Merge remote-tracking branches 'asoc/topic/rl6231', 'asoc/topic/rt5514' and 'asoc...
[sfrench/cifs-2.6.git] / drivers / scsi / aacraid / commsup.c
1 /*
2  *      Adaptec AAC series RAID controller driver
3  *      (c) Copyright 2001 Red Hat Inc.
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000-2010 Adaptec, Inc.
9  *               2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
10  *               2016-2017 Microsemi Corp. (aacraid@microsemi.com)
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2, or (at your option)
15  * any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; see the file COPYING.  If not, write to
24  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  * Module Name:
27  *  commsup.c
28  *
29  * Abstract: Contain all routines that are required for FSA host/adapter
30  *    communication.
31  *
32  */
33
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/types.h>
37 #include <linux/sched.h>
38 #include <linux/pci.h>
39 #include <linux/spinlock.h>
40 #include <linux/slab.h>
41 #include <linux/completion.h>
42 #include <linux/blkdev.h>
43 #include <linux/delay.h>
44 #include <linux/kthread.h>
45 #include <linux/interrupt.h>
46 #include <linux/semaphore.h>
47 #include <linux/bcd.h>
48 #include <scsi/scsi.h>
49 #include <scsi/scsi_host.h>
50 #include <scsi/scsi_device.h>
51 #include <scsi/scsi_cmnd.h>
52
53 #include "aacraid.h"
54
55 /**
56  *      fib_map_alloc           -       allocate the fib objects
57  *      @dev: Adapter to allocate for
58  *
59  *      Allocate and map the shared PCI space for the FIB blocks used to
60  *      talk to the Adaptec firmware.
61  */
62
63 static int fib_map_alloc(struct aac_dev *dev)
64 {
65         if (dev->max_fib_size > AAC_MAX_NATIVE_SIZE)
66                 dev->max_cmd_size = AAC_MAX_NATIVE_SIZE;
67         else
68                 dev->max_cmd_size = dev->max_fib_size;
69         if (dev->max_fib_size < AAC_MAX_NATIVE_SIZE) {
70                 dev->max_cmd_size = AAC_MAX_NATIVE_SIZE;
71         } else {
72                 dev->max_cmd_size = dev->max_fib_size;
73         }
74
75         dprintk((KERN_INFO
76           "allocate hardware fibs dma_alloc_coherent(%p, %d * (%d + %d), %p)\n",
77           &dev->pdev->dev, dev->max_cmd_size, dev->scsi_host_ptr->can_queue,
78           AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
79         dev->hw_fib_va = dma_alloc_coherent(&dev->pdev->dev,
80                 (dev->max_cmd_size + sizeof(struct aac_fib_xporthdr))
81                 * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) + (ALIGN32 - 1),
82                 &dev->hw_fib_pa, GFP_KERNEL);
83         if (dev->hw_fib_va == NULL)
84                 return -ENOMEM;
85         return 0;
86 }
87
88 /**
89  *      aac_fib_map_free                -       free the fib objects
90  *      @dev: Adapter to free
91  *
92  *      Free the PCI mappings and the memory allocated for FIB blocks
93  *      on this adapter.
94  */
95
96 void aac_fib_map_free(struct aac_dev *dev)
97 {
98         size_t alloc_size;
99         size_t fib_size;
100         int num_fibs;
101
102         if(!dev->hw_fib_va || !dev->max_cmd_size)
103                 return;
104
105         num_fibs = dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB;
106         fib_size = dev->max_fib_size + sizeof(struct aac_fib_xporthdr);
107         alloc_size = fib_size * num_fibs + ALIGN32 - 1;
108
109         dma_free_coherent(&dev->pdev->dev, alloc_size, dev->hw_fib_va,
110                           dev->hw_fib_pa);
111
112         dev->hw_fib_va = NULL;
113         dev->hw_fib_pa = 0;
114 }
115
116 void aac_fib_vector_assign(struct aac_dev *dev)
117 {
118         u32 i = 0;
119         u32 vector = 1;
120         struct fib *fibptr = NULL;
121
122         for (i = 0, fibptr = &dev->fibs[i];
123                 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
124                 i++, fibptr++) {
125                 if ((dev->max_msix == 1) ||
126                   (i > ((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1)
127                         - dev->vector_cap))) {
128                         fibptr->vector_no = 0;
129                 } else {
130                         fibptr->vector_no = vector;
131                         vector++;
132                         if (vector == dev->max_msix)
133                                 vector = 1;
134                 }
135         }
136 }
137
138 /**
139  *      aac_fib_setup   -       setup the fibs
140  *      @dev: Adapter to set up
141  *
142  *      Allocate the PCI space for the fibs, map it and then initialise the
143  *      fib area, the unmapped fib data and also the free list
144  */
145
146 int aac_fib_setup(struct aac_dev * dev)
147 {
148         struct fib *fibptr;
149         struct hw_fib *hw_fib;
150         dma_addr_t hw_fib_pa;
151         int i;
152         u32 max_cmds;
153
154         while (((i = fib_map_alloc(dev)) == -ENOMEM)
155          && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
156                 max_cmds = (dev->scsi_host_ptr->can_queue+AAC_NUM_MGT_FIB) >> 1;
157                 dev->scsi_host_ptr->can_queue = max_cmds - AAC_NUM_MGT_FIB;
158                 if (dev->comm_interface != AAC_COMM_MESSAGE_TYPE3)
159                         dev->init->r7.max_io_commands = cpu_to_le32(max_cmds);
160         }
161         if (i<0)
162                 return -ENOMEM;
163
164         memset(dev->hw_fib_va, 0,
165                 (dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)) *
166                 (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
167
168         /* 32 byte alignment for PMC */
169         hw_fib_pa = (dev->hw_fib_pa + (ALIGN32 - 1)) & ~(ALIGN32 - 1);
170         hw_fib    = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
171                                         (hw_fib_pa - dev->hw_fib_pa));
172
173         /* add Xport header */
174         hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
175                 sizeof(struct aac_fib_xporthdr));
176         hw_fib_pa += sizeof(struct aac_fib_xporthdr);
177
178         /*
179          *      Initialise the fibs
180          */
181         for (i = 0, fibptr = &dev->fibs[i];
182                 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
183                 i++, fibptr++)
184         {
185                 fibptr->flags = 0;
186                 fibptr->size = sizeof(struct fib);
187                 fibptr->dev = dev;
188                 fibptr->hw_fib_va = hw_fib;
189                 fibptr->data = (void *) fibptr->hw_fib_va->data;
190                 fibptr->next = fibptr+1;        /* Forward chain the fibs */
191                 sema_init(&fibptr->event_wait, 0);
192                 spin_lock_init(&fibptr->event_lock);
193                 hw_fib->header.XferState = cpu_to_le32(0xffffffff);
194                 hw_fib->header.SenderSize =
195                         cpu_to_le16(dev->max_fib_size); /* ?? max_cmd_size */
196                 fibptr->hw_fib_pa = hw_fib_pa;
197                 fibptr->hw_sgl_pa = hw_fib_pa +
198                         offsetof(struct aac_hba_cmd_req, sge[2]);
199                 /*
200                  * one element is for the ptr to the separate sg list,
201                  * second element for 32 byte alignment
202                  */
203                 fibptr->hw_error_pa = hw_fib_pa +
204                         offsetof(struct aac_native_hba, resp.resp_bytes[0]);
205
206                 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
207                         dev->max_cmd_size + sizeof(struct aac_fib_xporthdr));
208                 hw_fib_pa = hw_fib_pa +
209                         dev->max_cmd_size + sizeof(struct aac_fib_xporthdr);
210         }
211
212         /*
213          *Assign vector numbers to fibs
214          */
215         aac_fib_vector_assign(dev);
216
217         /*
218          *      Add the fib chain to the free list
219          */
220         dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
221         /*
222         *       Set 8 fibs aside for management tools
223         */
224         dev->free_fib = &dev->fibs[dev->scsi_host_ptr->can_queue];
225         return 0;
226 }
227
228 /**
229  *      aac_fib_alloc_tag-allocate a fib using tags
230  *      @dev: Adapter to allocate the fib for
231  *
232  *      Allocate a fib from the adapter fib pool using tags
233  *      from the blk layer.
234  */
235
236 struct fib *aac_fib_alloc_tag(struct aac_dev *dev, struct scsi_cmnd *scmd)
237 {
238         struct fib *fibptr;
239
240         fibptr = &dev->fibs[scmd->request->tag];
241         /*
242          *      Null out fields that depend on being zero at the start of
243          *      each I/O
244          */
245         fibptr->hw_fib_va->header.XferState = 0;
246         fibptr->type = FSAFS_NTC_FIB_CONTEXT;
247         fibptr->callback_data = NULL;
248         fibptr->callback = NULL;
249
250         return fibptr;
251 }
252
253 /**
254  *      aac_fib_alloc   -       allocate a fib
255  *      @dev: Adapter to allocate the fib for
256  *
257  *      Allocate a fib from the adapter fib pool. If the pool is empty we
258  *      return NULL.
259  */
260
261 struct fib *aac_fib_alloc(struct aac_dev *dev)
262 {
263         struct fib * fibptr;
264         unsigned long flags;
265         spin_lock_irqsave(&dev->fib_lock, flags);
266         fibptr = dev->free_fib;
267         if(!fibptr){
268                 spin_unlock_irqrestore(&dev->fib_lock, flags);
269                 return fibptr;
270         }
271         dev->free_fib = fibptr->next;
272         spin_unlock_irqrestore(&dev->fib_lock, flags);
273         /*
274          *      Set the proper node type code and node byte size
275          */
276         fibptr->type = FSAFS_NTC_FIB_CONTEXT;
277         fibptr->size = sizeof(struct fib);
278         /*
279          *      Null out fields that depend on being zero at the start of
280          *      each I/O
281          */
282         fibptr->hw_fib_va->header.XferState = 0;
283         fibptr->flags = 0;
284         fibptr->callback = NULL;
285         fibptr->callback_data = NULL;
286
287         return fibptr;
288 }
289
290 /**
291  *      aac_fib_free    -       free a fib
292  *      @fibptr: fib to free up
293  *
294  *      Frees up a fib and places it on the appropriate queue
295  */
296
297 void aac_fib_free(struct fib *fibptr)
298 {
299         unsigned long flags;
300
301         if (fibptr->done == 2)
302                 return;
303
304         spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
305         if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
306                 aac_config.fib_timeouts++;
307         if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) &&
308                 fibptr->hw_fib_va->header.XferState != 0) {
309                 printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
310                          (void*)fibptr,
311                          le32_to_cpu(fibptr->hw_fib_va->header.XferState));
312         }
313         fibptr->next = fibptr->dev->free_fib;
314         fibptr->dev->free_fib = fibptr;
315         spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
316 }
317
318 /**
319  *      aac_fib_init    -       initialise a fib
320  *      @fibptr: The fib to initialize
321  *
322  *      Set up the generic fib fields ready for use
323  */
324
325 void aac_fib_init(struct fib *fibptr)
326 {
327         struct hw_fib *hw_fib = fibptr->hw_fib_va;
328
329         memset(&hw_fib->header, 0, sizeof(struct aac_fibhdr));
330         hw_fib->header.StructType = FIB_MAGIC;
331         hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
332         hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
333         hw_fib->header.u.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
334         hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
335 }
336
337 /**
338  *      fib_deallocate          -       deallocate a fib
339  *      @fibptr: fib to deallocate
340  *
341  *      Will deallocate and return to the free pool the FIB pointed to by the
342  *      caller.
343  */
344
345 static void fib_dealloc(struct fib * fibptr)
346 {
347         struct hw_fib *hw_fib = fibptr->hw_fib_va;
348         hw_fib->header.XferState = 0;
349 }
350
351 /*
352  *      Commuication primitives define and support the queuing method we use to
353  *      support host to adapter commuication. All queue accesses happen through
354  *      these routines and are the only routines which have a knowledge of the
355  *       how these queues are implemented.
356  */
357
358 /**
359  *      aac_get_entry           -       get a queue entry
360  *      @dev: Adapter
361  *      @qid: Queue Number
362  *      @entry: Entry return
363  *      @index: Index return
364  *      @nonotify: notification control
365  *
366  *      With a priority the routine returns a queue entry if the queue has free entries. If the queue
367  *      is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
368  *      returned.
369  */
370
371 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
372 {
373         struct aac_queue * q;
374         unsigned long idx;
375
376         /*
377          *      All of the queues wrap when they reach the end, so we check
378          *      to see if they have reached the end and if they have we just
379          *      set the index back to zero. This is a wrap. You could or off
380          *      the high bits in all updates but this is a bit faster I think.
381          */
382
383         q = &dev->queues->queue[qid];
384
385         idx = *index = le32_to_cpu(*(q->headers.producer));
386         /* Interrupt Moderation, only interrupt for first two entries */
387         if (idx != le32_to_cpu(*(q->headers.consumer))) {
388                 if (--idx == 0) {
389                         if (qid == AdapNormCmdQueue)
390                                 idx = ADAP_NORM_CMD_ENTRIES;
391                         else
392                                 idx = ADAP_NORM_RESP_ENTRIES;
393                 }
394                 if (idx != le32_to_cpu(*(q->headers.consumer)))
395                         *nonotify = 1;
396         }
397
398         if (qid == AdapNormCmdQueue) {
399                 if (*index >= ADAP_NORM_CMD_ENTRIES)
400                         *index = 0; /* Wrap to front of the Producer Queue. */
401         } else {
402                 if (*index >= ADAP_NORM_RESP_ENTRIES)
403                         *index = 0; /* Wrap to front of the Producer Queue. */
404         }
405
406         /* Queue is full */
407         if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) {
408                 printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
409                                 qid, atomic_read(&q->numpending));
410                 return 0;
411         } else {
412                 *entry = q->base + *index;
413                 return 1;
414         }
415 }
416
417 /**
418  *      aac_queue_get           -       get the next free QE
419  *      @dev: Adapter
420  *      @index: Returned index
421  *      @priority: Priority of fib
422  *      @fib: Fib to associate with the queue entry
423  *      @wait: Wait if queue full
424  *      @fibptr: Driver fib object to go with fib
425  *      @nonotify: Don't notify the adapter
426  *
427  *      Gets the next free QE off the requested priorty adapter command
428  *      queue and associates the Fib with the QE. The QE represented by
429  *      index is ready to insert on the queue when this routine returns
430  *      success.
431  */
432
433 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
434 {
435         struct aac_entry * entry = NULL;
436         int map = 0;
437
438         if (qid == AdapNormCmdQueue) {
439                 /*  if no entries wait for some if caller wants to */
440                 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
441                         printk(KERN_ERR "GetEntries failed\n");
442                 }
443                 /*
444                  *      Setup queue entry with a command, status and fib mapped
445                  */
446                 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
447                 map = 1;
448         } else {
449                 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
450                         /* if no entries wait for some if caller wants to */
451                 }
452                 /*
453                  *      Setup queue entry with command, status and fib mapped
454                  */
455                 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
456                 entry->addr = hw_fib->header.SenderFibAddress;
457                         /* Restore adapters pointer to the FIB */
458                 hw_fib->header.u.ReceiverFibAddress = hw_fib->header.SenderFibAddress;  /* Let the adapter now where to find its data */
459                 map = 0;
460         }
461         /*
462          *      If MapFib is true than we need to map the Fib and put pointers
463          *      in the queue entry.
464          */
465         if (map)
466                 entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
467         return 0;
468 }
469
470 /*
471  *      Define the highest level of host to adapter communication routines.
472  *      These routines will support host to adapter FS commuication. These
473  *      routines have no knowledge of the commuication method used. This level
474  *      sends and receives FIBs. This level has no knowledge of how these FIBs
475  *      get passed back and forth.
476  */
477
478 /**
479  *      aac_fib_send    -       send a fib to the adapter
480  *      @command: Command to send
481  *      @fibptr: The fib
482  *      @size: Size of fib data area
483  *      @priority: Priority of Fib
484  *      @wait: Async/sync select
485  *      @reply: True if a reply is wanted
486  *      @callback: Called with reply
487  *      @callback_data: Passed to callback
488  *
489  *      Sends the requested FIB to the adapter and optionally will wait for a
490  *      response FIB. If the caller does not wish to wait for a response than
491  *      an event to wait on must be supplied. This event will be set when a
492  *      response FIB is received from the adapter.
493  */
494
495 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
496                 int priority, int wait, int reply, fib_callback callback,
497                 void *callback_data)
498 {
499         struct aac_dev * dev = fibptr->dev;
500         struct hw_fib * hw_fib = fibptr->hw_fib_va;
501         unsigned long flags = 0;
502         unsigned long mflags = 0;
503         unsigned long sflags = 0;
504
505         if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
506                 return -EBUSY;
507
508         if (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed))
509                 return -EINVAL;
510
511         /*
512          *      There are 5 cases with the wait and response requested flags.
513          *      The only invalid cases are if the caller requests to wait and
514          *      does not request a response and if the caller does not want a
515          *      response and the Fib is not allocated from pool. If a response
516          *      is not requesed the Fib will just be deallocaed by the DPC
517          *      routine when the response comes back from the adapter. No
518          *      further processing will be done besides deleting the Fib. We
519          *      will have a debug mode where the adapter can notify the host
520          *      it had a problem and the host can log that fact.
521          */
522         fibptr->flags = 0;
523         if (wait && !reply) {
524                 return -EINVAL;
525         } else if (!wait && reply) {
526                 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
527                 FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
528         } else if (!wait && !reply) {
529                 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
530                 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
531         } else if (wait && reply) {
532                 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
533                 FIB_COUNTER_INCREMENT(aac_config.NormalSent);
534         }
535         /*
536          *      Map the fib into 32bits by using the fib number
537          */
538
539         hw_fib->header.SenderFibAddress =
540                 cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
541
542         /* use the same shifted value for handle to be compatible
543          * with the new native hba command handle
544          */
545         hw_fib->header.Handle =
546                 cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1);
547
548         /*
549          *      Set FIB state to indicate where it came from and if we want a
550          *      response from the adapter. Also load the command from the
551          *      caller.
552          *
553          *      Map the hw fib pointer as a 32bit value
554          */
555         hw_fib->header.Command = cpu_to_le16(command);
556         hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
557         /*
558          *      Set the size of the Fib we want to send to the adapter
559          */
560         hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
561         if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
562                 return -EMSGSIZE;
563         }
564         /*
565          *      Get a queue entry connect the FIB to it and send an notify
566          *      the adapter a command is ready.
567          */
568         hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
569
570         /*
571          *      Fill in the Callback and CallbackContext if we are not
572          *      going to wait.
573          */
574         if (!wait) {
575                 fibptr->callback = callback;
576                 fibptr->callback_data = callback_data;
577                 fibptr->flags = FIB_CONTEXT_FLAG;
578         }
579
580         fibptr->done = 0;
581
582         FIB_COUNTER_INCREMENT(aac_config.FibsSent);
583
584         dprintk((KERN_DEBUG "Fib contents:.\n"));
585         dprintk((KERN_DEBUG "  Command =               %d.\n", le32_to_cpu(hw_fib->header.Command)));
586         dprintk((KERN_DEBUG "  SubCommand =            %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
587         dprintk((KERN_DEBUG "  XferState  =            %x.\n", le32_to_cpu(hw_fib->header.XferState)));
588         dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib_va));
589         dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
590         dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr));
591
592         if (!dev->queues)
593                 return -EBUSY;
594
595         if (wait) {
596
597                 spin_lock_irqsave(&dev->manage_lock, mflags);
598                 if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
599                         printk(KERN_INFO "No management Fibs Available:%d\n",
600                                                 dev->management_fib_count);
601                         spin_unlock_irqrestore(&dev->manage_lock, mflags);
602                         return -EBUSY;
603                 }
604                 dev->management_fib_count++;
605                 spin_unlock_irqrestore(&dev->manage_lock, mflags);
606                 spin_lock_irqsave(&fibptr->event_lock, flags);
607         }
608
609         if (dev->sync_mode) {
610                 if (wait)
611                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
612                 spin_lock_irqsave(&dev->sync_lock, sflags);
613                 if (dev->sync_fib) {
614                         list_add_tail(&fibptr->fiblink, &dev->sync_fib_list);
615                         spin_unlock_irqrestore(&dev->sync_lock, sflags);
616                 } else {
617                         dev->sync_fib = fibptr;
618                         spin_unlock_irqrestore(&dev->sync_lock, sflags);
619                         aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB,
620                                 (u32)fibptr->hw_fib_pa, 0, 0, 0, 0, 0,
621                                 NULL, NULL, NULL, NULL, NULL);
622                 }
623                 if (wait) {
624                         fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
625                         if (down_interruptible(&fibptr->event_wait)) {
626                                 fibptr->flags &= ~FIB_CONTEXT_FLAG_WAIT;
627                                 return -EFAULT;
628                         }
629                         return 0;
630                 }
631                 return -EINPROGRESS;
632         }
633
634         if (aac_adapter_deliver(fibptr) != 0) {
635                 printk(KERN_ERR "aac_fib_send: returned -EBUSY\n");
636                 if (wait) {
637                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
638                         spin_lock_irqsave(&dev->manage_lock, mflags);
639                         dev->management_fib_count--;
640                         spin_unlock_irqrestore(&dev->manage_lock, mflags);
641                 }
642                 return -EBUSY;
643         }
644
645
646         /*
647          *      If the caller wanted us to wait for response wait now.
648          */
649
650         if (wait) {
651                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
652                 /* Only set for first known interruptable command */
653                 if (wait < 0) {
654                         /*
655                          * *VERY* Dangerous to time out a command, the
656                          * assumption is made that we have no hope of
657                          * functioning because an interrupt routing or other
658                          * hardware failure has occurred.
659                          */
660                         unsigned long timeout = jiffies + (180 * HZ); /* 3 minutes */
661                         while (down_trylock(&fibptr->event_wait)) {
662                                 int blink;
663                                 if (time_is_before_eq_jiffies(timeout)) {
664                                         struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
665                                         atomic_dec(&q->numpending);
666                                         if (wait == -1) {
667                                                 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
668                                                   "Usually a result of a PCI interrupt routing problem;\n"
669                                                   "update mother board BIOS or consider utilizing one of\n"
670                                                   "the SAFE mode kernel options (acpi, apic etc)\n");
671                                         }
672                                         return -ETIMEDOUT;
673                                 }
674
675                                 if (unlikely(pci_channel_offline(dev->pdev)))
676                                         return -EFAULT;
677
678                                 if ((blink = aac_adapter_check_health(dev)) > 0) {
679                                         if (wait == -1) {
680                                                 printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
681                                                   "Usually a result of a serious unrecoverable hardware problem\n",
682                                                   blink);
683                                         }
684                                         return -EFAULT;
685                                 }
686                                 /*
687                                  * Allow other processes / CPUS to use core
688                                  */
689                                 schedule();
690                         }
691                 } else if (down_interruptible(&fibptr->event_wait)) {
692                         /* Do nothing ... satisfy
693                          * down_interruptible must_check */
694                 }
695
696                 spin_lock_irqsave(&fibptr->event_lock, flags);
697                 if (fibptr->done == 0) {
698                         fibptr->done = 2; /* Tell interrupt we aborted */
699                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
700                         return -ERESTARTSYS;
701                 }
702                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
703                 BUG_ON(fibptr->done == 0);
704
705                 if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
706                         return -ETIMEDOUT;
707                 return 0;
708         }
709         /*
710          *      If the user does not want a response than return success otherwise
711          *      return pending
712          */
713         if (reply)
714                 return -EINPROGRESS;
715         else
716                 return 0;
717 }
718
719 int aac_hba_send(u8 command, struct fib *fibptr, fib_callback callback,
720                 void *callback_data)
721 {
722         struct aac_dev *dev = fibptr->dev;
723         int wait;
724         unsigned long flags = 0;
725         unsigned long mflags = 0;
726
727         fibptr->flags = (FIB_CONTEXT_FLAG | FIB_CONTEXT_FLAG_NATIVE_HBA);
728         if (callback) {
729                 wait = 0;
730                 fibptr->callback = callback;
731                 fibptr->callback_data = callback_data;
732         } else
733                 wait = 1;
734
735
736         if (command == HBA_IU_TYPE_SCSI_CMD_REQ) {
737                 struct aac_hba_cmd_req *hbacmd =
738                         (struct aac_hba_cmd_req *)fibptr->hw_fib_va;
739
740                 hbacmd->iu_type = command;
741                 /* bit1 of request_id must be 0 */
742                 hbacmd->request_id =
743                         cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1);
744                 fibptr->flags |= FIB_CONTEXT_FLAG_SCSI_CMD;
745         } else if (command != HBA_IU_TYPE_SCSI_TM_REQ)
746                 return -EINVAL;
747
748
749         if (wait) {
750                 spin_lock_irqsave(&dev->manage_lock, mflags);
751                 if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
752                         spin_unlock_irqrestore(&dev->manage_lock, mflags);
753                         return -EBUSY;
754                 }
755                 dev->management_fib_count++;
756                 spin_unlock_irqrestore(&dev->manage_lock, mflags);
757                 spin_lock_irqsave(&fibptr->event_lock, flags);
758         }
759
760         if (aac_adapter_deliver(fibptr) != 0) {
761                 if (wait) {
762                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
763                         spin_lock_irqsave(&dev->manage_lock, mflags);
764                         dev->management_fib_count--;
765                         spin_unlock_irqrestore(&dev->manage_lock, mflags);
766                 }
767                 return -EBUSY;
768         }
769         FIB_COUNTER_INCREMENT(aac_config.NativeSent);
770
771         if (wait) {
772
773                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
774
775                 if (unlikely(pci_channel_offline(dev->pdev)))
776                         return -EFAULT;
777
778                 fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
779                 if (down_interruptible(&fibptr->event_wait))
780                         fibptr->done = 2;
781                 fibptr->flags &= ~(FIB_CONTEXT_FLAG_WAIT);
782
783                 spin_lock_irqsave(&fibptr->event_lock, flags);
784                 if ((fibptr->done == 0) || (fibptr->done == 2)) {
785                         fibptr->done = 2; /* Tell interrupt we aborted */
786                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
787                         return -ERESTARTSYS;
788                 }
789                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
790                 WARN_ON(fibptr->done == 0);
791
792                 if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
793                         return -ETIMEDOUT;
794
795                 return 0;
796         }
797
798         return -EINPROGRESS;
799 }
800
801 /**
802  *      aac_consumer_get        -       get the top of the queue
803  *      @dev: Adapter
804  *      @q: Queue
805  *      @entry: Return entry
806  *
807  *      Will return a pointer to the entry on the top of the queue requested that
808  *      we are a consumer of, and return the address of the queue entry. It does
809  *      not change the state of the queue.
810  */
811
812 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
813 {
814         u32 index;
815         int status;
816         if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
817                 status = 0;
818         } else {
819                 /*
820                  *      The consumer index must be wrapped if we have reached
821                  *      the end of the queue, else we just use the entry
822                  *      pointed to by the header index
823                  */
824                 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
825                         index = 0;
826                 else
827                         index = le32_to_cpu(*q->headers.consumer);
828                 *entry = q->base + index;
829                 status = 1;
830         }
831         return(status);
832 }
833
834 /**
835  *      aac_consumer_free       -       free consumer entry
836  *      @dev: Adapter
837  *      @q: Queue
838  *      @qid: Queue ident
839  *
840  *      Frees up the current top of the queue we are a consumer of. If the
841  *      queue was full notify the producer that the queue is no longer full.
842  */
843
844 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
845 {
846         int wasfull = 0;
847         u32 notify;
848
849         if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
850                 wasfull = 1;
851
852         if (le32_to_cpu(*q->headers.consumer) >= q->entries)
853                 *q->headers.consumer = cpu_to_le32(1);
854         else
855                 le32_add_cpu(q->headers.consumer, 1);
856
857         if (wasfull) {
858                 switch (qid) {
859
860                 case HostNormCmdQueue:
861                         notify = HostNormCmdNotFull;
862                         break;
863                 case HostNormRespQueue:
864                         notify = HostNormRespNotFull;
865                         break;
866                 default:
867                         BUG();
868                         return;
869                 }
870                 aac_adapter_notify(dev, notify);
871         }
872 }
873
874 /**
875  *      aac_fib_adapter_complete        -       complete adapter issued fib
876  *      @fibptr: fib to complete
877  *      @size: size of fib
878  *
879  *      Will do all necessary work to complete a FIB that was sent from
880  *      the adapter.
881  */
882
883 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
884 {
885         struct hw_fib * hw_fib = fibptr->hw_fib_va;
886         struct aac_dev * dev = fibptr->dev;
887         struct aac_queue * q;
888         unsigned long nointr = 0;
889         unsigned long qflags;
890
891         if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 ||
892                 dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 ||
893                 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) {
894                 kfree(hw_fib);
895                 return 0;
896         }
897
898         if (hw_fib->header.XferState == 0) {
899                 if (dev->comm_interface == AAC_COMM_MESSAGE)
900                         kfree(hw_fib);
901                 return 0;
902         }
903         /*
904          *      If we plan to do anything check the structure type first.
905          */
906         if (hw_fib->header.StructType != FIB_MAGIC &&
907             hw_fib->header.StructType != FIB_MAGIC2 &&
908             hw_fib->header.StructType != FIB_MAGIC2_64) {
909                 if (dev->comm_interface == AAC_COMM_MESSAGE)
910                         kfree(hw_fib);
911                 return -EINVAL;
912         }
913         /*
914          *      This block handles the case where the adapter had sent us a
915          *      command and we have finished processing the command. We
916          *      call completeFib when we are done processing the command
917          *      and want to send a response back to the adapter. This will
918          *      send the completed cdb to the adapter.
919          */
920         if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
921                 if (dev->comm_interface == AAC_COMM_MESSAGE) {
922                         kfree (hw_fib);
923                 } else {
924                         u32 index;
925                         hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
926                         if (size) {
927                                 size += sizeof(struct aac_fibhdr);
928                                 if (size > le16_to_cpu(hw_fib->header.SenderSize))
929                                         return -EMSGSIZE;
930                                 hw_fib->header.Size = cpu_to_le16(size);
931                         }
932                         q = &dev->queues->queue[AdapNormRespQueue];
933                         spin_lock_irqsave(q->lock, qflags);
934                         aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
935                         *(q->headers.producer) = cpu_to_le32(index + 1);
936                         spin_unlock_irqrestore(q->lock, qflags);
937                         if (!(nointr & (int)aac_config.irq_mod))
938                                 aac_adapter_notify(dev, AdapNormRespQueue);
939                 }
940         } else {
941                 printk(KERN_WARNING "aac_fib_adapter_complete: "
942                         "Unknown xferstate detected.\n");
943                 BUG();
944         }
945         return 0;
946 }
947
948 /**
949  *      aac_fib_complete        -       fib completion handler
950  *      @fib: FIB to complete
951  *
952  *      Will do all necessary work to complete a FIB.
953  */
954
955 int aac_fib_complete(struct fib *fibptr)
956 {
957         struct hw_fib * hw_fib = fibptr->hw_fib_va;
958
959         if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) {
960                 fib_dealloc(fibptr);
961                 return 0;
962         }
963
964         /*
965          *      Check for a fib which has already been completed or with a
966          *      status wait timeout
967          */
968
969         if (hw_fib->header.XferState == 0 || fibptr->done == 2)
970                 return 0;
971         /*
972          *      If we plan to do anything check the structure type first.
973          */
974
975         if (hw_fib->header.StructType != FIB_MAGIC &&
976             hw_fib->header.StructType != FIB_MAGIC2 &&
977             hw_fib->header.StructType != FIB_MAGIC2_64)
978                 return -EINVAL;
979         /*
980          *      This block completes a cdb which orginated on the host and we
981          *      just need to deallocate the cdb or reinit it. At this point the
982          *      command is complete that we had sent to the adapter and this
983          *      cdb could be reused.
984          */
985
986         if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
987                 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
988         {
989                 fib_dealloc(fibptr);
990         }
991         else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
992         {
993                 /*
994                  *      This handles the case when the host has aborted the I/O
995                  *      to the adapter because the adapter is not responding
996                  */
997                 fib_dealloc(fibptr);
998         } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
999                 fib_dealloc(fibptr);
1000         } else {
1001                 BUG();
1002         }
1003         return 0;
1004 }
1005
1006 /**
1007  *      aac_printf      -       handle printf from firmware
1008  *      @dev: Adapter
1009  *      @val: Message info
1010  *
1011  *      Print a message passed to us by the controller firmware on the
1012  *      Adaptec board
1013  */
1014
1015 void aac_printf(struct aac_dev *dev, u32 val)
1016 {
1017         char *cp = dev->printfbuf;
1018         if (dev->printf_enabled)
1019         {
1020                 int length = val & 0xffff;
1021                 int level = (val >> 16) & 0xffff;
1022
1023                 /*
1024                  *      The size of the printfbuf is set in port.c
1025                  *      There is no variable or define for it
1026                  */
1027                 if (length > 255)
1028                         length = 255;
1029                 if (cp[length] != 0)
1030                         cp[length] = 0;
1031                 if (level == LOG_AAC_HIGH_ERROR)
1032                         printk(KERN_WARNING "%s:%s", dev->name, cp);
1033                 else
1034                         printk(KERN_INFO "%s:%s", dev->name, cp);
1035         }
1036         memset(cp, 0, 256);
1037 }
1038
1039 static inline int aac_aif_data(struct aac_aifcmd *aifcmd, uint32_t index)
1040 {
1041         return le32_to_cpu(((__le32 *)aifcmd->data)[index]);
1042 }
1043
1044
1045 static void aac_handle_aif_bu(struct aac_dev *dev, struct aac_aifcmd *aifcmd)
1046 {
1047         switch (aac_aif_data(aifcmd, 1)) {
1048         case AifBuCacheDataLoss:
1049                 if (aac_aif_data(aifcmd, 2))
1050                         dev_info(&dev->pdev->dev, "Backup unit had cache data loss - [%d]\n",
1051                         aac_aif_data(aifcmd, 2));
1052                 else
1053                         dev_info(&dev->pdev->dev, "Backup Unit had cache data loss\n");
1054                 break;
1055         case AifBuCacheDataRecover:
1056                 if (aac_aif_data(aifcmd, 2))
1057                         dev_info(&dev->pdev->dev, "DDR cache data recovered successfully - [%d]\n",
1058                         aac_aif_data(aifcmd, 2));
1059                 else
1060                         dev_info(&dev->pdev->dev, "DDR cache data recovered successfully\n");
1061                 break;
1062         }
1063 }
1064
1065 /**
1066  *      aac_handle_aif          -       Handle a message from the firmware
1067  *      @dev: Which adapter this fib is from
1068  *      @fibptr: Pointer to fibptr from adapter
1069  *
1070  *      This routine handles a driver notify fib from the adapter and
1071  *      dispatches it to the appropriate routine for handling.
1072  */
1073
1074 #define AIF_SNIFF_TIMEOUT       (500*HZ)
1075 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
1076 {
1077         struct hw_fib * hw_fib = fibptr->hw_fib_va;
1078         struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
1079         u32 channel, id, lun, container;
1080         struct scsi_device *device;
1081         enum {
1082                 NOTHING,
1083                 DELETE,
1084                 ADD,
1085                 CHANGE
1086         } device_config_needed = NOTHING;
1087
1088         /* Sniff for container changes */
1089
1090         if (!dev || !dev->fsa_dev)
1091                 return;
1092         container = channel = id = lun = (u32)-1;
1093
1094         /*
1095          *      We have set this up to try and minimize the number of
1096          * re-configures that take place. As a result of this when
1097          * certain AIF's come in we will set a flag waiting for another
1098          * type of AIF before setting the re-config flag.
1099          */
1100         switch (le32_to_cpu(aifcmd->command)) {
1101         case AifCmdDriverNotify:
1102                 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
1103                 case AifRawDeviceRemove:
1104                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1105                         if ((container >> 28)) {
1106                                 container = (u32)-1;
1107                                 break;
1108                         }
1109                         channel = (container >> 24) & 0xF;
1110                         if (channel >= dev->maximum_num_channels) {
1111                                 container = (u32)-1;
1112                                 break;
1113                         }
1114                         id = container & 0xFFFF;
1115                         if (id >= dev->maximum_num_physicals) {
1116                                 container = (u32)-1;
1117                                 break;
1118                         }
1119                         lun = (container >> 16) & 0xFF;
1120                         container = (u32)-1;
1121                         channel = aac_phys_to_logical(channel);
1122                         device_config_needed = DELETE;
1123                         break;
1124
1125                 /*
1126                  *      Morph or Expand complete
1127                  */
1128                 case AifDenMorphComplete:
1129                 case AifDenVolumeExtendComplete:
1130                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1131                         if (container >= dev->maximum_num_containers)
1132                                 break;
1133
1134                         /*
1135                          *      Find the scsi_device associated with the SCSI
1136                          * address. Make sure we have the right array, and if
1137                          * so set the flag to initiate a new re-config once we
1138                          * see an AifEnConfigChange AIF come through.
1139                          */
1140
1141                         if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
1142                                 device = scsi_device_lookup(dev->scsi_host_ptr,
1143                                         CONTAINER_TO_CHANNEL(container),
1144                                         CONTAINER_TO_ID(container),
1145                                         CONTAINER_TO_LUN(container));
1146                                 if (device) {
1147                                         dev->fsa_dev[container].config_needed = CHANGE;
1148                                         dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
1149                                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
1150                                         scsi_device_put(device);
1151                                 }
1152                         }
1153                 }
1154
1155                 /*
1156                  *      If we are waiting on something and this happens to be
1157                  * that thing then set the re-configure flag.
1158                  */
1159                 if (container != (u32)-1) {
1160                         if (container >= dev->maximum_num_containers)
1161                                 break;
1162                         if ((dev->fsa_dev[container].config_waiting_on ==
1163                             le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1164                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1165                                 dev->fsa_dev[container].config_waiting_on = 0;
1166                 } else for (container = 0;
1167                     container < dev->maximum_num_containers; ++container) {
1168                         if ((dev->fsa_dev[container].config_waiting_on ==
1169                             le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1170                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1171                                 dev->fsa_dev[container].config_waiting_on = 0;
1172                 }
1173                 break;
1174
1175         case AifCmdEventNotify:
1176                 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
1177                 case AifEnBatteryEvent:
1178                         dev->cache_protected =
1179                                 (((__le32 *)aifcmd->data)[1] == cpu_to_le32(3));
1180                         break;
1181                 /*
1182                  *      Add an Array.
1183                  */
1184                 case AifEnAddContainer:
1185                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1186                         if (container >= dev->maximum_num_containers)
1187                                 break;
1188                         dev->fsa_dev[container].config_needed = ADD;
1189                         dev->fsa_dev[container].config_waiting_on =
1190                                 AifEnConfigChange;
1191                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
1192                         break;
1193
1194                 /*
1195                  *      Delete an Array.
1196                  */
1197                 case AifEnDeleteContainer:
1198                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1199                         if (container >= dev->maximum_num_containers)
1200                                 break;
1201                         dev->fsa_dev[container].config_needed = DELETE;
1202                         dev->fsa_dev[container].config_waiting_on =
1203                                 AifEnConfigChange;
1204                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
1205                         break;
1206
1207                 /*
1208                  *      Container change detected. If we currently are not
1209                  * waiting on something else, setup to wait on a Config Change.
1210                  */
1211                 case AifEnContainerChange:
1212                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1213                         if (container >= dev->maximum_num_containers)
1214                                 break;
1215                         if (dev->fsa_dev[container].config_waiting_on &&
1216                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1217                                 break;
1218                         dev->fsa_dev[container].config_needed = CHANGE;
1219                         dev->fsa_dev[container].config_waiting_on =
1220                                 AifEnConfigChange;
1221                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
1222                         break;
1223
1224                 case AifEnConfigChange:
1225                         break;
1226
1227                 case AifEnAddJBOD:
1228                 case AifEnDeleteJBOD:
1229                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1230                         if ((container >> 28)) {
1231                                 container = (u32)-1;
1232                                 break;
1233                         }
1234                         channel = (container >> 24) & 0xF;
1235                         if (channel >= dev->maximum_num_channels) {
1236                                 container = (u32)-1;
1237                                 break;
1238                         }
1239                         id = container & 0xFFFF;
1240                         if (id >= dev->maximum_num_physicals) {
1241                                 container = (u32)-1;
1242                                 break;
1243                         }
1244                         lun = (container >> 16) & 0xFF;
1245                         container = (u32)-1;
1246                         channel = aac_phys_to_logical(channel);
1247                         device_config_needed =
1248                           (((__le32 *)aifcmd->data)[0] ==
1249                             cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE;
1250                         if (device_config_needed == ADD) {
1251                                 device = scsi_device_lookup(dev->scsi_host_ptr,
1252                                         channel,
1253                                         id,
1254                                         lun);
1255                                 if (device) {
1256                                         scsi_remove_device(device);
1257                                         scsi_device_put(device);
1258                                 }
1259                         }
1260                         break;
1261
1262                 case AifEnEnclosureManagement:
1263                         /*
1264                          * If in JBOD mode, automatic exposure of new
1265                          * physical target to be suppressed until configured.
1266                          */
1267                         if (dev->jbod)
1268                                 break;
1269                         switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) {
1270                         case EM_DRIVE_INSERTION:
1271                         case EM_DRIVE_REMOVAL:
1272                         case EM_SES_DRIVE_INSERTION:
1273                         case EM_SES_DRIVE_REMOVAL:
1274                                 container = le32_to_cpu(
1275                                         ((__le32 *)aifcmd->data)[2]);
1276                                 if ((container >> 28)) {
1277                                         container = (u32)-1;
1278                                         break;
1279                                 }
1280                                 channel = (container >> 24) & 0xF;
1281                                 if (channel >= dev->maximum_num_channels) {
1282                                         container = (u32)-1;
1283                                         break;
1284                                 }
1285                                 id = container & 0xFFFF;
1286                                 lun = (container >> 16) & 0xFF;
1287                                 container = (u32)-1;
1288                                 if (id >= dev->maximum_num_physicals) {
1289                                         /* legacy dev_t ? */
1290                                         if ((0x2000 <= id) || lun || channel ||
1291                                           ((channel = (id >> 7) & 0x3F) >=
1292                                           dev->maximum_num_channels))
1293                                                 break;
1294                                         lun = (id >> 4) & 7;
1295                                         id &= 0xF;
1296                                 }
1297                                 channel = aac_phys_to_logical(channel);
1298                                 device_config_needed =
1299                                   ((((__le32 *)aifcmd->data)[3]
1300                                     == cpu_to_le32(EM_DRIVE_INSERTION)) ||
1301                                     (((__le32 *)aifcmd->data)[3]
1302                                     == cpu_to_le32(EM_SES_DRIVE_INSERTION))) ?
1303                                   ADD : DELETE;
1304                                 break;
1305                         }
1306                         case AifBuManagerEvent:
1307                                 aac_handle_aif_bu(dev, aifcmd);
1308                         break;
1309                 }
1310
1311                 /*
1312                  *      If we are waiting on something and this happens to be
1313                  * that thing then set the re-configure flag.
1314                  */
1315                 if (container != (u32)-1) {
1316                         if (container >= dev->maximum_num_containers)
1317                                 break;
1318                         if ((dev->fsa_dev[container].config_waiting_on ==
1319                             le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1320                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1321                                 dev->fsa_dev[container].config_waiting_on = 0;
1322                 } else for (container = 0;
1323                     container < dev->maximum_num_containers; ++container) {
1324                         if ((dev->fsa_dev[container].config_waiting_on ==
1325                             le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1326                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1327                                 dev->fsa_dev[container].config_waiting_on = 0;
1328                 }
1329                 break;
1330
1331         case AifCmdJobProgress:
1332                 /*
1333                  *      These are job progress AIF's. When a Clear is being
1334                  * done on a container it is initially created then hidden from
1335                  * the OS. When the clear completes we don't get a config
1336                  * change so we monitor the job status complete on a clear then
1337                  * wait for a container change.
1338                  */
1339
1340                 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1341                     (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] ||
1342                      ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) {
1343                         for (container = 0;
1344                             container < dev->maximum_num_containers;
1345                             ++container) {
1346                                 /*
1347                                  * Stomp on all config sequencing for all
1348                                  * containers?
1349                                  */
1350                                 dev->fsa_dev[container].config_waiting_on =
1351                                         AifEnContainerChange;
1352                                 dev->fsa_dev[container].config_needed = ADD;
1353                                 dev->fsa_dev[container].config_waiting_stamp =
1354                                         jiffies;
1355                         }
1356                 }
1357                 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1358                     ((__le32 *)aifcmd->data)[6] == 0 &&
1359                     ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) {
1360                         for (container = 0;
1361                             container < dev->maximum_num_containers;
1362                             ++container) {
1363                                 /*
1364                                  * Stomp on all config sequencing for all
1365                                  * containers?
1366                                  */
1367                                 dev->fsa_dev[container].config_waiting_on =
1368                                         AifEnContainerChange;
1369                                 dev->fsa_dev[container].config_needed = DELETE;
1370                                 dev->fsa_dev[container].config_waiting_stamp =
1371                                         jiffies;
1372                         }
1373                 }
1374                 break;
1375         }
1376
1377         container = 0;
1378 retry_next:
1379         if (device_config_needed == NOTHING)
1380         for (; container < dev->maximum_num_containers; ++container) {
1381                 if ((dev->fsa_dev[container].config_waiting_on == 0) &&
1382                         (dev->fsa_dev[container].config_needed != NOTHING) &&
1383                         time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
1384                         device_config_needed =
1385                                 dev->fsa_dev[container].config_needed;
1386                         dev->fsa_dev[container].config_needed = NOTHING;
1387                         channel = CONTAINER_TO_CHANNEL(container);
1388                         id = CONTAINER_TO_ID(container);
1389                         lun = CONTAINER_TO_LUN(container);
1390                         break;
1391                 }
1392         }
1393         if (device_config_needed == NOTHING)
1394                 return;
1395
1396         /*
1397          *      If we decided that a re-configuration needs to be done,
1398          * schedule it here on the way out the door, please close the door
1399          * behind you.
1400          */
1401
1402         /*
1403          *      Find the scsi_device associated with the SCSI address,
1404          * and mark it as changed, invalidating the cache. This deals
1405          * with changes to existing device IDs.
1406          */
1407
1408         if (!dev || !dev->scsi_host_ptr)
1409                 return;
1410         /*
1411          * force reload of disk info via aac_probe_container
1412          */
1413         if ((channel == CONTAINER_CHANNEL) &&
1414           (device_config_needed != NOTHING)) {
1415                 if (dev->fsa_dev[container].valid == 1)
1416                         dev->fsa_dev[container].valid = 2;
1417                 aac_probe_container(dev, container);
1418         }
1419         device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun);
1420         if (device) {
1421                 switch (device_config_needed) {
1422                 case DELETE:
1423 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1424                         scsi_remove_device(device);
1425 #else
1426                         if (scsi_device_online(device)) {
1427                                 scsi_device_set_state(device, SDEV_OFFLINE);
1428                                 sdev_printk(KERN_INFO, device,
1429                                         "Device offlined - %s\n",
1430                                         (channel == CONTAINER_CHANNEL) ?
1431                                                 "array deleted" :
1432                                                 "enclosure services event");
1433                         }
1434 #endif
1435                         break;
1436                 case ADD:
1437                         if (!scsi_device_online(device)) {
1438                                 sdev_printk(KERN_INFO, device,
1439                                         "Device online - %s\n",
1440                                         (channel == CONTAINER_CHANNEL) ?
1441                                                 "array created" :
1442                                                 "enclosure services event");
1443                                 scsi_device_set_state(device, SDEV_RUNNING);
1444                         }
1445                         /* FALLTHRU */
1446                 case CHANGE:
1447                         if ((channel == CONTAINER_CHANNEL)
1448                          && (!dev->fsa_dev[container].valid)) {
1449 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1450                                 scsi_remove_device(device);
1451 #else
1452                                 if (!scsi_device_online(device))
1453                                         break;
1454                                 scsi_device_set_state(device, SDEV_OFFLINE);
1455                                 sdev_printk(KERN_INFO, device,
1456                                         "Device offlined - %s\n",
1457                                         "array failed");
1458 #endif
1459                                 break;
1460                         }
1461                         scsi_rescan_device(&device->sdev_gendev);
1462
1463                 default:
1464                         break;
1465                 }
1466                 scsi_device_put(device);
1467                 device_config_needed = NOTHING;
1468         }
1469         if (device_config_needed == ADD)
1470                 scsi_add_device(dev->scsi_host_ptr, channel, id, lun);
1471         if (channel == CONTAINER_CHANNEL) {
1472                 container++;
1473                 device_config_needed = NOTHING;
1474                 goto retry_next;
1475         }
1476 }
1477
1478 static int _aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type)
1479 {
1480         int index, quirks;
1481         int retval;
1482         struct Scsi_Host *host;
1483         struct scsi_device *dev;
1484         struct scsi_cmnd *command;
1485         struct scsi_cmnd *command_list;
1486         int jafo = 0;
1487         int bled;
1488         u64 dmamask;
1489         int num_of_fibs = 0;
1490
1491         /*
1492          * Assumptions:
1493          *      - host is locked, unless called by the aacraid thread.
1494          *        (a matter of convenience, due to legacy issues surrounding
1495          *        eh_host_adapter_reset).
1496          *      - in_reset is asserted, so no new i/o is getting to the
1497          *        card.
1498          *      - The card is dead, or will be very shortly ;-/ so no new
1499          *        commands are completing in the interrupt service.
1500          */
1501         host = aac->scsi_host_ptr;
1502         scsi_block_requests(host);
1503         aac_adapter_disable_int(aac);
1504         if (aac->thread->pid != current->pid) {
1505                 spin_unlock_irq(host->host_lock);
1506                 kthread_stop(aac->thread);
1507                 jafo = 1;
1508         }
1509
1510         /*
1511          *      If a positive health, means in a known DEAD PANIC
1512          * state and the adapter could be reset to `try again'.
1513          */
1514         bled = forced ? 0 : aac_adapter_check_health(aac);
1515         retval = aac_adapter_restart(aac, bled, reset_type);
1516
1517         if (retval)
1518                 goto out;
1519
1520         /*
1521          *      Loop through the fibs, close the synchronous FIBS
1522          */
1523         retval = 1;
1524         num_of_fibs = aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB;
1525         for (index = 0; index <  num_of_fibs; index++) {
1526
1527                 struct fib *fib = &aac->fibs[index];
1528                 __le32 XferState = fib->hw_fib_va->header.XferState;
1529                 bool is_response_expected = false;
1530
1531                 if (!(XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1532                    (XferState & cpu_to_le32(ResponseExpected)))
1533                         is_response_expected = true;
1534
1535                 if (is_response_expected
1536                   || fib->flags & FIB_CONTEXT_FLAG_WAIT) {
1537                         unsigned long flagv;
1538                         spin_lock_irqsave(&fib->event_lock, flagv);
1539                         up(&fib->event_wait);
1540                         spin_unlock_irqrestore(&fib->event_lock, flagv);
1541                         schedule();
1542                         retval = 0;
1543                 }
1544         }
1545         /* Give some extra time for ioctls to complete. */
1546         if (retval == 0)
1547                 ssleep(2);
1548         index = aac->cardtype;
1549
1550         /*
1551          * Re-initialize the adapter, first free resources, then carefully
1552          * apply the initialization sequence to come back again. Only risk
1553          * is a change in Firmware dropping cache, it is assumed the caller
1554          * will ensure that i/o is queisced and the card is flushed in that
1555          * case.
1556          */
1557         aac_free_irq(aac);
1558         aac_fib_map_free(aac);
1559         dma_free_coherent(&aac->pdev->dev, aac->comm_size, aac->comm_addr,
1560                           aac->comm_phys);
1561         aac->comm_addr = NULL;
1562         aac->comm_phys = 0;
1563         kfree(aac->queues);
1564         aac->queues = NULL;
1565         kfree(aac->fsa_dev);
1566         aac->fsa_dev = NULL;
1567
1568         dmamask = DMA_BIT_MASK(32);
1569         quirks = aac_get_driver_ident(index)->quirks;
1570         if (quirks & AAC_QUIRK_31BIT)
1571                 retval = pci_set_dma_mask(aac->pdev, dmamask);
1572         else if (!(quirks & AAC_QUIRK_SRC))
1573                 retval = pci_set_dma_mask(aac->pdev, dmamask);
1574         else
1575                 retval = pci_set_consistent_dma_mask(aac->pdev, dmamask);
1576
1577         if (quirks & AAC_QUIRK_31BIT && !retval) {
1578                 dmamask = DMA_BIT_MASK(31);
1579                 retval = pci_set_consistent_dma_mask(aac->pdev, dmamask);
1580         }
1581
1582         if (retval)
1583                 goto out;
1584
1585         if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1586                 goto out;
1587
1588         if (jafo) {
1589                 aac->thread = kthread_run(aac_command_thread, aac, "%s",
1590                                           aac->name);
1591                 if (IS_ERR(aac->thread)) {
1592                         retval = PTR_ERR(aac->thread);
1593                         goto out;
1594                 }
1595         }
1596         (void)aac_get_adapter_info(aac);
1597         if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1598                 host->sg_tablesize = 34;
1599                 host->max_sectors = (host->sg_tablesize * 8) + 112;
1600         }
1601         if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1602                 host->sg_tablesize = 17;
1603                 host->max_sectors = (host->sg_tablesize * 8) + 112;
1604         }
1605         aac_get_config_status(aac, 1);
1606         aac_get_containers(aac);
1607         /*
1608          * This is where the assumption that the Adapter is quiesced
1609          * is important.
1610          */
1611         command_list = NULL;
1612         __shost_for_each_device(dev, host) {
1613                 unsigned long flags;
1614                 spin_lock_irqsave(&dev->list_lock, flags);
1615                 list_for_each_entry(command, &dev->cmd_list, list)
1616                         if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1617                                 command->SCp.buffer = (struct scatterlist *)command_list;
1618                                 command_list = command;
1619                         }
1620                 spin_unlock_irqrestore(&dev->list_lock, flags);
1621         }
1622         while ((command = command_list)) {
1623                 command_list = (struct scsi_cmnd *)command->SCp.buffer;
1624                 command->SCp.buffer = NULL;
1625                 command->result = DID_OK << 16
1626                   | COMMAND_COMPLETE << 8
1627                   | SAM_STAT_TASK_SET_FULL;
1628                 command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
1629                 command->scsi_done(command);
1630         }
1631         /*
1632          * Any Device that was already marked offline needs to be cleaned up
1633          */
1634         __shost_for_each_device(dev, host) {
1635                 if (!scsi_device_online(dev)) {
1636                         sdev_printk(KERN_INFO, dev, "Removing offline device\n");
1637                         scsi_remove_device(dev);
1638                         scsi_device_put(dev);
1639                 }
1640         }
1641         retval = 0;
1642
1643 out:
1644         aac->in_reset = 0;
1645         scsi_unblock_requests(host);
1646         /*
1647          * Issue bus rescan to catch any configuration that might have
1648          * occurred
1649          */
1650         if (!retval) {
1651                 dev_info(&aac->pdev->dev, "Issuing bus rescan\n");
1652                 scsi_scan_host(host);
1653         }
1654         if (jafo) {
1655                 spin_lock_irq(host->host_lock);
1656         }
1657         return retval;
1658 }
1659
1660 int aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type)
1661 {
1662         unsigned long flagv = 0;
1663         int retval;
1664         struct Scsi_Host * host;
1665         int bled;
1666
1667         if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1668                 return -EBUSY;
1669
1670         if (aac->in_reset) {
1671                 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1672                 return -EBUSY;
1673         }
1674         aac->in_reset = 1;
1675         spin_unlock_irqrestore(&aac->fib_lock, flagv);
1676
1677         /*
1678          * Wait for all commands to complete to this specific
1679          * target (block maximum 60 seconds). Although not necessary,
1680          * it does make us a good storage citizen.
1681          */
1682         host = aac->scsi_host_ptr;
1683         scsi_block_requests(host);
1684         if (forced < 2) for (retval = 60; retval; --retval) {
1685                 struct scsi_device * dev;
1686                 struct scsi_cmnd * command;
1687                 int active = 0;
1688
1689                 __shost_for_each_device(dev, host) {
1690                         spin_lock_irqsave(&dev->list_lock, flagv);
1691                         list_for_each_entry(command, &dev->cmd_list, list) {
1692                                 if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1693                                         active++;
1694                                         break;
1695                                 }
1696                         }
1697                         spin_unlock_irqrestore(&dev->list_lock, flagv);
1698                         if (active)
1699                                 break;
1700
1701                 }
1702                 /*
1703                  * We can exit If all the commands are complete
1704                  */
1705                 if (active == 0)
1706                         break;
1707                 ssleep(1);
1708         }
1709
1710         /* Quiesce build, flush cache, write through mode */
1711         if (forced < 2)
1712                 aac_send_shutdown(aac);
1713         spin_lock_irqsave(host->host_lock, flagv);
1714         bled = forced ? forced :
1715                         (aac_check_reset != 0 && aac_check_reset != 1);
1716         retval = _aac_reset_adapter(aac, bled, reset_type);
1717         spin_unlock_irqrestore(host->host_lock, flagv);
1718
1719         if ((forced < 2) && (retval == -ENODEV)) {
1720                 /* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
1721                 struct fib * fibctx = aac_fib_alloc(aac);
1722                 if (fibctx) {
1723                         struct aac_pause *cmd;
1724                         int status;
1725
1726                         aac_fib_init(fibctx);
1727
1728                         cmd = (struct aac_pause *) fib_data(fibctx);
1729
1730                         cmd->command = cpu_to_le32(VM_ContainerConfig);
1731                         cmd->type = cpu_to_le32(CT_PAUSE_IO);
1732                         cmd->timeout = cpu_to_le32(1);
1733                         cmd->min = cpu_to_le32(1);
1734                         cmd->noRescan = cpu_to_le32(1);
1735                         cmd->count = cpu_to_le32(0);
1736
1737                         status = aac_fib_send(ContainerCommand,
1738                           fibctx,
1739                           sizeof(struct aac_pause),
1740                           FsaNormal,
1741                           -2 /* Timeout silently */, 1,
1742                           NULL, NULL);
1743
1744                         if (status >= 0)
1745                                 aac_fib_complete(fibctx);
1746                         /* FIB should be freed only after getting
1747                          * the response from the F/W */
1748                         if (status != -ERESTARTSYS)
1749                                 aac_fib_free(fibctx);
1750                 }
1751         }
1752
1753         return retval;
1754 }
1755
1756 int aac_check_health(struct aac_dev * aac)
1757 {
1758         int BlinkLED;
1759         unsigned long time_now, flagv = 0;
1760         struct list_head * entry;
1761
1762         /* Extending the scope of fib_lock slightly to protect aac->in_reset */
1763         if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1764                 return 0;
1765
1766         if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1767                 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1768                 return 0; /* OK */
1769         }
1770
1771         aac->in_reset = 1;
1772
1773         /* Fake up an AIF:
1774          *      aac_aifcmd.command = AifCmdEventNotify = 1
1775          *      aac_aifcmd.seqnum = 0xFFFFFFFF
1776          *      aac_aifcmd.data[0] = AifEnExpEvent = 23
1777          *      aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1778          *      aac.aifcmd.data[2] = AifHighPriority = 3
1779          *      aac.aifcmd.data[3] = BlinkLED
1780          */
1781
1782         time_now = jiffies/HZ;
1783         entry = aac->fib_list.next;
1784
1785         /*
1786          * For each Context that is on the
1787          * fibctxList, make a copy of the
1788          * fib, and then set the event to wake up the
1789          * thread that is waiting for it.
1790          */
1791         while (entry != &aac->fib_list) {
1792                 /*
1793                  * Extract the fibctx
1794                  */
1795                 struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1796                 struct hw_fib * hw_fib;
1797                 struct fib * fib;
1798                 /*
1799                  * Check if the queue is getting
1800                  * backlogged
1801                  */
1802                 if (fibctx->count > 20) {
1803                         /*
1804                          * It's *not* jiffies folks,
1805                          * but jiffies / HZ, so do not
1806                          * panic ...
1807                          */
1808                         u32 time_last = fibctx->jiffies;
1809                         /*
1810                          * Has it been > 2 minutes
1811                          * since the last read off
1812                          * the queue?
1813                          */
1814                         if ((time_now - time_last) > aif_timeout) {
1815                                 entry = entry->next;
1816                                 aac_close_fib_context(aac, fibctx);
1817                                 continue;
1818                         }
1819                 }
1820                 /*
1821                  * Warning: no sleep allowed while
1822                  * holding spinlock
1823                  */
1824                 hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1825                 fib = kzalloc(sizeof(struct fib), GFP_ATOMIC);
1826                 if (fib && hw_fib) {
1827                         struct aac_aifcmd * aif;
1828
1829                         fib->hw_fib_va = hw_fib;
1830                         fib->dev = aac;
1831                         aac_fib_init(fib);
1832                         fib->type = FSAFS_NTC_FIB_CONTEXT;
1833                         fib->size = sizeof (struct fib);
1834                         fib->data = hw_fib->data;
1835                         aif = (struct aac_aifcmd *)hw_fib->data;
1836                         aif->command = cpu_to_le32(AifCmdEventNotify);
1837                         aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1838                         ((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent);
1839                         ((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic);
1840                         ((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority);
1841                         ((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED);
1842
1843                         /*
1844                          * Put the FIB onto the
1845                          * fibctx's fibs
1846                          */
1847                         list_add_tail(&fib->fiblink, &fibctx->fib_list);
1848                         fibctx->count++;
1849                         /*
1850                          * Set the event to wake up the
1851                          * thread that will waiting.
1852                          */
1853                         up(&fibctx->wait_sem);
1854                 } else {
1855                         printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1856                         kfree(fib);
1857                         kfree(hw_fib);
1858                 }
1859                 entry = entry->next;
1860         }
1861
1862         spin_unlock_irqrestore(&aac->fib_lock, flagv);
1863
1864         if (BlinkLED < 0) {
1865                 printk(KERN_ERR "%s: Host adapter is dead (or got a PCI error) %d\n",
1866                                 aac->name, BlinkLED);
1867                 goto out;
1868         }
1869
1870         printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1871
1872 out:
1873         aac->in_reset = 0;
1874         return BlinkLED;
1875 }
1876
1877
1878 static void aac_resolve_luns(struct aac_dev *dev)
1879 {
1880         int bus, target, channel;
1881         struct scsi_device *sdev;
1882         u8 devtype;
1883         u8 new_devtype;
1884
1885         for (bus = 0; bus < AAC_MAX_BUSES; bus++) {
1886                 for (target = 0; target < AAC_MAX_TARGETS; target++) {
1887
1888                         if (bus == CONTAINER_CHANNEL)
1889                                 channel = CONTAINER_CHANNEL;
1890                         else
1891                                 channel = aac_phys_to_logical(bus);
1892
1893                         devtype = dev->hba_map[bus][target].devtype;
1894                         new_devtype = dev->hba_map[bus][target].new_devtype;
1895
1896                         sdev = scsi_device_lookup(dev->scsi_host_ptr, channel,
1897                                         target, 0);
1898
1899                         if (!sdev && new_devtype)
1900                                 scsi_add_device(dev->scsi_host_ptr, channel,
1901                                                 target, 0);
1902                         else if (sdev && new_devtype != devtype)
1903                                 scsi_remove_device(sdev);
1904                         else if (sdev && new_devtype == devtype)
1905                                 scsi_rescan_device(&sdev->sdev_gendev);
1906
1907                         if (sdev)
1908                                 scsi_device_put(sdev);
1909
1910                         dev->hba_map[bus][target].devtype = new_devtype;
1911                 }
1912         }
1913 }
1914
1915 /**
1916  *      aac_handle_sa_aif       Handle a message from the firmware
1917  *      @dev: Which adapter this fib is from
1918  *      @fibptr: Pointer to fibptr from adapter
1919  *
1920  *      This routine handles a driver notify fib from the adapter and
1921  *      dispatches it to the appropriate routine for handling.
1922  */
1923 static void aac_handle_sa_aif(struct aac_dev *dev, struct fib *fibptr)
1924 {
1925         int i, bus, target, container, rcode = 0;
1926         u32 events = 0;
1927         struct fib *fib;
1928         struct scsi_device *sdev;
1929
1930         if (fibptr->hbacmd_size & SA_AIF_HOTPLUG)
1931                 events = SA_AIF_HOTPLUG;
1932         else if (fibptr->hbacmd_size & SA_AIF_HARDWARE)
1933                 events = SA_AIF_HARDWARE;
1934         else if (fibptr->hbacmd_size & SA_AIF_PDEV_CHANGE)
1935                 events = SA_AIF_PDEV_CHANGE;
1936         else if (fibptr->hbacmd_size & SA_AIF_LDEV_CHANGE)
1937                 events = SA_AIF_LDEV_CHANGE;
1938         else if (fibptr->hbacmd_size & SA_AIF_BPSTAT_CHANGE)
1939                 events = SA_AIF_BPSTAT_CHANGE;
1940         else if (fibptr->hbacmd_size & SA_AIF_BPCFG_CHANGE)
1941                 events = SA_AIF_BPCFG_CHANGE;
1942
1943         switch (events) {
1944         case SA_AIF_HOTPLUG:
1945         case SA_AIF_HARDWARE:
1946         case SA_AIF_PDEV_CHANGE:
1947         case SA_AIF_LDEV_CHANGE:
1948         case SA_AIF_BPCFG_CHANGE:
1949
1950                 fib = aac_fib_alloc(dev);
1951                 if (!fib) {
1952                         pr_err("aac_handle_sa_aif: out of memory\n");
1953                         return;
1954                 }
1955                 for (bus = 0; bus < AAC_MAX_BUSES; bus++)
1956                         for (target = 0; target < AAC_MAX_TARGETS; target++)
1957                                 dev->hba_map[bus][target].new_devtype = 0;
1958
1959                 rcode = aac_report_phys_luns(dev, fib, AAC_RESCAN);
1960
1961                 if (rcode != -ERESTARTSYS)
1962                         aac_fib_free(fib);
1963
1964                 aac_resolve_luns(dev);
1965
1966                 if (events == SA_AIF_LDEV_CHANGE ||
1967                     events == SA_AIF_BPCFG_CHANGE) {
1968                         aac_get_containers(dev);
1969                         for (container = 0; container <
1970                         dev->maximum_num_containers; ++container) {
1971                                 sdev = scsi_device_lookup(dev->scsi_host_ptr,
1972                                                 CONTAINER_CHANNEL,
1973                                                 container, 0);
1974                                 if (dev->fsa_dev[container].valid && !sdev) {
1975                                         scsi_add_device(dev->scsi_host_ptr,
1976                                                 CONTAINER_CHANNEL,
1977                                                 container, 0);
1978                                 } else if (!dev->fsa_dev[container].valid &&
1979                                         sdev) {
1980                                         scsi_remove_device(sdev);
1981                                         scsi_device_put(sdev);
1982                                 } else if (sdev) {
1983                                         scsi_rescan_device(&sdev->sdev_gendev);
1984                                         scsi_device_put(sdev);
1985                                 }
1986                         }
1987                 }
1988                 break;
1989
1990         case SA_AIF_BPSTAT_CHANGE:
1991                 /* currently do nothing */
1992                 break;
1993         }
1994
1995         for (i = 1; i <= 10; ++i) {
1996                 events = src_readl(dev, MUnit.IDR);
1997                 if (events & (1<<23)) {
1998                         pr_warn(" AIF not cleared by firmware - %d/%d)\n",
1999                                 i, 10);
2000                         ssleep(1);
2001                 }
2002         }
2003 }
2004
2005 static int get_fib_count(struct aac_dev *dev)
2006 {
2007         unsigned int num = 0;
2008         struct list_head *entry;
2009         unsigned long flagv;
2010
2011         /*
2012          * Warning: no sleep allowed while
2013          * holding spinlock. We take the estimate
2014          * and pre-allocate a set of fibs outside the
2015          * lock.
2016          */
2017         num = le32_to_cpu(dev->init->r7.adapter_fibs_size)
2018                         / sizeof(struct hw_fib); /* some extra */
2019         spin_lock_irqsave(&dev->fib_lock, flagv);
2020         entry = dev->fib_list.next;
2021         while (entry != &dev->fib_list) {
2022                 entry = entry->next;
2023                 ++num;
2024         }
2025         spin_unlock_irqrestore(&dev->fib_lock, flagv);
2026
2027         return num;
2028 }
2029
2030 static int fillup_pools(struct aac_dev *dev, struct hw_fib **hw_fib_pool,
2031                                                 struct fib **fib_pool,
2032                                                 unsigned int num)
2033 {
2034         struct hw_fib **hw_fib_p;
2035         struct fib **fib_p;
2036
2037         hw_fib_p = hw_fib_pool;
2038         fib_p = fib_pool;
2039         while (hw_fib_p < &hw_fib_pool[num]) {
2040                 *(hw_fib_p) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL);
2041                 if (!(*(hw_fib_p++))) {
2042                         --hw_fib_p;
2043                         break;
2044                 }
2045
2046                 *(fib_p) = kmalloc(sizeof(struct fib), GFP_KERNEL);
2047                 if (!(*(fib_p++))) {
2048                         kfree(*(--hw_fib_p));
2049                         break;
2050                 }
2051         }
2052
2053         /*
2054          * Get the actual number of allocated fibs
2055          */
2056         num = hw_fib_p - hw_fib_pool;
2057         return num;
2058 }
2059
2060 static void wakeup_fibctx_threads(struct aac_dev *dev,
2061                                                 struct hw_fib **hw_fib_pool,
2062                                                 struct fib **fib_pool,
2063                                                 struct fib *fib,
2064                                                 struct hw_fib *hw_fib,
2065                                                 unsigned int num)
2066 {
2067         unsigned long flagv;
2068         struct list_head *entry;
2069         struct hw_fib **hw_fib_p;
2070         struct fib **fib_p;
2071         u32 time_now, time_last;
2072         struct hw_fib *hw_newfib;
2073         struct fib *newfib;
2074         struct aac_fib_context *fibctx;
2075
2076         time_now = jiffies/HZ;
2077         spin_lock_irqsave(&dev->fib_lock, flagv);
2078         entry = dev->fib_list.next;
2079         /*
2080          * For each Context that is on the
2081          * fibctxList, make a copy of the
2082          * fib, and then set the event to wake up the
2083          * thread that is waiting for it.
2084          */
2085
2086         hw_fib_p = hw_fib_pool;
2087         fib_p = fib_pool;
2088         while (entry != &dev->fib_list) {
2089                 /*
2090                  * Extract the fibctx
2091                  */
2092                 fibctx = list_entry(entry, struct aac_fib_context,
2093                                 next);
2094                 /*
2095                  * Check if the queue is getting
2096                  * backlogged
2097                  */
2098                 if (fibctx->count > 20) {
2099                         /*
2100                          * It's *not* jiffies folks,
2101                          * but jiffies / HZ so do not
2102                          * panic ...
2103                          */
2104                         time_last = fibctx->jiffies;
2105                         /*
2106                          * Has it been > 2 minutes
2107                          * since the last read off
2108                          * the queue?
2109                          */
2110                         if ((time_now - time_last) > aif_timeout) {
2111                                 entry = entry->next;
2112                                 aac_close_fib_context(dev, fibctx);
2113                                 continue;
2114                         }
2115                 }
2116                 /*
2117                  * Warning: no sleep allowed while
2118                  * holding spinlock
2119                  */
2120                 if (hw_fib_p >= &hw_fib_pool[num]) {
2121                         pr_warn("aifd: didn't allocate NewFib\n");
2122                         entry = entry->next;
2123                         continue;
2124                 }
2125
2126                 hw_newfib = *hw_fib_p;
2127                 *(hw_fib_p++) = NULL;
2128                 newfib = *fib_p;
2129                 *(fib_p++) = NULL;
2130                 /*
2131                  * Make the copy of the FIB
2132                  */
2133                 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
2134                 memcpy(newfib, fib, sizeof(struct fib));
2135                 newfib->hw_fib_va = hw_newfib;
2136                 /*
2137                  * Put the FIB onto the
2138                  * fibctx's fibs
2139                  */
2140                 list_add_tail(&newfib->fiblink, &fibctx->fib_list);
2141                 fibctx->count++;
2142                 /*
2143                  * Set the event to wake up the
2144                  * thread that is waiting.
2145                  */
2146                 up(&fibctx->wait_sem);
2147
2148                 entry = entry->next;
2149         }
2150         /*
2151          *      Set the status of this FIB
2152          */
2153         *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
2154         aac_fib_adapter_complete(fib, sizeof(u32));
2155         spin_unlock_irqrestore(&dev->fib_lock, flagv);
2156
2157 }
2158
2159 static void aac_process_events(struct aac_dev *dev)
2160 {
2161         struct hw_fib *hw_fib;
2162         struct fib *fib;
2163         unsigned long flags;
2164         spinlock_t *t_lock;
2165
2166         t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2167         spin_lock_irqsave(t_lock, flags);
2168
2169         while (!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
2170                 struct list_head *entry;
2171                 struct aac_aifcmd *aifcmd;
2172                 unsigned int  num;
2173                 struct hw_fib **hw_fib_pool, **hw_fib_p;
2174                 struct fib **fib_pool, **fib_p;
2175
2176                 set_current_state(TASK_RUNNING);
2177
2178                 entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
2179                 list_del(entry);
2180
2181                 t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2182                 spin_unlock_irqrestore(t_lock, flags);
2183
2184                 fib = list_entry(entry, struct fib, fiblink);
2185                 hw_fib = fib->hw_fib_va;
2186                 if (dev->sa_firmware) {
2187                         /* Thor AIF */
2188                         aac_handle_sa_aif(dev, fib);
2189                         aac_fib_adapter_complete(fib, (u16)sizeof(u32));
2190                         goto free_fib;
2191                 }
2192                 /*
2193                  *      We will process the FIB here or pass it to a
2194                  *      worker thread that is TBD. We Really can't
2195                  *      do anything at this point since we don't have
2196                  *      anything defined for this thread to do.
2197                  */
2198                 memset(fib, 0, sizeof(struct fib));
2199                 fib->type = FSAFS_NTC_FIB_CONTEXT;
2200                 fib->size = sizeof(struct fib);
2201                 fib->hw_fib_va = hw_fib;
2202                 fib->data = hw_fib->data;
2203                 fib->dev = dev;
2204                 /*
2205                  *      We only handle AifRequest fibs from the adapter.
2206                  */
2207
2208                 aifcmd = (struct aac_aifcmd *) hw_fib->data;
2209                 if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
2210                         /* Handle Driver Notify Events */
2211                         aac_handle_aif(dev, fib);
2212                         *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
2213                         aac_fib_adapter_complete(fib, (u16)sizeof(u32));
2214                         goto free_fib;
2215                 }
2216                 /*
2217                  * The u32 here is important and intended. We are using
2218                  * 32bit wrapping time to fit the adapter field
2219                  */
2220
2221                 /* Sniff events */
2222                 if (aifcmd->command == cpu_to_le32(AifCmdEventNotify)
2223                  || aifcmd->command == cpu_to_le32(AifCmdJobProgress)) {
2224                         aac_handle_aif(dev, fib);
2225                 }
2226
2227                 /*
2228                  * get number of fibs to process
2229                  */
2230                 num = get_fib_count(dev);
2231                 if (!num)
2232                         goto free_fib;
2233
2234                 hw_fib_pool = kmalloc_array(num, sizeof(struct hw_fib *),
2235                                                 GFP_KERNEL);
2236                 if (!hw_fib_pool)
2237                         goto free_fib;
2238
2239                 fib_pool = kmalloc_array(num, sizeof(struct fib *), GFP_KERNEL);
2240                 if (!fib_pool)
2241                         goto free_hw_fib_pool;
2242
2243                 /*
2244                  * Fill up fib pointer pools with actual fibs
2245                  * and hw_fibs
2246                  */
2247                 num = fillup_pools(dev, hw_fib_pool, fib_pool, num);
2248                 if (!num)
2249                         goto free_mem;
2250
2251                 /*
2252                  * wakeup the thread that is waiting for
2253                  * the response from fw (ioctl)
2254                  */
2255                 wakeup_fibctx_threads(dev, hw_fib_pool, fib_pool,
2256                                                             fib, hw_fib, num);
2257
2258 free_mem:
2259                 /* Free up the remaining resources */
2260                 hw_fib_p = hw_fib_pool;
2261                 fib_p = fib_pool;
2262                 while (hw_fib_p < &hw_fib_pool[num]) {
2263                         kfree(*hw_fib_p);
2264                         kfree(*fib_p);
2265                         ++fib_p;
2266                         ++hw_fib_p;
2267                 }
2268                 kfree(fib_pool);
2269 free_hw_fib_pool:
2270                 kfree(hw_fib_pool);
2271 free_fib:
2272                 kfree(fib);
2273                 t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2274                 spin_lock_irqsave(t_lock, flags);
2275         }
2276         /*
2277          *      There are no more AIF's
2278          */
2279         t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2280         spin_unlock_irqrestore(t_lock, flags);
2281 }
2282
2283 static int aac_send_wellness_command(struct aac_dev *dev, char *wellness_str,
2284                                                         u32 datasize)
2285 {
2286         struct aac_srb *srbcmd;
2287         struct sgmap64 *sg64;
2288         dma_addr_t addr;
2289         char *dma_buf;
2290         struct fib *fibptr;
2291         int ret = -ENOMEM;
2292         u32 vbus, vid;
2293
2294         fibptr = aac_fib_alloc(dev);
2295         if (!fibptr)
2296                 goto out;
2297
2298         dma_buf = dma_alloc_coherent(&dev->pdev->dev, datasize, &addr,
2299                                      GFP_KERNEL);
2300         if (!dma_buf)
2301                 goto fib_free_out;
2302
2303         aac_fib_init(fibptr);
2304
2305         vbus = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_bus);
2306         vid = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_target);
2307
2308         srbcmd = (struct aac_srb *)fib_data(fibptr);
2309
2310         srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
2311         srbcmd->channel = cpu_to_le32(vbus);
2312         srbcmd->id = cpu_to_le32(vid);
2313         srbcmd->lun = 0;
2314         srbcmd->flags = cpu_to_le32(SRB_DataOut);
2315         srbcmd->timeout = cpu_to_le32(10);
2316         srbcmd->retry_limit = 0;
2317         srbcmd->cdb_size = cpu_to_le32(12);
2318         srbcmd->count = cpu_to_le32(datasize);
2319
2320         memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
2321         srbcmd->cdb[0] = BMIC_OUT;
2322         srbcmd->cdb[6] = WRITE_HOST_WELLNESS;
2323         memcpy(dma_buf, (char *)wellness_str, datasize);
2324
2325         sg64 = (struct sgmap64 *)&srbcmd->sg;
2326         sg64->count = cpu_to_le32(1);
2327         sg64->sg[0].addr[1] = cpu_to_le32((u32)(((addr) >> 16) >> 16));
2328         sg64->sg[0].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
2329         sg64->sg[0].count = cpu_to_le32(datasize);
2330
2331         ret = aac_fib_send(ScsiPortCommand64, fibptr, sizeof(struct aac_srb),
2332                                 FsaNormal, 1, 1, NULL, NULL);
2333
2334         dma_free_coherent(&dev->pdev->dev, datasize, dma_buf, addr);
2335
2336         /*
2337          * Do not set XferState to zero unless
2338          * receives a response from F/W
2339          */
2340         if (ret >= 0)
2341                 aac_fib_complete(fibptr);
2342
2343         /*
2344          * FIB should be freed only after
2345          * getting the response from the F/W
2346          */
2347         if (ret != -ERESTARTSYS)
2348                 goto fib_free_out;
2349
2350 out:
2351         return ret;
2352 fib_free_out:
2353         aac_fib_free(fibptr);
2354         goto out;
2355 }
2356
2357 int aac_send_safw_hostttime(struct aac_dev *dev, struct timespec64 *now)
2358 {
2359         struct tm cur_tm;
2360         char wellness_str[] = "<HW>TD\010\0\0\0\0\0\0\0\0\0DW\0\0ZZ";
2361         u32 datasize = sizeof(wellness_str);
2362         time64_t local_time;
2363         int ret = -ENODEV;
2364
2365         if (!dev->sa_firmware)
2366                 goto out;
2367
2368         local_time = (now->tv_sec - (sys_tz.tz_minuteswest * 60));
2369         time64_to_tm(local_time, 0, &cur_tm);
2370         cur_tm.tm_mon += 1;
2371         cur_tm.tm_year += 1900;
2372         wellness_str[8] = bin2bcd(cur_tm.tm_hour);
2373         wellness_str[9] = bin2bcd(cur_tm.tm_min);
2374         wellness_str[10] = bin2bcd(cur_tm.tm_sec);
2375         wellness_str[12] = bin2bcd(cur_tm.tm_mon);
2376         wellness_str[13] = bin2bcd(cur_tm.tm_mday);
2377         wellness_str[14] = bin2bcd(cur_tm.tm_year / 100);
2378         wellness_str[15] = bin2bcd(cur_tm.tm_year % 100);
2379
2380         ret = aac_send_wellness_command(dev, wellness_str, datasize);
2381
2382 out:
2383         return ret;
2384 }
2385
2386 int aac_send_hosttime(struct aac_dev *dev, struct timespec64 *now)
2387 {
2388         int ret = -ENOMEM;
2389         struct fib *fibptr;
2390         __le32 *info;
2391
2392         fibptr = aac_fib_alloc(dev);
2393         if (!fibptr)
2394                 goto out;
2395
2396         aac_fib_init(fibptr);
2397         info = (__le32 *)fib_data(fibptr);
2398         *info = cpu_to_le32(now->tv_sec); /* overflow in y2106 */
2399         ret = aac_fib_send(SendHostTime, fibptr, sizeof(*info), FsaNormal,
2400                                         1, 1, NULL, NULL);
2401
2402         /*
2403          * Do not set XferState to zero unless
2404          * receives a response from F/W
2405          */
2406         if (ret >= 0)
2407                 aac_fib_complete(fibptr);
2408
2409         /*
2410          * FIB should be freed only after
2411          * getting the response from the F/W
2412          */
2413         if (ret != -ERESTARTSYS)
2414                 aac_fib_free(fibptr);
2415
2416 out:
2417         return ret;
2418 }
2419
2420 /**
2421  *      aac_command_thread      -       command processing thread
2422  *      @dev: Adapter to monitor
2423  *
2424  *      Waits on the commandready event in it's queue. When the event gets set
2425  *      it will pull FIBs off it's queue. It will continue to pull FIBs off
2426  *      until the queue is empty. When the queue is empty it will wait for
2427  *      more FIBs.
2428  */
2429
2430 int aac_command_thread(void *data)
2431 {
2432         struct aac_dev *dev = data;
2433         DECLARE_WAITQUEUE(wait, current);
2434         unsigned long next_jiffies = jiffies + HZ;
2435         unsigned long next_check_jiffies = next_jiffies;
2436         long difference = HZ;
2437
2438         /*
2439          *      We can only have one thread per adapter for AIF's.
2440          */
2441         if (dev->aif_thread)
2442                 return -EINVAL;
2443
2444         /*
2445          *      Let the DPC know it has a place to send the AIF's to.
2446          */
2447         dev->aif_thread = 1;
2448         add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
2449         set_current_state(TASK_INTERRUPTIBLE);
2450         dprintk ((KERN_INFO "aac_command_thread start\n"));
2451         while (1) {
2452
2453                 aac_process_events(dev);
2454
2455                 /*
2456                  *      Background activity
2457                  */
2458                 if ((time_before(next_check_jiffies,next_jiffies))
2459                  && ((difference = next_check_jiffies - jiffies) <= 0)) {
2460                         next_check_jiffies = next_jiffies;
2461                         if (aac_adapter_check_health(dev) == 0) {
2462                                 difference = ((long)(unsigned)check_interval)
2463                                            * HZ;
2464                                 next_check_jiffies = jiffies + difference;
2465                         } else if (!dev->queues)
2466                                 break;
2467                 }
2468                 if (!time_before(next_check_jiffies,next_jiffies)
2469                  && ((difference = next_jiffies - jiffies) <= 0)) {
2470                         struct timespec64 now;
2471                         int ret;
2472
2473                         /* Don't even try to talk to adapter if its sick */
2474                         ret = aac_adapter_check_health(dev);
2475                         if (ret || !dev->queues)
2476                                 break;
2477                         next_check_jiffies = jiffies
2478                                            + ((long)(unsigned)check_interval)
2479                                            * HZ;
2480                         ktime_get_real_ts64(&now);
2481
2482                         /* Synchronize our watches */
2483                         if (((NSEC_PER_SEC - (NSEC_PER_SEC / HZ)) > now.tv_nsec)
2484                          && (now.tv_nsec > (NSEC_PER_SEC / HZ)))
2485                                 difference = HZ + HZ / 2 -
2486                                              now.tv_nsec / (NSEC_PER_SEC / HZ);
2487                         else {
2488                                 if (now.tv_nsec > NSEC_PER_SEC / 2)
2489                                         ++now.tv_sec;
2490
2491                                 if (dev->sa_firmware)
2492                                         ret =
2493                                         aac_send_safw_hostttime(dev, &now);
2494                                 else
2495                                         ret = aac_send_hosttime(dev, &now);
2496
2497                                 difference = (long)(unsigned)update_interval*HZ;
2498                         }
2499                         next_jiffies = jiffies + difference;
2500                         if (time_before(next_check_jiffies,next_jiffies))
2501                                 difference = next_check_jiffies - jiffies;
2502                 }
2503                 if (difference <= 0)
2504                         difference = 1;
2505                 set_current_state(TASK_INTERRUPTIBLE);
2506
2507                 if (kthread_should_stop())
2508                         break;
2509
2510                 /*
2511                  * we probably want usleep_range() here instead of the
2512                  * jiffies computation
2513                  */
2514                 schedule_timeout(difference);
2515
2516                 if (kthread_should_stop())
2517                         break;
2518         }
2519         if (dev->queues)
2520                 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
2521         dev->aif_thread = 0;
2522         return 0;
2523 }
2524
2525 int aac_acquire_irq(struct aac_dev *dev)
2526 {
2527         int i;
2528         int j;
2529         int ret = 0;
2530
2531         if (!dev->sync_mode && dev->msi_enabled && dev->max_msix > 1) {
2532                 for (i = 0; i < dev->max_msix; i++) {
2533                         dev->aac_msix[i].vector_no = i;
2534                         dev->aac_msix[i].dev = dev;
2535                         if (request_irq(pci_irq_vector(dev->pdev, i),
2536                                         dev->a_ops.adapter_intr,
2537                                         0, "aacraid", &(dev->aac_msix[i]))) {
2538                                 printk(KERN_ERR "%s%d: Failed to register IRQ for vector %d.\n",
2539                                                 dev->name, dev->id, i);
2540                                 for (j = 0 ; j < i ; j++)
2541                                         free_irq(pci_irq_vector(dev->pdev, j),
2542                                                  &(dev->aac_msix[j]));
2543                                 pci_disable_msix(dev->pdev);
2544                                 ret = -1;
2545                         }
2546                 }
2547         } else {
2548                 dev->aac_msix[0].vector_no = 0;
2549                 dev->aac_msix[0].dev = dev;
2550
2551                 if (request_irq(dev->pdev->irq, dev->a_ops.adapter_intr,
2552                         IRQF_SHARED, "aacraid",
2553                         &(dev->aac_msix[0])) < 0) {
2554                         if (dev->msi)
2555                                 pci_disable_msi(dev->pdev);
2556                         printk(KERN_ERR "%s%d: Interrupt unavailable.\n",
2557                                         dev->name, dev->id);
2558                         ret = -1;
2559                 }
2560         }
2561         return ret;
2562 }
2563
2564 void aac_free_irq(struct aac_dev *dev)
2565 {
2566         int i;
2567         int cpu;
2568
2569         cpu = cpumask_first(cpu_online_mask);
2570         if (aac_is_src(dev)) {
2571                 if (dev->max_msix > 1) {
2572                         for (i = 0; i < dev->max_msix; i++)
2573                                 free_irq(pci_irq_vector(dev->pdev, i),
2574                                          &(dev->aac_msix[i]));
2575                 } else {
2576                         free_irq(dev->pdev->irq, &(dev->aac_msix[0]));
2577                 }
2578         } else {
2579                 free_irq(dev->pdev->irq, dev);
2580         }
2581         if (dev->msi)
2582                 pci_disable_msi(dev->pdev);
2583         else if (dev->max_msix > 1)
2584                 pci_disable_msix(dev->pdev);
2585 }