scsi: replace strnicmp with strncasecmp
[sfrench/cifs-2.6.git] / drivers / scsi / advansys.c
1 #define DRV_NAME "advansys"
2 #define ASC_VERSION "3.4"       /* AdvanSys Driver Version */
3
4 /*
5  * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
6  *
7  * Copyright (c) 1995-2000 Advanced System Products, Inc.
8  * Copyright (c) 2000-2001 ConnectCom Solutions, Inc.
9  * Copyright (c) 2007 Matthew Wilcox <matthew@wil.cx>
10  * All Rights Reserved.
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2 of the License, or
15  * (at your option) any later version.
16  */
17
18 /*
19  * As of March 8, 2000 Advanced System Products, Inc. (AdvanSys)
20  * changed its name to ConnectCom Solutions, Inc.
21  * On June 18, 2001 Initio Corp. acquired ConnectCom's SCSI assets
22  */
23
24 #include <linux/module.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/types.h>
28 #include <linux/ioport.h>
29 #include <linux/interrupt.h>
30 #include <linux/delay.h>
31 #include <linux/slab.h>
32 #include <linux/mm.h>
33 #include <linux/proc_fs.h>
34 #include <linux/init.h>
35 #include <linux/blkdev.h>
36 #include <linux/isa.h>
37 #include <linux/eisa.h>
38 #include <linux/pci.h>
39 #include <linux/spinlock.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/firmware.h>
42
43 #include <asm/io.h>
44 #include <asm/dma.h>
45
46 #include <scsi/scsi_cmnd.h>
47 #include <scsi/scsi_device.h>
48 #include <scsi/scsi_tcq.h>
49 #include <scsi/scsi.h>
50 #include <scsi/scsi_host.h>
51
52 /* FIXME:
53  *
54  *  1. Although all of the necessary command mapping places have the
55  *     appropriate dma_map.. APIs, the driver still processes its internal
56  *     queue using bus_to_virt() and virt_to_bus() which are illegal under
57  *     the API.  The entire queue processing structure will need to be
58  *     altered to fix this.
59  *  2. Need to add memory mapping workaround. Test the memory mapping.
60  *     If it doesn't work revert to I/O port access. Can a test be done
61  *     safely?
62  *  3. Handle an interrupt not working. Keep an interrupt counter in
63  *     the interrupt handler. In the timeout function if the interrupt
64  *     has not occurred then print a message and run in polled mode.
65  *  4. Need to add support for target mode commands, cf. CAM XPT.
66  *  5. check DMA mapping functions for failure
67  *  6. Use scsi_transport_spi
68  *  7. advansys_info is not safe against multiple simultaneous callers
69  *  8. Add module_param to override ISA/VLB ioport array
70  */
71 #warning this driver is still not properly converted to the DMA API
72
73 /* Enable driver /proc statistics. */
74 #define ADVANSYS_STATS
75
76 /* Enable driver tracing. */
77 #undef ADVANSYS_DEBUG
78
79 /*
80  * Portable Data Types
81  *
82  * Any instance where a 32-bit long or pointer type is assumed
83  * for precision or HW defined structures, the following define
84  * types must be used. In Linux the char, short, and int types
85  * are all consistent at 8, 16, and 32 bits respectively. Pointers
86  * and long types are 64 bits on Alpha and UltraSPARC.
87  */
88 #define ASC_PADDR __u32         /* Physical/Bus address data type. */
89 #define ASC_VADDR __u32         /* Virtual address data type. */
90 #define ASC_DCNT  __u32         /* Unsigned Data count type. */
91 #define ASC_SDCNT __s32         /* Signed Data count type. */
92
93 typedef unsigned char uchar;
94
95 #ifndef TRUE
96 #define TRUE     (1)
97 #endif
98 #ifndef FALSE
99 #define FALSE    (0)
100 #endif
101
102 #define ERR      (-1)
103 #define UW_ERR   (uint)(0xFFFF)
104 #define isodd_word(val)   ((((uint)val) & (uint)0x0001) != 0)
105
106 #define PCI_VENDOR_ID_ASP               0x10cd
107 #define PCI_DEVICE_ID_ASP_1200A         0x1100
108 #define PCI_DEVICE_ID_ASP_ABP940        0x1200
109 #define PCI_DEVICE_ID_ASP_ABP940U       0x1300
110 #define PCI_DEVICE_ID_ASP_ABP940UW      0x2300
111 #define PCI_DEVICE_ID_38C0800_REV1      0x2500
112 #define PCI_DEVICE_ID_38C1600_REV1      0x2700
113
114 /*
115  * Enable CC_VERY_LONG_SG_LIST to support up to 64K element SG lists.
116  * The SRB structure will have to be changed and the ASC_SRB2SCSIQ()
117  * macro re-defined to be able to obtain a ASC_SCSI_Q pointer from the
118  * SRB structure.
119  */
120 #define CC_VERY_LONG_SG_LIST 0
121 #define ASC_SRB2SCSIQ(srb_ptr)  (srb_ptr)
122
123 #define PortAddr                 unsigned int   /* port address size  */
124 #define inp(port)                inb(port)
125 #define outp(port, byte)         outb((byte), (port))
126
127 #define inpw(port)               inw(port)
128 #define outpw(port, word)        outw((word), (port))
129
130 #define ASC_MAX_SG_QUEUE    7
131 #define ASC_MAX_SG_LIST     255
132
133 #define ASC_CS_TYPE  unsigned short
134
135 #define ASC_IS_ISA          (0x0001)
136 #define ASC_IS_ISAPNP       (0x0081)
137 #define ASC_IS_EISA         (0x0002)
138 #define ASC_IS_PCI          (0x0004)
139 #define ASC_IS_PCI_ULTRA    (0x0104)
140 #define ASC_IS_PCMCIA       (0x0008)
141 #define ASC_IS_MCA          (0x0020)
142 #define ASC_IS_VL           (0x0040)
143 #define ASC_IS_WIDESCSI_16  (0x0100)
144 #define ASC_IS_WIDESCSI_32  (0x0200)
145 #define ASC_IS_BIG_ENDIAN   (0x8000)
146
147 #define ASC_CHIP_MIN_VER_VL      (0x01)
148 #define ASC_CHIP_MAX_VER_VL      (0x07)
149 #define ASC_CHIP_MIN_VER_PCI     (0x09)
150 #define ASC_CHIP_MAX_VER_PCI     (0x0F)
151 #define ASC_CHIP_VER_PCI_BIT     (0x08)
152 #define ASC_CHIP_MIN_VER_ISA     (0x11)
153 #define ASC_CHIP_MIN_VER_ISA_PNP (0x21)
154 #define ASC_CHIP_MAX_VER_ISA     (0x27)
155 #define ASC_CHIP_VER_ISA_BIT     (0x30)
156 #define ASC_CHIP_VER_ISAPNP_BIT  (0x20)
157 #define ASC_CHIP_VER_ASYN_BUG    (0x21)
158 #define ASC_CHIP_VER_PCI             0x08
159 #define ASC_CHIP_VER_PCI_ULTRA_3150  (ASC_CHIP_VER_PCI | 0x02)
160 #define ASC_CHIP_VER_PCI_ULTRA_3050  (ASC_CHIP_VER_PCI | 0x03)
161 #define ASC_CHIP_MIN_VER_EISA (0x41)
162 #define ASC_CHIP_MAX_VER_EISA (0x47)
163 #define ASC_CHIP_VER_EISA_BIT (0x40)
164 #define ASC_CHIP_LATEST_VER_EISA   ((ASC_CHIP_MIN_VER_EISA - 1) + 3)
165 #define ASC_MAX_VL_DMA_COUNT    (0x07FFFFFFL)
166 #define ASC_MAX_PCI_DMA_COUNT   (0xFFFFFFFFL)
167 #define ASC_MAX_ISA_DMA_COUNT   (0x00FFFFFFL)
168
169 #define ASC_SCSI_ID_BITS  3
170 #define ASC_SCSI_TIX_TYPE     uchar
171 #define ASC_ALL_DEVICE_BIT_SET  0xFF
172 #define ASC_SCSI_BIT_ID_TYPE  uchar
173 #define ASC_MAX_TID       7
174 #define ASC_MAX_LUN       7
175 #define ASC_SCSI_WIDTH_BIT_SET  0xFF
176 #define ASC_MAX_SENSE_LEN   32
177 #define ASC_MIN_SENSE_LEN   14
178 #define ASC_SCSI_RESET_HOLD_TIME_US  60
179
180 /*
181  * Narrow boards only support 12-byte commands, while wide boards
182  * extend to 16-byte commands.
183  */
184 #define ASC_MAX_CDB_LEN     12
185 #define ADV_MAX_CDB_LEN     16
186
187 #define MS_SDTR_LEN    0x03
188 #define MS_WDTR_LEN    0x02
189
190 #define ASC_SG_LIST_PER_Q   7
191 #define QS_FREE        0x00
192 #define QS_READY       0x01
193 #define QS_DISC1       0x02
194 #define QS_DISC2       0x04
195 #define QS_BUSY        0x08
196 #define QS_ABORTED     0x40
197 #define QS_DONE        0x80
198 #define QC_NO_CALLBACK   0x01
199 #define QC_SG_SWAP_QUEUE 0x02
200 #define QC_SG_HEAD       0x04
201 #define QC_DATA_IN       0x08
202 #define QC_DATA_OUT      0x10
203 #define QC_URGENT        0x20
204 #define QC_MSG_OUT       0x40
205 #define QC_REQ_SENSE     0x80
206 #define QCSG_SG_XFER_LIST  0x02
207 #define QCSG_SG_XFER_MORE  0x04
208 #define QCSG_SG_XFER_END   0x08
209 #define QD_IN_PROGRESS       0x00
210 #define QD_NO_ERROR          0x01
211 #define QD_ABORTED_BY_HOST   0x02
212 #define QD_WITH_ERROR        0x04
213 #define QD_INVALID_REQUEST   0x80
214 #define QD_INVALID_HOST_NUM  0x81
215 #define QD_INVALID_DEVICE    0x82
216 #define QD_ERR_INTERNAL      0xFF
217 #define QHSTA_NO_ERROR               0x00
218 #define QHSTA_M_SEL_TIMEOUT          0x11
219 #define QHSTA_M_DATA_OVER_RUN        0x12
220 #define QHSTA_M_DATA_UNDER_RUN       0x12
221 #define QHSTA_M_UNEXPECTED_BUS_FREE  0x13
222 #define QHSTA_M_BAD_BUS_PHASE_SEQ    0x14
223 #define QHSTA_D_QDONE_SG_LIST_CORRUPTED 0x21
224 #define QHSTA_D_ASC_DVC_ERROR_CODE_SET  0x22
225 #define QHSTA_D_HOST_ABORT_FAILED       0x23
226 #define QHSTA_D_EXE_SCSI_Q_FAILED       0x24
227 #define QHSTA_D_EXE_SCSI_Q_BUSY_TIMEOUT 0x25
228 #define QHSTA_D_ASPI_NO_BUF_POOL        0x26
229 #define QHSTA_M_WTM_TIMEOUT         0x41
230 #define QHSTA_M_BAD_CMPL_STATUS_IN  0x42
231 #define QHSTA_M_NO_AUTO_REQ_SENSE   0x43
232 #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
233 #define QHSTA_M_TARGET_STATUS_BUSY  0x45
234 #define QHSTA_M_BAD_TAG_CODE        0x46
235 #define QHSTA_M_BAD_QUEUE_FULL_OR_BUSY  0x47
236 #define QHSTA_M_HUNG_REQ_SCSI_BUS_RESET 0x48
237 #define QHSTA_D_LRAM_CMP_ERROR        0x81
238 #define QHSTA_M_MICRO_CODE_ERROR_HALT 0xA1
239 #define ASC_FLAG_SCSIQ_REQ        0x01
240 #define ASC_FLAG_BIOS_SCSIQ_REQ   0x02
241 #define ASC_FLAG_BIOS_ASYNC_IO    0x04
242 #define ASC_FLAG_SRB_LINEAR_ADDR  0x08
243 #define ASC_FLAG_WIN16            0x10
244 #define ASC_FLAG_WIN32            0x20
245 #define ASC_FLAG_ISA_OVER_16MB    0x40
246 #define ASC_FLAG_DOS_VM_CALLBACK  0x80
247 #define ASC_TAG_FLAG_EXTRA_BYTES               0x10
248 #define ASC_TAG_FLAG_DISABLE_DISCONNECT        0x04
249 #define ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX  0x08
250 #define ASC_TAG_FLAG_DISABLE_CHK_COND_INT_HOST 0x40
251 #define ASC_SCSIQ_CPY_BEG              4
252 #define ASC_SCSIQ_SGHD_CPY_BEG         2
253 #define ASC_SCSIQ_B_FWD                0
254 #define ASC_SCSIQ_B_BWD                1
255 #define ASC_SCSIQ_B_STATUS             2
256 #define ASC_SCSIQ_B_QNO                3
257 #define ASC_SCSIQ_B_CNTL               4
258 #define ASC_SCSIQ_B_SG_QUEUE_CNT       5
259 #define ASC_SCSIQ_D_DATA_ADDR          8
260 #define ASC_SCSIQ_D_DATA_CNT          12
261 #define ASC_SCSIQ_B_SENSE_LEN         20
262 #define ASC_SCSIQ_DONE_INFO_BEG       22
263 #define ASC_SCSIQ_D_SRBPTR            22
264 #define ASC_SCSIQ_B_TARGET_IX         26
265 #define ASC_SCSIQ_B_CDB_LEN           28
266 #define ASC_SCSIQ_B_TAG_CODE          29
267 #define ASC_SCSIQ_W_VM_ID             30
268 #define ASC_SCSIQ_DONE_STATUS         32
269 #define ASC_SCSIQ_HOST_STATUS         33
270 #define ASC_SCSIQ_SCSI_STATUS         34
271 #define ASC_SCSIQ_CDB_BEG             36
272 #define ASC_SCSIQ_DW_REMAIN_XFER_ADDR 56
273 #define ASC_SCSIQ_DW_REMAIN_XFER_CNT  60
274 #define ASC_SCSIQ_B_FIRST_SG_WK_QP    48
275 #define ASC_SCSIQ_B_SG_WK_QP          49
276 #define ASC_SCSIQ_B_SG_WK_IX          50
277 #define ASC_SCSIQ_W_ALT_DC1           52
278 #define ASC_SCSIQ_B_LIST_CNT          6
279 #define ASC_SCSIQ_B_CUR_LIST_CNT      7
280 #define ASC_SGQ_B_SG_CNTL             4
281 #define ASC_SGQ_B_SG_HEAD_QP          5
282 #define ASC_SGQ_B_SG_LIST_CNT         6
283 #define ASC_SGQ_B_SG_CUR_LIST_CNT     7
284 #define ASC_SGQ_LIST_BEG              8
285 #define ASC_DEF_SCSI1_QNG    4
286 #define ASC_MAX_SCSI1_QNG    4
287 #define ASC_DEF_SCSI2_QNG    16
288 #define ASC_MAX_SCSI2_QNG    32
289 #define ASC_TAG_CODE_MASK    0x23
290 #define ASC_STOP_REQ_RISC_STOP      0x01
291 #define ASC_STOP_ACK_RISC_STOP      0x03
292 #define ASC_STOP_CLEAN_UP_BUSY_Q    0x10
293 #define ASC_STOP_CLEAN_UP_DISC_Q    0x20
294 #define ASC_STOP_HOST_REQ_RISC_HALT 0x40
295 #define ASC_TIDLUN_TO_IX(tid, lun)  (ASC_SCSI_TIX_TYPE)((tid) + ((lun)<<ASC_SCSI_ID_BITS))
296 #define ASC_TID_TO_TARGET_ID(tid)   (ASC_SCSI_BIT_ID_TYPE)(0x01 << (tid))
297 #define ASC_TIX_TO_TARGET_ID(tix)   (0x01 << ((tix) & ASC_MAX_TID))
298 #define ASC_TIX_TO_TID(tix)         ((tix) & ASC_MAX_TID)
299 #define ASC_TID_TO_TIX(tid)         ((tid) & ASC_MAX_TID)
300 #define ASC_TIX_TO_LUN(tix)         (((tix) >> ASC_SCSI_ID_BITS) & ASC_MAX_LUN)
301 #define ASC_QNO_TO_QADDR(q_no)      ((ASC_QADR_BEG)+((int)(q_no) << 6))
302
303 typedef struct asc_scsiq_1 {
304         uchar status;
305         uchar q_no;
306         uchar cntl;
307         uchar sg_queue_cnt;
308         uchar target_id;
309         uchar target_lun;
310         ASC_PADDR data_addr;
311         ASC_DCNT data_cnt;
312         ASC_PADDR sense_addr;
313         uchar sense_len;
314         uchar extra_bytes;
315 } ASC_SCSIQ_1;
316
317 typedef struct asc_scsiq_2 {
318         ASC_VADDR srb_ptr;
319         uchar target_ix;
320         uchar flag;
321         uchar cdb_len;
322         uchar tag_code;
323         ushort vm_id;
324 } ASC_SCSIQ_2;
325
326 typedef struct asc_scsiq_3 {
327         uchar done_stat;
328         uchar host_stat;
329         uchar scsi_stat;
330         uchar scsi_msg;
331 } ASC_SCSIQ_3;
332
333 typedef struct asc_scsiq_4 {
334         uchar cdb[ASC_MAX_CDB_LEN];
335         uchar y_first_sg_list_qp;
336         uchar y_working_sg_qp;
337         uchar y_working_sg_ix;
338         uchar y_res;
339         ushort x_req_count;
340         ushort x_reconnect_rtn;
341         ASC_PADDR x_saved_data_addr;
342         ASC_DCNT x_saved_data_cnt;
343 } ASC_SCSIQ_4;
344
345 typedef struct asc_q_done_info {
346         ASC_SCSIQ_2 d2;
347         ASC_SCSIQ_3 d3;
348         uchar q_status;
349         uchar q_no;
350         uchar cntl;
351         uchar sense_len;
352         uchar extra_bytes;
353         uchar res;
354         ASC_DCNT remain_bytes;
355 } ASC_QDONE_INFO;
356
357 typedef struct asc_sg_list {
358         ASC_PADDR addr;
359         ASC_DCNT bytes;
360 } ASC_SG_LIST;
361
362 typedef struct asc_sg_head {
363         ushort entry_cnt;
364         ushort queue_cnt;
365         ushort entry_to_copy;
366         ushort res;
367         ASC_SG_LIST sg_list[0];
368 } ASC_SG_HEAD;
369
370 typedef struct asc_scsi_q {
371         ASC_SCSIQ_1 q1;
372         ASC_SCSIQ_2 q2;
373         uchar *cdbptr;
374         ASC_SG_HEAD *sg_head;
375         ushort remain_sg_entry_cnt;
376         ushort next_sg_index;
377 } ASC_SCSI_Q;
378
379 typedef struct asc_scsi_req_q {
380         ASC_SCSIQ_1 r1;
381         ASC_SCSIQ_2 r2;
382         uchar *cdbptr;
383         ASC_SG_HEAD *sg_head;
384         uchar *sense_ptr;
385         ASC_SCSIQ_3 r3;
386         uchar cdb[ASC_MAX_CDB_LEN];
387         uchar sense[ASC_MIN_SENSE_LEN];
388 } ASC_SCSI_REQ_Q;
389
390 typedef struct asc_scsi_bios_req_q {
391         ASC_SCSIQ_1 r1;
392         ASC_SCSIQ_2 r2;
393         uchar *cdbptr;
394         ASC_SG_HEAD *sg_head;
395         uchar *sense_ptr;
396         ASC_SCSIQ_3 r3;
397         uchar cdb[ASC_MAX_CDB_LEN];
398         uchar sense[ASC_MIN_SENSE_LEN];
399 } ASC_SCSI_BIOS_REQ_Q;
400
401 typedef struct asc_risc_q {
402         uchar fwd;
403         uchar bwd;
404         ASC_SCSIQ_1 i1;
405         ASC_SCSIQ_2 i2;
406         ASC_SCSIQ_3 i3;
407         ASC_SCSIQ_4 i4;
408 } ASC_RISC_Q;
409
410 typedef struct asc_sg_list_q {
411         uchar seq_no;
412         uchar q_no;
413         uchar cntl;
414         uchar sg_head_qp;
415         uchar sg_list_cnt;
416         uchar sg_cur_list_cnt;
417 } ASC_SG_LIST_Q;
418
419 typedef struct asc_risc_sg_list_q {
420         uchar fwd;
421         uchar bwd;
422         ASC_SG_LIST_Q sg;
423         ASC_SG_LIST sg_list[7];
424 } ASC_RISC_SG_LIST_Q;
425
426 #define ASCQ_ERR_Q_STATUS             0x0D
427 #define ASCQ_ERR_CUR_QNG              0x17
428 #define ASCQ_ERR_SG_Q_LINKS           0x18
429 #define ASCQ_ERR_ISR_RE_ENTRY         0x1A
430 #define ASCQ_ERR_CRITICAL_RE_ENTRY    0x1B
431 #define ASCQ_ERR_ISR_ON_CRITICAL      0x1C
432
433 /*
434  * Warning code values are set in ASC_DVC_VAR  'warn_code'.
435  */
436 #define ASC_WARN_NO_ERROR             0x0000
437 #define ASC_WARN_IO_PORT_ROTATE       0x0001
438 #define ASC_WARN_EEPROM_CHKSUM        0x0002
439 #define ASC_WARN_IRQ_MODIFIED         0x0004
440 #define ASC_WARN_AUTO_CONFIG          0x0008
441 #define ASC_WARN_CMD_QNG_CONFLICT     0x0010
442 #define ASC_WARN_EEPROM_RECOVER       0x0020
443 #define ASC_WARN_CFG_MSW_RECOVER      0x0040
444
445 /*
446  * Error code values are set in {ASC/ADV}_DVC_VAR  'err_code'.
447  */
448 #define ASC_IERR_NO_CARRIER             0x0001  /* No more carrier memory */
449 #define ASC_IERR_MCODE_CHKSUM           0x0002  /* micro code check sum error */
450 #define ASC_IERR_SET_PC_ADDR            0x0004
451 #define ASC_IERR_START_STOP_CHIP        0x0008  /* start/stop chip failed */
452 #define ASC_IERR_ILLEGAL_CONNECTION     0x0010  /* Illegal cable connection */
453 #define ASC_IERR_SINGLE_END_DEVICE      0x0020  /* SE device on DIFF bus */
454 #define ASC_IERR_REVERSED_CABLE         0x0040  /* Narrow flat cable reversed */
455 #define ASC_IERR_SET_SCSI_ID            0x0080  /* set SCSI ID failed */
456 #define ASC_IERR_HVD_DEVICE             0x0100  /* HVD device on LVD port */
457 #define ASC_IERR_BAD_SIGNATURE          0x0200  /* signature not found */
458 #define ASC_IERR_NO_BUS_TYPE            0x0400
459 #define ASC_IERR_BIST_PRE_TEST          0x0800  /* BIST pre-test error */
460 #define ASC_IERR_BIST_RAM_TEST          0x1000  /* BIST RAM test error */
461 #define ASC_IERR_BAD_CHIPTYPE           0x2000  /* Invalid chip_type setting */
462
463 #define ASC_DEF_MAX_TOTAL_QNG   (0xF0)
464 #define ASC_MIN_TAG_Q_PER_DVC   (0x04)
465 #define ASC_MIN_FREE_Q        (0x02)
466 #define ASC_MIN_TOTAL_QNG     ((ASC_MAX_SG_QUEUE)+(ASC_MIN_FREE_Q))
467 #define ASC_MAX_TOTAL_QNG 240
468 #define ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG 16
469 #define ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG   8
470 #define ASC_MAX_PCI_INRAM_TOTAL_QNG  20
471 #define ASC_MAX_INRAM_TAG_QNG   16
472 #define ASC_IOADR_GAP   0x10
473 #define ASC_SYN_MAX_OFFSET         0x0F
474 #define ASC_DEF_SDTR_OFFSET        0x0F
475 #define ASC_SDTR_ULTRA_PCI_10MB_INDEX  0x02
476 #define ASYN_SDTR_DATA_FIX_PCI_REV_AB 0x41
477
478 /* The narrow chip only supports a limited selection of transfer rates.
479  * These are encoded in the range 0..7 or 0..15 depending whether the chip
480  * is Ultra-capable or not.  These tables let us convert from one to the other.
481  */
482 static const unsigned char asc_syn_xfer_period[8] = {
483         25, 30, 35, 40, 50, 60, 70, 85
484 };
485
486 static const unsigned char asc_syn_ultra_xfer_period[16] = {
487         12, 19, 25, 32, 38, 44, 50, 57, 63, 69, 75, 82, 88, 94, 100, 107
488 };
489
490 typedef struct ext_msg {
491         uchar msg_type;
492         uchar msg_len;
493         uchar msg_req;
494         union {
495                 struct {
496                         uchar sdtr_xfer_period;
497                         uchar sdtr_req_ack_offset;
498                 } sdtr;
499                 struct {
500                         uchar wdtr_width;
501                 } wdtr;
502                 struct {
503                         uchar mdp_b3;
504                         uchar mdp_b2;
505                         uchar mdp_b1;
506                         uchar mdp_b0;
507                 } mdp;
508         } u_ext_msg;
509         uchar res;
510 } EXT_MSG;
511
512 #define xfer_period     u_ext_msg.sdtr.sdtr_xfer_period
513 #define req_ack_offset  u_ext_msg.sdtr.sdtr_req_ack_offset
514 #define wdtr_width      u_ext_msg.wdtr.wdtr_width
515 #define mdp_b3          u_ext_msg.mdp_b3
516 #define mdp_b2          u_ext_msg.mdp_b2
517 #define mdp_b1          u_ext_msg.mdp_b1
518 #define mdp_b0          u_ext_msg.mdp_b0
519
520 typedef struct asc_dvc_cfg {
521         ASC_SCSI_BIT_ID_TYPE can_tagged_qng;
522         ASC_SCSI_BIT_ID_TYPE cmd_qng_enabled;
523         ASC_SCSI_BIT_ID_TYPE disc_enable;
524         ASC_SCSI_BIT_ID_TYPE sdtr_enable;
525         uchar chip_scsi_id;
526         uchar isa_dma_speed;
527         uchar isa_dma_channel;
528         uchar chip_version;
529         ushort mcode_date;
530         ushort mcode_version;
531         uchar max_tag_qng[ASC_MAX_TID + 1];
532         uchar sdtr_period_offset[ASC_MAX_TID + 1];
533         uchar adapter_info[6];
534 } ASC_DVC_CFG;
535
536 #define ASC_DEF_DVC_CNTL       0xFFFF
537 #define ASC_DEF_CHIP_SCSI_ID   7
538 #define ASC_DEF_ISA_DMA_SPEED  4
539 #define ASC_INIT_STATE_BEG_GET_CFG   0x0001
540 #define ASC_INIT_STATE_END_GET_CFG   0x0002
541 #define ASC_INIT_STATE_BEG_SET_CFG   0x0004
542 #define ASC_INIT_STATE_END_SET_CFG   0x0008
543 #define ASC_INIT_STATE_BEG_LOAD_MC   0x0010
544 #define ASC_INIT_STATE_END_LOAD_MC   0x0020
545 #define ASC_INIT_STATE_BEG_INQUIRY   0x0040
546 #define ASC_INIT_STATE_END_INQUIRY   0x0080
547 #define ASC_INIT_RESET_SCSI_DONE     0x0100
548 #define ASC_INIT_STATE_WITHOUT_EEP   0x8000
549 #define ASC_BUG_FIX_IF_NOT_DWB       0x0001
550 #define ASC_BUG_FIX_ASYN_USE_SYN     0x0002
551 #define ASC_MIN_TAGGED_CMD  7
552 #define ASC_MAX_SCSI_RESET_WAIT      30
553 #define ASC_OVERRUN_BSIZE               64
554
555 struct asc_dvc_var;             /* Forward Declaration. */
556
557 typedef struct asc_dvc_var {
558         PortAddr iop_base;
559         ushort err_code;
560         ushort dvc_cntl;
561         ushort bug_fix_cntl;
562         ushort bus_type;
563         ASC_SCSI_BIT_ID_TYPE init_sdtr;
564         ASC_SCSI_BIT_ID_TYPE sdtr_done;
565         ASC_SCSI_BIT_ID_TYPE use_tagged_qng;
566         ASC_SCSI_BIT_ID_TYPE unit_not_ready;
567         ASC_SCSI_BIT_ID_TYPE queue_full_or_busy;
568         ASC_SCSI_BIT_ID_TYPE start_motor;
569         uchar *overrun_buf;
570         dma_addr_t overrun_dma;
571         uchar scsi_reset_wait;
572         uchar chip_no;
573         char is_in_int;
574         uchar max_total_qng;
575         uchar cur_total_qng;
576         uchar in_critical_cnt;
577         uchar last_q_shortage;
578         ushort init_state;
579         uchar cur_dvc_qng[ASC_MAX_TID + 1];
580         uchar max_dvc_qng[ASC_MAX_TID + 1];
581         ASC_SCSI_Q *scsiq_busy_head[ASC_MAX_TID + 1];
582         ASC_SCSI_Q *scsiq_busy_tail[ASC_MAX_TID + 1];
583         const uchar *sdtr_period_tbl;
584         ASC_DVC_CFG *cfg;
585         ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer_always;
586         char redo_scam;
587         ushort res2;
588         uchar dos_int13_table[ASC_MAX_TID + 1];
589         ASC_DCNT max_dma_count;
590         ASC_SCSI_BIT_ID_TYPE no_scam;
591         ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer;
592         uchar min_sdtr_index;
593         uchar max_sdtr_index;
594         struct asc_board *drv_ptr;
595         int ptr_map_count;
596         void **ptr_map;
597         ASC_DCNT uc_break;
598 } ASC_DVC_VAR;
599
600 typedef struct asc_dvc_inq_info {
601         uchar type[ASC_MAX_TID + 1][ASC_MAX_LUN + 1];
602 } ASC_DVC_INQ_INFO;
603
604 typedef struct asc_cap_info {
605         ASC_DCNT lba;
606         ASC_DCNT blk_size;
607 } ASC_CAP_INFO;
608
609 typedef struct asc_cap_info_array {
610         ASC_CAP_INFO cap_info[ASC_MAX_TID + 1][ASC_MAX_LUN + 1];
611 } ASC_CAP_INFO_ARRAY;
612
613 #define ASC_MCNTL_NO_SEL_TIMEOUT  (ushort)0x0001
614 #define ASC_MCNTL_NULL_TARGET     (ushort)0x0002
615 #define ASC_CNTL_INITIATOR         (ushort)0x0001
616 #define ASC_CNTL_BIOS_GT_1GB       (ushort)0x0002
617 #define ASC_CNTL_BIOS_GT_2_DISK    (ushort)0x0004
618 #define ASC_CNTL_BIOS_REMOVABLE    (ushort)0x0008
619 #define ASC_CNTL_NO_SCAM           (ushort)0x0010
620 #define ASC_CNTL_INT_MULTI_Q       (ushort)0x0080
621 #define ASC_CNTL_NO_LUN_SUPPORT    (ushort)0x0040
622 #define ASC_CNTL_NO_VERIFY_COPY    (ushort)0x0100
623 #define ASC_CNTL_RESET_SCSI        (ushort)0x0200
624 #define ASC_CNTL_INIT_INQUIRY      (ushort)0x0400
625 #define ASC_CNTL_INIT_VERBOSE      (ushort)0x0800
626 #define ASC_CNTL_SCSI_PARITY       (ushort)0x1000
627 #define ASC_CNTL_BURST_MODE        (ushort)0x2000
628 #define ASC_CNTL_SDTR_ENABLE_ULTRA (ushort)0x4000
629 #define ASC_EEP_DVC_CFG_BEG_VL    2
630 #define ASC_EEP_MAX_DVC_ADDR_VL   15
631 #define ASC_EEP_DVC_CFG_BEG      32
632 #define ASC_EEP_MAX_DVC_ADDR     45
633 #define ASC_EEP_MAX_RETRY        20
634
635 /*
636  * These macros keep the chip SCSI id and ISA DMA speed
637  * bitfields in board order. C bitfields aren't portable
638  * between big and little-endian platforms so they are
639  * not used.
640  */
641
642 #define ASC_EEP_GET_CHIP_ID(cfg)    ((cfg)->id_speed & 0x0f)
643 #define ASC_EEP_GET_DMA_SPD(cfg)    (((cfg)->id_speed & 0xf0) >> 4)
644 #define ASC_EEP_SET_CHIP_ID(cfg, sid) \
645    ((cfg)->id_speed = ((cfg)->id_speed & 0xf0) | ((sid) & ASC_MAX_TID))
646 #define ASC_EEP_SET_DMA_SPD(cfg, spd) \
647    ((cfg)->id_speed = ((cfg)->id_speed & 0x0f) | ((spd) & 0x0f) << 4)
648
649 typedef struct asceep_config {
650         ushort cfg_lsw;
651         ushort cfg_msw;
652         uchar init_sdtr;
653         uchar disc_enable;
654         uchar use_cmd_qng;
655         uchar start_motor;
656         uchar max_total_qng;
657         uchar max_tag_qng;
658         uchar bios_scan;
659         uchar power_up_wait;
660         uchar no_scam;
661         uchar id_speed;         /* low order 4 bits is chip scsi id */
662         /* high order 4 bits is isa dma speed */
663         uchar dos_int13_table[ASC_MAX_TID + 1];
664         uchar adapter_info[6];
665         ushort cntl;
666         ushort chksum;
667 } ASCEEP_CONFIG;
668
669 #define ASC_EEP_CMD_READ          0x80
670 #define ASC_EEP_CMD_WRITE         0x40
671 #define ASC_EEP_CMD_WRITE_ABLE    0x30
672 #define ASC_EEP_CMD_WRITE_DISABLE 0x00
673 #define ASCV_MSGOUT_BEG         0x0000
674 #define ASCV_MSGOUT_SDTR_PERIOD (ASCV_MSGOUT_BEG+3)
675 #define ASCV_MSGOUT_SDTR_OFFSET (ASCV_MSGOUT_BEG+4)
676 #define ASCV_BREAK_SAVED_CODE   (ushort)0x0006
677 #define ASCV_MSGIN_BEG          (ASCV_MSGOUT_BEG+8)
678 #define ASCV_MSGIN_SDTR_PERIOD  (ASCV_MSGIN_BEG+3)
679 #define ASCV_MSGIN_SDTR_OFFSET  (ASCV_MSGIN_BEG+4)
680 #define ASCV_SDTR_DATA_BEG      (ASCV_MSGIN_BEG+8)
681 #define ASCV_SDTR_DONE_BEG      (ASCV_SDTR_DATA_BEG+8)
682 #define ASCV_MAX_DVC_QNG_BEG    (ushort)0x0020
683 #define ASCV_BREAK_ADDR           (ushort)0x0028
684 #define ASCV_BREAK_NOTIFY_COUNT   (ushort)0x002A
685 #define ASCV_BREAK_CONTROL        (ushort)0x002C
686 #define ASCV_BREAK_HIT_COUNT      (ushort)0x002E
687
688 #define ASCV_ASCDVC_ERR_CODE_W  (ushort)0x0030
689 #define ASCV_MCODE_CHKSUM_W   (ushort)0x0032
690 #define ASCV_MCODE_SIZE_W     (ushort)0x0034
691 #define ASCV_STOP_CODE_B      (ushort)0x0036
692 #define ASCV_DVC_ERR_CODE_B   (ushort)0x0037
693 #define ASCV_OVERRUN_PADDR_D  (ushort)0x0038
694 #define ASCV_OVERRUN_BSIZE_D  (ushort)0x003C
695 #define ASCV_HALTCODE_W       (ushort)0x0040
696 #define ASCV_CHKSUM_W         (ushort)0x0042
697 #define ASCV_MC_DATE_W        (ushort)0x0044
698 #define ASCV_MC_VER_W         (ushort)0x0046
699 #define ASCV_NEXTRDY_B        (ushort)0x0048
700 #define ASCV_DONENEXT_B       (ushort)0x0049
701 #define ASCV_USE_TAGGED_QNG_B (ushort)0x004A
702 #define ASCV_SCSIBUSY_B       (ushort)0x004B
703 #define ASCV_Q_DONE_IN_PROGRESS_B  (ushort)0x004C
704 #define ASCV_CURCDB_B         (ushort)0x004D
705 #define ASCV_RCLUN_B          (ushort)0x004E
706 #define ASCV_BUSY_QHEAD_B     (ushort)0x004F
707 #define ASCV_DISC1_QHEAD_B    (ushort)0x0050
708 #define ASCV_DISC_ENABLE_B    (ushort)0x0052
709 #define ASCV_CAN_TAGGED_QNG_B (ushort)0x0053
710 #define ASCV_HOSTSCSI_ID_B    (ushort)0x0055
711 #define ASCV_MCODE_CNTL_B     (ushort)0x0056
712 #define ASCV_NULL_TARGET_B    (ushort)0x0057
713 #define ASCV_FREE_Q_HEAD_W    (ushort)0x0058
714 #define ASCV_DONE_Q_TAIL_W    (ushort)0x005A
715 #define ASCV_FREE_Q_HEAD_B    (ushort)(ASCV_FREE_Q_HEAD_W+1)
716 #define ASCV_DONE_Q_TAIL_B    (ushort)(ASCV_DONE_Q_TAIL_W+1)
717 #define ASCV_HOST_FLAG_B      (ushort)0x005D
718 #define ASCV_TOTAL_READY_Q_B  (ushort)0x0064
719 #define ASCV_VER_SERIAL_B     (ushort)0x0065
720 #define ASCV_HALTCODE_SAVED_W (ushort)0x0066
721 #define ASCV_WTM_FLAG_B       (ushort)0x0068
722 #define ASCV_RISC_FLAG_B      (ushort)0x006A
723 #define ASCV_REQ_SG_LIST_QP   (ushort)0x006B
724 #define ASC_HOST_FLAG_IN_ISR        0x01
725 #define ASC_HOST_FLAG_ACK_INT       0x02
726 #define ASC_RISC_FLAG_GEN_INT      0x01
727 #define ASC_RISC_FLAG_REQ_SG_LIST  0x02
728 #define IOP_CTRL         (0x0F)
729 #define IOP_STATUS       (0x0E)
730 #define IOP_INT_ACK      IOP_STATUS
731 #define IOP_REG_IFC      (0x0D)
732 #define IOP_SYN_OFFSET    (0x0B)
733 #define IOP_EXTRA_CONTROL (0x0D)
734 #define IOP_REG_PC        (0x0C)
735 #define IOP_RAM_ADDR      (0x0A)
736 #define IOP_RAM_DATA      (0x08)
737 #define IOP_EEP_DATA      (0x06)
738 #define IOP_EEP_CMD       (0x07)
739 #define IOP_VERSION       (0x03)
740 #define IOP_CONFIG_HIGH   (0x04)
741 #define IOP_CONFIG_LOW    (0x02)
742 #define IOP_SIG_BYTE      (0x01)
743 #define IOP_SIG_WORD      (0x00)
744 #define IOP_REG_DC1      (0x0E)
745 #define IOP_REG_DC0      (0x0C)
746 #define IOP_REG_SB       (0x0B)
747 #define IOP_REG_DA1      (0x0A)
748 #define IOP_REG_DA0      (0x08)
749 #define IOP_REG_SC       (0x09)
750 #define IOP_DMA_SPEED    (0x07)
751 #define IOP_REG_FLAG     (0x07)
752 #define IOP_FIFO_H       (0x06)
753 #define IOP_FIFO_L       (0x04)
754 #define IOP_REG_ID       (0x05)
755 #define IOP_REG_QP       (0x03)
756 #define IOP_REG_IH       (0x02)
757 #define IOP_REG_IX       (0x01)
758 #define IOP_REG_AX       (0x00)
759 #define IFC_REG_LOCK      (0x00)
760 #define IFC_REG_UNLOCK    (0x09)
761 #define IFC_WR_EN_FILTER  (0x10)
762 #define IFC_RD_NO_EEPROM  (0x10)
763 #define IFC_SLEW_RATE     (0x20)
764 #define IFC_ACT_NEG       (0x40)
765 #define IFC_INP_FILTER    (0x80)
766 #define IFC_INIT_DEFAULT  (IFC_ACT_NEG | IFC_REG_UNLOCK)
767 #define SC_SEL   (uchar)(0x80)
768 #define SC_BSY   (uchar)(0x40)
769 #define SC_ACK   (uchar)(0x20)
770 #define SC_REQ   (uchar)(0x10)
771 #define SC_ATN   (uchar)(0x08)
772 #define SC_IO    (uchar)(0x04)
773 #define SC_CD    (uchar)(0x02)
774 #define SC_MSG   (uchar)(0x01)
775 #define SEC_SCSI_CTL         (uchar)(0x80)
776 #define SEC_ACTIVE_NEGATE    (uchar)(0x40)
777 #define SEC_SLEW_RATE        (uchar)(0x20)
778 #define SEC_ENABLE_FILTER    (uchar)(0x10)
779 #define ASC_HALT_EXTMSG_IN     (ushort)0x8000
780 #define ASC_HALT_CHK_CONDITION (ushort)0x8100
781 #define ASC_HALT_SS_QUEUE_FULL (ushort)0x8200
782 #define ASC_HALT_DISABLE_ASYN_USE_SYN_FIX  (ushort)0x8300
783 #define ASC_HALT_ENABLE_ASYN_USE_SYN_FIX   (ushort)0x8400
784 #define ASC_HALT_SDTR_REJECTED (ushort)0x4000
785 #define ASC_HALT_HOST_COPY_SG_LIST_TO_RISC ( ushort )0x2000
786 #define ASC_MAX_QNO        0xF8
787 #define ASC_DATA_SEC_BEG   (ushort)0x0080
788 #define ASC_DATA_SEC_END   (ushort)0x0080
789 #define ASC_CODE_SEC_BEG   (ushort)0x0080
790 #define ASC_CODE_SEC_END   (ushort)0x0080
791 #define ASC_QADR_BEG       (0x4000)
792 #define ASC_QADR_USED      (ushort)(ASC_MAX_QNO * 64)
793 #define ASC_QADR_END       (ushort)0x7FFF
794 #define ASC_QLAST_ADR      (ushort)0x7FC0
795 #define ASC_QBLK_SIZE      0x40
796 #define ASC_BIOS_DATA_QBEG 0xF8
797 #define ASC_MIN_ACTIVE_QNO 0x01
798 #define ASC_QLINK_END      0xFF
799 #define ASC_EEPROM_WORDS   0x10
800 #define ASC_MAX_MGS_LEN    0x10
801 #define ASC_BIOS_ADDR_DEF  0xDC00
802 #define ASC_BIOS_SIZE      0x3800
803 #define ASC_BIOS_RAM_OFF   0x3800
804 #define ASC_BIOS_RAM_SIZE  0x800
805 #define ASC_BIOS_MIN_ADDR  0xC000
806 #define ASC_BIOS_MAX_ADDR  0xEC00
807 #define ASC_BIOS_BANK_SIZE 0x0400
808 #define ASC_MCODE_START_ADDR  0x0080
809 #define ASC_CFG0_HOST_INT_ON    0x0020
810 #define ASC_CFG0_BIOS_ON        0x0040
811 #define ASC_CFG0_VERA_BURST_ON  0x0080
812 #define ASC_CFG0_SCSI_PARITY_ON 0x0800
813 #define ASC_CFG1_SCSI_TARGET_ON 0x0080
814 #define ASC_CFG1_LRAM_8BITS_ON  0x0800
815 #define ASC_CFG_MSW_CLR_MASK    0x3080
816 #define CSW_TEST1             (ASC_CS_TYPE)0x8000
817 #define CSW_AUTO_CONFIG       (ASC_CS_TYPE)0x4000
818 #define CSW_RESERVED1         (ASC_CS_TYPE)0x2000
819 #define CSW_IRQ_WRITTEN       (ASC_CS_TYPE)0x1000
820 #define CSW_33MHZ_SELECTED    (ASC_CS_TYPE)0x0800
821 #define CSW_TEST2             (ASC_CS_TYPE)0x0400
822 #define CSW_TEST3             (ASC_CS_TYPE)0x0200
823 #define CSW_RESERVED2         (ASC_CS_TYPE)0x0100
824 #define CSW_DMA_DONE          (ASC_CS_TYPE)0x0080
825 #define CSW_FIFO_RDY          (ASC_CS_TYPE)0x0040
826 #define CSW_EEP_READ_DONE     (ASC_CS_TYPE)0x0020
827 #define CSW_HALTED            (ASC_CS_TYPE)0x0010
828 #define CSW_SCSI_RESET_ACTIVE (ASC_CS_TYPE)0x0008
829 #define CSW_PARITY_ERR        (ASC_CS_TYPE)0x0004
830 #define CSW_SCSI_RESET_LATCH  (ASC_CS_TYPE)0x0002
831 #define CSW_INT_PENDING       (ASC_CS_TYPE)0x0001
832 #define CIW_CLR_SCSI_RESET_INT (ASC_CS_TYPE)0x1000
833 #define CIW_INT_ACK      (ASC_CS_TYPE)0x0100
834 #define CIW_TEST1        (ASC_CS_TYPE)0x0200
835 #define CIW_TEST2        (ASC_CS_TYPE)0x0400
836 #define CIW_SEL_33MHZ    (ASC_CS_TYPE)0x0800
837 #define CIW_IRQ_ACT      (ASC_CS_TYPE)0x1000
838 #define CC_CHIP_RESET   (uchar)0x80
839 #define CC_SCSI_RESET   (uchar)0x40
840 #define CC_HALT         (uchar)0x20
841 #define CC_SINGLE_STEP  (uchar)0x10
842 #define CC_DMA_ABLE     (uchar)0x08
843 #define CC_TEST         (uchar)0x04
844 #define CC_BANK_ONE     (uchar)0x02
845 #define CC_DIAG         (uchar)0x01
846 #define ASC_1000_ID0W      0x04C1
847 #define ASC_1000_ID0W_FIX  0x00C1
848 #define ASC_1000_ID1B      0x25
849 #define ASC_EISA_REV_IOP_MASK  (0x0C83)
850 #define ASC_EISA_CFG_IOP_MASK  (0x0C86)
851 #define ASC_GET_EISA_SLOT(iop)  (PortAddr)((iop) & 0xF000)
852 #define INS_HALTINT        (ushort)0x6281
853 #define INS_HALT           (ushort)0x6280
854 #define INS_SINT           (ushort)0x6200
855 #define INS_RFLAG_WTM      (ushort)0x7380
856 #define ASC_MC_SAVE_CODE_WSIZE  0x500
857 #define ASC_MC_SAVE_DATA_WSIZE  0x40
858
859 typedef struct asc_mc_saved {
860         ushort data[ASC_MC_SAVE_DATA_WSIZE];
861         ushort code[ASC_MC_SAVE_CODE_WSIZE];
862 } ASC_MC_SAVED;
863
864 #define AscGetQDoneInProgress(port)         AscReadLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B)
865 #define AscPutQDoneInProgress(port, val)    AscWriteLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B, val)
866 #define AscGetVarFreeQHead(port)            AscReadLramWord((port), ASCV_FREE_Q_HEAD_W)
867 #define AscGetVarDoneQTail(port)            AscReadLramWord((port), ASCV_DONE_Q_TAIL_W)
868 #define AscPutVarFreeQHead(port, val)       AscWriteLramWord((port), ASCV_FREE_Q_HEAD_W, val)
869 #define AscPutVarDoneQTail(port, val)       AscWriteLramWord((port), ASCV_DONE_Q_TAIL_W, val)
870 #define AscGetRiscVarFreeQHead(port)        AscReadLramByte((port), ASCV_NEXTRDY_B)
871 #define AscGetRiscVarDoneQTail(port)        AscReadLramByte((port), ASCV_DONENEXT_B)
872 #define AscPutRiscVarFreeQHead(port, val)   AscWriteLramByte((port), ASCV_NEXTRDY_B, val)
873 #define AscPutRiscVarDoneQTail(port, val)   AscWriteLramByte((port), ASCV_DONENEXT_B, val)
874 #define AscPutMCodeSDTRDoneAtID(port, id, data)  AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id), (data))
875 #define AscGetMCodeSDTRDoneAtID(port, id)        AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id))
876 #define AscPutMCodeInitSDTRAtID(port, id, data)  AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id), data)
877 #define AscGetMCodeInitSDTRAtID(port, id)        AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id))
878 #define AscGetChipSignatureByte(port)     (uchar)inp((port)+IOP_SIG_BYTE)
879 #define AscGetChipSignatureWord(port)     (ushort)inpw((port)+IOP_SIG_WORD)
880 #define AscGetChipVerNo(port)             (uchar)inp((port)+IOP_VERSION)
881 #define AscGetChipCfgLsw(port)            (ushort)inpw((port)+IOP_CONFIG_LOW)
882 #define AscGetChipCfgMsw(port)            (ushort)inpw((port)+IOP_CONFIG_HIGH)
883 #define AscSetChipCfgLsw(port, data)      outpw((port)+IOP_CONFIG_LOW, data)
884 #define AscSetChipCfgMsw(port, data)      outpw((port)+IOP_CONFIG_HIGH, data)
885 #define AscGetChipEEPCmd(port)            (uchar)inp((port)+IOP_EEP_CMD)
886 #define AscSetChipEEPCmd(port, data)      outp((port)+IOP_EEP_CMD, data)
887 #define AscGetChipEEPData(port)           (ushort)inpw((port)+IOP_EEP_DATA)
888 #define AscSetChipEEPData(port, data)     outpw((port)+IOP_EEP_DATA, data)
889 #define AscGetChipLramAddr(port)          (ushort)inpw((PortAddr)((port)+IOP_RAM_ADDR))
890 #define AscSetChipLramAddr(port, addr)    outpw((PortAddr)((port)+IOP_RAM_ADDR), addr)
891 #define AscGetChipLramData(port)          (ushort)inpw((port)+IOP_RAM_DATA)
892 #define AscSetChipLramData(port, data)    outpw((port)+IOP_RAM_DATA, data)
893 #define AscGetChipIFC(port)               (uchar)inp((port)+IOP_REG_IFC)
894 #define AscSetChipIFC(port, data)          outp((port)+IOP_REG_IFC, data)
895 #define AscGetChipStatus(port)            (ASC_CS_TYPE)inpw((port)+IOP_STATUS)
896 #define AscSetChipStatus(port, cs_val)    outpw((port)+IOP_STATUS, cs_val)
897 #define AscGetChipControl(port)           (uchar)inp((port)+IOP_CTRL)
898 #define AscSetChipControl(port, cc_val)   outp((port)+IOP_CTRL, cc_val)
899 #define AscGetChipSyn(port)               (uchar)inp((port)+IOP_SYN_OFFSET)
900 #define AscSetChipSyn(port, data)         outp((port)+IOP_SYN_OFFSET, data)
901 #define AscSetPCAddr(port, data)          outpw((port)+IOP_REG_PC, data)
902 #define AscGetPCAddr(port)                (ushort)inpw((port)+IOP_REG_PC)
903 #define AscIsIntPending(port)             (AscGetChipStatus(port) & (CSW_INT_PENDING | CSW_SCSI_RESET_LATCH))
904 #define AscGetChipScsiID(port)            ((AscGetChipCfgLsw(port) >> 8) & ASC_MAX_TID)
905 #define AscGetExtraControl(port)          (uchar)inp((port)+IOP_EXTRA_CONTROL)
906 #define AscSetExtraControl(port, data)    outp((port)+IOP_EXTRA_CONTROL, data)
907 #define AscReadChipAX(port)               (ushort)inpw((port)+IOP_REG_AX)
908 #define AscWriteChipAX(port, data)        outpw((port)+IOP_REG_AX, data)
909 #define AscReadChipIX(port)               (uchar)inp((port)+IOP_REG_IX)
910 #define AscWriteChipIX(port, data)        outp((port)+IOP_REG_IX, data)
911 #define AscReadChipIH(port)               (ushort)inpw((port)+IOP_REG_IH)
912 #define AscWriteChipIH(port, data)        outpw((port)+IOP_REG_IH, data)
913 #define AscReadChipQP(port)               (uchar)inp((port)+IOP_REG_QP)
914 #define AscWriteChipQP(port, data)        outp((port)+IOP_REG_QP, data)
915 #define AscReadChipFIFO_L(port)           (ushort)inpw((port)+IOP_REG_FIFO_L)
916 #define AscWriteChipFIFO_L(port, data)    outpw((port)+IOP_REG_FIFO_L, data)
917 #define AscReadChipFIFO_H(port)           (ushort)inpw((port)+IOP_REG_FIFO_H)
918 #define AscWriteChipFIFO_H(port, data)    outpw((port)+IOP_REG_FIFO_H, data)
919 #define AscReadChipDmaSpeed(port)         (uchar)inp((port)+IOP_DMA_SPEED)
920 #define AscWriteChipDmaSpeed(port, data)  outp((port)+IOP_DMA_SPEED, data)
921 #define AscReadChipDA0(port)              (ushort)inpw((port)+IOP_REG_DA0)
922 #define AscWriteChipDA0(port)             outpw((port)+IOP_REG_DA0, data)
923 #define AscReadChipDA1(port)              (ushort)inpw((port)+IOP_REG_DA1)
924 #define AscWriteChipDA1(port)             outpw((port)+IOP_REG_DA1, data)
925 #define AscReadChipDC0(port)              (ushort)inpw((port)+IOP_REG_DC0)
926 #define AscWriteChipDC0(port)             outpw((port)+IOP_REG_DC0, data)
927 #define AscReadChipDC1(port)              (ushort)inpw((port)+IOP_REG_DC1)
928 #define AscWriteChipDC1(port)             outpw((port)+IOP_REG_DC1, data)
929 #define AscReadChipDvcID(port)            (uchar)inp((port)+IOP_REG_ID)
930 #define AscWriteChipDvcID(port, data)     outp((port)+IOP_REG_ID, data)
931
932 /*
933  * Portable Data Types
934  *
935  * Any instance where a 32-bit long or pointer type is assumed
936  * for precision or HW defined structures, the following define
937  * types must be used. In Linux the char, short, and int types
938  * are all consistent at 8, 16, and 32 bits respectively. Pointers
939  * and long types are 64 bits on Alpha and UltraSPARC.
940  */
941 #define ADV_PADDR __u32         /* Physical address data type. */
942 #define ADV_VADDR __u32         /* Virtual address data type. */
943 #define ADV_DCNT  __u32         /* Unsigned Data count type. */
944 #define ADV_SDCNT __s32         /* Signed Data count type. */
945
946 /*
947  * These macros are used to convert a virtual address to a
948  * 32-bit value. This currently can be used on Linux Alpha
949  * which uses 64-bit virtual address but a 32-bit bus address.
950  * This is likely to break in the future, but doing this now
951  * will give us time to change the HW and FW to handle 64-bit
952  * addresses.
953  */
954 #define ADV_VADDR_TO_U32   virt_to_bus
955 #define ADV_U32_TO_VADDR   bus_to_virt
956
957 #define AdvPortAddr  void __iomem *     /* Virtual memory address size */
958
959 /*
960  * Define Adv Library required memory access macros.
961  */
962 #define ADV_MEM_READB(addr) readb(addr)
963 #define ADV_MEM_READW(addr) readw(addr)
964 #define ADV_MEM_WRITEB(addr, byte) writeb(byte, addr)
965 #define ADV_MEM_WRITEW(addr, word) writew(word, addr)
966 #define ADV_MEM_WRITEDW(addr, dword) writel(dword, addr)
967
968 #define ADV_CARRIER_COUNT (ASC_DEF_MAX_HOST_QNG + 15)
969
970 /*
971  * Define total number of simultaneous maximum element scatter-gather
972  * request blocks per wide adapter. ASC_DEF_MAX_HOST_QNG (253) is the
973  * maximum number of outstanding commands per wide host adapter. Each
974  * command uses one or more ADV_SG_BLOCK each with 15 scatter-gather
975  * elements. Allow each command to have at least one ADV_SG_BLOCK structure.
976  * This allows about 15 commands to have the maximum 17 ADV_SG_BLOCK
977  * structures or 255 scatter-gather elements.
978  */
979 #define ADV_TOT_SG_BLOCK        ASC_DEF_MAX_HOST_QNG
980
981 /*
982  * Define maximum number of scatter-gather elements per request.
983  */
984 #define ADV_MAX_SG_LIST         255
985 #define NO_OF_SG_PER_BLOCK              15
986
987 #define ADV_EEP_DVC_CFG_BEGIN           (0x00)
988 #define ADV_EEP_DVC_CFG_END             (0x15)
989 #define ADV_EEP_DVC_CTL_BEGIN           (0x16)  /* location of OEM name */
990 #define ADV_EEP_MAX_WORD_ADDR           (0x1E)
991
992 #define ADV_EEP_DELAY_MS                100
993
994 #define ADV_EEPROM_BIG_ENDIAN          0x8000   /* EEPROM Bit 15 */
995 #define ADV_EEPROM_BIOS_ENABLE         0x4000   /* EEPROM Bit 14 */
996 /*
997  * For the ASC3550 Bit 13 is Termination Polarity control bit.
998  * For later ICs Bit 13 controls whether the CIS (Card Information
999  * Service Section) is loaded from EEPROM.
1000  */
1001 #define ADV_EEPROM_TERM_POL            0x2000   /* EEPROM Bit 13 */
1002 #define ADV_EEPROM_CIS_LD              0x2000   /* EEPROM Bit 13 */
1003 /*
1004  * ASC38C1600 Bit 11
1005  *
1006  * If EEPROM Bit 11 is 0 for Function 0, then Function 0 will specify
1007  * INT A in the PCI Configuration Space Int Pin field. If it is 1, then
1008  * Function 0 will specify INT B.
1009  *
1010  * If EEPROM Bit 11 is 0 for Function 1, then Function 1 will specify
1011  * INT B in the PCI Configuration Space Int Pin field. If it is 1, then
1012  * Function 1 will specify INT A.
1013  */
1014 #define ADV_EEPROM_INTAB               0x0800   /* EEPROM Bit 11 */
1015
1016 typedef struct adveep_3550_config {
1017         /* Word Offset, Description */
1018
1019         ushort cfg_lsw;         /* 00 power up initialization */
1020         /*  bit 13 set - Term Polarity Control */
1021         /*  bit 14 set - BIOS Enable */
1022         /*  bit 15 set - Big Endian Mode */
1023         ushort cfg_msw;         /* 01 unused      */
1024         ushort disc_enable;     /* 02 disconnect enable */
1025         ushort wdtr_able;       /* 03 Wide DTR able */
1026         ushort sdtr_able;       /* 04 Synchronous DTR able */
1027         ushort start_motor;     /* 05 send start up motor */
1028         ushort tagqng_able;     /* 06 tag queuing able */
1029         ushort bios_scan;       /* 07 BIOS device control */
1030         ushort scam_tolerant;   /* 08 no scam */
1031
1032         uchar adapter_scsi_id;  /* 09 Host Adapter ID */
1033         uchar bios_boot_delay;  /*    power up wait */
1034
1035         uchar scsi_reset_delay; /* 10 reset delay */
1036         uchar bios_id_lun;      /*    first boot device scsi id & lun */
1037         /*    high nibble is lun */
1038         /*    low nibble is scsi id */
1039
1040         uchar termination;      /* 11 0 - automatic */
1041         /*    1 - low off / high off */
1042         /*    2 - low off / high on */
1043         /*    3 - low on  / high on */
1044         /*    There is no low on  / high off */
1045
1046         uchar reserved1;        /*    reserved byte (not used) */
1047
1048         ushort bios_ctrl;       /* 12 BIOS control bits */
1049         /*  bit 0  BIOS don't act as initiator. */
1050         /*  bit 1  BIOS > 1 GB support */
1051         /*  bit 2  BIOS > 2 Disk Support */
1052         /*  bit 3  BIOS don't support removables */
1053         /*  bit 4  BIOS support bootable CD */
1054         /*  bit 5  BIOS scan enabled */
1055         /*  bit 6  BIOS support multiple LUNs */
1056         /*  bit 7  BIOS display of message */
1057         /*  bit 8  SCAM disabled */
1058         /*  bit 9  Reset SCSI bus during init. */
1059         /*  bit 10 */
1060         /*  bit 11 No verbose initialization. */
1061         /*  bit 12 SCSI parity enabled */
1062         /*  bit 13 */
1063         /*  bit 14 */
1064         /*  bit 15 */
1065         ushort ultra_able;      /* 13 ULTRA speed able */
1066         ushort reserved2;       /* 14 reserved */
1067         uchar max_host_qng;     /* 15 maximum host queuing */
1068         uchar max_dvc_qng;      /*    maximum per device queuing */
1069         ushort dvc_cntl;        /* 16 control bit for driver */
1070         ushort bug_fix;         /* 17 control bit for bug fix */
1071         ushort serial_number_word1;     /* 18 Board serial number word 1 */
1072         ushort serial_number_word2;     /* 19 Board serial number word 2 */
1073         ushort serial_number_word3;     /* 20 Board serial number word 3 */
1074         ushort check_sum;       /* 21 EEP check sum */
1075         uchar oem_name[16];     /* 22 OEM name */
1076         ushort dvc_err_code;    /* 30 last device driver error code */
1077         ushort adv_err_code;    /* 31 last uc and Adv Lib error code */
1078         ushort adv_err_addr;    /* 32 last uc error address */
1079         ushort saved_dvc_err_code;      /* 33 saved last dev. driver error code   */
1080         ushort saved_adv_err_code;      /* 34 saved last uc and Adv Lib error code */
1081         ushort saved_adv_err_addr;      /* 35 saved last uc error address         */
1082         ushort num_of_err;      /* 36 number of error */
1083 } ADVEEP_3550_CONFIG;
1084
1085 typedef struct adveep_38C0800_config {
1086         /* Word Offset, Description */
1087
1088         ushort cfg_lsw;         /* 00 power up initialization */
1089         /*  bit 13 set - Load CIS */
1090         /*  bit 14 set - BIOS Enable */
1091         /*  bit 15 set - Big Endian Mode */
1092         ushort cfg_msw;         /* 01 unused      */
1093         ushort disc_enable;     /* 02 disconnect enable */
1094         ushort wdtr_able;       /* 03 Wide DTR able */
1095         ushort sdtr_speed1;     /* 04 SDTR Speed TID 0-3 */
1096         ushort start_motor;     /* 05 send start up motor */
1097         ushort tagqng_able;     /* 06 tag queuing able */
1098         ushort bios_scan;       /* 07 BIOS device control */
1099         ushort scam_tolerant;   /* 08 no scam */
1100
1101         uchar adapter_scsi_id;  /* 09 Host Adapter ID */
1102         uchar bios_boot_delay;  /*    power up wait */
1103
1104         uchar scsi_reset_delay; /* 10 reset delay */
1105         uchar bios_id_lun;      /*    first boot device scsi id & lun */
1106         /*    high nibble is lun */
1107         /*    low nibble is scsi id */
1108
1109         uchar termination_se;   /* 11 0 - automatic */
1110         /*    1 - low off / high off */
1111         /*    2 - low off / high on */
1112         /*    3 - low on  / high on */
1113         /*    There is no low on  / high off */
1114
1115         uchar termination_lvd;  /* 11 0 - automatic */
1116         /*    1 - low off / high off */
1117         /*    2 - low off / high on */
1118         /*    3 - low on  / high on */
1119         /*    There is no low on  / high off */
1120
1121         ushort bios_ctrl;       /* 12 BIOS control bits */
1122         /*  bit 0  BIOS don't act as initiator. */
1123         /*  bit 1  BIOS > 1 GB support */
1124         /*  bit 2  BIOS > 2 Disk Support */
1125         /*  bit 3  BIOS don't support removables */
1126         /*  bit 4  BIOS support bootable CD */
1127         /*  bit 5  BIOS scan enabled */
1128         /*  bit 6  BIOS support multiple LUNs */
1129         /*  bit 7  BIOS display of message */
1130         /*  bit 8  SCAM disabled */
1131         /*  bit 9  Reset SCSI bus during init. */
1132         /*  bit 10 */
1133         /*  bit 11 No verbose initialization. */
1134         /*  bit 12 SCSI parity enabled */
1135         /*  bit 13 */
1136         /*  bit 14 */
1137         /*  bit 15 */
1138         ushort sdtr_speed2;     /* 13 SDTR speed TID 4-7 */
1139         ushort sdtr_speed3;     /* 14 SDTR speed TID 8-11 */
1140         uchar max_host_qng;     /* 15 maximum host queueing */
1141         uchar max_dvc_qng;      /*    maximum per device queuing */
1142         ushort dvc_cntl;        /* 16 control bit for driver */
1143         ushort sdtr_speed4;     /* 17 SDTR speed 4 TID 12-15 */
1144         ushort serial_number_word1;     /* 18 Board serial number word 1 */
1145         ushort serial_number_word2;     /* 19 Board serial number word 2 */
1146         ushort serial_number_word3;     /* 20 Board serial number word 3 */
1147         ushort check_sum;       /* 21 EEP check sum */
1148         uchar oem_name[16];     /* 22 OEM name */
1149         ushort dvc_err_code;    /* 30 last device driver error code */
1150         ushort adv_err_code;    /* 31 last uc and Adv Lib error code */
1151         ushort adv_err_addr;    /* 32 last uc error address */
1152         ushort saved_dvc_err_code;      /* 33 saved last dev. driver error code   */
1153         ushort saved_adv_err_code;      /* 34 saved last uc and Adv Lib error code */
1154         ushort saved_adv_err_addr;      /* 35 saved last uc error address         */
1155         ushort reserved36;      /* 36 reserved */
1156         ushort reserved37;      /* 37 reserved */
1157         ushort reserved38;      /* 38 reserved */
1158         ushort reserved39;      /* 39 reserved */
1159         ushort reserved40;      /* 40 reserved */
1160         ushort reserved41;      /* 41 reserved */
1161         ushort reserved42;      /* 42 reserved */
1162         ushort reserved43;      /* 43 reserved */
1163         ushort reserved44;      /* 44 reserved */
1164         ushort reserved45;      /* 45 reserved */
1165         ushort reserved46;      /* 46 reserved */
1166         ushort reserved47;      /* 47 reserved */
1167         ushort reserved48;      /* 48 reserved */
1168         ushort reserved49;      /* 49 reserved */
1169         ushort reserved50;      /* 50 reserved */
1170         ushort reserved51;      /* 51 reserved */
1171         ushort reserved52;      /* 52 reserved */
1172         ushort reserved53;      /* 53 reserved */
1173         ushort reserved54;      /* 54 reserved */
1174         ushort reserved55;      /* 55 reserved */
1175         ushort cisptr_lsw;      /* 56 CIS PTR LSW */
1176         ushort cisprt_msw;      /* 57 CIS PTR MSW */
1177         ushort subsysvid;       /* 58 SubSystem Vendor ID */
1178         ushort subsysid;        /* 59 SubSystem ID */
1179         ushort reserved60;      /* 60 reserved */
1180         ushort reserved61;      /* 61 reserved */
1181         ushort reserved62;      /* 62 reserved */
1182         ushort reserved63;      /* 63 reserved */
1183 } ADVEEP_38C0800_CONFIG;
1184
1185 typedef struct adveep_38C1600_config {
1186         /* Word Offset, Description */
1187
1188         ushort cfg_lsw;         /* 00 power up initialization */
1189         /*  bit 11 set - Func. 0 INTB, Func. 1 INTA */
1190         /*       clear - Func. 0 INTA, Func. 1 INTB */
1191         /*  bit 13 set - Load CIS */
1192         /*  bit 14 set - BIOS Enable */
1193         /*  bit 15 set - Big Endian Mode */
1194         ushort cfg_msw;         /* 01 unused */
1195         ushort disc_enable;     /* 02 disconnect enable */
1196         ushort wdtr_able;       /* 03 Wide DTR able */
1197         ushort sdtr_speed1;     /* 04 SDTR Speed TID 0-3 */
1198         ushort start_motor;     /* 05 send start up motor */
1199         ushort tagqng_able;     /* 06 tag queuing able */
1200         ushort bios_scan;       /* 07 BIOS device control */
1201         ushort scam_tolerant;   /* 08 no scam */
1202
1203         uchar adapter_scsi_id;  /* 09 Host Adapter ID */
1204         uchar bios_boot_delay;  /*    power up wait */
1205
1206         uchar scsi_reset_delay; /* 10 reset delay */
1207         uchar bios_id_lun;      /*    first boot device scsi id & lun */
1208         /*    high nibble is lun */
1209         /*    low nibble is scsi id */
1210
1211         uchar termination_se;   /* 11 0 - automatic */
1212         /*    1 - low off / high off */
1213         /*    2 - low off / high on */
1214         /*    3 - low on  / high on */
1215         /*    There is no low on  / high off */
1216
1217         uchar termination_lvd;  /* 11 0 - automatic */
1218         /*    1 - low off / high off */
1219         /*    2 - low off / high on */
1220         /*    3 - low on  / high on */
1221         /*    There is no low on  / high off */
1222
1223         ushort bios_ctrl;       /* 12 BIOS control bits */
1224         /*  bit 0  BIOS don't act as initiator. */
1225         /*  bit 1  BIOS > 1 GB support */
1226         /*  bit 2  BIOS > 2 Disk Support */
1227         /*  bit 3  BIOS don't support removables */
1228         /*  bit 4  BIOS support bootable CD */
1229         /*  bit 5  BIOS scan enabled */
1230         /*  bit 6  BIOS support multiple LUNs */
1231         /*  bit 7  BIOS display of message */
1232         /*  bit 8  SCAM disabled */
1233         /*  bit 9  Reset SCSI bus during init. */
1234         /*  bit 10 Basic Integrity Checking disabled */
1235         /*  bit 11 No verbose initialization. */
1236         /*  bit 12 SCSI parity enabled */
1237         /*  bit 13 AIPP (Asyn. Info. Ph. Prot.) dis. */
1238         /*  bit 14 */
1239         /*  bit 15 */
1240         ushort sdtr_speed2;     /* 13 SDTR speed TID 4-7 */
1241         ushort sdtr_speed3;     /* 14 SDTR speed TID 8-11 */
1242         uchar max_host_qng;     /* 15 maximum host queueing */
1243         uchar max_dvc_qng;      /*    maximum per device queuing */
1244         ushort dvc_cntl;        /* 16 control bit for driver */
1245         ushort sdtr_speed4;     /* 17 SDTR speed 4 TID 12-15 */
1246         ushort serial_number_word1;     /* 18 Board serial number word 1 */
1247         ushort serial_number_word2;     /* 19 Board serial number word 2 */
1248         ushort serial_number_word3;     /* 20 Board serial number word 3 */
1249         ushort check_sum;       /* 21 EEP check sum */
1250         uchar oem_name[16];     /* 22 OEM name */
1251         ushort dvc_err_code;    /* 30 last device driver error code */
1252         ushort adv_err_code;    /* 31 last uc and Adv Lib error code */
1253         ushort adv_err_addr;    /* 32 last uc error address */
1254         ushort saved_dvc_err_code;      /* 33 saved last dev. driver error code   */
1255         ushort saved_adv_err_code;      /* 34 saved last uc and Adv Lib error code */
1256         ushort saved_adv_err_addr;      /* 35 saved last uc error address         */
1257         ushort reserved36;      /* 36 reserved */
1258         ushort reserved37;      /* 37 reserved */
1259         ushort reserved38;      /* 38 reserved */
1260         ushort reserved39;      /* 39 reserved */
1261         ushort reserved40;      /* 40 reserved */
1262         ushort reserved41;      /* 41 reserved */
1263         ushort reserved42;      /* 42 reserved */
1264         ushort reserved43;      /* 43 reserved */
1265         ushort reserved44;      /* 44 reserved */
1266         ushort reserved45;      /* 45 reserved */
1267         ushort reserved46;      /* 46 reserved */
1268         ushort reserved47;      /* 47 reserved */
1269         ushort reserved48;      /* 48 reserved */
1270         ushort reserved49;      /* 49 reserved */
1271         ushort reserved50;      /* 50 reserved */
1272         ushort reserved51;      /* 51 reserved */
1273         ushort reserved52;      /* 52 reserved */
1274         ushort reserved53;      /* 53 reserved */
1275         ushort reserved54;      /* 54 reserved */
1276         ushort reserved55;      /* 55 reserved */
1277         ushort cisptr_lsw;      /* 56 CIS PTR LSW */
1278         ushort cisprt_msw;      /* 57 CIS PTR MSW */
1279         ushort subsysvid;       /* 58 SubSystem Vendor ID */
1280         ushort subsysid;        /* 59 SubSystem ID */
1281         ushort reserved60;      /* 60 reserved */
1282         ushort reserved61;      /* 61 reserved */
1283         ushort reserved62;      /* 62 reserved */
1284         ushort reserved63;      /* 63 reserved */
1285 } ADVEEP_38C1600_CONFIG;
1286
1287 /*
1288  * EEPROM Commands
1289  */
1290 #define ASC_EEP_CMD_DONE             0x0200
1291
1292 /* bios_ctrl */
1293 #define BIOS_CTRL_BIOS               0x0001
1294 #define BIOS_CTRL_EXTENDED_XLAT      0x0002
1295 #define BIOS_CTRL_GT_2_DISK          0x0004
1296 #define BIOS_CTRL_BIOS_REMOVABLE     0x0008
1297 #define BIOS_CTRL_BOOTABLE_CD        0x0010
1298 #define BIOS_CTRL_MULTIPLE_LUN       0x0040
1299 #define BIOS_CTRL_DISPLAY_MSG        0x0080
1300 #define BIOS_CTRL_NO_SCAM            0x0100
1301 #define BIOS_CTRL_RESET_SCSI_BUS     0x0200
1302 #define BIOS_CTRL_INIT_VERBOSE       0x0800
1303 #define BIOS_CTRL_SCSI_PARITY        0x1000
1304 #define BIOS_CTRL_AIPP_DIS           0x2000
1305
1306 #define ADV_3550_MEMSIZE   0x2000       /* 8 KB Internal Memory */
1307
1308 #define ADV_38C0800_MEMSIZE  0x4000     /* 16 KB Internal Memory */
1309
1310 /*
1311  * XXX - Since ASC38C1600 Rev.3 has a local RAM failure issue, there is
1312  * a special 16K Adv Library and Microcode version. After the issue is
1313  * resolved, should restore 32K support.
1314  *
1315  * #define ADV_38C1600_MEMSIZE  0x8000L   * 32 KB Internal Memory *
1316  */
1317 #define ADV_38C1600_MEMSIZE  0x4000     /* 16 KB Internal Memory */
1318
1319 /*
1320  * Byte I/O register address from base of 'iop_base'.
1321  */
1322 #define IOPB_INTR_STATUS_REG    0x00
1323 #define IOPB_CHIP_ID_1          0x01
1324 #define IOPB_INTR_ENABLES       0x02
1325 #define IOPB_CHIP_TYPE_REV      0x03
1326 #define IOPB_RES_ADDR_4         0x04
1327 #define IOPB_RES_ADDR_5         0x05
1328 #define IOPB_RAM_DATA           0x06
1329 #define IOPB_RES_ADDR_7         0x07
1330 #define IOPB_FLAG_REG           0x08
1331 #define IOPB_RES_ADDR_9         0x09
1332 #define IOPB_RISC_CSR           0x0A
1333 #define IOPB_RES_ADDR_B         0x0B
1334 #define IOPB_RES_ADDR_C         0x0C
1335 #define IOPB_RES_ADDR_D         0x0D
1336 #define IOPB_SOFT_OVER_WR       0x0E
1337 #define IOPB_RES_ADDR_F         0x0F
1338 #define IOPB_MEM_CFG            0x10
1339 #define IOPB_RES_ADDR_11        0x11
1340 #define IOPB_GPIO_DATA          0x12
1341 #define IOPB_RES_ADDR_13        0x13
1342 #define IOPB_FLASH_PAGE         0x14
1343 #define IOPB_RES_ADDR_15        0x15
1344 #define IOPB_GPIO_CNTL          0x16
1345 #define IOPB_RES_ADDR_17        0x17
1346 #define IOPB_FLASH_DATA         0x18
1347 #define IOPB_RES_ADDR_19        0x19
1348 #define IOPB_RES_ADDR_1A        0x1A
1349 #define IOPB_RES_ADDR_1B        0x1B
1350 #define IOPB_RES_ADDR_1C        0x1C
1351 #define IOPB_RES_ADDR_1D        0x1D
1352 #define IOPB_RES_ADDR_1E        0x1E
1353 #define IOPB_RES_ADDR_1F        0x1F
1354 #define IOPB_DMA_CFG0           0x20
1355 #define IOPB_DMA_CFG1           0x21
1356 #define IOPB_TICKLE             0x22
1357 #define IOPB_DMA_REG_WR         0x23
1358 #define IOPB_SDMA_STATUS        0x24
1359 #define IOPB_SCSI_BYTE_CNT      0x25
1360 #define IOPB_HOST_BYTE_CNT      0x26
1361 #define IOPB_BYTE_LEFT_TO_XFER  0x27
1362 #define IOPB_BYTE_TO_XFER_0     0x28
1363 #define IOPB_BYTE_TO_XFER_1     0x29
1364 #define IOPB_BYTE_TO_XFER_2     0x2A
1365 #define IOPB_BYTE_TO_XFER_3     0x2B
1366 #define IOPB_ACC_GRP            0x2C
1367 #define IOPB_RES_ADDR_2D        0x2D
1368 #define IOPB_DEV_ID             0x2E
1369 #define IOPB_RES_ADDR_2F        0x2F
1370 #define IOPB_SCSI_DATA          0x30
1371 #define IOPB_RES_ADDR_31        0x31
1372 #define IOPB_RES_ADDR_32        0x32
1373 #define IOPB_SCSI_DATA_HSHK     0x33
1374 #define IOPB_SCSI_CTRL          0x34
1375 #define IOPB_RES_ADDR_35        0x35
1376 #define IOPB_RES_ADDR_36        0x36
1377 #define IOPB_RES_ADDR_37        0x37
1378 #define IOPB_RAM_BIST           0x38
1379 #define IOPB_PLL_TEST           0x39
1380 #define IOPB_PCI_INT_CFG        0x3A
1381 #define IOPB_RES_ADDR_3B        0x3B
1382 #define IOPB_RFIFO_CNT          0x3C
1383 #define IOPB_RES_ADDR_3D        0x3D
1384 #define IOPB_RES_ADDR_3E        0x3E
1385 #define IOPB_RES_ADDR_3F        0x3F
1386
1387 /*
1388  * Word I/O register address from base of 'iop_base'.
1389  */
1390 #define IOPW_CHIP_ID_0          0x00    /* CID0  */
1391 #define IOPW_CTRL_REG           0x02    /* CC    */
1392 #define IOPW_RAM_ADDR           0x04    /* LA    */
1393 #define IOPW_RAM_DATA           0x06    /* LD    */
1394 #define IOPW_RES_ADDR_08        0x08
1395 #define IOPW_RISC_CSR           0x0A    /* CSR   */
1396 #define IOPW_SCSI_CFG0          0x0C    /* CFG0  */
1397 #define IOPW_SCSI_CFG1          0x0E    /* CFG1  */
1398 #define IOPW_RES_ADDR_10        0x10
1399 #define IOPW_SEL_MASK           0x12    /* SM    */
1400 #define IOPW_RES_ADDR_14        0x14
1401 #define IOPW_FLASH_ADDR         0x16    /* FA    */
1402 #define IOPW_RES_ADDR_18        0x18
1403 #define IOPW_EE_CMD             0x1A    /* EC    */
1404 #define IOPW_EE_DATA            0x1C    /* ED    */
1405 #define IOPW_SFIFO_CNT          0x1E    /* SFC   */
1406 #define IOPW_RES_ADDR_20        0x20
1407 #define IOPW_Q_BASE             0x22    /* QB    */
1408 #define IOPW_QP                 0x24    /* QP    */
1409 #define IOPW_IX                 0x26    /* IX    */
1410 #define IOPW_SP                 0x28    /* SP    */
1411 #define IOPW_PC                 0x2A    /* PC    */
1412 #define IOPW_RES_ADDR_2C        0x2C
1413 #define IOPW_RES_ADDR_2E        0x2E
1414 #define IOPW_SCSI_DATA          0x30    /* SD    */
1415 #define IOPW_SCSI_DATA_HSHK     0x32    /* SDH   */
1416 #define IOPW_SCSI_CTRL          0x34    /* SC    */
1417 #define IOPW_HSHK_CFG           0x36    /* HCFG  */
1418 #define IOPW_SXFR_STATUS        0x36    /* SXS   */
1419 #define IOPW_SXFR_CNTL          0x38    /* SXL   */
1420 #define IOPW_SXFR_CNTH          0x3A    /* SXH   */
1421 #define IOPW_RES_ADDR_3C        0x3C
1422 #define IOPW_RFIFO_DATA         0x3E    /* RFD   */
1423
1424 /*
1425  * Doubleword I/O register address from base of 'iop_base'.
1426  */
1427 #define IOPDW_RES_ADDR_0         0x00
1428 #define IOPDW_RAM_DATA           0x04
1429 #define IOPDW_RES_ADDR_8         0x08
1430 #define IOPDW_RES_ADDR_C         0x0C
1431 #define IOPDW_RES_ADDR_10        0x10
1432 #define IOPDW_COMMA              0x14
1433 #define IOPDW_COMMB              0x18
1434 #define IOPDW_RES_ADDR_1C        0x1C
1435 #define IOPDW_SDMA_ADDR0         0x20
1436 #define IOPDW_SDMA_ADDR1         0x24
1437 #define IOPDW_SDMA_COUNT         0x28
1438 #define IOPDW_SDMA_ERROR         0x2C
1439 #define IOPDW_RDMA_ADDR0         0x30
1440 #define IOPDW_RDMA_ADDR1         0x34
1441 #define IOPDW_RDMA_COUNT         0x38
1442 #define IOPDW_RDMA_ERROR         0x3C
1443
1444 #define ADV_CHIP_ID_BYTE         0x25
1445 #define ADV_CHIP_ID_WORD         0x04C1
1446
1447 #define ADV_INTR_ENABLE_HOST_INTR                   0x01
1448 #define ADV_INTR_ENABLE_SEL_INTR                    0x02
1449 #define ADV_INTR_ENABLE_DPR_INTR                    0x04
1450 #define ADV_INTR_ENABLE_RTA_INTR                    0x08
1451 #define ADV_INTR_ENABLE_RMA_INTR                    0x10
1452 #define ADV_INTR_ENABLE_RST_INTR                    0x20
1453 #define ADV_INTR_ENABLE_DPE_INTR                    0x40
1454 #define ADV_INTR_ENABLE_GLOBAL_INTR                 0x80
1455
1456 #define ADV_INTR_STATUS_INTRA            0x01
1457 #define ADV_INTR_STATUS_INTRB            0x02
1458 #define ADV_INTR_STATUS_INTRC            0x04
1459
1460 #define ADV_RISC_CSR_STOP           (0x0000)
1461 #define ADV_RISC_TEST_COND          (0x2000)
1462 #define ADV_RISC_CSR_RUN            (0x4000)
1463 #define ADV_RISC_CSR_SINGLE_STEP    (0x8000)
1464
1465 #define ADV_CTRL_REG_HOST_INTR      0x0100
1466 #define ADV_CTRL_REG_SEL_INTR       0x0200
1467 #define ADV_CTRL_REG_DPR_INTR       0x0400
1468 #define ADV_CTRL_REG_RTA_INTR       0x0800
1469 #define ADV_CTRL_REG_RMA_INTR       0x1000
1470 #define ADV_CTRL_REG_RES_BIT14      0x2000
1471 #define ADV_CTRL_REG_DPE_INTR       0x4000
1472 #define ADV_CTRL_REG_POWER_DONE     0x8000
1473 #define ADV_CTRL_REG_ANY_INTR       0xFF00
1474
1475 #define ADV_CTRL_REG_CMD_RESET             0x00C6
1476 #define ADV_CTRL_REG_CMD_WR_IO_REG         0x00C5
1477 #define ADV_CTRL_REG_CMD_RD_IO_REG         0x00C4
1478 #define ADV_CTRL_REG_CMD_WR_PCI_CFG_SPACE  0x00C3
1479 #define ADV_CTRL_REG_CMD_RD_PCI_CFG_SPACE  0x00C2
1480
1481 #define ADV_TICKLE_NOP                      0x00
1482 #define ADV_TICKLE_A                        0x01
1483 #define ADV_TICKLE_B                        0x02
1484 #define ADV_TICKLE_C                        0x03
1485
1486 #define AdvIsIntPending(port) \
1487     (AdvReadWordRegister(port, IOPW_CTRL_REG) & ADV_CTRL_REG_HOST_INTR)
1488
1489 /*
1490  * SCSI_CFG0 Register bit definitions
1491  */
1492 #define TIMER_MODEAB    0xC000  /* Watchdog, Second, and Select. Timer Ctrl. */
1493 #define PARITY_EN       0x2000  /* Enable SCSI Parity Error detection */
1494 #define EVEN_PARITY     0x1000  /* Select Even Parity */
1495 #define WD_LONG         0x0800  /* Watchdog Interval, 1: 57 min, 0: 13 sec */
1496 #define QUEUE_128       0x0400  /* Queue Size, 1: 128 byte, 0: 64 byte */
1497 #define PRIM_MODE       0x0100  /* Primitive SCSI mode */
1498 #define SCAM_EN         0x0080  /* Enable SCAM selection */
1499 #define SEL_TMO_LONG    0x0040  /* Sel/Resel Timeout, 1: 400 ms, 0: 1.6 ms */
1500 #define CFRM_ID         0x0020  /* SCAM id sel. confirm., 1: fast, 0: 6.4 ms */
1501 #define OUR_ID_EN       0x0010  /* Enable OUR_ID bits */
1502 #define OUR_ID          0x000F  /* SCSI ID */
1503
1504 /*
1505  * SCSI_CFG1 Register bit definitions
1506  */
1507 #define BIG_ENDIAN      0x8000  /* Enable Big Endian Mode MIO:15, EEP:15 */
1508 #define TERM_POL        0x2000  /* Terminator Polarity Ctrl. MIO:13, EEP:13 */
1509 #define SLEW_RATE       0x1000  /* SCSI output buffer slew rate */
1510 #define FILTER_SEL      0x0C00  /* Filter Period Selection */
1511 #define  FLTR_DISABLE    0x0000 /* Input Filtering Disabled */
1512 #define  FLTR_11_TO_20NS 0x0800 /* Input Filtering 11ns to 20ns */
1513 #define  FLTR_21_TO_39NS 0x0C00 /* Input Filtering 21ns to 39ns */
1514 #define ACTIVE_DBL      0x0200  /* Disable Active Negation */
1515 #define DIFF_MODE       0x0100  /* SCSI differential Mode (Read-Only) */
1516 #define DIFF_SENSE      0x0080  /* 1: No SE cables, 0: SE cable (Read-Only) */
1517 #define TERM_CTL_SEL    0x0040  /* Enable TERM_CTL_H and TERM_CTL_L */
1518 #define TERM_CTL        0x0030  /* External SCSI Termination Bits */
1519 #define  TERM_CTL_H      0x0020 /* Enable External SCSI Upper Termination */
1520 #define  TERM_CTL_L      0x0010 /* Enable External SCSI Lower Termination */
1521 #define CABLE_DETECT    0x000F  /* External SCSI Cable Connection Status */
1522
1523 /*
1524  * Addendum for ASC-38C0800 Chip
1525  *
1526  * The ASC-38C1600 Chip uses the same definitions except that the
1527  * bus mode override bits [12:10] have been moved to byte register
1528  * offset 0xE (IOPB_SOFT_OVER_WR) bits [12:10]. The [12:10] bits in
1529  * SCSI_CFG1 are read-only and always available. Bit 14 (DIS_TERM_DRV)
1530  * is not needed. The [12:10] bits in IOPB_SOFT_OVER_WR are write-only.
1531  * Also each ASC-38C1600 function or channel uses only cable bits [5:4]
1532  * and [1:0]. Bits [14], [7:6], [3:2] are unused.
1533  */
1534 #define DIS_TERM_DRV    0x4000  /* 1: Read c_det[3:0], 0: cannot read */
1535 #define HVD_LVD_SE      0x1C00  /* Device Detect Bits */
1536 #define  HVD             0x1000 /* HVD Device Detect */
1537 #define  LVD             0x0800 /* LVD Device Detect */
1538 #define  SE              0x0400 /* SE Device Detect */
1539 #define TERM_LVD        0x00C0  /* LVD Termination Bits */
1540 #define  TERM_LVD_HI     0x0080 /* Enable LVD Upper Termination */
1541 #define  TERM_LVD_LO     0x0040 /* Enable LVD Lower Termination */
1542 #define TERM_SE         0x0030  /* SE Termination Bits */
1543 #define  TERM_SE_HI      0x0020 /* Enable SE Upper Termination */
1544 #define  TERM_SE_LO      0x0010 /* Enable SE Lower Termination */
1545 #define C_DET_LVD       0x000C  /* LVD Cable Detect Bits */
1546 #define  C_DET3          0x0008 /* Cable Detect for LVD External Wide */
1547 #define  C_DET2          0x0004 /* Cable Detect for LVD Internal Wide */
1548 #define C_DET_SE        0x0003  /* SE Cable Detect Bits */
1549 #define  C_DET1          0x0002 /* Cable Detect for SE Internal Wide */
1550 #define  C_DET0          0x0001 /* Cable Detect for SE Internal Narrow */
1551
1552 #define CABLE_ILLEGAL_A 0x7
1553     /* x 0 0 0  | on  on | Illegal (all 3 connectors are used) */
1554
1555 #define CABLE_ILLEGAL_B 0xB
1556     /* 0 x 0 0  | on  on | Illegal (all 3 connectors are used) */
1557
1558 /*
1559  * MEM_CFG Register bit definitions
1560  */
1561 #define BIOS_EN         0x40    /* BIOS Enable MIO:14,EEP:14 */
1562 #define FAST_EE_CLK     0x20    /* Diagnostic Bit */
1563 #define RAM_SZ          0x1C    /* Specify size of RAM to RISC */
1564 #define  RAM_SZ_2KB      0x00   /* 2 KB */
1565 #define  RAM_SZ_4KB      0x04   /* 4 KB */
1566 #define  RAM_SZ_8KB      0x08   /* 8 KB */
1567 #define  RAM_SZ_16KB     0x0C   /* 16 KB */
1568 #define  RAM_SZ_32KB     0x10   /* 32 KB */
1569 #define  RAM_SZ_64KB     0x14   /* 64 KB */
1570
1571 /*
1572  * DMA_CFG0 Register bit definitions
1573  *
1574  * This register is only accessible to the host.
1575  */
1576 #define BC_THRESH_ENB   0x80    /* PCI DMA Start Conditions */
1577 #define FIFO_THRESH     0x70    /* PCI DMA FIFO Threshold */
1578 #define  FIFO_THRESH_16B  0x00  /* 16 bytes */
1579 #define  FIFO_THRESH_32B  0x20  /* 32 bytes */
1580 #define  FIFO_THRESH_48B  0x30  /* 48 bytes */
1581 #define  FIFO_THRESH_64B  0x40  /* 64 bytes */
1582 #define  FIFO_THRESH_80B  0x50  /* 80 bytes (default) */
1583 #define  FIFO_THRESH_96B  0x60  /* 96 bytes */
1584 #define  FIFO_THRESH_112B 0x70  /* 112 bytes */
1585 #define START_CTL       0x0C    /* DMA start conditions */
1586 #define  START_CTL_TH    0x00   /* Wait threshold level (default) */
1587 #define  START_CTL_ID    0x04   /* Wait SDMA/SBUS idle */
1588 #define  START_CTL_THID  0x08   /* Wait threshold and SDMA/SBUS idle */
1589 #define  START_CTL_EMFU  0x0C   /* Wait SDMA FIFO empty/full */
1590 #define READ_CMD        0x03    /* Memory Read Method */
1591 #define  READ_CMD_MR     0x00   /* Memory Read */
1592 #define  READ_CMD_MRL    0x02   /* Memory Read Long */
1593 #define  READ_CMD_MRM    0x03   /* Memory Read Multiple (default) */
1594
1595 /*
1596  * ASC-38C0800 RAM BIST Register bit definitions
1597  */
1598 #define RAM_TEST_MODE         0x80
1599 #define PRE_TEST_MODE         0x40
1600 #define NORMAL_MODE           0x00
1601 #define RAM_TEST_DONE         0x10
1602 #define RAM_TEST_STATUS       0x0F
1603 #define  RAM_TEST_HOST_ERROR   0x08
1604 #define  RAM_TEST_INTRAM_ERROR 0x04
1605 #define  RAM_TEST_RISC_ERROR   0x02
1606 #define  RAM_TEST_SCSI_ERROR   0x01
1607 #define  RAM_TEST_SUCCESS      0x00
1608 #define PRE_TEST_VALUE        0x05
1609 #define NORMAL_VALUE          0x00
1610
1611 /*
1612  * ASC38C1600 Definitions
1613  *
1614  * IOPB_PCI_INT_CFG Bit Field Definitions
1615  */
1616
1617 #define INTAB_LD        0x80    /* Value loaded from EEPROM Bit 11. */
1618
1619 /*
1620  * Bit 1 can be set to change the interrupt for the Function to operate in
1621  * Totem Pole mode. By default Bit 1 is 0 and the interrupt operates in
1622  * Open Drain mode. Both functions of the ASC38C1600 must be set to the same
1623  * mode, otherwise the operating mode is undefined.
1624  */
1625 #define TOTEMPOLE       0x02
1626
1627 /*
1628  * Bit 0 can be used to change the Int Pin for the Function. The value is
1629  * 0 by default for both Functions with Function 0 using INT A and Function
1630  * B using INT B. For Function 0 if set, INT B is used. For Function 1 if set,
1631  * INT A is used.
1632  *
1633  * EEPROM Word 0 Bit 11 for each Function may change the initial Int Pin
1634  * value specified in the PCI Configuration Space.
1635  */
1636 #define INTAB           0x01
1637
1638 /*
1639  * Adv Library Status Definitions
1640  */
1641 #define ADV_TRUE        1
1642 #define ADV_FALSE       0
1643 #define ADV_SUCCESS     1
1644 #define ADV_BUSY        0
1645 #define ADV_ERROR       (-1)
1646
1647 /*
1648  * ADV_DVC_VAR 'warn_code' values
1649  */
1650 #define ASC_WARN_BUSRESET_ERROR         0x0001  /* SCSI Bus Reset error */
1651 #define ASC_WARN_EEPROM_CHKSUM          0x0002  /* EEP check sum error */
1652 #define ASC_WARN_EEPROM_TERMINATION     0x0004  /* EEP termination bad field */
1653 #define ASC_WARN_ERROR                  0xFFFF  /* ADV_ERROR return */
1654
1655 #define ADV_MAX_TID                     15      /* max. target identifier */
1656 #define ADV_MAX_LUN                     7       /* max. logical unit number */
1657
1658 /*
1659  * Fixed locations of microcode operating variables.
1660  */
1661 #define ASC_MC_CODE_BEGIN_ADDR          0x0028  /* microcode start address */
1662 #define ASC_MC_CODE_END_ADDR            0x002A  /* microcode end address */
1663 #define ASC_MC_CODE_CHK_SUM             0x002C  /* microcode code checksum */
1664 #define ASC_MC_VERSION_DATE             0x0038  /* microcode version */
1665 #define ASC_MC_VERSION_NUM              0x003A  /* microcode number */
1666 #define ASC_MC_BIOSMEM                  0x0040  /* BIOS RISC Memory Start */
1667 #define ASC_MC_BIOSLEN                  0x0050  /* BIOS RISC Memory Length */
1668 #define ASC_MC_BIOS_SIGNATURE           0x0058  /* BIOS Signature 0x55AA */
1669 #define ASC_MC_BIOS_VERSION             0x005A  /* BIOS Version (2 bytes) */
1670 #define ASC_MC_SDTR_SPEED1              0x0090  /* SDTR Speed for TID 0-3 */
1671 #define ASC_MC_SDTR_SPEED2              0x0092  /* SDTR Speed for TID 4-7 */
1672 #define ASC_MC_SDTR_SPEED3              0x0094  /* SDTR Speed for TID 8-11 */
1673 #define ASC_MC_SDTR_SPEED4              0x0096  /* SDTR Speed for TID 12-15 */
1674 #define ASC_MC_CHIP_TYPE                0x009A
1675 #define ASC_MC_INTRB_CODE               0x009B
1676 #define ASC_MC_WDTR_ABLE                0x009C
1677 #define ASC_MC_SDTR_ABLE                0x009E
1678 #define ASC_MC_TAGQNG_ABLE              0x00A0
1679 #define ASC_MC_DISC_ENABLE              0x00A2
1680 #define ASC_MC_IDLE_CMD_STATUS          0x00A4
1681 #define ASC_MC_IDLE_CMD                 0x00A6
1682 #define ASC_MC_IDLE_CMD_PARAMETER       0x00A8
1683 #define ASC_MC_DEFAULT_SCSI_CFG0        0x00AC
1684 #define ASC_MC_DEFAULT_SCSI_CFG1        0x00AE
1685 #define ASC_MC_DEFAULT_MEM_CFG          0x00B0
1686 #define ASC_MC_DEFAULT_SEL_MASK         0x00B2
1687 #define ASC_MC_SDTR_DONE                0x00B6
1688 #define ASC_MC_NUMBER_OF_QUEUED_CMD     0x00C0
1689 #define ASC_MC_NUMBER_OF_MAX_CMD        0x00D0
1690 #define ASC_MC_DEVICE_HSHK_CFG_TABLE    0x0100
1691 #define ASC_MC_CONTROL_FLAG             0x0122  /* Microcode control flag. */
1692 #define ASC_MC_WDTR_DONE                0x0124
1693 #define ASC_MC_CAM_MODE_MASK            0x015E  /* CAM mode TID bitmask. */
1694 #define ASC_MC_ICQ                      0x0160
1695 #define ASC_MC_IRQ                      0x0164
1696 #define ASC_MC_PPR_ABLE                 0x017A
1697
1698 /*
1699  * BIOS LRAM variable absolute offsets.
1700  */
1701 #define BIOS_CODESEG    0x54
1702 #define BIOS_CODELEN    0x56
1703 #define BIOS_SIGNATURE  0x58
1704 #define BIOS_VERSION    0x5A
1705
1706 /*
1707  * Microcode Control Flags
1708  *
1709  * Flags set by the Adv Library in RISC variable 'control_flag' (0x122)
1710  * and handled by the microcode.
1711  */
1712 #define CONTROL_FLAG_IGNORE_PERR        0x0001  /* Ignore DMA Parity Errors */
1713 #define CONTROL_FLAG_ENABLE_AIPP        0x0002  /* Enabled AIPP checking. */
1714
1715 /*
1716  * ASC_MC_DEVICE_HSHK_CFG_TABLE microcode table or HSHK_CFG register format
1717  */
1718 #define HSHK_CFG_WIDE_XFR       0x8000
1719 #define HSHK_CFG_RATE           0x0F00
1720 #define HSHK_CFG_OFFSET         0x001F
1721
1722 #define ASC_DEF_MAX_HOST_QNG    0xFD    /* Max. number of host commands (253) */
1723 #define ASC_DEF_MIN_HOST_QNG    0x10    /* Min. number of host commands (16) */
1724 #define ASC_DEF_MAX_DVC_QNG     0x3F    /* Max. number commands per device (63) */
1725 #define ASC_DEF_MIN_DVC_QNG     0x04    /* Min. number commands per device (4) */
1726
1727 #define ASC_QC_DATA_CHECK  0x01 /* Require ASC_QC_DATA_OUT set or clear. */
1728 #define ASC_QC_DATA_OUT    0x02 /* Data out DMA transfer. */
1729 #define ASC_QC_START_MOTOR 0x04 /* Send auto-start motor before request. */
1730 #define ASC_QC_NO_OVERRUN  0x08 /* Don't report overrun. */
1731 #define ASC_QC_FREEZE_TIDQ 0x10 /* Freeze TID queue after request. XXX TBD */
1732
1733 #define ASC_QSC_NO_DISC     0x01        /* Don't allow disconnect for request. */
1734 #define ASC_QSC_NO_TAGMSG   0x02        /* Don't allow tag queuing for request. */
1735 #define ASC_QSC_NO_SYNC     0x04        /* Don't use Synch. transfer on request. */
1736 #define ASC_QSC_NO_WIDE     0x08        /* Don't use Wide transfer on request. */
1737 #define ASC_QSC_REDO_DTR    0x10        /* Renegotiate WDTR/SDTR before request. */
1738 /*
1739  * Note: If a Tag Message is to be sent and neither ASC_QSC_HEAD_TAG or
1740  * ASC_QSC_ORDERED_TAG is set, then a Simple Tag Message (0x20) is used.
1741  */
1742 #define ASC_QSC_HEAD_TAG    0x40        /* Use Head Tag Message (0x21). */
1743 #define ASC_QSC_ORDERED_TAG 0x80        /* Use Ordered Tag Message (0x22). */
1744
1745 /*
1746  * All fields here are accessed by the board microcode and need to be
1747  * little-endian.
1748  */
1749 typedef struct adv_carr_t {
1750         ADV_VADDR carr_va;      /* Carrier Virtual Address */
1751         ADV_PADDR carr_pa;      /* Carrier Physical Address */
1752         ADV_VADDR areq_vpa;     /* ASC_SCSI_REQ_Q Virtual or Physical Address */
1753         /*
1754          * next_vpa [31:4]            Carrier Virtual or Physical Next Pointer
1755          *
1756          * next_vpa [3:1]             Reserved Bits
1757          * next_vpa [0]               Done Flag set in Response Queue.
1758          */
1759         ADV_VADDR next_vpa;
1760 } ADV_CARR_T;
1761
1762 /*
1763  * Mask used to eliminate low 4 bits of carrier 'next_vpa' field.
1764  */
1765 #define ASC_NEXT_VPA_MASK       0xFFFFFFF0
1766
1767 #define ASC_RQ_DONE             0x00000001
1768 #define ASC_RQ_GOOD             0x00000002
1769 #define ASC_CQ_STOPPER          0x00000000
1770
1771 #define ASC_GET_CARRP(carrp) ((carrp) & ASC_NEXT_VPA_MASK)
1772
1773 #define ADV_CARRIER_NUM_PAGE_CROSSING \
1774     (((ADV_CARRIER_COUNT * sizeof(ADV_CARR_T)) + (PAGE_SIZE - 1))/PAGE_SIZE)
1775
1776 #define ADV_CARRIER_BUFSIZE \
1777     ((ADV_CARRIER_COUNT + ADV_CARRIER_NUM_PAGE_CROSSING) * sizeof(ADV_CARR_T))
1778
1779 /*
1780  * ASC_SCSI_REQ_Q 'a_flag' definitions
1781  *
1782  * The Adv Library should limit use to the lower nibble (4 bits) of
1783  * a_flag. Drivers are free to use the upper nibble (4 bits) of a_flag.
1784  */
1785 #define ADV_POLL_REQUEST                0x01    /* poll for request completion */
1786 #define ADV_SCSIQ_DONE                  0x02    /* request done */
1787 #define ADV_DONT_RETRY                  0x08    /* don't do retry */
1788
1789 #define ADV_CHIP_ASC3550          0x01  /* Ultra-Wide IC */
1790 #define ADV_CHIP_ASC38C0800       0x02  /* Ultra2-Wide/LVD IC */
1791 #define ADV_CHIP_ASC38C1600       0x03  /* Ultra3-Wide/LVD2 IC */
1792
1793 /*
1794  * Adapter temporary configuration structure
1795  *
1796  * This structure can be discarded after initialization. Don't add
1797  * fields here needed after initialization.
1798  *
1799  * Field naming convention:
1800  *
1801  *  *_enable indicates the field enables or disables a feature. The
1802  *  value of the field is never reset.
1803  */
1804 typedef struct adv_dvc_cfg {
1805         ushort disc_enable;     /* enable disconnection */
1806         uchar chip_version;     /* chip version */
1807         uchar termination;      /* Term. Ctrl. bits 6-5 of SCSI_CFG1 register */
1808         ushort control_flag;    /* Microcode Control Flag */
1809         ushort mcode_date;      /* Microcode date */
1810         ushort mcode_version;   /* Microcode version */
1811         ushort serial1;         /* EEPROM serial number word 1 */
1812         ushort serial2;         /* EEPROM serial number word 2 */
1813         ushort serial3;         /* EEPROM serial number word 3 */
1814 } ADV_DVC_CFG;
1815
1816 struct adv_dvc_var;
1817 struct adv_scsi_req_q;
1818
1819 typedef struct asc_sg_block {
1820         uchar reserved1;
1821         uchar reserved2;
1822         uchar reserved3;
1823         uchar sg_cnt;           /* Valid entries in block. */
1824         ADV_PADDR sg_ptr;       /* Pointer to next sg block. */
1825         struct {
1826                 ADV_PADDR sg_addr;      /* SG element address. */
1827                 ADV_DCNT sg_count;      /* SG element count. */
1828         } sg_list[NO_OF_SG_PER_BLOCK];
1829 } ADV_SG_BLOCK;
1830
1831 /*
1832  * ADV_SCSI_REQ_Q - microcode request structure
1833  *
1834  * All fields in this structure up to byte 60 are used by the microcode.
1835  * The microcode makes assumptions about the size and ordering of fields
1836  * in this structure. Do not change the structure definition here without
1837  * coordinating the change with the microcode.
1838  *
1839  * All fields accessed by microcode must be maintained in little_endian
1840  * order.
1841  */
1842 typedef struct adv_scsi_req_q {
1843         uchar cntl;             /* Ucode flags and state (ASC_MC_QC_*). */
1844         uchar target_cmd;
1845         uchar target_id;        /* Device target identifier. */
1846         uchar target_lun;       /* Device target logical unit number. */
1847         ADV_PADDR data_addr;    /* Data buffer physical address. */
1848         ADV_DCNT data_cnt;      /* Data count. Ucode sets to residual. */
1849         ADV_PADDR sense_addr;
1850         ADV_PADDR carr_pa;
1851         uchar mflag;
1852         uchar sense_len;
1853         uchar cdb_len;          /* SCSI CDB length. Must <= 16 bytes. */
1854         uchar scsi_cntl;
1855         uchar done_status;      /* Completion status. */
1856         uchar scsi_status;      /* SCSI status byte. */
1857         uchar host_status;      /* Ucode host status. */
1858         uchar sg_working_ix;
1859         uchar cdb[12];          /* SCSI CDB bytes 0-11. */
1860         ADV_PADDR sg_real_addr; /* SG list physical address. */
1861         ADV_PADDR scsiq_rptr;
1862         uchar cdb16[4];         /* SCSI CDB bytes 12-15. */
1863         ADV_VADDR scsiq_ptr;
1864         ADV_VADDR carr_va;
1865         /*
1866          * End of microcode structure - 60 bytes. The rest of the structure
1867          * is used by the Adv Library and ignored by the microcode.
1868          */
1869         ADV_VADDR srb_ptr;
1870         ADV_SG_BLOCK *sg_list_ptr;      /* SG list virtual address. */
1871         char *vdata_addr;       /* Data buffer virtual address. */
1872         uchar a_flag;
1873         uchar pad[2];           /* Pad out to a word boundary. */
1874 } ADV_SCSI_REQ_Q;
1875
1876 /*
1877  * The following two structures are used to process Wide Board requests.
1878  *
1879  * The ADV_SCSI_REQ_Q structure in adv_req_t is passed to the Adv Library
1880  * and microcode with the ADV_SCSI_REQ_Q field 'srb_ptr' pointing to the
1881  * adv_req_t. The adv_req_t structure 'cmndp' field in turn points to the
1882  * Mid-Level SCSI request structure.
1883  *
1884  * Zero or more ADV_SG_BLOCK are used with each ADV_SCSI_REQ_Q. Each
1885  * ADV_SG_BLOCK structure holds 15 scatter-gather elements. Under Linux
1886  * up to 255 scatter-gather elements may be used per request or
1887  * ADV_SCSI_REQ_Q.
1888  *
1889  * Both structures must be 32 byte aligned.
1890  */
1891 typedef struct adv_sgblk {
1892         ADV_SG_BLOCK sg_block;  /* Sgblock structure. */
1893         uchar align[32];        /* Sgblock structure padding. */
1894         struct adv_sgblk *next_sgblkp;  /* Next scatter-gather structure. */
1895 } adv_sgblk_t;
1896
1897 typedef struct adv_req {
1898         ADV_SCSI_REQ_Q scsi_req_q;      /* Adv Library request structure. */
1899         uchar align[32];        /* Request structure padding. */
1900         struct scsi_cmnd *cmndp;        /* Mid-Level SCSI command pointer. */
1901         adv_sgblk_t *sgblkp;    /* Adv Library scatter-gather pointer. */
1902         struct adv_req *next_reqp;      /* Next Request Structure. */
1903 } adv_req_t;
1904
1905 /*
1906  * Adapter operation variable structure.
1907  *
1908  * One structure is required per host adapter.
1909  *
1910  * Field naming convention:
1911  *
1912  *  *_able indicates both whether a feature should be enabled or disabled
1913  *  and whether a device isi capable of the feature. At initialization
1914  *  this field may be set, but later if a device is found to be incapable
1915  *  of the feature, the field is cleared.
1916  */
1917 typedef struct adv_dvc_var {
1918         AdvPortAddr iop_base;   /* I/O port address */
1919         ushort err_code;        /* fatal error code */
1920         ushort bios_ctrl;       /* BIOS control word, EEPROM word 12 */
1921         ushort wdtr_able;       /* try WDTR for a device */
1922         ushort sdtr_able;       /* try SDTR for a device */
1923         ushort ultra_able;      /* try SDTR Ultra speed for a device */
1924         ushort sdtr_speed1;     /* EEPROM SDTR Speed for TID 0-3   */
1925         ushort sdtr_speed2;     /* EEPROM SDTR Speed for TID 4-7   */
1926         ushort sdtr_speed3;     /* EEPROM SDTR Speed for TID 8-11  */
1927         ushort sdtr_speed4;     /* EEPROM SDTR Speed for TID 12-15 */
1928         ushort tagqng_able;     /* try tagged queuing with a device */
1929         ushort ppr_able;        /* PPR message capable per TID bitmask. */
1930         uchar max_dvc_qng;      /* maximum number of tagged commands per device */
1931         ushort start_motor;     /* start motor command allowed */
1932         uchar scsi_reset_wait;  /* delay in seconds after scsi bus reset */
1933         uchar chip_no;          /* should be assigned by caller */
1934         uchar max_host_qng;     /* maximum number of Q'ed command allowed */
1935         ushort no_scam;         /* scam_tolerant of EEPROM */
1936         struct asc_board *drv_ptr;      /* driver pointer to private structure */
1937         uchar chip_scsi_id;     /* chip SCSI target ID */
1938         uchar chip_type;
1939         uchar bist_err_code;
1940         ADV_CARR_T *carrier_buf;
1941         ADV_CARR_T *carr_freelist;      /* Carrier free list. */
1942         ADV_CARR_T *icq_sp;     /* Initiator command queue stopper pointer. */
1943         ADV_CARR_T *irq_sp;     /* Initiator response queue stopper pointer. */
1944         ushort carr_pending_cnt;        /* Count of pending carriers. */
1945         struct adv_req *orig_reqp;      /* adv_req_t memory block. */
1946         /*
1947          * Note: The following fields will not be used after initialization. The
1948          * driver may discard the buffer after initialization is done.
1949          */
1950         ADV_DVC_CFG *cfg;       /* temporary configuration structure  */
1951 } ADV_DVC_VAR;
1952
1953 /*
1954  * Microcode idle loop commands
1955  */
1956 #define IDLE_CMD_COMPLETED           0
1957 #define IDLE_CMD_STOP_CHIP           0x0001
1958 #define IDLE_CMD_STOP_CHIP_SEND_INT  0x0002
1959 #define IDLE_CMD_SEND_INT            0x0004
1960 #define IDLE_CMD_ABORT               0x0008
1961 #define IDLE_CMD_DEVICE_RESET        0x0010
1962 #define IDLE_CMD_SCSI_RESET_START    0x0020     /* Assert SCSI Bus Reset */
1963 #define IDLE_CMD_SCSI_RESET_END      0x0040     /* Deassert SCSI Bus Reset */
1964 #define IDLE_CMD_SCSIREQ             0x0080
1965
1966 #define IDLE_CMD_STATUS_SUCCESS      0x0001
1967 #define IDLE_CMD_STATUS_FAILURE      0x0002
1968
1969 /*
1970  * AdvSendIdleCmd() flag definitions.
1971  */
1972 #define ADV_NOWAIT     0x01
1973
1974 /*
1975  * Wait loop time out values.
1976  */
1977 #define SCSI_WAIT_100_MSEC           100UL      /* 100 milliseconds */
1978 #define SCSI_US_PER_MSEC             1000       /* microseconds per millisecond */
1979 #define SCSI_MAX_RETRY               10 /* retry count */
1980
1981 #define ADV_ASYNC_RDMA_FAILURE          0x01    /* Fatal RDMA failure. */
1982 #define ADV_ASYNC_SCSI_BUS_RESET_DET    0x02    /* Detected SCSI Bus Reset. */
1983 #define ADV_ASYNC_CARRIER_READY_FAILURE 0x03    /* Carrier Ready failure. */
1984 #define ADV_RDMA_IN_CARR_AND_Q_INVALID  0x04    /* RDMAed-in data invalid. */
1985
1986 #define ADV_HOST_SCSI_BUS_RESET      0x80       /* Host Initiated SCSI Bus Reset. */
1987
1988 /* Read byte from a register. */
1989 #define AdvReadByteRegister(iop_base, reg_off) \
1990      (ADV_MEM_READB((iop_base) + (reg_off)))
1991
1992 /* Write byte to a register. */
1993 #define AdvWriteByteRegister(iop_base, reg_off, byte) \
1994      (ADV_MEM_WRITEB((iop_base) + (reg_off), (byte)))
1995
1996 /* Read word (2 bytes) from a register. */
1997 #define AdvReadWordRegister(iop_base, reg_off) \
1998      (ADV_MEM_READW((iop_base) + (reg_off)))
1999
2000 /* Write word (2 bytes) to a register. */
2001 #define AdvWriteWordRegister(iop_base, reg_off, word) \
2002      (ADV_MEM_WRITEW((iop_base) + (reg_off), (word)))
2003
2004 /* Write dword (4 bytes) to a register. */
2005 #define AdvWriteDWordRegister(iop_base, reg_off, dword) \
2006      (ADV_MEM_WRITEDW((iop_base) + (reg_off), (dword)))
2007
2008 /* Read byte from LRAM. */
2009 #define AdvReadByteLram(iop_base, addr, byte) \
2010 do { \
2011     ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
2012     (byte) = ADV_MEM_READB((iop_base) + IOPB_RAM_DATA); \
2013 } while (0)
2014
2015 /* Write byte to LRAM. */
2016 #define AdvWriteByteLram(iop_base, addr, byte) \
2017     (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
2018      ADV_MEM_WRITEB((iop_base) + IOPB_RAM_DATA, (byte)))
2019
2020 /* Read word (2 bytes) from LRAM. */
2021 #define AdvReadWordLram(iop_base, addr, word) \
2022 do { \
2023     ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
2024     (word) = (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA)); \
2025 } while (0)
2026
2027 /* Write word (2 bytes) to LRAM. */
2028 #define AdvWriteWordLram(iop_base, addr, word) \
2029     (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
2030      ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
2031
2032 /* Write little-endian double word (4 bytes) to LRAM */
2033 /* Because of unspecified C language ordering don't use auto-increment. */
2034 #define AdvWriteDWordLramNoSwap(iop_base, addr, dword) \
2035     ((ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
2036       ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
2037                      cpu_to_le16((ushort) ((dword) & 0xFFFF)))), \
2038      (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr) + 2), \
2039       ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
2040                      cpu_to_le16((ushort) ((dword >> 16) & 0xFFFF)))))
2041
2042 /* Read word (2 bytes) from LRAM assuming that the address is already set. */
2043 #define AdvReadWordAutoIncLram(iop_base) \
2044      (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA))
2045
2046 /* Write word (2 bytes) to LRAM assuming that the address is already set. */
2047 #define AdvWriteWordAutoIncLram(iop_base, word) \
2048      (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
2049
2050 /*
2051  * Define macro to check for Condor signature.
2052  *
2053  * Evaluate to ADV_TRUE if a Condor chip is found the specified port
2054  * address 'iop_base'. Otherwise evalue to ADV_FALSE.
2055  */
2056 #define AdvFindSignature(iop_base) \
2057     (((AdvReadByteRegister((iop_base), IOPB_CHIP_ID_1) == \
2058     ADV_CHIP_ID_BYTE) && \
2059      (AdvReadWordRegister((iop_base), IOPW_CHIP_ID_0) == \
2060     ADV_CHIP_ID_WORD)) ?  ADV_TRUE : ADV_FALSE)
2061
2062 /*
2063  * Define macro to Return the version number of the chip at 'iop_base'.
2064  *
2065  * The second parameter 'bus_type' is currently unused.
2066  */
2067 #define AdvGetChipVersion(iop_base, bus_type) \
2068     AdvReadByteRegister((iop_base), IOPB_CHIP_TYPE_REV)
2069
2070 /*
2071  * Abort an SRB in the chip's RISC Memory. The 'srb_ptr' argument must
2072  * match the ASC_SCSI_REQ_Q 'srb_ptr' field.
2073  *
2074  * If the request has not yet been sent to the device it will simply be
2075  * aborted from RISC memory. If the request is disconnected it will be
2076  * aborted on reselection by sending an Abort Message to the target ID.
2077  *
2078  * Return value:
2079  *      ADV_TRUE(1) - Queue was successfully aborted.
2080  *      ADV_FALSE(0) - Queue was not found on the active queue list.
2081  */
2082 #define AdvAbortQueue(asc_dvc, scsiq) \
2083         AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_ABORT, \
2084                        (ADV_DCNT) (scsiq))
2085
2086 /*
2087  * Send a Bus Device Reset Message to the specified target ID.
2088  *
2089  * All outstanding commands will be purged if sending the
2090  * Bus Device Reset Message is successful.
2091  *
2092  * Return Value:
2093  *      ADV_TRUE(1) - All requests on the target are purged.
2094  *      ADV_FALSE(0) - Couldn't issue Bus Device Reset Message; Requests
2095  *                     are not purged.
2096  */
2097 #define AdvResetDevice(asc_dvc, target_id) \
2098         AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_DEVICE_RESET, \
2099                     (ADV_DCNT) (target_id))
2100
2101 /*
2102  * SCSI Wide Type definition.
2103  */
2104 #define ADV_SCSI_BIT_ID_TYPE   ushort
2105
2106 /*
2107  * AdvInitScsiTarget() 'cntl_flag' options.
2108  */
2109 #define ADV_SCAN_LUN           0x01
2110 #define ADV_CAPINFO_NOLUN      0x02
2111
2112 /*
2113  * Convert target id to target id bit mask.
2114  */
2115 #define ADV_TID_TO_TIDMASK(tid)   (0x01 << ((tid) & ADV_MAX_TID))
2116
2117 /*
2118  * ASC_SCSI_REQ_Q 'done_status' and 'host_status' return values.
2119  */
2120
2121 #define QD_NO_STATUS         0x00       /* Request not completed yet. */
2122 #define QD_NO_ERROR          0x01
2123 #define QD_ABORTED_BY_HOST   0x02
2124 #define QD_WITH_ERROR        0x04
2125
2126 #define QHSTA_NO_ERROR              0x00
2127 #define QHSTA_M_SEL_TIMEOUT         0x11
2128 #define QHSTA_M_DATA_OVER_RUN       0x12
2129 #define QHSTA_M_UNEXPECTED_BUS_FREE 0x13
2130 #define QHSTA_M_QUEUE_ABORTED       0x15
2131 #define QHSTA_M_SXFR_SDMA_ERR       0x16        /* SXFR_STATUS SCSI DMA Error */
2132 #define QHSTA_M_SXFR_SXFR_PERR      0x17        /* SXFR_STATUS SCSI Bus Parity Error */
2133 #define QHSTA_M_RDMA_PERR           0x18        /* RISC PCI DMA parity error */
2134 #define QHSTA_M_SXFR_OFF_UFLW       0x19        /* SXFR_STATUS Offset Underflow */
2135 #define QHSTA_M_SXFR_OFF_OFLW       0x20        /* SXFR_STATUS Offset Overflow */
2136 #define QHSTA_M_SXFR_WD_TMO         0x21        /* SXFR_STATUS Watchdog Timeout */
2137 #define QHSTA_M_SXFR_DESELECTED     0x22        /* SXFR_STATUS Deselected */
2138 /* Note: QHSTA_M_SXFR_XFR_OFLW is identical to QHSTA_M_DATA_OVER_RUN. */
2139 #define QHSTA_M_SXFR_XFR_OFLW       0x12        /* SXFR_STATUS Transfer Overflow */
2140 #define QHSTA_M_SXFR_XFR_PH_ERR     0x24        /* SXFR_STATUS Transfer Phase Error */
2141 #define QHSTA_M_SXFR_UNKNOWN_ERROR  0x25        /* SXFR_STATUS Unknown Error */
2142 #define QHSTA_M_SCSI_BUS_RESET      0x30        /* Request aborted from SBR */
2143 #define QHSTA_M_SCSI_BUS_RESET_UNSOL 0x31       /* Request aborted from unsol. SBR */
2144 #define QHSTA_M_BUS_DEVICE_RESET    0x32        /* Request aborted from BDR */
2145 #define QHSTA_M_DIRECTION_ERR       0x35        /* Data Phase mismatch */
2146 #define QHSTA_M_DIRECTION_ERR_HUNG  0x36        /* Data Phase mismatch and bus hang */
2147 #define QHSTA_M_WTM_TIMEOUT         0x41
2148 #define QHSTA_M_BAD_CMPL_STATUS_IN  0x42
2149 #define QHSTA_M_NO_AUTO_REQ_SENSE   0x43
2150 #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
2151 #define QHSTA_M_INVALID_DEVICE      0x45        /* Bad target ID */
2152 #define QHSTA_M_FROZEN_TIDQ         0x46        /* TID Queue frozen. */
2153 #define QHSTA_M_SGBACKUP_ERROR      0x47        /* Scatter-Gather backup error */
2154
2155 /* Return the address that is aligned at the next doubleword >= to 'addr'. */
2156 #define ADV_8BALIGN(addr)      (((ulong) (addr) + 0x7) & ~0x7)
2157 #define ADV_16BALIGN(addr)     (((ulong) (addr) + 0xF) & ~0xF)
2158 #define ADV_32BALIGN(addr)     (((ulong) (addr) + 0x1F) & ~0x1F)
2159
2160 /*
2161  * Total contiguous memory needed for driver SG blocks.
2162  *
2163  * ADV_MAX_SG_LIST must be defined by a driver. It is the maximum
2164  * number of scatter-gather elements the driver supports in a
2165  * single request.
2166  */
2167
2168 #define ADV_SG_LIST_MAX_BYTE_SIZE \
2169          (sizeof(ADV_SG_BLOCK) * \
2170           ((ADV_MAX_SG_LIST + (NO_OF_SG_PER_BLOCK - 1))/NO_OF_SG_PER_BLOCK))
2171
2172 /* struct asc_board flags */
2173 #define ASC_IS_WIDE_BOARD       0x04    /* AdvanSys Wide Board */
2174
2175 #define ASC_NARROW_BOARD(boardp) (((boardp)->flags & ASC_IS_WIDE_BOARD) == 0)
2176
2177 #define NO_ISA_DMA              0xff    /* No ISA DMA Channel Used */
2178
2179 #define ASC_INFO_SIZE           128     /* advansys_info() line size */
2180
2181 /* Asc Library return codes */
2182 #define ASC_TRUE        1
2183 #define ASC_FALSE       0
2184 #define ASC_NOERROR     1
2185 #define ASC_BUSY        0
2186 #define ASC_ERROR       (-1)
2187
2188 /* struct scsi_cmnd function return codes */
2189 #define STATUS_BYTE(byte)   (byte)
2190 #define MSG_BYTE(byte)      ((byte) << 8)
2191 #define HOST_BYTE(byte)     ((byte) << 16)
2192 #define DRIVER_BYTE(byte)   ((byte) << 24)
2193
2194 #define ASC_STATS(shost, counter) ASC_STATS_ADD(shost, counter, 1)
2195 #ifndef ADVANSYS_STATS
2196 #define ASC_STATS_ADD(shost, counter, count)
2197 #else /* ADVANSYS_STATS */
2198 #define ASC_STATS_ADD(shost, counter, count) \
2199         (((struct asc_board *) shost_priv(shost))->asc_stats.counter += (count))
2200 #endif /* ADVANSYS_STATS */
2201
2202 /* If the result wraps when calculating tenths, return 0. */
2203 #define ASC_TENTHS(num, den) \
2204     (((10 * ((num)/(den))) > (((num) * 10)/(den))) ? \
2205     0 : ((((num) * 10)/(den)) - (10 * ((num)/(den)))))
2206
2207 /*
2208  * Display a message to the console.
2209  */
2210 #define ASC_PRINT(s) \
2211     { \
2212         printk("advansys: "); \
2213         printk(s); \
2214     }
2215
2216 #define ASC_PRINT1(s, a1) \
2217     { \
2218         printk("advansys: "); \
2219         printk((s), (a1)); \
2220     }
2221
2222 #define ASC_PRINT2(s, a1, a2) \
2223     { \
2224         printk("advansys: "); \
2225         printk((s), (a1), (a2)); \
2226     }
2227
2228 #define ASC_PRINT3(s, a1, a2, a3) \
2229     { \
2230         printk("advansys: "); \
2231         printk((s), (a1), (a2), (a3)); \
2232     }
2233
2234 #define ASC_PRINT4(s, a1, a2, a3, a4) \
2235     { \
2236         printk("advansys: "); \
2237         printk((s), (a1), (a2), (a3), (a4)); \
2238     }
2239
2240 #ifndef ADVANSYS_DEBUG
2241
2242 #define ASC_DBG(lvl, s...)
2243 #define ASC_DBG_PRT_SCSI_HOST(lvl, s)
2244 #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp)
2245 #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2246 #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone)
2247 #define ADV_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2248 #define ASC_DBG_PRT_HEX(lvl, name, start, length)
2249 #define ASC_DBG_PRT_CDB(lvl, cdb, len)
2250 #define ASC_DBG_PRT_SENSE(lvl, sense, len)
2251 #define ASC_DBG_PRT_INQUIRY(lvl, inq, len)
2252
2253 #else /* ADVANSYS_DEBUG */
2254
2255 /*
2256  * Debugging Message Levels:
2257  * 0: Errors Only
2258  * 1: High-Level Tracing
2259  * 2-N: Verbose Tracing
2260  */
2261
2262 #define ASC_DBG(lvl, format, arg...) {                                  \
2263         if (asc_dbglvl >= (lvl))                                        \
2264                 printk(KERN_DEBUG "%s: %s: " format, DRV_NAME,          \
2265                         __func__ , ## arg);                             \
2266 }
2267
2268 #define ASC_DBG_PRT_SCSI_HOST(lvl, s) \
2269     { \
2270         if (asc_dbglvl >= (lvl)) { \
2271             asc_prt_scsi_host(s); \
2272         } \
2273     }
2274
2275 #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp) \
2276     { \
2277         if (asc_dbglvl >= (lvl)) { \
2278             asc_prt_asc_scsi_q(scsiqp); \
2279         } \
2280     }
2281
2282 #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone) \
2283     { \
2284         if (asc_dbglvl >= (lvl)) { \
2285             asc_prt_asc_qdone_info(qdone); \
2286         } \
2287     }
2288
2289 #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) \
2290     { \
2291         if (asc_dbglvl >= (lvl)) { \
2292             asc_prt_adv_scsi_req_q(scsiqp); \
2293         } \
2294     }
2295
2296 #define ASC_DBG_PRT_HEX(lvl, name, start, length) \
2297     { \
2298         if (asc_dbglvl >= (lvl)) { \
2299             asc_prt_hex((name), (start), (length)); \
2300         } \
2301     }
2302
2303 #define ASC_DBG_PRT_CDB(lvl, cdb, len) \
2304         ASC_DBG_PRT_HEX((lvl), "CDB", (uchar *) (cdb), (len));
2305
2306 #define ASC_DBG_PRT_SENSE(lvl, sense, len) \
2307         ASC_DBG_PRT_HEX((lvl), "SENSE", (uchar *) (sense), (len));
2308
2309 #define ASC_DBG_PRT_INQUIRY(lvl, inq, len) \
2310         ASC_DBG_PRT_HEX((lvl), "INQUIRY", (uchar *) (inq), (len));
2311 #endif /* ADVANSYS_DEBUG */
2312
2313 #ifdef ADVANSYS_STATS
2314
2315 /* Per board statistics structure */
2316 struct asc_stats {
2317         /* Driver Entrypoint Statistics */
2318         ADV_DCNT queuecommand;  /* # calls to advansys_queuecommand() */
2319         ADV_DCNT reset;         /* # calls to advansys_eh_bus_reset() */
2320         ADV_DCNT biosparam;     /* # calls to advansys_biosparam() */
2321         ADV_DCNT interrupt;     /* # advansys_interrupt() calls */
2322         ADV_DCNT callback;      /* # calls to asc/adv_isr_callback() */
2323         ADV_DCNT done;          /* # calls to request's scsi_done function */
2324         ADV_DCNT build_error;   /* # asc/adv_build_req() ASC_ERROR returns. */
2325         ADV_DCNT adv_build_noreq;       /* # adv_build_req() adv_req_t alloc. fail. */
2326         ADV_DCNT adv_build_nosg;        /* # adv_build_req() adv_sgblk_t alloc. fail. */
2327         /* AscExeScsiQueue()/AdvExeScsiQueue() Statistics */
2328         ADV_DCNT exe_noerror;   /* # ASC_NOERROR returns. */
2329         ADV_DCNT exe_busy;      /* # ASC_BUSY returns. */
2330         ADV_DCNT exe_error;     /* # ASC_ERROR returns. */
2331         ADV_DCNT exe_unknown;   /* # unknown returns. */
2332         /* Data Transfer Statistics */
2333         ADV_DCNT xfer_cnt;      /* # I/O requests received */
2334         ADV_DCNT xfer_elem;     /* # scatter-gather elements */
2335         ADV_DCNT xfer_sect;     /* # 512-byte blocks */
2336 };
2337 #endif /* ADVANSYS_STATS */
2338
2339 /*
2340  * Structure allocated for each board.
2341  *
2342  * This structure is allocated by scsi_host_alloc() at the end
2343  * of the 'Scsi_Host' structure starting at the 'hostdata'
2344  * field. It is guaranteed to be allocated from DMA-able memory.
2345  */
2346 struct asc_board {
2347         struct device *dev;
2348         uint flags;             /* Board flags */
2349         unsigned int irq;
2350         union {
2351                 ASC_DVC_VAR asc_dvc_var;        /* Narrow board */
2352                 ADV_DVC_VAR adv_dvc_var;        /* Wide board */
2353         } dvc_var;
2354         union {
2355                 ASC_DVC_CFG asc_dvc_cfg;        /* Narrow board */
2356                 ADV_DVC_CFG adv_dvc_cfg;        /* Wide board */
2357         } dvc_cfg;
2358         ushort asc_n_io_port;   /* Number I/O ports. */
2359         ADV_SCSI_BIT_ID_TYPE init_tidmask;      /* Target init./valid mask */
2360         ushort reqcnt[ADV_MAX_TID + 1]; /* Starvation request count */
2361         ADV_SCSI_BIT_ID_TYPE queue_full;        /* Queue full mask */
2362         ushort queue_full_cnt[ADV_MAX_TID + 1]; /* Queue full count */
2363         union {
2364                 ASCEEP_CONFIG asc_eep;  /* Narrow EEPROM config. */
2365                 ADVEEP_3550_CONFIG adv_3550_eep;        /* 3550 EEPROM config. */
2366                 ADVEEP_38C0800_CONFIG adv_38C0800_eep;  /* 38C0800 EEPROM config. */
2367                 ADVEEP_38C1600_CONFIG adv_38C1600_eep;  /* 38C1600 EEPROM config. */
2368         } eep_config;
2369         ulong last_reset;       /* Saved last reset time */
2370         /* /proc/scsi/advansys/[0...] */
2371 #ifdef ADVANSYS_STATS
2372         struct asc_stats asc_stats;     /* Board statistics */
2373 #endif                          /* ADVANSYS_STATS */
2374         /*
2375          * The following fields are used only for Narrow Boards.
2376          */
2377         uchar sdtr_data[ASC_MAX_TID + 1];       /* SDTR information */
2378         /*
2379          * The following fields are used only for Wide Boards.
2380          */
2381         void __iomem *ioremap_addr;     /* I/O Memory remap address. */
2382         ushort ioport;          /* I/O Port address. */
2383         adv_req_t *adv_reqp;    /* Request structures. */
2384         adv_sgblk_t *adv_sgblkp;        /* Scatter-gather structures. */
2385         ushort bios_signature;  /* BIOS Signature. */
2386         ushort bios_version;    /* BIOS Version. */
2387         ushort bios_codeseg;    /* BIOS Code Segment. */
2388         ushort bios_codelen;    /* BIOS Code Segment Length. */
2389 };
2390
2391 #define asc_dvc_to_board(asc_dvc) container_of(asc_dvc, struct asc_board, \
2392                                                         dvc_var.asc_dvc_var)
2393 #define adv_dvc_to_board(adv_dvc) container_of(adv_dvc, struct asc_board, \
2394                                                         dvc_var.adv_dvc_var)
2395 #define adv_dvc_to_pdev(adv_dvc) to_pci_dev(adv_dvc_to_board(adv_dvc)->dev)
2396
2397 #ifdef ADVANSYS_DEBUG
2398 static int asc_dbglvl = 3;
2399
2400 /*
2401  * asc_prt_asc_dvc_var()
2402  */
2403 static void asc_prt_asc_dvc_var(ASC_DVC_VAR *h)
2404 {
2405         printk("ASC_DVC_VAR at addr 0x%lx\n", (ulong)h);
2406
2407         printk(" iop_base 0x%x, err_code 0x%x, dvc_cntl 0x%x, bug_fix_cntl "
2408                "%d,\n", h->iop_base, h->err_code, h->dvc_cntl, h->bug_fix_cntl);
2409
2410         printk(" bus_type %d, init_sdtr 0x%x,\n", h->bus_type,
2411                 (unsigned)h->init_sdtr);
2412
2413         printk(" sdtr_done 0x%x, use_tagged_qng 0x%x, unit_not_ready 0x%x, "
2414                "chip_no 0x%x,\n", (unsigned)h->sdtr_done,
2415                (unsigned)h->use_tagged_qng, (unsigned)h->unit_not_ready,
2416                (unsigned)h->chip_no);
2417
2418         printk(" queue_full_or_busy 0x%x, start_motor 0x%x, scsi_reset_wait "
2419                "%u,\n", (unsigned)h->queue_full_or_busy,
2420                (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait);
2421
2422         printk(" is_in_int %u, max_total_qng %u, cur_total_qng %u, "
2423                "in_critical_cnt %u,\n", (unsigned)h->is_in_int,
2424                (unsigned)h->max_total_qng, (unsigned)h->cur_total_qng,
2425                (unsigned)h->in_critical_cnt);
2426
2427         printk(" last_q_shortage %u, init_state 0x%x, no_scam 0x%x, "
2428                "pci_fix_asyn_xfer 0x%x,\n", (unsigned)h->last_q_shortage,
2429                (unsigned)h->init_state, (unsigned)h->no_scam,
2430                (unsigned)h->pci_fix_asyn_xfer);
2431
2432         printk(" cfg 0x%lx\n", (ulong)h->cfg);
2433 }
2434
2435 /*
2436  * asc_prt_asc_dvc_cfg()
2437  */
2438 static void asc_prt_asc_dvc_cfg(ASC_DVC_CFG *h)
2439 {
2440         printk("ASC_DVC_CFG at addr 0x%lx\n", (ulong)h);
2441
2442         printk(" can_tagged_qng 0x%x, cmd_qng_enabled 0x%x,\n",
2443                h->can_tagged_qng, h->cmd_qng_enabled);
2444         printk(" disc_enable 0x%x, sdtr_enable 0x%x,\n",
2445                h->disc_enable, h->sdtr_enable);
2446
2447         printk(" chip_scsi_id %d, isa_dma_speed %d, isa_dma_channel %d, "
2448                 "chip_version %d,\n", h->chip_scsi_id, h->isa_dma_speed,
2449                 h->isa_dma_channel, h->chip_version);
2450
2451         printk(" mcode_date 0x%x, mcode_version %d\n",
2452                 h->mcode_date, h->mcode_version);
2453 }
2454
2455 /*
2456  * asc_prt_adv_dvc_var()
2457  *
2458  * Display an ADV_DVC_VAR structure.
2459  */
2460 static void asc_prt_adv_dvc_var(ADV_DVC_VAR *h)
2461 {
2462         printk(" ADV_DVC_VAR at addr 0x%lx\n", (ulong)h);
2463
2464         printk("  iop_base 0x%lx, err_code 0x%x, ultra_able 0x%x\n",
2465                (ulong)h->iop_base, h->err_code, (unsigned)h->ultra_able);
2466
2467         printk("  sdtr_able 0x%x, wdtr_able 0x%x\n",
2468                (unsigned)h->sdtr_able, (unsigned)h->wdtr_able);
2469
2470         printk("  start_motor 0x%x, scsi_reset_wait 0x%x\n",
2471                (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait);
2472
2473         printk("  max_host_qng %u, max_dvc_qng %u, carr_freelist 0x%lxn\n",
2474                (unsigned)h->max_host_qng, (unsigned)h->max_dvc_qng,
2475                (ulong)h->carr_freelist);
2476
2477         printk("  icq_sp 0x%lx, irq_sp 0x%lx\n",
2478                (ulong)h->icq_sp, (ulong)h->irq_sp);
2479
2480         printk("  no_scam 0x%x, tagqng_able 0x%x\n",
2481                (unsigned)h->no_scam, (unsigned)h->tagqng_able);
2482
2483         printk("  chip_scsi_id 0x%x, cfg 0x%lx\n",
2484                (unsigned)h->chip_scsi_id, (ulong)h->cfg);
2485 }
2486
2487 /*
2488  * asc_prt_adv_dvc_cfg()
2489  *
2490  * Display an ADV_DVC_CFG structure.
2491  */
2492 static void asc_prt_adv_dvc_cfg(ADV_DVC_CFG *h)
2493 {
2494         printk(" ADV_DVC_CFG at addr 0x%lx\n", (ulong)h);
2495
2496         printk("  disc_enable 0x%x, termination 0x%x\n",
2497                h->disc_enable, h->termination);
2498
2499         printk("  chip_version 0x%x, mcode_date 0x%x\n",
2500                h->chip_version, h->mcode_date);
2501
2502         printk("  mcode_version 0x%x, control_flag 0x%x\n",
2503                h->mcode_version, h->control_flag);
2504 }
2505
2506 /*
2507  * asc_prt_scsi_host()
2508  */
2509 static void asc_prt_scsi_host(struct Scsi_Host *s)
2510 {
2511         struct asc_board *boardp = shost_priv(s);
2512
2513         printk("Scsi_Host at addr 0x%p, device %s\n", s, dev_name(boardp->dev));
2514         printk(" host_busy %u, host_no %d,\n",
2515                atomic_read(&s->host_busy), s->host_no);
2516
2517         printk(" base 0x%lx, io_port 0x%lx, irq %d,\n",
2518                (ulong)s->base, (ulong)s->io_port, boardp->irq);
2519
2520         printk(" dma_channel %d, this_id %d, can_queue %d,\n",
2521                s->dma_channel, s->this_id, s->can_queue);
2522
2523         printk(" cmd_per_lun %d, sg_tablesize %d, unchecked_isa_dma %d\n",
2524                s->cmd_per_lun, s->sg_tablesize, s->unchecked_isa_dma);
2525
2526         if (ASC_NARROW_BOARD(boardp)) {
2527                 asc_prt_asc_dvc_var(&boardp->dvc_var.asc_dvc_var);
2528                 asc_prt_asc_dvc_cfg(&boardp->dvc_cfg.asc_dvc_cfg);
2529         } else {
2530                 asc_prt_adv_dvc_var(&boardp->dvc_var.adv_dvc_var);
2531                 asc_prt_adv_dvc_cfg(&boardp->dvc_cfg.adv_dvc_cfg);
2532         }
2533 }
2534
2535 /*
2536  * asc_prt_hex()
2537  *
2538  * Print hexadecimal output in 4 byte groupings 32 bytes
2539  * or 8 double-words per line.
2540  */
2541 static void asc_prt_hex(char *f, uchar *s, int l)
2542 {
2543         int i;
2544         int j;
2545         int k;
2546         int m;
2547
2548         printk("%s: (%d bytes)\n", f, l);
2549
2550         for (i = 0; i < l; i += 32) {
2551
2552                 /* Display a maximum of 8 double-words per line. */
2553                 if ((k = (l - i) / 4) >= 8) {
2554                         k = 8;
2555                         m = 0;
2556                 } else {
2557                         m = (l - i) % 4;
2558                 }
2559
2560                 for (j = 0; j < k; j++) {
2561                         printk(" %2.2X%2.2X%2.2X%2.2X",
2562                                (unsigned)s[i + (j * 4)],
2563                                (unsigned)s[i + (j * 4) + 1],
2564                                (unsigned)s[i + (j * 4) + 2],
2565                                (unsigned)s[i + (j * 4) + 3]);
2566                 }
2567
2568                 switch (m) {
2569                 case 0:
2570                 default:
2571                         break;
2572                 case 1:
2573                         printk(" %2.2X", (unsigned)s[i + (j * 4)]);
2574                         break;
2575                 case 2:
2576                         printk(" %2.2X%2.2X",
2577                                (unsigned)s[i + (j * 4)],
2578                                (unsigned)s[i + (j * 4) + 1]);
2579                         break;
2580                 case 3:
2581                         printk(" %2.2X%2.2X%2.2X",
2582                                (unsigned)s[i + (j * 4) + 1],
2583                                (unsigned)s[i + (j * 4) + 2],
2584                                (unsigned)s[i + (j * 4) + 3]);
2585                         break;
2586                 }
2587
2588                 printk("\n");
2589         }
2590 }
2591
2592 /*
2593  * asc_prt_asc_scsi_q()
2594  */
2595 static void asc_prt_asc_scsi_q(ASC_SCSI_Q *q)
2596 {
2597         ASC_SG_HEAD *sgp;
2598         int i;
2599
2600         printk("ASC_SCSI_Q at addr 0x%lx\n", (ulong)q);
2601
2602         printk
2603             (" target_ix 0x%x, target_lun %u, srb_ptr 0x%lx, tag_code 0x%x,\n",
2604              q->q2.target_ix, q->q1.target_lun, (ulong)q->q2.srb_ptr,
2605              q->q2.tag_code);
2606
2607         printk
2608             (" data_addr 0x%lx, data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2609              (ulong)le32_to_cpu(q->q1.data_addr),
2610              (ulong)le32_to_cpu(q->q1.data_cnt),
2611              (ulong)le32_to_cpu(q->q1.sense_addr), q->q1.sense_len);
2612
2613         printk(" cdbptr 0x%lx, cdb_len %u, sg_head 0x%lx, sg_queue_cnt %u\n",
2614                (ulong)q->cdbptr, q->q2.cdb_len,
2615                (ulong)q->sg_head, q->q1.sg_queue_cnt);
2616
2617         if (q->sg_head) {
2618                 sgp = q->sg_head;
2619                 printk("ASC_SG_HEAD at addr 0x%lx\n", (ulong)sgp);
2620                 printk(" entry_cnt %u, queue_cnt %u\n", sgp->entry_cnt,
2621                        sgp->queue_cnt);
2622                 for (i = 0; i < sgp->entry_cnt; i++) {
2623                         printk(" [%u]: addr 0x%lx, bytes %lu\n",
2624                                i, (ulong)le32_to_cpu(sgp->sg_list[i].addr),
2625                                (ulong)le32_to_cpu(sgp->sg_list[i].bytes));
2626                 }
2627
2628         }
2629 }
2630
2631 /*
2632  * asc_prt_asc_qdone_info()
2633  */
2634 static void asc_prt_asc_qdone_info(ASC_QDONE_INFO *q)
2635 {
2636         printk("ASC_QDONE_INFO at addr 0x%lx\n", (ulong)q);
2637         printk(" srb_ptr 0x%lx, target_ix %u, cdb_len %u, tag_code %u,\n",
2638                (ulong)q->d2.srb_ptr, q->d2.target_ix, q->d2.cdb_len,
2639                q->d2.tag_code);
2640         printk
2641             (" done_stat 0x%x, host_stat 0x%x, scsi_stat 0x%x, scsi_msg 0x%x\n",
2642              q->d3.done_stat, q->d3.host_stat, q->d3.scsi_stat, q->d3.scsi_msg);
2643 }
2644
2645 /*
2646  * asc_prt_adv_sgblock()
2647  *
2648  * Display an ADV_SG_BLOCK structure.
2649  */
2650 static void asc_prt_adv_sgblock(int sgblockno, ADV_SG_BLOCK *b)
2651 {
2652         int i;
2653
2654         printk(" ASC_SG_BLOCK at addr 0x%lx (sgblockno %d)\n",
2655                (ulong)b, sgblockno);
2656         printk("  sg_cnt %u, sg_ptr 0x%lx\n",
2657                b->sg_cnt, (ulong)le32_to_cpu(b->sg_ptr));
2658         BUG_ON(b->sg_cnt > NO_OF_SG_PER_BLOCK);
2659         if (b->sg_ptr != 0)
2660                 BUG_ON(b->sg_cnt != NO_OF_SG_PER_BLOCK);
2661         for (i = 0; i < b->sg_cnt; i++) {
2662                 printk("  [%u]: sg_addr 0x%lx, sg_count 0x%lx\n",
2663                        i, (ulong)b->sg_list[i].sg_addr,
2664                        (ulong)b->sg_list[i].sg_count);
2665         }
2666 }
2667
2668 /*
2669  * asc_prt_adv_scsi_req_q()
2670  *
2671  * Display an ADV_SCSI_REQ_Q structure.
2672  */
2673 static void asc_prt_adv_scsi_req_q(ADV_SCSI_REQ_Q *q)
2674 {
2675         int sg_blk_cnt;
2676         struct asc_sg_block *sg_ptr;
2677
2678         printk("ADV_SCSI_REQ_Q at addr 0x%lx\n", (ulong)q);
2679
2680         printk("  target_id %u, target_lun %u, srb_ptr 0x%lx, a_flag 0x%x\n",
2681                q->target_id, q->target_lun, (ulong)q->srb_ptr, q->a_flag);
2682
2683         printk("  cntl 0x%x, data_addr 0x%lx, vdata_addr 0x%lx\n",
2684                q->cntl, (ulong)le32_to_cpu(q->data_addr), (ulong)q->vdata_addr);
2685
2686         printk("  data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2687                (ulong)le32_to_cpu(q->data_cnt),
2688                (ulong)le32_to_cpu(q->sense_addr), q->sense_len);
2689
2690         printk
2691             ("  cdb_len %u, done_status 0x%x, host_status 0x%x, scsi_status 0x%x\n",
2692              q->cdb_len, q->done_status, q->host_status, q->scsi_status);
2693
2694         printk("  sg_working_ix 0x%x, target_cmd %u\n",
2695                q->sg_working_ix, q->target_cmd);
2696
2697         printk("  scsiq_rptr 0x%lx, sg_real_addr 0x%lx, sg_list_ptr 0x%lx\n",
2698                (ulong)le32_to_cpu(q->scsiq_rptr),
2699                (ulong)le32_to_cpu(q->sg_real_addr), (ulong)q->sg_list_ptr);
2700
2701         /* Display the request's ADV_SG_BLOCK structures. */
2702         if (q->sg_list_ptr != NULL) {
2703                 sg_blk_cnt = 0;
2704                 while (1) {
2705                         /*
2706                          * 'sg_ptr' is a physical address. Convert it to a virtual
2707                          * address by indexing 'sg_blk_cnt' into the virtual address
2708                          * array 'sg_list_ptr'.
2709                          *
2710                          * XXX - Assumes all SG physical blocks are virtually contiguous.
2711                          */
2712                         sg_ptr =
2713                             &(((ADV_SG_BLOCK *)(q->sg_list_ptr))[sg_blk_cnt]);
2714                         asc_prt_adv_sgblock(sg_blk_cnt, sg_ptr);
2715                         if (sg_ptr->sg_ptr == 0) {
2716                                 break;
2717                         }
2718                         sg_blk_cnt++;
2719                 }
2720         }
2721 }
2722 #endif /* ADVANSYS_DEBUG */
2723
2724 /*
2725  * The advansys chip/microcode contains a 32-bit identifier for each command
2726  * known as the 'srb'.  I don't know what it stands for.  The driver used
2727  * to encode the scsi_cmnd pointer by calling virt_to_bus and retrieve it
2728  * with bus_to_virt.  Now the driver keeps a per-host map of integers to
2729  * pointers.  It auto-expands when full, unless it can't allocate memory.
2730  * Note that an srb of 0 is treated specially by the chip/firmware, hence
2731  * the return of i+1 in this routine, and the corresponding subtraction in
2732  * the inverse routine.
2733  */
2734 #define BAD_SRB 0
2735 static u32 advansys_ptr_to_srb(struct asc_dvc_var *asc_dvc, void *ptr)
2736 {
2737         int i;
2738         void **new_ptr;
2739
2740         for (i = 0; i < asc_dvc->ptr_map_count; i++) {
2741                 if (!asc_dvc->ptr_map[i])
2742                         goto out;
2743         }
2744
2745         if (asc_dvc->ptr_map_count == 0)
2746                 asc_dvc->ptr_map_count = 1;
2747         else
2748                 asc_dvc->ptr_map_count *= 2;
2749
2750         new_ptr = krealloc(asc_dvc->ptr_map,
2751                         asc_dvc->ptr_map_count * sizeof(void *), GFP_ATOMIC);
2752         if (!new_ptr)
2753                 return BAD_SRB;
2754         asc_dvc->ptr_map = new_ptr;
2755  out:
2756         ASC_DBG(3, "Putting ptr %p into array offset %d\n", ptr, i);
2757         asc_dvc->ptr_map[i] = ptr;
2758         return i + 1;
2759 }
2760
2761 static void * advansys_srb_to_ptr(struct asc_dvc_var *asc_dvc, u32 srb)
2762 {
2763         void *ptr;
2764
2765         srb--;
2766         if (srb >= asc_dvc->ptr_map_count) {
2767                 printk("advansys: bad SRB %u, max %u\n", srb,
2768                                                         asc_dvc->ptr_map_count);
2769                 return NULL;
2770         }
2771         ptr = asc_dvc->ptr_map[srb];
2772         asc_dvc->ptr_map[srb] = NULL;
2773         ASC_DBG(3, "Returning ptr %p from array offset %d\n", ptr, srb);
2774         return ptr;
2775 }
2776
2777 /*
2778  * advansys_info()
2779  *
2780  * Return suitable for printing on the console with the argument
2781  * adapter's configuration information.
2782  *
2783  * Note: The information line should not exceed ASC_INFO_SIZE bytes,
2784  * otherwise the static 'info' array will be overrun.
2785  */
2786 static const char *advansys_info(struct Scsi_Host *shost)
2787 {
2788         static char info[ASC_INFO_SIZE];
2789         struct asc_board *boardp = shost_priv(shost);
2790         ASC_DVC_VAR *asc_dvc_varp;
2791         ADV_DVC_VAR *adv_dvc_varp;
2792         char *busname;
2793         char *widename = NULL;
2794
2795         if (ASC_NARROW_BOARD(boardp)) {
2796                 asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
2797                 ASC_DBG(1, "begin\n");
2798                 if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
2799                         if ((asc_dvc_varp->bus_type & ASC_IS_ISAPNP) ==
2800                             ASC_IS_ISAPNP) {
2801                                 busname = "ISA PnP";
2802                         } else {
2803                                 busname = "ISA";
2804                         }
2805                         sprintf(info,
2806                                 "AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X, DMA 0x%X",
2807                                 ASC_VERSION, busname,
2808                                 (ulong)shost->io_port,
2809                                 (ulong)shost->io_port + ASC_IOADR_GAP - 1,
2810                                 boardp->irq, shost->dma_channel);
2811                 } else {
2812                         if (asc_dvc_varp->bus_type & ASC_IS_VL) {
2813                                 busname = "VL";
2814                         } else if (asc_dvc_varp->bus_type & ASC_IS_EISA) {
2815                                 busname = "EISA";
2816                         } else if (asc_dvc_varp->bus_type & ASC_IS_PCI) {
2817                                 if ((asc_dvc_varp->bus_type & ASC_IS_PCI_ULTRA)
2818                                     == ASC_IS_PCI_ULTRA) {
2819                                         busname = "PCI Ultra";
2820                                 } else {
2821                                         busname = "PCI";
2822                                 }
2823                         } else {
2824                                 busname = "?";
2825                                 shost_printk(KERN_ERR, shost, "unknown bus "
2826                                         "type %d\n", asc_dvc_varp->bus_type);
2827                         }
2828                         sprintf(info,
2829                                 "AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X",
2830                                 ASC_VERSION, busname, (ulong)shost->io_port,
2831                                 (ulong)shost->io_port + ASC_IOADR_GAP - 1,
2832                                 boardp->irq);
2833                 }
2834         } else {
2835                 /*
2836                  * Wide Adapter Information
2837                  *
2838                  * Memory-mapped I/O is used instead of I/O space to access
2839                  * the adapter, but display the I/O Port range. The Memory
2840                  * I/O address is displayed through the driver /proc file.
2841                  */
2842                 adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
2843                 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
2844                         widename = "Ultra-Wide";
2845                 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
2846                         widename = "Ultra2-Wide";
2847                 } else {
2848                         widename = "Ultra3-Wide";
2849                 }
2850                 sprintf(info,
2851                         "AdvanSys SCSI %s: PCI %s: PCIMEM 0x%lX-0x%lX, IRQ 0x%X",
2852                         ASC_VERSION, widename, (ulong)adv_dvc_varp->iop_base,
2853                         (ulong)adv_dvc_varp->iop_base + boardp->asc_n_io_port - 1, boardp->irq);
2854         }
2855         BUG_ON(strlen(info) >= ASC_INFO_SIZE);
2856         ASC_DBG(1, "end\n");
2857         return info;
2858 }
2859
2860 #ifdef CONFIG_PROC_FS
2861
2862 /*
2863  * asc_prt_board_devices()
2864  *
2865  * Print driver information for devices attached to the board.
2866  */
2867 static void asc_prt_board_devices(struct seq_file *m, struct Scsi_Host *shost)
2868 {
2869         struct asc_board *boardp = shost_priv(shost);
2870         int chip_scsi_id;
2871         int i;
2872
2873         seq_printf(m,
2874                    "\nDevice Information for AdvanSys SCSI Host %d:\n",
2875                    shost->host_no);
2876
2877         if (ASC_NARROW_BOARD(boardp)) {
2878                 chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id;
2879         } else {
2880                 chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id;
2881         }
2882
2883         seq_printf(m, "Target IDs Detected:");
2884         for (i = 0; i <= ADV_MAX_TID; i++) {
2885                 if (boardp->init_tidmask & ADV_TID_TO_TIDMASK(i))
2886                         seq_printf(m, " %X,", i);
2887         }
2888         seq_printf(m, " (%X=Host Adapter)\n", chip_scsi_id);
2889 }
2890
2891 /*
2892  * Display Wide Board BIOS Information.
2893  */
2894 static void asc_prt_adv_bios(struct seq_file *m, struct Scsi_Host *shost)
2895 {
2896         struct asc_board *boardp = shost_priv(shost);
2897         ushort major, minor, letter;
2898
2899         seq_printf(m, "\nROM BIOS Version: ");
2900
2901         /*
2902          * If the BIOS saved a valid signature, then fill in
2903          * the BIOS code segment base address.
2904          */
2905         if (boardp->bios_signature != 0x55AA) {
2906                 seq_printf(m, "Disabled or Pre-3.1\n");
2907                 seq_printf(m,
2908                           "BIOS either disabled or Pre-3.1. If it is pre-3.1, then a newer version\n");
2909                 seq_printf(m,
2910                           "can be found at the ConnectCom FTP site: ftp://ftp.connectcom.net/pub\n");
2911         } else {
2912                 major = (boardp->bios_version >> 12) & 0xF;
2913                 minor = (boardp->bios_version >> 8) & 0xF;
2914                 letter = (boardp->bios_version & 0xFF);
2915
2916                 seq_printf(m, "%d.%d%c\n",
2917                                    major, minor,
2918                                    letter >= 26 ? '?' : letter + 'A');
2919                 /*
2920                  * Current available ROM BIOS release is 3.1I for UW
2921                  * and 3.2I for U2W. This code doesn't differentiate
2922                  * UW and U2W boards.
2923                  */
2924                 if (major < 3 || (major <= 3 && minor < 1) ||
2925                     (major <= 3 && minor <= 1 && letter < ('I' - 'A'))) {
2926                         seq_printf(m,
2927                                    "Newer version of ROM BIOS is available at the ConnectCom FTP site:\n");
2928                         seq_printf(m,
2929                                    "ftp://ftp.connectcom.net/pub\n");
2930                 }
2931         }
2932 }
2933
2934 /*
2935  * Add serial number to information bar if signature AAh
2936  * is found in at bit 15-9 (7 bits) of word 1.
2937  *
2938  * Serial Number consists fo 12 alpha-numeric digits.
2939  *
2940  *       1 - Product type (A,B,C,D..)  Word0: 15-13 (3 bits)
2941  *       2 - MFG Location (A,B,C,D..)  Word0: 12-10 (3 bits)
2942  *     3-4 - Product ID (0-99)         Word0: 9-0 (10 bits)
2943  *       5 - Product revision (A-J)    Word0:  "         "
2944  *
2945  *           Signature                 Word1: 15-9 (7 bits)
2946  *       6 - Year (0-9)                Word1: 8-6 (3 bits) & Word2: 15 (1 bit)
2947  *     7-8 - Week of the year (1-52)   Word1: 5-0 (6 bits)
2948  *
2949  *    9-12 - Serial Number (A001-Z999) Word2: 14-0 (15 bits)
2950  *
2951  * Note 1: Only production cards will have a serial number.
2952  *
2953  * Note 2: Signature is most significant 7 bits (0xFE).
2954  *
2955  * Returns ASC_TRUE if serial number found, otherwise returns ASC_FALSE.
2956  */
2957 static int asc_get_eeprom_string(ushort *serialnum, uchar *cp)
2958 {
2959         ushort w, num;
2960
2961         if ((serialnum[1] & 0xFE00) != ((ushort)0xAA << 8)) {
2962                 return ASC_FALSE;
2963         } else {
2964                 /*
2965                  * First word - 6 digits.
2966                  */
2967                 w = serialnum[0];
2968
2969                 /* Product type - 1st digit. */
2970                 if ((*cp = 'A' + ((w & 0xE000) >> 13)) == 'H') {
2971                         /* Product type is P=Prototype */
2972                         *cp += 0x8;
2973                 }
2974                 cp++;
2975
2976                 /* Manufacturing location - 2nd digit. */
2977                 *cp++ = 'A' + ((w & 0x1C00) >> 10);
2978
2979                 /* Product ID - 3rd, 4th digits. */
2980                 num = w & 0x3FF;
2981                 *cp++ = '0' + (num / 100);
2982                 num %= 100;
2983                 *cp++ = '0' + (num / 10);
2984
2985                 /* Product revision - 5th digit. */
2986                 *cp++ = 'A' + (num % 10);
2987
2988                 /*
2989                  * Second word
2990                  */
2991                 w = serialnum[1];
2992
2993                 /*
2994                  * Year - 6th digit.
2995                  *
2996                  * If bit 15 of third word is set, then the
2997                  * last digit of the year is greater than 7.
2998                  */
2999                 if (serialnum[2] & 0x8000) {
3000                         *cp++ = '8' + ((w & 0x1C0) >> 6);
3001                 } else {
3002                         *cp++ = '0' + ((w & 0x1C0) >> 6);
3003                 }
3004
3005                 /* Week of year - 7th, 8th digits. */
3006                 num = w & 0x003F;
3007                 *cp++ = '0' + num / 10;
3008                 num %= 10;
3009                 *cp++ = '0' + num;
3010
3011                 /*
3012                  * Third word
3013                  */
3014                 w = serialnum[2] & 0x7FFF;
3015
3016                 /* Serial number - 9th digit. */
3017                 *cp++ = 'A' + (w / 1000);
3018
3019                 /* 10th, 11th, 12th digits. */
3020                 num = w % 1000;
3021                 *cp++ = '0' + num / 100;
3022                 num %= 100;
3023                 *cp++ = '0' + num / 10;
3024                 num %= 10;
3025                 *cp++ = '0' + num;
3026
3027                 *cp = '\0';     /* Null Terminate the string. */
3028                 return ASC_TRUE;
3029         }
3030 }
3031
3032 /*
3033  * asc_prt_asc_board_eeprom()
3034  *
3035  * Print board EEPROM configuration.
3036  */
3037 static void asc_prt_asc_board_eeprom(struct seq_file *m, struct Scsi_Host *shost)
3038 {
3039         struct asc_board *boardp = shost_priv(shost);
3040         ASC_DVC_VAR *asc_dvc_varp;
3041         ASCEEP_CONFIG *ep;
3042         int i;
3043 #ifdef CONFIG_ISA
3044         int isa_dma_speed[] = { 10, 8, 7, 6, 5, 4, 3, 2 };
3045 #endif /* CONFIG_ISA */
3046         uchar serialstr[13];
3047
3048         asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
3049         ep = &boardp->eep_config.asc_eep;
3050
3051         seq_printf(m,
3052                    "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
3053                    shost->host_no);
3054
3055         if (asc_get_eeprom_string((ushort *)&ep->adapter_info[0], serialstr)
3056             == ASC_TRUE)
3057                 seq_printf(m, " Serial Number: %s\n", serialstr);
3058         else if (ep->adapter_info[5] == 0xBB)
3059                 seq_printf(m,
3060                            " Default Settings Used for EEPROM-less Adapter.\n");
3061         else
3062                 seq_printf(m,
3063                            " Serial Number Signature Not Present.\n");
3064
3065         seq_printf(m,
3066                    " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3067                    ASC_EEP_GET_CHIP_ID(ep), ep->max_total_qng,
3068                    ep->max_tag_qng);
3069
3070         seq_printf(m,
3071                    " cntl 0x%x, no_scam 0x%x\n", ep->cntl, ep->no_scam);
3072
3073         seq_printf(m, " Target ID:           ");
3074         for (i = 0; i <= ASC_MAX_TID; i++)
3075                 seq_printf(m, " %d", i);
3076         seq_printf(m, "\n");
3077
3078         seq_printf(m, " Disconnects:         ");
3079         for (i = 0; i <= ASC_MAX_TID; i++)
3080                 seq_printf(m, " %c",
3081                            (ep->disc_enable & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3082         seq_printf(m, "\n");
3083
3084         seq_printf(m, " Command Queuing:     ");
3085         for (i = 0; i <= ASC_MAX_TID; i++)
3086                 seq_printf(m, " %c",
3087                            (ep->use_cmd_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3088         seq_printf(m, "\n");
3089
3090         seq_printf(m, " Start Motor:         ");
3091         for (i = 0; i <= ASC_MAX_TID; i++)
3092                 seq_printf(m, " %c",
3093                            (ep->start_motor & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3094         seq_printf(m, "\n");
3095
3096         seq_printf(m, " Synchronous Transfer:");
3097         for (i = 0; i <= ASC_MAX_TID; i++)
3098                 seq_printf(m, " %c",
3099                            (ep->init_sdtr & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3100         seq_printf(m, "\n");
3101
3102 #ifdef CONFIG_ISA
3103         if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
3104                 seq_printf(m,
3105                            " Host ISA DMA speed:   %d MB/S\n",
3106                            isa_dma_speed[ASC_EEP_GET_DMA_SPD(ep)]);
3107         }
3108 #endif /* CONFIG_ISA */
3109 }
3110
3111 /*
3112  * asc_prt_adv_board_eeprom()
3113  *
3114  * Print board EEPROM configuration.
3115  */
3116 static void asc_prt_adv_board_eeprom(struct seq_file *m, struct Scsi_Host *shost)
3117 {
3118         struct asc_board *boardp = shost_priv(shost);
3119         ADV_DVC_VAR *adv_dvc_varp;
3120         int i;
3121         char *termstr;
3122         uchar serialstr[13];
3123         ADVEEP_3550_CONFIG *ep_3550 = NULL;
3124         ADVEEP_38C0800_CONFIG *ep_38C0800 = NULL;
3125         ADVEEP_38C1600_CONFIG *ep_38C1600 = NULL;
3126         ushort word;
3127         ushort *wordp;
3128         ushort sdtr_speed = 0;
3129
3130         adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
3131         if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3132                 ep_3550 = &boardp->eep_config.adv_3550_eep;
3133         } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3134                 ep_38C0800 = &boardp->eep_config.adv_38C0800_eep;
3135         } else {
3136                 ep_38C1600 = &boardp->eep_config.adv_38C1600_eep;
3137         }
3138
3139         seq_printf(m,
3140                    "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
3141                    shost->host_no);
3142
3143         if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3144                 wordp = &ep_3550->serial_number_word1;
3145         } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3146                 wordp = &ep_38C0800->serial_number_word1;
3147         } else {
3148                 wordp = &ep_38C1600->serial_number_word1;
3149         }
3150
3151         if (asc_get_eeprom_string(wordp, serialstr) == ASC_TRUE)
3152                 seq_printf(m, " Serial Number: %s\n", serialstr);
3153         else
3154                 seq_printf(m, " Serial Number Signature Not Present.\n");
3155
3156         if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550)
3157                 seq_printf(m,
3158                            " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3159                            ep_3550->adapter_scsi_id,
3160                            ep_3550->max_host_qng, ep_3550->max_dvc_qng);
3161         else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800)
3162                 seq_printf(m,
3163                            " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3164                            ep_38C0800->adapter_scsi_id,
3165                            ep_38C0800->max_host_qng,
3166                            ep_38C0800->max_dvc_qng);
3167         else
3168                 seq_printf(m,
3169                            " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3170                            ep_38C1600->adapter_scsi_id,
3171                            ep_38C1600->max_host_qng,
3172                            ep_38C1600->max_dvc_qng);
3173         if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3174                 word = ep_3550->termination;
3175         } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3176                 word = ep_38C0800->termination_lvd;
3177         } else {
3178                 word = ep_38C1600->termination_lvd;
3179         }
3180         switch (word) {
3181         case 1:
3182                 termstr = "Low Off/High Off";
3183                 break;
3184         case 2:
3185                 termstr = "Low Off/High On";
3186                 break;
3187         case 3:
3188                 termstr = "Low On/High On";
3189                 break;
3190         default:
3191         case 0:
3192                 termstr = "Automatic";
3193                 break;
3194         }
3195
3196         if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550)
3197                 seq_printf(m,
3198                            " termination: %u (%s), bios_ctrl: 0x%x\n",
3199                            ep_3550->termination, termstr,
3200                            ep_3550->bios_ctrl);
3201         else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800)
3202                 seq_printf(m,
3203                            " termination: %u (%s), bios_ctrl: 0x%x\n",
3204                            ep_38C0800->termination_lvd, termstr,
3205                            ep_38C0800->bios_ctrl);
3206         else
3207                 seq_printf(m,
3208                            " termination: %u (%s), bios_ctrl: 0x%x\n",
3209                            ep_38C1600->termination_lvd, termstr,
3210                            ep_38C1600->bios_ctrl);
3211
3212         seq_printf(m, " Target ID:           ");
3213         for (i = 0; i <= ADV_MAX_TID; i++)
3214                 seq_printf(m, " %X", i);
3215         seq_printf(m, "\n");
3216
3217         if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3218                 word = ep_3550->disc_enable;
3219         } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3220                 word = ep_38C0800->disc_enable;
3221         } else {
3222                 word = ep_38C1600->disc_enable;
3223         }
3224         seq_printf(m, " Disconnects:         ");
3225         for (i = 0; i <= ADV_MAX_TID; i++)
3226                 seq_printf(m, " %c",
3227                            (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3228         seq_printf(m, "\n");
3229
3230         if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3231                 word = ep_3550->tagqng_able;
3232         } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3233                 word = ep_38C0800->tagqng_able;
3234         } else {
3235                 word = ep_38C1600->tagqng_able;
3236         }
3237         seq_printf(m, " Command Queuing:     ");
3238         for (i = 0; i <= ADV_MAX_TID; i++)
3239                 seq_printf(m, " %c",
3240                            (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3241         seq_printf(m, "\n");
3242
3243         if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3244                 word = ep_3550->start_motor;
3245         } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3246                 word = ep_38C0800->start_motor;
3247         } else {
3248                 word = ep_38C1600->start_motor;
3249         }
3250         seq_printf(m, " Start Motor:         ");
3251         for (i = 0; i <= ADV_MAX_TID; i++)
3252                 seq_printf(m, " %c",
3253                            (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3254         seq_printf(m, "\n");
3255
3256         if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3257                 seq_printf(m, " Synchronous Transfer:");
3258                 for (i = 0; i <= ADV_MAX_TID; i++)
3259                         seq_printf(m, " %c",
3260                                    (ep_3550->sdtr_able & ADV_TID_TO_TIDMASK(i)) ?
3261                                    'Y' : 'N');
3262                 seq_printf(m, "\n");
3263         }
3264
3265         if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3266                 seq_printf(m, " Ultra Transfer:      ");
3267                 for (i = 0; i <= ADV_MAX_TID; i++)
3268                         seq_printf(m, " %c",
3269                                    (ep_3550->ultra_able & ADV_TID_TO_TIDMASK(i))
3270                                    ? 'Y' : 'N');
3271                 seq_printf(m, "\n");
3272         }
3273
3274         if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3275                 word = ep_3550->wdtr_able;
3276         } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3277                 word = ep_38C0800->wdtr_able;
3278         } else {
3279                 word = ep_38C1600->wdtr_able;
3280         }
3281         seq_printf(m, " Wide Transfer:       ");
3282         for (i = 0; i <= ADV_MAX_TID; i++)
3283                 seq_printf(m, " %c",
3284                            (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3285         seq_printf(m, "\n");
3286
3287         if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800 ||
3288             adv_dvc_varp->chip_type == ADV_CHIP_ASC38C1600) {
3289                 seq_printf(m,
3290                            " Synchronous Transfer Speed (Mhz):\n  ");
3291                 for (i = 0; i <= ADV_MAX_TID; i++) {
3292                         char *speed_str;
3293
3294                         if (i == 0) {
3295                                 sdtr_speed = adv_dvc_varp->sdtr_speed1;
3296                         } else if (i == 4) {
3297                                 sdtr_speed = adv_dvc_varp->sdtr_speed2;
3298                         } else if (i == 8) {
3299                                 sdtr_speed = adv_dvc_varp->sdtr_speed3;
3300                         } else if (i == 12) {
3301                                 sdtr_speed = adv_dvc_varp->sdtr_speed4;
3302                         }
3303                         switch (sdtr_speed & ADV_MAX_TID) {
3304                         case 0:
3305                                 speed_str = "Off";
3306                                 break;
3307                         case 1:
3308                                 speed_str = "  5";
3309                                 break;
3310                         case 2:
3311                                 speed_str = " 10";
3312                                 break;
3313                         case 3:
3314                                 speed_str = " 20";
3315                                 break;
3316                         case 4:
3317                                 speed_str = " 40";
3318                                 break;
3319                         case 5:
3320                                 speed_str = " 80";
3321                                 break;
3322                         default:
3323                                 speed_str = "Unk";
3324                                 break;
3325                         }
3326                         seq_printf(m, "%X:%s ", i, speed_str);
3327                         if (i == 7)
3328                                 seq_printf(m, "\n  ");
3329                         sdtr_speed >>= 4;
3330                 }
3331                 seq_printf(m, "\n");
3332         }
3333 }
3334
3335 /*
3336  * asc_prt_driver_conf()
3337  */
3338 static void asc_prt_driver_conf(struct seq_file *m, struct Scsi_Host *shost)
3339 {
3340         struct asc_board *boardp = shost_priv(shost);
3341         int chip_scsi_id;
3342
3343         seq_printf(m,
3344                 "\nLinux Driver Configuration and Information for AdvanSys SCSI Host %d:\n",
3345                 shost->host_no);
3346
3347         seq_printf(m,
3348                    " host_busy %u, max_id %u, max_lun %llu, max_channel %u\n",
3349                    atomic_read(&shost->host_busy), shost->max_id,
3350                    shost->max_lun, shost->max_channel);
3351
3352         seq_printf(m,
3353                    " unique_id %d, can_queue %d, this_id %d, sg_tablesize %u, cmd_per_lun %u\n",
3354                    shost->unique_id, shost->can_queue, shost->this_id,
3355                    shost->sg_tablesize, shost->cmd_per_lun);
3356
3357         seq_printf(m,
3358                    " unchecked_isa_dma %d, use_clustering %d\n",
3359                    shost->unchecked_isa_dma, shost->use_clustering);
3360
3361         seq_printf(m,
3362                    " flags 0x%x, last_reset 0x%lx, jiffies 0x%lx, asc_n_io_port 0x%x\n",
3363                    boardp->flags, boardp->last_reset, jiffies,
3364                    boardp->asc_n_io_port);
3365
3366         seq_printf(m, " io_port 0x%lx\n", shost->io_port);
3367
3368         if (ASC_NARROW_BOARD(boardp)) {
3369                 chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id;
3370         } else {
3371                 chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id;
3372         }
3373 }
3374
3375 /*
3376  * asc_prt_asc_board_info()
3377  *
3378  * Print dynamic board configuration information.
3379  */
3380 static void asc_prt_asc_board_info(struct seq_file *m, struct Scsi_Host *shost)
3381 {
3382         struct asc_board *boardp = shost_priv(shost);
3383         int chip_scsi_id;
3384         ASC_DVC_VAR *v;
3385         ASC_DVC_CFG *c;
3386         int i;
3387         int renegotiate = 0;
3388
3389         v = &boardp->dvc_var.asc_dvc_var;
3390         c = &boardp->dvc_cfg.asc_dvc_cfg;
3391         chip_scsi_id = c->chip_scsi_id;
3392
3393         seq_printf(m,
3394                    "\nAsc Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3395                    shost->host_no);
3396
3397         seq_printf(m, " chip_version %u, mcode_date 0x%x, "
3398                    "mcode_version 0x%x, err_code %u\n",
3399                    c->chip_version, c->mcode_date, c->mcode_version,
3400                    v->err_code);
3401
3402         /* Current number of commands waiting for the host. */
3403         seq_printf(m,
3404                    " Total Command Pending: %d\n", v->cur_total_qng);
3405
3406         seq_printf(m, " Command Queuing:");
3407         for (i = 0; i <= ASC_MAX_TID; i++) {
3408                 if ((chip_scsi_id == i) ||
3409                     ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3410                         continue;
3411                 }
3412                 seq_printf(m, " %X:%c",
3413                            i,
3414                            (v->use_tagged_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3415         }
3416         seq_printf(m, "\n");
3417
3418         /* Current number of commands waiting for a device. */
3419         seq_printf(m, " Command Queue Pending:");
3420         for (i = 0; i <= ASC_MAX_TID; i++) {
3421                 if ((chip_scsi_id == i) ||
3422                     ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3423                         continue;
3424                 }
3425                 seq_printf(m, " %X:%u", i, v->cur_dvc_qng[i]);
3426         }
3427         seq_printf(m, "\n");
3428
3429         /* Current limit on number of commands that can be sent to a device. */
3430         seq_printf(m, " Command Queue Limit:");
3431         for (i = 0; i <= ASC_MAX_TID; i++) {
3432                 if ((chip_scsi_id == i) ||
3433                     ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3434                         continue;
3435                 }
3436                 seq_printf(m, " %X:%u", i, v->max_dvc_qng[i]);
3437         }
3438         seq_printf(m, "\n");
3439
3440         /* Indicate whether the device has returned queue full status. */
3441         seq_printf(m, " Command Queue Full:");
3442         for (i = 0; i <= ASC_MAX_TID; i++) {
3443                 if ((chip_scsi_id == i) ||
3444                     ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3445                         continue;
3446                 }
3447                 if (boardp->queue_full & ADV_TID_TO_TIDMASK(i))
3448                         seq_printf(m, " %X:Y-%d",
3449                                    i, boardp->queue_full_cnt[i]);
3450                 else
3451                         seq_printf(m, " %X:N", i);
3452         }
3453         seq_printf(m, "\n");
3454
3455         seq_printf(m, " Synchronous Transfer:");
3456         for (i = 0; i <= ASC_MAX_TID; i++) {
3457                 if ((chip_scsi_id == i) ||
3458                     ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3459                         continue;
3460                 }
3461                 seq_printf(m, " %X:%c",
3462                            i,
3463                            (v->sdtr_done & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3464         }
3465         seq_printf(m, "\n");
3466
3467         for (i = 0; i <= ASC_MAX_TID; i++) {
3468                 uchar syn_period_ix;
3469
3470                 if ((chip_scsi_id == i) ||
3471                     ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) ||
3472                     ((v->init_sdtr & ADV_TID_TO_TIDMASK(i)) == 0)) {
3473                         continue;
3474                 }
3475
3476                 seq_printf(m, "  %X:", i);
3477
3478                 if ((boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET) == 0) {
3479                         seq_printf(m, " Asynchronous");
3480                 } else {
3481                         syn_period_ix =
3482                             (boardp->sdtr_data[i] >> 4) & (v->max_sdtr_index -
3483                                                            1);
3484
3485                         seq_printf(m,
3486                                    " Transfer Period Factor: %d (%d.%d Mhz),",
3487                                    v->sdtr_period_tbl[syn_period_ix],
3488                                    250 / v->sdtr_period_tbl[syn_period_ix],
3489                                    ASC_TENTHS(250,
3490                                               v->sdtr_period_tbl[syn_period_ix]));
3491
3492                         seq_printf(m, " REQ/ACK Offset: %d",
3493                                    boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET);
3494                 }
3495
3496                 if ((v->sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3497                         seq_printf(m, "*\n");
3498                         renegotiate = 1;
3499                 } else {
3500                         seq_printf(m, "\n");
3501                 }
3502         }
3503
3504         if (renegotiate) {
3505                 seq_printf(m,
3506                            " * = Re-negotiation pending before next command.\n");
3507         }
3508 }
3509
3510 /*
3511  * asc_prt_adv_board_info()
3512  *
3513  * Print dynamic board configuration information.
3514  */
3515 static void asc_prt_adv_board_info(struct seq_file *m, struct Scsi_Host *shost)
3516 {
3517         struct asc_board *boardp = shost_priv(shost);
3518         int i;
3519         ADV_DVC_VAR *v;
3520         ADV_DVC_CFG *c;
3521         AdvPortAddr iop_base;
3522         ushort chip_scsi_id;
3523         ushort lramword;
3524         uchar lrambyte;
3525         ushort tagqng_able;
3526         ushort sdtr_able, wdtr_able;
3527         ushort wdtr_done, sdtr_done;
3528         ushort period = 0;
3529         int renegotiate = 0;
3530
3531         v = &boardp->dvc_var.adv_dvc_var;
3532         c = &boardp->dvc_cfg.adv_dvc_cfg;
3533         iop_base = v->iop_base;
3534         chip_scsi_id = v->chip_scsi_id;
3535
3536         seq_printf(m,
3537                    "\nAdv Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3538                    shost->host_no);
3539
3540         seq_printf(m,
3541                    " iop_base 0x%lx, cable_detect: %X, err_code %u\n",
3542                    (unsigned long)v->iop_base,
3543                    AdvReadWordRegister(iop_base,IOPW_SCSI_CFG1) & CABLE_DETECT,
3544                    v->err_code);
3545
3546         seq_printf(m, " chip_version %u, mcode_date 0x%x, "
3547                    "mcode_version 0x%x\n", c->chip_version,
3548                    c->mcode_date, c->mcode_version);
3549
3550         AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
3551         seq_printf(m, " Queuing Enabled:");
3552         for (i = 0; i <= ADV_MAX_TID; i++) {
3553                 if ((chip_scsi_id == i) ||
3554                     ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3555                         continue;
3556                 }
3557
3558                 seq_printf(m, " %X:%c",
3559                            i,
3560                            (tagqng_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3561         }
3562         seq_printf(m, "\n");
3563
3564         seq_printf(m, " Queue Limit:");
3565         for (i = 0; i <= ADV_MAX_TID; i++) {
3566                 if ((chip_scsi_id == i) ||
3567                     ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3568                         continue;
3569                 }
3570
3571                 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + i,
3572                                 lrambyte);
3573
3574                 seq_printf(m, " %X:%d", i, lrambyte);
3575         }
3576         seq_printf(m, "\n");
3577
3578         seq_printf(m, " Command Pending:");
3579         for (i = 0; i <= ADV_MAX_TID; i++) {
3580                 if ((chip_scsi_id == i) ||
3581                     ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3582                         continue;
3583                 }
3584
3585                 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_QUEUED_CMD + i,
3586                                 lrambyte);
3587
3588                 seq_printf(m, " %X:%d", i, lrambyte);
3589         }
3590         seq_printf(m, "\n");
3591
3592         AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
3593         seq_printf(m, " Wide Enabled:");
3594         for (i = 0; i <= ADV_MAX_TID; i++) {
3595                 if ((chip_scsi_id == i) ||
3596                     ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3597                         continue;
3598                 }
3599
3600                 seq_printf(m, " %X:%c",
3601                            i,
3602                            (wdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3603         }
3604         seq_printf(m, "\n");
3605
3606         AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, wdtr_done);
3607         seq_printf(m, " Transfer Bit Width:");
3608         for (i = 0; i <= ADV_MAX_TID; i++) {
3609                 if ((chip_scsi_id == i) ||
3610                     ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3611                         continue;
3612                 }
3613
3614                 AdvReadWordLram(iop_base,
3615                                 ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i),
3616                                 lramword);
3617
3618                 seq_printf(m, " %X:%d",
3619                            i, (lramword & 0x8000) ? 16 : 8);
3620
3621                 if ((wdtr_able & ADV_TID_TO_TIDMASK(i)) &&
3622                     (wdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3623                         seq_printf(m, "*");
3624                         renegotiate = 1;
3625                 }
3626         }
3627         seq_printf(m, "\n");
3628
3629         AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
3630         seq_printf(m, " Synchronous Enabled:");
3631         for (i = 0; i <= ADV_MAX_TID; i++) {
3632                 if ((chip_scsi_id == i) ||
3633                     ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3634                         continue;
3635                 }
3636
3637                 seq_printf(m, " %X:%c",
3638                            i,
3639                            (sdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3640         }
3641         seq_printf(m, "\n");
3642
3643         AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, sdtr_done);
3644         for (i = 0; i <= ADV_MAX_TID; i++) {
3645
3646                 AdvReadWordLram(iop_base,
3647                                 ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i),
3648                                 lramword);
3649                 lramword &= ~0x8000;
3650
3651                 if ((chip_scsi_id == i) ||
3652                     ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) ||
3653                     ((sdtr_able & ADV_TID_TO_TIDMASK(i)) == 0)) {
3654                         continue;
3655                 }
3656
3657                 seq_printf(m, "  %X:", i);
3658
3659                 if ((lramword & 0x1F) == 0) {   /* Check for REQ/ACK Offset 0. */
3660                         seq_printf(m, " Asynchronous");
3661                 } else {
3662                         seq_printf(m, " Transfer Period Factor: ");
3663
3664                         if ((lramword & 0x1F00) == 0x1100) {    /* 80 Mhz */
3665                                 seq_printf(m, "9 (80.0 Mhz),");
3666                         } else if ((lramword & 0x1F00) == 0x1000) {     /* 40 Mhz */
3667                                 seq_printf(m, "10 (40.0 Mhz),");
3668                         } else {        /* 20 Mhz or below. */
3669
3670                                 period = (((lramword >> 8) * 25) + 50) / 4;
3671
3672                                 if (period == 0) {      /* Should never happen. */
3673                                         seq_printf(m, "%d (? Mhz), ", period);
3674                                 } else {
3675                                         seq_printf(m,
3676                                                    "%d (%d.%d Mhz),",
3677                                                    period, 250 / period,
3678                                                    ASC_TENTHS(250, period));
3679                                 }
3680                         }
3681
3682                         seq_printf(m, " REQ/ACK Offset: %d",
3683                                    lramword & 0x1F);
3684                 }
3685
3686                 if ((sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3687                         seq_printf(m, "*\n");
3688                         renegotiate = 1;
3689                 } else {
3690                         seq_printf(m, "\n");
3691                 }
3692         }
3693
3694         if (renegotiate) {
3695                 seq_printf(m,
3696                            " * = Re-negotiation pending before next command.\n");
3697         }
3698 }
3699
3700 #ifdef ADVANSYS_STATS
3701 /*
3702  * asc_prt_board_stats()
3703  */
3704 static void asc_prt_board_stats(struct seq_file *m, struct Scsi_Host *shost)
3705 {
3706         struct asc_board *boardp = shost_priv(shost);
3707         struct asc_stats *s = &boardp->asc_stats;
3708
3709         seq_printf(m,
3710                    "\nLinux Driver Statistics for AdvanSys SCSI Host %d:\n",
3711                    shost->host_no);
3712
3713         seq_printf(m,
3714                    " queuecommand %u, reset %u, biosparam %u, interrupt %u\n",
3715                    s->queuecommand, s->reset, s->biosparam,
3716                    s->interrupt);
3717
3718         seq_printf(m,
3719                    " callback %u, done %u, build_error %u, build_noreq %u, build_nosg %u\n",
3720                    s->callback, s->done, s->build_error,
3721                    s->adv_build_noreq, s->adv_build_nosg);
3722
3723         seq_printf(m,
3724                    " exe_noerror %u, exe_busy %u, exe_error %u, exe_unknown %u\n",
3725                    s->exe_noerror, s->exe_busy, s->exe_error,
3726                    s->exe_unknown);
3727
3728         /*
3729          * Display data transfer statistics.
3730          */
3731         if (s->xfer_cnt > 0) {
3732                 seq_printf(m, " xfer_cnt %u, xfer_elem %u, ",
3733                            s->xfer_cnt, s->xfer_elem);
3734
3735                 seq_printf(m, "xfer_bytes %u.%01u kb\n",
3736                            s->xfer_sect / 2, ASC_TENTHS(s->xfer_sect, 2));
3737
3738                 /* Scatter gather transfer statistics */
3739                 seq_printf(m, " avg_num_elem %u.%01u, ",
3740                            s->xfer_elem / s->xfer_cnt,
3741                            ASC_TENTHS(s->xfer_elem, s->xfer_cnt));
3742
3743                 seq_printf(m, "avg_elem_size %u.%01u kb, ",
3744                            (s->xfer_sect / 2) / s->xfer_elem,
3745                            ASC_TENTHS((s->xfer_sect / 2), s->xfer_elem));
3746
3747                 seq_printf(m, "avg_xfer_size %u.%01u kb\n",
3748                            (s->xfer_sect / 2) / s->xfer_cnt,
3749                            ASC_TENTHS((s->xfer_sect / 2), s->xfer_cnt));
3750         }
3751 }
3752 #endif /* ADVANSYS_STATS */
3753
3754 /*
3755  * advansys_show_info() - /proc/scsi/advansys/{0,1,2,3,...}
3756  *
3757  * m: seq_file to print into
3758  * shost: Scsi_Host
3759  *
3760  * Return the number of bytes read from or written to a
3761  * /proc/scsi/advansys/[0...] file.
3762  */
3763 static int
3764 advansys_show_info(struct seq_file *m, struct Scsi_Host *shost)
3765 {
3766         struct asc_board *boardp = shost_priv(shost);
3767
3768         ASC_DBG(1, "begin\n");
3769
3770         /*
3771          * User read of /proc/scsi/advansys/[0...] file.
3772          */
3773
3774         /*
3775          * Get board configuration information.
3776          *
3777          * advansys_info() returns the board string from its own static buffer.
3778          */
3779         /* Copy board information. */
3780         seq_printf(m, "%s\n", (char *)advansys_info(shost));
3781         /*
3782          * Display Wide Board BIOS Information.
3783          */
3784         if (!ASC_NARROW_BOARD(boardp))
3785                 asc_prt_adv_bios(m, shost);
3786
3787         /*
3788          * Display driver information for each device attached to the board.
3789          */
3790         asc_prt_board_devices(m, shost);
3791
3792         /*
3793          * Display EEPROM configuration for the board.
3794          */
3795         if (ASC_NARROW_BOARD(boardp))
3796                 asc_prt_asc_board_eeprom(m, shost);
3797         else
3798                 asc_prt_adv_board_eeprom(m, shost);
3799
3800         /*
3801          * Display driver configuration and information for the board.
3802          */
3803         asc_prt_driver_conf(m, shost);
3804
3805 #ifdef ADVANSYS_STATS
3806         /*
3807          * Display driver statistics for the board.
3808          */
3809         asc_prt_board_stats(m, shost);
3810 #endif /* ADVANSYS_STATS */
3811
3812         /*
3813          * Display Asc Library dynamic configuration information
3814          * for the board.
3815          */
3816         if (ASC_NARROW_BOARD(boardp))
3817                 asc_prt_asc_board_info(m, shost);
3818         else
3819                 asc_prt_adv_board_info(m, shost);
3820         return 0;
3821 }
3822 #endif /* CONFIG_PROC_FS */
3823
3824 static void asc_scsi_done(struct scsi_cmnd *scp)
3825 {
3826         scsi_dma_unmap(scp);
3827         ASC_STATS(scp->device->host, done);
3828         scp->scsi_done(scp);
3829 }
3830
3831 static void AscSetBank(PortAddr iop_base, uchar bank)
3832 {
3833         uchar val;
3834
3835         val = AscGetChipControl(iop_base) &
3836             (~
3837              (CC_SINGLE_STEP | CC_TEST | CC_DIAG | CC_SCSI_RESET |
3838               CC_CHIP_RESET));
3839         if (bank == 1) {
3840                 val |= CC_BANK_ONE;
3841         } else if (bank == 2) {
3842                 val |= CC_DIAG | CC_BANK_ONE;
3843         } else {
3844                 val &= ~CC_BANK_ONE;
3845         }
3846         AscSetChipControl(iop_base, val);
3847 }
3848
3849 static void AscSetChipIH(PortAddr iop_base, ushort ins_code)
3850 {
3851         AscSetBank(iop_base, 1);
3852         AscWriteChipIH(iop_base, ins_code);
3853         AscSetBank(iop_base, 0);
3854 }
3855
3856 static int AscStartChip(PortAddr iop_base)
3857 {
3858         AscSetChipControl(iop_base, 0);
3859         if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) {
3860                 return (0);
3861         }
3862         return (1);
3863 }
3864
3865 static int AscStopChip(PortAddr iop_base)
3866 {
3867         uchar cc_val;
3868
3869         cc_val =
3870             AscGetChipControl(iop_base) &
3871             (~(CC_SINGLE_STEP | CC_TEST | CC_DIAG));
3872         AscSetChipControl(iop_base, (uchar)(cc_val | CC_HALT));
3873         AscSetChipIH(iop_base, INS_HALT);
3874         AscSetChipIH(iop_base, INS_RFLAG_WTM);
3875         if ((AscGetChipStatus(iop_base) & CSW_HALTED) == 0) {
3876                 return (0);
3877         }
3878         return (1);
3879 }
3880
3881 static int AscIsChipHalted(PortAddr iop_base)
3882 {
3883         if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) {
3884                 if ((AscGetChipControl(iop_base) & CC_HALT) != 0) {
3885                         return (1);
3886                 }
3887         }
3888         return (0);
3889 }
3890
3891 static int AscResetChipAndScsiBus(ASC_DVC_VAR *asc_dvc)
3892 {
3893         PortAddr iop_base;
3894         int i = 10;
3895
3896         iop_base = asc_dvc->iop_base;
3897         while ((AscGetChipStatus(iop_base) & CSW_SCSI_RESET_ACTIVE)
3898                && (i-- > 0)) {
3899                 mdelay(100);
3900         }
3901         AscStopChip(iop_base);
3902         AscSetChipControl(iop_base, CC_CHIP_RESET | CC_SCSI_RESET | CC_HALT);
3903         udelay(60);
3904         AscSetChipIH(iop_base, INS_RFLAG_WTM);
3905         AscSetChipIH(iop_base, INS_HALT);
3906         AscSetChipControl(iop_base, CC_CHIP_RESET | CC_HALT);
3907         AscSetChipControl(iop_base, CC_HALT);
3908         mdelay(200);
3909         AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT);
3910         AscSetChipStatus(iop_base, 0);
3911         return (AscIsChipHalted(iop_base));
3912 }
3913
3914 static int AscFindSignature(PortAddr iop_base)
3915 {
3916         ushort sig_word;
3917
3918         ASC_DBG(1, "AscGetChipSignatureByte(0x%x) 0x%x\n",
3919                  iop_base, AscGetChipSignatureByte(iop_base));
3920         if (AscGetChipSignatureByte(iop_base) == (uchar)ASC_1000_ID1B) {
3921                 ASC_DBG(1, "AscGetChipSignatureWord(0x%x) 0x%x\n",
3922                          iop_base, AscGetChipSignatureWord(iop_base));
3923                 sig_word = AscGetChipSignatureWord(iop_base);
3924                 if ((sig_word == (ushort)ASC_1000_ID0W) ||
3925                     (sig_word == (ushort)ASC_1000_ID0W_FIX)) {
3926                         return (1);
3927                 }
3928         }
3929         return (0);
3930 }
3931
3932 static void AscEnableInterrupt(PortAddr iop_base)
3933 {
3934         ushort cfg;
3935
3936         cfg = AscGetChipCfgLsw(iop_base);
3937         AscSetChipCfgLsw(iop_base, cfg | ASC_CFG0_HOST_INT_ON);
3938 }
3939
3940 static void AscDisableInterrupt(PortAddr iop_base)
3941 {
3942         ushort cfg;
3943
3944         cfg = AscGetChipCfgLsw(iop_base);
3945         AscSetChipCfgLsw(iop_base, cfg & (~ASC_CFG0_HOST_INT_ON));
3946 }
3947
3948 static uchar AscReadLramByte(PortAddr iop_base, ushort addr)
3949 {
3950         unsigned char byte_data;
3951         unsigned short word_data;
3952
3953         if (isodd_word(addr)) {
3954                 AscSetChipLramAddr(iop_base, addr - 1);
3955                 word_data = AscGetChipLramData(iop_base);
3956                 byte_data = (word_data >> 8) & 0xFF;
3957         } else {
3958                 AscSetChipLramAddr(iop_base, addr);
3959                 word_data = AscGetChipLramData(iop_base);
3960                 byte_data = word_data & 0xFF;
3961         }
3962         return byte_data;
3963 }
3964
3965 static ushort AscReadLramWord(PortAddr iop_base, ushort addr)
3966 {
3967         ushort word_data;
3968
3969         AscSetChipLramAddr(iop_base, addr);
3970         word_data = AscGetChipLramData(iop_base);
3971         return (word_data);
3972 }
3973
3974 #if CC_VERY_LONG_SG_LIST
3975 static ASC_DCNT AscReadLramDWord(PortAddr iop_base, ushort addr)
3976 {
3977         ushort val_low, val_high;
3978         ASC_DCNT dword_data;
3979
3980         AscSetChipLramAddr(iop_base, addr);
3981         val_low = AscGetChipLramData(iop_base);
3982         val_high = AscGetChipLramData(iop_base);
3983         dword_data = ((ASC_DCNT) val_high << 16) | (ASC_DCNT) val_low;
3984         return (dword_data);
3985 }
3986 #endif /* CC_VERY_LONG_SG_LIST */
3987
3988 static void
3989 AscMemWordSetLram(PortAddr iop_base, ushort s_addr, ushort set_wval, int words)
3990 {
3991         int i;
3992
3993         AscSetChipLramAddr(iop_base, s_addr);
3994         for (i = 0; i < words; i++) {
3995                 AscSetChipLramData(iop_base, set_wval);
3996         }
3997 }
3998
3999 static void AscWriteLramWord(PortAddr iop_base, ushort addr, ushort word_val)
4000 {
4001         AscSetChipLramAddr(iop_base, addr);
4002         AscSetChipLramData(iop_base, word_val);
4003 }
4004
4005 static void AscWriteLramByte(PortAddr iop_base, ushort addr, uchar byte_val)
4006 {
4007         ushort word_data;
4008
4009         if (isodd_word(addr)) {
4010                 addr--;
4011                 word_data = AscReadLramWord(iop_base, addr);
4012                 word_data &= 0x00FF;
4013                 word_data |= (((ushort)byte_val << 8) & 0xFF00);
4014         } else {
4015                 word_data = AscReadLramWord(iop_base, addr);
4016                 word_data &= 0xFF00;
4017                 word_data |= ((ushort)byte_val & 0x00FF);
4018         }
4019         AscWriteLramWord(iop_base, addr, word_data);
4020 }
4021
4022 /*
4023  * Copy 2 bytes to LRAM.
4024  *
4025  * The source data is assumed to be in little-endian order in memory
4026  * and is maintained in little-endian order when written to LRAM.
4027  */
4028 static void
4029 AscMemWordCopyPtrToLram(PortAddr iop_base, ushort s_addr,
4030                         const uchar *s_buffer, int words)
4031 {
4032         int i;
4033
4034         AscSetChipLramAddr(iop_base, s_addr);
4035         for (i = 0; i < 2 * words; i += 2) {
4036                 /*
4037                  * On a little-endian system the second argument below
4038                  * produces a little-endian ushort which is written to
4039                  * LRAM in little-endian order. On a big-endian system
4040                  * the second argument produces a big-endian ushort which
4041                  * is "transparently" byte-swapped by outpw() and written
4042                  * in little-endian order to LRAM.
4043                  */
4044                 outpw(iop_base + IOP_RAM_DATA,
4045                       ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]);
4046         }
4047 }
4048
4049 /*
4050  * Copy 4 bytes to LRAM.
4051  *
4052  * The source data is assumed to be in little-endian order in memory
4053  * and is maintained in little-endian order when written to LRAM.
4054  */
4055 static void
4056 AscMemDWordCopyPtrToLram(PortAddr iop_base,
4057                          ushort s_addr, uchar *s_buffer, int dwords)
4058 {
4059         int i;
4060
4061         AscSetChipLramAddr(iop_base, s_addr);
4062         for (i = 0; i < 4 * dwords; i += 4) {
4063                 outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]);   /* LSW */
4064                 outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 3] << 8) | s_buffer[i + 2]);       /* MSW */
4065         }
4066 }
4067
4068 /*
4069  * Copy 2 bytes from LRAM.
4070  *
4071  * The source data is assumed to be in little-endian order in LRAM
4072  * and is maintained in little-endian order when written to memory.
4073  */
4074 static void
4075 AscMemWordCopyPtrFromLram(PortAddr iop_base,
4076                           ushort s_addr, uchar *d_buffer, int words)
4077 {
4078         int i;
4079         ushort word;
4080
4081         AscSetChipLramAddr(iop_base, s_addr);
4082         for (i = 0; i < 2 * words; i += 2) {
4083                 word = inpw(iop_base + IOP_RAM_DATA);
4084                 d_buffer[i] = word & 0xff;
4085                 d_buffer[i + 1] = (word >> 8) & 0xff;
4086         }
4087 }
4088
4089 static ASC_DCNT AscMemSumLramWord(PortAddr iop_base, ushort s_addr, int words)
4090 {
4091         ASC_DCNT sum;
4092         int i;
4093
4094         sum = 0L;
4095         for (i = 0; i < words; i++, s_addr += 2) {
4096                 sum += AscReadLramWord(iop_base, s_addr);
4097         }
4098         return (sum);
4099 }
4100
4101 static ushort AscInitLram(ASC_DVC_VAR *asc_dvc)
4102 {
4103         uchar i;
4104         ushort s_addr;
4105         PortAddr iop_base;
4106         ushort warn_code;
4107
4108         iop_base = asc_dvc->iop_base;
4109         warn_code = 0;
4110         AscMemWordSetLram(iop_base, ASC_QADR_BEG, 0,
4111                           (ushort)(((int)(asc_dvc->max_total_qng + 2 + 1) *
4112                                     64) >> 1));
4113         i = ASC_MIN_ACTIVE_QNO;
4114         s_addr = ASC_QADR_BEG + ASC_QBLK_SIZE;
4115         AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
4116                          (uchar)(i + 1));
4117         AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
4118                          (uchar)(asc_dvc->max_total_qng));
4119         AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
4120                          (uchar)i);
4121         i++;
4122         s_addr += ASC_QBLK_SIZE;
4123         for (; i < asc_dvc->max_total_qng; i++, s_addr += ASC_QBLK_SIZE) {
4124                 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
4125                                  (uchar)(i + 1));
4126                 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
4127                                  (uchar)(i - 1));
4128                 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
4129                                  (uchar)i);
4130         }
4131         AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
4132                          (uchar)ASC_QLINK_END);
4133         AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
4134                          (uchar)(asc_dvc->max_total_qng - 1));
4135         AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
4136                          (uchar)asc_dvc->max_total_qng);
4137         i++;
4138         s_addr += ASC_QBLK_SIZE;
4139         for (; i <= (uchar)(asc_dvc->max_total_qng + 3);
4140              i++, s_addr += ASC_QBLK_SIZE) {
4141                 AscWriteLramByte(iop_base,
4142                                  (ushort)(s_addr + (ushort)ASC_SCSIQ_B_FWD), i);
4143                 AscWriteLramByte(iop_base,
4144                                  (ushort)(s_addr + (ushort)ASC_SCSIQ_B_BWD), i);
4145                 AscWriteLramByte(iop_base,
4146                                  (ushort)(s_addr + (ushort)ASC_SCSIQ_B_QNO), i);
4147         }
4148         return warn_code;
4149 }
4150
4151 static ASC_DCNT
4152 AscLoadMicroCode(PortAddr iop_base, ushort s_addr,
4153                  const uchar *mcode_buf, ushort mcode_size)
4154 {
4155         ASC_DCNT chksum;
4156         ushort mcode_word_size;
4157         ushort mcode_chksum;
4158
4159         /* Write the microcode buffer starting at LRAM address 0. */
4160         mcode_word_size = (ushort)(mcode_size >> 1);
4161         AscMemWordSetLram(iop_base, s_addr, 0, mcode_word_size);
4162         AscMemWordCopyPtrToLram(iop_base, s_addr, mcode_buf, mcode_word_size);
4163
4164         chksum = AscMemSumLramWord(iop_base, s_addr, mcode_word_size);
4165         ASC_DBG(1, "chksum 0x%lx\n", (ulong)chksum);
4166         mcode_chksum = (ushort)AscMemSumLramWord(iop_base,
4167                                                  (ushort)ASC_CODE_SEC_BEG,
4168                                                  (ushort)((mcode_size -
4169                                                            s_addr - (ushort)
4170                                                            ASC_CODE_SEC_BEG) /
4171                                                           2));
4172         ASC_DBG(1, "mcode_chksum 0x%lx\n", (ulong)mcode_chksum);
4173         AscWriteLramWord(iop_base, ASCV_MCODE_CHKSUM_W, mcode_chksum);
4174         AscWriteLramWord(iop_base, ASCV_MCODE_SIZE_W, mcode_size);
4175         return chksum;
4176 }
4177
4178 static void AscInitQLinkVar(ASC_DVC_VAR *asc_dvc)
4179 {
4180         PortAddr iop_base;
4181         int i;
4182         ushort lram_addr;
4183
4184         iop_base = asc_dvc->iop_base;
4185         AscPutRiscVarFreeQHead(iop_base, 1);
4186         AscPutRiscVarDoneQTail(iop_base, asc_dvc->max_total_qng);
4187         AscPutVarFreeQHead(iop_base, 1);
4188         AscPutVarDoneQTail(iop_base, asc_dvc->max_total_qng);
4189         AscWriteLramByte(iop_base, ASCV_BUSY_QHEAD_B,
4190                          (uchar)((int)asc_dvc->max_total_qng + 1));
4191         AscWriteLramByte(iop_base, ASCV_DISC1_QHEAD_B,
4192                          (uchar)((int)asc_dvc->max_total_qng + 2));
4193         AscWriteLramByte(iop_base, (ushort)ASCV_TOTAL_READY_Q_B,
4194                          asc_dvc->max_total_qng);
4195         AscWriteLramWord(iop_base, ASCV_ASCDVC_ERR_CODE_W, 0);
4196         AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
4197         AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, 0);
4198         AscWriteLramByte(iop_base, ASCV_SCSIBUSY_B, 0);
4199         AscWriteLramByte(iop_base, ASCV_WTM_FLAG_B, 0);
4200         AscPutQDoneInProgress(iop_base, 0);
4201         lram_addr = ASC_QADR_BEG;
4202         for (i = 0; i < 32; i++, lram_addr += 2) {
4203                 AscWriteLramWord(iop_base, lram_addr, 0);
4204         }
4205 }
4206
4207 static ushort AscInitMicroCodeVar(ASC_DVC_VAR *asc_dvc)
4208 {
4209         int i;
4210         ushort warn_code;
4211         PortAddr iop_base;
4212         ASC_PADDR phy_addr;
4213         ASC_DCNT phy_size;
4214         struct asc_board *board = asc_dvc_to_board(asc_dvc);
4215
4216         iop_base = asc_dvc->iop_base;
4217         warn_code = 0;
4218         for (i = 0; i <= ASC_MAX_TID; i++) {
4219                 AscPutMCodeInitSDTRAtID(iop_base, i,
4220                                         asc_dvc->cfg->sdtr_period_offset[i]);
4221         }
4222
4223         AscInitQLinkVar(asc_dvc);
4224         AscWriteLramByte(iop_base, ASCV_DISC_ENABLE_B,
4225                          asc_dvc->cfg->disc_enable);
4226         AscWriteLramByte(iop_base, ASCV_HOSTSCSI_ID_B,
4227                          ASC_TID_TO_TARGET_ID(asc_dvc->cfg->chip_scsi_id));
4228
4229         /* Ensure overrun buffer is aligned on an 8 byte boundary. */
4230         BUG_ON((unsigned long)asc_dvc->overrun_buf & 7);
4231         asc_dvc->overrun_dma = dma_map_single(board->dev, asc_dvc->overrun_buf,
4232                                         ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
4233         if (dma_mapping_error(board->dev, asc_dvc->overrun_dma)) {
4234                 warn_code = -ENOMEM;
4235                 goto err_dma_map;
4236         }
4237         phy_addr = cpu_to_le32(asc_dvc->overrun_dma);
4238         AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_PADDR_D,
4239                                  (uchar *)&phy_addr, 1);
4240         phy_size = cpu_to_le32(ASC_OVERRUN_BSIZE);
4241         AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_BSIZE_D,
4242                                  (uchar *)&phy_size, 1);
4243
4244         asc_dvc->cfg->mcode_date =
4245             AscReadLramWord(iop_base, (ushort)ASCV_MC_DATE_W);
4246         asc_dvc->cfg->mcode_version =
4247             AscReadLramWord(iop_base, (ushort)ASCV_MC_VER_W);
4248
4249         AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR);
4250         if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) {
4251                 asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR;
4252                 warn_code = UW_ERR;
4253                 goto err_mcode_start;
4254         }
4255         if (AscStartChip(iop_base) != 1) {
4256                 asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP;
4257                 warn_code = UW_ERR;
4258                 goto err_mcode_start;
4259         }
4260
4261         return warn_code;
4262
4263 err_mcode_start:
4264         dma_unmap_single(board->dev, asc_dvc->overrun_dma,
4265                          ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
4266 err_dma_map:
4267         asc_dvc->overrun_dma = 0;
4268         return warn_code;
4269 }
4270
4271 static ushort AscInitAsc1000Driver(ASC_DVC_VAR *asc_dvc)
4272 {
4273         const struct firmware *fw;
4274         const char fwname[] = "advansys/mcode.bin";
4275         int err;
4276         unsigned long chksum;
4277         ushort warn_code;
4278         PortAddr iop_base;
4279
4280         iop_base = asc_dvc->iop_base;
4281         warn_code = 0;
4282         if ((asc_dvc->dvc_cntl & ASC_CNTL_RESET_SCSI) &&
4283             !(asc_dvc->init_state & ASC_INIT_RESET_SCSI_DONE)) {
4284                 AscResetChipAndScsiBus(asc_dvc);
4285                 mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
4286         }
4287         asc_dvc->init_state |= ASC_INIT_STATE_BEG_LOAD_MC;
4288         if (asc_dvc->err_code != 0)
4289                 return UW_ERR;
4290         if (!AscFindSignature(asc_dvc->iop_base)) {
4291                 asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
4292                 return warn_code;
4293         }
4294         AscDisableInterrupt(iop_base);
4295         warn_code |= AscInitLram(asc_dvc);
4296         if (asc_dvc->err_code != 0)
4297                 return UW_ERR;
4298
4299         err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
4300         if (err) {
4301                 printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
4302                        fwname, err);
4303                 asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4304                 return err;
4305         }
4306         if (fw->size < 4) {
4307                 printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
4308                        fw->size, fwname);
4309                 release_firmware(fw);
4310                 asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4311                 return -EINVAL;
4312         }
4313         chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
4314                  (fw->data[1] << 8) | fw->data[0];
4315         ASC_DBG(1, "_asc_mcode_chksum 0x%lx\n", (ulong)chksum);
4316         if (AscLoadMicroCode(iop_base, 0, &fw->data[4],
4317                              fw->size - 4) != chksum) {
4318                 asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4319                 release_firmware(fw);
4320                 return warn_code;
4321         }
4322         release_firmware(fw);
4323         warn_code |= AscInitMicroCodeVar(asc_dvc);
4324         if (!asc_dvc->overrun_dma)
4325                 return warn_code;
4326         asc_dvc->init_state |= ASC_INIT_STATE_END_LOAD_MC;
4327         AscEnableInterrupt(iop_base);
4328         return warn_code;
4329 }
4330
4331 /*
4332  * Load the Microcode
4333  *
4334  * Write the microcode image to RISC memory starting at address 0.
4335  *
4336  * The microcode is stored compressed in the following format:
4337  *
4338  *  254 word (508 byte) table indexed by byte code followed
4339  *  by the following byte codes:
4340  *
4341  *    1-Byte Code:
4342  *      00: Emit word 0 in table.
4343  *      01: Emit word 1 in table.
4344  *      .
4345  *      FD: Emit word 253 in table.
4346  *
4347  *    Multi-Byte Code:
4348  *      FE WW WW: (3 byte code) Word to emit is the next word WW WW.
4349  *      FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
4350  *
4351  * Returns 0 or an error if the checksum doesn't match
4352  */
4353 static int AdvLoadMicrocode(AdvPortAddr iop_base, const unsigned char *buf,
4354                             int size, int memsize, int chksum)
4355 {
4356         int i, j, end, len = 0;
4357         ADV_DCNT sum;
4358
4359         AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
4360
4361         for (i = 253 * 2; i < size; i++) {
4362                 if (buf[i] == 0xff) {
4363                         unsigned short word = (buf[i + 3] << 8) | buf[i + 2];
4364                         for (j = 0; j < buf[i + 1]; j++) {
4365                                 AdvWriteWordAutoIncLram(iop_base, word);
4366                                 len += 2;
4367                         }
4368                         i += 3;
4369                 } else if (buf[i] == 0xfe) {
4370                         unsigned short word = (buf[i + 2] << 8) | buf[i + 1];
4371                         AdvWriteWordAutoIncLram(iop_base, word);
4372                         i += 2;
4373                         len += 2;
4374                 } else {
4375                         unsigned int off = buf[i] * 2;
4376                         unsigned short word = (buf[off + 1] << 8) | buf[off];
4377                         AdvWriteWordAutoIncLram(iop_base, word);
4378                         len += 2;
4379                 }
4380         }
4381
4382         end = len;
4383
4384         while (len < memsize) {
4385                 AdvWriteWordAutoIncLram(iop_base, 0);
4386                 len += 2;
4387         }
4388
4389         /* Verify the microcode checksum. */
4390         sum = 0;
4391         AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
4392
4393         for (len = 0; len < end; len += 2) {
4394                 sum += AdvReadWordAutoIncLram(iop_base);
4395         }
4396
4397         if (sum != chksum)
4398                 return ASC_IERR_MCODE_CHKSUM;
4399
4400         return 0;
4401 }
4402
4403 static void AdvBuildCarrierFreelist(struct adv_dvc_var *asc_dvc)
4404 {
4405         ADV_CARR_T *carrp;
4406         ADV_SDCNT buf_size;
4407         ADV_PADDR carr_paddr;
4408
4409         carrp = (ADV_CARR_T *) ADV_16BALIGN(asc_dvc->carrier_buf);
4410         asc_dvc->carr_freelist = NULL;
4411         if (carrp == asc_dvc->carrier_buf) {
4412                 buf_size = ADV_CARRIER_BUFSIZE;
4413         } else {
4414                 buf_size = ADV_CARRIER_BUFSIZE - sizeof(ADV_CARR_T);
4415         }
4416
4417         do {
4418                 /* Get physical address of the carrier 'carrp'. */
4419                 carr_paddr = cpu_to_le32(virt_to_bus(carrp));
4420
4421                 buf_size -= sizeof(ADV_CARR_T);
4422
4423                 carrp->carr_pa = carr_paddr;
4424                 carrp->carr_va = cpu_to_le32(ADV_VADDR_TO_U32(carrp));
4425
4426                 /*
4427                  * Insert the carrier at the beginning of the freelist.
4428                  */
4429                 carrp->next_vpa =
4430                         cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc->carr_freelist));
4431                 asc_dvc->carr_freelist = carrp;
4432
4433                 carrp++;
4434         } while (buf_size > 0);
4435 }
4436
4437 /*
4438  * Send an idle command to the chip and wait for completion.
4439  *
4440  * Command completion is polled for once per microsecond.
4441  *
4442  * The function can be called from anywhere including an interrupt handler.
4443  * But the function is not re-entrant, so it uses the DvcEnter/LeaveCritical()
4444  * functions to prevent reentrancy.
4445  *
4446  * Return Values:
4447  *   ADV_TRUE - command completed successfully
4448  *   ADV_FALSE - command failed
4449  *   ADV_ERROR - command timed out
4450  */
4451 static int
4452 AdvSendIdleCmd(ADV_DVC_VAR *asc_dvc,
4453                ushort idle_cmd, ADV_DCNT idle_cmd_parameter)
4454 {
4455         int result;
4456         ADV_DCNT i, j;
4457         AdvPortAddr iop_base;
4458
4459         iop_base = asc_dvc->iop_base;
4460
4461         /*
4462          * Clear the idle command status which is set by the microcode
4463          * to a non-zero value to indicate when the command is completed.
4464          * The non-zero result is one of the IDLE_CMD_STATUS_* values
4465          */
4466         AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS, (ushort)0);
4467
4468         /*
4469          * Write the idle command value after the idle command parameter
4470          * has been written to avoid a race condition. If the order is not
4471          * followed, the microcode may process the idle command before the
4472          * parameters have been written to LRAM.
4473          */
4474         AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IDLE_CMD_PARAMETER,
4475                                 cpu_to_le32(idle_cmd_parameter));
4476         AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD, idle_cmd);
4477
4478         /*
4479          * Tickle the RISC to tell it to process the idle command.
4480          */
4481         AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_B);
4482         if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
4483                 /*
4484                  * Clear the tickle value. In the ASC-3550 the RISC flag
4485                  * command 'clr_tickle_b' does not work unless the host
4486                  * value is cleared.
4487                  */
4488                 AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_NOP);
4489         }
4490
4491         /* Wait for up to 100 millisecond for the idle command to timeout. */
4492         for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
4493                 /* Poll once each microsecond for command completion. */
4494                 for (j = 0; j < SCSI_US_PER_MSEC; j++) {
4495                         AdvReadWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS,
4496                                         result);
4497                         if (result != 0)
4498                                 return result;
4499                         udelay(1);
4500                 }
4501         }
4502
4503         BUG();          /* The idle command should never timeout. */
4504         return ADV_ERROR;
4505 }
4506
4507 /*
4508  * Reset SCSI Bus and purge all outstanding requests.
4509  *
4510  * Return Value:
4511  *      ADV_TRUE(1) -   All requests are purged and SCSI Bus is reset.
4512  *      ADV_FALSE(0) -  Microcode command failed.
4513  *      ADV_ERROR(-1) - Microcode command timed-out. Microcode or IC
4514  *                      may be hung which requires driver recovery.
4515  */
4516 static int AdvResetSB(ADV_DVC_VAR *asc_dvc)
4517 {
4518         int status;
4519
4520         /*
4521          * Send the SCSI Bus Reset idle start idle command which asserts
4522          * the SCSI Bus Reset signal.
4523          */
4524         status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_START, 0L);
4525         if (status != ADV_TRUE) {
4526                 return status;
4527         }
4528
4529         /*
4530          * Delay for the specified SCSI Bus Reset hold time.
4531          *
4532          * The hold time delay is done on the host because the RISC has no
4533          * microsecond accurate timer.
4534          */
4535         udelay(ASC_SCSI_RESET_HOLD_TIME_US);
4536
4537         /*
4538          * Send the SCSI Bus Reset end idle command which de-asserts
4539          * the SCSI Bus Reset signal and purges any pending requests.
4540          */
4541         status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_END, 0L);
4542         if (status != ADV_TRUE) {
4543                 return status;
4544         }
4545
4546         mdelay(asc_dvc->scsi_reset_wait * 1000);        /* XXX: msleep? */
4547
4548         return status;
4549 }
4550
4551 /*
4552  * Initialize the ASC-3550.
4553  *
4554  * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
4555  *
4556  * For a non-fatal error return a warning code. If there are no warnings
4557  * then 0 is returned.
4558  *
4559  * Needed after initialization for error recovery.
4560  */
4561 static int AdvInitAsc3550Driver(ADV_DVC_VAR *asc_dvc)
4562 {
4563         const struct firmware *fw;
4564         const char fwname[] = "advansys/3550.bin";
4565         AdvPortAddr iop_base;
4566         ushort warn_code;
4567         int begin_addr;
4568         int end_addr;
4569         ushort code_sum;
4570         int word;
4571         int i;
4572         int err;
4573         unsigned long chksum;
4574         ushort scsi_cfg1;
4575         uchar tid;
4576         ushort bios_mem[ASC_MC_BIOSLEN / 2];    /* BIOS RISC Memory 0x40-0x8F. */
4577         ushort wdtr_able = 0, sdtr_able, tagqng_able;
4578         uchar max_cmd[ADV_MAX_TID + 1];
4579
4580         /* If there is already an error, don't continue. */
4581         if (asc_dvc->err_code != 0)
4582                 return ADV_ERROR;
4583
4584         /*
4585          * The caller must set 'chip_type' to ADV_CHIP_ASC3550.
4586          */
4587         if (asc_dvc->chip_type != ADV_CHIP_ASC3550) {
4588                 asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
4589                 return ADV_ERROR;
4590         }
4591
4592         warn_code = 0;
4593         iop_base = asc_dvc->iop_base;
4594
4595         /*
4596          * Save the RISC memory BIOS region before writing the microcode.
4597          * The BIOS may already be loaded and using its RISC LRAM region
4598          * so its region must be saved and restored.
4599          *
4600          * Note: This code makes the assumption, which is currently true,
4601          * that a chip reset does not clear RISC LRAM.
4602          */
4603         for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
4604                 AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
4605                                 bios_mem[i]);
4606         }
4607
4608         /*
4609          * Save current per TID negotiated values.
4610          */
4611         if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == 0x55AA) {
4612                 ushort bios_version, major, minor;
4613
4614                 bios_version =
4615                     bios_mem[(ASC_MC_BIOS_VERSION - ASC_MC_BIOSMEM) / 2];
4616                 major = (bios_version >> 12) & 0xF;
4617                 minor = (bios_version >> 8) & 0xF;
4618                 if (major < 3 || (major == 3 && minor == 1)) {
4619                         /* BIOS 3.1 and earlier location of 'wdtr_able' variable. */
4620                         AdvReadWordLram(iop_base, 0x120, wdtr_able);
4621                 } else {
4622                         AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
4623                 }
4624         }
4625         AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
4626         AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
4627         for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4628                 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
4629                                 max_cmd[tid]);
4630         }
4631
4632         err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
4633         if (err) {
4634                 printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
4635                        fwname, err);
4636                 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
4637                 return err;
4638         }
4639         if (fw->size < 4) {
4640                 printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
4641                        fw->size, fwname);
4642                 release_firmware(fw);
4643                 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
4644                 return -EINVAL;
4645         }
4646         chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
4647                  (fw->data[1] << 8) | fw->data[0];
4648         asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
4649                                              fw->size - 4, ADV_3550_MEMSIZE,
4650                                              chksum);
4651         release_firmware(fw);
4652         if (asc_dvc->err_code)
4653                 return ADV_ERROR;
4654
4655         /*
4656          * Restore the RISC memory BIOS region.
4657          */
4658         for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
4659                 AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
4660                                  bios_mem[i]);
4661         }
4662
4663         /*
4664          * Calculate and write the microcode code checksum to the microcode
4665          * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
4666          */
4667         AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
4668         AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
4669         code_sum = 0;
4670         AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
4671         for (word = begin_addr; word < end_addr; word += 2) {
4672                 code_sum += AdvReadWordAutoIncLram(iop_base);
4673         }
4674         AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
4675
4676         /*
4677          * Read and save microcode version and date.
4678          */
4679         AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
4680                         asc_dvc->cfg->mcode_date);
4681         AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
4682                         asc_dvc->cfg->mcode_version);
4683
4684         /*
4685          * Set the chip type to indicate the ASC3550.
4686          */
4687         AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC3550);
4688
4689         /*
4690          * If the PCI Configuration Command Register "Parity Error Response
4691          * Control" Bit was clear (0), then set the microcode variable
4692          * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
4693          * to ignore DMA parity errors.
4694          */
4695         if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
4696                 AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
4697                 word |= CONTROL_FLAG_IGNORE_PERR;
4698                 AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
4699         }
4700
4701         /*
4702          * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a FIFO
4703          * threshold of 128 bytes. This register is only accessible to the host.
4704          */
4705         AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
4706                              START_CTL_EMFU | READ_CMD_MRM);
4707
4708         /*
4709          * Microcode operating variables for WDTR, SDTR, and command tag
4710          * queuing will be set in slave_configure() based on what a
4711          * device reports it is capable of in Inquiry byte 7.
4712          *
4713          * If SCSI Bus Resets have been disabled, then directly set
4714          * SDTR and WDTR from the EEPROM configuration. This will allow
4715          * the BIOS and warm boot to work without a SCSI bus hang on
4716          * the Inquiry caused by host and target mismatched DTR values.
4717          * Without the SCSI Bus Reset, before an Inquiry a device can't
4718          * be assumed to be in Asynchronous, Narrow mode.
4719          */
4720         if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
4721                 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
4722                                  asc_dvc->wdtr_able);
4723                 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
4724                                  asc_dvc->sdtr_able);
4725         }
4726
4727         /*
4728          * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
4729          * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
4730          * bitmask. These values determine the maximum SDTR speed negotiated
4731          * with a device.
4732          *
4733          * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
4734          * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
4735          * without determining here whether the device supports SDTR.
4736          *
4737          * 4-bit speed  SDTR speed name
4738          * ===========  ===============
4739          * 0000b (0x0)  SDTR disabled
4740          * 0001b (0x1)  5 Mhz
4741          * 0010b (0x2)  10 Mhz
4742          * 0011b (0x3)  20 Mhz (Ultra)
4743          * 0100b (0x4)  40 Mhz (LVD/Ultra2)
4744          * 0101b (0x5)  80 Mhz (LVD2/Ultra3)
4745          * 0110b (0x6)  Undefined
4746          * .
4747          * 1111b (0xF)  Undefined
4748          */
4749         word = 0;
4750         for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4751                 if (ADV_TID_TO_TIDMASK(tid) & asc_dvc->ultra_able) {
4752                         /* Set Ultra speed for TID 'tid'. */
4753                         word |= (0x3 << (4 * (tid % 4)));
4754                 } else {
4755                         /* Set Fast speed for TID 'tid'. */
4756                         word |= (0x2 << (4 * (tid % 4)));
4757                 }
4758                 if (tid == 3) { /* Check if done with sdtr_speed1. */
4759                         AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, word);
4760                         word = 0;
4761                 } else if (tid == 7) {  /* Check if done with sdtr_speed2. */
4762                         AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, word);
4763                         word = 0;
4764                 } else if (tid == 11) { /* Check if done with sdtr_speed3. */
4765                         AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, word);
4766                         word = 0;
4767                 } else if (tid == 15) { /* Check if done with sdtr_speed4. */
4768                         AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, word);
4769                         /* End of loop. */
4770                 }
4771         }
4772
4773         /*
4774          * Set microcode operating variable for the disconnect per TID bitmask.
4775          */
4776         AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
4777                          asc_dvc->cfg->disc_enable);
4778
4779         /*
4780          * Set SCSI_CFG0 Microcode Default Value.
4781          *
4782          * The microcode will set the SCSI_CFG0 register using this value
4783          * after it is started below.
4784          */
4785         AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
4786                          PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
4787                          asc_dvc->chip_scsi_id);
4788
4789         /*
4790          * Determine SCSI_CFG1 Microcode Default Value.
4791          *
4792          * The microcode will set the SCSI_CFG1 register using this value
4793          * after it is started below.
4794          */
4795
4796         /* Read current SCSI_CFG1 Register value. */
4797         scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
4798
4799         /*
4800          * If all three connectors are in use, return an error.
4801          */
4802         if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
4803             (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
4804                 asc_dvc->err_code |= ASC_IERR_ILLEGAL_CONNECTION;
4805                 return ADV_ERROR;
4806         }
4807
4808         /*
4809          * If the internal narrow cable is reversed all of the SCSI_CTRL
4810          * register signals will be set. Check for and return an error if
4811          * this condition is found.
4812          */
4813         if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
4814                 asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
4815                 return ADV_ERROR;
4816         }
4817
4818         /*
4819          * If this is a differential board and a single-ended device
4820          * is attached to one of the connectors, return an error.
4821          */
4822         if ((scsi_cfg1 & DIFF_MODE) && (scsi_cfg1 & DIFF_SENSE) == 0) {
4823                 asc_dvc->err_code |= ASC_IERR_SINGLE_END_DEVICE;
4824                 return ADV_ERROR;
4825         }
4826
4827         /*
4828          * If automatic termination control is enabled, then set the
4829          * termination value based on a table listed in a_condor.h.
4830          *
4831          * If manual termination was specified with an EEPROM setting
4832          * then 'termination' was set-up in AdvInitFrom3550EEPROM() and
4833          * is ready to be 'ored' into SCSI_CFG1.
4834          */
4835         if (asc_dvc->cfg->termination == 0) {
4836                 /*
4837                  * The software always controls termination by setting TERM_CTL_SEL.
4838                  * If TERM_CTL_SEL were set to 0, the hardware would set termination.
4839                  */
4840                 asc_dvc->cfg->termination |= TERM_CTL_SEL;
4841
4842                 switch (scsi_cfg1 & CABLE_DETECT) {
4843                         /* TERM_CTL_H: on, TERM_CTL_L: on */
4844                 case 0x3:
4845                 case 0x7:
4846                 case 0xB:
4847                 case 0xD:
4848                 case 0xE:
4849                 case 0xF:
4850                         asc_dvc->cfg->termination |= (TERM_CTL_H | TERM_CTL_L);
4851                         break;
4852
4853                         /* TERM_CTL_H: on, TERM_CTL_L: off */
4854                 case 0x1:
4855                 case 0x5:
4856                 case 0x9:
4857                 case 0xA:
4858                 case 0xC:
4859                         asc_dvc->cfg->termination |= TERM_CTL_H;
4860                         break;
4861
4862                         /* TERM_CTL_H: off, TERM_CTL_L: off */
4863                 case 0x2:
4864                 case 0x6:
4865                         break;
4866                 }
4867         }
4868
4869         /*
4870          * Clear any set TERM_CTL_H and TERM_CTL_L bits.
4871          */
4872         scsi_cfg1 &= ~TERM_CTL;
4873
4874         /*
4875          * Invert the TERM_CTL_H and TERM_CTL_L bits and then
4876          * set 'scsi_cfg1'. The TERM_POL bit does not need to be
4877          * referenced, because the hardware internally inverts
4878          * the Termination High and Low bits if TERM_POL is set.
4879          */
4880         scsi_cfg1 |= (TERM_CTL_SEL | (~asc_dvc->cfg->termination & TERM_CTL));
4881
4882         /*
4883          * Set SCSI_CFG1 Microcode Default Value
4884          *
4885          * Set filter value and possibly modified termination control
4886          * bits in the Microcode SCSI_CFG1 Register Value.
4887          *
4888          * The microcode will set the SCSI_CFG1 register using this value
4889          * after it is started below.
4890          */
4891         AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1,
4892                          FLTR_DISABLE | scsi_cfg1);
4893
4894         /*
4895          * Set MEM_CFG Microcode Default Value
4896          *
4897          * The microcode will set the MEM_CFG register using this value
4898          * after it is started below.
4899          *
4900          * MEM_CFG may be accessed as a word or byte, but only bits 0-7
4901          * are defined.
4902          *
4903          * ASC-3550 has 8KB internal memory.
4904          */
4905         AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
4906                          BIOS_EN | RAM_SZ_8KB);
4907
4908         /*
4909          * Set SEL_MASK Microcode Default Value
4910          *
4911          * The microcode will set the SEL_MASK register using this value
4912          * after it is started below.
4913          */
4914         AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
4915                          ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
4916
4917         AdvBuildCarrierFreelist(asc_dvc);
4918
4919         /*
4920          * Set-up the Host->RISC Initiator Command Queue (ICQ).
4921          */
4922
4923         if ((asc_dvc->icq_sp = asc_dvc->carr_freelist) == NULL) {
4924                 asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
4925                 return ADV_ERROR;
4926         }
4927         asc_dvc->carr_freelist = (ADV_CARR_T *)
4928             ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->icq_sp->next_vpa));
4929
4930         /*
4931          * The first command issued will be placed in the stopper carrier.
4932          */
4933         asc_dvc->icq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
4934
4935         /*
4936          * Set RISC ICQ physical address start value.
4937          */
4938         AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
4939
4940         /*
4941          * Set-up the RISC->Host Initiator Response Queue (IRQ).
4942          */
4943         if ((asc_dvc->irq_sp = asc_dvc->carr_freelist) == NULL) {
4944                 asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
4945                 return ADV_ERROR;
4946         }
4947         asc_dvc->carr_freelist = (ADV_CARR_T *)
4948             ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->next_vpa));
4949
4950         /*
4951          * The first command completed by the RISC will be placed in
4952          * the stopper.
4953          *
4954          * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is
4955          * completed the RISC will set the ASC_RQ_STOPPER bit.
4956          */
4957         asc_dvc->irq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
4958
4959         /*
4960          * Set RISC IRQ physical address start value.
4961          */
4962         AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
4963         asc_dvc->carr_pending_cnt = 0;
4964
4965         AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
4966                              (ADV_INTR_ENABLE_HOST_INTR |
4967                               ADV_INTR_ENABLE_GLOBAL_INTR));
4968
4969         AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
4970         AdvWriteWordRegister(iop_base, IOPW_PC, word);
4971
4972         /* finally, finally, gentlemen, start your engine */
4973         AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
4974
4975         /*
4976          * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
4977          * Resets should be performed. The RISC has to be running
4978          * to issue a SCSI Bus Reset.
4979          */
4980         if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
4981                 /*
4982                  * If the BIOS Signature is present in memory, restore the
4983                  * BIOS Handshake Configuration Table and do not perform
4984                  * a SCSI Bus Reset.
4985                  */
4986                 if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
4987                     0x55AA) {
4988                         /*
4989                          * Restore per TID negotiated values.
4990                          */
4991                         AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
4992                         AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
4993                         AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
4994                                          tagqng_able);
4995                         for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4996                                 AdvWriteByteLram(iop_base,
4997                                                  ASC_MC_NUMBER_OF_MAX_CMD + tid,
4998                                                  max_cmd[tid]);
4999                         }
5000                 } else {
5001                         if (AdvResetSB(asc_dvc) != ADV_TRUE) {
5002                                 warn_code = ASC_WARN_BUSRESET_ERROR;
5003                         }
5004                 }
5005         }
5006
5007         return warn_code;
5008 }
5009
5010 /*
5011  * Initialize the ASC-38C0800.
5012  *
5013  * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
5014  *
5015  * For a non-fatal error return a warning code. If there are no warnings
5016  * then 0 is returned.
5017  *
5018  * Needed after initialization for error recovery.
5019  */
5020 static int AdvInitAsc38C0800Driver(ADV_DVC_VAR *asc_dvc)
5021 {
5022         const struct firmware *fw;
5023         const char fwname[] = "advansys/38C0800.bin";
5024         AdvPortAddr iop_base;
5025         ushort warn_code;
5026         int begin_addr;
5027         int end_addr;
5028         ushort code_sum;
5029         int word;
5030         int i;
5031         int err;
5032         unsigned long chksum;
5033         ushort scsi_cfg1;
5034         uchar byte;
5035         uchar tid;
5036         ushort bios_mem[ASC_MC_BIOSLEN / 2];    /* BIOS RISC Memory 0x40-0x8F. */
5037         ushort wdtr_able, sdtr_able, tagqng_able;
5038         uchar max_cmd[ADV_MAX_TID + 1];
5039
5040         /* If there is already an error, don't continue. */
5041         if (asc_dvc->err_code != 0)
5042                 return ADV_ERROR;
5043
5044         /*
5045          * The caller must set 'chip_type' to ADV_CHIP_ASC38C0800.
5046          */
5047         if (asc_dvc->chip_type != ADV_CHIP_ASC38C0800) {
5048                 asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
5049                 return ADV_ERROR;
5050         }
5051
5052         warn_code = 0;
5053         iop_base = asc_dvc->iop_base;
5054
5055         /*
5056          * Save the RISC memory BIOS region before writing the microcode.
5057          * The BIOS may already be loaded and using its RISC LRAM region
5058          * so its region must be saved and restored.
5059          *
5060          * Note: This code makes the assumption, which is currently true,
5061          * that a chip reset does not clear RISC LRAM.
5062          */
5063         for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5064                 AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5065                                 bios_mem[i]);
5066         }
5067
5068         /*
5069          * Save current per TID negotiated values.
5070          */
5071         AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5072         AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5073         AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5074         for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5075                 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5076                                 max_cmd[tid]);
5077         }
5078
5079         /*
5080          * RAM BIST (RAM Built-In Self Test)
5081          *
5082          * Address : I/O base + offset 0x38h register (byte).
5083          * Function: Bit 7-6(RW) : RAM mode
5084          *                          Normal Mode   : 0x00
5085          *                          Pre-test Mode : 0x40
5086          *                          RAM Test Mode : 0x80
5087          *           Bit 5       : unused
5088          *           Bit 4(RO)   : Done bit
5089          *           Bit 3-0(RO) : Status
5090          *                          Host Error    : 0x08
5091          *                          Int_RAM Error : 0x04
5092          *                          RISC Error    : 0x02
5093          *                          SCSI Error    : 0x01
5094          *                          No Error      : 0x00
5095          *
5096          * Note: RAM BIST code should be put right here, before loading the
5097          * microcode and after saving the RISC memory BIOS region.
5098          */
5099
5100         /*
5101          * LRAM Pre-test
5102          *
5103          * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
5104          * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
5105          * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
5106          * to NORMAL_MODE, return an error too.
5107          */
5108         for (i = 0; i < 2; i++) {
5109                 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE);
5110                 mdelay(10);     /* Wait for 10ms before reading back. */
5111                 byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
5112                 if ((byte & RAM_TEST_DONE) == 0
5113                     || (byte & 0x0F) != PRE_TEST_VALUE) {
5114                         asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
5115                         return ADV_ERROR;
5116                 }
5117
5118                 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
5119                 mdelay(10);     /* Wait for 10ms before reading back. */
5120                 if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST)
5121                     != NORMAL_VALUE) {
5122                         asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
5123                         return ADV_ERROR;
5124                 }
5125         }
5126
5127         /*
5128          * LRAM Test - It takes about 1.5 ms to run through the test.
5129          *
5130          * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
5131          * If Done bit not set or Status not 0, save register byte, set the
5132          * err_code, and return an error.
5133          */
5134         AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE);
5135         mdelay(10);     /* Wait for 10ms before checking status. */
5136
5137         byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
5138         if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
5139                 /* Get here if Done bit not set or Status not 0. */
5140                 asc_dvc->bist_err_code = byte;  /* for BIOS display message */
5141                 asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST;
5142                 return ADV_ERROR;
5143         }
5144
5145         /* We need to reset back to normal mode after LRAM test passes. */
5146         AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
5147
5148         err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
5149         if (err) {
5150                 printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
5151                        fwname, err);
5152                 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5153                 return err;
5154         }
5155         if (fw->size < 4) {
5156                 printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
5157                        fw->size, fwname);
5158                 release_firmware(fw);
5159                 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5160                 return -EINVAL;
5161         }
5162         chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
5163                  (fw->data[1] << 8) | fw->data[0];
5164         asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
5165                                              fw->size - 4, ADV_38C0800_MEMSIZE,
5166                                              chksum);
5167         release_firmware(fw);
5168         if (asc_dvc->err_code)
5169                 return ADV_ERROR;
5170
5171         /*
5172          * Restore the RISC memory BIOS region.
5173          */
5174         for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5175                 AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5176                                  bios_mem[i]);
5177         }
5178
5179         /*
5180          * Calculate and write the microcode code checksum to the microcode
5181          * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
5182          */
5183         AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
5184         AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
5185         code_sum = 0;
5186         AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
5187         for (word = begin_addr; word < end_addr; word += 2) {
5188                 code_sum += AdvReadWordAutoIncLram(iop_base);
5189         }
5190         AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
5191
5192         /*
5193          * Read microcode version and date.
5194          */
5195         AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
5196                         asc_dvc->cfg->mcode_date);
5197         AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
5198                         asc_dvc->cfg->mcode_version);
5199
5200         /*
5201          * Set the chip type to indicate the ASC38C0800.
5202          */
5203         AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C0800);
5204
5205         /*
5206          * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
5207          * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
5208          * cable detection and then we are able to read C_DET[3:0].
5209          *
5210          * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
5211          * Microcode Default Value' section below.
5212          */
5213         scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5214         AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1,
5215                              scsi_cfg1 | DIS_TERM_DRV);
5216
5217         /*
5218          * If the PCI Configuration Command Register "Parity Error Response
5219          * Control" Bit was clear (0), then set the microcode variable
5220          * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
5221          * to ignore DMA parity errors.
5222          */
5223         if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
5224                 AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5225                 word |= CONTROL_FLAG_IGNORE_PERR;
5226                 AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5227         }
5228
5229         /*
5230          * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and START_CTL_TH [3:2]
5231          * bits for the default FIFO threshold.
5232          *
5233          * Note: ASC-38C0800 FIFO threshold has been changed to 256 bytes.
5234          *
5235          * For DMA Errata #4 set the BC_THRESH_ENB bit.
5236          */
5237         AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
5238                              BC_THRESH_ENB | FIFO_THRESH_80B | START_CTL_TH |
5239                              READ_CMD_MRM);
5240
5241         /*
5242          * Microcode operating variables for WDTR, SDTR, and command tag
5243          * queuing will be set in slave_configure() based on what a
5244          * device reports it is capable of in Inquiry byte 7.
5245          *
5246          * If SCSI Bus Resets have been disabled, then directly set
5247          * SDTR and WDTR from the EEPROM configuration. This will allow
5248          * the BIOS and warm boot to work without a SCSI bus hang on
5249          * the Inquiry caused by host and target mismatched DTR values.
5250          * Without the SCSI Bus Reset, before an Inquiry a device can't
5251          * be assumed to be in Asynchronous, Narrow mode.
5252          */
5253         if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
5254                 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
5255                                  asc_dvc->wdtr_able);
5256                 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
5257                                  asc_dvc->sdtr_able);
5258         }
5259
5260         /*
5261          * Set microcode operating variables for DISC and SDTR_SPEED1,
5262          * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
5263          * configuration values.
5264          *
5265          * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5266          * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5267          * without determining here whether the device supports SDTR.
5268          */
5269         AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
5270                          asc_dvc->cfg->disc_enable);
5271         AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1);
5272         AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2);
5273         AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3);
5274         AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4);
5275
5276         /*
5277          * Set SCSI_CFG0 Microcode Default Value.
5278          *
5279          * The microcode will set the SCSI_CFG0 register using this value
5280          * after it is started below.
5281          */
5282         AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
5283                          PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
5284                          asc_dvc->chip_scsi_id);
5285
5286         /*
5287          * Determine SCSI_CFG1 Microcode Default Value.
5288          *
5289          * The microcode will set the SCSI_CFG1 register using this value
5290          * after it is started below.
5291          */
5292
5293         /* Read current SCSI_CFG1 Register value. */
5294         scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5295
5296         /*
5297          * If the internal narrow cable is reversed all of the SCSI_CTRL
5298          * register signals will be set. Check for and return an error if
5299          * this condition is found.
5300          */
5301         if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
5302                 asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
5303                 return ADV_ERROR;
5304         }
5305
5306         /*
5307          * All kind of combinations of devices attached to one of four
5308          * connectors are acceptable except HVD device attached. For example,
5309          * LVD device can be attached to SE connector while SE device attached
5310          * to LVD connector.  If LVD device attached to SE connector, it only
5311          * runs up to Ultra speed.
5312          *
5313          * If an HVD device is attached to one of LVD connectors, return an
5314          * error.  However, there is no way to detect HVD device attached to
5315          * SE connectors.
5316          */
5317         if (scsi_cfg1 & HVD) {
5318                 asc_dvc->err_code = ASC_IERR_HVD_DEVICE;
5319                 return ADV_ERROR;
5320         }
5321
5322         /*
5323          * If either SE or LVD automatic termination control is enabled, then
5324          * set the termination value based on a table listed in a_condor.h.
5325          *
5326          * If manual termination was specified with an EEPROM setting then
5327          * 'termination' was set-up in AdvInitFrom38C0800EEPROM() and is ready
5328          * to be 'ored' into SCSI_CFG1.
5329          */
5330         if ((asc_dvc->cfg->termination & TERM_SE) == 0) {
5331                 /* SE automatic termination control is enabled. */
5332                 switch (scsi_cfg1 & C_DET_SE) {
5333                         /* TERM_SE_HI: on, TERM_SE_LO: on */
5334                 case 0x1:
5335                 case 0x2:
5336                 case 0x3:
5337                         asc_dvc->cfg->termination |= TERM_SE;
5338                         break;
5339
5340                         /* TERM_SE_HI: on, TERM_SE_LO: off */
5341                 case 0x0:
5342                         asc_dvc->cfg->termination |= TERM_SE_HI;
5343                         break;
5344                 }
5345         }
5346
5347         if ((asc_dvc->cfg->termination & TERM_LVD) == 0) {
5348                 /* LVD automatic termination control is enabled. */
5349                 switch (scsi_cfg1 & C_DET_LVD) {
5350                         /* TERM_LVD_HI: on, TERM_LVD_LO: on */
5351                 case 0x4:
5352                 case 0x8:
5353                 case 0xC:
5354                         asc_dvc->cfg->termination |= TERM_LVD;
5355                         break;
5356
5357                         /* TERM_LVD_HI: off, TERM_LVD_LO: off */
5358                 case 0x0:
5359                         break;
5360                 }
5361         }
5362
5363         /*
5364          * Clear any set TERM_SE and TERM_LVD bits.
5365          */
5366         scsi_cfg1 &= (~TERM_SE & ~TERM_LVD);
5367
5368         /*
5369          * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
5370          */
5371         scsi_cfg1 |= (~asc_dvc->cfg->termination & 0xF0);
5372
5373         /*
5374          * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and HVD/LVD/SE
5375          * bits and set possibly modified termination control bits in the
5376          * Microcode SCSI_CFG1 Register Value.
5377          */
5378         scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL & ~HVD_LVD_SE);
5379
5380         /*
5381          * Set SCSI_CFG1 Microcode Default Value
5382          *
5383          * Set possibly modified termination control and reset DIS_TERM_DRV
5384          * bits in the Microcode SCSI_CFG1 Register Value.
5385          *
5386          * The microcode will set the SCSI_CFG1 register using this value
5387          * after it is started below.
5388          */
5389         AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
5390
5391         /*
5392          * Set MEM_CFG Microcode Default Value
5393          *
5394          * The microcode will set the MEM_CFG register using this value
5395          * after it is started below.
5396          *
5397          * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5398          * are defined.
5399          *
5400          * ASC-38C0800 has 16KB internal memory.
5401          */
5402         AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5403                          BIOS_EN | RAM_SZ_16KB);
5404
5405         /*
5406          * Set SEL_MASK Microcode Default Value
5407          *
5408          * The microcode will set the SEL_MASK register using this value
5409          * after it is started below.
5410          */
5411         AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
5412                          ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
5413
5414         AdvBuildCarrierFreelist(asc_dvc);
5415
5416         /*
5417          * Set-up the Host->RISC Initiator Command Queue (ICQ).
5418          */
5419
5420         if ((asc_dvc->icq_sp = asc_dvc->carr_freelist) == NULL) {
5421                 asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5422                 return ADV_ERROR;
5423         }
5424         asc_dvc->carr_freelist = (ADV_CARR_T *)
5425             ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->icq_sp->next_vpa));
5426
5427         /*
5428          * The first command issued will be placed in the stopper carrier.
5429          */
5430         asc_dvc->icq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
5431
5432         /*
5433          * Set RISC ICQ physical address start value.
5434          * carr_pa is LE, must be native before write
5435          */
5436         AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
5437
5438         /*
5439          * Set-up the RISC->Host Initiator Response Queue (IRQ).
5440          */
5441         if ((asc_dvc->irq_sp = asc_dvc->carr_freelist) == NULL) {
5442                 asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5443                 return ADV_ERROR;
5444         }
5445         asc_dvc->carr_freelist = (ADV_CARR_T *)
5446             ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->next_vpa));
5447
5448         /*
5449          * The first command completed by the RISC will be placed in
5450          * the stopper.
5451          *
5452          * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is
5453          * completed the RISC will set the ASC_RQ_STOPPER bit.
5454          */
5455         asc_dvc->irq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
5456
5457         /*
5458          * Set RISC IRQ physical address start value.
5459          *
5460          * carr_pa is LE, must be native before write *
5461          */
5462         AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
5463         asc_dvc->carr_pending_cnt = 0;
5464
5465         AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
5466                              (ADV_INTR_ENABLE_HOST_INTR |
5467                               ADV_INTR_ENABLE_GLOBAL_INTR));
5468
5469         AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
5470         AdvWriteWordRegister(iop_base, IOPW_PC, word);
5471
5472         /* finally, finally, gentlemen, start your engine */
5473         AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
5474
5475         /*
5476          * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5477          * Resets should be performed. The RISC has to be running
5478          * to issue a SCSI Bus Reset.
5479          */
5480         if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
5481                 /*
5482                  * If the BIOS Signature is present in memory, restore the
5483                  * BIOS Handshake Configuration Table and do not perform
5484                  * a SCSI Bus Reset.
5485                  */
5486                 if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
5487                     0x55AA) {
5488                         /*
5489                          * Restore per TID negotiated values.
5490                          */
5491                         AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5492                         AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5493                         AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
5494                                          tagqng_able);
5495                         for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5496                                 AdvWriteByteLram(iop_base,
5497                                                  ASC_MC_NUMBER_OF_MAX_CMD + tid,
5498                                                  max_cmd[tid]);
5499                         }
5500                 } else {
5501                         if (AdvResetSB(asc_dvc) != ADV_TRUE) {
5502                                 warn_code = ASC_WARN_BUSRESET_ERROR;
5503                         }
5504                 }
5505         }
5506
5507         return warn_code;
5508 }
5509
5510 /*
5511  * Initialize the ASC-38C1600.
5512  *
5513  * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
5514  *
5515  * For a non-fatal error return a warning code. If there are no warnings
5516  * then 0 is returned.
5517  *
5518  * Needed after initialization for error recovery.
5519  */
5520 static int AdvInitAsc38C1600Driver(ADV_DVC_VAR *asc_dvc)
5521 {
5522         const struct firmware *fw;
5523         const char fwname[] = "advansys/38C1600.bin";
5524         AdvPortAddr iop_base;
5525         ushort warn_code;
5526         int begin_addr;
5527         int end_addr;
5528         ushort code_sum;
5529         long word;
5530         int i;
5531         int err;
5532         unsigned long chksum;
5533         ushort scsi_cfg1;
5534         uchar byte;
5535         uchar tid;
5536         ushort bios_mem[ASC_MC_BIOSLEN / 2];    /* BIOS RISC Memory 0x40-0x8F. */
5537         ushort wdtr_able, sdtr_able, ppr_able, tagqng_able;
5538         uchar max_cmd[ASC_MAX_TID + 1];
5539
5540         /* If there is already an error, don't continue. */
5541         if (asc_dvc->err_code != 0) {
5542                 return ADV_ERROR;
5543         }
5544
5545         /*
5546          * The caller must set 'chip_type' to ADV_CHIP_ASC38C1600.
5547          */
5548         if (asc_dvc->chip_type != ADV_CHIP_ASC38C1600) {
5549                 asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
5550                 return ADV_ERROR;
5551         }
5552
5553         warn_code = 0;
5554         iop_base = asc_dvc->iop_base;
5555
5556         /*
5557          * Save the RISC memory BIOS region before writing the microcode.
5558          * The BIOS may already be loaded and using its RISC LRAM region
5559          * so its region must be saved and restored.
5560          *
5561          * Note: This code makes the assumption, which is currently true,
5562          * that a chip reset does not clear RISC LRAM.
5563          */
5564         for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5565                 AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5566                                 bios_mem[i]);
5567         }
5568
5569         /*
5570          * Save current per TID negotiated values.
5571          */
5572         AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5573         AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5574         AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
5575         AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5576         for (tid = 0; tid <= ASC_MAX_TID; tid++) {
5577                 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5578                                 max_cmd[tid]);
5579         }
5580
5581         /*
5582          * RAM BIST (Built-In Self Test)
5583          *
5584          * Address : I/O base + offset 0x38h register (byte).
5585          * Function: Bit 7-6(RW) : RAM mode
5586          *                          Normal Mode   : 0x00
5587          *                          Pre-test Mode : 0x40
5588          *                          RAM Test Mode : 0x80
5589          *           Bit 5       : unused
5590          *           Bit 4(RO)   : Done bit
5591          *           Bit 3-0(RO) : Status
5592          *                          Host Error    : 0x08
5593          *                          Int_RAM Error : 0x04
5594          *                          RISC Error    : 0x02
5595          *                          SCSI Error    : 0x01
5596          *                          No Error      : 0x00
5597          *
5598          * Note: RAM BIST code should be put right here, before loading the
5599          * microcode and after saving the RISC memory BIOS region.
5600          */
5601
5602         /*
5603          * LRAM Pre-test
5604          *
5605          * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
5606          * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
5607          * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
5608          * to NORMAL_MODE, return an error too.
5609          */
5610         for (i = 0; i < 2; i++) {
5611                 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE);
5612                 mdelay(10);     /* Wait for 10ms before reading back. */
5613                 byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
5614                 if ((byte & RAM_TEST_DONE) == 0
5615                     || (byte & 0x0F) != PRE_TEST_VALUE) {
5616                         asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
5617                         return ADV_ERROR;
5618                 }
5619
5620                 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
5621                 mdelay(10);     /* Wait for 10ms before reading back. */
5622                 if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST)
5623                     != NORMAL_VALUE) {
5624                         asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
5625                         return ADV_ERROR;
5626                 }
5627         }
5628
5629         /*
5630          * LRAM Test - It takes about 1.5 ms to run through the test.
5631          *
5632          * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
5633          * If Done bit not set or Status not 0, save register byte, set the
5634          * err_code, and return an error.
5635          */
5636         AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE);
5637         mdelay(10);     /* Wait for 10ms before checking status. */
5638
5639         byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
5640         if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
5641                 /* Get here if Done bit not set or Status not 0. */
5642                 asc_dvc->bist_err_code = byte;  /* for BIOS display message */
5643                 asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST;
5644                 return ADV_ERROR;
5645         }
5646
5647         /* We need to reset back to normal mode after LRAM test passes. */
5648         AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
5649
5650         err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
5651         if (err) {
5652                 printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
5653                        fwname, err);
5654                 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5655                 return err;
5656         }
5657         if (fw->size < 4) {
5658                 printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
5659                        fw->size, fwname);
5660                 release_firmware(fw);
5661                 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5662                 return -EINVAL;
5663         }
5664         chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
5665                  (fw->data[1] << 8) | fw->data[0];
5666         asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
5667                                              fw->size - 4, ADV_38C1600_MEMSIZE,
5668                                              chksum);
5669         release_firmware(fw);
5670         if (asc_dvc->err_code)
5671                 return ADV_ERROR;
5672
5673         /*
5674          * Restore the RISC memory BIOS region.
5675          */
5676         for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5677                 AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5678                                  bios_mem[i]);
5679         }
5680
5681         /*
5682          * Calculate and write the microcode code checksum to the microcode
5683          * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
5684          */
5685         AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
5686         AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
5687         code_sum = 0;
5688         AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
5689         for (word = begin_addr; word < end_addr; word += 2) {
5690                 code_sum += AdvReadWordAutoIncLram(iop_base);
5691         }
5692         AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
5693
5694         /*
5695          * Read microcode version and date.
5696          */
5697         AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
5698                         asc_dvc->cfg->mcode_date);
5699         AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
5700                         asc_dvc->cfg->mcode_version);
5701
5702         /*
5703          * Set the chip type to indicate the ASC38C1600.
5704          */
5705         AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C1600);
5706
5707         /*
5708          * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
5709          * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
5710          * cable detection and then we are able to read C_DET[3:0].
5711          *
5712          * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
5713          * Microcode Default Value' section below.
5714          */
5715         scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5716         AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1,
5717                              scsi_cfg1 | DIS_TERM_DRV);
5718
5719         /*
5720          * If the PCI Configuration Command Register "Parity Error Response
5721          * Control" Bit was clear (0), then set the microcode variable
5722          * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
5723          * to ignore DMA parity errors.
5724          */
5725         if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
5726                 AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5727                 word |= CONTROL_FLAG_IGNORE_PERR;
5728                 AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5729         }
5730
5731         /*
5732          * If the BIOS control flag AIPP (Asynchronous Information
5733          * Phase Protection) disable bit is not set, then set the firmware
5734          * 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to enable
5735          * AIPP checking and encoding.
5736          */
5737         if ((asc_dvc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
5738                 AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5739                 word |= CONTROL_FLAG_ENABLE_AIPP;
5740                 AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5741         }
5742
5743         /*
5744          * For ASC-38C1600 use DMA_CFG0 default values: FIFO_THRESH_80B [6:4],
5745          * and START_CTL_TH [3:2].
5746          */
5747         AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
5748                              FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
5749
5750         /*
5751          * Microcode operating variables for WDTR, SDTR, and command tag
5752          * queuing will be set in slave_configure() based on what a
5753          * device reports it is capable of in Inquiry byte 7.
5754          *
5755          * If SCSI Bus Resets have been disabled, then directly set
5756          * SDTR and WDTR from the EEPROM configuration. This will allow
5757          * the BIOS and warm boot to work without a SCSI bus hang on
5758          * the Inquiry caused by host and target mismatched DTR values.
5759          * Without the SCSI Bus Reset, before an Inquiry a device can't
5760          * be assumed to be in Asynchronous, Narrow mode.
5761          */
5762         if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
5763                 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
5764                                  asc_dvc->wdtr_able);
5765                 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
5766                                  asc_dvc->sdtr_able);
5767         }
5768
5769         /*
5770          * Set microcode operating variables for DISC and SDTR_SPEED1,
5771          * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
5772          * configuration values.
5773          *
5774          * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5775          * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5776          * without determining here whether the device supports SDTR.
5777          */
5778         AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
5779                          asc_dvc->cfg->disc_enable);
5780         AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1);
5781         AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2);
5782         AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3);
5783         AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4);
5784
5785         /*
5786          * Set SCSI_CFG0 Microcode Default Value.
5787          *
5788          * The microcode will set the SCSI_CFG0 register using this value
5789          * after it is started below.
5790          */
5791         AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
5792                          PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
5793                          asc_dvc->chip_scsi_id);
5794
5795         /*
5796          * Calculate SCSI_CFG1 Microcode Default Value.
5797          *
5798          * The microcode will set the SCSI_CFG1 register using this value
5799          * after it is started below.
5800          *
5801          * Each ASC-38C1600 function has only two cable detect bits.
5802          * The bus mode override bits are in IOPB_SOFT_OVER_WR.
5803          */
5804         scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5805
5806         /*
5807          * If the cable is reversed all of the SCSI_CTRL register signals
5808          * will be set. Check for and return an error if this condition is
5809          * found.
5810          */
5811         if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
5812                 asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
5813                 return ADV_ERROR;
5814         }
5815
5816         /*
5817          * Each ASC-38C1600 function has two connectors. Only an HVD device
5818          * can not be connected to either connector. An LVD device or SE device
5819          * may be connected to either connecor. If an SE device is connected,
5820          * then at most Ultra speed (20 Mhz) can be used on both connectors.
5821          *
5822          * If an HVD device is attached, return an error.
5823          */
5824         if (scsi_cfg1 & HVD) {
5825                 asc_dvc->err_code |= ASC_IERR_HVD_DEVICE;
5826                 return ADV_ERROR;
5827         }
5828
5829         /*
5830          * Each function in the ASC-38C1600 uses only the SE cable detect and
5831          * termination because there are two connectors for each function. Each
5832          * function may use either LVD or SE mode. Corresponding the SE automatic
5833          * termination control EEPROM bits are used for each function. Each
5834          * function has its own EEPROM. If SE automatic control is enabled for
5835          * the function, then set the termination value based on a table listed
5836          * in a_condor.h.
5837          *
5838          * If manual termination is specified in the EEPROM for the function,
5839          * then 'termination' was set-up in AscInitFrom38C1600EEPROM() and is
5840          * ready to be 'ored' into SCSI_CFG1.
5841          */
5842         if ((asc_dvc->cfg->termination & TERM_SE) == 0) {
5843                 struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc);
5844                 /* SE automatic termination control is enabled. */
5845                 switch (scsi_cfg1 & C_DET_SE) {
5846                         /* TERM_SE_HI: on, TERM_SE_LO: on */
5847                 case 0x1:
5848                 case 0x2:
5849                 case 0x3:
5850                         asc_dvc->cfg->termination |= TERM_SE;
5851                         break;
5852
5853                 case 0x0:
5854                         if (PCI_FUNC(pdev->devfn) == 0) {
5855                                 /* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
5856                         } else {
5857                                 /* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
5858                                 asc_dvc->cfg->termination |= TERM_SE_HI;
5859                         }
5860                         break;
5861                 }
5862         }
5863
5864         /*
5865          * Clear any set TERM_SE bits.
5866          */
5867         scsi_cfg1 &= ~TERM_SE;
5868
5869         /*
5870          * Invert the TERM_SE bits and then set 'scsi_cfg1'.
5871          */
5872         scsi_cfg1 |= (~asc_dvc->cfg->termination & TERM_SE);
5873
5874         /*
5875          * Clear Big Endian and Terminator Polarity bits and set possibly
5876          * modified termination control bits in the Microcode SCSI_CFG1
5877          * Register Value.
5878          *
5879          * Big Endian bit is not used even on big endian machines.
5880          */
5881         scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL);
5882
5883         /*
5884          * Set SCSI_CFG1 Microcode Default Value
5885          *
5886          * Set possibly modified termination control bits in the Microcode
5887          * SCSI_CFG1 Register Value.
5888          *
5889          * The microcode will set the SCSI_CFG1 register using this value
5890          * after it is started below.
5891          */
5892         AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
5893
5894         /*
5895          * Set MEM_CFG Microcode Default Value
5896          *
5897          * The microcode will set the MEM_CFG register using this value
5898          * after it is started below.
5899          *
5900          * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5901          * are defined.
5902          *
5903          * ASC-38C1600 has 32KB internal memory.
5904          *
5905          * XXX - Since ASC38C1600 Rev.3 has a Local RAM failure issue, we come
5906          * out a special 16K Adv Library and Microcode version. After the issue
5907          * resolved, we should turn back to the 32K support. Both a_condor.h and
5908          * mcode.sas files also need to be updated.
5909          *
5910          * AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5911          *  BIOS_EN | RAM_SZ_32KB);
5912          */
5913         AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5914                          BIOS_EN | RAM_SZ_16KB);
5915
5916         /*
5917          * Set SEL_MASK Microcode Default Value
5918          *
5919          * The microcode will set the SEL_MASK register using this value
5920          * after it is started below.
5921          */
5922         AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
5923                          ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
5924
5925         AdvBuildCarrierFreelist(asc_dvc);
5926
5927         /*
5928          * Set-up the Host->RISC Initiator Command Queue (ICQ).
5929          */
5930         if ((asc_dvc->icq_sp = asc_dvc->carr_freelist) == NULL) {
5931                 asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5932                 return ADV_ERROR;
5933         }
5934         asc_dvc->carr_freelist = (ADV_CARR_T *)
5935             ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->icq_sp->next_vpa));
5936
5937         /*
5938          * The first command issued will be placed in the stopper carrier.
5939          */
5940         asc_dvc->icq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
5941
5942         /*
5943          * Set RISC ICQ physical address start value. Initialize the
5944          * COMMA register to the same value otherwise the RISC will
5945          * prematurely detect a command is available.
5946          */
5947         AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
5948         AdvWriteDWordRegister(iop_base, IOPDW_COMMA,
5949                               le32_to_cpu(asc_dvc->icq_sp->carr_pa));
5950
5951         /*
5952          * Set-up the RISC->Host Initiator Response Queue (IRQ).
5953          */
5954         if ((asc_dvc->irq_sp = asc_dvc->carr_freelist) == NULL) {
5955                 asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5956                 return ADV_ERROR;
5957         }
5958         asc_dvc->carr_freelist = (ADV_CARR_T *)
5959             ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->next_vpa));
5960
5961         /*
5962          * The first command completed by the RISC will be placed in
5963          * the stopper.
5964          *
5965          * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is
5966          * completed the RISC will set the ASC_RQ_STOPPER bit.
5967          */
5968         asc_dvc->irq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
5969
5970         /*
5971          * Set RISC IRQ physical address start value.
5972          */
5973         AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
5974         asc_dvc->carr_pending_cnt = 0;
5975
5976         AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
5977                              (ADV_INTR_ENABLE_HOST_INTR |
5978                               ADV_INTR_ENABLE_GLOBAL_INTR));
5979         AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
5980         AdvWriteWordRegister(iop_base, IOPW_PC, word);
5981
5982         /* finally, finally, gentlemen, start your engine */
5983         AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
5984
5985         /*
5986          * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5987          * Resets should be performed. The RISC has to be running
5988          * to issue a SCSI Bus Reset.
5989          */
5990         if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
5991                 /*
5992                  * If the BIOS Signature is present in memory, restore the
5993                  * per TID microcode operating variables.
5994                  */
5995                 if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
5996                     0x55AA) {
5997                         /*
5998                          * Restore per TID negotiated values.
5999                          */
6000                         AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
6001                         AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
6002                         AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
6003                         AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
6004                                          tagqng_able);
6005                         for (tid = 0; tid <= ASC_MAX_TID; tid++) {
6006                                 AdvWriteByteLram(iop_base,
6007                                                  ASC_MC_NUMBER_OF_MAX_CMD + tid,
6008                                                  max_cmd[tid]);
6009                         }
6010                 } else {
6011                         if (AdvResetSB(asc_dvc) != ADV_TRUE) {
6012                                 warn_code = ASC_WARN_BUSRESET_ERROR;
6013                         }
6014                 }
6015         }
6016
6017         return warn_code;
6018 }
6019
6020 /*
6021  * Reset chip and SCSI Bus.
6022  *
6023  * Return Value:
6024  *      ADV_TRUE(1) -   Chip re-initialization and SCSI Bus Reset successful.
6025  *      ADV_FALSE(0) -  Chip re-initialization and SCSI Bus Reset failure.
6026  */
6027 static int AdvResetChipAndSB(ADV_DVC_VAR *asc_dvc)
6028 {
6029         int status;
6030         ushort wdtr_able, sdtr_able, tagqng_able;
6031         ushort ppr_able = 0;
6032         uchar tid, max_cmd[ADV_MAX_TID + 1];
6033         AdvPortAddr iop_base;
6034         ushort bios_sig;
6035
6036         iop_base = asc_dvc->iop_base;
6037
6038         /*
6039          * Save current per TID negotiated values.
6040          */
6041         AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
6042         AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
6043         if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
6044                 AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
6045         }
6046         AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
6047         for (tid = 0; tid <= ADV_MAX_TID; tid++) {
6048                 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
6049                                 max_cmd[tid]);
6050         }
6051
6052         /*
6053          * Force the AdvInitAsc3550/38C0800Driver() function to
6054          * perform a SCSI Bus Reset by clearing the BIOS signature word.
6055          * The initialization functions assumes a SCSI Bus Reset is not
6056          * needed if the BIOS signature word is present.
6057          */
6058         AdvReadWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig);
6059         AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, 0);
6060
6061         /*
6062          * Stop chip and reset it.
6063          */
6064         AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_STOP);
6065         AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, ADV_CTRL_REG_CMD_RESET);
6066         mdelay(100);
6067         AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
6068                              ADV_CTRL_REG_CMD_WR_IO_REG);
6069
6070         /*
6071          * Reset Adv Library error code, if any, and try
6072          * re-initializing the chip.
6073          */
6074         asc_dvc->err_code = 0;
6075         if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
6076                 status = AdvInitAsc38C1600Driver(asc_dvc);
6077         } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
6078                 status = AdvInitAsc38C0800Driver(asc_dvc);
6079         } else {
6080                 status = AdvInitAsc3550Driver(asc_dvc);
6081         }
6082
6083         /* Translate initialization return value to status value. */
6084         if (status == 0) {
6085                 status = ADV_TRUE;
6086         } else {
6087                 status = ADV_FALSE;
6088         }
6089
6090         /*
6091          * Restore the BIOS signature word.
6092          */
6093         AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig);
6094
6095         /*
6096          * Restore per TID negotiated values.
6097          */
6098         AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
6099         AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
6100         if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
6101                 AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
6102         }
6103         AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
6104         for (tid = 0; tid <= ADV_MAX_TID; tid++) {
6105                 AdvWriteByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
6106                                  max_cmd[tid]);
6107         }
6108
6109         return status;
6110 }
6111
6112 /*
6113  * adv_async_callback() - Adv Library asynchronous event callback function.
6114  */
6115 static void adv_async_callback(ADV_DVC_VAR *adv_dvc_varp, uchar code)
6116 {
6117         switch (code) {
6118         case ADV_ASYNC_SCSI_BUS_RESET_DET:
6119                 /*
6120                  * The firmware detected a SCSI Bus reset.
6121                  */
6122                 ASC_DBG(0, "ADV_ASYNC_SCSI_BUS_RESET_DET\n");
6123                 break;
6124
6125         case ADV_ASYNC_RDMA_FAILURE:
6126                 /*
6127                  * Handle RDMA failure by resetting the SCSI Bus and
6128                  * possibly the chip if it is unresponsive. Log the error
6129                  * with a unique code.
6130                  */
6131                 ASC_DBG(0, "ADV_ASYNC_RDMA_FAILURE\n");
6132                 AdvResetChipAndSB(adv_dvc_varp);
6133                 break;
6134
6135         case ADV_HOST_SCSI_BUS_RESET:
6136                 /*
6137                  * Host generated SCSI bus reset occurred.
6138                  */
6139                 ASC_DBG(0, "ADV_HOST_SCSI_BUS_RESET\n");
6140                 break;
6141
6142         default:
6143                 ASC_DBG(0, "unknown code 0x%x\n", code);
6144                 break;
6145         }
6146 }
6147
6148 /*
6149  * adv_isr_callback() - Second Level Interrupt Handler called by AdvISR().
6150  *
6151  * Callback function for the Wide SCSI Adv Library.
6152  */
6153 static void adv_isr_callback(ADV_DVC_VAR *adv_dvc_varp, ADV_SCSI_REQ_Q *scsiqp)
6154 {
6155         struct asc_board *boardp;
6156         adv_req_t *reqp;
6157         adv_sgblk_t *sgblkp;
6158         struct scsi_cmnd *scp;
6159         struct Scsi_Host *shost;
6160         ADV_DCNT resid_cnt;
6161
6162         ASC_DBG(1, "adv_dvc_varp 0x%lx, scsiqp 0x%lx\n",
6163                  (ulong)adv_dvc_varp, (ulong)scsiqp);
6164         ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp);
6165
6166         /*
6167          * Get the adv_req_t structure for the command that has been
6168          * completed. The adv_req_t structure actually contains the
6169          * completed ADV_SCSI_REQ_Q structure.
6170          */
6171         reqp = (adv_req_t *)ADV_U32_TO_VADDR(scsiqp->srb_ptr);
6172         ASC_DBG(1, "reqp 0x%lx\n", (ulong)reqp);
6173         if (reqp == NULL) {
6174                 ASC_PRINT("adv_isr_callback: reqp is NULL\n");
6175                 return;
6176         }
6177
6178         /*
6179          * Get the struct scsi_cmnd structure and Scsi_Host structure for the
6180          * command that has been completed.
6181          *
6182          * Note: The adv_req_t request structure and adv_sgblk_t structure,
6183          * if any, are dropped, because a board structure pointer can not be
6184          * determined.
6185          */
6186         scp = reqp->cmndp;
6187         ASC_DBG(1, "scp 0x%p\n", scp);
6188         if (scp == NULL) {
6189                 ASC_PRINT
6190                     ("adv_isr_callback: scp is NULL; adv_req_t dropped.\n");
6191                 return;
6192         }
6193         ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len);
6194
6195         shost = scp->device->host;
6196         ASC_STATS(shost, callback);
6197         ASC_DBG(1, "shost 0x%p\n", shost);
6198
6199         boardp = shost_priv(shost);
6200         BUG_ON(adv_dvc_varp != &boardp->dvc_var.adv_dvc_var);
6201
6202         /*
6203          * 'done_status' contains the command's ending status.
6204          */
6205         switch (scsiqp->done_status) {
6206         case QD_NO_ERROR:
6207                 ASC_DBG(2, "QD_NO_ERROR\n");
6208                 scp->result = 0;
6209
6210                 /*
6211                  * Check for an underrun condition.
6212                  *
6213                  * If there was no error and an underrun condition, then
6214                  * then return the number of underrun bytes.
6215                  */
6216                 resid_cnt = le32_to_cpu(scsiqp->data_cnt);
6217                 if (scsi_bufflen(scp) != 0 && resid_cnt != 0 &&
6218                     resid_cnt <= scsi_bufflen(scp)) {
6219                         ASC_DBG(1, "underrun condition %lu bytes\n",
6220                                  (ulong)resid_cnt);
6221                         scsi_set_resid(scp, resid_cnt);
6222                 }
6223                 break;
6224
6225         case QD_WITH_ERROR:
6226                 ASC_DBG(2, "QD_WITH_ERROR\n");
6227                 switch (scsiqp->host_status) {
6228                 case QHSTA_NO_ERROR:
6229                         if (scsiqp->scsi_status == SAM_STAT_CHECK_CONDITION) {
6230                                 ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
6231                                 ASC_DBG_PRT_SENSE(2, scp->sense_buffer,
6232                                                   SCSI_SENSE_BUFFERSIZE);
6233                                 /*
6234                                  * Note: The 'status_byte()' macro used by
6235                                  * target drivers defined in scsi.h shifts the
6236                                  * status byte returned by host drivers right
6237                                  * by 1 bit.  This is why target drivers also
6238                                  * use right shifted status byte definitions.
6239                                  * For instance target drivers use
6240                                  * CHECK_CONDITION, defined to 0x1, instead of
6241                                  * the SCSI defined check condition value of
6242                                  * 0x2. Host drivers are supposed to return
6243                                  * the status byte as it is defined by SCSI.
6244                                  */
6245                                 scp->result = DRIVER_BYTE(DRIVER_SENSE) |
6246                                     STATUS_BYTE(scsiqp->scsi_status);
6247                         } else {
6248                                 scp->result = STATUS_BYTE(scsiqp->scsi_status);
6249                         }
6250                         break;
6251
6252                 default:
6253                         /* Some other QHSTA error occurred. */
6254                         ASC_DBG(1, "host_status 0x%x\n", scsiqp->host_status);
6255                         scp->result = HOST_BYTE(DID_BAD_TARGET);
6256                         break;
6257                 }
6258                 break;
6259
6260         case QD_ABORTED_BY_HOST:
6261                 ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
6262                 scp->result =
6263                     HOST_BYTE(DID_ABORT) | STATUS_BYTE(scsiqp->scsi_status);
6264                 break;
6265
6266         default:
6267                 ASC_DBG(1, "done_status 0x%x\n", scsiqp->done_status);
6268                 scp->result =
6269                     HOST_BYTE(DID_ERROR) | STATUS_BYTE(scsiqp->scsi_status);
6270                 break;
6271         }
6272
6273         /*
6274          * If the 'init_tidmask' bit isn't already set for the target and the
6275          * current request finished normally, then set the bit for the target
6276          * to indicate that a device is present.
6277          */
6278         if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 &&
6279             scsiqp->done_status == QD_NO_ERROR &&
6280             scsiqp->host_status == QHSTA_NO_ERROR) {
6281                 boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id);
6282         }
6283
6284         asc_scsi_done(scp);
6285
6286         /*
6287          * Free all 'adv_sgblk_t' structures allocated for the request.
6288          */
6289         while ((sgblkp = reqp->sgblkp) != NULL) {
6290                 /* Remove 'sgblkp' from the request list. */
6291                 reqp->sgblkp = sgblkp->next_sgblkp;
6292
6293                 /* Add 'sgblkp' to the board free list. */
6294                 sgblkp->next_sgblkp = boardp->adv_sgblkp;
6295                 boardp->adv_sgblkp = sgblkp;
6296         }
6297
6298         /*
6299          * Free the adv_req_t structure used with the command by adding
6300          * it back to the board free list.
6301          */
6302         reqp->next_reqp = boardp->adv_reqp;
6303         boardp->adv_reqp = reqp;
6304
6305         ASC_DBG(1, "done\n");
6306 }
6307
6308 /*
6309  * Adv Library Interrupt Service Routine
6310  *
6311  *  This function is called by a driver's interrupt service routine.
6312  *  The function disables and re-enables interrupts.
6313  *
6314  *  When a microcode idle command is completed, the ADV_DVC_VAR
6315  *  'idle_cmd_done' field is set to ADV_TRUE.
6316  *
6317  *  Note: AdvISR() can be called when interrupts are disabled or even
6318  *  when there is no hardware interrupt condition present. It will
6319  *  always check for completed idle commands and microcode requests.
6320  *  This is an important feature that shouldn't be changed because it
6321  *  allows commands to be completed from polling mode loops.
6322  *
6323  * Return:
6324  *   ADV_TRUE(1) - interrupt was pending
6325  *   ADV_FALSE(0) - no interrupt was pending
6326  */
6327 static int AdvISR(ADV_DVC_VAR *asc_dvc)
6328 {
6329         AdvPortAddr iop_base;
6330         uchar int_stat;
6331         ushort target_bit;
6332         ADV_CARR_T *free_carrp;
6333         ADV_VADDR irq_next_vpa;
6334         ADV_SCSI_REQ_Q *scsiq;
6335
6336         iop_base = asc_dvc->iop_base;
6337
6338         /* Reading the register clears the interrupt. */
6339         int_stat = AdvReadByteRegister(iop_base, IOPB_INTR_STATUS_REG);
6340
6341         if ((int_stat & (ADV_INTR_STATUS_INTRA | ADV_INTR_STATUS_INTRB |
6342                          ADV_INTR_STATUS_INTRC)) == 0) {
6343                 return ADV_FALSE;
6344         }
6345
6346         /*
6347          * Notify the driver of an asynchronous microcode condition by
6348          * calling the adv_async_callback function. The function
6349          * is passed the microcode ASC_MC_INTRB_CODE byte value.
6350          */
6351         if (int_stat & ADV_INTR_STATUS_INTRB) {
6352                 uchar intrb_code;
6353
6354                 AdvReadByteLram(iop_base, ASC_MC_INTRB_CODE, intrb_code);
6355
6356                 if (asc_dvc->chip_type == ADV_CHIP_ASC3550 ||
6357                     asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
6358                         if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
6359                             asc_dvc->carr_pending_cnt != 0) {
6360                                 AdvWriteByteRegister(iop_base, IOPB_TICKLE,
6361                                                      ADV_TICKLE_A);
6362                                 if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
6363                                         AdvWriteByteRegister(iop_base,
6364                                                              IOPB_TICKLE,
6365                                                              ADV_TICKLE_NOP);
6366                                 }
6367                         }
6368                 }
6369
6370                 adv_async_callback(asc_dvc, intrb_code);
6371         }
6372
6373         /*
6374          * Check if the IRQ stopper carrier contains a completed request.
6375          */
6376         while (((irq_next_vpa =
6377                  le32_to_cpu(asc_dvc->irq_sp->next_vpa)) & ASC_RQ_DONE) != 0) {
6378                 /*
6379                  * Get a pointer to the newly completed ADV_SCSI_REQ_Q structure.
6380                  * The RISC will have set 'areq_vpa' to a virtual address.
6381                  *
6382                  * The firmware will have copied the ASC_SCSI_REQ_Q.scsiq_ptr
6383                  * field to the carrier ADV_CARR_T.areq_vpa field. The conversion
6384                  * below complements the conversion of ASC_SCSI_REQ_Q.scsiq_ptr'
6385                  * in AdvExeScsiQueue().
6386                  */
6387                 scsiq = (ADV_SCSI_REQ_Q *)
6388                     ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->areq_vpa));
6389
6390                 /*
6391                  * Request finished with good status and the queue was not
6392                  * DMAed to host memory by the firmware. Set all status fields
6393                  * to indicate good status.
6394                  */
6395                 if ((irq_next_vpa & ASC_RQ_GOOD) != 0) {
6396                         scsiq->done_status = QD_NO_ERROR;
6397                         scsiq->host_status = scsiq->scsi_status = 0;
6398                         scsiq->data_cnt = 0L;
6399                 }
6400
6401                 /*
6402                  * Advance the stopper pointer to the next carrier
6403                  * ignoring the lower four bits. Free the previous
6404                  * stopper carrier.
6405                  */
6406                 free_carrp = asc_dvc->irq_sp;
6407                 asc_dvc->irq_sp = (ADV_CARR_T *)
6408                     ADV_U32_TO_VADDR(ASC_GET_CARRP(irq_next_vpa));
6409
6410                 free_carrp->next_vpa =
6411                     cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc->carr_freelist));
6412                 asc_dvc->carr_freelist = free_carrp;
6413                 asc_dvc->carr_pending_cnt--;
6414
6415                 target_bit = ADV_TID_TO_TIDMASK(scsiq->target_id);
6416
6417                 /*
6418                  * Clear request microcode control flag.
6419                  */
6420                 scsiq->cntl = 0;
6421
6422                 /*
6423                  * Notify the driver of the completed request by passing
6424                  * the ADV_SCSI_REQ_Q pointer to its callback function.
6425                  */
6426                 scsiq->a_flag |= ADV_SCSIQ_DONE;
6427                 adv_isr_callback(asc_dvc, scsiq);
6428                 /*
6429                  * Note: After the driver callback function is called, 'scsiq'
6430                  * can no longer be referenced.
6431                  *
6432                  * Fall through and continue processing other completed
6433                  * requests...
6434                  */
6435         }
6436         return ADV_TRUE;
6437 }
6438
6439 static int AscSetLibErrorCode(ASC_DVC_VAR *asc_dvc, ushort err_code)
6440 {
6441         if (asc_dvc->err_code == 0) {
6442                 asc_dvc->err_code = err_code;
6443                 AscWriteLramWord(asc_dvc->iop_base, ASCV_ASCDVC_ERR_CODE_W,
6444                                  err_code);
6445         }
6446         return err_code;
6447 }
6448
6449 static void AscAckInterrupt(PortAddr iop_base)
6450 {
6451         uchar host_flag;
6452         uchar risc_flag;
6453         ushort loop;
6454
6455         loop = 0;
6456         do {
6457                 risc_flag = AscReadLramByte(iop_base, ASCV_RISC_FLAG_B);
6458                 if (loop++ > 0x7FFF) {
6459                         break;
6460                 }
6461         } while ((risc_flag & ASC_RISC_FLAG_GEN_INT) != 0);
6462         host_flag =
6463             AscReadLramByte(iop_base,
6464                             ASCV_HOST_FLAG_B) & (~ASC_HOST_FLAG_ACK_INT);
6465         AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B,
6466                          (uchar)(host_flag | ASC_HOST_FLAG_ACK_INT));
6467         AscSetChipStatus(iop_base, CIW_INT_ACK);
6468         loop = 0;
6469         while (AscGetChipStatus(iop_base) & CSW_INT_PENDING) {
6470                 AscSetChipStatus(iop_base, CIW_INT_ACK);
6471                 if (loop++ > 3) {
6472                         break;
6473                 }
6474         }
6475         AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag);
6476 }
6477
6478 static uchar AscGetSynPeriodIndex(ASC_DVC_VAR *asc_dvc, uchar syn_time)
6479 {
6480         const uchar *period_table;
6481         int max_index;
6482         int min_index;
6483         int i;
6484
6485         period_table = asc_dvc->sdtr_period_tbl;
6486         max_index = (int)asc_dvc->max_sdtr_index;
6487         min_index = (int)asc_dvc->min_sdtr_index;
6488         if ((syn_time <= period_table[max_index])) {
6489                 for (i = min_index; i < (max_index - 1); i++) {
6490                         if (syn_time <= period_table[i]) {
6491                                 return (uchar)i;
6492                         }
6493                 }
6494                 return (uchar)max_index;
6495         } else {
6496                 return (uchar)(max_index + 1);
6497         }
6498 }
6499
6500 static uchar
6501 AscMsgOutSDTR(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar sdtr_offset)
6502 {
6503         EXT_MSG sdtr_buf;
6504         uchar sdtr_period_index;
6505         PortAddr iop_base;
6506
6507         iop_base = asc_dvc->iop_base;
6508         sdtr_buf.msg_type = EXTENDED_MESSAGE;
6509         sdtr_buf.msg_len = MS_SDTR_LEN;
6510         sdtr_buf.msg_req = EXTENDED_SDTR;
6511         sdtr_buf.xfer_period = sdtr_period;
6512         sdtr_offset &= ASC_SYN_MAX_OFFSET;
6513         sdtr_buf.req_ack_offset = sdtr_offset;
6514         sdtr_period_index = AscGetSynPeriodIndex(asc_dvc, sdtr_period);
6515         if (sdtr_period_index <= asc_dvc->max_sdtr_index) {
6516                 AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG,
6517                                         (uchar *)&sdtr_buf,
6518                                         sizeof(EXT_MSG) >> 1);
6519                 return ((sdtr_period_index << 4) | sdtr_offset);
6520         } else {
6521                 sdtr_buf.req_ack_offset = 0;
6522                 AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG,
6523                                         (uchar *)&sdtr_buf,
6524                                         sizeof(EXT_MSG) >> 1);
6525                 return 0;
6526         }
6527 }
6528
6529 static uchar
6530 AscCalSDTRData(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar syn_offset)
6531 {
6532         uchar byte;
6533         uchar sdtr_period_ix;
6534
6535         sdtr_period_ix = AscGetSynPeriodIndex(asc_dvc, sdtr_period);
6536         if (sdtr_period_ix > asc_dvc->max_sdtr_index)
6537                 return 0xFF;
6538         byte = (sdtr_period_ix << 4) | (syn_offset & ASC_SYN_MAX_OFFSET);
6539         return byte;
6540 }
6541
6542 static int AscSetChipSynRegAtID(PortAddr iop_base, uchar id, uchar sdtr_data)
6543 {
6544         ASC_SCSI_BIT_ID_TYPE org_id;
6545         int i;
6546         int sta = TRUE;
6547
6548         AscSetBank(iop_base, 1);
6549         org_id = AscReadChipDvcID(iop_base);
6550         for (i = 0; i <= ASC_MAX_TID; i++) {
6551                 if (org_id == (0x01 << i))
6552                         break;
6553         }
6554         org_id = (ASC_SCSI_BIT_ID_TYPE) i;
6555         AscWriteChipDvcID(iop_base, id);
6556         if (AscReadChipDvcID(iop_base) == (0x01 << id)) {
6557                 AscSetBank(iop_base, 0);
6558                 AscSetChipSyn(iop_base, sdtr_data);
6559                 if (AscGetChipSyn(iop_base) != sdtr_data) {
6560                         sta = FALSE;
6561                 }
6562         } else {
6563                 sta = FALSE;
6564         }
6565         AscSetBank(iop_base, 1);
6566         AscWriteChipDvcID(iop_base, org_id);
6567         AscSetBank(iop_base, 0);
6568         return (sta);
6569 }
6570
6571 static void AscSetChipSDTR(PortAddr iop_base, uchar sdtr_data, uchar tid_no)
6572 {
6573         AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data);
6574         AscPutMCodeSDTRDoneAtID(iop_base, tid_no, sdtr_data);
6575 }
6576
6577 static int AscIsrChipHalted(ASC_DVC_VAR *asc_dvc)
6578 {
6579         EXT_MSG ext_msg;
6580         EXT_MSG out_msg;
6581         ushort halt_q_addr;
6582         int sdtr_accept;
6583         ushort int_halt_code;
6584         ASC_SCSI_BIT_ID_TYPE scsi_busy;
6585         ASC_SCSI_BIT_ID_TYPE target_id;
6586         PortAddr iop_base;
6587         uchar tag_code;
6588         uchar q_status;
6589         uchar halt_qp;
6590         uchar sdtr_data;
6591         uchar target_ix;
6592         uchar q_cntl, tid_no;
6593         uchar cur_dvc_qng;
6594         uchar asyn_sdtr;
6595         uchar scsi_status;
6596         struct asc_board *boardp;
6597
6598         BUG_ON(!asc_dvc->drv_ptr);
6599         boardp = asc_dvc->drv_ptr;
6600
6601         iop_base = asc_dvc->iop_base;
6602         int_halt_code = AscReadLramWord(iop_base, ASCV_HALTCODE_W);
6603
6604         halt_qp = AscReadLramByte(iop_base, ASCV_CURCDB_B);
6605         halt_q_addr = ASC_QNO_TO_QADDR(halt_qp);
6606         target_ix = AscReadLramByte(iop_base,
6607                                     (ushort)(halt_q_addr +
6608                                              (ushort)ASC_SCSIQ_B_TARGET_IX));
6609         q_cntl = AscReadLramByte(iop_base,
6610                             (ushort)(halt_q_addr + (ushort)ASC_SCSIQ_B_CNTL));
6611         tid_no = ASC_TIX_TO_TID(target_ix);
6612         target_id = (uchar)ASC_TID_TO_TARGET_ID(tid_no);
6613         if (asc_dvc->pci_fix_asyn_xfer & target_id) {
6614                 asyn_sdtr = ASYN_SDTR_DATA_FIX_PCI_REV_AB;
6615         } else {
6616                 asyn_sdtr = 0;
6617         }
6618         if (int_halt_code == ASC_HALT_DISABLE_ASYN_USE_SYN_FIX) {
6619                 if (asc_dvc->pci_fix_asyn_xfer & target_id) {
6620                         AscSetChipSDTR(iop_base, 0, tid_no);
6621                         boardp->sdtr_data[tid_no] = 0;
6622                 }
6623                 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6624                 return (0);
6625         } else if (int_halt_code == ASC_HALT_ENABLE_ASYN_USE_SYN_FIX) {
6626                 if (asc_dvc->pci_fix_asyn_xfer & target_id) {
6627                         AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
6628                         boardp->sdtr_data[tid_no] = asyn_sdtr;
6629                 }
6630                 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6631                 return (0);
6632         } else if (int_halt_code == ASC_HALT_EXTMSG_IN) {
6633                 AscMemWordCopyPtrFromLram(iop_base,
6634                                           ASCV_MSGIN_BEG,
6635                                           (uchar *)&ext_msg,
6636                                           sizeof(EXT_MSG) >> 1);
6637
6638                 if (ext_msg.msg_type == EXTENDED_MESSAGE &&
6639                     ext_msg.msg_req == EXTENDED_SDTR &&
6640                     ext_msg.msg_len == MS_SDTR_LEN) {
6641                         sdtr_accept = TRUE;
6642                         if ((ext_msg.req_ack_offset > ASC_SYN_MAX_OFFSET)) {
6643
6644                                 sdtr_accept = FALSE;
6645                                 ext_msg.req_ack_offset = ASC_SYN_MAX_OFFSET;
6646                         }
6647                         if ((ext_msg.xfer_period <
6648                              asc_dvc->sdtr_period_tbl[asc_dvc->min_sdtr_index])
6649                             || (ext_msg.xfer_period >
6650                                 asc_dvc->sdtr_period_tbl[asc_dvc->
6651                                                          max_sdtr_index])) {
6652                                 sdtr_accept = FALSE;
6653                                 ext_msg.xfer_period =
6654                                     asc_dvc->sdtr_period_tbl[asc_dvc->
6655                                                              min_sdtr_index];
6656                         }
6657                         if (sdtr_accept) {
6658                                 sdtr_data =
6659                                     AscCalSDTRData(asc_dvc, ext_msg.xfer_period,
6660                                                    ext_msg.req_ack_offset);
6661                                 if ((sdtr_data == 0xFF)) {
6662
6663                                         q_cntl |= QC_MSG_OUT;
6664                                         asc_dvc->init_sdtr &= ~target_id;
6665                                         asc_dvc->sdtr_done &= ~target_id;
6666                                         AscSetChipSDTR(iop_base, asyn_sdtr,
6667                                                        tid_no);
6668                                         boardp->sdtr_data[tid_no] = asyn_sdtr;
6669                                 }
6670                         }
6671                         if (ext_msg.req_ack_offset == 0) {
6672
6673                                 q_cntl &= ~QC_MSG_OUT;
6674                                 asc_dvc->init_sdtr &= ~target_id;
6675                                 asc_dvc->sdtr_done &= ~target_id;
6676                                 AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
6677                         } else {
6678                                 if (sdtr_accept && (q_cntl & QC_MSG_OUT)) {
6679                                         q_cntl &= ~QC_MSG_OUT;
6680                                         asc_dvc->sdtr_done |= target_id;
6681                                         asc_dvc->init_sdtr |= target_id;
6682                                         asc_dvc->pci_fix_asyn_xfer &=
6683                                             ~target_id;
6684                                         sdtr_data =
6685                                             AscCalSDTRData(asc_dvc,
6686                                                            ext_msg.xfer_period,
6687                                                            ext_msg.
6688                                                            req_ack_offset);
6689                                         AscSetChipSDTR(iop_base, sdtr_data,
6690                                                        tid_no);
6691                                         boardp->sdtr_data[tid_no] = sdtr_data;
6692                                 } else {
6693                                         q_cntl |= QC_MSG_OUT;
6694                                         AscMsgOutSDTR(asc_dvc,
6695                                                       ext_msg.xfer_period,
6696                                                       ext_msg.req_ack_offset);
6697                                         asc_dvc->pci_fix_asyn_xfer &=
6698                                             ~target_id;
6699                                         sdtr_data =
6700                                             AscCalSDTRData(asc_dvc,
6701                                                            ext_msg.xfer_period,
6702                                                            ext_msg.
6703                                                            req_ack_offset);
6704                                         AscSetChipSDTR(iop_base, sdtr_data,
6705                                                        tid_no);
6706                                         boardp->sdtr_data[tid_no] = sdtr_data;
6707                                         asc_dvc->sdtr_done |= target_id;
6708                                         asc_dvc->init_sdtr |= target_id;
6709                                 }
6710                         }
6711
6712                         AscWriteLramByte(iop_base,
6713                                          (ushort)(halt_q_addr +
6714                                                   (ushort)ASC_SCSIQ_B_CNTL),
6715                                          q_cntl);
6716                         AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6717                         return (0);
6718                 } else if (ext_msg.msg_type == EXTENDED_MESSAGE &&
6719                            ext_msg.msg_req == EXTENDED_WDTR &&
6720                            ext_msg.msg_len == MS_WDTR_LEN) {
6721
6722                         ext_msg.wdtr_width = 0;
6723                         AscMemWordCopyPtrToLram(iop_base,
6724                                                 ASCV_MSGOUT_BEG,
6725                                                 (uchar *)&ext_msg,
6726                                                 sizeof(EXT_MSG) >> 1);
6727                         q_cntl |= QC_MSG_OUT;
6728                         AscWriteLramByte(iop_base,
6729                                          (ushort)(halt_q_addr +
6730                                                   (ushort)ASC_SCSIQ_B_CNTL),
6731                                          q_cntl);
6732                         AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6733                         return (0);
6734                 } else {
6735
6736                         ext_msg.msg_type = MESSAGE_REJECT;
6737                         AscMemWordCopyPtrToLram(iop_base,
6738                                                 ASCV_MSGOUT_BEG,
6739                                                 (uchar *)&ext_msg,
6740                                                 sizeof(EXT_MSG) >> 1);
6741                         q_cntl |= QC_MSG_OUT;
6742                         AscWriteLramByte(iop_base,
6743                                          (ushort)(halt_q_addr +
6744                                                   (ushort)ASC_SCSIQ_B_CNTL),
6745                                          q_cntl);
6746                         AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6747                         return (0);
6748                 }
6749         } else if (int_halt_code == ASC_HALT_CHK_CONDITION) {
6750
6751                 q_cntl |= QC_REQ_SENSE;
6752
6753                 if ((asc_dvc->init_sdtr & target_id) != 0) {
6754
6755                         asc_dvc->sdtr_done &= ~target_id;
6756
6757                         sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
6758                         q_cntl |= QC_MSG_OUT;
6759                         AscMsgOutSDTR(asc_dvc,
6760                                       asc_dvc->
6761                                       sdtr_period_tbl[(sdtr_data >> 4) &
6762                                                       (uchar)(asc_dvc->
6763                                                               max_sdtr_index -
6764                                                               1)],
6765                                       (uchar)(sdtr_data & (uchar)
6766                                               ASC_SYN_MAX_OFFSET));
6767                 }
6768
6769                 AscWriteLramByte(iop_base,
6770                                  (ushort)(halt_q_addr +
6771                                           (ushort)ASC_SCSIQ_B_CNTL), q_cntl);
6772
6773                 tag_code = AscReadLramByte(iop_base,
6774                                            (ushort)(halt_q_addr + (ushort)
6775                                                     ASC_SCSIQ_B_TAG_CODE));
6776                 tag_code &= 0xDC;
6777                 if ((asc_dvc->pci_fix_asyn_xfer & target_id)
6778                     && !(asc_dvc->pci_fix_asyn_xfer_always & target_id)
6779                     ) {
6780
6781                         tag_code |= (ASC_TAG_FLAG_DISABLE_DISCONNECT
6782                                      | ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX);
6783
6784                 }
6785                 AscWriteLramByte(iop_base,
6786                                  (ushort)(halt_q_addr +
6787                                           (ushort)ASC_SCSIQ_B_TAG_CODE),
6788                                  tag_code);
6789
6790                 q_status = AscReadLramByte(iop_base,
6791                                            (ushort)(halt_q_addr + (ushort)
6792                                                     ASC_SCSIQ_B_STATUS));
6793                 q_status |= (QS_READY | QS_BUSY);
6794                 AscWriteLramByte(iop_base,
6795                                  (ushort)(halt_q_addr +
6796                                           (ushort)ASC_SCSIQ_B_STATUS),
6797                                  q_status);
6798
6799                 scsi_busy = AscReadLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B);
6800                 scsi_busy &= ~target_id;
6801                 AscWriteLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B, scsi_busy);
6802
6803                 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6804                 return (0);
6805         } else if (int_halt_code == ASC_HALT_SDTR_REJECTED) {
6806
6807                 AscMemWordCopyPtrFromLram(iop_base,
6808                                           ASCV_MSGOUT_BEG,
6809                                           (uchar *)&out_msg,
6810                                           sizeof(EXT_MSG) >> 1);
6811
6812                 if ((out_msg.msg_type == EXTENDED_MESSAGE) &&
6813                     (out_msg.msg_len == MS_SDTR_LEN) &&
6814                     (out_msg.msg_req == EXTENDED_SDTR)) {
6815
6816                         asc_dvc->init_sdtr &= ~target_id;
6817                         asc_dvc->sdtr_done &= ~target_id;
6818                         AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
6819                         boardp->sdtr_data[tid_no] = asyn_sdtr;
6820                 }
6821                 q_cntl &= ~QC_MSG_OUT;
6822                 AscWriteLramByte(iop_base,
6823                                  (ushort)(halt_q_addr +
6824                                           (ushort)ASC_SCSIQ_B_CNTL), q_cntl);
6825                 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6826                 return (0);
6827         } else if (int_halt_code == ASC_HALT_SS_QUEUE_FULL) {
6828
6829                 scsi_status = AscReadLramByte(iop_base,
6830                                               (ushort)((ushort)halt_q_addr +
6831                                                        (ushort)
6832                                                        ASC_SCSIQ_SCSI_STATUS));
6833                 cur_dvc_qng =
6834                     AscReadLramByte(iop_base,
6835                                     (ushort)((ushort)ASC_QADR_BEG +
6836                                              (ushort)target_ix));
6837                 if ((cur_dvc_qng > 0) && (asc_dvc->cur_dvc_qng[tid_no] > 0)) {
6838
6839                         scsi_busy = AscReadLramByte(iop_base,
6840                                                     (ushort)ASCV_SCSIBUSY_B);
6841                         scsi_busy |= target_id;
6842                         AscWriteLramByte(iop_base,
6843                                          (ushort)ASCV_SCSIBUSY_B, scsi_busy);
6844                         asc_dvc->queue_full_or_busy |= target_id;
6845
6846                         if (scsi_status == SAM_STAT_TASK_SET_FULL) {
6847                                 if (cur_dvc_qng > ASC_MIN_TAGGED_CMD) {
6848                                         cur_dvc_qng -= 1;
6849                                         asc_dvc->max_dvc_qng[tid_no] =
6850                                             cur_dvc_qng;
6851
6852                                         AscWriteLramByte(iop_base,
6853                                                          (ushort)((ushort)
6854                                                                   ASCV_MAX_DVC_QNG_BEG
6855                                                                   + (ushort)
6856                                                                   tid_no),
6857                                                          cur_dvc_qng);
6858
6859                                         /*
6860                                          * Set the device queue depth to the
6861                                          * number of active requests when the
6862                                          * QUEUE FULL condition was encountered.
6863                                          */
6864                                         boardp->queue_full |= target_id;
6865                                         boardp->queue_full_cnt[tid_no] =
6866                                             cur_dvc_qng;
6867                                 }
6868                         }
6869                 }
6870                 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6871                 return (0);
6872         }
6873 #if CC_VERY_LONG_SG_LIST
6874         else if (int_halt_code == ASC_HALT_HOST_COPY_SG_LIST_TO_RISC) {
6875                 uchar q_no;
6876                 ushort q_addr;
6877                 uchar sg_wk_q_no;
6878                 uchar first_sg_wk_q_no;
6879                 ASC_SCSI_Q *scsiq;      /* Ptr to driver request. */
6880                 ASC_SG_HEAD *sg_head;   /* Ptr to driver SG request. */
6881                 ASC_SG_LIST_Q scsi_sg_q;        /* Structure written to queue. */
6882                 ushort sg_list_dwords;
6883                 ushort sg_entry_cnt;
6884                 uchar next_qp;
6885                 int i;
6886
6887                 q_no = AscReadLramByte(iop_base, (ushort)ASCV_REQ_SG_LIST_QP);
6888                 if (q_no == ASC_QLINK_END)
6889                         return 0;
6890
6891                 q_addr = ASC_QNO_TO_QADDR(q_no);
6892
6893                 /*
6894                  * Convert the request's SRB pointer to a host ASC_SCSI_REQ
6895                  * structure pointer using a macro provided by the driver.
6896                  * The ASC_SCSI_REQ pointer provides a pointer to the
6897                  * host ASC_SG_HEAD structure.
6898                  */
6899                 /* Read request's SRB pointer. */
6900                 scsiq = (ASC_SCSI_Q *)
6901                     ASC_SRB2SCSIQ(ASC_U32_TO_VADDR(AscReadLramDWord(iop_base,
6902                                                                     (ushort)
6903                                                                     (q_addr +
6904                                                                      ASC_SCSIQ_D_SRBPTR))));
6905
6906                 /*
6907                  * Get request's first and working SG queue.
6908                  */
6909                 sg_wk_q_no = AscReadLramByte(iop_base,
6910                                              (ushort)(q_addr +
6911                                                       ASC_SCSIQ_B_SG_WK_QP));
6912
6913                 first_sg_wk_q_no = AscReadLramByte(iop_base,
6914                                                    (ushort)(q_addr +
6915                                                             ASC_SCSIQ_B_FIRST_SG_WK_QP));
6916
6917                 /*
6918                  * Reset request's working SG queue back to the
6919                  * first SG queue.
6920                  */
6921                 AscWriteLramByte(iop_base,
6922                                  (ushort)(q_addr +
6923                                           (ushort)ASC_SCSIQ_B_SG_WK_QP),
6924                                  first_sg_wk_q_no);
6925
6926                 sg_head = scsiq->sg_head;
6927
6928                 /*
6929                  * Set sg_entry_cnt to the number of SG elements
6930                  * that will be completed on this interrupt.
6931                  *
6932                  * Note: The allocated SG queues contain ASC_MAX_SG_LIST - 1
6933                  * SG elements. The data_cnt and data_addr fields which
6934                  * add 1 to the SG element capacity are not used when
6935                  * restarting SG handling after a halt.
6936                  */
6937                 if (scsiq->remain_sg_entry_cnt > (ASC_MAX_SG_LIST - 1)) {
6938                         sg_entry_cnt = ASC_MAX_SG_LIST - 1;
6939
6940                         /*
6941                          * Keep track of remaining number of SG elements that
6942                          * will need to be handled on the next interrupt.
6943                          */
6944                         scsiq->remain_sg_entry_cnt -= (ASC_MAX_SG_LIST - 1);
6945                 } else {
6946                         sg_entry_cnt = scsiq->remain_sg_entry_cnt;
6947                         scsiq->remain_sg_entry_cnt = 0;
6948                 }
6949
6950                 /*
6951                  * Copy SG elements into the list of allocated SG queues.
6952                  *
6953                  * Last index completed is saved in scsiq->next_sg_index.
6954                  */
6955                 next_qp = first_sg_wk_q_no;
6956                 q_addr = ASC_QNO_TO_QADDR(next_qp);
6957                 scsi_sg_q.sg_head_qp = q_no;
6958                 scsi_sg_q.cntl = QCSG_SG_XFER_LIST;
6959                 for (i = 0; i < sg_head->queue_cnt; i++) {
6960                         scsi_sg_q.seq_no = i + 1;
6961                         if (sg_entry_cnt > ASC_SG_LIST_PER_Q) {
6962                                 sg_list_dwords = (uchar)(ASC_SG_LIST_PER_Q * 2);
6963                                 sg_entry_cnt -= ASC_SG_LIST_PER_Q;
6964                                 /*
6965                                  * After very first SG queue RISC FW uses next
6966                                  * SG queue first element then checks sg_list_cnt
6967                                  * against zero and then decrements, so set
6968                                  * sg_list_cnt 1 less than number of SG elements
6969                                  * in each SG queue.
6970                                  */
6971                                 scsi_sg_q.sg_list_cnt = ASC_SG_LIST_PER_Q - 1;
6972                                 scsi_sg_q.sg_cur_list_cnt =
6973                                     ASC_SG_LIST_PER_Q - 1;
6974                         } else {
6975                                 /*
6976                                  * This is the last SG queue in the list of
6977                                  * allocated SG queues. If there are more
6978                                  * SG elements than will fit in the allocated
6979                                  * queues, then set the QCSG_SG_XFER_MORE flag.
6980                                  */
6981                                 if (scsiq->remain_sg_entry_cnt != 0) {
6982                                         scsi_sg_q.cntl |= QCSG_SG_XFER_MORE;
6983                                 } else {
6984                                         scsi_sg_q.cntl |= QCSG_SG_XFER_END;
6985                                 }
6986                                 /* equals sg_entry_cnt * 2 */
6987                                 sg_list_dwords = sg_entry_cnt << 1;
6988                                 scsi_sg_q.sg_list_cnt = sg_entry_cnt - 1;
6989                                 scsi_sg_q.sg_cur_list_cnt = sg_entry_cnt - 1;
6990                                 sg_entry_cnt = 0;
6991                         }
6992
6993                         scsi_sg_q.q_no = next_qp;
6994                         AscMemWordCopyPtrToLram(iop_base,
6995                                                 q_addr + ASC_SCSIQ_SGHD_CPY_BEG,
6996                                                 (uchar *)&scsi_sg_q,
6997                                                 sizeof(ASC_SG_LIST_Q) >> 1);
6998
6999                         AscMemDWordCopyPtrToLram(iop_base,
7000                                                  q_addr + ASC_SGQ_LIST_BEG,
7001                                                  (uchar *)&sg_head->
7002                                                  sg_list[scsiq->next_sg_index],
7003                                                  sg_list_dwords);
7004
7005                         scsiq->next_sg_index += ASC_SG_LIST_PER_Q;
7006
7007                         /*
7008                          * If the just completed SG queue contained the
7009                          * last SG element, then no more SG queues need
7010                          * to be written.
7011                          */
7012                         if (scsi_sg_q.cntl & QCSG_SG_XFER_END) {
7013                                 break;
7014                         }
7015
7016                         next_qp = AscReadLramByte(iop_base,
7017                                                   (ushort)(q_addr +
7018                                                            ASC_SCSIQ_B_FWD));
7019                         q_addr = ASC_QNO_TO_QADDR(next_qp);
7020                 }
7021
7022                 /*
7023                  * Clear the halt condition so the RISC will be restarted
7024                  * after the return.
7025                  */
7026                 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7027                 return (0);
7028         }
7029 #endif /* CC_VERY_LONG_SG_LIST */
7030         return (0);
7031 }
7032
7033 /*
7034  * void
7035  * DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
7036  *
7037  * Calling/Exit State:
7038  *    none
7039  *
7040  * Description:
7041  *     Input an ASC_QDONE_INFO structure from the chip
7042  */
7043 static void
7044 DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
7045 {
7046         int i;
7047         ushort word;
7048
7049         AscSetChipLramAddr(iop_base, s_addr);
7050         for (i = 0; i < 2 * words; i += 2) {
7051                 if (i == 10) {
7052                         continue;
7053                 }
7054                 word = inpw(iop_base + IOP_RAM_DATA);
7055                 inbuf[i] = word & 0xff;
7056                 inbuf[i + 1] = (word >> 8) & 0xff;
7057         }
7058         ASC_DBG_PRT_HEX(2, "DvcGetQinfo", inbuf, 2 * words);
7059 }
7060
7061 static uchar
7062 _AscCopyLramScsiDoneQ(PortAddr iop_base,
7063                       ushort q_addr,
7064                       ASC_QDONE_INFO *scsiq, ASC_DCNT max_dma_count)
7065 {
7066         ushort _val;
7067         uchar sg_queue_cnt;
7068
7069         DvcGetQinfo(iop_base,
7070                     q_addr + ASC_SCSIQ_DONE_INFO_BEG,
7071                     (uchar *)scsiq,
7072                     (sizeof(ASC_SCSIQ_2) + sizeof(ASC_SCSIQ_3)) / 2);
7073
7074         _val = AscReadLramWord(iop_base,
7075                                (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS));
7076         scsiq->q_status = (uchar)_val;
7077         scsiq->q_no = (uchar)(_val >> 8);
7078         _val = AscReadLramWord(iop_base,
7079                                (ushort)(q_addr + (ushort)ASC_SCSIQ_B_CNTL));
7080         scsiq->cntl = (uchar)_val;
7081         sg_queue_cnt = (uchar)(_val >> 8);
7082         _val = AscReadLramWord(iop_base,
7083                                (ushort)(q_addr +
7084                                         (ushort)ASC_SCSIQ_B_SENSE_LEN));
7085         scsiq->sense_len = (uchar)_val;
7086         scsiq->extra_bytes = (uchar)(_val >> 8);
7087
7088         /*
7089          * Read high word of remain bytes from alternate location.
7090          */
7091         scsiq->remain_bytes = (((ADV_DCNT)AscReadLramWord(iop_base,
7092                                                           (ushort)(q_addr +
7093                                                                    (ushort)
7094                                                                    ASC_SCSIQ_W_ALT_DC1)))
7095                                << 16);
7096         /*
7097          * Read low word of remain bytes from original location.
7098          */
7099         scsiq->remain_bytes += AscReadLramWord(iop_base,
7100                                                (ushort)(q_addr + (ushort)
7101                                                         ASC_SCSIQ_DW_REMAIN_XFER_CNT));
7102
7103         scsiq->remain_bytes &= max_dma_count;
7104         return sg_queue_cnt;
7105 }
7106
7107 /*
7108  * asc_isr_callback() - Second Level Interrupt Handler called by AscISR().
7109  *
7110  * Interrupt callback function for the Narrow SCSI Asc Library.
7111  */
7112 static void asc_isr_callback(ASC_DVC_VAR *asc_dvc_varp, ASC_QDONE_INFO *qdonep)
7113 {
7114         struct asc_board *boardp;
7115         struct scsi_cmnd *scp;
7116         struct Scsi_Host *shost;
7117
7118         ASC_DBG(1, "asc_dvc_varp 0x%p, qdonep 0x%p\n", asc_dvc_varp, qdonep);
7119         ASC_DBG_PRT_ASC_QDONE_INFO(2, qdonep);
7120
7121         scp = advansys_srb_to_ptr(asc_dvc_varp, qdonep->d2.srb_ptr);
7122         if (!scp)
7123                 return;
7124
7125         ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len);
7126
7127         shost = scp->device->host;
7128         ASC_STATS(shost, callback);
7129         ASC_DBG(1, "shost 0x%p\n", shost);
7130
7131         boardp = shost_priv(shost);
7132         BUG_ON(asc_dvc_varp != &boardp->dvc_var.asc_dvc_var);
7133
7134         dma_unmap_single(boardp->dev, scp->SCp.dma_handle,
7135                          SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
7136         /*
7137          * 'qdonep' contains the command's ending status.
7138          */
7139         switch (qdonep->d3.done_stat) {
7140         case QD_NO_ERROR:
7141                 ASC_DBG(2, "QD_NO_ERROR\n");
7142                 scp->result = 0;
7143
7144                 /*
7145                  * Check for an underrun condition.
7146                  *
7147                  * If there was no error and an underrun condition, then
7148                  * return the number of underrun bytes.
7149                  */
7150                 if (scsi_bufflen(scp) != 0 && qdonep->remain_bytes != 0 &&
7151                     qdonep->remain_bytes <= scsi_bufflen(scp)) {
7152                         ASC_DBG(1, "underrun condition %u bytes\n",
7153                                  (unsigned)qdonep->remain_bytes);
7154                         scsi_set_resid(scp, qdonep->remain_bytes);
7155                 }
7156                 break;
7157
7158         case QD_WITH_ERROR:
7159                 ASC_DBG(2, "QD_WITH_ERROR\n");
7160                 switch (qdonep->d3.host_stat) {
7161                 case QHSTA_NO_ERROR:
7162                         if (qdonep->d3.scsi_stat == SAM_STAT_CHECK_CONDITION) {
7163                                 ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
7164                                 ASC_DBG_PRT_SENSE(2, scp->sense_buffer,
7165                                                   SCSI_SENSE_BUFFERSIZE);
7166                                 /*
7167                                  * Note: The 'status_byte()' macro used by
7168                                  * target drivers defined in scsi.h shifts the
7169                                  * status byte returned by host drivers right
7170                                  * by 1 bit.  This is why target drivers also
7171                                  * use right shifted status byte definitions.
7172                                  * For instance target drivers use
7173                                  * CHECK_CONDITION, defined to 0x1, instead of
7174                                  * the SCSI defined check condition value of
7175                                  * 0x2. Host drivers are supposed to return
7176                                  * the status byte as it is defined by SCSI.
7177                                  */
7178                                 scp->result = DRIVER_BYTE(DRIVER_SENSE) |
7179                                     STATUS_BYTE(qdonep->d3.scsi_stat);
7180                         } else {
7181                                 scp->result = STATUS_BYTE(qdonep->d3.scsi_stat);
7182                         }
7183                         break;
7184
7185                 default:
7186                         /* QHSTA error occurred */
7187                         ASC_DBG(1, "host_stat 0x%x\n", qdonep->d3.host_stat);
7188                         scp->result = HOST_BYTE(DID_BAD_TARGET);
7189                         break;
7190                 }
7191                 break;
7192
7193         case QD_ABORTED_BY_HOST:
7194                 ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
7195                 scp->result =
7196                     HOST_BYTE(DID_ABORT) | MSG_BYTE(qdonep->d3.
7197                                                     scsi_msg) |
7198                     STATUS_BYTE(qdonep->d3.scsi_stat);
7199                 break;
7200
7201         default:
7202                 ASC_DBG(1, "done_stat 0x%x\n", qdonep->d3.done_stat);
7203                 scp->result =
7204                     HOST_BYTE(DID_ERROR) | MSG_BYTE(qdonep->d3.
7205                                                     scsi_msg) |
7206                     STATUS_BYTE(qdonep->d3.scsi_stat);
7207                 break;
7208         }
7209
7210         /*
7211          * If the 'init_tidmask' bit isn't already set for the target and the
7212          * current request finished normally, then set the bit for the target
7213          * to indicate that a device is present.
7214          */
7215         if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 &&
7216             qdonep->d3.done_stat == QD_NO_ERROR &&
7217             qdonep->d3.host_stat == QHSTA_NO_ERROR) {
7218                 boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id);
7219         }
7220
7221         asc_scsi_done(scp);
7222 }
7223
7224 static int AscIsrQDone(ASC_DVC_VAR *asc_dvc)
7225 {
7226         uchar next_qp;
7227         uchar n_q_used;
7228         uchar sg_list_qp;
7229         uchar sg_queue_cnt;
7230         uchar q_cnt;
7231         uchar done_q_tail;
7232         uchar tid_no;
7233         ASC_SCSI_BIT_ID_TYPE scsi_busy;
7234         ASC_SCSI_BIT_ID_TYPE target_id;
7235         PortAddr iop_base;
7236         ushort q_addr;
7237         ushort sg_q_addr;
7238         uchar cur_target_qng;
7239         ASC_QDONE_INFO scsiq_buf;
7240         ASC_QDONE_INFO *scsiq;
7241         int false_overrun;
7242
7243         iop_base = asc_dvc->iop_base;
7244         n_q_used = 1;
7245         scsiq = (ASC_QDONE_INFO *)&scsiq_buf;
7246         done_q_tail = (uchar)AscGetVarDoneQTail(iop_base);
7247         q_addr = ASC_QNO_TO_QADDR(done_q_tail);
7248         next_qp = AscReadLramByte(iop_base,
7249                                   (ushort)(q_addr + (ushort)ASC_SCSIQ_B_FWD));
7250         if (next_qp != ASC_QLINK_END) {
7251                 AscPutVarDoneQTail(iop_base, next_qp);
7252                 q_addr = ASC_QNO_TO_QADDR(next_qp);
7253                 sg_queue_cnt = _AscCopyLramScsiDoneQ(iop_base, q_addr, scsiq,
7254                                                      asc_dvc->max_dma_count);
7255                 AscWriteLramByte(iop_base,
7256                                  (ushort)(q_addr +
7257                                           (ushort)ASC_SCSIQ_B_STATUS),
7258                                  (uchar)(scsiq->
7259                                          q_status & (uchar)~(QS_READY |
7260                                                              QS_ABORTED)));
7261                 tid_no = ASC_TIX_TO_TID(scsiq->d2.target_ix);
7262                 target_id = ASC_TIX_TO_TARGET_ID(scsiq->d2.target_ix);
7263                 if ((scsiq->cntl & QC_SG_HEAD) != 0) {
7264                         sg_q_addr = q_addr;
7265                         sg_list_qp = next_qp;
7266                         for (q_cnt = 0; q_cnt < sg_queue_cnt; q_cnt++) {
7267                                 sg_list_qp = AscReadLramByte(iop_base,
7268                                                              (ushort)(sg_q_addr
7269                                                                       + (ushort)
7270                                                                       ASC_SCSIQ_B_FWD));
7271                                 sg_q_addr = ASC_QNO_TO_QADDR(sg_list_qp);
7272                                 if (sg_list_qp == ASC_QLINK_END) {
7273                                         AscSetLibErrorCode(asc_dvc,
7274                                                            ASCQ_ERR_SG_Q_LINKS);
7275                                         scsiq->d3.done_stat = QD_WITH_ERROR;
7276                                         scsiq->d3.host_stat =
7277                                             QHSTA_D_QDONE_SG_LIST_CORRUPTED;
7278                                         goto FATAL_ERR_QDONE;
7279                                 }
7280                                 AscWriteLramByte(iop_base,
7281                                                  (ushort)(sg_q_addr + (ushort)
7282                                                           ASC_SCSIQ_B_STATUS),
7283                                                  QS_FREE);
7284                         }
7285                         n_q_used = sg_queue_cnt + 1;
7286                         AscPutVarDoneQTail(iop_base, sg_list_qp);
7287                 }
7288                 if (asc_dvc->queue_full_or_busy & target_id) {
7289                         cur_target_qng = AscReadLramByte(iop_base,
7290                                                          (ushort)((ushort)
7291                                                                   ASC_QADR_BEG
7292                                                                   + (ushort)
7293                                                                   scsiq->d2.
7294                                                                   target_ix));
7295                         if (cur_target_qng < asc_dvc->max_dvc_qng[tid_no]) {
7296                                 scsi_busy = AscReadLramByte(iop_base, (ushort)
7297                                                             ASCV_SCSIBUSY_B);
7298                                 scsi_busy &= ~target_id;
7299                                 AscWriteLramByte(iop_base,
7300                                                  (ushort)ASCV_SCSIBUSY_B,
7301                                                  scsi_busy);
7302                                 asc_dvc->queue_full_or_busy &= ~target_id;
7303                         }
7304                 }
7305                 if (asc_dvc->cur_total_qng >= n_q_used) {
7306                         asc_dvc->cur_total_qng -= n_q_used;
7307                         if (asc_dvc->cur_dvc_qng[tid_no] != 0) {
7308                                 asc_dvc->cur_dvc_qng[tid_no]--;
7309                         }
7310                 } else {
7311                         AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CUR_QNG);
7312                         scsiq->d3.done_stat = QD_WITH_ERROR;
7313                         goto FATAL_ERR_QDONE;
7314                 }
7315                 if ((scsiq->d2.srb_ptr == 0UL) ||
7316                     ((scsiq->q_status & QS_ABORTED) != 0)) {
7317                         return (0x11);
7318                 } else if (scsiq->q_status == QS_DONE) {
7319                         false_overrun = FALSE;
7320                         if (scsiq->extra_bytes != 0) {
7321                                 scsiq->remain_bytes +=
7322                                     (ADV_DCNT)scsiq->extra_bytes;
7323                         }
7324                         if (scsiq->d3.done_stat == QD_WITH_ERROR) {
7325                                 if (scsiq->d3.host_stat ==
7326                                     QHSTA_M_DATA_OVER_RUN) {
7327                                         if ((scsiq->
7328                                              cntl & (QC_DATA_IN | QC_DATA_OUT))
7329                                             == 0) {
7330                                                 scsiq->d3.done_stat =
7331                                                     QD_NO_ERROR;
7332                                                 scsiq->d3.host_stat =
7333                                                     QHSTA_NO_ERROR;
7334                                         } else if (false_overrun) {
7335                                                 scsiq->d3.done_stat =
7336                                                     QD_NO_ERROR;
7337                                                 scsiq->d3.host_stat =
7338                                                     QHSTA_NO_ERROR;
7339                                         }
7340                                 } else if (scsiq->d3.host_stat ==
7341                                            QHSTA_M_HUNG_REQ_SCSI_BUS_RESET) {
7342                                         AscStopChip(iop_base);
7343                                         AscSetChipControl(iop_base,
7344                                                           (uchar)(CC_SCSI_RESET
7345                                                                   | CC_HALT));
7346                                         udelay(60);
7347                                         AscSetChipControl(iop_base, CC_HALT);
7348                                         AscSetChipStatus(iop_base,
7349                                                          CIW_CLR_SCSI_RESET_INT);
7350                                         AscSetChipStatus(iop_base, 0);
7351                                         AscSetChipControl(iop_base, 0);
7352                                 }
7353                         }
7354                         if ((scsiq->cntl & QC_NO_CALLBACK) == 0) {
7355                                 asc_isr_callback(asc_dvc, scsiq);
7356                         } else {
7357                                 if ((AscReadLramByte(iop_base,
7358                                                      (ushort)(q_addr + (ushort)
7359                                                               ASC_SCSIQ_CDB_BEG))
7360                                      == START_STOP)) {
7361                                         asc_dvc->unit_not_ready &= ~target_id;
7362                                         if (scsiq->d3.done_stat != QD_NO_ERROR) {
7363                                                 asc_dvc->start_motor &=
7364                                                     ~target_id;
7365                                         }
7366                                 }
7367                         }
7368                         return (1);
7369                 } else {
7370                         AscSetLibErrorCode(asc_dvc, ASCQ_ERR_Q_STATUS);
7371  FATAL_ERR_QDONE:
7372                         if ((scsiq->cntl & QC_NO_CALLBACK) == 0) {
7373                                 asc_isr_callback(asc_dvc, scsiq);
7374                         }
7375                         return (0x80);
7376                 }
7377         }
7378         return (0);
7379 }
7380
7381 static int AscISR(ASC_DVC_VAR *asc_dvc)
7382 {
7383         ASC_CS_TYPE chipstat;
7384         PortAddr iop_base;
7385         ushort saved_ram_addr;
7386         uchar ctrl_reg;
7387         uchar saved_ctrl_reg;
7388         int int_pending;
7389         int status;
7390         uchar host_flag;
7391
7392         iop_base = asc_dvc->iop_base;
7393         int_pending = FALSE;
7394
7395         if (AscIsIntPending(iop_base) == 0)
7396                 return int_pending;
7397
7398         if ((asc_dvc->init_state & ASC_INIT_STATE_END_LOAD_MC) == 0) {
7399                 return ERR;
7400         }
7401         if (asc_dvc->in_critical_cnt != 0) {
7402                 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_ON_CRITICAL);
7403                 return ERR;
7404         }
7405         if (asc_dvc->is_in_int) {
7406                 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_RE_ENTRY);
7407                 return ERR;
7408         }
7409         asc_dvc->is_in_int = TRUE;
7410         ctrl_reg = AscGetChipControl(iop_base);
7411         saved_ctrl_reg = ctrl_reg & (~(CC_SCSI_RESET | CC_CHIP_RESET |
7412                                        CC_SINGLE_STEP | CC_DIAG | CC_TEST));
7413         chipstat = AscGetChipStatus(iop_base);
7414         if (chipstat & CSW_SCSI_RESET_LATCH) {
7415                 if (!(asc_dvc->bus_type & (ASC_IS_VL | ASC_IS_EISA))) {
7416                         int i = 10;
7417                         int_pending = TRUE;
7418                         asc_dvc->sdtr_done = 0;
7419                         saved_ctrl_reg &= (uchar)(~CC_HALT);
7420                         while ((AscGetChipStatus(iop_base) &
7421                                 CSW_SCSI_RESET_ACTIVE) && (i-- > 0)) {
7422                                 mdelay(100);
7423                         }
7424                         AscSetChipControl(iop_base, (CC_CHIP_RESET | CC_HALT));
7425                         AscSetChipControl(iop_base, CC_HALT);
7426                         AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT);
7427                         AscSetChipStatus(iop_base, 0);
7428                         chipstat = AscGetChipStatus(iop_base);
7429                 }
7430         }
7431         saved_ram_addr = AscGetChipLramAddr(iop_base);
7432         host_flag = AscReadLramByte(iop_base,
7433                                     ASCV_HOST_FLAG_B) &
7434             (uchar)(~ASC_HOST_FLAG_IN_ISR);
7435         AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B,
7436                          (uchar)(host_flag | (uchar)ASC_HOST_FLAG_IN_ISR));
7437         if ((chipstat & CSW_INT_PENDING) || (int_pending)) {
7438                 AscAckInterrupt(iop_base);
7439                 int_pending = TRUE;
7440                 if ((chipstat & CSW_HALTED) && (ctrl_reg & CC_SINGLE_STEP)) {
7441                         if (AscIsrChipHalted(asc_dvc) == ERR) {
7442                                 goto ISR_REPORT_QDONE_FATAL_ERROR;
7443                         } else {
7444                                 saved_ctrl_reg &= (uchar)(~CC_HALT);
7445                         }
7446                 } else {
7447  ISR_REPORT_QDONE_FATAL_ERROR:
7448                         if ((asc_dvc->dvc_cntl & ASC_CNTL_INT_MULTI_Q) != 0) {
7449                                 while (((status =
7450                                          AscIsrQDone(asc_dvc)) & 0x01) != 0) {
7451                                 }
7452                         } else {
7453                                 do {
7454                                         if ((status =
7455                                              AscIsrQDone(asc_dvc)) == 1) {
7456                                                 break;
7457                                         }
7458                                 } while (status == 0x11);
7459                         }
7460                         if ((status & 0x80) != 0)
7461                                 int_pending = ERR;
7462                 }
7463         }
7464         AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag);
7465         AscSetChipLramAddr(iop_base, saved_ram_addr);
7466         AscSetChipControl(iop_base, saved_ctrl_reg);
7467         asc_dvc->is_in_int = FALSE;
7468         return int_pending;
7469 }
7470
7471 /*
7472  * advansys_reset()
7473  *
7474  * Reset the bus associated with the command 'scp'.
7475  *
7476  * This function runs its own thread. Interrupts must be blocked but
7477  * sleeping is allowed and no locking other than for host structures is
7478  * required. Returns SUCCESS or FAILED.
7479  */
7480 static int advansys_reset(struct scsi_cmnd *scp)
7481 {
7482         struct Scsi_Host *shost = scp->device->host;
7483         struct asc_board *boardp = shost_priv(shost);
7484         unsigned long flags;
7485         int status;
7486         int ret = SUCCESS;
7487
7488         ASC_DBG(1, "0x%p\n", scp);
7489
7490         ASC_STATS(shost, reset);
7491
7492         scmd_printk(KERN_INFO, scp, "SCSI bus reset started...\n");
7493
7494         if (ASC_NARROW_BOARD(boardp)) {
7495                 ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var;
7496
7497                 /* Reset the chip and SCSI bus. */
7498                 ASC_DBG(1, "before AscInitAsc1000Driver()\n");
7499                 status = AscInitAsc1000Driver(asc_dvc);
7500
7501                 /* Refer to ASC_IERR_* definitions for meaning of 'err_code'. */
7502                 if (asc_dvc->err_code || !asc_dvc->overrun_dma) {
7503                         scmd_printk(KERN_INFO, scp, "SCSI bus reset error: "
7504                                     "0x%x, status: 0x%x\n", asc_dvc->err_code,
7505                                     status);
7506                         ret = FAILED;
7507                 } else if (status) {
7508                         scmd_printk(KERN_INFO, scp, "SCSI bus reset warning: "
7509                                     "0x%x\n", status);
7510                 } else {
7511                         scmd_printk(KERN_INFO, scp, "SCSI bus reset "
7512                                     "successful\n");
7513                 }
7514
7515                 ASC_DBG(1, "after AscInitAsc1000Driver()\n");
7516                 spin_lock_irqsave(shost->host_lock, flags);
7517         } else {
7518                 /*
7519                  * If the suggest reset bus flags are set, then reset the bus.
7520                  * Otherwise only reset the device.
7521                  */
7522                 ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var;
7523
7524                 /*
7525                  * Reset the target's SCSI bus.
7526                  */
7527                 ASC_DBG(1, "before AdvResetChipAndSB()\n");
7528                 switch (AdvResetChipAndSB(adv_dvc)) {
7529                 case ASC_TRUE:
7530                         scmd_printk(KERN_INFO, scp, "SCSI bus reset "
7531                                     "successful\n");
7532                         break;
7533                 case ASC_FALSE:
7534                 default:
7535                         scmd_printk(KERN_INFO, scp, "SCSI bus reset error\n");
7536                         ret = FAILED;
7537                         break;
7538                 }
7539                 spin_lock_irqsave(shost->host_lock, flags);
7540                 AdvISR(adv_dvc);
7541         }
7542
7543         /* Save the time of the most recently completed reset. */
7544         boardp->last_reset = jiffies;
7545         spin_unlock_irqrestore(shost->host_lock, flags);
7546
7547         ASC_DBG(1, "ret %d\n", ret);
7548
7549         return ret;
7550 }
7551
7552 /*
7553  * advansys_biosparam()
7554  *
7555  * Translate disk drive geometry if the "BIOS greater than 1 GB"
7556  * support is enabled for a drive.
7557  *
7558  * ip (information pointer) is an int array with the following definition:
7559  * ip[0]: heads
7560  * ip[1]: sectors
7561  * ip[2]: cylinders
7562  */
7563 static int
7564 advansys_biosparam(struct scsi_device *sdev, struct block_device *bdev,
7565                    sector_t capacity, int ip[])
7566 {
7567         struct asc_board *boardp = shost_priv(sdev->host);
7568
7569         ASC_DBG(1, "begin\n");
7570         ASC_STATS(sdev->host, biosparam);
7571         if (ASC_NARROW_BOARD(boardp)) {
7572                 if ((boardp->dvc_var.asc_dvc_var.dvc_cntl &
7573                      ASC_CNTL_BIOS_GT_1GB) && capacity > 0x200000) {
7574                         ip[0] = 255;
7575                         ip[1] = 63;
7576                 } else {
7577                         ip[0] = 64;
7578                         ip[1] = 32;
7579                 }
7580         } else {
7581                 if ((boardp->dvc_var.adv_dvc_var.bios_ctrl &
7582                      BIOS_CTRL_EXTENDED_XLAT) && capacity > 0x200000) {
7583                         ip[0] = 255;
7584                         ip[1] = 63;
7585                 } else {
7586                         ip[0] = 64;
7587                         ip[1] = 32;
7588                 }
7589         }
7590         ip[2] = (unsigned long)capacity / (ip[0] * ip[1]);
7591         ASC_DBG(1, "end\n");
7592         return 0;
7593 }
7594
7595 /*
7596  * First-level interrupt handler.
7597  *
7598  * 'dev_id' is a pointer to the interrupting adapter's Scsi_Host.
7599  */
7600 static irqreturn_t advansys_interrupt(int irq, void *dev_id)
7601 {
7602         struct Scsi_Host *shost = dev_id;
7603         struct asc_board *boardp = shost_priv(shost);
7604         irqreturn_t result = IRQ_NONE;
7605
7606         ASC_DBG(2, "boardp 0x%p\n", boardp);
7607         spin_lock(shost->host_lock);
7608         if (ASC_NARROW_BOARD(boardp)) {
7609                 if (AscIsIntPending(shost->io_port)) {
7610                         result = IRQ_HANDLED;
7611                         ASC_STATS(shost, interrupt);
7612                         ASC_DBG(1, "before AscISR()\n");
7613                         AscISR(&boardp->dvc_var.asc_dvc_var);
7614                 }
7615         } else {
7616                 ASC_DBG(1, "before AdvISR()\n");
7617                 if (AdvISR(&boardp->dvc_var.adv_dvc_var)) {
7618                         result = IRQ_HANDLED;
7619                         ASC_STATS(shost, interrupt);
7620                 }
7621         }
7622         spin_unlock(shost->host_lock);
7623
7624         ASC_DBG(1, "end\n");
7625         return result;
7626 }
7627
7628 static int AscHostReqRiscHalt(PortAddr iop_base)
7629 {
7630         int count = 0;
7631         int sta = 0;
7632         uchar saved_stop_code;
7633
7634         if (AscIsChipHalted(iop_base))
7635                 return (1);
7636         saved_stop_code = AscReadLramByte(iop_base, ASCV_STOP_CODE_B);
7637         AscWriteLramByte(iop_base, ASCV_STOP_CODE_B,
7638                          ASC_STOP_HOST_REQ_RISC_HALT | ASC_STOP_REQ_RISC_STOP);
7639         do {
7640                 if (AscIsChipHalted(iop_base)) {
7641                         sta = 1;
7642                         break;
7643                 }
7644                 mdelay(100);
7645         } while (count++ < 20);
7646         AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, saved_stop_code);
7647         return (sta);
7648 }
7649
7650 static int
7651 AscSetRunChipSynRegAtID(PortAddr iop_base, uchar tid_no, uchar sdtr_data)
7652 {
7653         int sta = FALSE;
7654
7655         if (AscHostReqRiscHalt(iop_base)) {
7656                 sta = AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data);
7657                 AscStartChip(iop_base);
7658         }
7659         return sta;
7660 }
7661
7662 static void AscAsyncFix(ASC_DVC_VAR *asc_dvc, struct scsi_device *sdev)
7663 {
7664         char type = sdev->type;
7665         ASC_SCSI_BIT_ID_TYPE tid_bits = 1 << sdev->id;
7666
7667         if (!(asc_dvc->bug_fix_cntl & ASC_BUG_FIX_ASYN_USE_SYN))
7668                 return;
7669         if (asc_dvc->init_sdtr & tid_bits)
7670                 return;
7671
7672         if ((type == TYPE_ROM) && (strncmp(sdev->vendor, "HP ", 3) == 0))
7673                 asc_dvc->pci_fix_asyn_xfer_always |= tid_bits;
7674
7675         asc_dvc->pci_fix_asyn_xfer |= tid_bits;
7676         if ((type == TYPE_PROCESSOR) || (type == TYPE_SCANNER) ||
7677             (type == TYPE_ROM) || (type == TYPE_TAPE))
7678                 asc_dvc->pci_fix_asyn_xfer &= ~tid_bits;
7679
7680         if (asc_dvc->pci_fix_asyn_xfer & tid_bits)
7681                 AscSetRunChipSynRegAtID(asc_dvc->iop_base, sdev->id,
7682                                         ASYN_SDTR_DATA_FIX_PCI_REV_AB);
7683 }
7684
7685 static void
7686 advansys_narrow_slave_configure(struct scsi_device *sdev, ASC_DVC_VAR *asc_dvc)
7687 {
7688         ASC_SCSI_BIT_ID_TYPE tid_bit = 1 << sdev->id;
7689         ASC_SCSI_BIT_ID_TYPE orig_use_tagged_qng = asc_dvc->use_tagged_qng;
7690
7691         if (sdev->lun == 0) {
7692                 ASC_SCSI_BIT_ID_TYPE orig_init_sdtr = asc_dvc->init_sdtr;
7693                 if ((asc_dvc->cfg->sdtr_enable & tid_bit) && sdev->sdtr) {
7694                         asc_dvc->init_sdtr |= tid_bit;
7695                 } else {
7696                         asc_dvc->init_sdtr &= ~tid_bit;
7697                 }
7698
7699                 if (orig_init_sdtr != asc_dvc->init_sdtr)
7700                         AscAsyncFix(asc_dvc, sdev);
7701         }
7702
7703         if (sdev->tagged_supported) {
7704                 if (asc_dvc->cfg->cmd_qng_enabled & tid_bit) {
7705                         if (sdev->lun == 0) {
7706                                 asc_dvc->cfg->can_tagged_qng |= tid_bit;
7707                                 asc_dvc->use_tagged_qng |= tid_bit;
7708                         }
7709                         scsi_adjust_queue_depth(sdev, MSG_ORDERED_TAG,
7710                                                 asc_dvc->max_dvc_qng[sdev->id]);
7711                 }
7712         } else {
7713                 if (sdev->lun == 0) {
7714                         asc_dvc->cfg->can_tagged_qng &= ~tid_bit;
7715                         asc_dvc->use_tagged_qng &= ~tid_bit;
7716                 }
7717                 scsi_adjust_queue_depth(sdev, 0, sdev->host->cmd_per_lun);
7718         }
7719
7720         if ((sdev->lun == 0) &&
7721             (orig_use_tagged_qng != asc_dvc->use_tagged_qng)) {
7722                 AscWriteLramByte(asc_dvc->iop_base, ASCV_DISC_ENABLE_B,
7723                                  asc_dvc->cfg->disc_enable);
7724                 AscWriteLramByte(asc_dvc->iop_base, ASCV_USE_TAGGED_QNG_B,
7725                                  asc_dvc->use_tagged_qng);
7726                 AscWriteLramByte(asc_dvc->iop_base, ASCV_CAN_TAGGED_QNG_B,
7727                                  asc_dvc->cfg->can_tagged_qng);
7728
7729                 asc_dvc->max_dvc_qng[sdev->id] =
7730                                         asc_dvc->cfg->max_tag_qng[sdev->id];
7731                 AscWriteLramByte(asc_dvc->iop_base,
7732                                  (ushort)(ASCV_MAX_DVC_QNG_BEG + sdev->id),
7733                                  asc_dvc->max_dvc_qng[sdev->id]);
7734         }
7735 }
7736
7737 /*
7738  * Wide Transfers
7739  *
7740  * If the EEPROM enabled WDTR for the device and the device supports wide
7741  * bus (16 bit) transfers, then turn on the device's 'wdtr_able' bit and
7742  * write the new value to the microcode.
7743  */
7744 static void
7745 advansys_wide_enable_wdtr(AdvPortAddr iop_base, unsigned short tidmask)
7746 {
7747         unsigned short cfg_word;
7748         AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word);
7749         if ((cfg_word & tidmask) != 0)
7750                 return;
7751
7752         cfg_word |= tidmask;
7753         AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word);
7754
7755         /*
7756          * Clear the microcode SDTR and WDTR negotiation done indicators for
7757          * the target to cause it to negotiate with the new setting set above.
7758          * WDTR when accepted causes the target to enter asynchronous mode, so
7759          * SDTR must be negotiated.
7760          */
7761         AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7762         cfg_word &= ~tidmask;
7763         AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7764         AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word);
7765         cfg_word &= ~tidmask;
7766         AdvWriteWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word);
7767 }
7768
7769 /*
7770  * Synchronous Transfers
7771  *
7772  * If the EEPROM enabled SDTR for the device and the device
7773  * supports synchronous transfers, then turn on the device's
7774  * 'sdtr_able' bit. Write the new value to the microcode.
7775  */
7776 static void
7777 advansys_wide_enable_sdtr(AdvPortAddr iop_base, unsigned short tidmask)
7778 {
7779         unsigned short cfg_word;
7780         AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word);
7781         if ((cfg_word & tidmask) != 0)
7782                 return;
7783
7784         cfg_word |= tidmask;
7785         AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word);
7786
7787         /*
7788          * Clear the microcode "SDTR negotiation" done indicator for the
7789          * target to cause it to negotiate with the new setting set above.
7790          */
7791         AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7792         cfg_word &= ~tidmask;
7793         AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7794 }
7795
7796 /*
7797  * PPR (Parallel Protocol Request) Capable
7798  *
7799  * If the device supports DT mode, then it must be PPR capable.
7800  * The PPR message will be used in place of the SDTR and WDTR
7801  * messages to negotiate synchronous speed and offset, transfer
7802  * width, and protocol options.
7803  */
7804 static void advansys_wide_enable_ppr(ADV_DVC_VAR *adv_dvc,
7805                                 AdvPortAddr iop_base, unsigned short tidmask)
7806 {
7807         AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able);
7808         adv_dvc->ppr_able |= tidmask;
7809         AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able);
7810 }
7811
7812 static void
7813 advansys_wide_slave_configure(struct scsi_device *sdev, ADV_DVC_VAR *adv_dvc)
7814 {
7815         AdvPortAddr iop_base = adv_dvc->iop_base;
7816         unsigned short tidmask = 1 << sdev->id;
7817
7818         if (sdev->lun == 0) {
7819                 /*
7820                  * Handle WDTR, SDTR, and Tag Queuing. If the feature
7821                  * is enabled in the EEPROM and the device supports the
7822                  * feature, then enable it in the microcode.
7823                  */
7824
7825                 if ((adv_dvc->wdtr_able & tidmask) && sdev->wdtr)
7826                         advansys_wide_enable_wdtr(iop_base, tidmask);
7827                 if ((adv_dvc->sdtr_able & tidmask) && sdev->sdtr)
7828                         advansys_wide_enable_sdtr(iop_base, tidmask);
7829                 if (adv_dvc->chip_type == ADV_CHIP_ASC38C1600 && sdev->ppr)
7830                         advansys_wide_enable_ppr(adv_dvc, iop_base, tidmask);
7831
7832                 /*
7833                  * Tag Queuing is disabled for the BIOS which runs in polled
7834                  * mode and would see no benefit from Tag Queuing. Also by
7835                  * disabling Tag Queuing in the BIOS devices with Tag Queuing
7836                  * bugs will at least work with the BIOS.
7837                  */
7838                 if ((adv_dvc->tagqng_able & tidmask) &&
7839                     sdev->tagged_supported) {
7840                         unsigned short cfg_word;
7841                         AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, cfg_word);
7842                         cfg_word |= tidmask;
7843                         AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
7844                                          cfg_word);
7845                         AdvWriteByteLram(iop_base,
7846                                          ASC_MC_NUMBER_OF_MAX_CMD + sdev->id,
7847                                          adv_dvc->max_dvc_qng);
7848                 }
7849         }
7850
7851         if ((adv_dvc->tagqng_able & tidmask) && sdev->tagged_supported) {
7852                 scsi_adjust_queue_depth(sdev, MSG_ORDERED_TAG,
7853                                         adv_dvc->max_dvc_qng);
7854         } else {
7855                 scsi_adjust_queue_depth(sdev, 0, sdev->host->cmd_per_lun);
7856         }
7857 }
7858
7859 /*
7860  * Set the number of commands to queue per device for the
7861  * specified host adapter.
7862  */
7863 static int advansys_slave_configure(struct scsi_device *sdev)
7864 {
7865         struct asc_board *boardp = shost_priv(sdev->host);
7866
7867         if (ASC_NARROW_BOARD(boardp))
7868                 advansys_narrow_slave_configure(sdev,
7869                                                 &boardp->dvc_var.asc_dvc_var);
7870         else
7871                 advansys_wide_slave_configure(sdev,
7872                                                 &boardp->dvc_var.adv_dvc_var);
7873
7874         return 0;
7875 }
7876
7877 static __le32 advansys_get_sense_buffer_dma(struct scsi_cmnd *scp)
7878 {
7879         struct asc_board *board = shost_priv(scp->device->host);
7880         scp->SCp.dma_handle = dma_map_single(board->dev, scp->sense_buffer,
7881                                              SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
7882         dma_cache_sync(board->dev, scp->sense_buffer,
7883                        SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
7884         return cpu_to_le32(scp->SCp.dma_handle);
7885 }
7886
7887 static int asc_build_req(struct asc_board *boardp, struct scsi_cmnd *scp,
7888                         struct asc_scsi_q *asc_scsi_q)
7889 {
7890         struct asc_dvc_var *asc_dvc = &boardp->dvc_var.asc_dvc_var;
7891         int use_sg;
7892
7893         memset(asc_scsi_q, 0, sizeof(*asc_scsi_q));
7894
7895         /*
7896          * Point the ASC_SCSI_Q to the 'struct scsi_cmnd'.
7897          */
7898         asc_scsi_q->q2.srb_ptr = advansys_ptr_to_srb(asc_dvc, scp);
7899         if (asc_scsi_q->q2.srb_ptr == BAD_SRB) {
7900                 scp->result = HOST_BYTE(DID_SOFT_ERROR);
7901                 return ASC_ERROR;
7902         }
7903
7904         /*
7905          * Build the ASC_SCSI_Q request.
7906          */
7907         asc_scsi_q->cdbptr = &scp->cmnd[0];
7908         asc_scsi_q->q2.cdb_len = scp->cmd_len;
7909         asc_scsi_q->q1.target_id = ASC_TID_TO_TARGET_ID(scp->device->id);
7910         asc_scsi_q->q1.target_lun = scp->device->lun;
7911         asc_scsi_q->q2.target_ix =
7912             ASC_TIDLUN_TO_IX(scp->device->id, scp->device->lun);
7913         asc_scsi_q->q1.sense_addr = advansys_get_sense_buffer_dma(scp);
7914         asc_scsi_q->q1.sense_len = SCSI_SENSE_BUFFERSIZE;
7915
7916         /*
7917          * If there are any outstanding requests for the current target,
7918          * then every 255th request send an ORDERED request. This heuristic
7919          * tries to retain the benefit of request sorting while preventing
7920          * request starvation. 255 is the max number of tags or pending commands
7921          * a device may have outstanding.
7922          *
7923          * The request count is incremented below for every successfully
7924          * started request.
7925          *
7926          */
7927         if ((asc_dvc->cur_dvc_qng[scp->device->id] > 0) &&
7928             (boardp->reqcnt[scp->device->id] % 255) == 0) {
7929                 asc_scsi_q->q2.tag_code = MSG_ORDERED_TAG;
7930         } else {
7931                 asc_scsi_q->q2.tag_code = MSG_SIMPLE_TAG;
7932         }
7933
7934         /* Build ASC_SCSI_Q */
7935         use_sg = scsi_dma_map(scp);
7936         if (use_sg != 0) {
7937                 int sgcnt;
7938                 struct scatterlist *slp;
7939                 struct asc_sg_head *asc_sg_head;
7940
7941                 if (use_sg > scp->device->host->sg_tablesize) {
7942                         scmd_printk(KERN_ERR, scp, "use_sg %d > "
7943                                 "sg_tablesize %d\n", use_sg,
7944                                 scp->device->host->sg_tablesize);
7945                         scsi_dma_unmap(scp);
7946                         scp->result = HOST_BYTE(DID_ERROR);
7947                         return ASC_ERROR;
7948                 }
7949
7950                 asc_sg_head = kzalloc(sizeof(asc_scsi_q->sg_head) +
7951                         use_sg * sizeof(struct asc_sg_list), GFP_ATOMIC);
7952                 if (!asc_sg_head) {
7953                         scsi_dma_unmap(scp);
7954                         scp->result = HOST_BYTE(DID_SOFT_ERROR);
7955                         return ASC_ERROR;
7956                 }
7957
7958                 asc_scsi_q->q1.cntl |= QC_SG_HEAD;
7959                 asc_scsi_q->sg_head = asc_sg_head;
7960                 asc_scsi_q->q1.data_cnt = 0;
7961                 asc_scsi_q->q1.data_addr = 0;
7962                 /* This is a byte value, otherwise it would need to be swapped. */
7963                 asc_sg_head->entry_cnt = asc_scsi_q->q1.sg_queue_cnt = use_sg;
7964                 ASC_STATS_ADD(scp->device->host, xfer_elem,
7965                               asc_sg_head->entry_cnt);
7966
7967                 /*
7968                  * Convert scatter-gather list into ASC_SG_HEAD list.
7969                  */
7970                 scsi_for_each_sg(scp, slp, use_sg, sgcnt) {
7971                         asc_sg_head->sg_list[sgcnt].addr =
7972                             cpu_to_le32(sg_dma_address(slp));
7973                         asc_sg_head->sg_list[sgcnt].bytes =
7974                             cpu_to_le32(sg_dma_len(slp));
7975                         ASC_STATS_ADD(scp->device->host, xfer_sect,
7976                                       DIV_ROUND_UP(sg_dma_len(slp), 512));
7977                 }
7978         }
7979
7980         ASC_STATS(scp->device->host, xfer_cnt);
7981
7982         ASC_DBG_PRT_ASC_SCSI_Q(2, asc_scsi_q);
7983         ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len);
7984
7985         return ASC_NOERROR;
7986 }
7987
7988 /*
7989  * Build scatter-gather list for Adv Library (Wide Board).
7990  *
7991  * Additional ADV_SG_BLOCK structures will need to be allocated
7992  * if the total number of scatter-gather elements exceeds
7993  * NO_OF_SG_PER_BLOCK (15). The ADV_SG_BLOCK structures are
7994  * assumed to be physically contiguous.
7995  *
7996  * Return:
7997  *      ADV_SUCCESS(1) - SG List successfully created
7998  *      ADV_ERROR(-1) - SG List creation failed
7999  */
8000 static int
8001 adv_get_sglist(struct asc_board *boardp, adv_req_t *reqp, struct scsi_cmnd *scp,
8002                int use_sg)
8003 {
8004         adv_sgblk_t *sgblkp;
8005         ADV_SCSI_REQ_Q *scsiqp;
8006         struct scatterlist *slp;
8007         int sg_elem_cnt;
8008         ADV_SG_BLOCK *sg_block, *prev_sg_block;
8009         ADV_PADDR sg_block_paddr;
8010         int i;
8011
8012         scsiqp = (ADV_SCSI_REQ_Q *)ADV_32BALIGN(&reqp->scsi_req_q);
8013         slp = scsi_sglist(scp);
8014         sg_elem_cnt = use_sg;
8015         prev_sg_block = NULL;
8016         reqp->sgblkp = NULL;
8017
8018         for (;;) {
8019                 /*
8020                  * Allocate a 'adv_sgblk_t' structure from the board free
8021                  * list. One 'adv_sgblk_t' structure holds NO_OF_SG_PER_BLOCK
8022                  * (15) scatter-gather elements.
8023                  */
8024                 if ((sgblkp = boardp->adv_sgblkp) == NULL) {
8025                         ASC_DBG(1, "no free adv_sgblk_t\n");
8026                         ASC_STATS(scp->device->host, adv_build_nosg);
8027
8028                         /*
8029                          * Allocation failed. Free 'adv_sgblk_t' structures
8030                          * already allocated for the request.
8031                          */
8032                         while ((sgblkp = reqp->sgblkp) != NULL) {
8033                                 /* Remove 'sgblkp' from the request list. */
8034                                 reqp->sgblkp = sgblkp->next_sgblkp;
8035
8036                                 /* Add 'sgblkp' to the board free list. */
8037                                 sgblkp->next_sgblkp = boardp->adv_sgblkp;
8038                                 boardp->adv_sgblkp = sgblkp;
8039                         }
8040                         return ASC_BUSY;
8041                 }
8042
8043                 /* Complete 'adv_sgblk_t' board allocation. */
8044                 boardp->adv_sgblkp = sgblkp->next_sgblkp;
8045                 sgblkp->next_sgblkp = NULL;
8046
8047                 /*
8048                  * Get 8 byte aligned virtual and physical addresses
8049                  * for the allocated ADV_SG_BLOCK structure.
8050                  */
8051                 sg_block = (ADV_SG_BLOCK *)ADV_8BALIGN(&sgblkp->sg_block);
8052                 sg_block_paddr = virt_to_bus(sg_block);
8053
8054                 /*
8055                  * Check if this is the first 'adv_sgblk_t' for the
8056                  * request.
8057                  */
8058                 if (reqp->sgblkp == NULL) {
8059                         /* Request's first scatter-gather block. */
8060                         reqp->sgblkp = sgblkp;
8061
8062                         /*
8063                          * Set ADV_SCSI_REQ_T ADV_SG_BLOCK virtual and physical
8064                          * address pointers.
8065                          */
8066                         scsiqp->sg_list_ptr = sg_block;
8067                         scsiqp->sg_real_addr = cpu_to_le32(sg_block_paddr);
8068                 } else {
8069                         /* Request's second or later scatter-gather block. */
8070                         sgblkp->next_sgblkp = reqp->sgblkp;
8071                         reqp->sgblkp = sgblkp;
8072
8073                         /*
8074                          * Point the previous ADV_SG_BLOCK structure to
8075                          * the newly allocated ADV_SG_BLOCK structure.
8076                          */
8077                         prev_sg_block->sg_ptr = cpu_to_le32(sg_block_paddr);
8078                 }
8079
8080                 for (i = 0; i < NO_OF_SG_PER_BLOCK; i++) {
8081                         sg_block->sg_list[i].sg_addr =
8082                                         cpu_to_le32(sg_dma_address(slp));
8083                         sg_block->sg_list[i].sg_count =
8084                                         cpu_to_le32(sg_dma_len(slp));
8085                         ASC_STATS_ADD(scp->device->host, xfer_sect,
8086                                       DIV_ROUND_UP(sg_dma_len(slp), 512));
8087
8088                         if (--sg_elem_cnt == 0) {       /* Last ADV_SG_BLOCK and scatter-gather entry. */
8089                                 sg_block->sg_cnt = i + 1;
8090                                 sg_block->sg_ptr = 0L;  /* Last ADV_SG_BLOCK in list. */
8091                                 return ADV_SUCCESS;
8092                         }
8093                         slp++;
8094                 }
8095                 sg_block->sg_cnt = NO_OF_SG_PER_BLOCK;
8096                 prev_sg_block = sg_block;
8097         }
8098 }
8099
8100 /*
8101  * Build a request structure for the Adv Library (Wide Board).
8102  *
8103  * If an adv_req_t can not be allocated to issue the request,
8104  * then return ASC_BUSY. If an error occurs, then return ASC_ERROR.
8105  *
8106  * Multi-byte fields in the ASC_SCSI_REQ_Q that are used by the
8107  * microcode for DMA addresses or math operations are byte swapped
8108  * to little-endian order.
8109  */
8110 static int
8111 adv_build_req(struct asc_board *boardp, struct scsi_cmnd *scp,
8112               ADV_SCSI_REQ_Q **adv_scsiqpp)
8113 {
8114         adv_req_t *reqp;
8115         ADV_SCSI_REQ_Q *scsiqp;
8116         int i;
8117         int ret;
8118         int use_sg;
8119
8120         /*
8121          * Allocate an adv_req_t structure from the board to execute
8122          * the command.
8123          */
8124         if (boardp->adv_reqp == NULL) {
8125                 ASC_DBG(1, "no free adv_req_t\n");
8126                 ASC_STATS(scp->device->host, adv_build_noreq);
8127                 return ASC_BUSY;
8128         } else {
8129                 reqp = boardp->adv_reqp;
8130                 boardp->adv_reqp = reqp->next_reqp;
8131                 reqp->next_reqp = NULL;
8132         }
8133
8134         /*
8135          * Get 32-byte aligned ADV_SCSI_REQ_Q and ADV_SG_BLOCK pointers.
8136          */
8137         scsiqp = (ADV_SCSI_REQ_Q *)ADV_32BALIGN(&reqp->scsi_req_q);
8138
8139         /*
8140          * Initialize the structure.
8141          */
8142         scsiqp->cntl = scsiqp->scsi_cntl = scsiqp->done_status = 0;
8143
8144         /*
8145          * Set the ADV_SCSI_REQ_Q 'srb_ptr' to point to the adv_req_t structure.
8146          */
8147         scsiqp->srb_ptr = ADV_VADDR_TO_U32(reqp);
8148
8149         /*
8150          * Set the adv_req_t 'cmndp' to point to the struct scsi_cmnd structure.
8151          */
8152         reqp->cmndp = scp;
8153
8154         /*
8155          * Build the ADV_SCSI_REQ_Q request.
8156          */
8157
8158         /* Set CDB length and copy it to the request structure.  */
8159         scsiqp->cdb_len = scp->cmd_len;
8160         /* Copy first 12 CDB bytes to cdb[]. */
8161         for (i = 0; i < scp->cmd_len && i < 12; i++) {
8162                 scsiqp->cdb[i] = scp->cmnd[i];
8163         }
8164         /* Copy last 4 CDB bytes, if present, to cdb16[]. */
8165         for (; i < scp->cmd_len; i++) {
8166                 scsiqp->cdb16[i - 12] = scp->cmnd[i];
8167         }
8168
8169         scsiqp->target_id = scp->device->id;
8170         scsiqp->target_lun = scp->device->lun;
8171
8172         scsiqp->sense_addr = cpu_to_le32(virt_to_bus(&scp->sense_buffer[0]));
8173         scsiqp->sense_len = SCSI_SENSE_BUFFERSIZE;
8174
8175         /* Build ADV_SCSI_REQ_Q */
8176
8177         use_sg = scsi_dma_map(scp);
8178         if (use_sg == 0) {
8179                 /* Zero-length transfer */
8180                 reqp->sgblkp = NULL;
8181                 scsiqp->data_cnt = 0;
8182                 scsiqp->vdata_addr = NULL;
8183
8184                 scsiqp->data_addr = 0;
8185                 scsiqp->sg_list_ptr = NULL;
8186                 scsiqp->sg_real_addr = 0;
8187         } else {
8188                 if (use_sg > ADV_MAX_SG_LIST) {
8189                         scmd_printk(KERN_ERR, scp, "use_sg %d > "
8190                                    "ADV_MAX_SG_LIST %d\n", use_sg,
8191                                    scp->device->host->sg_tablesize);
8192                         scsi_dma_unmap(scp);
8193                         scp->result = HOST_BYTE(DID_ERROR);
8194
8195                         /*
8196                          * Free the 'adv_req_t' structure by adding it back
8197                          * to the board free list.
8198                          */
8199                         reqp->next_reqp = boardp->adv_reqp;
8200                         boardp->adv_reqp = reqp;
8201
8202                         return ASC_ERROR;
8203                 }
8204
8205                 scsiqp->data_cnt = cpu_to_le32(scsi_bufflen(scp));
8206
8207                 ret = adv_get_sglist(boardp, reqp, scp, use_sg);
8208                 if (ret != ADV_SUCCESS) {
8209                         /*
8210                          * Free the adv_req_t structure by adding it back to
8211                          * the board free list.
8212                          */
8213                         reqp->next_reqp = boardp->adv_reqp;
8214                         boardp->adv_reqp = reqp;
8215
8216                         return ret;
8217                 }
8218
8219                 ASC_STATS_ADD(scp->device->host, xfer_elem, use_sg);
8220         }
8221
8222         ASC_STATS(scp->device->host, xfer_cnt);
8223
8224         ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp);
8225         ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len);
8226
8227         *adv_scsiqpp = scsiqp;
8228
8229         return ASC_NOERROR;
8230 }
8231
8232 static int AscSgListToQueue(int sg_list)
8233 {
8234         int n_sg_list_qs;
8235
8236         n_sg_list_qs = ((sg_list - 1) / ASC_SG_LIST_PER_Q);
8237         if (((sg_list - 1) % ASC_SG_LIST_PER_Q) != 0)
8238                 n_sg_list_qs++;
8239         return n_sg_list_qs + 1;
8240 }
8241
8242 static uint
8243 AscGetNumOfFreeQueue(ASC_DVC_VAR *asc_dvc, uchar target_ix, uchar n_qs)
8244 {
8245         uint cur_used_qs;
8246         uint cur_free_qs;
8247         ASC_SCSI_BIT_ID_TYPE target_id;
8248         uchar tid_no;
8249
8250         target_id = ASC_TIX_TO_TARGET_ID(target_ix);
8251         tid_no = ASC_TIX_TO_TID(target_ix);
8252         if ((asc_dvc->unit_not_ready & target_id) ||
8253             (asc_dvc->queue_full_or_busy & target_id)) {
8254                 return 0;
8255         }
8256         if (n_qs == 1) {
8257                 cur_used_qs = (uint) asc_dvc->cur_total_qng +
8258                     (uint) asc_dvc->last_q_shortage + (uint) ASC_MIN_FREE_Q;
8259         } else {
8260                 cur_used_qs = (uint) asc_dvc->cur_total_qng +
8261                     (uint) ASC_MIN_FREE_Q;
8262         }
8263         if ((uint) (cur_used_qs + n_qs) <= (uint) asc_dvc->max_total_qng) {
8264                 cur_free_qs = (uint) asc_dvc->max_total_qng - cur_used_qs;
8265                 if (asc_dvc->cur_dvc_qng[tid_no] >=
8266                     asc_dvc->max_dvc_qng[tid_no]) {
8267                         return 0;
8268                 }
8269                 return cur_free_qs;
8270         }
8271         if (n_qs > 1) {
8272                 if ((n_qs > asc_dvc->last_q_shortage)
8273                     && (n_qs <= (asc_dvc->max_total_qng - ASC_MIN_FREE_Q))) {
8274                         asc_dvc->last_q_shortage = n_qs;
8275                 }
8276         }
8277         return 0;
8278 }
8279
8280 static uchar AscAllocFreeQueue(PortAddr iop_base, uchar free_q_head)
8281 {
8282         ushort q_addr;
8283         uchar next_qp;
8284         uchar q_status;
8285
8286         q_addr = ASC_QNO_TO_QADDR(free_q_head);
8287         q_status = (uchar)AscReadLramByte(iop_base,
8288                                           (ushort)(q_addr +
8289                                                    ASC_SCSIQ_B_STATUS));
8290         next_qp = AscReadLramByte(iop_base, (ushort)(q_addr + ASC_SCSIQ_B_FWD));
8291         if (((q_status & QS_READY) == 0) && (next_qp != ASC_QLINK_END))
8292                 return next_qp;
8293         return ASC_QLINK_END;
8294 }
8295
8296 static uchar
8297 AscAllocMultipleFreeQueue(PortAddr iop_base, uchar free_q_head, uchar n_free_q)
8298 {
8299         uchar i;
8300
8301         for (i = 0; i < n_free_q; i++) {
8302                 free_q_head = AscAllocFreeQueue(iop_base, free_q_head);
8303                 if (free_q_head == ASC_QLINK_END)
8304                         break;
8305         }
8306         return free_q_head;
8307 }
8308
8309 /*
8310  * void
8311  * DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
8312  *
8313  * Calling/Exit State:
8314  *    none
8315  *
8316  * Description:
8317  *     Output an ASC_SCSI_Q structure to the chip
8318  */
8319 static void
8320 DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
8321 {
8322         int i;
8323
8324         ASC_DBG_PRT_HEX(2, "DvcPutScsiQ", outbuf, 2 * words);
8325         AscSetChipLramAddr(iop_base, s_addr);
8326         for (i = 0; i < 2 * words; i += 2) {
8327                 if (i == 4 || i == 20) {
8328                         continue;
8329                 }
8330                 outpw(iop_base + IOP_RAM_DATA,
8331                       ((ushort)outbuf[i + 1] << 8) | outbuf[i]);
8332         }
8333 }
8334
8335 static int AscPutReadyQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no)
8336 {
8337         ushort q_addr;
8338         uchar tid_no;
8339         uchar sdtr_data;
8340         uchar syn_period_ix;
8341         uchar syn_offset;
8342         PortAddr iop_base;
8343
8344         iop_base = asc_dvc->iop_base;
8345         if (((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) &&
8346             ((asc_dvc->sdtr_done & scsiq->q1.target_id) == 0)) {
8347                 tid_no = ASC_TIX_TO_TID(scsiq->q2.target_ix);
8348                 sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
8349                 syn_period_ix =
8350                     (sdtr_data >> 4) & (asc_dvc->max_sdtr_index - 1);
8351                 syn_offset = sdtr_data & ASC_SYN_MAX_OFFSET;
8352                 AscMsgOutSDTR(asc_dvc,
8353                               asc_dvc->sdtr_period_tbl[syn_period_ix],
8354                               syn_offset);
8355                 scsiq->q1.cntl |= QC_MSG_OUT;
8356         }
8357         q_addr = ASC_QNO_TO_QADDR(q_no);
8358         if ((scsiq->q1.target_id & asc_dvc->use_tagged_qng) == 0) {
8359                 scsiq->q2.tag_code &= ~MSG_SIMPLE_TAG;
8360         }
8361         scsiq->q1.status = QS_FREE;
8362         AscMemWordCopyPtrToLram(iop_base,
8363                                 q_addr + ASC_SCSIQ_CDB_BEG,
8364                                 (uchar *)scsiq->cdbptr, scsiq->q2.cdb_len >> 1);
8365
8366         DvcPutScsiQ(iop_base,
8367                     q_addr + ASC_SCSIQ_CPY_BEG,
8368                     (uchar *)&scsiq->q1.cntl,
8369                     ((sizeof(ASC_SCSIQ_1) + sizeof(ASC_SCSIQ_2)) / 2) - 1);
8370         AscWriteLramWord(iop_base,
8371                          (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS),
8372                          (ushort)(((ushort)scsiq->q1.
8373                                    q_no << 8) | (ushort)QS_READY));
8374         return 1;
8375 }
8376
8377 static int
8378 AscPutReadySgListQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no)
8379 {
8380         int sta;
8381         int i;
8382         ASC_SG_HEAD *sg_head;
8383         ASC_SG_LIST_Q scsi_sg_q;
8384         ASC_DCNT saved_data_addr;
8385         ASC_DCNT saved_data_cnt;
8386         PortAddr iop_base;
8387         ushort sg_list_dwords;
8388         ushort sg_index;
8389         ushort sg_entry_cnt;
8390         ushort q_addr;
8391         uchar next_qp;
8392
8393         iop_base = asc_dvc->iop_base;
8394         sg_head = scsiq->sg_head;
8395         saved_data_addr = scsiq->q1.data_addr;
8396         saved_data_cnt = scsiq->q1.data_cnt;
8397         scsiq->q1.data_addr = (ASC_PADDR) sg_head->sg_list[0].addr;
8398         scsiq->q1.data_cnt = (ASC_DCNT) sg_head->sg_list[0].bytes;
8399 #if CC_VERY_LONG_SG_LIST
8400         /*
8401          * If sg_head->entry_cnt is greater than ASC_MAX_SG_LIST
8402          * then not all SG elements will fit in the allocated queues.
8403          * The rest of the SG elements will be copied when the RISC
8404          * completes the SG elements that fit and halts.
8405          */
8406         if (sg_head->entry_cnt > ASC_MAX_SG_LIST) {
8407                 /*
8408                  * Set sg_entry_cnt to be the number of SG elements that
8409                  * will fit in the allocated SG queues. It is minus 1, because
8410                  * the first SG element is handled above. ASC_MAX_SG_LIST is
8411                  * already inflated by 1 to account for this. For example it
8412                  * may be 50 which is 1 + 7 queues * 7 SG elements.
8413                  */
8414                 sg_entry_cnt = ASC_MAX_SG_LIST - 1;
8415
8416                 /*
8417                  * Keep track of remaining number of SG elements that will
8418                  * need to be handled from a_isr.c.
8419                  */
8420                 scsiq->remain_sg_entry_cnt =
8421                     sg_head->entry_cnt - ASC_MAX_SG_LIST;
8422         } else {
8423 #endif /* CC_VERY_LONG_SG_LIST */
8424                 /*
8425                  * Set sg_entry_cnt to be the number of SG elements that
8426                  * will fit in the allocated SG queues. It is minus 1, because
8427                  * the first SG element is handled above.
8428                  */
8429                 sg_entry_cnt = sg_head->entry_cnt - 1;
8430 #if CC_VERY_LONG_SG_LIST
8431         }
8432 #endif /* CC_VERY_LONG_SG_LIST */
8433         if (sg_entry_cnt != 0) {
8434                 scsiq->q1.cntl |= QC_SG_HEAD;
8435                 q_addr = ASC_QNO_TO_QADDR(q_no);
8436                 sg_index = 1;
8437                 scsiq->q1.sg_queue_cnt = sg_head->queue_cnt;
8438                 scsi_sg_q.sg_head_qp = q_no;
8439                 scsi_sg_q.cntl = QCSG_SG_XFER_LIST;
8440                 for (i = 0; i < sg_head->queue_cnt; i++) {
8441                         scsi_sg_q.seq_no = i + 1;
8442                         if (sg_entry_cnt > ASC_SG_LIST_PER_Q) {
8443                                 sg_list_dwords = (uchar)(ASC_SG_LIST_PER_Q * 2);
8444                                 sg_entry_cnt -= ASC_SG_LIST_PER_Q;
8445                                 if (i == 0) {
8446                                         scsi_sg_q.sg_list_cnt =
8447                                             ASC_SG_LIST_PER_Q;
8448                                         scsi_sg_q.sg_cur_list_cnt =
8449                                             ASC_SG_LIST_PER_Q;
8450                                 } else {
8451                                         scsi_sg_q.sg_list_cnt =
8452                                             ASC_SG_LIST_PER_Q - 1;
8453                                         scsi_sg_q.sg_cur_list_cnt =
8454                                             ASC_SG_LIST_PER_Q - 1;
8455                                 }
8456                         } else {
8457 #if CC_VERY_LONG_SG_LIST
8458                                 /*
8459                                  * This is the last SG queue in the list of
8460                                  * allocated SG queues. If there are more
8461                                  * SG elements than will fit in the allocated
8462                                  * queues, then set the QCSG_SG_XFER_MORE flag.
8463                                  */
8464                                 if (sg_head->entry_cnt > ASC_MAX_SG_LIST) {
8465                                         scsi_sg_q.cntl |= QCSG_SG_XFER_MORE;
8466                                 } else {
8467 #endif /* CC_VERY_LONG_SG_LIST */
8468                                         scsi_sg_q.cntl |= QCSG_SG_XFER_END;
8469 #if CC_VERY_LONG_SG_LIST
8470                                 }
8471 #endif /* CC_VERY_LONG_SG_LIST */
8472                                 sg_list_dwords = sg_entry_cnt << 1;
8473                                 if (i == 0) {
8474                                         scsi_sg_q.sg_list_cnt = sg_entry_cnt;
8475                                         scsi_sg_q.sg_cur_list_cnt =
8476                                             sg_entry_cnt;
8477                                 } else {
8478                                         scsi_sg_q.sg_list_cnt =
8479                                             sg_entry_cnt - 1;
8480                                         scsi_sg_q.sg_cur_list_cnt =
8481                                             sg_entry_cnt - 1;
8482                                 }
8483                                 sg_entry_cnt = 0;
8484                         }
8485                         next_qp = AscReadLramByte(iop_base,
8486                                                   (ushort)(q_addr +
8487                                                            ASC_SCSIQ_B_FWD));
8488                         scsi_sg_q.q_no = next_qp;
8489                         q_addr = ASC_QNO_TO_QADDR(next_qp);
8490                         AscMemWordCopyPtrToLram(iop_base,
8491                                                 q_addr + ASC_SCSIQ_SGHD_CPY_BEG,
8492                                                 (uchar *)&scsi_sg_q,
8493                                                 sizeof(ASC_SG_LIST_Q) >> 1);
8494                         AscMemDWordCopyPtrToLram(iop_base,
8495                                                  q_addr + ASC_SGQ_LIST_BEG,
8496                                                  (uchar *)&sg_head->
8497                                                  sg_list[sg_index],
8498                                                  sg_list_dwords);
8499                         sg_index += ASC_SG_LIST_PER_Q;
8500                         scsiq->next_sg_index = sg_index;
8501                 }
8502         } else {
8503                 scsiq->q1.cntl &= ~QC_SG_HEAD;
8504         }
8505         sta = AscPutReadyQueue(asc_dvc, scsiq, q_no);
8506         scsiq->q1.data_addr = saved_data_addr;
8507         scsiq->q1.data_cnt = saved_data_cnt;
8508         return (sta);
8509 }
8510
8511 static int
8512 AscSendScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar n_q_required)
8513 {
8514         PortAddr iop_base;
8515         uchar free_q_head;
8516         uchar next_qp;
8517         uchar tid_no;
8518         uchar target_ix;
8519         int sta;
8520
8521         iop_base = asc_dvc->iop_base;
8522         target_ix = scsiq->q2.target_ix;
8523         tid_no = ASC_TIX_TO_TID(target_ix);
8524         sta = 0;
8525         free_q_head = (uchar)AscGetVarFreeQHead(iop_base);
8526         if (n_q_required > 1) {
8527                 next_qp = AscAllocMultipleFreeQueue(iop_base, free_q_head,
8528                                                     (uchar)n_q_required);
8529                 if (next_qp != ASC_QLINK_END) {
8530                         asc_dvc->last_q_shortage = 0;
8531                         scsiq->sg_head->queue_cnt = n_q_required - 1;
8532                         scsiq->q1.q_no = free_q_head;
8533                         sta = AscPutReadySgListQueue(asc_dvc, scsiq,
8534                                                      free_q_head);
8535                 }
8536         } else if (n_q_required == 1) {
8537                 next_qp = AscAllocFreeQueue(iop_base, free_q_head);
8538                 if (next_qp != ASC_QLINK_END) {
8539                         scsiq->q1.q_no = free_q_head;
8540                         sta = AscPutReadyQueue(asc_dvc, scsiq, free_q_head);
8541                 }
8542         }
8543         if (sta == 1) {
8544                 AscPutVarFreeQHead(iop_base, next_qp);
8545                 asc_dvc->cur_total_qng += n_q_required;
8546                 asc_dvc->cur_dvc_qng[tid_no]++;
8547         }
8548         return sta;
8549 }
8550
8551 #define ASC_SYN_OFFSET_ONE_DISABLE_LIST  16
8552 static uchar _syn_offset_one_disable_cmd[ASC_SYN_OFFSET_ONE_DISABLE_LIST] = {
8553         INQUIRY,
8554         REQUEST_SENSE,
8555         READ_CAPACITY,
8556         READ_TOC,
8557         MODE_SELECT,
8558         MODE_SENSE,
8559         MODE_SELECT_10,
8560         MODE_SENSE_10,
8561         0xFF,
8562         0xFF,
8563         0xFF,
8564         0xFF,
8565         0xFF,
8566         0xFF,
8567         0xFF,
8568         0xFF
8569 };
8570
8571 static int AscExeScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq)
8572 {
8573         PortAddr iop_base;
8574         int sta;
8575         int n_q_required;
8576         int disable_syn_offset_one_fix;
8577         int i;
8578         ASC_PADDR addr;
8579         ushort sg_entry_cnt = 0;
8580         ushort sg_entry_cnt_minus_one = 0;
8581         uchar target_ix;
8582         uchar tid_no;
8583         uchar sdtr_data;
8584         uchar extra_bytes;
8585         uchar scsi_cmd;
8586         uchar disable_cmd;
8587         ASC_SG_HEAD *sg_head;
8588         ASC_DCNT data_cnt;
8589
8590         iop_base = asc_dvc->iop_base;
8591         sg_head = scsiq->sg_head;
8592         if (asc_dvc->err_code != 0)
8593                 return (ERR);
8594         scsiq->q1.q_no = 0;
8595         if ((scsiq->q2.tag_code & ASC_TAG_FLAG_EXTRA_BYTES) == 0) {
8596                 scsiq->q1.extra_bytes = 0;
8597         }
8598         sta = 0;
8599         target_ix = scsiq->q2.target_ix;
8600         tid_no = ASC_TIX_TO_TID(target_ix);
8601         n_q_required = 1;
8602         if (scsiq->cdbptr[0] == REQUEST_SENSE) {
8603                 if ((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) {
8604                         asc_dvc->sdtr_done &= ~scsiq->q1.target_id;
8605                         sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
8606                         AscMsgOutSDTR(asc_dvc,
8607                                       asc_dvc->
8608                                       sdtr_period_tbl[(sdtr_data >> 4) &
8609                                                       (uchar)(asc_dvc->
8610                                                               max_sdtr_index -
8611                                                               1)],
8612                                       (uchar)(sdtr_data & (uchar)
8613                                               ASC_SYN_MAX_OFFSET));
8614                         scsiq->q1.cntl |= (QC_MSG_OUT | QC_URGENT);
8615                 }
8616         }
8617         if (asc_dvc->in_critical_cnt != 0) {
8618                 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CRITICAL_RE_ENTRY);
8619                 return (ERR);
8620         }
8621         asc_dvc->in_critical_cnt++;
8622         if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) {
8623                 if ((sg_entry_cnt = sg_head->entry_cnt) == 0) {
8624                         asc_dvc->in_critical_cnt--;
8625                         return (ERR);
8626                 }
8627 #if !CC_VERY_LONG_SG_LIST
8628                 if (sg_entry_cnt > ASC_MAX_SG_LIST) {
8629                         asc_dvc->in_critical_cnt--;
8630                         return (ERR);
8631                 }
8632 #endif /* !CC_VERY_LONG_SG_LIST */
8633                 if (sg_entry_cnt == 1) {
8634                         scsiq->q1.data_addr =
8635                             (ADV_PADDR)sg_head->sg_list[0].addr;
8636                         scsiq->q1.data_cnt =
8637                             (ADV_DCNT)sg_head->sg_list[0].bytes;
8638                         scsiq->q1.cntl &= ~(QC_SG_HEAD | QC_SG_SWAP_QUEUE);
8639                 }
8640                 sg_entry_cnt_minus_one = sg_entry_cnt - 1;
8641         }
8642         scsi_cmd = scsiq->cdbptr[0];
8643         disable_syn_offset_one_fix = FALSE;
8644         if ((asc_dvc->pci_fix_asyn_xfer & scsiq->q1.target_id) &&
8645             !(asc_dvc->pci_fix_asyn_xfer_always & scsiq->q1.target_id)) {
8646                 if (scsiq->q1.cntl & QC_SG_HEAD) {
8647                         data_cnt = 0;
8648                         for (i = 0; i < sg_entry_cnt; i++) {
8649                                 data_cnt +=
8650                                     (ADV_DCNT)le32_to_cpu(sg_head->sg_list[i].
8651                                                           bytes);
8652                         }
8653                 } else {
8654                         data_cnt = le32_to_cpu(scsiq->q1.data_cnt);
8655                 }
8656                 if (data_cnt != 0UL) {
8657                         if (data_cnt < 512UL) {
8658                                 disable_syn_offset_one_fix = TRUE;
8659                         } else {
8660                                 for (i = 0; i < ASC_SYN_OFFSET_ONE_DISABLE_LIST;
8661                                      i++) {
8662                                         disable_cmd =
8663                                             _syn_offset_one_disable_cmd[i];
8664                                         if (disable_cmd == 0xFF) {
8665                                                 break;
8666                                         }
8667                                         if (scsi_cmd == disable_cmd) {
8668                                                 disable_syn_offset_one_fix =
8669                                                     TRUE;
8670                                                 break;
8671                                         }
8672                                 }
8673                         }
8674                 }
8675         }
8676         if (disable_syn_offset_one_fix) {
8677                 scsiq->q2.tag_code &= ~MSG_SIMPLE_TAG;
8678                 scsiq->q2.tag_code |= (ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX |
8679                                        ASC_TAG_FLAG_DISABLE_DISCONNECT);
8680         } else {
8681                 scsiq->q2.tag_code &= 0x27;
8682         }
8683         if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) {
8684                 if (asc_dvc->bug_fix_cntl) {
8685                         if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) {
8686                                 if ((scsi_cmd == READ_6) ||
8687                                     (scsi_cmd == READ_10)) {
8688                                         addr =
8689                                             (ADV_PADDR)le32_to_cpu(sg_head->
8690                                                                    sg_list
8691                                                                    [sg_entry_cnt_minus_one].
8692                                                                    addr) +
8693                                             (ADV_DCNT)le32_to_cpu(sg_head->
8694                                                                   sg_list
8695                                                                   [sg_entry_cnt_minus_one].
8696                                                                   bytes);
8697                                         extra_bytes =
8698                                             (uchar)((ushort)addr & 0x0003);
8699                                         if ((extra_bytes != 0)
8700                                             &&
8701                                             ((scsiq->q2.
8702                                               tag_code &
8703                                               ASC_TAG_FLAG_EXTRA_BYTES)
8704                                              == 0)) {
8705                                                 scsiq->q2.tag_code |=
8706                                                     ASC_TAG_FLAG_EXTRA_BYTES;
8707                                                 scsiq->q1.extra_bytes =
8708                                                     extra_bytes;
8709                                                 data_cnt =
8710                                                     le32_to_cpu(sg_head->
8711                                                                 sg_list
8712                                                                 [sg_entry_cnt_minus_one].
8713                                                                 bytes);
8714                                                 data_cnt -=
8715                                                     (ASC_DCNT) extra_bytes;
8716                                                 sg_head->
8717                                                     sg_list
8718                                                     [sg_entry_cnt_minus_one].
8719                                                     bytes =
8720                                                     cpu_to_le32(data_cnt);
8721                                         }
8722                                 }
8723                         }
8724                 }
8725                 sg_head->entry_to_copy = sg_head->entry_cnt;
8726 #if CC_VERY_LONG_SG_LIST
8727                 /*
8728                  * Set the sg_entry_cnt to the maximum possible. The rest of
8729                  * the SG elements will be copied when the RISC completes the
8730                  * SG elements that fit and halts.
8731                  */
8732                 if (sg_entry_cnt > ASC_MAX_SG_LIST) {
8733                         sg_entry_cnt = ASC_MAX_SG_LIST;
8734                 }
8735 #endif /* CC_VERY_LONG_SG_LIST */
8736                 n_q_required = AscSgListToQueue(sg_entry_cnt);
8737                 if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, n_q_required) >=
8738                      (uint) n_q_required)
8739                     || ((scsiq->q1.cntl & QC_URGENT) != 0)) {
8740                         if ((sta =
8741                              AscSendScsiQueue(asc_dvc, scsiq,
8742                                               n_q_required)) == 1) {
8743                                 asc_dvc->in_critical_cnt--;
8744                                 return (sta);
8745                         }
8746                 }
8747         } else {
8748                 if (asc_dvc->bug_fix_cntl) {
8749                         if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) {
8750                                 if ((scsi_cmd == READ_6) ||
8751                                     (scsi_cmd == READ_10)) {
8752                                         addr =
8753                                             le32_to_cpu(scsiq->q1.data_addr) +
8754                                             le32_to_cpu(scsiq->q1.data_cnt);
8755                                         extra_bytes =
8756                                             (uchar)((ushort)addr & 0x0003);
8757                                         if ((extra_bytes != 0)
8758                                             &&
8759                                             ((scsiq->q2.
8760                                               tag_code &
8761                                               ASC_TAG_FLAG_EXTRA_BYTES)
8762                                              == 0)) {
8763                                                 data_cnt =
8764                                                     le32_to_cpu(scsiq->q1.
8765                                                                 data_cnt);
8766                                                 if (((ushort)data_cnt & 0x01FF)
8767                                                     == 0) {
8768                                                         scsiq->q2.tag_code |=
8769                                                             ASC_TAG_FLAG_EXTRA_BYTES;
8770                                                         data_cnt -= (ASC_DCNT)
8771                                                             extra_bytes;
8772                                                         scsiq->q1.data_cnt =
8773                                                             cpu_to_le32
8774                                                             (data_cnt);
8775                                                         scsiq->q1.extra_bytes =
8776                                                             extra_bytes;
8777                                                 }
8778                                         }
8779                                 }
8780                         }
8781                 }
8782                 n_q_required = 1;
8783                 if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, 1) >= 1) ||
8784                     ((scsiq->q1.cntl & QC_URGENT) != 0)) {
8785                         if ((sta = AscSendScsiQueue(asc_dvc, scsiq,
8786                                                     n_q_required)) == 1) {
8787                                 asc_dvc->in_critical_cnt--;
8788                                 return (sta);
8789                         }
8790                 }
8791         }
8792         asc_dvc->in_critical_cnt--;
8793         return (sta);
8794 }
8795
8796 /*
8797  * AdvExeScsiQueue() - Send a request to the RISC microcode program.
8798  *
8799  *   Allocate a carrier structure, point the carrier to the ADV_SCSI_REQ_Q,
8800  *   add the carrier to the ICQ (Initiator Command Queue), and tickle the
8801  *   RISC to notify it a new command is ready to be executed.
8802  *
8803  * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
8804  * set to SCSI_MAX_RETRY.
8805  *
8806  * Multi-byte fields in the ASC_SCSI_REQ_Q that are used by the microcode
8807  * for DMA addresses or math operations are byte swapped to little-endian
8808  * order.
8809  *
8810  * Return:
8811  *      ADV_SUCCESS(1) - The request was successfully queued.
8812  *      ADV_BUSY(0) -    Resource unavailable; Retry again after pending
8813  *                       request completes.
8814  *      ADV_ERROR(-1) -  Invalid ADV_SCSI_REQ_Q request structure
8815  *                       host IC error.
8816  */
8817 static int AdvExeScsiQueue(ADV_DVC_VAR *asc_dvc, ADV_SCSI_REQ_Q *scsiq)
8818 {
8819         AdvPortAddr iop_base;
8820         ADV_PADDR req_paddr;
8821         ADV_CARR_T *new_carrp;
8822
8823         /*
8824          * The ADV_SCSI_REQ_Q 'target_id' field should never exceed ADV_MAX_TID.
8825          */
8826         if (scsiq->target_id > ADV_MAX_TID) {
8827                 scsiq->host_status = QHSTA_M_INVALID_DEVICE;
8828                 scsiq->done_status = QD_WITH_ERROR;
8829                 return ADV_ERROR;
8830         }
8831
8832         iop_base = asc_dvc->iop_base;
8833
8834         /*
8835          * Allocate a carrier ensuring at least one carrier always
8836          * remains on the freelist and initialize fields.
8837          */
8838         if ((new_carrp = asc_dvc->carr_freelist) == NULL) {
8839                 return ADV_BUSY;
8840         }
8841         asc_dvc->carr_freelist = (ADV_CARR_T *)
8842             ADV_U32_TO_VADDR(le32_to_cpu(new_carrp->next_vpa));
8843         asc_dvc->carr_pending_cnt++;
8844
8845         /*
8846          * Set the carrier to be a stopper by setting 'next_vpa'
8847          * to the stopper value. The current stopper will be changed
8848          * below to point to the new stopper.
8849          */
8850         new_carrp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
8851
8852         /*
8853          * Clear the ADV_SCSI_REQ_Q done flag.
8854          */
8855         scsiq->a_flag &= ~ADV_SCSIQ_DONE;
8856
8857         req_paddr = virt_to_bus(scsiq);
8858         BUG_ON(req_paddr & 31);
8859         /* Wait for assertion before making little-endian */
8860         req_paddr = cpu_to_le32(req_paddr);
8861
8862         /* Save virtual and physical address of ADV_SCSI_REQ_Q and carrier. */
8863         scsiq->scsiq_ptr = cpu_to_le32(ADV_VADDR_TO_U32(scsiq));
8864         scsiq->scsiq_rptr = req_paddr;
8865
8866         scsiq->carr_va = cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc->icq_sp));
8867         /*
8868          * Every ADV_CARR_T.carr_pa is byte swapped to little-endian
8869          * order during initialization.
8870          */
8871         scsiq->carr_pa = asc_dvc->icq_sp->carr_pa;
8872
8873         /*
8874          * Use the current stopper to send the ADV_SCSI_REQ_Q command to
8875          * the microcode. The newly allocated stopper will become the new
8876          * stopper.
8877          */
8878         asc_dvc->icq_sp->areq_vpa = req_paddr;
8879
8880         /*
8881          * Set the 'next_vpa' pointer for the old stopper to be the
8882          * physical address of the new stopper. The RISC can only
8883          * follow physical addresses.
8884          */
8885         asc_dvc->icq_sp->next_vpa = new_carrp->carr_pa;
8886
8887         /*
8888          * Set the host adapter stopper pointer to point to the new carrier.
8889          */
8890         asc_dvc->icq_sp = new_carrp;
8891
8892         if (asc_dvc->chip_type == ADV_CHIP_ASC3550 ||
8893             asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
8894                 /*
8895                  * Tickle the RISC to tell it to read its Command Queue Head pointer.
8896                  */
8897                 AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_A);
8898                 if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
8899                         /*
8900                          * Clear the tickle value. In the ASC-3550 the RISC flag
8901                          * command 'clr_tickle_a' does not work unless the host
8902                          * value is cleared.
8903                          */
8904                         AdvWriteByteRegister(iop_base, IOPB_TICKLE,
8905                                              ADV_TICKLE_NOP);
8906                 }
8907         } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
8908                 /*
8909                  * Notify the RISC a carrier is ready by writing the physical
8910                  * address of the new carrier stopper to the COMMA register.
8911                  */
8912                 AdvWriteDWordRegister(iop_base, IOPDW_COMMA,
8913                                       le32_to_cpu(new_carrp->carr_pa));
8914         }
8915
8916         return ADV_SUCCESS;
8917 }
8918
8919 /*
8920  * Execute a single 'Scsi_Cmnd'.
8921  */
8922 static int asc_execute_scsi_cmnd(struct scsi_cmnd *scp)
8923 {
8924         int ret, err_code;
8925         struct asc_board *boardp = shost_priv(scp->device->host);
8926
8927         ASC_DBG(1, "scp 0x%p\n", scp);
8928
8929         if (ASC_NARROW_BOARD(boardp)) {
8930                 ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var;
8931                 struct asc_scsi_q asc_scsi_q;
8932
8933                 /* asc_build_req() can not return ASC_BUSY. */
8934                 ret = asc_build_req(boardp, scp, &asc_scsi_q);
8935                 if (ret == ASC_ERROR) {
8936                         ASC_STATS(scp->device->host, build_error);
8937                         return ASC_ERROR;
8938                 }
8939
8940                 ret = AscExeScsiQueue(asc_dvc, &asc_scsi_q);
8941                 kfree(asc_scsi_q.sg_head);
8942                 err_code = asc_dvc->err_code;
8943         } else {
8944                 ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var;
8945                 ADV_SCSI_REQ_Q *adv_scsiqp;
8946
8947                 switch (adv_build_req(boardp, scp, &adv_scsiqp)) {
8948                 case ASC_NOERROR:
8949                         ASC_DBG(3, "adv_build_req ASC_NOERROR\n");
8950                         break;
8951                 case ASC_BUSY:
8952                         ASC_DBG(1, "adv_build_req ASC_BUSY\n");
8953                         /*
8954                          * The asc_stats fields 'adv_build_noreq' and
8955                          * 'adv_build_nosg' count wide board busy conditions.
8956                          * They are updated in adv_build_req and
8957                          * adv_get_sglist, respectively.
8958                          */
8959                         return ASC_BUSY;
8960                 case ASC_ERROR:
8961                 default:
8962                         ASC_DBG(1, "adv_build_req ASC_ERROR\n");
8963                         ASC_STATS(scp->device->host, build_error);
8964                         return ASC_ERROR;
8965                 }
8966
8967                 ret = AdvExeScsiQueue(adv_dvc, adv_scsiqp);
8968                 err_code = adv_dvc->err_code;
8969         }
8970
8971         switch (ret) {
8972         case ASC_NOERROR:
8973                 ASC_STATS(scp->device->host, exe_noerror);
8974                 /*
8975                  * Increment monotonically increasing per device
8976                  * successful request counter. Wrapping doesn't matter.
8977                  */
8978                 boardp->reqcnt[scp->device->id]++;
8979                 ASC_DBG(1, "ExeScsiQueue() ASC_NOERROR\n");
8980                 break;
8981         case ASC_BUSY:
8982                 ASC_STATS(scp->device->host, exe_busy);
8983                 break;
8984         case ASC_ERROR:
8985                 scmd_printk(KERN_ERR, scp, "ExeScsiQueue() ASC_ERROR, "
8986                         "err_code 0x%x\n", err_code);
8987                 ASC_STATS(scp->device->host, exe_error);
8988                 scp->result = HOST_BYTE(DID_ERROR);
8989                 break;
8990         default:
8991                 scmd_printk(KERN_ERR, scp, "ExeScsiQueue() unknown, "
8992                         "err_code 0x%x\n", err_code);
8993                 ASC_STATS(scp->device->host, exe_unknown);
8994                 scp->result = HOST_BYTE(DID_ERROR);
8995                 break;
8996         }
8997
8998         ASC_DBG(1, "end\n");
8999         return ret;
9000 }
9001
9002 /*
9003  * advansys_queuecommand() - interrupt-driven I/O entrypoint.
9004  *
9005  * This function always returns 0. Command return status is saved
9006  * in the 'scp' result field.
9007  */
9008 static int
9009 advansys_queuecommand_lck(struct scsi_cmnd *scp, void (*done)(struct scsi_cmnd *))
9010 {
9011         struct Scsi_Host *shost = scp->device->host;
9012         int asc_res, result = 0;
9013
9014         ASC_STATS(shost, queuecommand);
9015         scp->scsi_done = done;
9016
9017         asc_res = asc_execute_scsi_cmnd(scp);
9018
9019         switch (asc_res) {
9020         case ASC_NOERROR:
9021                 break;
9022         case ASC_BUSY:
9023                 result = SCSI_MLQUEUE_HOST_BUSY;
9024                 break;
9025         case ASC_ERROR:
9026         default:
9027                 asc_scsi_done(scp);
9028                 break;
9029         }
9030
9031         return result;
9032 }
9033
9034 static DEF_SCSI_QCMD(advansys_queuecommand)
9035
9036 static ushort AscGetEisaChipCfg(PortAddr iop_base)
9037 {
9038         PortAddr eisa_cfg_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) |
9039             (PortAddr) (ASC_EISA_CFG_IOP_MASK);
9040         return inpw(eisa_cfg_iop);
9041 }
9042
9043 /*
9044  * Return the BIOS address of the adapter at the specified
9045  * I/O port and with the specified bus type.
9046  */
9047 static unsigned short AscGetChipBiosAddress(PortAddr iop_base,
9048                                             unsigned short bus_type)
9049 {
9050         unsigned short cfg_lsw;
9051         unsigned short bios_addr;
9052
9053         /*
9054          * The PCI BIOS is re-located by the motherboard BIOS. Because
9055          * of this the driver can not determine where a PCI BIOS is
9056          * loaded and executes.
9057          */
9058         if (bus_type & ASC_IS_PCI)
9059                 return 0;
9060
9061         if ((bus_type & ASC_IS_EISA) != 0) {
9062                 cfg_lsw = AscGetEisaChipCfg(iop_base);
9063                 cfg_lsw &= 0x000F;
9064                 bios_addr = ASC_BIOS_MIN_ADDR + cfg_lsw * ASC_BIOS_BANK_SIZE;
9065                 return bios_addr;
9066         }
9067
9068         cfg_lsw = AscGetChipCfgLsw(iop_base);
9069
9070         /*
9071          *  ISA PnP uses the top bit as the 32K BIOS flag
9072          */
9073         if (bus_type == ASC_IS_ISAPNP)
9074                 cfg_lsw &= 0x7FFF;
9075         bios_addr = ASC_BIOS_MIN_ADDR + (cfg_lsw >> 12) * ASC_BIOS_BANK_SIZE;
9076         return bios_addr;
9077 }
9078
9079 static uchar AscSetChipScsiID(PortAddr iop_base, uchar new_host_id)
9080 {
9081         ushort cfg_lsw;
9082
9083         if (AscGetChipScsiID(iop_base) == new_host_id) {
9084                 return (new_host_id);
9085         }
9086         cfg_lsw = AscGetChipCfgLsw(iop_base);
9087         cfg_lsw &= 0xF8FF;
9088         cfg_lsw |= (ushort)((new_host_id & ASC_MAX_TID) << 8);
9089         AscSetChipCfgLsw(iop_base, cfg_lsw);
9090         return (AscGetChipScsiID(iop_base));
9091 }
9092
9093 static unsigned char AscGetChipScsiCtrl(PortAddr iop_base)
9094 {
9095         unsigned char sc;
9096
9097         AscSetBank(iop_base, 1);
9098         sc = inp(iop_base + IOP_REG_SC);
9099         AscSetBank(iop_base, 0);
9100         return sc;
9101 }
9102
9103 static unsigned char AscGetChipVersion(PortAddr iop_base,
9104                                        unsigned short bus_type)
9105 {
9106         if (bus_type & ASC_IS_EISA) {
9107                 PortAddr eisa_iop;
9108                 unsigned char revision;
9109                 eisa_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) |
9110                     (PortAddr) ASC_EISA_REV_IOP_MASK;
9111                 revision = inp(eisa_iop);
9112                 return ASC_CHIP_MIN_VER_EISA - 1 + revision;
9113         }
9114         return AscGetChipVerNo(iop_base);
9115 }
9116
9117 #ifdef CONFIG_ISA
9118 static void AscEnableIsaDma(uchar dma_channel)
9119 {
9120         if (dma_channel < 4) {
9121                 outp(0x000B, (ushort)(0xC0 | dma_channel));
9122                 outp(0x000A, dma_channel);
9123         } else if (dma_channel < 8) {
9124                 outp(0x00D6, (ushort)(0xC0 | (dma_channel - 4)));
9125                 outp(0x00D4, (ushort)(dma_channel - 4));
9126         }
9127 }
9128 #endif /* CONFIG_ISA */
9129
9130 static int AscStopQueueExe(PortAddr iop_base)
9131 {
9132         int count = 0;
9133
9134         if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) == 0) {
9135                 AscWriteLramByte(iop_base, ASCV_STOP_CODE_B,
9136                                  ASC_STOP_REQ_RISC_STOP);
9137                 do {
9138                         if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) &
9139                             ASC_STOP_ACK_RISC_STOP) {
9140                                 return (1);
9141                         }
9142                         mdelay(100);
9143                 } while (count++ < 20);
9144         }
9145         return (0);
9146 }
9147
9148 static ASC_DCNT AscGetMaxDmaCount(ushort bus_type)
9149 {
9150         if (bus_type & ASC_IS_ISA)
9151                 return ASC_MAX_ISA_DMA_COUNT;
9152         else if (bus_type & (ASC_IS_EISA | ASC_IS_VL))
9153                 return ASC_MAX_VL_DMA_COUNT;
9154         return ASC_MAX_PCI_DMA_COUNT;
9155 }
9156
9157 #ifdef CONFIG_ISA
9158 static ushort AscGetIsaDmaChannel(PortAddr iop_base)
9159 {
9160         ushort channel;
9161
9162         channel = AscGetChipCfgLsw(iop_base) & 0x0003;
9163         if (channel == 0x03)
9164                 return (0);
9165         else if (channel == 0x00)
9166                 return (7);
9167         return (channel + 4);
9168 }
9169
9170 static ushort AscSetIsaDmaChannel(PortAddr iop_base, ushort dma_channel)
9171 {
9172         ushort cfg_lsw;
9173         uchar value;
9174
9175         if ((dma_channel >= 5) && (dma_channel <= 7)) {
9176                 if (dma_channel == 7)
9177                         value = 0x00;
9178                 else
9179                         value = dma_channel - 4;
9180                 cfg_lsw = AscGetChipCfgLsw(iop_base) & 0xFFFC;
9181                 cfg_lsw |= value;
9182                 AscSetChipCfgLsw(iop_base, cfg_lsw);
9183                 return (AscGetIsaDmaChannel(iop_base));
9184         }
9185         return 0;
9186 }
9187
9188 static uchar AscGetIsaDmaSpeed(PortAddr iop_base)
9189 {
9190         uchar speed_value;
9191
9192         AscSetBank(iop_base, 1);
9193         speed_value = AscReadChipDmaSpeed(iop_base);
9194         speed_value &= 0x07;
9195         AscSetBank(iop_base, 0);
9196         return speed_value;
9197 }
9198
9199 static uchar AscSetIsaDmaSpeed(PortAddr iop_base, uchar speed_value)
9200 {
9201         speed_value &= 0x07;
9202         AscSetBank(iop_base, 1);
9203         AscWriteChipDmaSpeed(iop_base, speed_value);
9204         AscSetBank(iop_base, 0);
9205         return AscGetIsaDmaSpeed(iop_base);
9206 }
9207 #endif /* CONFIG_ISA */
9208
9209 static ushort AscInitAscDvcVar(ASC_DVC_VAR *asc_dvc)
9210 {
9211         int i;
9212         PortAddr iop_base;
9213         ushort warn_code;
9214         uchar chip_version;
9215
9216         iop_base = asc_dvc->iop_base;
9217         warn_code = 0;
9218         asc_dvc->err_code = 0;
9219         if ((asc_dvc->bus_type &
9220              (ASC_IS_ISA | ASC_IS_PCI | ASC_IS_EISA | ASC_IS_VL)) == 0) {
9221                 asc_dvc->err_code |= ASC_IERR_NO_BUS_TYPE;
9222         }
9223         AscSetChipControl(iop_base, CC_HALT);
9224         AscSetChipStatus(iop_base, 0);
9225         asc_dvc->bug_fix_cntl = 0;
9226         asc_dvc->pci_fix_asyn_xfer = 0;
9227         asc_dvc->pci_fix_asyn_xfer_always = 0;
9228         /* asc_dvc->init_state initialized in AscInitGetConfig(). */
9229         asc_dvc->sdtr_done = 0;
9230         asc_dvc->cur_total_qng = 0;
9231         asc_dvc->is_in_int = 0;
9232         asc_dvc->in_critical_cnt = 0;
9233         asc_dvc->last_q_shortage = 0;
9234         asc_dvc->use_tagged_qng = 0;
9235         asc_dvc->no_scam = 0;
9236         asc_dvc->unit_not_ready = 0;
9237         asc_dvc->queue_full_or_busy = 0;
9238         asc_dvc->redo_scam = 0;
9239         asc_dvc->res2 = 0;
9240         asc_dvc->min_sdtr_index = 0;
9241         asc_dvc->cfg->can_tagged_qng = 0;
9242         asc_dvc->cfg->cmd_qng_enabled = 0;
9243         asc_dvc->dvc_cntl = ASC_DEF_DVC_CNTL;
9244         asc_dvc->init_sdtr = 0;
9245         asc_dvc->max_total_qng = ASC_DEF_MAX_TOTAL_QNG;
9246         asc_dvc->scsi_reset_wait = 3;
9247         asc_dvc->start_motor = ASC_SCSI_WIDTH_BIT_SET;
9248         asc_dvc->max_dma_count = AscGetMaxDmaCount(asc_dvc->bus_type);
9249         asc_dvc->cfg->sdtr_enable = ASC_SCSI_WIDTH_BIT_SET;
9250         asc_dvc->cfg->disc_enable = ASC_SCSI_WIDTH_BIT_SET;
9251         asc_dvc->cfg->chip_scsi_id = ASC_DEF_CHIP_SCSI_ID;
9252         chip_version = AscGetChipVersion(iop_base, asc_dvc->bus_type);
9253         asc_dvc->cfg->chip_version = chip_version;
9254         asc_dvc->sdtr_period_tbl = asc_syn_xfer_period;
9255         asc_dvc->max_sdtr_index = 7;
9256         if ((asc_dvc->bus_type & ASC_IS_PCI) &&
9257             (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3150)) {
9258                 asc_dvc->bus_type = ASC_IS_PCI_ULTRA;
9259                 asc_dvc->sdtr_period_tbl = asc_syn_ultra_xfer_period;
9260                 asc_dvc->max_sdtr_index = 15;
9261                 if (chip_version == ASC_CHIP_VER_PCI_ULTRA_3150) {
9262                         AscSetExtraControl(iop_base,
9263                                            (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE));
9264                 } else if (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3050) {
9265                         AscSetExtraControl(iop_base,
9266                                            (SEC_ACTIVE_NEGATE |
9267                                             SEC_ENABLE_FILTER));
9268                 }
9269         }
9270         if (asc_dvc->bus_type == ASC_IS_PCI) {
9271                 AscSetExtraControl(iop_base,
9272                                    (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE));
9273         }
9274
9275         asc_dvc->cfg->isa_dma_speed = ASC_DEF_ISA_DMA_SPEED;
9276 #ifdef CONFIG_ISA
9277         if ((asc_dvc->bus_type & ASC_IS_ISA) != 0) {
9278                 if (chip_version >= ASC_CHIP_MIN_VER_ISA_PNP) {
9279                         AscSetChipIFC(iop_base, IFC_INIT_DEFAULT);
9280                         asc_dvc->bus_type = ASC_IS_ISAPNP;
9281                 }
9282                 asc_dvc->cfg->isa_dma_channel =
9283                     (uchar)AscGetIsaDmaChannel(iop_base);
9284         }
9285 #endif /* CONFIG_ISA */
9286         for (i = 0; i <= ASC_MAX_TID; i++) {
9287                 asc_dvc->cur_dvc_qng[i] = 0;
9288                 asc_dvc->max_dvc_qng[i] = ASC_MAX_SCSI1_QNG;
9289                 asc_dvc->scsiq_busy_head[i] = (ASC_SCSI_Q *)0L;
9290                 asc_dvc->scsiq_busy_tail[i] = (ASC_SCSI_Q *)0L;
9291                 asc_dvc->cfg->max_tag_qng[i] = ASC_MAX_INRAM_TAG_QNG;
9292         }
9293         return warn_code;
9294 }
9295
9296 static int AscWriteEEPCmdReg(PortAddr iop_base, uchar cmd_reg)
9297 {
9298         int retry;
9299
9300         for (retry = 0; retry < ASC_EEP_MAX_RETRY; retry++) {
9301                 unsigned char read_back;
9302                 AscSetChipEEPCmd(iop_base, cmd_reg);
9303                 mdelay(1);
9304                 read_back = AscGetChipEEPCmd(iop_base);
9305                 if (read_back == cmd_reg)
9306                         return 1;
9307         }
9308         return 0;
9309 }
9310
9311 static void AscWaitEEPRead(void)
9312 {
9313         mdelay(1);
9314 }
9315
9316 static ushort AscReadEEPWord(PortAddr iop_base, uchar addr)
9317 {
9318         ushort read_wval;
9319         uchar cmd_reg;
9320
9321         AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE);
9322         AscWaitEEPRead();
9323         cmd_reg = addr | ASC_EEP_CMD_READ;
9324         AscWriteEEPCmdReg(iop_base, cmd_reg);
9325         AscWaitEEPRead();
9326         read_wval = AscGetChipEEPData(iop_base);
9327         AscWaitEEPRead();
9328         return read_wval;
9329 }
9330
9331 static ushort AscGetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf,
9332                               ushort bus_type)
9333 {
9334         ushort wval;
9335         ushort sum;
9336         ushort *wbuf;
9337         int cfg_beg;
9338         int cfg_end;
9339         int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2;
9340         int s_addr;
9341
9342         wbuf = (ushort *)cfg_buf;
9343         sum = 0;
9344         /* Read two config words; Byte-swapping done by AscReadEEPWord(). */
9345         for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
9346                 *wbuf = AscReadEEPWord(iop_base, (uchar)s_addr);
9347                 sum += *wbuf;
9348         }
9349         if (bus_type & ASC_IS_VL) {
9350                 cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
9351                 cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
9352         } else {
9353                 cfg_beg = ASC_EEP_DVC_CFG_BEG;
9354                 cfg_end = ASC_EEP_MAX_DVC_ADDR;
9355         }
9356         for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
9357                 wval = AscReadEEPWord(iop_base, (uchar)s_addr);
9358                 if (s_addr <= uchar_end_in_config) {
9359                         /*
9360                          * Swap all char fields - must unswap bytes already swapped
9361                          * by AscReadEEPWord().
9362                          */
9363                         *wbuf = le16_to_cpu(wval);
9364                 } else {
9365                         /* Don't swap word field at the end - cntl field. */
9366                         *wbuf = wval;
9367                 }
9368                 sum += wval;    /* Checksum treats all EEPROM data as words. */
9369         }
9370         /*
9371          * Read the checksum word which will be compared against 'sum'
9372          * by the caller. Word field already swapped.
9373          */
9374         *wbuf = AscReadEEPWord(iop_base, (uchar)s_addr);
9375         return sum;
9376 }
9377
9378 static int AscTestExternalLram(ASC_DVC_VAR *asc_dvc)
9379 {
9380         PortAddr iop_base;
9381         ushort q_addr;
9382         ushort saved_word;
9383         int sta;
9384
9385         iop_base = asc_dvc->iop_base;
9386         sta = 0;
9387         q_addr = ASC_QNO_TO_QADDR(241);
9388         saved_word = AscReadLramWord(iop_base, q_addr);
9389         AscSetChipLramAddr(iop_base, q_addr);
9390         AscSetChipLramData(iop_base, 0x55AA);
9391         mdelay(10);
9392         AscSetChipLramAddr(iop_base, q_addr);
9393         if (AscGetChipLramData(iop_base) == 0x55AA) {
9394                 sta = 1;
9395                 AscWriteLramWord(iop_base, q_addr, saved_word);
9396         }
9397         return (sta);
9398 }
9399
9400 static void AscWaitEEPWrite(void)
9401 {
9402         mdelay(20);
9403 }
9404
9405 static int AscWriteEEPDataReg(PortAddr iop_base, ushort data_reg)
9406 {
9407         ushort read_back;
9408         int retry;
9409
9410         retry = 0;
9411         while (TRUE) {
9412                 AscSetChipEEPData(iop_base, data_reg);
9413                 mdelay(1);
9414                 read_back = AscGetChipEEPData(iop_base);
9415                 if (read_back == data_reg) {
9416                         return (1);
9417                 }
9418                 if (retry++ > ASC_EEP_MAX_RETRY) {
9419                         return (0);
9420                 }
9421         }
9422 }
9423
9424 static ushort AscWriteEEPWord(PortAddr iop_base, uchar addr, ushort word_val)
9425 {
9426         ushort read_wval;
9427
9428         read_wval = AscReadEEPWord(iop_base, addr);
9429         if (read_wval != word_val) {
9430                 AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_ABLE);
9431                 AscWaitEEPRead();
9432                 AscWriteEEPDataReg(iop_base, word_val);
9433                 AscWaitEEPRead();
9434                 AscWriteEEPCmdReg(iop_base,
9435                                   (uchar)((uchar)ASC_EEP_CMD_WRITE | addr));
9436                 AscWaitEEPWrite();
9437                 AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE);
9438                 AscWaitEEPRead();
9439                 return (AscReadEEPWord(iop_base, addr));
9440         }
9441         return (read_wval);
9442 }
9443
9444 static int AscSetEEPConfigOnce(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf,
9445                                ushort bus_type)
9446 {
9447         int n_error;
9448         ushort *wbuf;
9449         ushort word;
9450         ushort sum;
9451         int s_addr;
9452         int cfg_beg;
9453         int cfg_end;
9454         int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2;
9455
9456         wbuf = (ushort *)cfg_buf;
9457         n_error = 0;
9458         sum = 0;
9459         /* Write two config words; AscWriteEEPWord() will swap bytes. */
9460         for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
9461                 sum += *wbuf;
9462                 if (*wbuf != AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) {
9463                         n_error++;
9464                 }
9465         }
9466         if (bus_type & ASC_IS_VL) {
9467                 cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
9468                 cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
9469         } else {
9470                 cfg_beg = ASC_EEP_DVC_CFG_BEG;
9471                 cfg_end = ASC_EEP_MAX_DVC_ADDR;
9472         }
9473         for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
9474                 if (s_addr <= uchar_end_in_config) {
9475                         /*
9476                          * This is a char field. Swap char fields before they are
9477                          * swapped again by AscWriteEEPWord().
9478                          */
9479                         word = cpu_to_le16(*wbuf);
9480                         if (word !=
9481                             AscWriteEEPWord(iop_base, (uchar)s_addr, word)) {
9482                                 n_error++;
9483                         }
9484                 } else {
9485                         /* Don't swap word field at the end - cntl field. */
9486                         if (*wbuf !=
9487                             AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) {
9488                                 n_error++;
9489                         }
9490                 }
9491                 sum += *wbuf;   /* Checksum calculated from word values. */
9492         }
9493         /* Write checksum word. It will be swapped by AscWriteEEPWord(). */
9494         *wbuf = sum;
9495         if (sum != AscWriteEEPWord(iop_base, (uchar)s_addr, sum)) {
9496                 n_error++;
9497         }
9498
9499         /* Read EEPROM back again. */
9500         wbuf = (ushort *)cfg_buf;
9501         /*
9502          * Read two config words; Byte-swapping done by AscReadEEPWord().
9503          */
9504         for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
9505                 if (*wbuf != AscReadEEPWord(iop_base, (uchar)s_addr)) {
9506                         n_error++;
9507                 }
9508         }
9509         if (bus_type & ASC_IS_VL) {
9510                 cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
9511                 cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
9512         } else {
9513                 cfg_beg = ASC_EEP_DVC_CFG_BEG;
9514                 cfg_end = ASC_EEP_MAX_DVC_ADDR;
9515         }
9516         for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
9517                 if (s_addr <= uchar_end_in_config) {
9518                         /*
9519                          * Swap all char fields. Must unswap bytes already swapped
9520                          * by AscReadEEPWord().
9521                          */
9522                         word =
9523                             le16_to_cpu(AscReadEEPWord
9524                                         (iop_base, (uchar)s_addr));
9525                 } else {
9526                         /* Don't swap word field at the end - cntl field. */
9527                         word = AscReadEEPWord(iop_base, (uchar)s_addr);
9528                 }
9529                 if (*wbuf != word) {
9530                         n_error++;
9531                 }
9532         }
9533         /* Read checksum; Byte swapping not needed. */
9534         if (AscReadEEPWord(iop_base, (uchar)s_addr) != sum) {
9535                 n_error++;
9536         }
9537         return n_error;
9538 }
9539
9540 static int AscSetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf,
9541                            ushort bus_type)
9542 {
9543         int retry;
9544         int n_error;
9545
9546         retry = 0;
9547         while (TRUE) {
9548                 if ((n_error = AscSetEEPConfigOnce(iop_base, cfg_buf,
9549                                                    bus_type)) == 0) {
9550                         break;
9551                 }
9552                 if (++retry > ASC_EEP_MAX_RETRY) {
9553                         break;
9554                 }
9555         }
9556         return n_error;
9557 }
9558
9559 static ushort AscInitFromEEP(ASC_DVC_VAR *asc_dvc)
9560 {
9561         ASCEEP_CONFIG eep_config_buf;
9562         ASCEEP_CONFIG *eep_config;
9563         PortAddr iop_base;
9564         ushort chksum;
9565         ushort warn_code;
9566         ushort cfg_msw, cfg_lsw;
9567         int i;
9568         int write_eep = 0;
9569
9570         iop_base = asc_dvc->iop_base;
9571         warn_code = 0;
9572         AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0x00FE);
9573         AscStopQueueExe(iop_base);
9574         if ((AscStopChip(iop_base) == FALSE) ||
9575             (AscGetChipScsiCtrl(iop_base) != 0)) {
9576                 asc_dvc->init_state |= ASC_INIT_RESET_SCSI_DONE;
9577                 AscResetChipAndScsiBus(asc_dvc);
9578                 mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
9579         }
9580         if (AscIsChipHalted(iop_base) == FALSE) {
9581                 asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP;
9582                 return (warn_code);
9583         }
9584         AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR);
9585         if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) {
9586                 asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR;
9587                 return (warn_code);
9588         }
9589         eep_config = (ASCEEP_CONFIG *)&eep_config_buf;
9590         cfg_msw = AscGetChipCfgMsw(iop_base);
9591         cfg_lsw = AscGetChipCfgLsw(iop_base);
9592         if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) {
9593                 cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
9594                 warn_code |= ASC_WARN_CFG_MSW_RECOVER;
9595                 AscSetChipCfgMsw(iop_base, cfg_msw);
9596         }
9597         chksum = AscGetEEPConfig(iop_base, eep_config, asc_dvc->bus_type);
9598         ASC_DBG(1, "chksum 0x%x\n", chksum);
9599         if (chksum == 0) {
9600                 chksum = 0xaa55;
9601         }
9602         if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) {
9603                 warn_code |= ASC_WARN_AUTO_CONFIG;
9604                 if (asc_dvc->cfg->chip_version == 3) {
9605                         if (eep_config->cfg_lsw != cfg_lsw) {
9606                                 warn_code |= ASC_WARN_EEPROM_RECOVER;
9607                                 eep_config->cfg_lsw =
9608                                     AscGetChipCfgLsw(iop_base);
9609                         }
9610                         if (eep_config->cfg_msw != cfg_msw) {
9611                                 warn_code |= ASC_WARN_EEPROM_RECOVER;
9612                                 eep_config->cfg_msw =
9613                                     AscGetChipCfgMsw(iop_base);
9614                         }
9615                 }
9616         }
9617         eep_config->cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
9618         eep_config->cfg_lsw |= ASC_CFG0_HOST_INT_ON;
9619         ASC_DBG(1, "eep_config->chksum 0x%x\n", eep_config->chksum);
9620         if (chksum != eep_config->chksum) {
9621                 if (AscGetChipVersion(iop_base, asc_dvc->bus_type) ==
9622                     ASC_CHIP_VER_PCI_ULTRA_3050) {
9623                         ASC_DBG(1, "chksum error ignored; EEPROM-less board\n");
9624                         eep_config->init_sdtr = 0xFF;
9625                         eep_config->disc_enable = 0xFF;
9626                         eep_config->start_motor = 0xFF;
9627                         eep_config->use_cmd_qng = 0;
9628                         eep_config->max_total_qng = 0xF0;
9629                         eep_config->max_tag_qng = 0x20;
9630                         eep_config->cntl = 0xBFFF;
9631                         ASC_EEP_SET_CHIP_ID(eep_config, 7);
9632                         eep_config->no_scam = 0;
9633                         eep_config->adapter_info[0] = 0;
9634                         eep_config->adapter_info[1] = 0;
9635                         eep_config->adapter_info[2] = 0;
9636                         eep_config->adapter_info[3] = 0;
9637                         eep_config->adapter_info[4] = 0;
9638                         /* Indicate EEPROM-less board. */
9639                         eep_config->adapter_info[5] = 0xBB;
9640                 } else {
9641                         ASC_PRINT
9642                             ("AscInitFromEEP: EEPROM checksum error; Will try to re-write EEPROM.\n");
9643                         write_eep = 1;
9644                         warn_code |= ASC_WARN_EEPROM_CHKSUM;
9645                 }
9646         }
9647         asc_dvc->cfg->sdtr_enable = eep_config->init_sdtr;
9648         asc_dvc->cfg->disc_enable = eep_config->disc_enable;
9649         asc_dvc->cfg->cmd_qng_enabled = eep_config->use_cmd_qng;
9650         asc_dvc->cfg->isa_dma_speed = ASC_EEP_GET_DMA_SPD(eep_config);
9651         asc_dvc->start_motor = eep_config->start_motor;
9652         asc_dvc->dvc_cntl = eep_config->cntl;
9653         asc_dvc->no_scam = eep_config->no_scam;
9654         asc_dvc->cfg->adapter_info[0] = eep_config->adapter_info[0];
9655         asc_dvc->cfg->adapter_info[1] = eep_config->adapter_info[1];
9656         asc_dvc->cfg->adapter_info[2] = eep_config->adapter_info[2];
9657         asc_dvc->cfg->adapter_info[3] = eep_config->adapter_info[3];
9658         asc_dvc->cfg->adapter_info[4] = eep_config->adapter_info[4];
9659         asc_dvc->cfg->adapter_info[5] = eep_config->adapter_info[5];
9660         if (!AscTestExternalLram(asc_dvc)) {
9661                 if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) ==
9662                      ASC_IS_PCI_ULTRA)) {
9663                         eep_config->max_total_qng =
9664                             ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG;
9665                         eep_config->max_tag_qng =
9666                             ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG;
9667                 } else {
9668                         eep_config->cfg_msw |= 0x0800;
9669                         cfg_msw |= 0x0800;
9670                         AscSetChipCfgMsw(iop_base, cfg_msw);
9671                         eep_config->max_total_qng = ASC_MAX_PCI_INRAM_TOTAL_QNG;
9672                         eep_config->max_tag_qng = ASC_MAX_INRAM_TAG_QNG;
9673                 }
9674         } else {
9675         }
9676         if (eep_config->max_total_qng < ASC_MIN_TOTAL_QNG) {
9677                 eep_config->max_total_qng = ASC_MIN_TOTAL_QNG;
9678         }
9679         if (eep_config->max_total_qng > ASC_MAX_TOTAL_QNG) {
9680                 eep_config->max_total_qng = ASC_MAX_TOTAL_QNG;
9681         }
9682         if (eep_config->max_tag_qng > eep_config->max_total_qng) {
9683                 eep_config->max_tag_qng = eep_config->max_total_qng;
9684         }
9685         if (eep_config->max_tag_qng < ASC_MIN_TAG_Q_PER_DVC) {
9686                 eep_config->max_tag_qng = ASC_MIN_TAG_Q_PER_DVC;
9687         }
9688         asc_dvc->max_total_qng = eep_config->max_total_qng;
9689         if ((eep_config->use_cmd_qng & eep_config->disc_enable) !=
9690             eep_config->use_cmd_qng) {
9691                 eep_config->disc_enable = eep_config->use_cmd_qng;
9692                 warn_code |= ASC_WARN_CMD_QNG_CONFLICT;
9693         }
9694         ASC_EEP_SET_CHIP_ID(eep_config,
9695                             ASC_EEP_GET_CHIP_ID(eep_config) & ASC_MAX_TID);
9696         asc_dvc->cfg->chip_scsi_id = ASC_EEP_GET_CHIP_ID(eep_config);
9697         if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) &&
9698             !(asc_dvc->dvc_cntl & ASC_CNTL_SDTR_ENABLE_ULTRA)) {
9699                 asc_dvc->min_sdtr_index = ASC_SDTR_ULTRA_PCI_10MB_INDEX;
9700         }
9701
9702         for (i = 0; i <= ASC_MAX_TID; i++) {
9703                 asc_dvc->dos_int13_table[i] = eep_config->dos_int13_table[i];
9704                 asc_dvc->cfg->max_tag_qng[i] = eep_config->max_tag_qng;
9705                 asc_dvc->cfg->sdtr_period_offset[i] =
9706                     (uchar)(ASC_DEF_SDTR_OFFSET |
9707                             (asc_dvc->min_sdtr_index << 4));
9708         }
9709         eep_config->cfg_msw = AscGetChipCfgMsw(iop_base);
9710         if (write_eep) {
9711                 if ((i = AscSetEEPConfig(iop_base, eep_config,
9712                                      asc_dvc->bus_type)) != 0) {
9713                         ASC_PRINT1
9714                             ("AscInitFromEEP: Failed to re-write EEPROM with %d errors.\n",
9715                              i);
9716                 } else {
9717                         ASC_PRINT
9718                             ("AscInitFromEEP: Successfully re-wrote EEPROM.\n");
9719                 }
9720         }
9721         return (warn_code);
9722 }
9723
9724 static int AscInitGetConfig(struct Scsi_Host *shost)
9725 {
9726         struct asc_board *board = shost_priv(shost);
9727         ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var;
9728         unsigned short warn_code = 0;
9729
9730         asc_dvc->init_state = ASC_INIT_STATE_BEG_GET_CFG;
9731         if (asc_dvc->err_code != 0)
9732                 return asc_dvc->err_code;
9733
9734         if (AscFindSignature(asc_dvc->iop_base)) {
9735                 warn_code |= AscInitAscDvcVar(asc_dvc);
9736                 warn_code |= AscInitFromEEP(asc_dvc);
9737                 asc_dvc->init_state |= ASC_INIT_STATE_END_GET_CFG;
9738                 if (asc_dvc->scsi_reset_wait > ASC_MAX_SCSI_RESET_WAIT)
9739                         asc_dvc->scsi_reset_wait = ASC_MAX_SCSI_RESET_WAIT;
9740         } else {
9741                 asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
9742         }
9743
9744         switch (warn_code) {
9745         case 0: /* No error */
9746                 break;
9747         case ASC_WARN_IO_PORT_ROTATE:
9748                 shost_printk(KERN_WARNING, shost, "I/O port address "
9749                                 "modified\n");
9750                 break;
9751         case ASC_WARN_AUTO_CONFIG:
9752                 shost_printk(KERN_WARNING, shost, "I/O port increment switch "
9753                                 "enabled\n");
9754                 break;
9755         case ASC_WARN_EEPROM_CHKSUM:
9756                 shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n");
9757                 break;
9758         case ASC_WARN_IRQ_MODIFIED:
9759                 shost_printk(KERN_WARNING, shost, "IRQ modified\n");
9760                 break;
9761         case ASC_WARN_CMD_QNG_CONFLICT:
9762                 shost_printk(KERN_WARNING, shost, "tag queuing enabled w/o "
9763                                 "disconnects\n");
9764                 break;
9765         default:
9766                 shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n",
9767                                 warn_code);
9768                 break;
9769         }
9770
9771         if (asc_dvc->err_code != 0)
9772                 shost_printk(KERN_ERR, shost, "error 0x%x at init_state "
9773                         "0x%x\n", asc_dvc->err_code, asc_dvc->init_state);
9774
9775         return asc_dvc->err_code;
9776 }
9777
9778 static int AscInitSetConfig(struct pci_dev *pdev, struct Scsi_Host *shost)
9779 {
9780         struct asc_board *board = shost_priv(shost);
9781         ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var;
9782         PortAddr iop_base = asc_dvc->iop_base;
9783         unsigned short cfg_msw;
9784         unsigned short warn_code = 0;
9785
9786         asc_dvc->init_state |= ASC_INIT_STATE_BEG_SET_CFG;
9787         if (asc_dvc->err_code != 0)
9788                 return asc_dvc->err_code;
9789         if (!AscFindSignature(asc_dvc->iop_base)) {
9790                 asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
9791                 return asc_dvc->err_code;
9792         }
9793
9794         cfg_msw = AscGetChipCfgMsw(iop_base);
9795         if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) {
9796                 cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
9797                 warn_code |= ASC_WARN_CFG_MSW_RECOVER;
9798                 AscSetChipCfgMsw(iop_base, cfg_msw);
9799         }
9800         if ((asc_dvc->cfg->cmd_qng_enabled & asc_dvc->cfg->disc_enable) !=
9801             asc_dvc->cfg->cmd_qng_enabled) {
9802                 asc_dvc->cfg->disc_enable = asc_dvc->cfg->cmd_qng_enabled;
9803                 warn_code |= ASC_WARN_CMD_QNG_CONFLICT;
9804         }
9805         if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) {
9806                 warn_code |= ASC_WARN_AUTO_CONFIG;
9807         }
9808 #ifdef CONFIG_PCI
9809         if (asc_dvc->bus_type & ASC_IS_PCI) {
9810                 cfg_msw &= 0xFFC0;
9811                 AscSetChipCfgMsw(iop_base, cfg_msw);
9812                 if ((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) {
9813                 } else {
9814                         if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) ||
9815                             (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) {
9816                                 asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_IF_NOT_DWB;
9817                                 asc_dvc->bug_fix_cntl |=
9818                                     ASC_BUG_FIX_ASYN_USE_SYN;
9819                         }
9820                 }
9821         } else
9822 #endif /* CONFIG_PCI */
9823         if (asc_dvc->bus_type == ASC_IS_ISAPNP) {
9824                 if (AscGetChipVersion(iop_base, asc_dvc->bus_type)
9825                     == ASC_CHIP_VER_ASYN_BUG) {
9826                         asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_ASYN_USE_SYN;
9827                 }
9828         }
9829         if (AscSetChipScsiID(iop_base, asc_dvc->cfg->chip_scsi_id) !=
9830             asc_dvc->cfg->chip_scsi_id) {
9831                 asc_dvc->err_code |= ASC_IERR_SET_SCSI_ID;
9832         }
9833 #ifdef CONFIG_ISA
9834         if (asc_dvc->bus_type & ASC_IS_ISA) {
9835                 AscSetIsaDmaChannel(iop_base, asc_dvc->cfg->isa_dma_channel);
9836                 AscSetIsaDmaSpeed(iop_base, asc_dvc->cfg->isa_dma_speed);
9837         }
9838 #endif /* CONFIG_ISA */
9839
9840         asc_dvc->init_state |= ASC_INIT_STATE_END_SET_CFG;
9841
9842         switch (warn_code) {
9843         case 0: /* No error. */
9844                 break;
9845         case ASC_WARN_IO_PORT_ROTATE:
9846                 shost_printk(KERN_WARNING, shost, "I/O port address "
9847                                 "modified\n");
9848                 break;
9849         case ASC_WARN_AUTO_CONFIG:
9850                 shost_printk(KERN_WARNING, shost, "I/O port increment switch "
9851                                 "enabled\n");
9852                 break;
9853         case ASC_WARN_EEPROM_CHKSUM:
9854                 shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n");
9855                 break;
9856         case ASC_WARN_IRQ_MODIFIED:
9857                 shost_printk(KERN_WARNING, shost, "IRQ modified\n");
9858                 break;
9859         case ASC_WARN_CMD_QNG_CONFLICT:
9860                 shost_printk(KERN_WARNING, shost, "tag queuing w/o "
9861                                 "disconnects\n");
9862                 break;
9863         default:
9864                 shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n",
9865                                 warn_code);
9866                 break;
9867         }
9868
9869         if (asc_dvc->err_code != 0)
9870                 shost_printk(KERN_ERR, shost, "error 0x%x at init_state "
9871                         "0x%x\n", asc_dvc->err_code, asc_dvc->init_state);
9872
9873         return asc_dvc->err_code;
9874 }
9875
9876 /*
9877  * EEPROM Configuration.
9878  *
9879  * All drivers should use this structure to set the default EEPROM
9880  * configuration. The BIOS now uses this structure when it is built.
9881  * Additional structure information can be found in a_condor.h where
9882  * the structure is defined.
9883  *
9884  * The *_Field_IsChar structs are needed to correct for endianness.
9885  * These values are read from the board 16 bits at a time directly
9886  * into the structs. Because some fields are char, the values will be
9887  * in the wrong order. The *_Field_IsChar tells when to flip the
9888  * bytes. Data read and written to PCI memory is automatically swapped
9889  * on big-endian platforms so char fields read as words are actually being
9890  * unswapped on big-endian platforms.
9891  */
9892 static ADVEEP_3550_CONFIG Default_3550_EEPROM_Config = {
9893         ADV_EEPROM_BIOS_ENABLE, /* cfg_lsw */
9894         0x0000,                 /* cfg_msw */
9895         0xFFFF,                 /* disc_enable */
9896         0xFFFF,                 /* wdtr_able */
9897         0xFFFF,                 /* sdtr_able */
9898         0xFFFF,                 /* start_motor */
9899         0xFFFF,                 /* tagqng_able */
9900         0xFFFF,                 /* bios_scan */
9901         0,                      /* scam_tolerant */
9902         7,                      /* adapter_scsi_id */
9903         0,                      /* bios_boot_delay */
9904         3,                      /* scsi_reset_delay */
9905         0,                      /* bios_id_lun */
9906         0,                      /* termination */
9907         0,                      /* reserved1 */
9908         0xFFE7,                 /* bios_ctrl */
9909         0xFFFF,                 /* ultra_able */
9910         0,                      /* reserved2 */
9911         ASC_DEF_MAX_HOST_QNG,   /* max_host_qng */
9912         ASC_DEF_MAX_DVC_QNG,    /* max_dvc_qng */
9913         0,                      /* dvc_cntl */
9914         0,                      /* bug_fix */
9915         0,                      /* serial_number_word1 */
9916         0,                      /* serial_number_word2 */
9917         0,                      /* serial_number_word3 */
9918         0,                      /* check_sum */
9919         {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
9920         ,                       /* oem_name[16] */
9921         0,                      /* dvc_err_code */
9922         0,                      /* adv_err_code */
9923         0,                      /* adv_err_addr */
9924         0,                      /* saved_dvc_err_code */
9925         0,                      /* saved_adv_err_code */
9926         0,                      /* saved_adv_err_addr */
9927         0                       /* num_of_err */
9928 };
9929
9930 static ADVEEP_3550_CONFIG ADVEEP_3550_Config_Field_IsChar = {
9931         0,                      /* cfg_lsw */
9932         0,                      /* cfg_msw */
9933         0,                      /* -disc_enable */
9934         0,                      /* wdtr_able */
9935         0,                      /* sdtr_able */
9936         0,                      /* start_motor */
9937         0,                      /* tagqng_able */
9938         0,                      /* bios_scan */
9939         0,                      /* scam_tolerant */
9940         1,                      /* adapter_scsi_id */
9941         1,                      /* bios_boot_delay */
9942         1,                      /* scsi_reset_delay */
9943         1,                      /* bios_id_lun */
9944         1,                      /* termination */
9945         1,                      /* reserved1 */
9946         0,                      /* bios_ctrl */
9947         0,                      /* ultra_able */
9948         0,                      /* reserved2 */
9949         1,                      /* max_host_qng */
9950         1,                      /* max_dvc_qng */
9951         0,                      /* dvc_cntl */
9952         0,                      /* bug_fix */
9953         0,                      /* serial_number_word1 */
9954         0,                      /* serial_number_word2 */
9955         0,                      /* serial_number_word3 */
9956         0,                      /* check_sum */
9957         {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
9958         ,                       /* oem_name[16] */
9959         0,                      /* dvc_err_code */
9960         0,                      /* adv_err_code */
9961         0,                      /* adv_err_addr */
9962         0,                      /* saved_dvc_err_code */
9963         0,                      /* saved_adv_err_code */
9964         0,                      /* saved_adv_err_addr */
9965         0                       /* num_of_err */
9966 };
9967
9968 static ADVEEP_38C0800_CONFIG Default_38C0800_EEPROM_Config = {
9969         ADV_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
9970         0x0000,                 /* 01 cfg_msw */
9971         0xFFFF,                 /* 02 disc_enable */
9972         0xFFFF,                 /* 03 wdtr_able */
9973         0x4444,                 /* 04 sdtr_speed1 */
9974         0xFFFF,                 /* 05 start_motor */
9975         0xFFFF,                 /* 06 tagqng_able */
9976         0xFFFF,                 /* 07 bios_scan */
9977         0,                      /* 08 scam_tolerant */
9978         7,                      /* 09 adapter_scsi_id */
9979         0,                      /*    bios_boot_delay */
9980         3,                      /* 10 scsi_reset_delay */
9981         0,                      /*    bios_id_lun */
9982         0,                      /* 11 termination_se */
9983         0,                      /*    termination_lvd */
9984         0xFFE7,                 /* 12 bios_ctrl */
9985         0x4444,                 /* 13 sdtr_speed2 */
9986         0x4444,                 /* 14 sdtr_speed3 */
9987         ASC_DEF_MAX_HOST_QNG,   /* 15 max_host_qng */
9988         ASC_DEF_MAX_DVC_QNG,    /*    max_dvc_qng */
9989         0,                      /* 16 dvc_cntl */
9990         0x4444,                 /* 17 sdtr_speed4 */
9991         0,                      /* 18 serial_number_word1 */
9992         0,                      /* 19 serial_number_word2 */
9993         0,                      /* 20 serial_number_word3 */
9994         0,                      /* 21 check_sum */
9995         {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
9996         ,                       /* 22-29 oem_name[16] */
9997         0,                      /* 30 dvc_err_code */
9998         0,                      /* 31 adv_err_code */
9999         0,                      /* 32 adv_err_addr */
10000         0,                      /* 33 saved_dvc_err_code */
10001         0,                      /* 34 saved_adv_err_code */
10002         0,                      /* 35 saved_adv_err_addr */
10003         0,                      /* 36 reserved */
10004         0,                      /* 37 reserved */
10005         0,                      /* 38 reserved */
10006         0,                      /* 39 reserved */
10007         0,                      /* 40 reserved */
10008         0,                      /* 41 reserved */
10009         0,                      /* 42 reserved */
10010         0,                      /* 43 reserved */
10011         0,                      /* 44 reserved */
10012         0,                      /* 45 reserved */
10013         0,                      /* 46 reserved */
10014         0,                      /* 47 reserved */
10015         0,                      /* 48 reserved */
10016         0,                      /* 49 reserved */
10017         0,                      /* 50 reserved */
10018         0,                      /* 51 reserved */
10019         0,                      /* 52 reserved */
10020         0,                      /* 53 reserved */
10021         0,                      /* 54 reserved */
10022         0,                      /* 55 reserved */
10023         0,                      /* 56 cisptr_lsw */
10024         0,                      /* 57 cisprt_msw */
10025         PCI_VENDOR_ID_ASP,      /* 58 subsysvid */
10026         PCI_DEVICE_ID_38C0800_REV1,     /* 59 subsysid */
10027         0,                      /* 60 reserved */
10028         0,                      /* 61 reserved */
10029         0,                      /* 62 reserved */
10030         0                       /* 63 reserved */
10031 };
10032
10033 static ADVEEP_38C0800_CONFIG ADVEEP_38C0800_Config_Field_IsChar = {
10034         0,                      /* 00 cfg_lsw */
10035         0,                      /* 01 cfg_msw */
10036         0,                      /* 02 disc_enable */
10037         0,                      /* 03 wdtr_able */
10038         0,                      /* 04 sdtr_speed1 */
10039         0,                      /* 05 start_motor */
10040         0,                      /* 06 tagqng_able */
10041         0,                      /* 07 bios_scan */
10042         0,                      /* 08 scam_tolerant */
10043         1,                      /* 09 adapter_scsi_id */
10044         1,                      /*    bios_boot_delay */
10045         1,                      /* 10 scsi_reset_delay */
10046         1,                      /*    bios_id_lun */
10047         1,                      /* 11 termination_se */
10048         1,                      /*    termination_lvd */
10049         0,                      /* 12 bios_ctrl */
10050         0,                      /* 13 sdtr_speed2 */
10051         0,                      /* 14 sdtr_speed3 */
10052         1,                      /* 15 max_host_qng */
10053         1,                      /*    max_dvc_qng */
10054         0,                      /* 16 dvc_cntl */
10055         0,                      /* 17 sdtr_speed4 */
10056         0,                      /* 18 serial_number_word1 */
10057         0,                      /* 19 serial_number_word2 */
10058         0,                      /* 20 serial_number_word3 */
10059         0,                      /* 21 check_sum */
10060         {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
10061         ,                       /* 22-29 oem_name[16] */
10062         0,                      /* 30 dvc_err_code */
10063         0,                      /* 31 adv_err_code */
10064         0,                      /* 32 adv_err_addr */
10065         0,                      /* 33 saved_dvc_err_code */
10066         0,                      /* 34 saved_adv_err_code */
10067         0,                      /* 35 saved_adv_err_addr */
10068         0,                      /* 36 reserved */
10069         0,                      /* 37 reserved */
10070         0,                      /* 38 reserved */
10071         0,                      /* 39 reserved */
10072         0,                      /* 40 reserved */
10073         0,                      /* 41 reserved */
10074         0,                      /* 42 reserved */
10075         0,                      /* 43 reserved */
10076         0,                      /* 44 reserved */
10077         0,                      /* 45 reserved */
10078         0,                      /* 46 reserved */
10079         0,                      /* 47 reserved */
10080         0,                      /* 48 reserved */
10081         0,                      /* 49 reserved */
10082         0,                      /* 50 reserved */
10083         0,                      /* 51 reserved */
10084         0,                      /* 52 reserved */
10085         0,                      /* 53 reserved */
10086         0,                      /* 54 reserved */
10087         0,                      /* 55 reserved */
10088         0,                      /* 56 cisptr_lsw */
10089         0,                      /* 57 cisprt_msw */
10090         0,                      /* 58 subsysvid */
10091         0,                      /* 59 subsysid */
10092         0,                      /* 60 reserved */
10093         0,                      /* 61 reserved */
10094         0,                      /* 62 reserved */
10095         0                       /* 63 reserved */
10096 };
10097
10098 static ADVEEP_38C1600_CONFIG Default_38C1600_EEPROM_Config = {
10099         ADV_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
10100         0x0000,                 /* 01 cfg_msw */
10101         0xFFFF,                 /* 02 disc_enable */
10102         0xFFFF,                 /* 03 wdtr_able */
10103         0x5555,                 /* 04 sdtr_speed1 */
10104         0xFFFF,                 /* 05 start_motor */
10105         0xFFFF,                 /* 06 tagqng_able */
10106         0xFFFF,                 /* 07 bios_scan */
10107         0,                      /* 08 scam_tolerant */
10108         7,                      /* 09 adapter_scsi_id */
10109         0,                      /*    bios_boot_delay */
10110         3,                      /* 10 scsi_reset_delay */
10111         0,                      /*    bios_id_lun */
10112         0,                      /* 11 termination_se */
10113         0,                      /*    termination_lvd */
10114         0xFFE7,                 /* 12 bios_ctrl */
10115         0x5555,                 /* 13 sdtr_speed2 */
10116         0x5555,                 /* 14 sdtr_speed3 */
10117         ASC_DEF_MAX_HOST_QNG,   /* 15 max_host_qng */
10118         ASC_DEF_MAX_DVC_QNG,    /*    max_dvc_qng */
10119         0,                      /* 16 dvc_cntl */
10120         0x5555,                 /* 17 sdtr_speed4 */
10121         0,                      /* 18 serial_number_word1 */
10122         0,                      /* 19 serial_number_word2 */
10123         0,                      /* 20 serial_number_word3 */
10124         0,                      /* 21 check_sum */
10125         {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
10126         ,                       /* 22-29 oem_name[16] */
10127         0,                      /* 30 dvc_err_code */
10128         0,                      /* 31 adv_err_code */
10129         0,                      /* 32 adv_err_addr */
10130         0,                      /* 33 saved_dvc_err_code */
10131         0,                      /* 34 saved_adv_err_code */
10132         0,                      /* 35 saved_adv_err_addr */
10133         0,                      /* 36 reserved */
10134         0,                      /* 37 reserved */
10135         0,                      /* 38 reserved */
10136         0,                      /* 39 reserved */
10137         0,                      /* 40 reserved */
10138         0,                      /* 41 reserved */
10139         0,                      /* 42 reserved */
10140         0,                      /* 43 reserved */
10141         0,                      /* 44 reserved */
10142         0,                      /* 45 reserved */
10143         0,                      /* 46 reserved */
10144         0,                      /* 47 reserved */
10145         0,                      /* 48 reserved */
10146         0,                      /* 49 reserved */
10147         0,                      /* 50 reserved */
10148         0,                      /* 51 reserved */
10149         0,                      /* 52 reserved */
10150         0,                      /* 53 reserved */
10151         0,                      /* 54 reserved */
10152         0,                      /* 55 reserved */
10153         0,                      /* 56 cisptr_lsw */
10154         0,                      /* 57 cisprt_msw */
10155         PCI_VENDOR_ID_ASP,      /* 58 subsysvid */
10156         PCI_DEVICE_ID_38C1600_REV1,     /* 59 subsysid */
10157         0,                      /* 60 reserved */
10158         0,                      /* 61 reserved */
10159         0,                      /* 62 reserved */
10160         0                       /* 63 reserved */
10161 };
10162
10163 static ADVEEP_38C1600_CONFIG ADVEEP_38C1600_Config_Field_IsChar = {
10164         0,                      /* 00 cfg_lsw */
10165         0,                      /* 01 cfg_msw */
10166         0,                      /* 02 disc_enable */
10167         0,                      /* 03 wdtr_able */
10168         0,                      /* 04 sdtr_speed1 */
10169         0,                      /* 05 start_motor */
10170         0,                      /* 06 tagqng_able */
10171         0,                      /* 07 bios_scan */
10172         0,                      /* 08 scam_tolerant */
10173         1,                      /* 09 adapter_scsi_id */
10174         1,                      /*    bios_boot_delay */
10175         1,                      /* 10 scsi_reset_delay */
10176         1,                      /*    bios_id_lun */
10177         1,                      /* 11 termination_se */
10178         1,                      /*    termination_lvd */
10179         0,                      /* 12 bios_ctrl */
10180         0,                      /* 13 sdtr_speed2 */
10181         0,                      /* 14 sdtr_speed3 */
10182         1,                      /* 15 max_host_qng */
10183         1,                      /*    max_dvc_qng */
10184         0,                      /* 16 dvc_cntl */
10185         0,                      /* 17 sdtr_speed4 */
10186         0,                      /* 18 serial_number_word1 */
10187         0,                      /* 19 serial_number_word2 */
10188         0,                      /* 20 serial_number_word3 */
10189         0,                      /* 21 check_sum */
10190         {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
10191         ,                       /* 22-29 oem_name[16] */
10192         0,                      /* 30 dvc_err_code */
10193         0,                      /* 31 adv_err_code */
10194         0,                      /* 32 adv_err_addr */
10195         0,                      /* 33 saved_dvc_err_code */
10196         0,                      /* 34 saved_adv_err_code */
10197         0,                      /* 35 saved_adv_err_addr */
10198         0,                      /* 36 reserved */
10199         0,                      /* 37 reserved */
10200         0,                      /* 38 reserved */
10201         0,                      /* 39 reserved */
10202         0,                      /* 40 reserved */
10203         0,                      /* 41 reserved */
10204         0,                      /* 42 reserved */
10205         0,                      /* 43 reserved */
10206         0,                      /* 44 reserved */
10207         0,                      /* 45 reserved */
10208         0,                      /* 46 reserved */
10209         0,                      /* 47 reserved */
10210         0,                      /* 48 reserved */
10211         0,                      /* 49 reserved */
10212         0,                      /* 50 reserved */
10213         0,                      /* 51 reserved */
10214         0,                      /* 52 reserved */
10215         0,                      /* 53 reserved */
10216         0,                      /* 54 reserved */
10217         0,                      /* 55 reserved */
10218         0,                      /* 56 cisptr_lsw */
10219         0,                      /* 57 cisprt_msw */
10220         0,                      /* 58 subsysvid */
10221         0,                      /* 59 subsysid */
10222         0,                      /* 60 reserved */
10223         0,                      /* 61 reserved */
10224         0,                      /* 62 reserved */
10225         0                       /* 63 reserved */
10226 };
10227
10228 #ifdef CONFIG_PCI
10229 /*
10230  * Wait for EEPROM command to complete
10231  */
10232 static void AdvWaitEEPCmd(AdvPortAddr iop_base)
10233 {
10234         int eep_delay_ms;
10235
10236         for (eep_delay_ms = 0; eep_delay_ms < ADV_EEP_DELAY_MS; eep_delay_ms++) {
10237                 if (AdvReadWordRegister(iop_base, IOPW_EE_CMD) &
10238                     ASC_EEP_CMD_DONE) {
10239                         break;
10240                 }
10241                 mdelay(1);
10242         }
10243         if ((AdvReadWordRegister(iop_base, IOPW_EE_CMD) & ASC_EEP_CMD_DONE) ==
10244             0)
10245                 BUG();
10246 }
10247
10248 /*
10249  * Read the EEPROM from specified location
10250  */
10251 static ushort AdvReadEEPWord(AdvPortAddr iop_base, int eep_word_addr)
10252 {
10253         AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10254                              ASC_EEP_CMD_READ | eep_word_addr);
10255         AdvWaitEEPCmd(iop_base);
10256         return AdvReadWordRegister(iop_base, IOPW_EE_DATA);
10257 }
10258
10259 /*
10260  * Write the EEPROM from 'cfg_buf'.
10261  */
10262 static void AdvSet3550EEPConfig(AdvPortAddr iop_base,
10263                                 ADVEEP_3550_CONFIG *cfg_buf)
10264 {
10265         ushort *wbuf;
10266         ushort addr, chksum;
10267         ushort *charfields;
10268
10269         wbuf = (ushort *)cfg_buf;
10270         charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar;
10271         chksum = 0;
10272
10273         AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
10274         AdvWaitEEPCmd(iop_base);
10275
10276         /*
10277          * Write EEPROM from word 0 to word 20.
10278          */
10279         for (addr = ADV_EEP_DVC_CFG_BEGIN;
10280              addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
10281                 ushort word;
10282
10283                 if (*charfields++) {
10284                         word = cpu_to_le16(*wbuf);
10285                 } else {
10286                         word = *wbuf;
10287                 }
10288                 chksum += *wbuf;        /* Checksum is calculated from word values. */
10289                 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10290                 AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10291                                      ASC_EEP_CMD_WRITE | addr);
10292                 AdvWaitEEPCmd(iop_base);
10293                 mdelay(ADV_EEP_DELAY_MS);
10294         }
10295
10296         /*
10297          * Write EEPROM checksum at word 21.
10298          */
10299         AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
10300         AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
10301         AdvWaitEEPCmd(iop_base);
10302         wbuf++;
10303         charfields++;
10304
10305         /*
10306          * Write EEPROM OEM name at words 22 to 29.
10307          */
10308         for (addr = ADV_EEP_DVC_CTL_BEGIN;
10309              addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
10310                 ushort word;
10311
10312                 if (*charfields++) {
10313                         word = cpu_to_le16(*wbuf);
10314                 } else {
10315                         word = *wbuf;
10316                 }
10317                 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10318                 AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10319                                      ASC_EEP_CMD_WRITE | addr);
10320                 AdvWaitEEPCmd(iop_base);
10321         }
10322         AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
10323         AdvWaitEEPCmd(iop_base);
10324 }
10325
10326 /*
10327  * Write the EEPROM from 'cfg_buf'.
10328  */
10329 static void AdvSet38C0800EEPConfig(AdvPortAddr iop_base,
10330                                    ADVEEP_38C0800_CONFIG *cfg_buf)
10331 {
10332         ushort *wbuf;
10333         ushort *charfields;
10334         ushort addr, chksum;
10335
10336         wbuf = (ushort *)cfg_buf;
10337         charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar;
10338         chksum = 0;
10339
10340         AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
10341         AdvWaitEEPCmd(iop_base);
10342
10343         /*
10344          * Write EEPROM from word 0 to word 20.
10345          */
10346         for (addr = ADV_EEP_DVC_CFG_BEGIN;
10347              addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
10348                 ushort word;
10349
10350                 if (*charfields++) {
10351                         word = cpu_to_le16(*wbuf);
10352                 } else {
10353                         word = *wbuf;
10354                 }
10355                 chksum += *wbuf;        /* Checksum is calculated from word values. */
10356                 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10357                 AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10358                                      ASC_EEP_CMD_WRITE | addr);
10359                 AdvWaitEEPCmd(iop_base);
10360                 mdelay(ADV_EEP_DELAY_MS);
10361         }
10362
10363         /*
10364          * Write EEPROM checksum at word 21.
10365          */
10366         AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
10367         AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
10368         AdvWaitEEPCmd(iop_base);
10369         wbuf++;
10370         charfields++;
10371
10372         /*
10373          * Write EEPROM OEM name at words 22 to 29.
10374          */
10375         for (addr = ADV_EEP_DVC_CTL_BEGIN;
10376              addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
10377                 ushort word;
10378
10379                 if (*charfields++) {
10380                         word = cpu_to_le16(*wbuf);
10381                 } else {
10382                         word = *wbuf;
10383                 }
10384                 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10385                 AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10386                                      ASC_EEP_CMD_WRITE | addr);
10387                 AdvWaitEEPCmd(iop_base);
10388         }
10389         AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
10390         AdvWaitEEPCmd(iop_base);
10391 }
10392
10393 /*
10394  * Write the EEPROM from 'cfg_buf'.
10395  */
10396 static void AdvSet38C1600EEPConfig(AdvPortAddr iop_base,
10397                                    ADVEEP_38C1600_CONFIG *cfg_buf)
10398 {
10399         ushort *wbuf;
10400         ushort *charfields;
10401         ushort addr, chksum;
10402
10403         wbuf = (ushort *)cfg_buf;
10404         charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar;
10405         chksum = 0;
10406
10407         AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
10408         AdvWaitEEPCmd(iop_base);
10409
10410         /*
10411          * Write EEPROM from word 0 to word 20.
10412          */
10413         for (addr = ADV_EEP_DVC_CFG_BEGIN;
10414              addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
10415                 ushort word;
10416
10417                 if (*charfields++) {
10418                         word = cpu_to_le16(*wbuf);
10419                 } else {
10420                         word = *wbuf;
10421                 }
10422                 chksum += *wbuf;        /* Checksum is calculated from word values. */
10423                 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10424                 AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10425                                      ASC_EEP_CMD_WRITE | addr);
10426                 AdvWaitEEPCmd(iop_base);
10427                 mdelay(ADV_EEP_DELAY_MS);
10428         }
10429
10430         /*
10431          * Write EEPROM checksum at word 21.
10432          */
10433         AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
10434         AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
10435         AdvWaitEEPCmd(iop_base);
10436         wbuf++;
10437         charfields++;
10438
10439         /*
10440          * Write EEPROM OEM name at words 22 to 29.
10441          */
10442         for (addr = ADV_EEP_DVC_CTL_BEGIN;
10443              addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
10444                 ushort word;
10445
10446                 if (*charfields++) {
10447                         word = cpu_to_le16(*wbuf);
10448                 } else {
10449                         word = *wbuf;
10450                 }
10451                 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10452                 AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10453                                      ASC_EEP_CMD_WRITE | addr);
10454                 AdvWaitEEPCmd(iop_base);
10455         }
10456         AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
10457         AdvWaitEEPCmd(iop_base);
10458 }
10459
10460 /*
10461  * Read EEPROM configuration into the specified buffer.
10462  *
10463  * Return a checksum based on the EEPROM configuration read.
10464  */
10465 static ushort AdvGet3550EEPConfig(AdvPortAddr iop_base,
10466                                   ADVEEP_3550_CONFIG *cfg_buf)
10467 {
10468         ushort wval, chksum;
10469         ushort *wbuf;
10470         int eep_addr;
10471         ushort *charfields;
10472
10473         charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar;
10474         wbuf = (ushort *)cfg_buf;
10475         chksum = 0;
10476
10477         for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
10478              eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
10479                 wval = AdvReadEEPWord(iop_base, eep_addr);
10480                 chksum += wval; /* Checksum is calculated from word values. */
10481                 if (*charfields++) {
10482                         *wbuf = le16_to_cpu(wval);
10483                 } else {
10484                         *wbuf = wval;
10485                 }
10486         }
10487         /* Read checksum word. */
10488         *wbuf = AdvReadEEPWord(iop_base, eep_addr);
10489         wbuf++;
10490         charfields++;
10491
10492         /* Read rest of EEPROM not covered by the checksum. */
10493         for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
10494              eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
10495                 *wbuf = AdvReadEEPWord(iop_base, eep_addr);
10496                 if (*charfields++) {
10497                         *wbuf = le16_to_cpu(*wbuf);
10498                 }
10499         }
10500         return chksum;
10501 }
10502
10503 /*
10504  * Read EEPROM configuration into the specified buffer.
10505  *
10506  * Return a checksum based on the EEPROM configuration read.
10507  */
10508 static ushort AdvGet38C0800EEPConfig(AdvPortAddr iop_base,
10509                                      ADVEEP_38C0800_CONFIG *cfg_buf)
10510 {
10511         ushort wval, chksum;
10512         ushort *wbuf;
10513         int eep_addr;
10514         ushort *charfields;
10515
10516         charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar;
10517         wbuf = (ushort *)cfg_buf;
10518         chksum = 0;
10519
10520         for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
10521              eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
10522                 wval = AdvReadEEPWord(iop_base, eep_addr);
10523                 chksum += wval; /* Checksum is calculated from word values. */
10524                 if (*charfields++) {
10525                         *wbuf = le16_to_cpu(wval);
10526                 } else {
10527                         *wbuf = wval;
10528                 }
10529         }
10530         /* Read checksum word. */
10531         *wbuf = AdvReadEEPWord(iop_base, eep_addr);
10532         wbuf++;
10533         charfields++;
10534
10535         /* Read rest of EEPROM not covered by the checksum. */
10536         for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
10537              eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
10538                 *wbuf = AdvReadEEPWord(iop_base, eep_addr);
10539                 if (*charfields++) {
10540                         *wbuf = le16_to_cpu(*wbuf);
10541                 }
10542         }
10543         return chksum;
10544 }
10545
10546 /*
10547  * Read EEPROM configuration into the specified buffer.
10548  *
10549  * Return a checksum based on the EEPROM configuration read.
10550  */
10551 static ushort AdvGet38C1600EEPConfig(AdvPortAddr iop_base,
10552                                      ADVEEP_38C1600_CONFIG *cfg_buf)
10553 {
10554         ushort wval, chksum;
10555         ushort *wbuf;
10556         int eep_addr;
10557         ushort *charfields;
10558
10559         charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar;
10560         wbuf = (ushort *)cfg_buf;
10561         chksum = 0;
10562
10563         for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
10564              eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
10565                 wval = AdvReadEEPWord(iop_base, eep_addr);
10566                 chksum += wval; /* Checksum is calculated from word values. */
10567                 if (*charfields++) {
10568                         *wbuf = le16_to_cpu(wval);
10569                 } else {
10570                         *wbuf = wval;
10571                 }
10572         }
10573         /* Read checksum word. */
10574         *wbuf = AdvReadEEPWord(iop_base, eep_addr);
10575         wbuf++;
10576         charfields++;
10577
10578         /* Read rest of EEPROM not covered by the checksum. */
10579         for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
10580              eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
10581                 *wbuf = AdvReadEEPWord(iop_base, eep_addr);
10582                 if (*charfields++) {
10583                         *wbuf = le16_to_cpu(*wbuf);
10584                 }
10585         }
10586         return chksum;
10587 }
10588
10589 /*
10590  * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
10591  * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
10592  * all of this is done.
10593  *
10594  * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
10595  *
10596  * For a non-fatal error return a warning code. If there are no warnings
10597  * then 0 is returned.
10598  *
10599  * Note: Chip is stopped on entry.
10600  */
10601 static int AdvInitFrom3550EEP(ADV_DVC_VAR *asc_dvc)
10602 {
10603         AdvPortAddr iop_base;
10604         ushort warn_code;
10605         ADVEEP_3550_CONFIG eep_config;
10606
10607         iop_base = asc_dvc->iop_base;
10608
10609         warn_code = 0;
10610
10611         /*
10612          * Read the board's EEPROM configuration.
10613          *
10614          * Set default values if a bad checksum is found.
10615          */
10616         if (AdvGet3550EEPConfig(iop_base, &eep_config) != eep_config.check_sum) {
10617                 warn_code |= ASC_WARN_EEPROM_CHKSUM;
10618
10619                 /*
10620                  * Set EEPROM default values.
10621                  */
10622                 memcpy(&eep_config, &Default_3550_EEPROM_Config,
10623                         sizeof(ADVEEP_3550_CONFIG));
10624
10625                 /*
10626                  * Assume the 6 byte board serial number that was read from
10627                  * EEPROM is correct even if the EEPROM checksum failed.
10628                  */
10629                 eep_config.serial_number_word3 =
10630                     AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
10631
10632                 eep_config.serial_number_word2 =
10633                     AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
10634
10635                 eep_config.serial_number_word1 =
10636                     AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
10637
10638                 AdvSet3550EEPConfig(iop_base, &eep_config);
10639         }
10640         /*
10641          * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
10642          * EEPROM configuration that was read.
10643          *
10644          * This is the mapping of EEPROM fields to Adv Library fields.
10645          */
10646         asc_dvc->wdtr_able = eep_config.wdtr_able;
10647         asc_dvc->sdtr_able = eep_config.sdtr_able;
10648         asc_dvc->ultra_able = eep_config.ultra_able;
10649         asc_dvc->tagqng_able = eep_config.tagqng_able;
10650         asc_dvc->cfg->disc_enable = eep_config.disc_enable;
10651         asc_dvc->max_host_qng = eep_config.max_host_qng;
10652         asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10653         asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID);
10654         asc_dvc->start_motor = eep_config.start_motor;
10655         asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
10656         asc_dvc->bios_ctrl = eep_config.bios_ctrl;
10657         asc_dvc->no_scam = eep_config.scam_tolerant;
10658         asc_dvc->cfg->serial1 = eep_config.serial_number_word1;
10659         asc_dvc->cfg->serial2 = eep_config.serial_number_word2;
10660         asc_dvc->cfg->serial3 = eep_config.serial_number_word3;
10661
10662         /*
10663          * Set the host maximum queuing (max. 253, min. 16) and the per device
10664          * maximum queuing (max. 63, min. 4).
10665          */
10666         if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
10667                 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10668         } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
10669                 /* If the value is zero, assume it is uninitialized. */
10670                 if (eep_config.max_host_qng == 0) {
10671                         eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10672                 } else {
10673                         eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
10674                 }
10675         }
10676
10677         if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
10678                 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10679         } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
10680                 /* If the value is zero, assume it is uninitialized. */
10681                 if (eep_config.max_dvc_qng == 0) {
10682                         eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10683                 } else {
10684                         eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
10685                 }
10686         }
10687
10688         /*
10689          * If 'max_dvc_qng' is greater than 'max_host_qng', then
10690          * set 'max_dvc_qng' to 'max_host_qng'.
10691          */
10692         if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
10693                 eep_config.max_dvc_qng = eep_config.max_host_qng;
10694         }
10695
10696         /*
10697          * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
10698          * values based on possibly adjusted EEPROM values.
10699          */
10700         asc_dvc->max_host_qng = eep_config.max_host_qng;
10701         asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10702
10703         /*
10704          * If the EEPROM 'termination' field is set to automatic (0), then set
10705          * the ADV_DVC_CFG 'termination' field to automatic also.
10706          *
10707          * If the termination is specified with a non-zero 'termination'
10708          * value check that a legal value is set and set the ADV_DVC_CFG
10709          * 'termination' field appropriately.
10710          */
10711         if (eep_config.termination == 0) {
10712                 asc_dvc->cfg->termination = 0;  /* auto termination */
10713         } else {
10714                 /* Enable manual control with low off / high off. */
10715                 if (eep_config.termination == 1) {
10716                         asc_dvc->cfg->termination = TERM_CTL_SEL;
10717
10718                         /* Enable manual control with low off / high on. */
10719                 } else if (eep_config.termination == 2) {
10720                         asc_dvc->cfg->termination = TERM_CTL_SEL | TERM_CTL_H;
10721
10722                         /* Enable manual control with low on / high on. */
10723                 } else if (eep_config.termination == 3) {
10724                         asc_dvc->cfg->termination =
10725                             TERM_CTL_SEL | TERM_CTL_H | TERM_CTL_L;
10726                 } else {
10727                         /*
10728                          * The EEPROM 'termination' field contains a bad value. Use
10729                          * automatic termination instead.
10730                          */
10731                         asc_dvc->cfg->termination = 0;
10732                         warn_code |= ASC_WARN_EEPROM_TERMINATION;
10733                 }
10734         }
10735
10736         return warn_code;
10737 }
10738
10739 /*
10740  * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
10741  * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
10742  * all of this is done.
10743  *
10744  * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
10745  *
10746  * For a non-fatal error return a warning code. If there are no warnings
10747  * then 0 is returned.
10748  *
10749  * Note: Chip is stopped on entry.
10750  */
10751 static int AdvInitFrom38C0800EEP(ADV_DVC_VAR *asc_dvc)
10752 {
10753         AdvPortAddr iop_base;
10754         ushort warn_code;
10755         ADVEEP_38C0800_CONFIG eep_config;
10756         uchar tid, termination;
10757         ushort sdtr_speed = 0;
10758
10759         iop_base = asc_dvc->iop_base;
10760
10761         warn_code = 0;
10762
10763         /*
10764          * Read the board's EEPROM configuration.
10765          *
10766          * Set default values if a bad checksum is found.
10767          */
10768         if (AdvGet38C0800EEPConfig(iop_base, &eep_config) !=
10769             eep_config.check_sum) {
10770                 warn_code |= ASC_WARN_EEPROM_CHKSUM;
10771
10772                 /*
10773                  * Set EEPROM default values.
10774                  */
10775                 memcpy(&eep_config, &Default_38C0800_EEPROM_Config,
10776                         sizeof(ADVEEP_38C0800_CONFIG));
10777
10778                 /*
10779                  * Assume the 6 byte board serial number that was read from
10780                  * EEPROM is correct even if the EEPROM checksum failed.
10781                  */
10782                 eep_config.serial_number_word3 =
10783                     AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
10784
10785                 eep_config.serial_number_word2 =
10786                     AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
10787
10788                 eep_config.serial_number_word1 =
10789                     AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
10790
10791                 AdvSet38C0800EEPConfig(iop_base, &eep_config);
10792         }
10793         /*
10794          * Set ADV_DVC_VAR and ADV_DVC_CFG variables from the
10795          * EEPROM configuration that was read.
10796          *
10797          * This is the mapping of EEPROM fields to Adv Library fields.
10798          */
10799         asc_dvc->wdtr_able = eep_config.wdtr_able;
10800         asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1;
10801         asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2;
10802         asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3;
10803         asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4;
10804         asc_dvc->tagqng_able = eep_config.tagqng_able;
10805         asc_dvc->cfg->disc_enable = eep_config.disc_enable;
10806         asc_dvc->max_host_qng = eep_config.max_host_qng;
10807         asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10808         asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID);
10809         asc_dvc->start_motor = eep_config.start_motor;
10810         asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
10811         asc_dvc->bios_ctrl = eep_config.bios_ctrl;
10812         asc_dvc->no_scam = eep_config.scam_tolerant;
10813         asc_dvc->cfg->serial1 = eep_config.serial_number_word1;
10814         asc_dvc->cfg->serial2 = eep_config.serial_number_word2;
10815         asc_dvc->cfg->serial3 = eep_config.serial_number_word3;
10816
10817         /*
10818          * For every Target ID if any of its 'sdtr_speed[1234]' bits
10819          * are set, then set an 'sdtr_able' bit for it.
10820          */
10821         asc_dvc->sdtr_able = 0;
10822         for (tid = 0; tid <= ADV_MAX_TID; tid++) {
10823                 if (tid == 0) {
10824                         sdtr_speed = asc_dvc->sdtr_speed1;
10825                 } else if (tid == 4) {
10826                         sdtr_speed = asc_dvc->sdtr_speed2;
10827                 } else if (tid == 8) {
10828                         sdtr_speed = asc_dvc->sdtr_speed3;
10829                 } else if (tid == 12) {
10830                         sdtr_speed = asc_dvc->sdtr_speed4;
10831                 }
10832                 if (sdtr_speed & ADV_MAX_TID) {
10833                         asc_dvc->sdtr_able |= (1 << tid);
10834                 }
10835                 sdtr_speed >>= 4;
10836         }
10837
10838         /*
10839          * Set the host maximum queuing (max. 253, min. 16) and the per device
10840          * maximum queuing (max. 63, min. 4).
10841          */
10842         if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
10843                 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10844         } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
10845                 /* If the value is zero, assume it is uninitialized. */
10846                 if (eep_config.max_host_qng == 0) {
10847                         eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10848                 } else {
10849                         eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
10850                 }
10851         }
10852
10853         if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
10854                 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10855         } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
10856                 /* If the value is zero, assume it is uninitialized. */
10857                 if (eep_config.max_dvc_qng == 0) {
10858                         eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10859                 } else {
10860                         eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
10861                 }
10862         }
10863
10864         /*
10865          * If 'max_dvc_qng' is greater than 'max_host_qng', then
10866          * set 'max_dvc_qng' to 'max_host_qng'.
10867          */
10868         if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
10869                 eep_config.max_dvc_qng = eep_config.max_host_qng;
10870         }
10871
10872         /*
10873          * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
10874          * values based on possibly adjusted EEPROM values.
10875          */
10876         asc_dvc->max_host_qng = eep_config.max_host_qng;
10877         asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10878
10879         /*
10880          * If the EEPROM 'termination' field is set to automatic (0), then set
10881          * the ADV_DVC_CFG 'termination' field to automatic also.
10882          *
10883          * If the termination is specified with a non-zero 'termination'
10884          * value check that a legal value is set and set the ADV_DVC_CFG
10885          * 'termination' field appropriately.
10886          */
10887         if (eep_config.termination_se == 0) {
10888                 termination = 0;        /* auto termination for SE */
10889         } else {
10890                 /* Enable manual control with low off / high off. */
10891                 if (eep_config.termination_se == 1) {
10892                         termination = 0;
10893
10894                         /* Enable manual control with low off / high on. */
10895                 } else if (eep_config.termination_se == 2) {
10896                         termination = TERM_SE_HI;
10897
10898                         /* Enable manual control with low on / high on. */
10899                 } else if (eep_config.termination_se == 3) {
10900                         termination = TERM_SE;
10901                 } else {
10902                         /*
10903                          * The EEPROM 'termination_se' field contains a bad value.
10904                          * Use automatic termination instead.
10905                          */
10906                         termination = 0;
10907                         warn_code |= ASC_WARN_EEPROM_TERMINATION;
10908                 }
10909         }
10910
10911         if (eep_config.termination_lvd == 0) {
10912                 asc_dvc->cfg->termination = termination;        /* auto termination for LVD */
10913         } else {
10914                 /* Enable manual control with low off / high off. */
10915                 if (eep_config.termination_lvd == 1) {
10916                         asc_dvc->cfg->termination = termination;
10917
10918                         /* Enable manual control with low off / high on. */
10919                 } else if (eep_config.termination_lvd == 2) {
10920                         asc_dvc->cfg->termination = termination | TERM_LVD_HI;
10921
10922                         /* Enable manual control with low on / high on. */
10923                 } else if (eep_config.termination_lvd == 3) {
10924                         asc_dvc->cfg->termination = termination | TERM_LVD;
10925                 } else {
10926                         /*
10927                          * The EEPROM 'termination_lvd' field contains a bad value.
10928                          * Use automatic termination instead.
10929                          */
10930                         asc_dvc->cfg->termination = termination;
10931                         warn_code |= ASC_WARN_EEPROM_TERMINATION;
10932                 }
10933         }
10934
10935         return warn_code;
10936 }
10937
10938 /*
10939  * Read the board's EEPROM configuration. Set fields in ASC_DVC_VAR and
10940  * ASC_DVC_CFG based on the EEPROM settings. The chip is stopped while
10941  * all of this is done.
10942  *
10943  * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
10944  *
10945  * For a non-fatal error return a warning code. If there are no warnings
10946  * then 0 is returned.
10947  *
10948  * Note: Chip is stopped on entry.
10949  */
10950 static int AdvInitFrom38C1600EEP(ADV_DVC_VAR *asc_dvc)
10951 {
10952         AdvPortAddr iop_base;
10953         ushort warn_code;
10954         ADVEEP_38C1600_CONFIG eep_config;
10955         uchar tid, termination;
10956         ushort sdtr_speed = 0;
10957
10958         iop_base = asc_dvc->iop_base;
10959
10960         warn_code = 0;
10961
10962         /*
10963          * Read the board's EEPROM configuration.
10964          *
10965          * Set default values if a bad checksum is found.
10966          */
10967         if (AdvGet38C1600EEPConfig(iop_base, &eep_config) !=
10968             eep_config.check_sum) {
10969                 struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc);
10970                 warn_code |= ASC_WARN_EEPROM_CHKSUM;
10971
10972                 /*
10973                  * Set EEPROM default values.
10974                  */
10975                 memcpy(&eep_config, &Default_38C1600_EEPROM_Config,
10976                         sizeof(ADVEEP_38C1600_CONFIG));
10977
10978                 if (PCI_FUNC(pdev->devfn) != 0) {
10979                         u8 ints;
10980                         /*
10981                          * Disable Bit 14 (BIOS_ENABLE) to fix SPARC Ultra 60
10982                          * and old Mac system booting problem. The Expansion
10983                          * ROM must be disabled in Function 1 for these systems
10984                          */
10985                         eep_config.cfg_lsw &= ~ADV_EEPROM_BIOS_ENABLE;
10986                         /*
10987                          * Clear the INTAB (bit 11) if the GPIO 0 input
10988                          * indicates the Function 1 interrupt line is wired
10989                          * to INTB.
10990                          *
10991                          * Set/Clear Bit 11 (INTAB) from the GPIO bit 0 input:
10992                          *   1 - Function 1 interrupt line wired to INT A.
10993                          *   0 - Function 1 interrupt line wired to INT B.
10994                          *
10995                          * Note: Function 0 is always wired to INTA.
10996                          * Put all 5 GPIO bits in input mode and then read
10997                          * their input values.
10998                          */
10999                         AdvWriteByteRegister(iop_base, IOPB_GPIO_CNTL, 0);
11000                         ints = AdvReadByteRegister(iop_base, IOPB_GPIO_DATA);
11001                         if ((ints & 0x01) == 0)
11002                                 eep_config.cfg_lsw &= ~ADV_EEPROM_INTAB;
11003                 }
11004
11005                 /*
11006                  * Assume the 6 byte board serial number that was read from
11007                  * EEPROM is correct even if the EEPROM checksum failed.
11008                  */
11009                 eep_config.serial_number_word3 =
11010                         AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
11011                 eep_config.serial_number_word2 =
11012                         AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
11013                 eep_config.serial_number_word1 =
11014                         AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
11015
11016                 AdvSet38C1600EEPConfig(iop_base, &eep_config);
11017         }
11018
11019         /*
11020          * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
11021          * EEPROM configuration that was read.
11022          *
11023          * This is the mapping of EEPROM fields to Adv Library fields.
11024          */
11025         asc_dvc->wdtr_able = eep_config.wdtr_able;
11026         asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1;
11027         asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2;
11028         asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3;
11029         asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4;
11030         asc_dvc->ppr_able = 0;
11031         asc_dvc->tagqng_able = eep_config.tagqng_able;
11032         asc_dvc->cfg->disc_enable = eep_config.disc_enable;
11033         asc_dvc->max_host_qng = eep_config.max_host_qng;
11034         asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
11035         asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ASC_MAX_TID);
11036         asc_dvc->start_motor = eep_config.start_motor;
11037         asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
11038         asc_dvc->bios_ctrl = eep_config.bios_ctrl;
11039         asc_dvc->no_scam = eep_config.scam_tolerant;
11040
11041         /*
11042          * For every Target ID if any of its 'sdtr_speed[1234]' bits
11043          * are set, then set an 'sdtr_able' bit for it.
11044          */
11045         asc_dvc->sdtr_able = 0;
11046         for (tid = 0; tid <= ASC_MAX_TID; tid++) {
11047                 if (tid == 0) {
11048                         sdtr_speed = asc_dvc->sdtr_speed1;
11049                 } else if (tid == 4) {
11050                         sdtr_speed = asc_dvc->sdtr_speed2;
11051                 } else if (tid == 8) {
11052                         sdtr_speed = asc_dvc->sdtr_speed3;
11053                 } else if (tid == 12) {
11054                         sdtr_speed = asc_dvc->sdtr_speed4;
11055                 }
11056                 if (sdtr_speed & ASC_MAX_TID) {
11057                         asc_dvc->sdtr_able |= (1 << tid);
11058                 }
11059                 sdtr_speed >>= 4;
11060         }
11061
11062         /*
11063          * Set the host maximum queuing (max. 253, min. 16) and the per device
11064          * maximum queuing (max. 63, min. 4).
11065          */
11066         if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
11067                 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
11068         } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
11069                 /* If the value is zero, assume it is uninitialized. */
11070                 if (eep_config.max_host_qng == 0) {
11071                         eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
11072                 } else {
11073                         eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
11074                 }
11075         }
11076
11077         if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
11078                 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
11079         } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
11080                 /* If the value is zero, assume it is uninitialized. */
11081                 if (eep_config.max_dvc_qng == 0) {
11082                         eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
11083                 } else {
11084                         eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
11085                 }
11086         }
11087
11088         /*
11089          * If 'max_dvc_qng' is greater than 'max_host_qng', then
11090          * set 'max_dvc_qng' to 'max_host_qng'.
11091          */
11092         if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
11093                 eep_config.max_dvc_qng = eep_config.max_host_qng;
11094         }
11095
11096         /*
11097          * Set ASC_DVC_VAR 'max_host_qng' and ASC_DVC_VAR 'max_dvc_qng'
11098          * values based on possibly adjusted EEPROM values.
11099          */
11100         asc_dvc->max_host_qng = eep_config.max_host_qng;
11101         asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
11102
11103         /*
11104          * If the EEPROM 'termination' field is set to automatic (0), then set
11105          * the ASC_DVC_CFG 'termination' field to automatic also.
11106          *
11107          * If the termination is specified with a non-zero 'termination'
11108          * value check that a legal value is set and set the ASC_DVC_CFG
11109          * 'termination' field appropriately.
11110          */
11111         if (eep_config.termination_se == 0) {
11112                 termination = 0;        /* auto termination for SE */
11113         } else {
11114                 /* Enable manual control with low off / high off. */
11115                 if (eep_config.termination_se == 1) {
11116                         termination = 0;
11117
11118                         /* Enable manual control with low off / high on. */
11119                 } else if (eep_config.termination_se == 2) {
11120                         termination = TERM_SE_HI;
11121
11122                         /* Enable manual control with low on / high on. */
11123                 } else if (eep_config.termination_se == 3) {
11124                         termination = TERM_SE;
11125                 } else {
11126                         /*
11127                          * The EEPROM 'termination_se' field contains a bad value.
11128                          * Use automatic termination instead.
11129                          */
11130                         termination = 0;
11131                         warn_code |= ASC_WARN_EEPROM_TERMINATION;
11132                 }
11133         }
11134
11135         if (eep_config.termination_lvd == 0) {
11136                 asc_dvc->cfg->termination = termination;        /* auto termination for LVD */
11137         } else {
11138                 /* Enable manual control with low off / high off. */
11139                 if (eep_config.termination_lvd == 1) {
11140                         asc_dvc->cfg->termination = termination;
11141
11142                         /* Enable manual control with low off / high on. */
11143                 } else if (eep_config.termination_lvd == 2) {
11144                         asc_dvc->cfg->termination = termination | TERM_LVD_HI;
11145
11146                         /* Enable manual control with low on / high on. */
11147                 } else if (eep_config.termination_lvd == 3) {
11148                         asc_dvc->cfg->termination = termination | TERM_LVD;
11149                 } else {
11150                         /*
11151                          * The EEPROM 'termination_lvd' field contains a bad value.
11152                          * Use automatic termination instead.
11153                          */
11154                         asc_dvc->cfg->termination = termination;
11155                         warn_code |= ASC_WARN_EEPROM_TERMINATION;
11156                 }
11157         }
11158
11159         return warn_code;
11160 }
11161
11162 /*
11163  * Initialize the ADV_DVC_VAR structure.
11164  *
11165  * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
11166  *
11167  * For a non-fatal error return a warning code. If there are no warnings
11168  * then 0 is returned.
11169  */
11170 static int AdvInitGetConfig(struct pci_dev *pdev, struct Scsi_Host *shost)
11171 {
11172         struct asc_board *board = shost_priv(shost);
11173         ADV_DVC_VAR *asc_dvc = &board->dvc_var.adv_dvc_var;
11174         unsigned short warn_code = 0;
11175         AdvPortAddr iop_base = asc_dvc->iop_base;
11176         u16 cmd;
11177         int status;
11178
11179         asc_dvc->err_code = 0;
11180
11181         /*
11182          * Save the state of the PCI Configuration Command Register
11183          * "Parity Error Response Control" Bit. If the bit is clear (0),
11184          * in AdvInitAsc3550/38C0800Driver() tell the microcode to ignore
11185          * DMA parity errors.
11186          */
11187         asc_dvc->cfg->control_flag = 0;
11188         pci_read_config_word(pdev, PCI_COMMAND, &cmd);
11189         if ((cmd & PCI_COMMAND_PARITY) == 0)
11190                 asc_dvc->cfg->control_flag |= CONTROL_FLAG_IGNORE_PERR;
11191
11192         asc_dvc->cfg->chip_version =
11193             AdvGetChipVersion(iop_base, asc_dvc->bus_type);
11194
11195         ASC_DBG(1, "iopb_chip_id_1: 0x%x 0x%x\n",
11196                  (ushort)AdvReadByteRegister(iop_base, IOPB_CHIP_ID_1),
11197                  (ushort)ADV_CHIP_ID_BYTE);
11198
11199         ASC_DBG(1, "iopw_chip_id_0: 0x%x 0x%x\n",
11200                  (ushort)AdvReadWordRegister(iop_base, IOPW_CHIP_ID_0),
11201                  (ushort)ADV_CHIP_ID_WORD);
11202
11203         /*
11204          * Reset the chip to start and allow register writes.
11205          */
11206         if (AdvFindSignature(iop_base) == 0) {
11207                 asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
11208                 return ADV_ERROR;
11209         } else {
11210                 /*
11211                  * The caller must set 'chip_type' to a valid setting.
11212                  */
11213                 if (asc_dvc->chip_type != ADV_CHIP_ASC3550 &&
11214                     asc_dvc->chip_type != ADV_CHIP_ASC38C0800 &&
11215                     asc_dvc->chip_type != ADV_CHIP_ASC38C1600) {
11216                         asc_dvc->err_code |= ASC_IERR_BAD_CHIPTYPE;
11217                         return ADV_ERROR;
11218                 }
11219
11220                 /*
11221                  * Reset Chip.
11222                  */
11223                 AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
11224                                      ADV_CTRL_REG_CMD_RESET);
11225                 mdelay(100);
11226                 AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
11227                                      ADV_CTRL_REG_CMD_WR_IO_REG);
11228
11229                 if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
11230                         status = AdvInitFrom38C1600EEP(asc_dvc);
11231                 } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
11232                         status = AdvInitFrom38C0800EEP(asc_dvc);
11233                 } else {
11234                         status = AdvInitFrom3550EEP(asc_dvc);
11235                 }
11236                 warn_code |= status;
11237         }
11238
11239         if (warn_code != 0)
11240                 shost_printk(KERN_WARNING, shost, "warning: 0x%x\n", warn_code);
11241
11242         if (asc_dvc->err_code)
11243                 shost_printk(KERN_ERR, shost, "error code 0x%x\n",
11244                                 asc_dvc->err_code);
11245
11246         return asc_dvc->err_code;
11247 }
11248 #endif
11249
11250 static struct scsi_host_template advansys_template = {
11251         .proc_name = DRV_NAME,
11252 #ifdef CONFIG_PROC_FS
11253         .show_info = advansys_show_info,
11254 #endif
11255         .name = DRV_NAME,
11256         .info = advansys_info,
11257         .queuecommand = advansys_queuecommand,
11258         .eh_bus_reset_handler = advansys_reset,
11259         .bios_param = advansys_biosparam,
11260         .slave_configure = advansys_slave_configure,
11261         /*
11262          * Because the driver may control an ISA adapter 'unchecked_isa_dma'
11263          * must be set. The flag will be cleared in advansys_board_found
11264          * for non-ISA adapters.
11265          */
11266         .unchecked_isa_dma = 1,
11267         /*
11268          * All adapters controlled by this driver are capable of large
11269          * scatter-gather lists. According to the mid-level SCSI documentation
11270          * this obviates any performance gain provided by setting
11271          * 'use_clustering'. But empirically while CPU utilization is increased
11272          * by enabling clustering, I/O throughput increases as well.
11273          */
11274         .use_clustering = ENABLE_CLUSTERING,
11275 };
11276
11277 static int advansys_wide_init_chip(struct Scsi_Host *shost)
11278 {
11279         struct asc_board *board = shost_priv(shost);
11280         struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var;
11281         int req_cnt = 0;
11282         adv_req_t *reqp = NULL;
11283         int sg_cnt = 0;
11284         adv_sgblk_t *sgp;
11285         int warn_code, err_code;
11286
11287         /*
11288          * Allocate buffer carrier structures. The total size
11289          * is about 4 KB, so allocate all at once.
11290          */
11291         adv_dvc->carrier_buf = kmalloc(ADV_CARRIER_BUFSIZE, GFP_KERNEL);
11292         ASC_DBG(1, "carrier_buf 0x%p\n", adv_dvc->carrier_buf);
11293
11294         if (!adv_dvc->carrier_buf)
11295                 goto kmalloc_failed;
11296
11297         /*
11298          * Allocate up to 'max_host_qng' request structures for the Wide
11299          * board. The total size is about 16 KB, so allocate all at once.
11300          * If the allocation fails decrement and try again.
11301          */
11302         for (req_cnt = adv_dvc->max_host_qng; req_cnt > 0; req_cnt--) {
11303                 reqp = kmalloc(sizeof(adv_req_t) * req_cnt, GFP_KERNEL);
11304
11305                 ASC_DBG(1, "reqp 0x%p, req_cnt %d, bytes %lu\n", reqp, req_cnt,
11306                          (ulong)sizeof(adv_req_t) * req_cnt);
11307
11308                 if (reqp)
11309                         break;
11310         }
11311
11312         if (!reqp)
11313                 goto kmalloc_failed;
11314
11315         adv_dvc->orig_reqp = reqp;
11316
11317         /*
11318          * Allocate up to ADV_TOT_SG_BLOCK request structures for
11319          * the Wide board. Each structure is about 136 bytes.
11320          */
11321         board->adv_sgblkp = NULL;
11322         for (sg_cnt = 0; sg_cnt < ADV_TOT_SG_BLOCK; sg_cnt++) {
11323                 sgp = kmalloc(sizeof(adv_sgblk_t), GFP_KERNEL);
11324
11325                 if (!sgp)
11326                         break;
11327
11328                 sgp->next_sgblkp = board->adv_sgblkp;
11329                 board->adv_sgblkp = sgp;
11330
11331         }
11332
11333         ASC_DBG(1, "sg_cnt %d * %lu = %lu bytes\n", sg_cnt, sizeof(adv_sgblk_t),
11334                  sizeof(adv_sgblk_t) * sg_cnt);
11335
11336         if (!board->adv_sgblkp)
11337                 goto kmalloc_failed;
11338
11339         /*
11340          * Point 'adv_reqp' to the request structures and
11341          * link them together.
11342          */
11343         req_cnt--;
11344         reqp[req_cnt].next_reqp = NULL;
11345         for (; req_cnt > 0; req_cnt--) {
11346                 reqp[req_cnt - 1].next_reqp = &reqp[req_cnt];
11347         }
11348         board->adv_reqp = &reqp[0];
11349
11350         if (adv_dvc->chip_type == ADV_CHIP_ASC3550) {
11351                 ASC_DBG(2, "AdvInitAsc3550Driver()\n");
11352                 warn_code = AdvInitAsc3550Driver(adv_dvc);
11353         } else if (adv_dvc->chip_type == ADV_CHIP_ASC38C0800) {
11354                 ASC_DBG(2, "AdvInitAsc38C0800Driver()\n");
11355                 warn_code = AdvInitAsc38C0800Driver(adv_dvc);
11356         } else {
11357                 ASC_DBG(2, "AdvInitAsc38C1600Driver()\n");
11358                 warn_code = AdvInitAsc38C1600Driver(adv_dvc);
11359         }
11360         err_code = adv_dvc->err_code;
11361
11362         if (warn_code || err_code) {
11363                 shost_printk(KERN_WARNING, shost, "error: warn 0x%x, error "
11364                         "0x%x\n", warn_code, err_code);
11365         }
11366
11367         goto exit;
11368
11369  kmalloc_failed:
11370         shost_printk(KERN_ERR, shost, "error: kmalloc() failed\n");
11371         err_code = ADV_ERROR;
11372  exit:
11373         return err_code;
11374 }
11375
11376 static void advansys_wide_free_mem(struct asc_board *board)
11377 {
11378         struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var;
11379         kfree(adv_dvc->carrier_buf);
11380         adv_dvc->carrier_buf = NULL;
11381         kfree(adv_dvc->orig_reqp);
11382         adv_dvc->orig_reqp = board->adv_reqp = NULL;
11383         while (board->adv_sgblkp) {
11384                 adv_sgblk_t *sgp = board->adv_sgblkp;
11385                 board->adv_sgblkp = sgp->next_sgblkp;
11386                 kfree(sgp);
11387         }
11388 }
11389
11390 static int advansys_board_found(struct Scsi_Host *shost, unsigned int iop,
11391                                 int bus_type)
11392 {
11393         struct pci_dev *pdev;
11394         struct asc_board *boardp = shost_priv(shost);
11395         ASC_DVC_VAR *asc_dvc_varp = NULL;
11396         ADV_DVC_VAR *adv_dvc_varp = NULL;
11397         int share_irq, warn_code, ret;
11398
11399         pdev = (bus_type == ASC_IS_PCI) ? to_pci_dev(boardp->dev) : NULL;
11400
11401         if (ASC_NARROW_BOARD(boardp)) {
11402                 ASC_DBG(1, "narrow board\n");
11403                 asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
11404                 asc_dvc_varp->bus_type = bus_type;
11405                 asc_dvc_varp->drv_ptr = boardp;
11406                 asc_dvc_varp->cfg = &boardp->dvc_cfg.asc_dvc_cfg;
11407                 asc_dvc_varp->iop_base = iop;
11408         } else {
11409 #ifdef CONFIG_PCI
11410                 adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
11411                 adv_dvc_varp->drv_ptr = boardp;
11412                 adv_dvc_varp->cfg = &boardp->dvc_cfg.adv_dvc_cfg;
11413                 if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW) {
11414                         ASC_DBG(1, "wide board ASC-3550\n");
11415                         adv_dvc_varp->chip_type = ADV_CHIP_ASC3550;
11416                 } else if (pdev->device == PCI_DEVICE_ID_38C0800_REV1) {
11417                         ASC_DBG(1, "wide board ASC-38C0800\n");
11418                         adv_dvc_varp->chip_type = ADV_CHIP_ASC38C0800;
11419                 } else {
11420                         ASC_DBG(1, "wide board ASC-38C1600\n");
11421                         adv_dvc_varp->chip_type = ADV_CHIP_ASC38C1600;
11422                 }
11423
11424                 boardp->asc_n_io_port = pci_resource_len(pdev, 1);
11425                 boardp->ioremap_addr = pci_ioremap_bar(pdev, 1);
11426                 if (!boardp->ioremap_addr) {
11427                         shost_printk(KERN_ERR, shost, "ioremap(%lx, %d) "
11428                                         "returned NULL\n",
11429                                         (long)pci_resource_start(pdev, 1),
11430                                         boardp->asc_n_io_port);
11431                         ret = -ENODEV;
11432                         goto err_shost;
11433                 }
11434                 adv_dvc_varp->iop_base = (AdvPortAddr)boardp->ioremap_addr;
11435                 ASC_DBG(1, "iop_base: 0x%p\n", adv_dvc_varp->iop_base);
11436
11437                 /*
11438                  * Even though it isn't used to access wide boards, other
11439                  * than for the debug line below, save I/O Port address so
11440                  * that it can be reported.
11441                  */
11442                 boardp->ioport = iop;
11443
11444                 ASC_DBG(1, "iopb_chip_id_1 0x%x, iopw_chip_id_0 0x%x\n",
11445                                 (ushort)inp(iop + 1), (ushort)inpw(iop));
11446 #endif /* CONFIG_PCI */
11447         }
11448
11449         if (ASC_NARROW_BOARD(boardp)) {
11450                 /*
11451                  * Set the board bus type and PCI IRQ before
11452                  * calling AscInitGetConfig().
11453                  */
11454                 switch (asc_dvc_varp->bus_type) {
11455 #ifdef CONFIG_ISA
11456                 case ASC_IS_ISA:
11457                         shost->unchecked_isa_dma = TRUE;
11458                         share_irq = 0;
11459                         break;
11460                 case ASC_IS_VL:
11461                         shost->unchecked_isa_dma = FALSE;
11462                         share_irq = 0;
11463                         break;
11464                 case ASC_IS_EISA:
11465                         shost->unchecked_isa_dma = FALSE;
11466                         share_irq = IRQF_SHARED;
11467                         break;
11468 #endif /* CONFIG_ISA */
11469 #ifdef CONFIG_PCI
11470                 case ASC_IS_PCI:
11471                         shost->unchecked_isa_dma = FALSE;
11472                         share_irq = IRQF_SHARED;
11473                         break;
11474 #endif /* CONFIG_PCI */
11475                 default:
11476                         shost_printk(KERN_ERR, shost, "unknown adapter type: "
11477                                         "%d\n", asc_dvc_varp->bus_type);
11478                         shost->unchecked_isa_dma = TRUE;
11479                         share_irq = 0;
11480                         break;
11481                 }
11482
11483                 /*
11484                  * NOTE: AscInitGetConfig() may change the board's
11485                  * bus_type value. The bus_type value should no
11486                  * longer be used. If the bus_type field must be
11487                  * referenced only use the bit-wise AND operator "&".
11488                  */
11489                 ASC_DBG(2, "AscInitGetConfig()\n");
11490                 ret = AscInitGetConfig(shost) ? -ENODEV : 0;
11491         } else {
11492 #ifdef CONFIG_PCI
11493                 /*
11494                  * For Wide boards set PCI information before calling
11495                  * AdvInitGetConfig().
11496                  */
11497                 shost->unchecked_isa_dma = FALSE;
11498                 share_irq = IRQF_SHARED;
11499                 ASC_DBG(2, "AdvInitGetConfig()\n");
11500
11501                 ret = AdvInitGetConfig(pdev, shost) ? -ENODEV : 0;
11502 #endif /* CONFIG_PCI */
11503         }
11504
11505         if (ret)
11506                 goto err_unmap;
11507
11508         /*
11509          * Save the EEPROM configuration so that it can be displayed
11510          * from /proc/scsi/advansys/[0...].
11511          */
11512         if (ASC_NARROW_BOARD(boardp)) {
11513
11514                 ASCEEP_CONFIG *ep;
11515
11516                 /*
11517                  * Set the adapter's target id bit in the 'init_tidmask' field.
11518                  */
11519                 boardp->init_tidmask |=
11520                     ADV_TID_TO_TIDMASK(asc_dvc_varp->cfg->chip_scsi_id);
11521
11522                 /*
11523                  * Save EEPROM settings for the board.
11524                  */
11525                 ep = &boardp->eep_config.asc_eep;
11526
11527                 ep->init_sdtr = asc_dvc_varp->cfg->sdtr_enable;
11528                 ep->disc_enable = asc_dvc_varp->cfg->disc_enable;
11529                 ep->use_cmd_qng = asc_dvc_varp->cfg->cmd_qng_enabled;
11530                 ASC_EEP_SET_DMA_SPD(ep, asc_dvc_varp->cfg->isa_dma_speed);
11531                 ep->start_motor = asc_dvc_varp->start_motor;
11532                 ep->cntl = asc_dvc_varp->dvc_cntl;
11533                 ep->no_scam = asc_dvc_varp->no_scam;
11534                 ep->max_total_qng = asc_dvc_varp->max_total_qng;
11535                 ASC_EEP_SET_CHIP_ID(ep, asc_dvc_varp->cfg->chip_scsi_id);
11536                 /* 'max_tag_qng' is set to the same value for every device. */
11537                 ep->max_tag_qng = asc_dvc_varp->cfg->max_tag_qng[0];
11538                 ep->adapter_info[0] = asc_dvc_varp->cfg->adapter_info[0];
11539                 ep->adapter_info[1] = asc_dvc_varp->cfg->adapter_info[1];
11540                 ep->adapter_info[2] = asc_dvc_varp->cfg->adapter_info[2];
11541                 ep->adapter_info[3] = asc_dvc_varp->cfg->adapter_info[3];
11542                 ep->adapter_info[4] = asc_dvc_varp->cfg->adapter_info[4];
11543                 ep->adapter_info[5] = asc_dvc_varp->cfg->adapter_info[5];
11544
11545                 /*
11546                  * Modify board configuration.
11547                  */
11548                 ASC_DBG(2, "AscInitSetConfig()\n");
11549                 ret = AscInitSetConfig(pdev, shost) ? -ENODEV : 0;
11550                 if (ret)
11551                         goto err_unmap;
11552         } else {
11553                 ADVEEP_3550_CONFIG *ep_3550;
11554                 ADVEEP_38C0800_CONFIG *ep_38C0800;
11555                 ADVEEP_38C1600_CONFIG *ep_38C1600;
11556
11557                 /*
11558                  * Save Wide EEP Configuration Information.
11559                  */
11560                 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
11561                         ep_3550 = &boardp->eep_config.adv_3550_eep;
11562
11563                         ep_3550->adapter_scsi_id = adv_dvc_varp->chip_scsi_id;
11564                         ep_3550->max_host_qng = adv_dvc_varp->max_host_qng;
11565                         ep_3550->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
11566                         ep_3550->termination = adv_dvc_varp->cfg->termination;
11567                         ep_3550->disc_enable = adv_dvc_varp->cfg->disc_enable;
11568                         ep_3550->bios_ctrl = adv_dvc_varp->bios_ctrl;
11569                         ep_3550->wdtr_able = adv_dvc_varp->wdtr_able;
11570                         ep_3550->sdtr_able = adv_dvc_varp->sdtr_able;
11571                         ep_3550->ultra_able = adv_dvc_varp->ultra_able;
11572                         ep_3550->tagqng_able = adv_dvc_varp->tagqng_able;
11573                         ep_3550->start_motor = adv_dvc_varp->start_motor;
11574                         ep_3550->scsi_reset_delay =
11575                             adv_dvc_varp->scsi_reset_wait;
11576                         ep_3550->serial_number_word1 =
11577                             adv_dvc_varp->cfg->serial1;
11578                         ep_3550->serial_number_word2 =
11579                             adv_dvc_varp->cfg->serial2;
11580                         ep_3550->serial_number_word3 =
11581                             adv_dvc_varp->cfg->serial3;
11582                 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
11583                         ep_38C0800 = &boardp->eep_config.adv_38C0800_eep;
11584
11585                         ep_38C0800->adapter_scsi_id =
11586                             adv_dvc_varp->chip_scsi_id;
11587                         ep_38C0800->max_host_qng = adv_dvc_varp->max_host_qng;
11588                         ep_38C0800->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
11589                         ep_38C0800->termination_lvd =
11590                             adv_dvc_varp->cfg->termination;
11591                         ep_38C0800->disc_enable =
11592                             adv_dvc_varp->cfg->disc_enable;
11593                         ep_38C0800->bios_ctrl = adv_dvc_varp->bios_ctrl;
11594                         ep_38C0800->wdtr_able = adv_dvc_varp->wdtr_able;
11595                         ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able;
11596                         ep_38C0800->sdtr_speed1 = adv_dvc_varp->sdtr_speed1;
11597                         ep_38C0800->sdtr_speed2 = adv_dvc_varp->sdtr_speed2;
11598                         ep_38C0800->sdtr_speed3 = adv_dvc_varp->sdtr_speed3;
11599                         ep_38C0800->sdtr_speed4 = adv_dvc_varp->sdtr_speed4;
11600                         ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able;
11601                         ep_38C0800->start_motor = adv_dvc_varp->start_motor;
11602                         ep_38C0800->scsi_reset_delay =
11603                             adv_dvc_varp->scsi_reset_wait;
11604                         ep_38C0800->serial_number_word1 =
11605                             adv_dvc_varp->cfg->serial1;
11606                         ep_38C0800->serial_number_word2 =
11607                             adv_dvc_varp->cfg->serial2;
11608                         ep_38C0800->serial_number_word3 =
11609                             adv_dvc_varp->cfg->serial3;
11610                 } else {
11611                         ep_38C1600 = &boardp->eep_config.adv_38C1600_eep;
11612
11613                         ep_38C1600->adapter_scsi_id =
11614                             adv_dvc_varp->chip_scsi_id;
11615                         ep_38C1600->max_host_qng = adv_dvc_varp->max_host_qng;
11616                         ep_38C1600->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
11617                         ep_38C1600->termination_lvd =
11618                             adv_dvc_varp->cfg->termination;
11619                         ep_38C1600->disc_enable =
11620                             adv_dvc_varp->cfg->disc_enable;
11621                         ep_38C1600->bios_ctrl = adv_dvc_varp->bios_ctrl;
11622                         ep_38C1600->wdtr_able = adv_dvc_varp->wdtr_able;
11623                         ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able;
11624                         ep_38C1600->sdtr_speed1 = adv_dvc_varp->sdtr_speed1;
11625                         ep_38C1600->sdtr_speed2 = adv_dvc_varp->sdtr_speed2;
11626                         ep_38C1600->sdtr_speed3 = adv_dvc_varp->sdtr_speed3;
11627                         ep_38C1600->sdtr_speed4 = adv_dvc_varp->sdtr_speed4;
11628                         ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able;
11629                         ep_38C1600->start_motor = adv_dvc_varp->start_motor;
11630                         ep_38C1600->scsi_reset_delay =
11631                             adv_dvc_varp->scsi_reset_wait;
11632                         ep_38C1600->serial_number_word1 =
11633                             adv_dvc_varp->cfg->serial1;
11634                         ep_38C1600->serial_number_word2 =
11635                             adv_dvc_varp->cfg->serial2;
11636                         ep_38C1600->serial_number_word3 =
11637                             adv_dvc_varp->cfg->serial3;
11638                 }
11639
11640                 /*
11641                  * Set the adapter's target id bit in the 'init_tidmask' field.
11642                  */
11643                 boardp->init_tidmask |=
11644                     ADV_TID_TO_TIDMASK(adv_dvc_varp->chip_scsi_id);
11645         }
11646
11647         /*
11648          * Channels are numbered beginning with 0. For AdvanSys one host
11649          * structure supports one channel. Multi-channel boards have a
11650          * separate host structure for each channel.
11651          */
11652         shost->max_channel = 0;
11653         if (ASC_NARROW_BOARD(boardp)) {
11654                 shost->max_id = ASC_MAX_TID + 1;
11655                 shost->max_lun = ASC_MAX_LUN + 1;
11656                 shost->max_cmd_len = ASC_MAX_CDB_LEN;
11657
11658                 shost->io_port = asc_dvc_varp->iop_base;
11659                 boardp->asc_n_io_port = ASC_IOADR_GAP;
11660                 shost->this_id = asc_dvc_varp->cfg->chip_scsi_id;
11661
11662                 /* Set maximum number of queues the adapter can handle. */
11663                 shost->can_queue = asc_dvc_varp->max_total_qng;
11664         } else {
11665                 shost->max_id = ADV_MAX_TID + 1;
11666                 shost->max_lun = ADV_MAX_LUN + 1;
11667                 shost->max_cmd_len = ADV_MAX_CDB_LEN;
11668
11669                 /*
11670                  * Save the I/O Port address and length even though
11671                  * I/O ports are not used to access Wide boards.
11672                  * Instead the Wide boards are accessed with
11673                  * PCI Memory Mapped I/O.
11674                  */
11675                 shost->io_port = iop;
11676
11677                 shost->this_id = adv_dvc_varp->chip_scsi_id;
11678
11679                 /* Set maximum number of queues the adapter can handle. */
11680                 shost->can_queue = adv_dvc_varp->max_host_qng;
11681         }
11682
11683         /*
11684          * Following v1.3.89, 'cmd_per_lun' is no longer needed
11685          * and should be set to zero.
11686          *
11687          * But because of a bug introduced in v1.3.89 if the driver is
11688          * compiled as a module and 'cmd_per_lun' is zero, the Mid-Level
11689          * SCSI function 'allocate_device' will panic. To allow the driver
11690          * to work as a module in these kernels set 'cmd_per_lun' to 1.
11691          *
11692          * Note: This is wrong.  cmd_per_lun should be set to the depth
11693          * you want on untagged devices always.
11694          #ifdef MODULE
11695          */
11696         shost->cmd_per_lun = 1;
11697 /* #else
11698             shost->cmd_per_lun = 0;
11699 #endif */
11700
11701         /*
11702          * Set the maximum number of scatter-gather elements the
11703          * adapter can handle.
11704          */
11705         if (ASC_NARROW_BOARD(boardp)) {
11706                 /*
11707                  * Allow two commands with 'sg_tablesize' scatter-gather
11708                  * elements to be executed simultaneously. This value is
11709                  * the theoretical hardware limit. It may be decreased
11710                  * below.
11711                  */
11712                 shost->sg_tablesize =
11713                     (((asc_dvc_varp->max_total_qng - 2) / 2) *
11714                      ASC_SG_LIST_PER_Q) + 1;
11715         } else {
11716                 shost->sg_tablesize = ADV_MAX_SG_LIST;
11717         }
11718
11719         /*
11720          * The value of 'sg_tablesize' can not exceed the SCSI
11721          * mid-level driver definition of SG_ALL. SG_ALL also
11722          * must not be exceeded, because it is used to define the
11723          * size of the scatter-gather table in 'struct asc_sg_head'.
11724          */
11725         if (shost->sg_tablesize > SG_ALL) {
11726                 shost->sg_tablesize = SG_ALL;
11727         }
11728
11729         ASC_DBG(1, "sg_tablesize: %d\n", shost->sg_tablesize);
11730
11731         /* BIOS start address. */
11732         if (ASC_NARROW_BOARD(boardp)) {
11733                 shost->base = AscGetChipBiosAddress(asc_dvc_varp->iop_base,
11734                                                     asc_dvc_varp->bus_type);
11735         } else {
11736                 /*
11737                  * Fill-in BIOS board variables. The Wide BIOS saves
11738                  * information in LRAM that is used by the driver.
11739                  */
11740                 AdvReadWordLram(adv_dvc_varp->iop_base,
11741                                 BIOS_SIGNATURE, boardp->bios_signature);
11742                 AdvReadWordLram(adv_dvc_varp->iop_base,
11743                                 BIOS_VERSION, boardp->bios_version);
11744                 AdvReadWordLram(adv_dvc_varp->iop_base,
11745                                 BIOS_CODESEG, boardp->bios_codeseg);
11746                 AdvReadWordLram(adv_dvc_varp->iop_base,
11747                                 BIOS_CODELEN, boardp->bios_codelen);
11748
11749                 ASC_DBG(1, "bios_signature 0x%x, bios_version 0x%x\n",
11750                          boardp->bios_signature, boardp->bios_version);
11751
11752                 ASC_DBG(1, "bios_codeseg 0x%x, bios_codelen 0x%x\n",
11753                          boardp->bios_codeseg, boardp->bios_codelen);
11754
11755                 /*
11756                  * If the BIOS saved a valid signature, then fill in
11757                  * the BIOS code segment base address.
11758                  */
11759                 if (boardp->bios_signature == 0x55AA) {
11760                         /*
11761                          * Convert x86 realmode code segment to a linear
11762                          * address by shifting left 4.
11763                          */
11764                         shost->base = ((ulong)boardp->bios_codeseg << 4);
11765                 } else {
11766                         shost->base = 0;
11767                 }
11768         }
11769
11770         /*
11771          * Register Board Resources - I/O Port, DMA, IRQ
11772          */
11773
11774         /* Register DMA Channel for Narrow boards. */
11775         shost->dma_channel = NO_ISA_DMA;        /* Default to no ISA DMA. */
11776 #ifdef CONFIG_ISA
11777         if (ASC_NARROW_BOARD(boardp)) {
11778                 /* Register DMA channel for ISA bus. */
11779                 if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
11780                         shost->dma_channel = asc_dvc_varp->cfg->isa_dma_channel;
11781                         ret = request_dma(shost->dma_channel, DRV_NAME);
11782                         if (ret) {
11783                                 shost_printk(KERN_ERR, shost, "request_dma() "
11784                                                 "%d failed %d\n",
11785                                                 shost->dma_channel, ret);
11786                                 goto err_unmap;
11787                         }
11788                         AscEnableIsaDma(shost->dma_channel);
11789                 }
11790         }
11791 #endif /* CONFIG_ISA */
11792
11793         /* Register IRQ Number. */
11794         ASC_DBG(2, "request_irq(%d, %p)\n", boardp->irq, shost);
11795
11796         ret = request_irq(boardp->irq, advansys_interrupt, share_irq,
11797                           DRV_NAME, shost);
11798
11799         if (ret) {
11800                 if (ret == -EBUSY) {
11801                         shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
11802                                         "already in use\n", boardp->irq);
11803                 } else if (ret == -EINVAL) {
11804                         shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
11805                                         "not valid\n", boardp->irq);
11806                 } else {
11807                         shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
11808                                         "failed with %d\n", boardp->irq, ret);
11809                 }
11810                 goto err_free_dma;
11811         }
11812
11813         /*
11814          * Initialize board RISC chip and enable interrupts.
11815          */
11816         if (ASC_NARROW_BOARD(boardp)) {
11817                 ASC_DBG(2, "AscInitAsc1000Driver()\n");
11818
11819                 asc_dvc_varp->overrun_buf = kzalloc(ASC_OVERRUN_BSIZE, GFP_KERNEL);
11820                 if (!asc_dvc_varp->overrun_buf) {
11821                         ret = -ENOMEM;
11822                         goto err_free_irq;
11823                 }
11824                 warn_code = AscInitAsc1000Driver(asc_dvc_varp);
11825
11826                 if (warn_code || asc_dvc_varp->err_code) {
11827                         shost_printk(KERN_ERR, shost, "error: init_state 0x%x, "
11828                                         "warn 0x%x, error 0x%x\n",
11829                                         asc_dvc_varp->init_state, warn_code,
11830                                         asc_dvc_varp->err_code);
11831                         if (!asc_dvc_varp->overrun_dma) {
11832                                 ret = -ENODEV;
11833                                 goto err_free_mem;
11834                         }
11835                 }
11836         } else {
11837                 if (advansys_wide_init_chip(shost)) {
11838                         ret = -ENODEV;
11839                         goto err_free_mem;
11840                 }
11841         }
11842
11843         ASC_DBG_PRT_SCSI_HOST(2, shost);
11844
11845         ret = scsi_add_host(shost, boardp->dev);
11846         if (ret)
11847                 goto err_free_mem;
11848
11849         scsi_scan_host(shost);
11850         return 0;
11851
11852  err_free_mem:
11853         if (ASC_NARROW_BOARD(boardp)) {
11854                 if (asc_dvc_varp->overrun_dma)
11855                         dma_unmap_single(boardp->dev, asc_dvc_varp->overrun_dma,
11856                                          ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
11857                 kfree(asc_dvc_varp->overrun_buf);
11858         } else
11859                 advansys_wide_free_mem(boardp);
11860  err_free_irq:
11861         free_irq(boardp->irq, shost);
11862  err_free_dma:
11863 #ifdef CONFIG_ISA
11864         if (shost->dma_channel != NO_ISA_DMA)
11865                 free_dma(shost->dma_channel);
11866 #endif
11867  err_unmap:
11868         if (boardp->ioremap_addr)
11869                 iounmap(boardp->ioremap_addr);
11870  err_shost:
11871         return ret;
11872 }
11873
11874 /*
11875  * advansys_release()
11876  *
11877  * Release resources allocated for a single AdvanSys adapter.
11878  */
11879 static int advansys_release(struct Scsi_Host *shost)
11880 {
11881         struct asc_board *board = shost_priv(shost);
11882         ASC_DBG(1, "begin\n");
11883         scsi_remove_host(shost);
11884         free_irq(board->irq, shost);
11885 #ifdef CONFIG_ISA
11886         if (shost->dma_channel != NO_ISA_DMA) {
11887                 ASC_DBG(1, "free_dma()\n");
11888                 free_dma(shost->dma_channel);
11889         }
11890 #endif
11891         if (ASC_NARROW_BOARD(board)) {
11892                 dma_unmap_single(board->dev,
11893                                         board->dvc_var.asc_dvc_var.overrun_dma,
11894                                         ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
11895                 kfree(board->dvc_var.asc_dvc_var.overrun_buf);
11896         } else {
11897                 iounmap(board->ioremap_addr);
11898                 advansys_wide_free_mem(board);
11899         }
11900         scsi_host_put(shost);
11901         ASC_DBG(1, "end\n");
11902         return 0;
11903 }
11904
11905 #define ASC_IOADR_TABLE_MAX_IX  11
11906
11907 static PortAddr _asc_def_iop_base[ASC_IOADR_TABLE_MAX_IX] = {
11908         0x100, 0x0110, 0x120, 0x0130, 0x140, 0x0150, 0x0190,
11909         0x0210, 0x0230, 0x0250, 0x0330
11910 };
11911
11912 /*
11913  * The ISA IRQ number is found in bits 2 and 3 of the CfgLsw.  It decodes as:
11914  * 00: 10
11915  * 01: 11
11916  * 10: 12
11917  * 11: 15
11918  */
11919 static unsigned int advansys_isa_irq_no(PortAddr iop_base)
11920 {
11921         unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base);
11922         unsigned int chip_irq = ((cfg_lsw >> 2) & 0x03) + 10;
11923         if (chip_irq == 13)
11924                 chip_irq = 15;
11925         return chip_irq;
11926 }
11927
11928 static int advansys_isa_probe(struct device *dev, unsigned int id)
11929 {
11930         int err = -ENODEV;
11931         PortAddr iop_base = _asc_def_iop_base[id];
11932         struct Scsi_Host *shost;
11933         struct asc_board *board;
11934
11935         if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) {
11936                 ASC_DBG(1, "I/O port 0x%x busy\n", iop_base);
11937                 return -ENODEV;
11938         }
11939         ASC_DBG(1, "probing I/O port 0x%x\n", iop_base);
11940         if (!AscFindSignature(iop_base))
11941                 goto release_region;
11942         if (!(AscGetChipVersion(iop_base, ASC_IS_ISA) & ASC_CHIP_VER_ISA_BIT))
11943                 goto release_region;
11944
11945         err = -ENOMEM;
11946         shost = scsi_host_alloc(&advansys_template, sizeof(*board));
11947         if (!shost)
11948                 goto release_region;
11949
11950         board = shost_priv(shost);
11951         board->irq = advansys_isa_irq_no(iop_base);
11952         board->dev = dev;
11953
11954         err = advansys_board_found(shost, iop_base, ASC_IS_ISA);
11955         if (err)
11956                 goto free_host;
11957
11958         dev_set_drvdata(dev, shost);
11959         return 0;
11960
11961  free_host:
11962         scsi_host_put(shost);
11963  release_region:
11964         release_region(iop_base, ASC_IOADR_GAP);
11965         return err;
11966 }
11967
11968 static int advansys_isa_remove(struct device *dev, unsigned int id)
11969 {
11970         int ioport = _asc_def_iop_base[id];
11971         advansys_release(dev_get_drvdata(dev));
11972         release_region(ioport, ASC_IOADR_GAP);
11973         return 0;
11974 }
11975
11976 static struct isa_driver advansys_isa_driver = {
11977         .probe          = advansys_isa_probe,
11978         .remove         = advansys_isa_remove,
11979         .driver = {
11980                 .owner  = THIS_MODULE,
11981                 .name   = DRV_NAME,
11982         },
11983 };
11984
11985 /*
11986  * The VLB IRQ number is found in bits 2 to 4 of the CfgLsw.  It decodes as:
11987  * 000: invalid
11988  * 001: 10
11989  * 010: 11
11990  * 011: 12
11991  * 100: invalid
11992  * 101: 14
11993  * 110: 15
11994  * 111: invalid
11995  */
11996 static unsigned int advansys_vlb_irq_no(PortAddr iop_base)
11997 {
11998         unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base);
11999         unsigned int chip_irq = ((cfg_lsw >> 2) & 0x07) + 9;
12000         if ((chip_irq < 10) || (chip_irq == 13) || (chip_irq > 15))
12001                 return 0;
12002         return chip_irq;
12003 }
12004
12005 static int advansys_vlb_probe(struct device *dev, unsigned int id)
12006 {
12007         int err = -ENODEV;
12008         PortAddr iop_base = _asc_def_iop_base[id];
12009         struct Scsi_Host *shost;
12010         struct asc_board *board;
12011
12012         if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) {
12013                 ASC_DBG(1, "I/O port 0x%x busy\n", iop_base);
12014                 return -ENODEV;
12015         }
12016         ASC_DBG(1, "probing I/O port 0x%x\n", iop_base);
12017         if (!AscFindSignature(iop_base))
12018                 goto release_region;
12019         /*
12020          * I don't think this condition can actually happen, but the old
12021          * driver did it, and the chances of finding a VLB setup in 2007
12022          * to do testing with is slight to none.
12023          */
12024         if (AscGetChipVersion(iop_base, ASC_IS_VL) > ASC_CHIP_MAX_VER_VL)
12025                 goto release_region;
12026
12027         err = -ENOMEM;
12028         shost = scsi_host_alloc(&advansys_template, sizeof(*board));
12029         if (!shost)
12030                 goto release_region;
12031
12032         board = shost_priv(shost);
12033         board->irq = advansys_vlb_irq_no(iop_base);
12034         board->dev = dev;
12035
12036         err = advansys_board_found(shost, iop_base, ASC_IS_VL);
12037         if (err)
12038                 goto free_host;
12039
12040         dev_set_drvdata(dev, shost);
12041         return 0;
12042
12043  free_host:
12044         scsi_host_put(shost);
12045  release_region:
12046         release_region(iop_base, ASC_IOADR_GAP);
12047         return -ENODEV;
12048 }
12049
12050 static struct isa_driver advansys_vlb_driver = {
12051         .probe          = advansys_vlb_probe,
12052         .remove         = advansys_isa_remove,
12053         .driver = {
12054                 .owner  = THIS_MODULE,
12055                 .name   = "advansys_vlb",
12056         },
12057 };
12058
12059 static struct eisa_device_id advansys_eisa_table[] = {
12060         { "ABP7401" },
12061         { "ABP7501" },
12062         { "" }
12063 };
12064
12065 MODULE_DEVICE_TABLE(eisa, advansys_eisa_table);
12066
12067 /*
12068  * EISA is a little more tricky than PCI; each EISA device may have two
12069  * channels, and this driver is written to make each channel its own Scsi_Host
12070  */
12071 struct eisa_scsi_data {
12072         struct Scsi_Host *host[2];
12073 };
12074
12075 /*
12076  * The EISA IRQ number is found in bits 8 to 10 of the CfgLsw.  It decodes as:
12077  * 000: 10
12078  * 001: 11
12079  * 010: 12
12080  * 011: invalid
12081  * 100: 14
12082  * 101: 15
12083  * 110: invalid
12084  * 111: invalid
12085  */
12086 static unsigned int advansys_eisa_irq_no(struct eisa_device *edev)
12087 {
12088         unsigned short cfg_lsw = inw(edev->base_addr + 0xc86);
12089         unsigned int chip_irq = ((cfg_lsw >> 8) & 0x07) + 10;
12090         if ((chip_irq == 13) || (chip_irq > 15))
12091                 return 0;
12092         return chip_irq;
12093 }
12094
12095 static int advansys_eisa_probe(struct device *dev)
12096 {
12097         int i, ioport, irq = 0;
12098         int err;
12099         struct eisa_device *edev = to_eisa_device(dev);
12100         struct eisa_scsi_data *data;
12101
12102         err = -ENOMEM;
12103         data = kzalloc(sizeof(*data), GFP_KERNEL);
12104         if (!data)
12105                 goto fail;
12106         ioport = edev->base_addr + 0xc30;
12107
12108         err = -ENODEV;
12109         for (i = 0; i < 2; i++, ioport += 0x20) {
12110                 struct asc_board *board;
12111                 struct Scsi_Host *shost;
12112                 if (!request_region(ioport, ASC_IOADR_GAP, DRV_NAME)) {
12113                         printk(KERN_WARNING "Region %x-%x busy\n", ioport,
12114                                ioport + ASC_IOADR_GAP - 1);
12115                         continue;
12116                 }
12117                 if (!AscFindSignature(ioport)) {
12118                         release_region(ioport, ASC_IOADR_GAP);
12119                         continue;
12120                 }
12121
12122                 /*
12123                  * I don't know why we need to do this for EISA chips, but
12124                  * not for any others.  It looks to be equivalent to
12125                  * AscGetChipCfgMsw, but I may have overlooked something,
12126                  * so I'm not converting it until I get an EISA board to
12127                  * test with.
12128                  */
12129                 inw(ioport + 4);
12130
12131                 if (!irq)
12132                         irq = advansys_eisa_irq_no(edev);
12133
12134                 err = -ENOMEM;
12135                 shost = scsi_host_alloc(&advansys_template, sizeof(*board));
12136                 if (!shost)
12137                         goto release_region;
12138
12139                 board = shost_priv(shost);
12140                 board->irq = irq;
12141                 board->dev = dev;
12142
12143                 err = advansys_board_found(shost, ioport, ASC_IS_EISA);
12144                 if (!err) {
12145                         data->host[i] = shost;
12146                         continue;
12147                 }
12148
12149                 scsi_host_put(shost);
12150  release_region:
12151                 release_region(ioport, ASC_IOADR_GAP);
12152                 break;
12153         }
12154
12155         if (err)
12156                 goto free_data;
12157         dev_set_drvdata(dev, data);
12158         return 0;
12159
12160  free_data:
12161         kfree(data->host[0]);
12162         kfree(data->host[1]);
12163         kfree(data);
12164  fail:
12165         return err;
12166 }
12167
12168 static int advansys_eisa_remove(struct device *dev)
12169 {
12170         int i;
12171         struct eisa_scsi_data *data = dev_get_drvdata(dev);
12172
12173         for (i = 0; i < 2; i++) {
12174                 int ioport;
12175                 struct Scsi_Host *shost = data->host[i];
12176                 if (!shost)
12177                         continue;
12178                 ioport = shost->io_port;
12179                 advansys_release(shost);
12180                 release_region(ioport, ASC_IOADR_GAP);
12181         }
12182
12183         kfree(data);
12184         return 0;
12185 }
12186
12187 static struct eisa_driver advansys_eisa_driver = {
12188         .id_table =             advansys_eisa_table,
12189         .driver = {
12190                 .name =         DRV_NAME,
12191                 .probe =        advansys_eisa_probe,
12192                 .remove =       advansys_eisa_remove,
12193         }
12194 };
12195
12196 /* PCI Devices supported by this driver */
12197 static struct pci_device_id advansys_pci_tbl[] = {
12198         {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_1200A,
12199          PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12200         {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940,
12201          PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12202         {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940U,
12203          PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12204         {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940UW,
12205          PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12206         {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C0800_REV1,
12207          PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12208         {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C1600_REV1,
12209          PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12210         {}
12211 };
12212
12213 MODULE_DEVICE_TABLE(pci, advansys_pci_tbl);
12214
12215 static void advansys_set_latency(struct pci_dev *pdev)
12216 {
12217         if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) ||
12218             (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) {
12219                 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0);
12220         } else {
12221                 u8 latency;
12222                 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &latency);
12223                 if (latency < 0x20)
12224                         pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x20);
12225         }
12226 }
12227
12228 static int advansys_pci_probe(struct pci_dev *pdev,
12229                               const struct pci_device_id *ent)
12230 {
12231         int err, ioport;
12232         struct Scsi_Host *shost;
12233         struct asc_board *board;
12234
12235         err = pci_enable_device(pdev);
12236         if (err)
12237                 goto fail;
12238         err = pci_request_regions(pdev, DRV_NAME);
12239         if (err)
12240                 goto disable_device;
12241         pci_set_master(pdev);
12242         advansys_set_latency(pdev);
12243
12244         err = -ENODEV;
12245         if (pci_resource_len(pdev, 0) == 0)
12246                 goto release_region;
12247
12248         ioport = pci_resource_start(pdev, 0);
12249
12250         err = -ENOMEM;
12251         shost = scsi_host_alloc(&advansys_template, sizeof(*board));
12252         if (!shost)
12253                 goto release_region;
12254
12255         board = shost_priv(shost);
12256         board->irq = pdev->irq;
12257         board->dev = &pdev->dev;
12258
12259         if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW ||
12260             pdev->device == PCI_DEVICE_ID_38C0800_REV1 ||
12261             pdev->device == PCI_DEVICE_ID_38C1600_REV1) {
12262                 board->flags |= ASC_IS_WIDE_BOARD;
12263         }
12264
12265         err = advansys_board_found(shost, ioport, ASC_IS_PCI);
12266         if (err)
12267                 goto free_host;
12268
12269         pci_set_drvdata(pdev, shost);
12270         return 0;
12271
12272  free_host:
12273         scsi_host_put(shost);
12274  release_region:
12275         pci_release_regions(pdev);
12276  disable_device:
12277         pci_disable_device(pdev);
12278  fail:
12279         return err;
12280 }
12281
12282 static void advansys_pci_remove(struct pci_dev *pdev)
12283 {
12284         advansys_release(pci_get_drvdata(pdev));
12285         pci_release_regions(pdev);
12286         pci_disable_device(pdev);
12287 }
12288
12289 static struct pci_driver advansys_pci_driver = {
12290         .name =         DRV_NAME,
12291         .id_table =     advansys_pci_tbl,
12292         .probe =        advansys_pci_probe,
12293         .remove =       advansys_pci_remove,
12294 };
12295
12296 static int __init advansys_init(void)
12297 {
12298         int error;
12299
12300         error = isa_register_driver(&advansys_isa_driver,
12301                                     ASC_IOADR_TABLE_MAX_IX);
12302         if (error)
12303                 goto fail;
12304
12305         error = isa_register_driver(&advansys_vlb_driver,
12306                                     ASC_IOADR_TABLE_MAX_IX);
12307         if (error)
12308                 goto unregister_isa;
12309
12310         error = eisa_driver_register(&advansys_eisa_driver);
12311         if (error)
12312                 goto unregister_vlb;
12313
12314         error = pci_register_driver(&advansys_pci_driver);
12315         if (error)
12316                 goto unregister_eisa;
12317
12318         return 0;
12319
12320  unregister_eisa:
12321         eisa_driver_unregister(&advansys_eisa_driver);
12322  unregister_vlb:
12323         isa_unregister_driver(&advansys_vlb_driver);
12324  unregister_isa:
12325         isa_unregister_driver(&advansys_isa_driver);
12326  fail:
12327         return error;
12328 }
12329
12330 static void __exit advansys_exit(void)
12331 {
12332         pci_unregister_driver(&advansys_pci_driver);
12333         eisa_driver_unregister(&advansys_eisa_driver);
12334         isa_unregister_driver(&advansys_vlb_driver);
12335         isa_unregister_driver(&advansys_isa_driver);
12336 }
12337
12338 module_init(advansys_init);
12339 module_exit(advansys_exit);
12340
12341 MODULE_LICENSE("GPL");
12342 MODULE_FIRMWARE("advansys/mcode.bin");
12343 MODULE_FIRMWARE("advansys/3550.bin");
12344 MODULE_FIRMWARE("advansys/38C0800.bin");
12345 MODULE_FIRMWARE("advansys/38C1600.bin");