Merge branch 'master'
[sfrench/cifs-2.6.git] / drivers / scsi / aacraid / dpcsup.c
1 /*
2  *      Adaptec AAC series RAID controller driver
3  *      (c) Copyright 2001 Red Hat Inc. <alan@redhat.com>
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com)
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2, or (at your option)
13  * any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; see the file COPYING.  If not, write to
22  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23  *
24  * Module Name:
25  *  dpcsup.c
26  *
27  * Abstract: All DPC processing routines for the cyclone board occur here.
28  *
29  *
30  */
31
32 #include <linux/kernel.h>
33 #include <linux/init.h>
34 #include <linux/types.h>
35 #include <linux/sched.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/slab.h>
39 #include <linux/completion.h>
40 #include <linux/blkdev.h>
41 #include <asm/semaphore.h>
42
43 #include "aacraid.h"
44
45 /**
46  *      aac_response_normal     -       Handle command replies
47  *      @q: Queue to read from
48  *
49  *      This DPC routine will be run when the adapter interrupts us to let us
50  *      know there is a response on our normal priority queue. We will pull off
51  *      all QE there are and wake up all the waiters before exiting. We will
52  *      take a spinlock out on the queue before operating on it.
53  */
54
55 unsigned int aac_response_normal(struct aac_queue * q)
56 {
57         struct aac_dev * dev = q->dev;
58         struct aac_entry *entry;
59         struct hw_fib * hwfib;
60         struct fib * fib;
61         int consumed = 0;
62         unsigned long flags;
63
64         spin_lock_irqsave(q->lock, flags);      
65         /*
66          *      Keep pulling response QEs off the response queue and waking
67          *      up the waiters until there are no more QEs. We then return
68          *      back to the system. If no response was requesed we just
69          *      deallocate the Fib here and continue.
70          */
71         while(aac_consumer_get(dev, q, &entry))
72         {
73                 int fast;
74                 u32 index = le32_to_cpu(entry->addr);
75                 fast = index & 0x01;
76                 fib = &dev->fibs[index >> 2];
77                 hwfib = fib->hw_fib;
78                 
79                 aac_consumer_free(dev, q, HostNormRespQueue);
80                 /*
81                  *      Remove this fib from the Outstanding I/O queue.
82                  *      But only if it has not already been timed out.
83                  *
84                  *      If the fib has been timed out already, then just 
85                  *      continue. The caller has already been notified that
86                  *      the fib timed out.
87                  */
88                 if (!(fib->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) {
89                         list_del(&fib->queue);
90                         dev->queues->queue[AdapNormCmdQueue].numpending--;
91                 } else {
92                         printk(KERN_WARNING "aacraid: FIB timeout (%x).\n", fib->flags);
93                         printk(KERN_DEBUG"aacraid: hwfib=%p fib index=%i fib=%p\n",hwfib, hwfib->header.SenderData,fib);
94                         continue;
95                 }
96                 spin_unlock_irqrestore(q->lock, flags);
97
98                 if (fast) {
99                         /*
100                          *      Doctor the fib
101                          */
102                         *(__le32 *)hwfib->data = cpu_to_le32(ST_OK);
103                         hwfib->header.XferState |= cpu_to_le32(AdapterProcessed);
104                 }
105
106                 FIB_COUNTER_INCREMENT(aac_config.FibRecved);
107
108                 if (hwfib->header.Command == cpu_to_le16(NuFileSystem))
109                 {
110                         __le32 *pstatus = (__le32 *)hwfib->data;
111                         if (*pstatus & cpu_to_le32(0xffff0000))
112                                 *pstatus = cpu_to_le32(ST_OK);
113                 }
114                 if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected | Async)) 
115                 {
116                         if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected))
117                                 FIB_COUNTER_INCREMENT(aac_config.NoResponseRecved);
118                         else 
119                                 FIB_COUNTER_INCREMENT(aac_config.AsyncRecved);
120                         /*
121                          *      NOTE:  we cannot touch the fib after this
122                          *          call, because it may have been deallocated.
123                          */
124                         fib->callback(fib->callback_data, fib);
125                 } else {
126                         unsigned long flagv;
127                         spin_lock_irqsave(&fib->event_lock, flagv);
128                         fib->done = 1;
129                         up(&fib->event_wait);
130                         spin_unlock_irqrestore(&fib->event_lock, flagv);
131                         FIB_COUNTER_INCREMENT(aac_config.NormalRecved);
132                 }
133                 consumed++;
134                 spin_lock_irqsave(q->lock, flags);
135         }
136
137         if (consumed > aac_config.peak_fibs)
138                 aac_config.peak_fibs = consumed;
139         if (consumed == 0) 
140                 aac_config.zero_fibs++;
141
142         spin_unlock_irqrestore(q->lock, flags);
143         return 0;
144 }
145
146
147 /**
148  *      aac_command_normal      -       handle commands
149  *      @q: queue to process
150  *
151  *      This DPC routine will be queued when the adapter interrupts us to 
152  *      let us know there is a command on our normal priority queue. We will 
153  *      pull off all QE there are and wake up all the waiters before exiting.
154  *      We will take a spinlock out on the queue before operating on it.
155  */
156  
157 unsigned int aac_command_normal(struct aac_queue *q)
158 {
159         struct aac_dev * dev = q->dev;
160         struct aac_entry *entry;
161         unsigned long flags;
162
163         spin_lock_irqsave(q->lock, flags);
164
165         /*
166          *      Keep pulling response QEs off the response queue and waking
167          *      up the waiters until there are no more QEs. We then return
168          *      back to the system.
169          */
170         while(aac_consumer_get(dev, q, &entry))
171         {
172                 struct fib fibctx;
173                 struct hw_fib * hw_fib;
174                 u32 index;
175                 struct fib *fib = &fibctx;
176                 
177                 index = le32_to_cpu(entry->addr) / sizeof(struct hw_fib);
178                 hw_fib = &dev->aif_base_va[index];
179                 
180                 /*
181                  *      Allocate a FIB at all costs. For non queued stuff
182                  *      we can just use the stack so we are happy. We need
183                  *      a fib object in order to manage the linked lists
184                  */
185                 if (dev->aif_thread)
186                         if((fib = kmalloc(sizeof(struct fib), GFP_ATOMIC)) == NULL)
187                                 fib = &fibctx;
188                 
189                 memset(fib, 0, sizeof(struct fib));
190                 INIT_LIST_HEAD(&fib->fiblink);
191                 fib->type = FSAFS_NTC_FIB_CONTEXT;
192                 fib->size = sizeof(struct fib);
193                 fib->hw_fib = hw_fib;
194                 fib->data = hw_fib->data;
195                 fib->dev = dev;
196                 
197                                 
198                 if (dev->aif_thread && fib != &fibctx) {
199                         list_add_tail(&fib->fiblink, &q->cmdq);
200                         aac_consumer_free(dev, q, HostNormCmdQueue);
201                         wake_up_interruptible(&q->cmdready);
202                 } else {
203                         aac_consumer_free(dev, q, HostNormCmdQueue);
204                         spin_unlock_irqrestore(q->lock, flags);
205                         /*
206                          *      Set the status of this FIB
207                          */
208                         *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
209                         aac_fib_adapter_complete(fib, sizeof(u32));
210                         spin_lock_irqsave(q->lock, flags);
211                 }               
212         }
213         spin_unlock_irqrestore(q->lock, flags);
214         return 0;
215 }
216
217
218 /**
219  *      aac_intr_normal -       Handle command replies
220  *      @dev: Device
221  *      @index: completion reference
222  *
223  *      This DPC routine will be run when the adapter interrupts us to let us
224  *      know there is a response on our normal priority queue. We will pull off
225  *      all QE there are and wake up all the waiters before exiting.
226  */
227
228 unsigned int aac_intr_normal(struct aac_dev * dev, u32 Index)
229 {
230         u32 index = le32_to_cpu(Index);
231
232         dprintk((KERN_INFO "aac_intr_normal(%p,%x)\n", dev, Index));
233         if ((index & 0x00000002L)) {
234                 struct hw_fib * hw_fib;
235                 struct fib * fib;
236                 struct aac_queue *q = &dev->queues->queue[HostNormCmdQueue];
237                 unsigned long flags;
238
239                 if (index == 0xFFFFFFFEL) /* Special Case */
240                         return 0;         /* Do nothing */
241                 /*
242                  *      Allocate a FIB. For non queued stuff we can just use
243                  * the stack so we are happy. We need a fib object in order to
244                  * manage the linked lists.
245                  */
246                 if ((!dev->aif_thread)
247                  || (!(fib = kmalloc(sizeof(struct fib),GFP_ATOMIC))))
248                         return 1;
249                 if (!(hw_fib = kmalloc(sizeof(struct hw_fib),GFP_ATOMIC))) {
250                         kfree (fib);
251                         return 1;
252                 }
253                 memset(hw_fib, 0, sizeof(struct hw_fib));
254                 memcpy(hw_fib, (struct hw_fib *)(((unsigned long)(dev->regs.sa)) + (index & ~0x00000002L)), sizeof(struct hw_fib));
255                 memset(fib, 0, sizeof(struct fib));
256                 INIT_LIST_HEAD(&fib->fiblink);
257                 fib->type = FSAFS_NTC_FIB_CONTEXT;
258                 fib->size = sizeof(struct fib);
259                 fib->hw_fib = hw_fib;
260                 fib->data = hw_fib->data;
261                 fib->dev = dev;
262         
263                 spin_lock_irqsave(q->lock, flags);
264                 list_add_tail(&fib->fiblink, &q->cmdq);
265                 wake_up_interruptible(&q->cmdready);
266                 spin_unlock_irqrestore(q->lock, flags);
267                 return 1;
268         } else {
269                 int fast = index & 0x01;
270                 struct fib * fib = &dev->fibs[index >> 2];
271                 struct hw_fib * hwfib = fib->hw_fib;
272
273                 /*
274                  *      Remove this fib from the Outstanding I/O queue.
275                  *      But only if it has not already been timed out.
276                  *
277                  *      If the fib has been timed out already, then just 
278                  *      continue. The caller has already been notified that
279                  *      the fib timed out.
280                  */
281                 if ((fib->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) {
282                         printk(KERN_WARNING "aacraid: FIB timeout (%x).\n", fib->flags);
283                         printk(KERN_DEBUG"aacraid: hwfib=%p index=%i fib=%p\n",hwfib, hwfib->header.SenderData,fib);
284                         return 0;
285                 }
286
287                 list_del(&fib->queue);
288                 dev->queues->queue[AdapNormCmdQueue].numpending--;
289
290                 if (fast) {
291                         /*
292                          *      Doctor the fib
293                          */
294                         *(__le32 *)hwfib->data = cpu_to_le32(ST_OK);
295                         hwfib->header.XferState |= cpu_to_le32(AdapterProcessed);
296                 }
297
298                 FIB_COUNTER_INCREMENT(aac_config.FibRecved);
299
300                 if (hwfib->header.Command == cpu_to_le16(NuFileSystem))
301                 {
302                         u32 *pstatus = (u32 *)hwfib->data;
303                         if (*pstatus & cpu_to_le32(0xffff0000))
304                                 *pstatus = cpu_to_le32(ST_OK);
305                 }
306                 if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected | Async)) 
307                 {
308                         if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected))
309                                 FIB_COUNTER_INCREMENT(aac_config.NoResponseRecved);
310                         else 
311                                 FIB_COUNTER_INCREMENT(aac_config.AsyncRecved);
312                         /*
313                          *      NOTE:  we cannot touch the fib after this
314                          *          call, because it may have been deallocated.
315                          */
316                         fib->callback(fib->callback_data, fib);
317                 } else {
318                         unsigned long flagv;
319                         dprintk((KERN_INFO "event_wait up\n"));
320                         spin_lock_irqsave(&fib->event_lock, flagv);
321                         fib->done = 1;
322                         up(&fib->event_wait);
323                         spin_unlock_irqrestore(&fib->event_lock, flagv);
324                         FIB_COUNTER_INCREMENT(aac_config.NormalRecved);
325                 }
326                 return 0;
327         }
328 }