR_INTERVAL);
8435         spin_unlock_irqrestore(&h->lock, flags);
8436 }
8437
8438 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8439 {
8440         unsigned long flags;
8441         struct ctlr_info *h = container_of(to_delayed_work(work),
8442                                         struct ctlr_info, rescan_ctlr_work);
8443
8444         spin_lock_irqsave(&h->lock, flags);
8445         if (h->remove_in_progress) {
8446                 spin_unlock_irqrestore(&h->lock, flags);
8447                 return;
8448         }
8449         spin_unlock_irqrestore(&h->lock, flags);
8450
8451         if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8452                 hpsa_perform_rescan(h);
8453         } else if (h->discovery_polling) {
8454                 if (hpsa_luns_changed(h)) {
8455                         dev_info(&h->pdev->dev,
8456                                 "driver discovery polling rescan.\n");
8457                         hpsa_perform_rescan(h);
8458                 }
8459         }
8460         spin_lock_irqsave(&h->lock, flags);
8461         if (!h->remove_in_progress)
8462                 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8463                                 h->heartbeat_sample_interval);
8464         spin_unlock_irqrestore(&h->lock, flags);
8465 }
8466
8467 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8468 {
8469         unsigned long flags;
8470         struct ctlr_info *h = container_of(to_delayed_work(work),
8471                                         struct ctlr_info, monitor_ctlr_work);
8472
8473         detect_controller_lockup(h);
8474         if (lockup_detected(h))
8475                 return;
8476
8477         spin_lock_irqsave(&h->lock, flags);
8478         if (!h->remove_in_progress)
8479                 schedule_delayed_work(&h->monitor_ctlr_work,
8480                                 h->heartbeat_sample_interval);
8481         spin_unlock_irqrestore(&h->lock, flags);
8482 }
8483
8484 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8485                                                 char *name)
8486 {
8487         struct workqueue_struct *wq = NULL;
8488
8489         wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8490         if (!wq)
8491                 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8492
8493         return wq;
8494 }
8495
8496 static void hpda_free_ctlr_info(struct ctlr_info *h)
8497 {
8498         kfree(h->reply_map);
8499         kfree(h);
8500 }
8501
8502 static struct ctlr_info *hpda_alloc_ctlr_info(void)
8503 {
8504         struct ctlr_info *h;
8505
8506         h = kzalloc(sizeof(*h), GFP_KERNEL);
8507         if (!h)
8508                 return NULL;
8509
8510         h->reply_map = kzalloc(sizeof(*h->reply_map) * nr_cpu_ids, GFP_KERNEL);
8511         if (!h->reply_map) {
8512                 kfree(h);
8513                 return NULL;
8514         }
8515         return h;
8516 }
8517
8518 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8519 {
8520         int dac, rc;
8521         struct ctlr_info *h;
8522         int try_soft_reset = 0;
8523         unsigned long flags;
8524         u32 board_id;
8525
8526         if (number_of_controllers == 0)
8527                 printk(KERN_INFO DRIVER_NAME "\n");
8528
8529         rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8530         if (rc < 0) {
8531                 dev_warn(&pdev->dev, "Board ID not found\n");
8532                 return rc;
8533         }
8534
8535         rc = hpsa_init_reset_devices(pdev, board_id);
8536         if (rc) {
8537                 if (rc != -ENOTSUPP)
8538                         return rc;
8539                 /* If the reset fails in a particular way (it has no way to do
8540                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
8541                  * a soft reset once we get the controller configured up to the
8542                  * point that it can accept a command.
8543                  */
8544                 try_soft_reset = 1;
8545                 rc = 0;
8546         }
8547
8548 reinit_after_soft_reset:
8549
8550         /* Command structures must be aligned on a 32-byte boundary because
8551          * the 5 lower bits of the address are used by the hardware. and by
8552          * the driver.  See comments in hpsa.h for more info.
8553          */
8554         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8555         h = hpda_alloc_ctlr_info();
8556         if (!h) {
8557                 dev_err(&pdev->dev, "Failed to allocate controller head\n");
8558                 return -ENOMEM;
8559         }
8560
8561         h->pdev = pdev;
8562
8563         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8564         INIT_LIST_HEAD(&h->offline_device_list);
8565         spin_lock_init(&h->lock);
8566         spin_lock_init(&h->offline_device_lock);
8567         spin_lock_init(&h->scan_lock);
8568         spin_lock_init(&h->reset_lock);
8569         atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8570
8571         /* Allocate and clear per-cpu variable lockup_detected */
8572         h->lockup_detected = alloc_percpu(u32);
8573         if (!h->lockup_detected) {
8574                 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8575                 rc = -ENOMEM;
8576                 goto clean1;    /* aer/h */
8577         }
8578         set_lockup_detected_for_all_cpus(h, 0);
8579
8580         rc = hpsa_pci_init(h);
8581         if (rc)
8582                 goto clean2;    /* lu, aer/h */
8583
8584         /* relies on h-> settings made by hpsa_pci_init, including
8585          * interrupt_mode h->intr */
8586         rc = hpsa_scsi_host_alloc(h);
8587         if (rc)
8588                 goto clean2_5;  /* pci, lu, aer/h */
8589
8590         sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8591         h->ctlr = number_of_controllers;
8592         number_of_controllers++;
8593
8594         /* configure PCI DMA stuff */
8595         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8596         if (rc == 0) {
8597                 dac = 1;
8598         } else {
8599                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8600                 if (rc == 0) {
8601                         dac = 0;
8602                 } else {
8603                         dev_err(&pdev->dev, "no suitable DMA available\n");
8604                         goto clean3;    /* shost, pci, lu, aer/h */
8605                 }
8606         }
8607
8608         /* make sure the board interrupts are off */
8609         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8610
8611         rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8612         if (rc)
8613                 goto clean3;    /* shost, pci, lu, aer/h */
8614         rc = hpsa_alloc_cmd_pool(h);
8615         if (rc)
8616                 goto clean4;    /* irq, shost, pci, lu, aer/h */
8617         rc = hpsa_alloc_sg_chain_blocks(h);
8618         if (rc)
8619                 goto clean5;    /* cmd, irq, shost, pci, lu, aer/h */
8620         init_waitqueue_head(&h->scan_wait_queue);
8621         init_waitqueue_head(&h->event_sync_wait_queue);
8622         mutex_init(&h->reset_mutex);
8623         h->scan_finished = 1; /* no scan currently in progress */
8624         h->scan_waiting = 0;
8625
8626         pci_set_drvdata(pdev, h);
8627         h->ndevices = 0;
8628
8629         spin_lock_init(&h->devlock);
8630         rc = hpsa_put_ctlr_into_performant_mode(h);
8631         if (rc)
8632                 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8633
8634         /* create the resubmit workqueue */
8635         h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8636         if (!h->rescan_ctlr_wq) {
8637                 rc = -ENOMEM;
8638                 goto clean7;
8639         }
8640
8641         h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8642         if (!h->resubmit_wq) {
8643                 rc = -ENOMEM;
8644                 goto clean7;    /* aer/h */
8645         }
8646
8647         /*
8648          * At this point, the controller is ready to take commands.
8649          * Now, if reset_devices and the hard reset didn't work, try
8650          * the soft reset and see if that works.
8651          */
8652         if (try_soft_reset) {
8653
8654                 /* This is kind of gross.  We may or may not get a completion
8655                  * from the soft reset command, and if we do, then the value
8656                  * from the fifo may or may not be valid.  So, we wait 10 secs
8657                  * after the reset throwing away any completions we get during
8658                  * that time.  Unregister the interrupt handler and register
8659                  * fake ones to scoop up any residual completions.
8660                  */
8661                 spin_lock_irqsave(&h->lock, flags);
8662                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8663                 spin_unlock_irqrestore(&h->lock, flags);
8664                 hpsa_free_irqs(h);
8665                 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8666                                         hpsa_intx_discard_completions);
8667                 if (rc) {
8668                         dev_warn(&h->pdev->dev,
8669                                 "Failed to request_irq after soft reset.\n");
8670                         /*
8671                          * cannot goto clean7 or free_irqs will be called
8672                          * again. Instead, do its work
8673                          */
8674                         hpsa_free_performant_mode(h);   /* clean7 */
8675                         hpsa_free_sg_chain_blocks(h);   /* clean6 */
8676                         hpsa_free_cmd_pool(h);          /* clean5 */
8677                         /*
8678                          * skip hpsa_free_irqs(h) clean4 since that
8679                          * was just called before request_irqs failed
8680                          */
8681                         goto clean3;
8682                 }
8683
8684                 rc = hpsa_kdump_soft_reset(h);
8685                 if (rc)
8686                         /* Neither hard nor soft reset worked, we're hosed. */
8687                         goto clean7;
8688
8689                 dev_info(&h->pdev->dev, "Board READY.\n");
8690                 dev_info(&h->pdev->dev,
8691                         "Waiting for stale completions to drain.\n");
8692                 h->access.set_intr_mask(h, HPSA_INTR_ON);
8693                 msleep(10000);
8694                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8695
8696                 rc = controller_reset_failed(h->cfgtable);
8697                 if (rc)
8698                         dev_info(&h->pdev->dev,
8699                                 "Soft reset appears to have failed.\n");
8700
8701                 /* since the controller's reset, we have to go back and re-init
8702                  * everything.  Easiest to just forget what we've done and do it
8703                  * all over again.
8704                  */
8705                 hpsa_undo_allocations_after_kdump_soft_reset(h);
8706                 try_soft_reset = 0;
8707                 if (rc)
8708                         /* don't goto clean, we already unallocated */
8709                         return -ENODEV;
8710
8711                 goto reinit_after_soft_reset;
8712         }
8713
8714         /* Enable Accelerated IO path at driver layer */
8715         h->acciopath_status = 1;
8716         /* Disable discovery polling.*/
8717         h->discovery_polling = 0;
8718
8719
8720         /* Turn the interrupts on so we can service requests */
8721         h->access.set_intr_mask(h, HPSA_INTR_ON);
8722
8723         hpsa_hba_inquiry(h);
8724
8725         h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8726         if (!h->lastlogicals)
8727                 dev_info(&h->pdev->dev,
8728                         "Can't track change to report lun data\n");
8729
8730         /* hook into SCSI subsystem */
8731         rc = hpsa_scsi_add_host(h);
8732         if (rc)
8733                 goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8734
8735         /* Monitor the controller for firmware lockups */
8736         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8737         INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8738         schedule_delayed_work(&h->monitor_ctlr_work,
8739                                 h->heartbeat_sample_interval);
8740         INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8741         queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8742                                 h->heartbeat_sample_interval);
8743         INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8744         schedule_delayed_work(&h->event_monitor_work,
8745                                 HPSA_EVENT_MONITOR_INTERVAL);
8746         return 0;
8747
8748 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8749         hpsa_free_performant_mode(h);
8750         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8751 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8752         hpsa_free_sg_chain_blocks(h);
8753 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8754         hpsa_free_cmd_pool(h);
8755 clean4: /* irq, shost, pci, lu, aer/h */
8756         hpsa_free_irqs(h);
8757 clean3: /* shost, pci, lu, aer/h */
8758         scsi_host_put(h->scsi_host);
8759         h->scsi_host = NULL;
8760 clean2_5: /* pci, lu, aer/h */
8761         hpsa_free_pci_init(h);
8762 clean2: /* lu, aer/h */
8763         if (h->lockup_detected) {
8764                 free_percpu(h->lockup_detected);
8765                 h->lockup_detected = NULL;
8766         }
8767 clean1: /* wq/aer/h */
8768         if (h->resubmit_wq) {
8769                 destroy_workqueue(h->resubmit_wq);
8770                 h->resubmit_wq = NULL;
8771         }
8772         if (h->rescan_ctlr_wq) {
8773                 destroy_workqueue(h->rescan_ctlr_wq);
8774                 h->rescan_ctlr_wq = NULL;
8775         }
8776         kfree(h);
8777         return rc;
8778 }
8779
8780 static void hpsa_flush_cache(struct ctlr_info *h)
8781 {
8782         char *flush_buf;
8783         struct CommandList *c;
8784         int rc;
8785
8786         if (unlikely(lockup_detected(h)))
8787                 return;
8788         flush_buf = kzalloc(4, GFP_KERNEL);
8789         if (!flush_buf)
8790                 return;
8791
8792         c = cmd_alloc(h);
8793
8794         if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8795                 RAID_CTLR_LUNID, TYPE_CMD)) {
8796                 goto out;
8797         }
8798         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8799                                         PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
8800         if (rc)
8801                 goto out;
8802         if (c->err_info->CommandStatus != 0)
8803 out:
8804                 dev_warn(&h->pdev->dev,
8805                         "error flushing cache on controller\n");
8806         cmd_free(h, c);
8807         kfree(flush_buf);
8808 }
8809
8810 /* Make controller gather fresh report lun data each time we
8811  * send down a report luns request
8812  */
8813 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8814 {
8815         u32 *options;
8816         struct CommandList *c;
8817         int rc;
8818
8819         /* Don't bother trying to set diag options if locked up */
8820         if (unlikely(h->lockup_detected))
8821                 return;
8822
8823         options = kzalloc(sizeof(*options), GFP_KERNEL);
8824         if (!options)
8825                 return;
8826
8827         c = cmd_alloc(h);
8828
8829         /* first, get the current diag options settings */
8830         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8831                 RAID_CTLR_LUNID, TYPE_CMD))
8832                 goto errout;
8833
8834         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8835                 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
8836         if ((rc != 0) || (c->err_info->CommandStatus != 0))
8837                 goto errout;
8838
8839         /* Now, set the bit for disabling the RLD caching */
8840         *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8841
8842         if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8843                 RAID_CTLR_LUNID, TYPE_CMD))
8844                 goto errout;
8845
8846         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8847                 PCI_DMA_TODEVICE, NO_TIMEOUT);
8848         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8849                 goto errout;
8850
8851         /* Now verify that it got set: */
8852         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8853                 RAID_CTLR_LUNID, TYPE_CMD))
8854                 goto errout;
8855
8856         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8857                 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
8858         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8859                 goto errout;
8860
8861         if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8862                 goto out;
8863
8864 errout:
8865         dev_err(&h->pdev->dev,
8866                         "Error: failed to disable report lun data caching.\n");
8867 out:
8868         cmd_free(h, c);
8869         kfree(options);
8870 }
8871
8872 static void hpsa_shutdown(struct pci_dev *pdev)
8873 {
8874         struct ctlr_info *h;
8875
8876         h = pci_get_drvdata(pdev);
8877         /* Turn board interrupts off  and send the flush cache command
8878          * sendcmd will turn off interrupt, and send the flush...
8879          * To write all data in the battery backed cache to disks
8880          */
8881         hpsa_flush_cache(h);
8882         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8883         hpsa_free_irqs(h);                      /* init_one 4 */
8884         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
8885 }
8886
8887 static void hpsa_free_device_info(struct ctlr_info *h)
8888 {
8889         int i;
8890
8891         for (i = 0; i < h->ndevices; i++) {
8892                 kfree(h->dev[i]);
8893                 h->dev[i] = NULL;
8894         }
8895 }
8896
8897 static void hpsa_remove_one(struct pci_dev *pdev)
8898 {
8899         struct ctlr_info *h;
8900         unsigned long flags;
8901
8902         if (pci_get_drvdata(pdev) == NULL) {
8903                 dev_err(&pdev->dev, "unable to remove device\n");
8904                 return;
8905         }
8906         h = pci_get_drvdata(pdev);
8907
8908         /* Get rid of any controller monitoring work items */
8909         spin_lock_irqsave(&h->lock, flags);
8910         h->remove_in_progress = 1;
8911         spin_unlock_irqrestore(&h->lock, flags);
8912         cancel_delayed_work_sync(&h->monitor_ctlr_work);
8913         cancel_delayed_work_sync(&h->rescan_ctlr_work);
8914         cancel_delayed_work_sync(&h->event_monitor_work);
8915         destroy_workqueue(h->rescan_ctlr_wq);
8916         destroy_workqueue(h->resubmit_wq);
8917
8918         hpsa_delete_sas_host(h);
8919
8920         /*
8921          * Call before disabling interrupts.
8922          * scsi_remove_host can trigger I/O operations especially
8923          * when multipath is enabled. There can be SYNCHRONIZE CACHE
8924          * operations which cannot complete and will hang the system.
8925          */
8926         if (h->scsi_host)
8927                 scsi_remove_host(h->scsi_host);         /* init_one 8 */
8928         /* includes hpsa_free_irqs - init_one 4 */
8929         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8930         hpsa_shutdown(pdev);
8931
8932         hpsa_free_device_info(h);               /* scan */
8933
8934         kfree(h->hba_inquiry_data);                     /* init_one 10 */
8935         h->hba_inquiry_data = NULL;                     /* init_one 10 */
8936         hpsa_free_ioaccel2_sg_chain_blocks(h);
8937         hpsa_free_performant_mode(h);                   /* init_one 7 */
8938         hpsa_free_sg_chain_blocks(h);                   /* init_one 6 */
8939         hpsa_free_cmd_pool(h);                          /* init_one 5 */
8940         kfree(h->lastlogicals);
8941
8942         /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8943
8944         scsi_host_put(h->scsi_host);                    /* init_one 3 */
8945         h->scsi_host = NULL;                            /* init_one 3 */
8946
8947         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8948         hpsa_free_pci_init(h);                          /* init_one 2.5 */
8949
8950         free_percpu(h->lockup_detected);                /* init_one 2 */
8951         h->lockup_detected = NULL;                      /* init_one 2 */
8952         /* (void) pci_disable_pcie_error_reporting(pdev); */    /* init_one 1 */
8953
8954         hpda_free_ctlr_info(h);                         /* init_one 1 */
8955 }
8956
8957 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
8958         __attribute__((unused)) pm_message_t state)
8959 {
8960         return -ENOSYS;
8961 }
8962
8963 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
8964 {
8965         return -ENOSYS;
8966 }
8967
8968 static struct pci_driver hpsa_pci_driver = {
8969         .name = HPSA,
8970         .probe = hpsa_init_one,
8971         .remove = hpsa_remove_one,
8972         .id_table = hpsa_pci_device_id, /* id_table */
8973         .shutdown = hpsa_shutdown,
8974         .suspend = hpsa_suspend,
8975         .resume = hpsa_resume,
8976 };
8977
8978 /* Fill in bucket_map[], given nsgs (the max number of
8979  * scatter gather elements supported) and bucket[],
8980  * which is an array of 8 integers.  The bucket[] array
8981  * contains 8 different DMA transfer sizes (in 16
8982  * byte increments) which the controller uses to fetch
8983  * commands.  This function fills in bucket_map[], which
8984  * maps a given number of scatter gather elements to one of
8985  * the 8 DMA transfer sizes.  The point of it is to allow the
8986  * controller to only do as much DMA as needed to fetch the
8987  * command, with the DMA transfer size encoded in the lower
8988  * bits of the command address.
8989  */
8990 static void  calc_bucket_map(int bucket[], int num_buckets,
8991         int nsgs, int min_blocks, u32 *bucket_map)
8992 {
8993         int i, j, b, size;
8994
8995         /* Note, bucket_map must have nsgs+1 entries. */
8996         for (i = 0; i <= nsgs; i++) {
8997                 /* Compute size of a command with i SG entries */
8998                 size = i + min_blocks;
8999                 b = num_buckets; /* Assume the biggest bucket */
9000                 /* Find the bucket that is just big enough */
9001                 for (j = 0; j < num_buckets; j++) {
9002                         if (bucket[j] >= size) {
9003                                 b = j;
9004                                 break;
9005                         }
9006                 }
9007                 /* for a command with i SG entries, use bucket b. */
9008                 bucket_map[i] = b;
9009         }
9010 }
9011
9012 /*
9013  * return -ENODEV on err, 0 on success (or no action)
9014  * allocates numerous items that must be freed later
9015  */
9016 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9017 {
9018         int i;
9019         unsigned long register_value;
9020         unsigned long transMethod = CFGTBL_Trans_Performant |
9021                         (trans_support & CFGTBL_Trans_use_short_tags) |
9022                                 CFGTBL_Trans_enable_directed_msix |
9023                         (trans_support & (CFGTBL_Trans_io_accel1 |
9024                                 CFGTBL_Trans_io_accel2));
9025         struct access_method access = SA5_performant_access;
9026
9027         /* This is a bit complicated.  There are 8 registers on
9028          * the controller which we write to to tell it 8 different
9029          * sizes of commands which there may be.  It's a way of
9030          * reducing the DMA done to fetch each command.  Encoded into
9031          * each command's tag are 3 bits which communicate to the controller
9032          * which of the eight sizes that command fits within.  The size of
9033          * each command depends on how many scatter gather entries there are.
9034          * Each SG entry requires 16 bytes.  The eight registers are programmed
9035          * with the number of 16-byte blocks a command of that size requires.
9036          * The smallest command possible requires 5 such 16 byte blocks.
9037          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9038          * blocks.  Note, this only extends to the SG entries contained
9039          * within the command block, and does not extend to chained blocks
9040          * of SG elements.   bft[] contains the eight values we write to
9041          * the registers.  They are not evenly distributed, but have more
9042          * sizes for small commands, and fewer sizes for larger commands.
9043          */
9044         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9045 #define MIN_IOACCEL2_BFT_ENTRY 5
9046 #define HPSA_IOACCEL2_HEADER_SZ 4
9047         int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9048                         13, 14, 15, 16, 17, 18, 19,
9049                         HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9050         BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9051         BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9052         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9053                                  16 * MIN_IOACCEL2_BFT_ENTRY);
9054         BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9055         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9056         /*  5 = 1 s/g entry or 4k
9057          *  6 = 2 s/g entry or 8k
9058          *  8 = 4 s/g entry or 16k
9059          * 10 = 6 s/g entry or 24k
9060          */
9061
9062         /* If the controller supports either ioaccel method then
9063          * we can also use the RAID stack submit path that does not
9064          * perform the superfluous readl() after each command submission.
9065          */
9066         if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9067                 access = SA5_performant_access_no_read;
9068
9069         /* Controller spec: zero out this buffer. */
9070         for (i = 0; i < h->nreply_queues; i++)
9071                 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9072
9073         bft[7] = SG_ENTRIES_IN_CMD + 4;
9074         calc_bucket_map(bft, ARRAY_SIZE(bft),
9075                                 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9076         for (i = 0; i < 8; i++)
9077                 writel(bft[i], &h->transtable->BlockFetch[i]);
9078
9079         /* size of controller ring buffer */
9080         writel(h->max_commands, &h->transtable->RepQSize);
9081         writel(h->nreply_queues, &h->transtable->RepQCount);
9082         writel(0, &h->transtable->RepQCtrAddrLow32);
9083         writel(0, &h->transtable->RepQCtrAddrHigh32);
9084
9085         for (i = 0; i < h->nreply_queues; i++) {
9086                 writel(0, &h->transtable->RepQAddr[i].upper);
9087                 writel(h->reply_queue[i].busaddr,
9088                         &h->transtable->RepQAddr[i].lower);
9089         }
9090
9091         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9092         writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9093         /*
9094          * enable outbound interrupt coalescing in accelerator mode;
9095          */
9096         if (trans_support & CFGTBL_Trans_io_accel1) {
9097                 access = SA5_ioaccel_mode1_access;
9098                 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9099                 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9100         } else
9101                 if (trans_support & CFGTBL_Trans_io_accel2)
9102                         access = SA5_ioaccel_mode2_access;
9103         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9104         if (hpsa_wait_for_mode_change_ack(h)) {
9105                 dev_err(&h->pdev->dev,
9106                         "performant mode problem - doorbell timeout\n");
9107                 return -ENODEV;
9108         }
9109         register_value = readl(&(h->cfgtable->TransportActive));
9110         if (!(register_value & CFGTBL_Trans_Performant)) {
9111                 dev_err(&h->pdev->dev,
9112                         "performant mode problem - transport not active\n");
9113                 return -ENODEV;
9114         }
9115         /* Change the access methods to the performant access methods */
9116         h->access = access;
9117         h->transMethod = transMethod;
9118
9119         if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9120                 (trans_support & CFGTBL_Trans_io_accel2)))
9121                 return 0;
9122
9123         if (trans_support & CFGTBL_Trans_io_accel1) {
9124                 /* Set up I/O accelerator mode */
9125                 for (i = 0; i < h->nreply_queues; i++) {
9126                         writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9127                         h->reply_queue[i].current_entry =
9128                                 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9129                 }
9130                 bft[7] = h->ioaccel_maxsg + 8;
9131                 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9132                                 h->ioaccel1_blockFetchTable);
9133
9134                 /* initialize all reply queue entries to unused */
9135                 for (i = 0; i < h->nreply_queues; i++)
9136                         memset(h->reply_queue[i].head,
9137                                 (u8) IOACCEL_MODE1_REPLY_UNUSED,
9138                                 h->reply_queue_size);
9139
9140                 /* set all the constant fields in the accelerator command
9141                  * frames once at init time to save CPU cycles later.
9142                  */
9143                 for (i = 0; i < h->nr_cmds; i++) {
9144                         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9145
9146                         cp->function = IOACCEL1_FUNCTION_SCSIIO;
9147                         cp->err_info = (u32) (h->errinfo_pool_dhandle +
9148                                         (i * sizeof(struct ErrorInfo)));
9149                         cp->err_info_len = sizeof(struct ErrorInfo);
9150                         cp->sgl_offset = IOACCEL1_SGLOFFSET;
9151                         cp->host_context_flags =
9152                                 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9153                         cp->timeout_sec = 0;
9154                         cp->ReplyQueue = 0;
9155                         cp->tag =
9156                                 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9157                         cp->host_addr =
9158                                 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9159                                         (i * sizeof(struct io_accel1_cmd)));
9160                 }
9161         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9162                 u64 cfg_offset, cfg_base_addr_index;
9163                 u32 bft2_offset, cfg_base_addr;
9164                 int rc;
9165
9166                 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9167                         &cfg_base_addr_index, &cfg_offset);
9168                 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9169                 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9170                 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9171                                 4, h->ioaccel2_blockFetchTable);
9172                 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9173                 BUILD_BUG_ON(offsetof(struct CfgTable,
9174                                 io_accel_request_size_offset) != 0xb8);
9175                 h->ioaccel2_bft2_regs =
9176                         remap_pci_mem(pci_resource_start(h->pdev,
9177                                         cfg_base_addr_index) +
9178                                         cfg_offset + bft2_offset,
9179                                         ARRAY_SIZE(bft2) *
9180                                         sizeof(*h->ioaccel2_bft2_regs));
9181                 for (i = 0; i < ARRAY_SIZE(bft2); i++)
9182                         writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9183         }
9184         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9185         if (hpsa_wait_for_mode_change_ack(h)) {
9186                 dev_err(&h->pdev->dev,
9187                         "performant mode problem - enabling ioaccel mode\n");
9188                 return -ENODEV;
9189         }
9190         return 0;
9191 }
9192
9193 /* Free ioaccel1 mode command blocks and block fetch table */
9194 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9195 {
9196         if (h->ioaccel_cmd_pool) {
9197                 pci_free_consistent(h->pdev,
9198                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9199                         h->ioaccel_cmd_pool,
9200                         h->ioaccel_cmd_pool_dhandle);
9201                 h->ioaccel_cmd_pool = NULL;
9202                 h->ioaccel_cmd_pool_dhandle = 0;
9203         }
9204         kfree(h->ioaccel1_blockFetchTable);
9205         h->ioaccel1_blockFetchTable = NULL;
9206 }
9207
9208 /* Allocate ioaccel1 mode command blocks and block fetch table */
9209 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9210 {
9211         h->ioaccel_maxsg =
9212                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9213         if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9214                 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9215
9216         /* Command structures must be aligned on a 128-byte boundary
9217          * because the 7 lower bits of the address are used by the
9218          * hardware.
9219          */
9220         BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9221                         IOACCEL1_COMMANDLIST_ALIGNMENT);
9222         h->ioaccel_cmd_pool =
9223                 pci_alloc_consistent(h->pdev,
9224                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9225                         &(h->ioaccel_cmd_pool_dhandle));
9226
9227         h->ioaccel1_blockFetchTable =
9228                 kmalloc(((h->ioaccel_maxsg + 1) *
9229                                 sizeof(u32)), GFP_KERNEL);
9230
9231         if ((h->ioaccel_cmd_pool == NULL) ||
9232                 (h->ioaccel1_blockFetchTable == NULL))
9233                 goto clean_up;
9234
9235         memset(h->ioaccel_cmd_pool, 0,
9236                 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9237         return 0;
9238
9239 clean_up:
9240         hpsa_free_ioaccel1_cmd_and_bft(h);
9241         return -ENOMEM;
9242 }
9243
9244 /* Free ioaccel2 mode command blocks and block fetch table */
9245 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9246 {
9247         hpsa_free_ioaccel2_sg_chain_blocks(h);
9248
9249         if (h->ioaccel2_cmd_pool) {
9250                 pci_free_consistent(h->pdev,
9251                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9252                         h->ioaccel2_cmd_pool,
9253                         h->ioaccel2_cmd_pool_dhandle);
9254                 h->ioaccel2_cmd_pool = NULL;
9255                 h->ioaccel2_cmd_pool_dhandle = 0;
9256         }
9257         kfree(h->ioaccel2_blockFetchTable);
9258         h->ioaccel2_blockFetchTable = NULL;
9259 }
9260
9261 /* Allocate ioaccel2 mode command blocks and block fetch table */
9262 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9263 {
9264         int rc;
9265
9266         /* Allocate ioaccel2 mode command blocks and block fetch table */
9267
9268         h->ioaccel_maxsg =
9269                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9270         if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9271                 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9272
9273         BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9274                         IOACCEL2_COMMANDLIST_ALIGNMENT);
9275         h->ioaccel2_cmd_pool =
9276                 pci_alloc_consistent(h->pdev,
9277                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9278                         &(h->ioaccel2_cmd_pool_dhandle));
9279
9280         h->ioaccel2_blockFetchTable =
9281                 kmalloc(((h->ioaccel_maxsg + 1) *
9282                                 sizeof(u32)), GFP_KERNEL);
9283
9284         if ((h->ioaccel2_cmd_pool == NULL) ||
9285                 (h->ioaccel2_blockFetchTable == NULL)) {
9286                 rc = -ENOMEM;
9287                 goto clean_up;
9288         }
9289
9290         rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9291         if (rc)
9292                 goto clean_up;
9293
9294         memset(h->ioaccel2_cmd_pool, 0,
9295                 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9296         return 0;
9297
9298 clean_up:
9299         hpsa_free_ioaccel2_cmd_and_bft(h);
9300         return rc;
9301 }
9302
9303 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9304 static void hpsa_free_performant_mode(struct ctlr_info *h)
9305 {
9306         kfree(h->blockFetchTable);
9307         h->blockFetchTable = NULL;
9308         hpsa_free_reply_queues(h);
9309         hpsa_free_ioaccel1_cmd_and_bft(h);
9310         hpsa_free_ioaccel2_cmd_and_bft(h);
9311 }
9312
9313 /* return -ENODEV on error, 0 on success (or no action)
9314  * allocates numerous items that must be freed later
9315  */
9316 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9317 {
9318         u32 trans_support;
9319         unsigned long transMethod = CFGTBL_Trans_Performant |
9320                                         CFGTBL_Trans_use_short_tags;
9321         int i, rc;
9322
9323         if (hpsa_simple_mode)
9324                 return 0;
9325
9326         trans_support = readl(&(h->cfgtable->TransportSupport));
9327         if (!(trans_support & PERFORMANT_MODE))
9328                 return 0;
9329
9330         /* Check for I/O accelerator mode support */
9331         if (trans_support & CFGTBL_Trans_io_accel1) {
9332                 transMethod |= CFGTBL_Trans_io_accel1 |
9333                                 CFGTBL_Trans_enable_directed_msix;
9334                 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9335                 if (rc)
9336                         return rc;
9337         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9338                 transMethod |= CFGTBL_Trans_io_accel2 |
9339                                 CFGTBL_Trans_enable_directed_msix;
9340                 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9341                 if (rc)
9342                         return rc;
9343         }
9344
9345         h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9346         hpsa_get_max_perf_mode_cmds(h);
9347         /* Performant mode ring buffer and supporting data structures */
9348         h->reply_queue_size = h->max_commands * sizeof(u64);
9349
9350         for (i = 0; i < h->nreply_queues; i++) {
9351                 h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
9352                                                 h->reply_queue_size,
9353                                                 &(h->reply_queue[i].busaddr));
9354                 if (!h->reply_queue[i].head) {
9355                         rc = -ENOMEM;
9356                         goto clean1;    /* rq, ioaccel */
9357                 }
9358                 h->reply_queue[i].size = h->max_commands;
9359                 h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9360                 h->reply_queue[i].current_entry = 0;
9361         }
9362
9363         /* Need a block fetch table for performant mode */
9364         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9365                                 sizeof(u32)), GFP_KERNEL);
9366         if (!h->blockFetchTable) {
9367                 rc = -ENOMEM;
9368                 goto clean1;    /* rq, ioaccel */
9369         }
9370
9371         rc = hpsa_enter_performant_mode(h, trans_support);
9372         if (rc)
9373                 goto clean2;    /* bft, rq, ioaccel */
9374         return 0;
9375
9376 clean2: /* bft, rq, ioaccel */
9377         kfree(h->blockFetchTable);
9378         h->blockFetchTable = NULL;
9379 clean1: /* rq, ioaccel */
9380         hpsa_free_reply_queues(h);
9381         hpsa_free_ioaccel1_cmd_and_bft(h);
9382         hpsa_free_ioaccel2_cmd_and_bft(h);
9383         return rc;
9384 }
9385
9386 static int is_accelerated_cmd(struct CommandList *c)
9387 {
9388         return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9389 }
9390
9391 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9392 {
9393         struct CommandList *c = NULL;
9394         int i, accel_cmds_out;
9395         int refcount;
9396
9397         do { /* wait for all outstanding ioaccel commands to drain out */
9398                 accel_cmds_out = 0;
9399                 for (i = 0; i < h->nr_cmds; i++) {
9400                         c = h->cmd_pool + i;
9401                         refcount = atomic_inc_return(&c->refcount);
9402                         if (refcount > 1) /* Command is allocated */
9403                                 accel_cmds_out += is_accelerated_cmd(c);
9404                         cmd_free(h, c);
9405                 }
9406                 if (accel_cmds_out <= 0)
9407                         break;
9408                 msleep(100);
9409         } while (1);
9410 }
9411
9412 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9413                                 struct hpsa_sas_port *hpsa_sas_port)
9414 {
9415         struct hpsa_sas_phy *hpsa_sas_phy;
9416         struct sas_phy *phy;
9417
9418         hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9419         if (!hpsa_sas_phy)
9420                 return NULL;
9421
9422         phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9423                 hpsa_sas_port->next_phy_index);
9424         if (!phy) {
9425                 kfree(hpsa_sas_phy);
9426                 return NULL;
9427         }
9428
9429         hpsa_sas_port->next_phy_index++;
9430         hpsa_sas_phy->phy = phy;
9431         hpsa_sas_phy->parent_port = hpsa_sas_port;
9432
9433         return hpsa_sas_phy;
9434 }
9435
9436 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9437 {
9438         struct sas_phy *phy = hpsa_sas_phy->phy;
9439
9440         sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9441         if (hpsa_sas_phy->added_to_port)
9442                 list_del(&hpsa_sas_phy->phy_list_entry);
9443         sas_phy_delete(phy);
9444         kfree(hpsa_sas_phy);
9445 }
9446
9447 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9448 {
9449         int rc;
9450         struct hpsa_sas_port *hpsa_sas_port;
9451         struct sas_phy *phy;
9452         struct sas_identify *identify;
9453
9454         hpsa_sas_port = hpsa_sas_phy->parent_port;
9455         phy = hpsa_sas_phy->phy;
9456
9457         identify = &phy->identify;
9458         memset(identify, 0, sizeof(*identify));
9459         identify->sas_address = hpsa_sas_port->sas_address;
9460         identify->device_type = SAS_END_DEVICE;
9461         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9462         identify->target_port_protocols = SAS_PROTOCOL_STP;
9463         phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9464         phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9465         phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9466         phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9467         phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9468
9469         rc = sas_phy_add(hpsa_sas_phy->phy);
9470         if (rc)
9471                 return rc;
9472
9473         sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9474         list_add_tail(&hpsa_sas_phy->phy_list_entry,
9475                         &hpsa_sas_port->phy_list_head);
9476         hpsa_sas_phy->added_to_port = true;
9477
9478         return 0;
9479 }
9480
9481 static int
9482         hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9483                                 struct sas_rphy *rphy)
9484 {
9485         struct sas_identify *identify;
9486
9487         identify = &rphy->identify;
9488         identify->sas_address = hpsa_sas_port->sas_address;
9489         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9490         identify->target_port_protocols = SAS_PROTOCOL_STP;
9491
9492         return sas_rphy_add(rphy);
9493 }
9494
9495 static struct hpsa_sas_port
9496         *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9497                                 u64 sas_address)
9498 {
9499         int rc;
9500         struct hpsa_sas_port *hpsa_sas_port;
9501         struct sas_port *port;
9502
9503         hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9504         if (!hpsa_sas_port)
9505                 return NULL;
9506
9507         INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9508         hpsa_sas_port->parent_node = hpsa_sas_node;
9509
9510         port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9511         if (!port)
9512                 goto free_hpsa_port;
9513
9514         rc = sas_port_add(port);
9515         if (rc)
9516                 goto free_sas_port;
9517
9518         hpsa_sas_port->port = port;
9519         hpsa_sas_port->sas_address = sas_address;
9520         list_add_tail(&hpsa_sas_port->port_list_entry,
9521                         &hpsa_sas_node->port_list_head);
9522
9523         return hpsa_sas_port;
9524
9525 free_sas_port:
9526         sas_port_free(port);
9527 free_hpsa_port:
9528         kfree(hpsa_sas_port);
9529
9530         return NULL;
9531 }
9532
9533 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9534 {
9535         struct hpsa_sas_phy *hpsa_sas_phy;
9536         struct hpsa_sas_phy *next;
9537
9538         list_for_each_entry_safe(hpsa_sas_phy, next,
9539                         &hpsa_sas_port->phy_list_head, phy_list_entry)
9540                 hpsa_free_sas_phy(hpsa_sas_phy);
9541
9542         sas_port_delete(hpsa_sas_port->port);
9543         list_del(&hpsa_sas_port->port_list_entry);
9544         kfree(hpsa_sas_port);
9545 }
9546
9547 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9548 {
9549         struct hpsa_sas_node *hpsa_sas_node;
9550
9551         hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9552         if (hpsa_sas_node) {
9553                 hpsa_sas_node->parent_dev = parent_dev;
9554                 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9555         }
9556
9557         return hpsa_sas_node;
9558 }
9559
9560 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9561 {
9562         struct hpsa_sas_port *hpsa_sas_port;
9563         struct hpsa_sas_port *next;
9564
9565         if (!hpsa_sas_node)
9566                 return;
9567
9568         list_for_each_entry_safe(hpsa_sas_port, next,
9569                         &hpsa_sas_node->port_list_head, port_list_entry)
9570                 hpsa_free_sas_port(hpsa_sas_port);
9571
9572         kfree(hpsa_sas_node);
9573 }
9574
9575 static struct hpsa_scsi_dev_t
9576         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9577                                         struct sas_rphy *rphy)
9578 {
9579         int i;
9580         struct hpsa_scsi_dev_t *device;
9581
9582         for (i = 0; i < h->ndevices; i++) {
9583                 device = h->dev[i];
9584                 if (!device->sas_port)
9585                         continue;
9586                 if (device->sas_port->rphy == rphy)
9587                         return device;
9588         }
9589
9590         return NULL;
9591 }
9592
9593 static int hpsa_add_sas_host(struct ctlr_info *h)
9594 {
9595         int rc;
9596         struct device *parent_dev;
9597         struct hpsa_sas_node *hpsa_sas_node;
9598         struct hpsa_sas_port *hpsa_sas_port;
9599         struct hpsa_sas_phy *hpsa_sas_phy;
9600
9601         parent_dev = &h->scsi_host->shost_dev;
9602
9603         hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9604         if (!hpsa_sas_node)
9605                 return -ENOMEM;
9606
9607         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9608         if (!hpsa_sas_port) {
9609                 rc = -ENODEV;
9610                 goto free_sas_node;
9611         }
9612
9613         hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9614         if (!hpsa_sas_phy) {
9615                 rc = -ENODEV;
9616                 goto free_sas_port;
9617         }
9618
9619         rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9620         if (rc)
9621                 goto free_sas_phy;
9622
9623         h->sas_host = hpsa_sas_node;
9624
9625         return 0;
9626
9627 free_sas_phy:
9628         hpsa_free_sas_phy(hpsa_sas_phy);
9629 free_sas_port:
9630         hpsa_free_sas_port(hpsa_sas_port);
9631 free_sas_node:
9632         hpsa_free_sas_node(hpsa_sas_node);
9633
9634         return rc;
9635 }
9636
9637 static void hpsa_delete_sas_host(struct ctlr_info *h)
9638 {
9639         hpsa_free_sas_node(h->sas_host);
9640 }
9641
9642 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9643                                 struct hpsa_scsi_dev_t *device)
9644 {
9645         int rc;
9646         struct hpsa_sas_port *hpsa_sas_port;
9647         struct sas_rphy *rphy;
9648
9649         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9650         if (!hpsa_sas_port)
9651                 return -ENOMEM;
9652
9653         rphy = sas_end_device_alloc(hpsa_sas_port->port);
9654         if (!rphy) {
9655                 rc = -ENODEV;
9656                 goto free_sas_port;
9657         }
9658
9659         hpsa_sas_port->rphy = rphy;
9660         device->sas_port = hpsa_sas_port;
9661
9662         rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9663         if (rc)
9664                 goto free_sas_port;
9665
9666         return 0;
9667
9668 free_sas_port:
9669         hpsa_free_sas_port(hpsa_sas_port);
9670         device->sas_port = NULL;
9671
9672         return rc;
9673 }
9674
9675 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9676 {
9677         if (device->sas_port) {
9678                 hpsa_free_sas_port(device->sas_port);
9679                 device->sas_port = NULL;
9680         }
9681 }
9682
9683 static int
9684 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9685 {
9686         return 0;
9687 }
9688
9689 static int
9690 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9691 {
9692         *identifier = rphy->identify.sas_address;
9693         return 0;
9694 }
9695
9696 static int
9697 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9698 {
9699         return -ENXIO;
9700 }
9701
9702 static int
9703 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9704 {
9705         return 0;
9706 }
9707
9708 static int
9709 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9710 {
9711         return 0;
9712 }
9713
9714 static int
9715 hpsa_sas_phy_setup(struct sas_phy *phy)
9716 {
9717         return 0;
9718 }
9719
9720 static void
9721 hpsa_sas_phy_release(struct sas_phy *phy)
9722 {
9723 }
9724
9725 static int
9726 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9727 {
9728         return -EINVAL;
9729 }
9730
9731 static struct sas_function_template hpsa_sas_transport_functions = {
9732         .get_linkerrors = hpsa_sas_get_linkerrors,
9733         .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9734         .get_bay_identifier = hpsa_sas_get_bay_identifier,
9735         .phy_reset = hpsa_sas_phy_reset,
9736         .phy_enable = hpsa_sas_phy_enable,
9737         .phy_setup = hpsa_sas_phy_setup,
9738         .phy_release = hpsa_sas_phy_release,
9739         .set_phy_speed = hpsa_sas_phy_speed,
9740 };
9741
9742 /*
9743  *  This is it.  Register the PCI driver information for the cards we control
9744  *  the OS will call our registered routines when it finds one of our cards.
9745  */
9746 static int __init hpsa_init(void)
9747 {
9748         int rc;
9749
9750         hpsa_sas_transport_template =
9751                 sas_attach_transport(&hpsa_sas_transport_functions);
9752         if (!hpsa_sas_transport_template)
9753                 return -ENODEV;
9754
9755         rc = pci_register_driver(&hpsa_pci_driver);
9756
9757         if (rc)
9758                 sas_release_transport(hpsa_sas_transport_template);
9759
9760         return rc;
9761 }
9762
9763 static void __exit hpsa_cleanup(void)
9764 {
9765         pci_unregister_driver(&hpsa_pci_driver);
9766         sas_release_transport(hpsa_sas_transport_template);
9767 }
9768
9769 static void __attribute__((unused)) verify_offsets(void)
9770 {
9771 #define VERIFY_OFFSET(member, offset) \
9772         BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9773
9774         VERIFY_OFFSET(structure_size, 0);
9775         VERIFY_OFFSET(volume_blk_size, 4);
9776         VERIFY_OFFSET(volume_blk_cnt, 8);
9777         VERIFY_OFFSET(phys_blk_shift, 16);
9778         VERIFY_OFFSET(parity_rotation_shift, 17);
9779         VERIFY_OFFSET(strip_size, 18);
9780         VERIFY_OFFSET(disk_starting_blk, 20);
9781         VERIFY_OFFSET(disk_blk_cnt, 28);
9782         VERIFY_OFFSET(data_disks_per_row, 36);
9783         VERIFY_OFFSET(metadata_disks_per_row, 38);
9784         VERIFY_OFFSET(row_cnt, 40);
9785         VERIFY_OFFSET(layout_map_count, 42);
9786         VERIFY_OFFSET(flags, 44);
9787         VERIFY_OFFSET(dekindex, 46);
9788         /* VERIFY_OFFSET(reserved, 48 */
9789         VERIFY_OFFSET(data, 64);
9790
9791 #undef VERIFY_OFFSET
9792
9793 #define VERIFY_OFFSET(member, offset) \
9794         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9795
9796         VERIFY_OFFSET(IU_type, 0);
9797         VERIFY_OFFSET(direction, 1);
9798         VERIFY_OFFSET(reply_queue, 2);
9799         /* VERIFY_OFFSET(reserved1, 3);  */
9800         VERIFY_OFFSET(scsi_nexus, 4);
9801         VERIFY_OFFSET(Tag, 8);
9802         VERIFY_OFFSET(cdb, 16);
9803         VERIFY_OFFSET(cciss_lun, 32);
9804         VERIFY_OFFSET(data_len, 40);
9805         VERIFY_OFFSET(cmd_priority_task_attr, 44);
9806         VERIFY_OFFSET(sg_count, 45);
9807         /* VERIFY_OFFSET(reserved3 */
9808         VERIFY_OFFSET(err_ptr, 48);
9809         VERIFY_OFFSET(err_len, 56);
9810         /* VERIFY_OFFSET(reserved4  */
9811         VERIFY_OFFSET(sg, 64);
9812
9813 #undef VERIFY_OFFSET
9814
9815 #define VERIFY_OFFSET(member, offset) \
9816         BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9817
9818         VERIFY_OFFSET(dev_handle, 0x00);
9819         VERIFY_OFFSET(reserved1, 0x02);
9820         VERIFY_OFFSET(function, 0x03);
9821         VERIFY_OFFSET(reserved2, 0x04);
9822         VERIFY_OFFSET(err_info, 0x0C);
9823         VERIFY_OFFSET(reserved3, 0x10);
9824         VERIFY_OFFSET(err_info_len, 0x12);
9825         VERIFY_OFFSET(reserved4, 0x13);
9826         VERIFY_OFFSET(sgl_offset, 0x14);
9827         VERIFY_OFFSET(reserved5, 0x15);
9828         VERIFY_OFFSET(transfer_len, 0x1C);
9829         VERIFY_OFFSET(reserved6, 0x20);
9830         VERIFY_OFFSET(io_flags, 0x24);
9831         VERIFY_OFFSET(reserved7, 0x26);
9832         VERIFY_OFFSET(LUN, 0x34);
9833         VERIFY_OFFSET(control, 0x3C);
9834         VERIFY_OFFSET(CDB, 0x40);
9835         VERIFY_OFFSET(reserved8, 0x50);
9836         VERIFY_OFFSET(host_context_flags, 0x60);
9837         VERIFY_OFFSET(timeout_sec, 0x62);
9838         VERIFY_OFFSET(ReplyQueue, 0x64);
9839         VERIFY_OFFSET(reserved9, 0x65);
9840         VERIFY_OFFSET(tag, 0x68);
9841         VERIFY_OFFSET(host_addr, 0x70);
9842         VERIFY_OFFSET(CISS_LUN, 0x78);
9843         VERIFY_OFFSET(SG, 0x78 + 8);
9844 #undef VERIFY_OFFSET
9845 }
9846
9847 module_init(hpsa_init);
9848 module_exit(hpsa_cleanup);