Merge branch 'master'
[sfrench/cifs-2.6.git] / drivers / s390 / crypto / z90main.c
1 /*
2  *  linux/drivers/s390/crypto/z90main.c
3  *
4  *  z90crypt 1.3.2
5  *
6  *  Copyright (C)  2001, 2004 IBM Corporation
7  *  Author(s): Robert Burroughs (burrough@us.ibm.com)
8  *             Eric Rossman (edrossma@us.ibm.com)
9  *
10  *  Hotplug & misc device support: Jochen Roehrig (roehrig@de.ibm.com)
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2, or (at your option)
15  * any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25  */
26
27 #include <asm/uaccess.h>       // copy_(from|to)_user
28 #include <linux/compat.h>
29 #include <linux/compiler.h>
30 #include <linux/delay.h>       // mdelay
31 #include <linux/init.h>
32 #include <linux/interrupt.h>   // for tasklets
33 #include <linux/ioctl32.h>
34 #include <linux/miscdevice.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/kobject_uevent.h>
38 #include <linux/proc_fs.h>
39 #include <linux/syscalls.h>
40 #include <linux/version.h>
41 #include "z90crypt.h"
42 #include "z90common.h"
43
44 #define VERSION_Z90MAIN_C "$Revision: 1.62 $"
45
46 static char z90main_version[] __initdata =
47         "z90main.o (" VERSION_Z90MAIN_C "/"
48                       VERSION_Z90COMMON_H "/" VERSION_Z90CRYPT_H ")";
49
50 extern char z90hardware_version[];
51
52 /**
53  * Defaults that may be modified.
54  */
55
56 /**
57  * You can specify a different minor at compile time.
58  */
59 #ifndef Z90CRYPT_MINOR
60 #define Z90CRYPT_MINOR  MISC_DYNAMIC_MINOR
61 #endif
62
63 /**
64  * You can specify a different domain at compile time or on the insmod
65  * command line.
66  */
67 #ifndef DOMAIN_INDEX
68 #define DOMAIN_INDEX    -1
69 #endif
70
71 /**
72  * This is the name under which the device is registered in /proc/modules.
73  */
74 #define REG_NAME        "z90crypt"
75
76 /**
77  * Cleanup should run every CLEANUPTIME seconds and should clean up requests
78  * older than CLEANUPTIME seconds in the past.
79  */
80 #ifndef CLEANUPTIME
81 #define CLEANUPTIME 15
82 #endif
83
84 /**
85  * Config should run every CONFIGTIME seconds
86  */
87 #ifndef CONFIGTIME
88 #define CONFIGTIME 30
89 #endif
90
91 /**
92  * The first execution of the config task should take place
93  * immediately after initialization
94  */
95 #ifndef INITIAL_CONFIGTIME
96 #define INITIAL_CONFIGTIME 1
97 #endif
98
99 /**
100  * Reader should run every READERTIME milliseconds
101  * With the 100Hz patch for s390, z90crypt can lock the system solid while
102  * under heavy load. We'll try to avoid that.
103  */
104 #ifndef READERTIME
105 #if HZ > 1000
106 #define READERTIME 2
107 #else
108 #define READERTIME 10
109 #endif
110 #endif
111
112 /**
113  * turn long device array index into device pointer
114  */
115 #define LONG2DEVPTR(ndx) (z90crypt.device_p[(ndx)])
116
117 /**
118  * turn short device array index into long device array index
119  */
120 #define SHRT2LONG(ndx) (z90crypt.overall_device_x.device_index[(ndx)])
121
122 /**
123  * turn short device array index into device pointer
124  */
125 #define SHRT2DEVPTR(ndx) LONG2DEVPTR(SHRT2LONG(ndx))
126
127 /**
128  * Status for a work-element
129  */
130 #define STAT_DEFAULT    0x00 // request has not been processed
131
132 #define STAT_ROUTED     0x80 // bit 7: requests get routed to specific device
133                              //        else, device is determined each write
134 #define STAT_FAILED     0x40 // bit 6: this bit is set if the request failed
135                              //        before being sent to the hardware.
136 #define STAT_WRITTEN    0x30 // bits 5-4: work to be done, not sent to device
137 //                      0x20 // UNUSED state
138 #define STAT_READPEND   0x10 // bits 5-4: work done, we're returning data now
139 #define STAT_NOWORK     0x00 // bits off: no work on any queue
140 #define STAT_RDWRMASK   0x30 // mask for bits 5-4
141
142 /**
143  * Macros to check the status RDWRMASK
144  */
145 #define CHK_RDWRMASK(statbyte) ((statbyte) & STAT_RDWRMASK)
146 #define SET_RDWRMASK(statbyte, newval) \
147         {(statbyte) &= ~STAT_RDWRMASK; (statbyte) |= newval;}
148
149 /**
150  * Audit Trail.  Progress of a Work element
151  * audit[0]: Unless noted otherwise, these bits are all set by the process
152  */
153 #define FP_COPYFROM     0x80 // Caller's buffer has been copied to work element
154 #define FP_BUFFREQ      0x40 // Low Level buffer requested
155 #define FP_BUFFGOT      0x20 // Low Level buffer obtained
156 #define FP_SENT         0x10 // Work element sent to a crypto device
157                              // (may be set by process or by reader task)
158 #define FP_PENDING      0x08 // Work element placed on pending queue
159                              // (may be set by process or by reader task)
160 #define FP_REQUEST      0x04 // Work element placed on request queue
161 #define FP_ASLEEP       0x02 // Work element about to sleep
162 #define FP_AWAKE        0x01 // Work element has been awakened
163
164 /**
165  * audit[1]: These bits are set by the reader task and/or the cleanup task
166  */
167 #define FP_NOTPENDING     0x80 // Work element removed from pending queue
168 #define FP_AWAKENING      0x40 // Caller about to be awakened
169 #define FP_TIMEDOUT       0x20 // Caller timed out
170 #define FP_RESPSIZESET    0x10 // Response size copied to work element
171 #define FP_RESPADDRCOPIED 0x08 // Response address copied to work element
172 #define FP_RESPBUFFCOPIED 0x04 // Response buffer copied to work element
173 #define FP_REMREQUEST     0x02 // Work element removed from request queue
174 #define FP_SIGNALED       0x01 // Work element was awakened by a signal
175
176 /**
177  * audit[2]: unused
178  */
179
180 /**
181  * state of the file handle in private_data.status
182  */
183 #define STAT_OPEN 0
184 #define STAT_CLOSED 1
185
186 /**
187  * PID() expands to the process ID of the current process
188  */
189 #define PID() (current->pid)
190
191 /**
192  * Selected Constants.  The number of APs and the number of devices
193  */
194 #ifndef Z90CRYPT_NUM_APS
195 #define Z90CRYPT_NUM_APS 64
196 #endif
197 #ifndef Z90CRYPT_NUM_DEVS
198 #define Z90CRYPT_NUM_DEVS Z90CRYPT_NUM_APS
199 #endif
200
201 /**
202  * Buffer size for receiving responses. The maximum Response Size
203  * is actually the maximum request size, since in an error condition
204  * the request itself may be returned unchanged.
205  */
206 #define MAX_RESPONSE_SIZE 0x0000077C
207
208 /**
209  * A count and status-byte mask
210  */
211 struct status {
212         int           st_count;             // # of enabled devices
213         int           disabled_count;       // # of disabled devices
214         int           user_disabled_count;  // # of devices disabled via proc fs
215         unsigned char st_mask[Z90CRYPT_NUM_APS]; // current status mask
216 };
217
218 /**
219  * The array of device indexes is a mechanism for fast indexing into
220  * a long (and sparse) array.  For instance, if APs 3, 9 and 47 are
221  * installed, z90CDeviceIndex[0] is 3, z90CDeviceIndex[1] is 9, and
222  * z90CDeviceIndex[2] is 47.
223  */
224 struct device_x {
225         int device_index[Z90CRYPT_NUM_DEVS];
226 };
227
228 /**
229  * All devices are arranged in a single array: 64 APs
230  */
231 struct device {
232         int              dev_type;          // PCICA, PCICC, PCIXCC_MCL2,
233                                             // PCIXCC_MCL3, CEX2C
234         enum devstat     dev_stat;          // current device status
235         int              dev_self_x;        // Index in array
236         int              disabled;          // Set when device is in error
237         int              user_disabled;     // Set when device is disabled by user
238         int              dev_q_depth;       // q depth
239         unsigned char *  dev_resp_p;        // Response buffer address
240         int              dev_resp_l;        // Response Buffer length
241         int              dev_caller_count;  // Number of callers
242         int              dev_total_req_cnt; // # requests for device since load
243         struct list_head dev_caller_list;   // List of callers
244 };
245
246 /**
247  * There's a struct status and a struct device_x for each device type.
248  */
249 struct hdware_block {
250         struct status   hdware_mask;
251         struct status   type_mask[Z90CRYPT_NUM_TYPES];
252         struct device_x type_x_addr[Z90CRYPT_NUM_TYPES];
253         unsigned char   device_type_array[Z90CRYPT_NUM_APS];
254 };
255
256 /**
257  * z90crypt is the topmost data structure in the hierarchy.
258  */
259 struct z90crypt {
260         int                  max_count;         // Nr of possible crypto devices
261         struct status        mask;
262         int                  q_depth_array[Z90CRYPT_NUM_DEVS];
263         int                  dev_type_array[Z90CRYPT_NUM_DEVS];
264         struct device_x      overall_device_x;  // array device indexes
265         struct device *      device_p[Z90CRYPT_NUM_DEVS];
266         int                  terminating;
267         int                  domain_established;// TRUE:  domain has been found
268         int                  cdx;               // Crypto Domain Index
269         int                  len;               // Length of this data structure
270         struct hdware_block *hdware_info;
271 };
272
273 /**
274  * An array of these structures is pointed to from dev_caller
275  * The length of the array depends on the device type. For APs,
276  * there are 8.
277  *
278  * The caller buffer is allocated to the user at OPEN. At WRITE,
279  * it contains the request; at READ, the response. The function
280  * send_to_crypto_device converts the request to device-dependent
281  * form and use the caller's OPEN-allocated buffer for the response.
282  *
283  * For the contents of caller_dev_dep_req and caller_dev_dep_req_p
284  * because that points to it, see the discussion in z90hardware.c.
285  * Search for "extended request message block".
286  */
287 struct caller {
288         int              caller_buf_l;           // length of original request
289         unsigned char *  caller_buf_p;           // Original request on WRITE
290         int              caller_dev_dep_req_l;   // len device dependent request
291         unsigned char *  caller_dev_dep_req_p;   // Device dependent form
292         unsigned char    caller_id[8];           // caller-supplied message id
293         struct list_head caller_liste;
294         unsigned char    caller_dev_dep_req[MAX_RESPONSE_SIZE];
295 };
296
297 /**
298  * Function prototypes from z90hardware.c
299  */
300 enum hdstat query_online(int, int, int, int *, int *);
301 enum devstat reset_device(int, int, int);
302 enum devstat send_to_AP(int, int, int, unsigned char *);
303 enum devstat receive_from_AP(int, int, int, unsigned char *, unsigned char *);
304 int convert_request(unsigned char *, int, short, int, int, int *,
305                     unsigned char *);
306 int convert_response(unsigned char *, unsigned char *, int *, unsigned char *);
307
308 /**
309  * Low level function prototypes
310  */
311 static int create_z90crypt(int *);
312 static int refresh_z90crypt(int *);
313 static int find_crypto_devices(struct status *);
314 static int create_crypto_device(int);
315 static int destroy_crypto_device(int);
316 static void destroy_z90crypt(void);
317 static int refresh_index_array(struct status *, struct device_x *);
318 static int probe_device_type(struct device *);
319 static int probe_PCIXCC_type(struct device *);
320
321 /**
322  * proc fs definitions
323  */
324 static struct proc_dir_entry *z90crypt_entry;
325
326 /**
327  * data structures
328  */
329
330 /**
331  * work_element.opener points back to this structure
332  */
333 struct priv_data {
334         pid_t   opener_pid;
335         unsigned char   status;         // 0: open  1: closed
336 };
337
338 /**
339  * A work element is allocated for each request
340  */
341 struct work_element {
342         struct priv_data *priv_data;
343         pid_t             pid;
344         int               devindex;       // index of device processing this w_e
345                                           // (If request did not specify device,
346                                           // -1 until placed onto a queue)
347         int               devtype;
348         struct list_head  liste;          // used for requestq and pendingq
349         char              buffer[128];    // local copy of user request
350         int               buff_size;      // size of the buffer for the request
351         char              resp_buff[RESPBUFFSIZE];
352         int               resp_buff_size;
353         char __user *     resp_addr;      // address of response in user space
354         unsigned int      funccode;       // function code of request
355         wait_queue_head_t waitq;
356         unsigned long     requestsent;    // time at which the request was sent
357         atomic_t          alarmrung;      // wake-up signal
358         unsigned char     caller_id[8];   // pid + counter, for this w_e
359         unsigned char     status[1];      // bits to mark status of the request
360         unsigned char     audit[3];       // record of work element's progress
361         unsigned char *   requestptr;     // address of request buffer
362         int               retcode;        // return code of request
363 };
364
365 /**
366  * High level function prototypes
367  */
368 static int z90crypt_open(struct inode *, struct file *);
369 static int z90crypt_release(struct inode *, struct file *);
370 static ssize_t z90crypt_read(struct file *, char __user *, size_t, loff_t *);
371 static ssize_t z90crypt_write(struct file *, const char __user *,
372                                                         size_t, loff_t *);
373 static long z90crypt_unlocked_ioctl(struct file *, unsigned int, unsigned long);
374 static long z90crypt_compat_ioctl(struct file *, unsigned int, unsigned long);
375
376 static void z90crypt_reader_task(unsigned long);
377 static void z90crypt_schedule_reader_task(unsigned long);
378 static void z90crypt_config_task(unsigned long);
379 static void z90crypt_cleanup_task(unsigned long);
380
381 static int z90crypt_status(char *, char **, off_t, int, int *, void *);
382 static int z90crypt_status_write(struct file *, const char __user *,
383                                  unsigned long, void *);
384
385 /**
386  * Storage allocated at initialization and used throughout the life of
387  * this insmod
388  */
389 static int domain = DOMAIN_INDEX;
390 static struct z90crypt z90crypt;
391 static int quiesce_z90crypt;
392 static spinlock_t queuespinlock;
393 static struct list_head request_list;
394 static int requestq_count;
395 static struct list_head pending_list;
396 static int pendingq_count;
397
398 static struct tasklet_struct reader_tasklet;
399 static struct timer_list reader_timer;
400 static struct timer_list config_timer;
401 static struct timer_list cleanup_timer;
402 static atomic_t total_open;
403 static atomic_t z90crypt_step;
404
405 static struct file_operations z90crypt_fops = {
406         .owner          = THIS_MODULE,
407         .read           = z90crypt_read,
408         .write          = z90crypt_write,
409         .unlocked_ioctl = z90crypt_unlocked_ioctl,
410 #ifdef CONFIG_COMPAT
411         .compat_ioctl   = z90crypt_compat_ioctl,
412 #endif
413         .open           = z90crypt_open,
414         .release        = z90crypt_release
415 };
416
417 static struct miscdevice z90crypt_misc_device = {
418         .minor      = Z90CRYPT_MINOR,
419         .name       = DEV_NAME,
420         .fops       = &z90crypt_fops,
421         .devfs_name = DEV_NAME
422 };
423
424 /**
425  * Documentation values.
426  */
427 MODULE_AUTHOR("zSeries Linux Crypto Team: Robert H. Burroughs, Eric D. Rossman"
428               "and Jochen Roehrig");
429 MODULE_DESCRIPTION("zSeries Linux Cryptographic Coprocessor device driver, "
430                    "Copyright 2001, 2004 IBM Corporation");
431 MODULE_LICENSE("GPL");
432 module_param(domain, int, 0);
433 MODULE_PARM_DESC(domain, "domain index for device");
434
435 #ifdef CONFIG_COMPAT
436 /**
437  * ioctl32 conversion routines
438  */
439 struct ica_rsa_modexpo_32 { // For 32-bit callers
440         compat_uptr_t   inputdata;
441         unsigned int    inputdatalength;
442         compat_uptr_t   outputdata;
443         unsigned int    outputdatalength;
444         compat_uptr_t   b_key;
445         compat_uptr_t   n_modulus;
446 };
447
448 static long
449 trans_modexpo32(struct file *filp, unsigned int cmd, unsigned long arg)
450 {
451         struct ica_rsa_modexpo_32 __user *mex32u = compat_ptr(arg);
452         struct ica_rsa_modexpo_32  mex32k;
453         struct ica_rsa_modexpo __user *mex64;
454         long ret = 0;
455         unsigned int i;
456
457         if (!access_ok(VERIFY_WRITE, mex32u, sizeof(struct ica_rsa_modexpo_32)))
458                 return -EFAULT;
459         mex64 = compat_alloc_user_space(sizeof(struct ica_rsa_modexpo));
460         if (!access_ok(VERIFY_WRITE, mex64, sizeof(struct ica_rsa_modexpo)))
461                 return -EFAULT;
462         if (copy_from_user(&mex32k, mex32u, sizeof(struct ica_rsa_modexpo_32)))
463                 return -EFAULT;
464         if (__put_user(compat_ptr(mex32k.inputdata), &mex64->inputdata)   ||
465             __put_user(mex32k.inputdatalength, &mex64->inputdatalength)   ||
466             __put_user(compat_ptr(mex32k.outputdata), &mex64->outputdata) ||
467             __put_user(mex32k.outputdatalength, &mex64->outputdatalength) ||
468             __put_user(compat_ptr(mex32k.b_key), &mex64->b_key)           ||
469             __put_user(compat_ptr(mex32k.n_modulus), &mex64->n_modulus))
470                 return -EFAULT;
471         ret = z90crypt_unlocked_ioctl(filp, cmd, (unsigned long)mex64);
472         if (!ret)
473                 if (__get_user(i, &mex64->outputdatalength) ||
474                     __put_user(i, &mex32u->outputdatalength))
475                         ret = -EFAULT;
476         return ret;
477 }
478
479 struct ica_rsa_modexpo_crt_32 { // For 32-bit callers
480         compat_uptr_t   inputdata;
481         unsigned int    inputdatalength;
482         compat_uptr_t   outputdata;
483         unsigned int    outputdatalength;
484         compat_uptr_t   bp_key;
485         compat_uptr_t   bq_key;
486         compat_uptr_t   np_prime;
487         compat_uptr_t   nq_prime;
488         compat_uptr_t   u_mult_inv;
489 };
490
491 static long
492 trans_modexpo_crt32(struct file *filp, unsigned int cmd, unsigned long arg)
493 {
494         struct ica_rsa_modexpo_crt_32 __user *crt32u = compat_ptr(arg);
495         struct ica_rsa_modexpo_crt_32  crt32k;
496         struct ica_rsa_modexpo_crt __user *crt64;
497         long ret = 0;
498         unsigned int i;
499
500         if (!access_ok(VERIFY_WRITE, crt32u,
501                        sizeof(struct ica_rsa_modexpo_crt_32)))
502                 return -EFAULT;
503         crt64 = compat_alloc_user_space(sizeof(struct ica_rsa_modexpo_crt));
504         if (!access_ok(VERIFY_WRITE, crt64, sizeof(struct ica_rsa_modexpo_crt)))
505                 return -EFAULT;
506         if (copy_from_user(&crt32k, crt32u,
507                            sizeof(struct ica_rsa_modexpo_crt_32)))
508                 return -EFAULT;
509         if (__put_user(compat_ptr(crt32k.inputdata), &crt64->inputdata)   ||
510             __put_user(crt32k.inputdatalength, &crt64->inputdatalength)   ||
511             __put_user(compat_ptr(crt32k.outputdata), &crt64->outputdata) ||
512             __put_user(crt32k.outputdatalength, &crt64->outputdatalength) ||
513             __put_user(compat_ptr(crt32k.bp_key), &crt64->bp_key)         ||
514             __put_user(compat_ptr(crt32k.bq_key), &crt64->bq_key)         ||
515             __put_user(compat_ptr(crt32k.np_prime), &crt64->np_prime)     ||
516             __put_user(compat_ptr(crt32k.nq_prime), &crt64->nq_prime)     ||
517             __put_user(compat_ptr(crt32k.u_mult_inv), &crt64->u_mult_inv))
518                 return -EFAULT;
519         ret = z90crypt_unlocked_ioctl(filp, cmd, (unsigned long)crt64);
520         if (!ret)
521                 if (__get_user(i, &crt64->outputdatalength) ||
522                     __put_user(i, &crt32u->outputdatalength))
523                         ret = -EFAULT;
524         return ret;
525 }
526
527 static long
528 z90crypt_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
529 {
530         switch (cmd) {
531         case ICAZ90STATUS:
532         case Z90QUIESCE:
533         case Z90STAT_TOTALCOUNT:
534         case Z90STAT_PCICACOUNT:
535         case Z90STAT_PCICCCOUNT:
536         case Z90STAT_PCIXCCCOUNT:
537         case Z90STAT_PCIXCCMCL2COUNT:
538         case Z90STAT_PCIXCCMCL3COUNT:
539         case Z90STAT_CEX2CCOUNT:
540         case Z90STAT_REQUESTQ_COUNT:
541         case Z90STAT_PENDINGQ_COUNT:
542         case Z90STAT_TOTALOPEN_COUNT:
543         case Z90STAT_DOMAIN_INDEX:
544         case Z90STAT_STATUS_MASK:
545         case Z90STAT_QDEPTH_MASK:
546         case Z90STAT_PERDEV_REQCNT:
547                 return z90crypt_unlocked_ioctl(filp, cmd, arg);
548         case ICARSAMODEXPO:
549                 return trans_modexpo32(filp, cmd, arg);
550         case ICARSACRT:
551                 return trans_modexpo_crt32(filp, cmd, arg);
552         default:
553                 return -ENOIOCTLCMD;
554         }
555 }
556 #endif
557
558 /**
559  * The module initialization code.
560  */
561 static int __init
562 z90crypt_init_module(void)
563 {
564         int result, nresult;
565         struct proc_dir_entry *entry;
566
567         PDEBUG("PID %d\n", PID());
568
569         if ((domain < -1) || (domain > 15)) {
570                 PRINTKW("Invalid param: domain = %d.  Not loading.\n", domain);
571                 return -EINVAL;
572         }
573
574         /* Register as misc device with given minor (or get a dynamic one). */
575         result = misc_register(&z90crypt_misc_device);
576         if (result < 0) {
577                 PRINTKW(KERN_ERR "misc_register (minor %d) failed with %d\n",
578                         z90crypt_misc_device.minor, result);
579                 return result;
580         }
581
582         PDEBUG("Registered " DEV_NAME " with result %d\n", result);
583
584         result = create_z90crypt(&domain);
585         if (result != 0) {
586                 PRINTKW("create_z90crypt (domain index %d) failed with %d.\n",
587                         domain, result);
588                 result = -ENOMEM;
589                 goto init_module_cleanup;
590         }
591
592         if (result == 0) {
593                 PRINTKN("Version %d.%d.%d loaded, built on %s %s\n",
594                         z90crypt_VERSION, z90crypt_RELEASE, z90crypt_VARIANT,
595                         __DATE__, __TIME__);
596                 PRINTKN("%s\n", z90main_version);
597                 PRINTKN("%s\n", z90hardware_version);
598                 PDEBUG("create_z90crypt (domain index %d) successful.\n",
599                        domain);
600         } else
601                 PRINTK("No devices at startup\n");
602
603         /* Initialize globals. */
604         spin_lock_init(&queuespinlock);
605
606         INIT_LIST_HEAD(&pending_list);
607         pendingq_count = 0;
608
609         INIT_LIST_HEAD(&request_list);
610         requestq_count = 0;
611
612         quiesce_z90crypt = 0;
613
614         atomic_set(&total_open, 0);
615         atomic_set(&z90crypt_step, 0);
616
617         /* Set up the cleanup task. */
618         init_timer(&cleanup_timer);
619         cleanup_timer.function = z90crypt_cleanup_task;
620         cleanup_timer.data = 0;
621         cleanup_timer.expires = jiffies + (CLEANUPTIME * HZ);
622         add_timer(&cleanup_timer);
623
624         /* Set up the proc file system */
625         entry = create_proc_entry("driver/z90crypt", 0644, 0);
626         if (entry) {
627                 entry->nlink = 1;
628                 entry->data = 0;
629                 entry->read_proc = z90crypt_status;
630                 entry->write_proc = z90crypt_status_write;
631         }
632         else
633                 PRINTK("Couldn't create z90crypt proc entry\n");
634         z90crypt_entry = entry;
635
636         /* Set up the configuration task. */
637         init_timer(&config_timer);
638         config_timer.function = z90crypt_config_task;
639         config_timer.data = 0;
640         config_timer.expires = jiffies + (INITIAL_CONFIGTIME * HZ);
641         add_timer(&config_timer);
642
643         /* Set up the reader task */
644         tasklet_init(&reader_tasklet, z90crypt_reader_task, 0);
645         init_timer(&reader_timer);
646         reader_timer.function = z90crypt_schedule_reader_task;
647         reader_timer.data = 0;
648         reader_timer.expires = jiffies + (READERTIME * HZ / 1000);
649         add_timer(&reader_timer);
650
651         return 0; // success
652
653 init_module_cleanup:
654         if ((nresult = misc_deregister(&z90crypt_misc_device)))
655                 PRINTK("misc_deregister failed with %d.\n", nresult);
656         else
657                 PDEBUG("misc_deregister successful.\n");
658
659         return result; // failure
660 }
661
662 /**
663  * The module termination code
664  */
665 static void __exit
666 z90crypt_cleanup_module(void)
667 {
668         int nresult;
669
670         PDEBUG("PID %d\n", PID());
671
672         remove_proc_entry("driver/z90crypt", 0);
673
674         if ((nresult = misc_deregister(&z90crypt_misc_device)))
675                 PRINTK("misc_deregister failed with %d.\n", nresult);
676         else
677                 PDEBUG("misc_deregister successful.\n");
678
679         /* Remove the tasks */
680         tasklet_kill(&reader_tasklet);
681         del_timer(&reader_timer);
682         del_timer(&config_timer);
683         del_timer(&cleanup_timer);
684
685         destroy_z90crypt();
686
687         PRINTKN("Unloaded.\n");
688 }
689
690 /**
691  * Functions running under a process id
692  *
693  * The I/O functions:
694  *     z90crypt_open
695  *     z90crypt_release
696  *     z90crypt_read
697  *     z90crypt_write
698  *     z90crypt_unlocked_ioctl
699  *     z90crypt_status
700  *     z90crypt_status_write
701  *       disable_card
702  *       enable_card
703  *
704  * Helper functions:
705  *     z90crypt_rsa
706  *       z90crypt_prepare
707  *       z90crypt_send
708  *       z90crypt_process_results
709  *
710  */
711 static int
712 z90crypt_open(struct inode *inode, struct file *filp)
713 {
714         struct priv_data *private_data_p;
715
716         if (quiesce_z90crypt)
717                 return -EQUIESCE;
718
719         private_data_p = kmalloc(sizeof(struct priv_data), GFP_KERNEL);
720         if (!private_data_p) {
721                 PRINTK("Memory allocate failed\n");
722                 return -ENOMEM;
723         }
724
725         memset((void *)private_data_p, 0, sizeof(struct priv_data));
726         private_data_p->status = STAT_OPEN;
727         private_data_p->opener_pid = PID();
728         filp->private_data = private_data_p;
729         atomic_inc(&total_open);
730
731         return 0;
732 }
733
734 static int
735 z90crypt_release(struct inode *inode, struct file *filp)
736 {
737         struct priv_data *private_data_p = filp->private_data;
738
739         PDEBUG("PID %d (filp %p)\n", PID(), filp);
740
741         private_data_p->status = STAT_CLOSED;
742         memset(private_data_p, 0, sizeof(struct priv_data));
743         kfree(private_data_p);
744         atomic_dec(&total_open);
745
746         return 0;
747 }
748
749 /*
750  * there are two read functions, of which compile options will choose one
751  * without USE_GET_RANDOM_BYTES
752  *   => read() always returns -EPERM;
753  * otherwise
754  *   => read() uses get_random_bytes() kernel function
755  */
756 #ifndef USE_GET_RANDOM_BYTES
757 /**
758  * z90crypt_read will not be supported beyond z90crypt 1.3.1
759  */
760 static ssize_t
761 z90crypt_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos)
762 {
763         PDEBUG("filp %p (PID %d)\n", filp, PID());
764         return -EPERM;
765 }
766 #else // we want to use get_random_bytes
767 /**
768  * read() just returns a string of random bytes.  Since we have no way
769  * to generate these cryptographically, we just execute get_random_bytes
770  * for the length specified.
771  */
772 #include <linux/random.h>
773 static ssize_t
774 z90crypt_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos)
775 {
776         unsigned char *temp_buff;
777
778         PDEBUG("filp %p (PID %d)\n", filp, PID());
779
780         if (quiesce_z90crypt)
781                 return -EQUIESCE;
782         if (count < 0) {
783                 PRINTK("Requested random byte count negative: %ld\n", count);
784                 return -EINVAL;
785         }
786         if (count > RESPBUFFSIZE) {
787                 PDEBUG("count[%d] > RESPBUFFSIZE", count);
788                 return -EINVAL;
789         }
790         if (count == 0)
791                 return 0;
792         temp_buff = kmalloc(RESPBUFFSIZE, GFP_KERNEL);
793         if (!temp_buff) {
794                 PRINTK("Memory allocate failed\n");
795                 return -ENOMEM;
796         }
797         get_random_bytes(temp_buff, count);
798
799         if (copy_to_user(buf, temp_buff, count) != 0) {
800                 kfree(temp_buff);
801                 return -EFAULT;
802         }
803         kfree(temp_buff);
804         return count;
805 }
806 #endif
807
808 /**
809  * Write is is not allowed
810  */
811 static ssize_t
812 z90crypt_write(struct file *filp, const char __user *buf, size_t count, loff_t *f_pos)
813 {
814         PDEBUG("filp %p (PID %d)\n", filp, PID());
815         return -EPERM;
816 }
817
818 /**
819  * New status functions
820  */
821 static inline int
822 get_status_totalcount(void)
823 {
824         return z90crypt.hdware_info->hdware_mask.st_count;
825 }
826
827 static inline int
828 get_status_PCICAcount(void)
829 {
830         return z90crypt.hdware_info->type_mask[PCICA].st_count;
831 }
832
833 static inline int
834 get_status_PCICCcount(void)
835 {
836         return z90crypt.hdware_info->type_mask[PCICC].st_count;
837 }
838
839 static inline int
840 get_status_PCIXCCcount(void)
841 {
842         return z90crypt.hdware_info->type_mask[PCIXCC_MCL2].st_count +
843                z90crypt.hdware_info->type_mask[PCIXCC_MCL3].st_count;
844 }
845
846 static inline int
847 get_status_PCIXCCMCL2count(void)
848 {
849         return z90crypt.hdware_info->type_mask[PCIXCC_MCL2].st_count;
850 }
851
852 static inline int
853 get_status_PCIXCCMCL3count(void)
854 {
855         return z90crypt.hdware_info->type_mask[PCIXCC_MCL3].st_count;
856 }
857
858 static inline int
859 get_status_CEX2Ccount(void)
860 {
861         return z90crypt.hdware_info->type_mask[CEX2C].st_count;
862 }
863
864 static inline int
865 get_status_requestq_count(void)
866 {
867         return requestq_count;
868 }
869
870 static inline int
871 get_status_pendingq_count(void)
872 {
873         return pendingq_count;
874 }
875
876 static inline int
877 get_status_totalopen_count(void)
878 {
879         return atomic_read(&total_open);
880 }
881
882 static inline int
883 get_status_domain_index(void)
884 {
885         return z90crypt.cdx;
886 }
887
888 static inline unsigned char *
889 get_status_status_mask(unsigned char status[Z90CRYPT_NUM_APS])
890 {
891         int i, ix;
892
893         memcpy(status, z90crypt.hdware_info->device_type_array,
894                Z90CRYPT_NUM_APS);
895
896         for (i = 0; i < get_status_totalcount(); i++) {
897                 ix = SHRT2LONG(i);
898                 if (LONG2DEVPTR(ix)->user_disabled)
899                         status[ix] = 0x0d;
900         }
901
902         return status;
903 }
904
905 static inline unsigned char *
906 get_status_qdepth_mask(unsigned char qdepth[Z90CRYPT_NUM_APS])
907 {
908         int i, ix;
909
910         memset(qdepth, 0, Z90CRYPT_NUM_APS);
911
912         for (i = 0; i < get_status_totalcount(); i++) {
913                 ix = SHRT2LONG(i);
914                 qdepth[ix] = LONG2DEVPTR(ix)->dev_caller_count;
915         }
916
917         return qdepth;
918 }
919
920 static inline unsigned int *
921 get_status_perdevice_reqcnt(unsigned int reqcnt[Z90CRYPT_NUM_APS])
922 {
923         int i, ix;
924
925         memset(reqcnt, 0, Z90CRYPT_NUM_APS * sizeof(int));
926
927         for (i = 0; i < get_status_totalcount(); i++) {
928                 ix = SHRT2LONG(i);
929                 reqcnt[ix] = LONG2DEVPTR(ix)->dev_total_req_cnt;
930         }
931
932         return reqcnt;
933 }
934
935 static inline void
936 init_work_element(struct work_element *we_p,
937                   struct priv_data *priv_data, pid_t pid)
938 {
939         int step;
940
941         we_p->requestptr = (unsigned char *)we_p + sizeof(struct work_element);
942         /* Come up with a unique id for this caller. */
943         step = atomic_inc_return(&z90crypt_step);
944         memcpy(we_p->caller_id+0, (void *) &pid, sizeof(pid));
945         memcpy(we_p->caller_id+4, (void *) &step, sizeof(step));
946         we_p->pid = pid;
947         we_p->priv_data = priv_data;
948         we_p->status[0] = STAT_DEFAULT;
949         we_p->audit[0] = 0x00;
950         we_p->audit[1] = 0x00;
951         we_p->audit[2] = 0x00;
952         we_p->resp_buff_size = 0;
953         we_p->retcode = 0;
954         we_p->devindex = -1;
955         we_p->devtype = -1;
956         atomic_set(&we_p->alarmrung, 0);
957         init_waitqueue_head(&we_p->waitq);
958         INIT_LIST_HEAD(&(we_p->liste));
959 }
960
961 static inline int
962 allocate_work_element(struct work_element **we_pp,
963                       struct priv_data *priv_data_p, pid_t pid)
964 {
965         struct work_element *we_p;
966
967         we_p = (struct work_element *) get_zeroed_page(GFP_KERNEL);
968         if (!we_p)
969                 return -ENOMEM;
970         init_work_element(we_p, priv_data_p, pid);
971         *we_pp = we_p;
972         return 0;
973 }
974
975 static inline void
976 remove_device(struct device *device_p)
977 {
978         if (!device_p || (device_p->disabled != 0))
979                 return;
980         device_p->disabled = 1;
981         z90crypt.hdware_info->type_mask[device_p->dev_type].disabled_count++;
982         z90crypt.hdware_info->hdware_mask.disabled_count++;
983 }
984
985 /**
986  * Bitlength limits for each card
987  *
988  * There are new MCLs which allow more bitlengths. See the table for details.
989  * The MCL must be applied and the newer bitlengths enabled for these to work.
990  *
991  * Card Type    Old limit    New limit
992  * PCICA          ??-2048     same (the lower limit is less than 128 bit...)
993  * PCICC         512-1024     512-2048
994  * PCIXCC_MCL2   512-2048     ----- (applying any GA LIC will make an MCL3 card)
995  * PCIXCC_MCL3   -----        128-2048
996  * CEX2C         512-2048     128-2048
997  *
998  * ext_bitlens (extended bitlengths) is a global, since you should not apply an
999  * MCL to just one card in a machine. We assume, at first, that all cards have
1000  * these capabilities.
1001  */
1002 int ext_bitlens = 1; // This is global
1003 #define PCIXCC_MIN_MOD_SIZE      16     //  128 bits
1004 #define OLD_PCIXCC_MIN_MOD_SIZE  64     //  512 bits
1005 #define PCICC_MIN_MOD_SIZE       64     //  512 bits
1006 #define OLD_PCICC_MAX_MOD_SIZE  128     // 1024 bits
1007 #define MAX_MOD_SIZE            256     // 2048 bits
1008
1009 static inline int
1010 select_device_type(int *dev_type_p, int bytelength)
1011 {
1012         static int count = 0;
1013         int PCICA_avail, PCIXCC_MCL3_avail, CEX2C_avail, index_to_use;
1014         struct status *stat;
1015         if ((*dev_type_p != PCICC) && (*dev_type_p != PCICA) &&
1016             (*dev_type_p != PCIXCC_MCL2) && (*dev_type_p != PCIXCC_MCL3) &&
1017             (*dev_type_p != CEX2C) && (*dev_type_p != ANYDEV))
1018                 return -1;
1019         if (*dev_type_p != ANYDEV) {
1020                 stat = &z90crypt.hdware_info->type_mask[*dev_type_p];
1021                 if (stat->st_count >
1022                     (stat->disabled_count + stat->user_disabled_count))
1023                         return 0;
1024                 return -1;
1025         }
1026
1027         /* Assumption: PCICA, PCIXCC_MCL3, and CEX2C are all similar in speed */
1028         stat = &z90crypt.hdware_info->type_mask[PCICA];
1029         PCICA_avail = stat->st_count -
1030                         (stat->disabled_count + stat->user_disabled_count);
1031         stat = &z90crypt.hdware_info->type_mask[PCIXCC_MCL3];
1032         PCIXCC_MCL3_avail = stat->st_count -
1033                         (stat->disabled_count + stat->user_disabled_count);
1034         stat = &z90crypt.hdware_info->type_mask[CEX2C];
1035         CEX2C_avail = stat->st_count -
1036                         (stat->disabled_count + stat->user_disabled_count);
1037         if (PCICA_avail || PCIXCC_MCL3_avail || CEX2C_avail) {
1038                 /**
1039                  * bitlength is a factor, PCICA is the most capable, even with
1040                  * the new MCL for PCIXCC.
1041                  */
1042                 if ((bytelength < PCIXCC_MIN_MOD_SIZE) ||
1043                     (!ext_bitlens && (bytelength < OLD_PCIXCC_MIN_MOD_SIZE))) {
1044                         if (!PCICA_avail)
1045                                 return -1;
1046                         else {
1047                                 *dev_type_p = PCICA;
1048                                 return 0;
1049                         }
1050                 }
1051
1052                 index_to_use = count % (PCICA_avail + PCIXCC_MCL3_avail +
1053                                         CEX2C_avail);
1054                 if (index_to_use < PCICA_avail)
1055                         *dev_type_p = PCICA;
1056                 else if (index_to_use < (PCICA_avail + PCIXCC_MCL3_avail))
1057                         *dev_type_p = PCIXCC_MCL3;
1058                 else
1059                         *dev_type_p = CEX2C;
1060                 count++;
1061                 return 0;
1062         }
1063
1064         /* Less than OLD_PCIXCC_MIN_MOD_SIZE cannot go to a PCIXCC_MCL2 */
1065         if (bytelength < OLD_PCIXCC_MIN_MOD_SIZE)
1066                 return -1;
1067         stat = &z90crypt.hdware_info->type_mask[PCIXCC_MCL2];
1068         if (stat->st_count >
1069             (stat->disabled_count + stat->user_disabled_count)) {
1070                 *dev_type_p = PCIXCC_MCL2;
1071                 return 0;
1072         }
1073
1074         /**
1075          * Less than PCICC_MIN_MOD_SIZE or more than OLD_PCICC_MAX_MOD_SIZE
1076          * (if we don't have the MCL applied and the newer bitlengths enabled)
1077          * cannot go to a PCICC
1078          */
1079         if ((bytelength < PCICC_MIN_MOD_SIZE) ||
1080             (!ext_bitlens && (bytelength > OLD_PCICC_MAX_MOD_SIZE))) {
1081                 return -1;
1082         }
1083         stat = &z90crypt.hdware_info->type_mask[PCICC];
1084         if (stat->st_count >
1085             (stat->disabled_count + stat->user_disabled_count)) {
1086                 *dev_type_p = PCICC;
1087                 return 0;
1088         }
1089
1090         return -1;
1091 }
1092
1093 /**
1094  * Try the selected number, then the selected type (can be ANYDEV)
1095  */
1096 static inline int
1097 select_device(int *dev_type_p, int *device_nr_p, int bytelength)
1098 {
1099         int i, indx, devTp, low_count, low_indx;
1100         struct device_x *index_p;
1101         struct device *dev_ptr;
1102
1103         PDEBUG("device type = %d, index = %d\n", *dev_type_p, *device_nr_p);
1104         if ((*device_nr_p >= 0) && (*device_nr_p < Z90CRYPT_NUM_DEVS)) {
1105                 PDEBUG("trying index = %d\n", *device_nr_p);
1106                 dev_ptr = z90crypt.device_p[*device_nr_p];
1107
1108                 if (dev_ptr &&
1109                     (dev_ptr->dev_stat != DEV_GONE) &&
1110                     (dev_ptr->disabled == 0) &&
1111                     (dev_ptr->user_disabled == 0)) {
1112                         PDEBUG("selected by number, index = %d\n",
1113                                *device_nr_p);
1114                         *dev_type_p = dev_ptr->dev_type;
1115                         return *device_nr_p;
1116                 }
1117         }
1118         *device_nr_p = -1;
1119         PDEBUG("trying type = %d\n", *dev_type_p);
1120         devTp = *dev_type_p;
1121         if (select_device_type(&devTp, bytelength) == -1) {
1122                 PDEBUG("failed to select by type\n");
1123                 return -1;
1124         }
1125         PDEBUG("selected type = %d\n", devTp);
1126         index_p = &z90crypt.hdware_info->type_x_addr[devTp];
1127         low_count = 0x0000FFFF;
1128         low_indx = -1;
1129         for (i = 0; i < z90crypt.hdware_info->type_mask[devTp].st_count; i++) {
1130                 indx = index_p->device_index[i];
1131                 dev_ptr = z90crypt.device_p[indx];
1132                 if (dev_ptr &&
1133                     (dev_ptr->dev_stat != DEV_GONE) &&
1134                     (dev_ptr->disabled == 0) &&
1135                     (dev_ptr->user_disabled == 0) &&
1136                     (devTp == dev_ptr->dev_type) &&
1137                     (low_count > dev_ptr->dev_caller_count)) {
1138                         low_count = dev_ptr->dev_caller_count;
1139                         low_indx = indx;
1140                 }
1141         }
1142         *device_nr_p = low_indx;
1143         return low_indx;
1144 }
1145
1146 static inline int
1147 send_to_crypto_device(struct work_element *we_p)
1148 {
1149         struct caller *caller_p;
1150         struct device *device_p;
1151         int dev_nr;
1152         int bytelen = ((struct ica_rsa_modexpo *)we_p->buffer)->inputdatalength;
1153
1154         if (!we_p->requestptr)
1155                 return SEN_FATAL_ERROR;
1156         caller_p = (struct caller *)we_p->requestptr;
1157         dev_nr = we_p->devindex;
1158         if (select_device(&we_p->devtype, &dev_nr, bytelen) == -1) {
1159                 if (z90crypt.hdware_info->hdware_mask.st_count != 0)
1160                         return SEN_RETRY;
1161                 else
1162                         return SEN_NOT_AVAIL;
1163         }
1164         we_p->devindex = dev_nr;
1165         device_p = z90crypt.device_p[dev_nr];
1166         if (!device_p)
1167                 return SEN_NOT_AVAIL;
1168         if (device_p->dev_type != we_p->devtype)
1169                 return SEN_RETRY;
1170         if (device_p->dev_caller_count >= device_p->dev_q_depth)
1171                 return SEN_QUEUE_FULL;
1172         PDEBUG("device number prior to send: %d\n", dev_nr);
1173         switch (send_to_AP(dev_nr, z90crypt.cdx,
1174                            caller_p->caller_dev_dep_req_l,
1175                            caller_p->caller_dev_dep_req_p)) {
1176         case DEV_SEN_EXCEPTION:
1177                 PRINTKC("Exception during send to device %d\n", dev_nr);
1178                 z90crypt.terminating = 1;
1179                 return SEN_FATAL_ERROR;
1180         case DEV_GONE:
1181                 PRINTK("Device %d not available\n", dev_nr);
1182                 remove_device(device_p);
1183                 return SEN_NOT_AVAIL;
1184         case DEV_EMPTY:
1185                 return SEN_NOT_AVAIL;
1186         case DEV_NO_WORK:
1187                 return SEN_FATAL_ERROR;
1188         case DEV_BAD_MESSAGE:
1189                 return SEN_USER_ERROR;
1190         case DEV_QUEUE_FULL:
1191                 return SEN_QUEUE_FULL;
1192         default:
1193         case DEV_ONLINE:
1194                 break;
1195         }
1196         list_add_tail(&(caller_p->caller_liste), &(device_p->dev_caller_list));
1197         device_p->dev_caller_count++;
1198         return 0;
1199 }
1200
1201 /**
1202  * Send puts the user's work on one of two queues:
1203  *   the pending queue if the send was successful
1204  *   the request queue if the send failed because device full or busy
1205  */
1206 static inline int
1207 z90crypt_send(struct work_element *we_p, const char *buf)
1208 {
1209         int rv;
1210
1211         PDEBUG("PID %d\n", PID());
1212
1213         if (CHK_RDWRMASK(we_p->status[0]) != STAT_NOWORK) {
1214                 PDEBUG("PID %d tried to send more work but has outstanding "
1215                        "work.\n", PID());
1216                 return -EWORKPEND;
1217         }
1218         we_p->devindex = -1; // Reset device number
1219         spin_lock_irq(&queuespinlock);
1220         rv = send_to_crypto_device(we_p);
1221         switch (rv) {
1222         case 0:
1223                 we_p->requestsent = jiffies;
1224                 we_p->audit[0] |= FP_SENT;
1225                 list_add_tail(&we_p->liste, &pending_list);
1226                 ++pendingq_count;
1227                 we_p->audit[0] |= FP_PENDING;
1228                 break;
1229         case SEN_BUSY:
1230         case SEN_QUEUE_FULL:
1231                 rv = 0;
1232                 we_p->devindex = -1; // any device will do
1233                 we_p->requestsent = jiffies;
1234                 list_add_tail(&we_p->liste, &request_list);
1235                 ++requestq_count;
1236                 we_p->audit[0] |= FP_REQUEST;
1237                 break;
1238         case SEN_RETRY:
1239                 rv = -ERESTARTSYS;
1240                 break;
1241         case SEN_NOT_AVAIL:
1242                 PRINTK("*** No devices available.\n");
1243                 rv = we_p->retcode = -ENODEV;
1244                 we_p->status[0] |= STAT_FAILED;
1245                 break;
1246         case REC_OPERAND_INV:
1247         case REC_OPERAND_SIZE:
1248         case REC_EVEN_MOD:
1249         case REC_INVALID_PAD:
1250                 rv = we_p->retcode = -EINVAL;
1251                 we_p->status[0] |= STAT_FAILED;
1252                 break;
1253         default:
1254                 we_p->retcode = rv;
1255                 we_p->status[0] |= STAT_FAILED;
1256                 break;
1257         }
1258         if (rv != -ERESTARTSYS)
1259                 SET_RDWRMASK(we_p->status[0], STAT_WRITTEN);
1260         spin_unlock_irq(&queuespinlock);
1261         if (rv == 0)
1262                 tasklet_schedule(&reader_tasklet);
1263         return rv;
1264 }
1265
1266 /**
1267  * process_results copies the user's work from kernel space.
1268  */
1269 static inline int
1270 z90crypt_process_results(struct work_element *we_p, char __user *buf)
1271 {
1272         int rv;
1273
1274         PDEBUG("we_p %p (PID %d)\n", we_p, PID());
1275
1276         LONG2DEVPTR(we_p->devindex)->dev_total_req_cnt++;
1277         SET_RDWRMASK(we_p->status[0], STAT_READPEND);
1278
1279         rv = 0;
1280         if (!we_p->buffer) {
1281                 PRINTK("we_p %p PID %d in STAT_READPEND: buffer NULL.\n",
1282                         we_p, PID());
1283                 rv = -ENOBUFF;
1284         }
1285
1286         if (!rv)
1287                 if ((rv = copy_to_user(buf, we_p->buffer, we_p->buff_size))) {
1288                         PDEBUG("copy_to_user failed: rv = %d\n", rv);
1289                         rv = -EFAULT;
1290                 }
1291
1292         if (!rv)
1293                 rv = we_p->retcode;
1294         if (!rv)
1295                 if (we_p->resp_buff_size
1296                     &&  copy_to_user(we_p->resp_addr, we_p->resp_buff,
1297                                      we_p->resp_buff_size))
1298                         rv = -EFAULT;
1299
1300         SET_RDWRMASK(we_p->status[0], STAT_NOWORK);
1301         return rv;
1302 }
1303
1304 static unsigned char NULL_psmid[8] =
1305 {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
1306
1307 /**
1308  * Used in device configuration functions
1309  */
1310 #define MAX_RESET 90
1311
1312 /**
1313  * This is used only for PCICC support
1314  */
1315 static inline int
1316 is_PKCS11_padded(unsigned char *buffer, int length)
1317 {
1318         int i;
1319         if ((buffer[0] != 0x00) || (buffer[1] != 0x01))
1320                 return 0;
1321         for (i = 2; i < length; i++)
1322                 if (buffer[i] != 0xFF)
1323                         break;
1324         if ((i < 10) || (i == length))
1325                 return 0;
1326         if (buffer[i] != 0x00)
1327                 return 0;
1328         return 1;
1329 }
1330
1331 /**
1332  * This is used only for PCICC support
1333  */
1334 static inline int
1335 is_PKCS12_padded(unsigned char *buffer, int length)
1336 {
1337         int i;
1338         if ((buffer[0] != 0x00) || (buffer[1] != 0x02))
1339                 return 0;
1340         for (i = 2; i < length; i++)
1341                 if (buffer[i] == 0x00)
1342                         break;
1343         if ((i < 10) || (i == length))
1344                 return 0;
1345         if (buffer[i] != 0x00)
1346                 return 0;
1347         return 1;
1348 }
1349
1350 /**
1351  * builds struct caller and converts message from generic format to
1352  * device-dependent format
1353  * func is ICARSAMODEXPO or ICARSACRT
1354  * function is PCI_FUNC_KEY_ENCRYPT or PCI_FUNC_KEY_DECRYPT
1355  */
1356 static inline int
1357 build_caller(struct work_element *we_p, short function)
1358 {
1359         int rv;
1360         struct caller *caller_p = (struct caller *)we_p->requestptr;
1361
1362         if ((we_p->devtype != PCICC) && (we_p->devtype != PCICA) &&
1363             (we_p->devtype != PCIXCC_MCL2) && (we_p->devtype != PCIXCC_MCL3) &&
1364             (we_p->devtype != CEX2C))
1365                 return SEN_NOT_AVAIL;
1366
1367         memcpy(caller_p->caller_id, we_p->caller_id,
1368                sizeof(caller_p->caller_id));
1369         caller_p->caller_dev_dep_req_p = caller_p->caller_dev_dep_req;
1370         caller_p->caller_dev_dep_req_l = MAX_RESPONSE_SIZE;
1371         caller_p->caller_buf_p = we_p->buffer;
1372         INIT_LIST_HEAD(&(caller_p->caller_liste));
1373
1374         rv = convert_request(we_p->buffer, we_p->funccode, function,
1375                              z90crypt.cdx, we_p->devtype,
1376                              &caller_p->caller_dev_dep_req_l,
1377                              caller_p->caller_dev_dep_req_p);
1378         if (rv) {
1379                 if (rv == SEN_NOT_AVAIL)
1380                         PDEBUG("request can't be processed on hdwr avail\n");
1381                 else
1382                         PRINTK("Error from convert_request: %d\n", rv);
1383         }
1384         else
1385                 memcpy(&(caller_p->caller_dev_dep_req_p[4]), we_p->caller_id,8);
1386         return rv;
1387 }
1388
1389 static inline void
1390 unbuild_caller(struct device *device_p, struct caller *caller_p)
1391 {
1392         if (!caller_p)
1393                 return;
1394         if (caller_p->caller_liste.next && caller_p->caller_liste.prev)
1395                 if (!list_empty(&caller_p->caller_liste)) {
1396                         list_del_init(&caller_p->caller_liste);
1397                         device_p->dev_caller_count--;
1398                 }
1399         memset(caller_p->caller_id, 0, sizeof(caller_p->caller_id));
1400 }
1401
1402 static inline int
1403 get_crypto_request_buffer(struct work_element *we_p)
1404 {
1405         struct ica_rsa_modexpo *mex_p;
1406         struct ica_rsa_modexpo_crt *crt_p;
1407         unsigned char *temp_buffer;
1408         short function;
1409         int rv;
1410
1411         mex_p = (struct ica_rsa_modexpo *) we_p->buffer;
1412         crt_p = (struct ica_rsa_modexpo_crt *) we_p->buffer;
1413
1414         PDEBUG("device type input = %d\n", we_p->devtype);
1415
1416         if (z90crypt.terminating)
1417                 return REC_NO_RESPONSE;
1418         if (memcmp(we_p->caller_id, NULL_psmid, 8) == 0) {
1419                 PRINTK("psmid zeroes\n");
1420                 return SEN_FATAL_ERROR;
1421         }
1422         if (!we_p->buffer) {
1423                 PRINTK("buffer pointer NULL\n");
1424                 return SEN_USER_ERROR;
1425         }
1426         if (!we_p->requestptr) {
1427                 PRINTK("caller pointer NULL\n");
1428                 return SEN_USER_ERROR;
1429         }
1430
1431         if ((we_p->devtype != PCICA) && (we_p->devtype != PCICC) &&
1432             (we_p->devtype != PCIXCC_MCL2) && (we_p->devtype != PCIXCC_MCL3) &&
1433             (we_p->devtype != CEX2C) && (we_p->devtype != ANYDEV)) {
1434                 PRINTK("invalid device type\n");
1435                 return SEN_USER_ERROR;
1436         }
1437
1438         if ((mex_p->inputdatalength < 1) ||
1439             (mex_p->inputdatalength > MAX_MOD_SIZE)) {
1440                 PRINTK("inputdatalength[%d] is not valid\n",
1441                        mex_p->inputdatalength);
1442                 return SEN_USER_ERROR;
1443         }
1444
1445         if (mex_p->outputdatalength < mex_p->inputdatalength) {
1446                 PRINTK("outputdatalength[%d] < inputdatalength[%d]\n",
1447                        mex_p->outputdatalength, mex_p->inputdatalength);
1448                 return SEN_USER_ERROR;
1449         }
1450
1451         if (!mex_p->inputdata || !mex_p->outputdata) {
1452                 PRINTK("inputdata[%p] or outputdata[%p] is NULL\n",
1453                        mex_p->outputdata, mex_p->inputdata);
1454                 return SEN_USER_ERROR;
1455         }
1456
1457         /**
1458          * As long as outputdatalength is big enough, we can set the
1459          * outputdatalength equal to the inputdatalength, since that is the
1460          * number of bytes we will copy in any case
1461          */
1462         mex_p->outputdatalength = mex_p->inputdatalength;
1463
1464         rv = 0;
1465         switch (we_p->funccode) {
1466         case ICARSAMODEXPO:
1467                 if (!mex_p->b_key || !mex_p->n_modulus)
1468                         rv = SEN_USER_ERROR;
1469                 break;
1470         case ICARSACRT:
1471                 if (!IS_EVEN(crt_p->inputdatalength)) {
1472                         PRINTK("inputdatalength[%d] is odd, CRT form\n",
1473                                crt_p->inputdatalength);
1474                         rv = SEN_USER_ERROR;
1475                         break;
1476                 }
1477                 if (!crt_p->bp_key ||
1478                     !crt_p->bq_key ||
1479                     !crt_p->np_prime ||
1480                     !crt_p->nq_prime ||
1481                     !crt_p->u_mult_inv) {
1482                         PRINTK("CRT form, bad data: %p/%p/%p/%p/%p\n",
1483                                crt_p->bp_key, crt_p->bq_key,
1484                                crt_p->np_prime, crt_p->nq_prime,
1485                                crt_p->u_mult_inv);
1486                         rv = SEN_USER_ERROR;
1487                 }
1488                 break;
1489         default:
1490                 PRINTK("bad func = %d\n", we_p->funccode);
1491                 rv = SEN_USER_ERROR;
1492                 break;
1493         }
1494         if (rv != 0)
1495                 return rv;
1496
1497         if (select_device_type(&we_p->devtype, mex_p->inputdatalength) < 0)
1498                 return SEN_NOT_AVAIL;
1499
1500         temp_buffer = (unsigned char *)we_p + sizeof(struct work_element) +
1501                       sizeof(struct caller);
1502         if (copy_from_user(temp_buffer, mex_p->inputdata,
1503                            mex_p->inputdatalength) != 0)
1504                 return SEN_RELEASED;
1505
1506         function = PCI_FUNC_KEY_ENCRYPT;
1507         switch (we_p->devtype) {
1508         /* PCICA does everything with a simple RSA mod-expo operation */
1509         case PCICA:
1510                 function = PCI_FUNC_KEY_ENCRYPT;
1511                 break;
1512         /**
1513          * PCIXCC_MCL2 does all Mod-Expo form with a simple RSA mod-expo
1514          * operation, and all CRT forms with a PKCS-1.2 format decrypt.
1515          * PCIXCC_MCL3 and CEX2C do all Mod-Expo and CRT forms with a simple RSA
1516          * mod-expo operation
1517          */
1518         case PCIXCC_MCL2:
1519                 if (we_p->funccode == ICARSAMODEXPO)
1520                         function = PCI_FUNC_KEY_ENCRYPT;
1521                 else
1522                         function = PCI_FUNC_KEY_DECRYPT;
1523                 break;
1524         case PCIXCC_MCL3:
1525         case CEX2C:
1526                 if (we_p->funccode == ICARSAMODEXPO)
1527                         function = PCI_FUNC_KEY_ENCRYPT;
1528                 else
1529                         function = PCI_FUNC_KEY_DECRYPT;
1530                 break;
1531         /**
1532          * PCICC does everything as a PKCS-1.2 format request
1533          */
1534         case PCICC:
1535                 /* PCICC cannot handle input that is is PKCS#1.1 padded */
1536                 if (is_PKCS11_padded(temp_buffer, mex_p->inputdatalength)) {
1537                         return SEN_NOT_AVAIL;
1538                 }
1539                 if (we_p->funccode == ICARSAMODEXPO) {
1540                         if (is_PKCS12_padded(temp_buffer,
1541                                              mex_p->inputdatalength))
1542                                 function = PCI_FUNC_KEY_ENCRYPT;
1543                         else
1544                                 function = PCI_FUNC_KEY_DECRYPT;
1545                 } else
1546                         /* all CRT forms are decrypts */
1547                         function = PCI_FUNC_KEY_DECRYPT;
1548                 break;
1549         }
1550         PDEBUG("function: %04x\n", function);
1551         rv = build_caller(we_p, function);
1552         PDEBUG("rv from build_caller = %d\n", rv);
1553         return rv;
1554 }
1555
1556 static inline int
1557 z90crypt_prepare(struct work_element *we_p, unsigned int funccode,
1558                  const char __user *buffer)
1559 {
1560         int rv;
1561
1562         we_p->devindex = -1;
1563         if (funccode == ICARSAMODEXPO)
1564                 we_p->buff_size = sizeof(struct ica_rsa_modexpo);
1565         else
1566                 we_p->buff_size = sizeof(struct ica_rsa_modexpo_crt);
1567
1568         if (copy_from_user(we_p->buffer, buffer, we_p->buff_size))
1569                 return -EFAULT;
1570
1571         we_p->audit[0] |= FP_COPYFROM;
1572         SET_RDWRMASK(we_p->status[0], STAT_WRITTEN);
1573         we_p->funccode = funccode;
1574         we_p->devtype = -1;
1575         we_p->audit[0] |= FP_BUFFREQ;
1576         rv = get_crypto_request_buffer(we_p);
1577         switch (rv) {
1578         case 0:
1579                 we_p->audit[0] |= FP_BUFFGOT;
1580                 break;
1581         case SEN_USER_ERROR:
1582                 rv = -EINVAL;
1583                 break;
1584         case SEN_QUEUE_FULL:
1585                 rv = 0;
1586                 break;
1587         case SEN_RELEASED:
1588                 rv = -EFAULT;
1589                 break;
1590         case REC_NO_RESPONSE:
1591                 rv = -ENODEV;
1592                 break;
1593         case SEN_NOT_AVAIL:
1594         case EGETBUFF:
1595                 rv = -EGETBUFF;
1596                 break;
1597         default:
1598                 PRINTK("rv = %d\n", rv);
1599                 rv = -EGETBUFF;
1600                 break;
1601         }
1602         if (CHK_RDWRMASK(we_p->status[0]) == STAT_WRITTEN)
1603                 SET_RDWRMASK(we_p->status[0], STAT_DEFAULT);
1604         return rv;
1605 }
1606
1607 static inline void
1608 purge_work_element(struct work_element *we_p)
1609 {
1610         struct list_head *lptr;
1611
1612         spin_lock_irq(&queuespinlock);
1613         list_for_each(lptr, &request_list) {
1614                 if (lptr == &we_p->liste) {
1615                         list_del_init(lptr);
1616                         requestq_count--;
1617                         break;
1618                 }
1619         }
1620         list_for_each(lptr, &pending_list) {
1621                 if (lptr == &we_p->liste) {
1622                         list_del_init(lptr);
1623                         pendingq_count--;
1624                         break;
1625                 }
1626         }
1627         spin_unlock_irq(&queuespinlock);
1628 }
1629
1630 /**
1631  * Build the request and send it.
1632  */
1633 static inline int
1634 z90crypt_rsa(struct priv_data *private_data_p, pid_t pid,
1635              unsigned int cmd, unsigned long arg)
1636 {
1637         struct work_element *we_p;
1638         int rv;
1639
1640         if ((rv = allocate_work_element(&we_p, private_data_p, pid))) {
1641                 PDEBUG("PID %d: allocate_work_element returned ENOMEM\n", pid);
1642                 return rv;
1643         }
1644         if ((rv = z90crypt_prepare(we_p, cmd, (const char __user *)arg)))
1645                 PDEBUG("PID %d: rv = %d from z90crypt_prepare\n", pid, rv);
1646         if (!rv)
1647                 if ((rv = z90crypt_send(we_p, (const char *)arg)))
1648                         PDEBUG("PID %d: rv %d from z90crypt_send.\n", pid, rv);
1649         if (!rv) {
1650                 we_p->audit[0] |= FP_ASLEEP;
1651                 wait_event(we_p->waitq, atomic_read(&we_p->alarmrung));
1652                 we_p->audit[0] |= FP_AWAKE;
1653                 rv = we_p->retcode;
1654         }
1655         if (!rv)
1656                 rv = z90crypt_process_results(we_p, (char __user *)arg);
1657
1658         if ((we_p->status[0] & STAT_FAILED)) {
1659                 switch (rv) {
1660                 /**
1661                  * EINVAL *after* receive is almost always a padding error or
1662                  * length error issued by a coprocessor (not an accelerator).
1663                  * We convert this return value to -EGETBUFF which should
1664                  * trigger a fallback to software.
1665                  */
1666                 case -EINVAL:
1667                         if (we_p->devtype != PCICA)
1668                                 rv = -EGETBUFF;
1669                         break;
1670                 case -ETIMEOUT:
1671                         if (z90crypt.mask.st_count > 0)
1672                                 rv = -ERESTARTSYS; // retry with another
1673                         else
1674                                 rv = -ENODEV; // no cards left
1675                 /* fall through to clean up request queue */
1676                 case -ERESTARTSYS:
1677                 case -ERELEASED:
1678                         switch (CHK_RDWRMASK(we_p->status[0])) {
1679                         case STAT_WRITTEN:
1680                                 purge_work_element(we_p);
1681                                 break;
1682                         case STAT_READPEND:
1683                         case STAT_NOWORK:
1684                         default:
1685                                 break;
1686                         }
1687                         break;
1688                 default:
1689                         we_p->status[0] ^= STAT_FAILED;
1690                         break;
1691                 }
1692         }
1693         free_page((long)we_p);
1694         return rv;
1695 }
1696
1697 /**
1698  * This function is a little long, but it's really just one large switch
1699  * statement.
1700  */
1701 static long
1702 z90crypt_unlocked_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
1703 {
1704         struct priv_data *private_data_p = filp->private_data;
1705         unsigned char *status;
1706         unsigned char *qdepth;
1707         unsigned int *reqcnt;
1708         struct ica_z90_status *pstat;
1709         int ret, i, loopLim, tempstat;
1710         static int deprecated_msg_count1 = 0;
1711         static int deprecated_msg_count2 = 0;
1712
1713         PDEBUG("filp %p (PID %d), cmd 0x%08X\n", filp, PID(), cmd);
1714         PDEBUG("cmd 0x%08X: dir %s, size 0x%04X, type 0x%02X, nr 0x%02X\n",
1715                 cmd,
1716                 !_IOC_DIR(cmd) ? "NO"
1717                 : ((_IOC_DIR(cmd) == (_IOC_READ|_IOC_WRITE)) ? "RW"
1718                 : ((_IOC_DIR(cmd) == _IOC_READ) ? "RD"
1719                 : "WR")),
1720                 _IOC_SIZE(cmd), _IOC_TYPE(cmd), _IOC_NR(cmd));
1721
1722         if (_IOC_TYPE(cmd) != Z90_IOCTL_MAGIC) {
1723                 PRINTK("cmd 0x%08X contains bad magic\n", cmd);
1724                 return -ENOTTY;
1725         }
1726
1727         ret = 0;
1728         switch (cmd) {
1729         case ICARSAMODEXPO:
1730         case ICARSACRT:
1731                 if (quiesce_z90crypt) {
1732                         ret = -EQUIESCE;
1733                         break;
1734                 }
1735                 ret = -ENODEV; // Default if no devices
1736                 loopLim = z90crypt.hdware_info->hdware_mask.st_count -
1737                         (z90crypt.hdware_info->hdware_mask.disabled_count +
1738                          z90crypt.hdware_info->hdware_mask.user_disabled_count);
1739                 for (i = 0; i < loopLim; i++) {
1740                         ret = z90crypt_rsa(private_data_p, PID(), cmd, arg);
1741                         if (ret != -ERESTARTSYS)
1742                                 break;
1743                 }
1744                 if (ret == -ERESTARTSYS)
1745                         ret = -ENODEV;
1746                 break;
1747
1748         case Z90STAT_TOTALCOUNT:
1749                 tempstat = get_status_totalcount();
1750                 if (copy_to_user((int __user *)arg, &tempstat,sizeof(int)) != 0)
1751                         ret = -EFAULT;
1752                 break;
1753
1754         case Z90STAT_PCICACOUNT:
1755                 tempstat = get_status_PCICAcount();
1756                 if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
1757                         ret = -EFAULT;
1758                 break;
1759
1760         case Z90STAT_PCICCCOUNT:
1761                 tempstat = get_status_PCICCcount();
1762                 if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
1763                         ret = -EFAULT;
1764                 break;
1765
1766         case Z90STAT_PCIXCCMCL2COUNT:
1767                 tempstat = get_status_PCIXCCMCL2count();
1768                 if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
1769                         ret = -EFAULT;
1770                 break;
1771
1772         case Z90STAT_PCIXCCMCL3COUNT:
1773                 tempstat = get_status_PCIXCCMCL3count();
1774                 if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
1775                         ret = -EFAULT;
1776                 break;
1777
1778         case Z90STAT_CEX2CCOUNT:
1779                 tempstat = get_status_CEX2Ccount();
1780                 if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
1781                         ret = -EFAULT;
1782                 break;
1783
1784         case Z90STAT_REQUESTQ_COUNT:
1785                 tempstat = get_status_requestq_count();
1786                 if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
1787                         ret = -EFAULT;
1788                 break;
1789
1790         case Z90STAT_PENDINGQ_COUNT:
1791                 tempstat = get_status_pendingq_count();
1792                 if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
1793                         ret = -EFAULT;
1794                 break;
1795
1796         case Z90STAT_TOTALOPEN_COUNT:
1797                 tempstat = get_status_totalopen_count();
1798                 if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
1799                         ret = -EFAULT;
1800                 break;
1801
1802         case Z90STAT_DOMAIN_INDEX:
1803                 tempstat = get_status_domain_index();
1804                 if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
1805                         ret = -EFAULT;
1806                 break;
1807
1808         case Z90STAT_STATUS_MASK:
1809                 status = kmalloc(Z90CRYPT_NUM_APS, GFP_KERNEL);
1810                 if (!status) {
1811                         PRINTK("kmalloc for status failed!\n");
1812                         ret = -ENOMEM;
1813                         break;
1814                 }
1815                 get_status_status_mask(status);
1816                 if (copy_to_user((char __user *) arg, status, Z90CRYPT_NUM_APS)
1817                                                                         != 0)
1818                         ret = -EFAULT;
1819                 kfree(status);
1820                 break;
1821
1822         case Z90STAT_QDEPTH_MASK:
1823                 qdepth = kmalloc(Z90CRYPT_NUM_APS, GFP_KERNEL);
1824                 if (!qdepth) {
1825                         PRINTK("kmalloc for qdepth failed!\n");
1826                         ret = -ENOMEM;
1827                         break;
1828                 }
1829                 get_status_qdepth_mask(qdepth);
1830                 if (copy_to_user((char __user *) arg, qdepth, Z90CRYPT_NUM_APS) != 0)
1831                         ret = -EFAULT;
1832                 kfree(qdepth);
1833                 break;
1834
1835         case Z90STAT_PERDEV_REQCNT:
1836                 reqcnt = kmalloc(sizeof(int) * Z90CRYPT_NUM_APS, GFP_KERNEL);
1837                 if (!reqcnt) {
1838                         PRINTK("kmalloc for reqcnt failed!\n");
1839                         ret = -ENOMEM;
1840                         break;
1841                 }
1842                 get_status_perdevice_reqcnt(reqcnt);
1843                 if (copy_to_user((char __user *) arg, reqcnt,
1844                                  Z90CRYPT_NUM_APS * sizeof(int)) != 0)
1845                         ret = -EFAULT;
1846                 kfree(reqcnt);
1847                 break;
1848
1849                 /* THIS IS DEPRECATED.  USE THE NEW STATUS CALLS */
1850         case ICAZ90STATUS:
1851                 if (deprecated_msg_count1 < 20) {
1852                         PRINTK("deprecated call to ioctl (ICAZ90STATUS)!\n");
1853                         deprecated_msg_count1++;
1854                         if (deprecated_msg_count1 == 20)
1855                                 PRINTK("No longer issuing messages related to "
1856                                        "deprecated call to ICAZ90STATUS.\n");
1857                 }
1858
1859                 pstat = kmalloc(sizeof(struct ica_z90_status), GFP_KERNEL);
1860                 if (!pstat) {
1861                         PRINTK("kmalloc for pstat failed!\n");
1862                         ret = -ENOMEM;
1863                         break;
1864                 }
1865
1866                 pstat->totalcount        = get_status_totalcount();
1867                 pstat->leedslitecount    = get_status_PCICAcount();
1868                 pstat->leeds2count       = get_status_PCICCcount();
1869                 pstat->requestqWaitCount = get_status_requestq_count();
1870                 pstat->pendingqWaitCount = get_status_pendingq_count();
1871                 pstat->totalOpenCount    = get_status_totalopen_count();
1872                 pstat->cryptoDomain      = get_status_domain_index();
1873                 get_status_status_mask(pstat->status);
1874                 get_status_qdepth_mask(pstat->qdepth);
1875
1876                 if (copy_to_user((struct ica_z90_status __user *) arg, pstat,
1877                                  sizeof(struct ica_z90_status)) != 0)
1878                         ret = -EFAULT;
1879                 kfree(pstat);
1880                 break;
1881
1882                 /* THIS IS DEPRECATED.  USE THE NEW STATUS CALLS */
1883         case Z90STAT_PCIXCCCOUNT:
1884                 if (deprecated_msg_count2 < 20) {
1885                         PRINTK("deprecated ioctl (Z90STAT_PCIXCCCOUNT)!\n");
1886                         deprecated_msg_count2++;
1887                         if (deprecated_msg_count2 == 20)
1888                                 PRINTK("No longer issuing messages about depre"
1889                                        "cated ioctl Z90STAT_PCIXCCCOUNT.\n");
1890                 }
1891
1892                 tempstat = get_status_PCIXCCcount();
1893                 if (copy_to_user((int *)arg, &tempstat, sizeof(int)) != 0)
1894                         ret = -EFAULT;
1895                 break;
1896
1897         case Z90QUIESCE:
1898                 if (current->euid != 0) {
1899                         PRINTK("QUIESCE fails: euid %d\n",
1900                                current->euid);
1901                         ret = -EACCES;
1902                 } else {
1903                         PRINTK("QUIESCE device from PID %d\n", PID());
1904                         quiesce_z90crypt = 1;
1905                 }
1906                 break;
1907
1908         default:
1909                 /* user passed an invalid IOCTL number */
1910                 PDEBUG("cmd 0x%08X contains invalid ioctl code\n", cmd);
1911                 ret = -ENOTTY;
1912                 break;
1913         }
1914
1915         return ret;
1916 }
1917
1918 static inline int
1919 sprintcl(unsigned char *outaddr, unsigned char *addr, unsigned int len)
1920 {
1921         int hl, i;
1922
1923         hl = 0;
1924         for (i = 0; i < len; i++)
1925                 hl += sprintf(outaddr+hl, "%01x", (unsigned int) addr[i]);
1926         hl += sprintf(outaddr+hl, " ");
1927
1928         return hl;
1929 }
1930
1931 static inline int
1932 sprintrw(unsigned char *outaddr, unsigned char *addr, unsigned int len)
1933 {
1934         int hl, inl, c, cx;
1935
1936         hl = sprintf(outaddr, "    ");
1937         inl = 0;
1938         for (c = 0; c < (len / 16); c++) {
1939                 hl += sprintcl(outaddr+hl, addr+inl, 16);
1940                 inl += 16;
1941         }
1942
1943         cx = len%16;
1944         if (cx) {
1945                 hl += sprintcl(outaddr+hl, addr+inl, cx);
1946                 inl += cx;
1947         }
1948
1949         hl += sprintf(outaddr+hl, "\n");
1950
1951         return hl;
1952 }
1953
1954 static inline int
1955 sprinthx(unsigned char *title, unsigned char *outaddr,
1956          unsigned char *addr, unsigned int len)
1957 {
1958         int hl, inl, r, rx;
1959
1960         hl = sprintf(outaddr, "\n%s\n", title);
1961         inl = 0;
1962         for (r = 0; r < (len / 64); r++) {
1963                 hl += sprintrw(outaddr+hl, addr+inl, 64);
1964                 inl += 64;
1965         }
1966         rx = len % 64;
1967         if (rx) {
1968                 hl += sprintrw(outaddr+hl, addr+inl, rx);
1969                 inl += rx;
1970         }
1971
1972         hl += sprintf(outaddr+hl, "\n");
1973
1974         return hl;
1975 }
1976
1977 static inline int
1978 sprinthx4(unsigned char *title, unsigned char *outaddr,
1979           unsigned int *array, unsigned int len)
1980 {
1981         int hl, r;
1982
1983         hl = sprintf(outaddr, "\n%s\n", title);
1984
1985         for (r = 0; r < len; r++) {
1986                 if ((r % 8) == 0)
1987                         hl += sprintf(outaddr+hl, "    ");
1988                 hl += sprintf(outaddr+hl, "%08X ", array[r]);
1989                 if ((r % 8) == 7)
1990                         hl += sprintf(outaddr+hl, "\n");
1991         }
1992
1993         hl += sprintf(outaddr+hl, "\n");
1994
1995         return hl;
1996 }
1997
1998 static int
1999 z90crypt_status(char *resp_buff, char **start, off_t offset,
2000                 int count, int *eof, void *data)
2001 {
2002         unsigned char *workarea;
2003         int len;
2004
2005         /* resp_buff is a page. Use the right half for a work area */
2006         workarea = resp_buff+2000;
2007         len = 0;
2008         len += sprintf(resp_buff+len, "\nz90crypt version: %d.%d.%d\n",
2009                 z90crypt_VERSION, z90crypt_RELEASE, z90crypt_VARIANT);
2010         len += sprintf(resp_buff+len, "Cryptographic domain: %d\n",
2011                 get_status_domain_index());
2012         len += sprintf(resp_buff+len, "Total device count: %d\n",
2013                 get_status_totalcount());
2014         len += sprintf(resp_buff+len, "PCICA count: %d\n",
2015                 get_status_PCICAcount());
2016         len += sprintf(resp_buff+len, "PCICC count: %d\n",
2017                 get_status_PCICCcount());
2018         len += sprintf(resp_buff+len, "PCIXCC MCL2 count: %d\n",
2019                 get_status_PCIXCCMCL2count());
2020         len += sprintf(resp_buff+len, "PCIXCC MCL3 count: %d\n",
2021                 get_status_PCIXCCMCL3count());
2022         len += sprintf(resp_buff+len, "CEX2C count: %d\n",
2023                 get_status_CEX2Ccount());
2024         len += sprintf(resp_buff+len, "requestq count: %d\n",
2025                 get_status_requestq_count());
2026         len += sprintf(resp_buff+len, "pendingq count: %d\n",
2027                 get_status_pendingq_count());
2028         len += sprintf(resp_buff+len, "Total open handles: %d\n\n",
2029                 get_status_totalopen_count());
2030         len += sprinthx(
2031                 "Online devices: 1: PCICA, 2: PCICC, 3: PCIXCC (MCL2), "
2032                 "4: PCIXCC (MCL3), 5: CEX2C",
2033                 resp_buff+len,
2034                 get_status_status_mask(workarea),
2035                 Z90CRYPT_NUM_APS);
2036         len += sprinthx("Waiting work element counts",
2037                 resp_buff+len,
2038                 get_status_qdepth_mask(workarea),
2039                 Z90CRYPT_NUM_APS);
2040         len += sprinthx4(
2041                 "Per-device successfully completed request counts",
2042                 resp_buff+len,
2043                 get_status_perdevice_reqcnt((unsigned int *)workarea),
2044                 Z90CRYPT_NUM_APS);
2045         *eof = 1;
2046         memset(workarea, 0, Z90CRYPT_NUM_APS * sizeof(unsigned int));
2047         return len;
2048 }
2049
2050 static inline void
2051 disable_card(int card_index)
2052 {
2053         struct device *devp;
2054
2055         devp = LONG2DEVPTR(card_index);
2056         if (!devp || devp->user_disabled)
2057                 return;
2058         devp->user_disabled = 1;
2059         z90crypt.hdware_info->hdware_mask.user_disabled_count++;
2060         if (devp->dev_type == -1)
2061                 return;
2062         z90crypt.hdware_info->type_mask[devp->dev_type].user_disabled_count++;
2063 }
2064
2065 static inline void
2066 enable_card(int card_index)
2067 {
2068         struct device *devp;
2069
2070         devp = LONG2DEVPTR(card_index);
2071         if (!devp || !devp->user_disabled)
2072                 return;
2073         devp->user_disabled = 0;
2074         z90crypt.hdware_info->hdware_mask.user_disabled_count--;
2075         if (devp->dev_type == -1)
2076                 return;
2077         z90crypt.hdware_info->type_mask[devp->dev_type].user_disabled_count--;
2078 }
2079
2080 static int
2081 z90crypt_status_write(struct file *file, const char __user *buffer,
2082                       unsigned long count, void *data)
2083 {
2084         int j, eol;
2085         unsigned char *lbuf, *ptr;
2086         unsigned int local_count;
2087
2088 #define LBUFSIZE 1200
2089         lbuf = kmalloc(LBUFSIZE, GFP_KERNEL);
2090         if (!lbuf) {
2091                 PRINTK("kmalloc failed!\n");
2092                 return 0;
2093         }
2094
2095         if (count <= 0)
2096                 return 0;
2097
2098         local_count = UMIN((unsigned int)count, LBUFSIZE-1);
2099
2100         if (copy_from_user(lbuf, buffer, local_count) != 0) {
2101                 kfree(lbuf);
2102                 return -EFAULT;
2103         }
2104
2105         lbuf[local_count] = '\0';
2106
2107         ptr = strstr(lbuf, "Online devices");
2108         if (ptr == 0) {
2109                 PRINTK("Unable to parse data (missing \"Online devices\")\n");
2110                 kfree(lbuf);
2111                 return count;
2112         }
2113
2114         ptr = strstr(ptr, "\n");
2115         if (ptr == 0) {
2116                 PRINTK("Unable to parse data (missing newline after \"Online devices\")\n");
2117                 kfree(lbuf);
2118                 return count;
2119         }
2120         ptr++;
2121
2122         if (strstr(ptr, "Waiting work element counts") == NULL) {
2123                 PRINTK("Unable to parse data (missing \"Waiting work element counts\")\n");
2124                 kfree(lbuf);
2125                 return count;
2126         }
2127
2128         j = 0;
2129         eol = 0;
2130         while ((j < 64) && (*ptr != '\0')) {
2131                 switch (*ptr) {
2132                 case '\t':
2133                 case ' ':
2134                         break;
2135                 case '\n':
2136                 default:
2137                         eol = 1;
2138                         break;
2139                 case '0':       // no device
2140                 case '1':       // PCICA
2141                 case '2':       // PCICC
2142                 case '3':       // PCIXCC_MCL2
2143                 case '4':       // PCIXCC_MCL3
2144                 case '5':       // CEX2C
2145                         j++;
2146                         break;
2147                 case 'd':
2148                 case 'D':
2149                         disable_card(j);
2150                         j++;
2151                         break;
2152                 case 'e':
2153                 case 'E':
2154                         enable_card(j);
2155                         j++;
2156                         break;
2157                 }
2158                 if (eol)
2159                         break;
2160                 ptr++;
2161         }
2162
2163         kfree(lbuf);
2164         return count;
2165 }
2166
2167 /**
2168  * Functions that run under a timer, with no process id
2169  *
2170  * The task functions:
2171  *     z90crypt_reader_task
2172  *       helper_send_work
2173  *       helper_handle_work_element
2174  *       helper_receive_rc
2175  *     z90crypt_config_task
2176  *     z90crypt_cleanup_task
2177  *
2178  * Helper functions:
2179  *     z90crypt_schedule_reader_timer
2180  *     z90crypt_schedule_reader_task
2181  *     z90crypt_schedule_config_task
2182  *     z90crypt_schedule_cleanup_task
2183  */
2184 static inline int
2185 receive_from_crypto_device(int index, unsigned char *psmid, int *buff_len_p,
2186                            unsigned char *buff, unsigned char __user **dest_p_p)
2187 {
2188         int dv, rv;
2189         struct device *dev_ptr;
2190         struct caller *caller_p;
2191         struct ica_rsa_modexpo *icaMsg_p;
2192         struct list_head *ptr, *tptr;
2193
2194         memcpy(psmid, NULL_psmid, sizeof(NULL_psmid));
2195
2196         if (z90crypt.terminating)
2197                 return REC_FATAL_ERROR;
2198
2199         caller_p = 0;
2200         dev_ptr = z90crypt.device_p[index];
2201         rv = 0;
2202         do {
2203                 if (!dev_ptr || dev_ptr->disabled) {
2204                         rv = REC_NO_WORK; // a disabled device can't return work
2205                         break;
2206                 }
2207                 if (dev_ptr->dev_self_x != index) {
2208                         PRINTKC("Corrupt dev ptr\n");
2209                         z90crypt.terminating = 1;
2210                         rv = REC_FATAL_ERROR;
2211                         break;
2212                 }
2213                 if (!dev_ptr->dev_resp_l || !dev_ptr->dev_resp_p) {
2214                         dv = DEV_REC_EXCEPTION;
2215                         PRINTK("dev_resp_l = %d, dev_resp_p = %p\n",
2216                                dev_ptr->dev_resp_l, dev_ptr->dev_resp_p);
2217                 } else {
2218                         PDEBUG("Dequeue called for device %d\n", index);
2219                         dv = receive_from_AP(index, z90crypt.cdx,
2220                                              dev_ptr->dev_resp_l,
2221                                              dev_ptr->dev_resp_p, psmid);
2222                 }
2223                 switch (dv) {
2224                 case DEV_REC_EXCEPTION:
2225                         rv = REC_FATAL_ERROR;
2226                         z90crypt.terminating = 1;
2227                         PRINTKC("Exception in receive from device %d\n",
2228                                 index);
2229                         break;
2230                 case DEV_ONLINE:
2231                         rv = 0;
2232                         break;
2233                 case DEV_EMPTY:
2234                         rv = REC_EMPTY;
2235                         break;
2236                 case DEV_NO_WORK:
2237                         rv = REC_NO_WORK;
2238                         break;
2239                 case DEV_BAD_MESSAGE:
2240                 case DEV_GONE:
2241                 case REC_HARDWAR_ERR:
2242                 default:
2243                         rv = REC_NO_RESPONSE;
2244                         break;
2245                 }
2246                 if (rv)
2247                         break;
2248                 if (dev_ptr->dev_caller_count <= 0) {
2249                         rv = REC_USER_GONE;
2250                         break;
2251                 }
2252
2253                 list_for_each_safe(ptr, tptr, &dev_ptr->dev_caller_list) {
2254                         caller_p = list_entry(ptr, struct caller, caller_liste);
2255                         if (!memcmp(caller_p->caller_id, psmid,
2256                                     sizeof(caller_p->caller_id))) {
2257                                 if (!list_empty(&caller_p->caller_liste)) {
2258                                         list_del_init(ptr);
2259                                         dev_ptr->dev_caller_count--;
2260                                         break;
2261                                 }
2262                         }
2263                         caller_p = 0;
2264                 }
2265                 if (!caller_p) {
2266                         PRINTKW("Unable to locate PSMID %02X%02X%02X%02X%02X"
2267                                 "%02X%02X%02X in device list\n",
2268                                 psmid[0], psmid[1], psmid[2], psmid[3],
2269                                 psmid[4], psmid[5], psmid[6], psmid[7]);
2270                         rv = REC_USER_GONE;
2271                         break;
2272                 }
2273
2274                 PDEBUG("caller_p after successful receive: %p\n", caller_p);
2275                 rv = convert_response(dev_ptr->dev_resp_p,
2276                                       caller_p->caller_buf_p, buff_len_p, buff);
2277                 switch (rv) {
2278                 case REC_USE_PCICA:
2279                         break;
2280                 case REC_OPERAND_INV:
2281                 case REC_OPERAND_SIZE:
2282                 case REC_EVEN_MOD:
2283                 case REC_INVALID_PAD:
2284                         PDEBUG("device %d: 'user error' %d\n", index, rv);
2285                         break;
2286                 case WRONG_DEVICE_TYPE:
2287                 case REC_HARDWAR_ERR:
2288                 case REC_BAD_MESSAGE:
2289                         PRINTKW("device %d: hardware error %d\n", index, rv);
2290                         rv = REC_NO_RESPONSE;
2291                         break;
2292                 default:
2293                         PDEBUG("device %d: rv = %d\n", index, rv);
2294                         break;
2295                 }
2296         } while (0);
2297
2298         switch (rv) {
2299         case 0:
2300                 PDEBUG("Successful receive from device %d\n", index);
2301                 icaMsg_p = (struct ica_rsa_modexpo *)caller_p->caller_buf_p;
2302                 *dest_p_p = icaMsg_p->outputdata;
2303                 if (*buff_len_p == 0)
2304                         PRINTK("Zero *buff_len_p\n");
2305                 break;
2306         case REC_NO_RESPONSE:
2307                 PRINTKW("Removing device %d from availability\n", index);
2308                 remove_device(dev_ptr);
2309                 break;
2310         }
2311
2312         if (caller_p)
2313                 unbuild_caller(dev_ptr, caller_p);
2314
2315         return rv;
2316 }
2317
2318 static inline void
2319 helper_send_work(int index)
2320 {
2321         struct work_element *rq_p;
2322         int rv;
2323
2324         if (list_empty(&request_list))
2325                 return;
2326         requestq_count--;
2327         rq_p = list_entry(request_list.next, struct work_element, liste);
2328         list_del_init(&rq_p->liste);
2329         rq_p->audit[1] |= FP_REMREQUEST;
2330         if (rq_p->devtype == SHRT2DEVPTR(index)->dev_type) {
2331                 rq_p->devindex = SHRT2LONG(index);
2332                 rv = send_to_crypto_device(rq_p);
2333                 if (rv == 0) {
2334                         rq_p->requestsent = jiffies;
2335                         rq_p->audit[0] |= FP_SENT;
2336                         list_add_tail(&rq_p->liste, &pending_list);
2337                         ++pendingq_count;
2338                         rq_p->audit[0] |= FP_PENDING;
2339                 } else {
2340                         switch (rv) {
2341                         case REC_OPERAND_INV:
2342                         case REC_OPERAND_SIZE:
2343                         case REC_EVEN_MOD:
2344                         case REC_INVALID_PAD:
2345                                 rq_p->retcode = -EINVAL;
2346                                 break;
2347                         case SEN_NOT_AVAIL:
2348                         case SEN_RETRY:
2349                         case REC_NO_RESPONSE:
2350                         default:
2351                                 if (z90crypt.mask.st_count > 1)
2352                                         rq_p->retcode =
2353                                                 -ERESTARTSYS;
2354                                 else
2355                                         rq_p->retcode = -ENODEV;
2356                                 break;
2357                         }
2358                         rq_p->status[0] |= STAT_FAILED;
2359                         rq_p->audit[1] |= FP_AWAKENING;
2360                         atomic_set(&rq_p->alarmrung, 1);
2361                         wake_up(&rq_p->waitq);
2362                 }
2363         } else {
2364                 if (z90crypt.mask.st_count > 1)
2365                         rq_p->retcode = -ERESTARTSYS;
2366                 else
2367                         rq_p->retcode = -ENODEV;
2368                 rq_p->status[0] |= STAT_FAILED;
2369                 rq_p->audit[1] |= FP_AWAKENING;
2370                 atomic_set(&rq_p->alarmrung, 1);
2371                 wake_up(&rq_p->waitq);
2372         }
2373 }
2374
2375 static inline void
2376 helper_handle_work_element(int index, unsigned char psmid[8], int rc,
2377                            int buff_len, unsigned char *buff,
2378                            unsigned char __user *resp_addr)
2379 {
2380         struct work_element *pq_p;
2381         struct list_head *lptr, *tptr;
2382
2383         pq_p = 0;
2384         list_for_each_safe(lptr, tptr, &pending_list) {
2385                 pq_p = list_entry(lptr, struct work_element, liste);
2386                 if (!memcmp(pq_p->caller_id, psmid, sizeof(pq_p->caller_id))) {
2387                         list_del_init(lptr);
2388                         pendingq_count--;
2389                         pq_p->audit[1] |= FP_NOTPENDING;
2390                         break;
2391                 }
2392                 pq_p = 0;
2393         }
2394
2395         if (!pq_p) {
2396                 PRINTK("device %d has work but no caller exists on pending Q\n",
2397                        SHRT2LONG(index));
2398                 return;
2399         }
2400
2401         switch (rc) {
2402                 case 0:
2403                         pq_p->resp_buff_size = buff_len;
2404                         pq_p->audit[1] |= FP_RESPSIZESET;
2405                         if (buff_len) {
2406                                 pq_p->resp_addr = resp_addr;
2407                                 pq_p->audit[1] |= FP_RESPADDRCOPIED;
2408                                 memcpy(pq_p->resp_buff, buff, buff_len);
2409                                 pq_p->audit[1] |= FP_RESPBUFFCOPIED;
2410                         }
2411                         break;
2412                 case REC_OPERAND_INV:
2413                 case REC_OPERAND_SIZE:
2414                 case REC_EVEN_MOD:
2415                 case REC_INVALID_PAD:
2416                         PDEBUG("-EINVAL after application error %d\n", rc);
2417                         pq_p->retcode = -EINVAL;
2418                         pq_p->status[0] |= STAT_FAILED;
2419                         break;
2420                 case REC_USE_PCICA:
2421                         pq_p->retcode = -ERESTARTSYS;
2422                         pq_p->status[0] |= STAT_FAILED;
2423                         break;
2424                 case REC_NO_RESPONSE:
2425                 default:
2426                         if (z90crypt.mask.st_count > 1)
2427                                 pq_p->retcode = -ERESTARTSYS;
2428                         else
2429                                 pq_p->retcode = -ENODEV;
2430                         pq_p->status[0] |= STAT_FAILED;
2431                         break;
2432         }
2433         if ((pq_p->status[0] != STAT_FAILED) || (pq_p->retcode != -ERELEASED)) {
2434                 pq_p->audit[1] |= FP_AWAKENING;
2435                 atomic_set(&pq_p->alarmrung, 1);
2436                 wake_up(&pq_p->waitq);
2437         }
2438 }
2439
2440 /**
2441  * return TRUE if the work element should be removed from the queue
2442  */
2443 static inline int
2444 helper_receive_rc(int index, int *rc_p)
2445 {
2446         switch (*rc_p) {
2447         case 0:
2448         case REC_OPERAND_INV:
2449         case REC_OPERAND_SIZE:
2450         case REC_EVEN_MOD:
2451         case REC_INVALID_PAD:
2452         case REC_USE_PCICA:
2453                 break;
2454
2455         case REC_BUSY:
2456         case REC_NO_WORK:
2457         case REC_EMPTY:
2458         case REC_RETRY_DEV:
2459         case REC_FATAL_ERROR:
2460                 return 0;
2461
2462         case REC_NO_RESPONSE:
2463                 break;
2464
2465         default:
2466                 PRINTK("rc %d, device %d converted to REC_NO_RESPONSE\n",
2467                        *rc_p, SHRT2LONG(index));
2468                 *rc_p = REC_NO_RESPONSE;
2469                 break;
2470         }
2471         return 1;
2472 }
2473
2474 static inline void
2475 z90crypt_schedule_reader_timer(void)
2476 {
2477         if (timer_pending(&reader_timer))
2478                 return;
2479         if (mod_timer(&reader_timer, jiffies+(READERTIME*HZ/1000)) != 0)
2480                 PRINTK("Timer pending while modifying reader timer\n");
2481 }
2482
2483 static void
2484 z90crypt_reader_task(unsigned long ptr)
2485 {
2486         int workavail, index, rc, buff_len;
2487         unsigned char   psmid[8];
2488         unsigned char __user *resp_addr;
2489         static unsigned char buff[1024];
2490
2491         /**
2492          * we use workavail = 2 to ensure 2 passes with nothing dequeued before
2493          * exiting the loop. If (pendingq_count+requestq_count) == 0 after the
2494          * loop, there is no work remaining on the queues.
2495          */
2496         resp_addr = 0;
2497         workavail = 2;
2498         buff_len = 0;
2499         while (workavail) {
2500                 workavail--;
2501                 rc = 0;
2502                 spin_lock_irq(&queuespinlock);
2503                 memset(buff, 0x00, sizeof(buff));
2504
2505                 /* Dequeue once from each device in round robin. */
2506                 for (index = 0; index < z90crypt.mask.st_count; index++) {
2507                         PDEBUG("About to receive.\n");
2508                         rc = receive_from_crypto_device(SHRT2LONG(index),
2509                                                         psmid,
2510                                                         &buff_len,
2511                                                         buff,
2512                                                         &resp_addr);
2513                         PDEBUG("Dequeued: rc = %d.\n", rc);
2514
2515                         if (helper_receive_rc(index, &rc)) {
2516                                 if (rc != REC_NO_RESPONSE) {
2517                                         helper_send_work(index);
2518                                         workavail = 2;
2519                                 }
2520
2521                                 helper_handle_work_element(index, psmid, rc,
2522                                                            buff_len, buff,
2523                                                            resp_addr);
2524                         }
2525
2526                         if (rc == REC_FATAL_ERROR)
2527                                 PRINTKW("REC_FATAL_ERROR from device %d!\n",
2528                                         SHRT2LONG(index));
2529                 }
2530                 spin_unlock_irq(&queuespinlock);
2531         }
2532
2533         if (pendingq_count + requestq_count)
2534                 z90crypt_schedule_reader_timer();
2535 }
2536
2537 static inline void
2538 z90crypt_schedule_config_task(unsigned int expiration)
2539 {
2540         if (timer_pending(&config_timer))
2541                 return;
2542         if (mod_timer(&config_timer, jiffies+(expiration*HZ)) != 0)
2543                 PRINTK("Timer pending while modifying config timer\n");
2544 }
2545
2546 static void
2547 z90crypt_config_task(unsigned long ptr)
2548 {
2549         int rc;
2550
2551         PDEBUG("jiffies %ld\n", jiffies);
2552
2553         if ((rc = refresh_z90crypt(&z90crypt.cdx)))
2554                 PRINTK("Error %d detected in refresh_z90crypt.\n", rc);
2555         /* If return was fatal, don't bother reconfiguring */
2556         if ((rc != TSQ_FATAL_ERROR) && (rc != RSQ_FATAL_ERROR))
2557                 z90crypt_schedule_config_task(CONFIGTIME);
2558 }
2559
2560 static inline void
2561 z90crypt_schedule_cleanup_task(void)
2562 {
2563         if (timer_pending(&cleanup_timer))
2564                 return;
2565         if (mod_timer(&cleanup_timer, jiffies+(CLEANUPTIME*HZ)) != 0)
2566                 PRINTK("Timer pending while modifying cleanup timer\n");
2567 }
2568
2569 static inline void
2570 helper_drain_queues(void)
2571 {
2572         struct work_element *pq_p;
2573         struct list_head *lptr, *tptr;
2574
2575         list_for_each_safe(lptr, tptr, &pending_list) {
2576                 pq_p = list_entry(lptr, struct work_element, liste);
2577                 pq_p->retcode = -ENODEV;
2578                 pq_p->status[0] |= STAT_FAILED;
2579                 unbuild_caller(LONG2DEVPTR(pq_p->devindex),
2580                                (struct caller *)pq_p->requestptr);
2581                 list_del_init(lptr);
2582                 pendingq_count--;
2583                 pq_p->audit[1] |= FP_NOTPENDING;
2584                 pq_p->audit[1] |= FP_AWAKENING;
2585                 atomic_set(&pq_p->alarmrung, 1);
2586                 wake_up(&pq_p->waitq);
2587         }
2588
2589         list_for_each_safe(lptr, tptr, &request_list) {
2590                 pq_p = list_entry(lptr, struct work_element, liste);
2591                 pq_p->retcode = -ENODEV;
2592                 pq_p->status[0] |= STAT_FAILED;
2593                 list_del_init(lptr);
2594                 requestq_count--;
2595                 pq_p->audit[1] |= FP_REMREQUEST;
2596                 pq_p->audit[1] |= FP_AWAKENING;
2597                 atomic_set(&pq_p->alarmrung, 1);
2598                 wake_up(&pq_p->waitq);
2599         }
2600 }
2601
2602 static inline void
2603 helper_timeout_requests(void)
2604 {
2605         struct work_element *pq_p;
2606         struct list_head *lptr, *tptr;
2607         long timelimit;
2608
2609         timelimit = jiffies - (CLEANUPTIME * HZ);
2610         /* The list is in strict chronological order */
2611         list_for_each_safe(lptr, tptr, &pending_list) {
2612                 pq_p = list_entry(lptr, struct work_element, liste);
2613                 if (pq_p->requestsent >= timelimit)
2614                         break;
2615                 PRINTKW("Purging(PQ) PSMID %02X%02X%02X%02X%02X%02X%02X%02X\n",
2616                        ((struct caller *)pq_p->requestptr)->caller_id[0],
2617                        ((struct caller *)pq_p->requestptr)->caller_id[1],
2618                        ((struct caller *)pq_p->requestptr)->caller_id[2],
2619                        ((struct caller *)pq_p->requestptr)->caller_id[3],
2620                        ((struct caller *)pq_p->requestptr)->caller_id[4],
2621                        ((struct caller *)pq_p->requestptr)->caller_id[5],
2622                        ((struct caller *)pq_p->requestptr)->caller_id[6],
2623                        ((struct caller *)pq_p->requestptr)->caller_id[7]);
2624                 pq_p->retcode = -ETIMEOUT;
2625                 pq_p->status[0] |= STAT_FAILED;
2626                 /* get this off any caller queue it may be on */
2627                 unbuild_caller(LONG2DEVPTR(pq_p->devindex),
2628                                (struct caller *) pq_p->requestptr);
2629                 list_del_init(lptr);
2630                 pendingq_count--;
2631                 pq_p->audit[1] |= FP_TIMEDOUT;
2632                 pq_p->audit[1] |= FP_NOTPENDING;
2633                 pq_p->audit[1] |= FP_AWAKENING;
2634                 atomic_set(&pq_p->alarmrung, 1);
2635                 wake_up(&pq_p->waitq);
2636         }
2637
2638         /**
2639          * If pending count is zero, items left on the request queue may
2640          * never be processed.
2641          */
2642         if (pendingq_count <= 0) {
2643                 list_for_each_safe(lptr, tptr, &request_list) {
2644                         pq_p = list_entry(lptr, struct work_element, liste);
2645                         if (pq_p->requestsent >= timelimit)
2646                                 break;
2647                 PRINTKW("Purging(RQ) PSMID %02X%02X%02X%02X%02X%02X%02X%02X\n",
2648                        ((struct caller *)pq_p->requestptr)->caller_id[0],
2649                        ((struct caller *)pq_p->requestptr)->caller_id[1],
2650                        ((struct caller *)pq_p->requestptr)->caller_id[2],
2651                        ((struct caller *)pq_p->requestptr)->caller_id[3],
2652                        ((struct caller *)pq_p->requestptr)->caller_id[4],
2653                        ((struct caller *)pq_p->requestptr)->caller_id[5],
2654                        ((struct caller *)pq_p->requestptr)->caller_id[6],
2655                        ((struct caller *)pq_p->requestptr)->caller_id[7]);
2656                         pq_p->retcode = -ETIMEOUT;
2657                         pq_p->status[0] |= STAT_FAILED;
2658                         list_del_init(lptr);
2659                         requestq_count--;
2660                         pq_p->audit[1] |= FP_TIMEDOUT;
2661                         pq_p->audit[1] |= FP_REMREQUEST;
2662                         pq_p->audit[1] |= FP_AWAKENING;
2663                         atomic_set(&pq_p->alarmrung, 1);
2664                         wake_up(&pq_p->waitq);
2665                 }
2666         }
2667 }
2668
2669 static void
2670 z90crypt_cleanup_task(unsigned long ptr)
2671 {
2672         PDEBUG("jiffies %ld\n", jiffies);
2673         spin_lock_irq(&queuespinlock);
2674         if (z90crypt.mask.st_count <= 0) // no devices!
2675                 helper_drain_queues();
2676         else
2677                 helper_timeout_requests();
2678         spin_unlock_irq(&queuespinlock);
2679         z90crypt_schedule_cleanup_task();
2680 }
2681
2682 static void
2683 z90crypt_schedule_reader_task(unsigned long ptr)
2684 {
2685         tasklet_schedule(&reader_tasklet);
2686 }
2687
2688 /**
2689  * Lowlevel Functions:
2690  *
2691  *   create_z90crypt:  creates and initializes basic data structures
2692  *   refresh_z90crypt:  re-initializes basic data structures
2693  *   find_crypto_devices: returns a count and mask of hardware status
2694  *   create_crypto_device:  builds the descriptor for a device
2695  *   destroy_crypto_device:  unallocates the descriptor for a device
2696  *   destroy_z90crypt:  drains all work, unallocates structs
2697  */
2698
2699 /**
2700  * build the z90crypt root structure using the given domain index
2701  */
2702 static int
2703 create_z90crypt(int *cdx_p)
2704 {
2705         struct hdware_block *hdware_blk_p;
2706
2707         memset(&z90crypt, 0x00, sizeof(struct z90crypt));
2708         z90crypt.domain_established = 0;
2709         z90crypt.len = sizeof(struct z90crypt);
2710         z90crypt.max_count = Z90CRYPT_NUM_DEVS;
2711         z90crypt.cdx = *cdx_p;
2712
2713         hdware_blk_p = (struct hdware_block *)
2714                 kmalloc(sizeof(struct hdware_block), GFP_ATOMIC);
2715         if (!hdware_blk_p) {
2716                 PDEBUG("kmalloc for hardware block failed\n");
2717                 return ENOMEM;
2718         }
2719         memset(hdware_blk_p, 0x00, sizeof(struct hdware_block));
2720         z90crypt.hdware_info = hdware_blk_p;
2721
2722         return 0;
2723 }
2724
2725 static inline int
2726 helper_scan_devices(int cdx_array[16], int *cdx_p, int *correct_cdx_found)
2727 {
2728         enum hdstat hd_stat;
2729         int q_depth, dev_type;
2730         int indx, chkdom, numdomains;
2731
2732         q_depth = dev_type = numdomains = 0;
2733         for (chkdom = 0; chkdom <= 15; cdx_array[chkdom++] = -1);
2734         for (indx = 0; indx < z90crypt.max_count; indx++) {
2735                 hd_stat = HD_NOT_THERE;
2736                 numdomains = 0;
2737                 for (chkdom = 0; chkdom <= 15; chkdom++) {
2738                         hd_stat = query_online(indx, chkdom, MAX_RESET,
2739                                                &q_depth, &dev_type);
2740                         if (hd_stat == HD_TSQ_EXCEPTION) {
2741                                 z90crypt.terminating = 1;
2742                                 PRINTKC("exception taken!\n");
2743                                 break;
2744                         }
2745                         if (hd_stat == HD_ONLINE) {
2746                                 cdx_array[numdomains++] = chkdom;
2747                                 if (*cdx_p == chkdom) {
2748                                         *correct_cdx_found  = 1;
2749                                         break;
2750                                 }
2751                         }
2752                 }
2753                 if ((*correct_cdx_found == 1) || (numdomains != 0))
2754                         break;
2755                 if (z90crypt.terminating)
2756                         break;
2757         }
2758         return numdomains;
2759 }
2760
2761 static inline int
2762 probe_crypto_domain(int *cdx_p)
2763 {
2764         int cdx_array[16];
2765         char cdx_array_text[53], temp[5];
2766         int correct_cdx_found, numdomains;
2767
2768         correct_cdx_found = 0;
2769         numdomains = helper_scan_devices(cdx_array, cdx_p, &correct_cdx_found);
2770
2771         if (z90crypt.terminating)
2772                 return TSQ_FATAL_ERROR;
2773
2774         if (correct_cdx_found)
2775                 return 0;
2776
2777         if (numdomains == 0) {
2778                 PRINTKW("Unable to find crypto domain: No devices found\n");
2779                 return Z90C_NO_DEVICES;
2780         }
2781
2782         if (numdomains == 1) {
2783                 if (*cdx_p == -1) {
2784                         *cdx_p = cdx_array[0];
2785                         return 0;
2786                 }
2787                 PRINTKW("incorrect domain: specified = %d, found = %d\n",
2788                        *cdx_p, cdx_array[0]);
2789                 return Z90C_INCORRECT_DOMAIN;
2790         }
2791
2792         numdomains--;
2793         sprintf(cdx_array_text, "%d", cdx_array[numdomains]);
2794         while (numdomains) {
2795                 numdomains--;
2796                 sprintf(temp, ", %d", cdx_array[numdomains]);
2797                 strcat(cdx_array_text, temp);
2798         }
2799
2800         PRINTKW("ambiguous domain detected: specified = %d, found array = %s\n",
2801                 *cdx_p, cdx_array_text);
2802         return Z90C_AMBIGUOUS_DOMAIN;
2803 }
2804
2805 static int
2806 refresh_z90crypt(int *cdx_p)
2807 {
2808         int i, j, indx, rv;
2809         static struct status local_mask;
2810         struct device *devPtr;
2811         unsigned char oldStat, newStat;
2812         int return_unchanged;
2813
2814         if (z90crypt.len != sizeof(z90crypt))
2815                 return ENOTINIT;
2816         if (z90crypt.terminating)
2817                 return TSQ_FATAL_ERROR;
2818         rv = 0;
2819         if (!z90crypt.hdware_info->hdware_mask.st_count &&
2820             !z90crypt.domain_established) {
2821                 rv = probe_crypto_domain(cdx_p);
2822                 if (z90crypt.terminating)
2823                         return TSQ_FATAL_ERROR;
2824                 if (rv == Z90C_NO_DEVICES)
2825                         return 0; // try later
2826                 if (rv)
2827                         return rv;
2828                 z90crypt.cdx = *cdx_p;
2829                 z90crypt.domain_established = 1;
2830         }
2831         rv = find_crypto_devices(&local_mask);
2832         if (rv) {
2833                 PRINTK("find crypto devices returned %d\n", rv);
2834                 return rv;
2835         }
2836         if (!memcmp(&local_mask, &z90crypt.hdware_info->hdware_mask,
2837                     sizeof(struct status))) {
2838                 return_unchanged = 1;
2839                 for (i = 0; i < Z90CRYPT_NUM_TYPES; i++) {
2840                         /**
2841                          * Check for disabled cards.  If any device is marked
2842                          * disabled, destroy it.
2843                          */
2844                         for (j = 0;
2845                              j < z90crypt.hdware_info->type_mask[i].st_count;
2846                              j++) {
2847                                 indx = z90crypt.hdware_info->type_x_addr[i].
2848                                                                 device_index[j];
2849                                 devPtr = z90crypt.device_p[indx];
2850                                 if (devPtr && devPtr->disabled) {
2851                                         local_mask.st_mask[indx] = HD_NOT_THERE;
2852                                         return_unchanged = 0;
2853                                 }
2854                         }
2855                 }
2856                 if (return_unchanged == 1)
2857                         return 0;
2858         }
2859
2860         spin_lock_irq(&queuespinlock);
2861         for (i = 0; i < z90crypt.max_count; i++) {
2862                 oldStat = z90crypt.hdware_info->hdware_mask.st_mask[i];
2863                 newStat = local_mask.st_mask[i];
2864                 if ((oldStat == HD_ONLINE) && (newStat != HD_ONLINE))
2865                         destroy_crypto_device(i);
2866                 else if ((oldStat != HD_ONLINE) && (newStat == HD_ONLINE)) {
2867                         rv = create_crypto_device(i);
2868                         if (rv >= REC_FATAL_ERROR)
2869                                 return rv;
2870                         if (rv != 0) {
2871                                 local_mask.st_mask[i] = HD_NOT_THERE;
2872                                 local_mask.st_count--;
2873                         }
2874                 }
2875         }
2876         memcpy(z90crypt.hdware_info->hdware_mask.st_mask, local_mask.st_mask,
2877                sizeof(local_mask.st_mask));
2878         z90crypt.hdware_info->hdware_mask.st_count = local_mask.st_count;
2879         z90crypt.hdware_info->hdware_mask.disabled_count =
2880                                                       local_mask.disabled_count;
2881         refresh_index_array(&z90crypt.mask, &z90crypt.overall_device_x);
2882         for (i = 0; i < Z90CRYPT_NUM_TYPES; i++)
2883                 refresh_index_array(&(z90crypt.hdware_info->type_mask[i]),
2884                                     &(z90crypt.hdware_info->type_x_addr[i]));
2885         spin_unlock_irq(&queuespinlock);
2886
2887         return rv;
2888 }
2889
2890 static int
2891 find_crypto_devices(struct status *deviceMask)
2892 {
2893         int i, q_depth, dev_type;
2894         enum hdstat hd_stat;
2895
2896         deviceMask->st_count = 0;
2897         deviceMask->disabled_count = 0;
2898         deviceMask->user_disabled_count = 0;
2899
2900         for (i = 0; i < z90crypt.max_count; i++) {
2901                 hd_stat = query_online(i, z90crypt.cdx, MAX_RESET, &q_depth,
2902                                        &dev_type);
2903                 if (hd_stat == HD_TSQ_EXCEPTION) {
2904                         z90crypt.terminating = 1;
2905                         PRINTKC("Exception during probe for crypto devices\n");
2906                         return TSQ_FATAL_ERROR;
2907                 }
2908                 deviceMask->st_mask[i] = hd_stat;
2909                 if (hd_stat == HD_ONLINE) {
2910                         PDEBUG("Got an online crypto!: %d\n", i);
2911                         PDEBUG("Got a queue depth of %d\n", q_depth);
2912                         PDEBUG("Got a device type of %d\n", dev_type);
2913                         if (q_depth <= 0)
2914                                 return TSQ_FATAL_ERROR;
2915                         deviceMask->st_count++;
2916                         z90crypt.q_depth_array[i] = q_depth;
2917                         z90crypt.dev_type_array[i] = dev_type;
2918                 }
2919         }
2920
2921         return 0;
2922 }
2923
2924 static int
2925 refresh_index_array(struct status *status_str, struct device_x *index_array)
2926 {
2927         int i, count;
2928         enum devstat stat;
2929
2930         i = -1;
2931         count = 0;
2932         do {
2933                 stat = status_str->st_mask[++i];
2934                 if (stat == DEV_ONLINE)
2935                         index_array->device_index[count++] = i;
2936         } while ((i < Z90CRYPT_NUM_DEVS) && (count < status_str->st_count));
2937
2938         return count;
2939 }
2940
2941 static int
2942 create_crypto_device(int index)
2943 {
2944         int rv, devstat, total_size;
2945         struct device *dev_ptr;
2946         struct status *type_str_p;
2947         int deviceType;
2948
2949         dev_ptr = z90crypt.device_p[index];
2950         if (!dev_ptr) {
2951                 total_size = sizeof(struct device) +
2952                              z90crypt.q_depth_array[index] * sizeof(int);
2953
2954                 dev_ptr = (struct device *) kmalloc(total_size, GFP_ATOMIC);
2955                 if (!dev_ptr) {
2956                         PRINTK("kmalloc device %d failed\n", index);
2957                         return ENOMEM;
2958                 }
2959                 memset(dev_ptr, 0, total_size);
2960                 dev_ptr->dev_resp_p = kmalloc(MAX_RESPONSE_SIZE, GFP_ATOMIC);
2961                 if (!dev_ptr->dev_resp_p) {
2962                         kfree(dev_ptr);
2963                         PRINTK("kmalloc device %d rec buffer failed\n", index);
2964                         return ENOMEM;
2965                 }
2966                 dev_ptr->dev_resp_l = MAX_RESPONSE_SIZE;
2967                 INIT_LIST_HEAD(&(dev_ptr->dev_caller_list));
2968         }
2969
2970         devstat = reset_device(index, z90crypt.cdx, MAX_RESET);
2971         if (devstat == DEV_RSQ_EXCEPTION) {
2972                 PRINTK("exception during reset device %d\n", index);
2973                 kfree(dev_ptr->dev_resp_p);
2974                 kfree(dev_ptr);
2975                 return RSQ_FATAL_ERROR;
2976         }
2977         if (devstat == DEV_ONLINE) {
2978                 dev_ptr->dev_self_x = index;
2979                 dev_ptr->dev_type = z90crypt.dev_type_array[index];
2980                 if (dev_ptr->dev_type == NILDEV) {
2981                         rv = probe_device_type(dev_ptr);
2982                         if (rv) {
2983                                 PRINTK("rv = %d from probe_device_type %d\n",
2984                                        rv, index);
2985                                 kfree(dev_ptr->dev_resp_p);
2986                                 kfree(dev_ptr);
2987                                 return rv;
2988                         }
2989                 }
2990                 if (dev_ptr->dev_type == PCIXCC_UNK) {
2991                         rv = probe_PCIXCC_type(dev_ptr);
2992                         if (rv) {
2993                                 PRINTK("rv = %d from probe_PCIXCC_type %d\n",
2994                                        rv, index);
2995                                 kfree(dev_ptr->dev_resp_p);
2996                                 kfree(dev_ptr);
2997                                 return rv;
2998                         }
2999                 }
3000                 deviceType = dev_ptr->dev_type;
3001                 z90crypt.dev_type_array[index] = deviceType;
3002                 if (deviceType == PCICA)
3003                         z90crypt.hdware_info->device_type_array[index] = 1;
3004                 else if (deviceType == PCICC)
3005                         z90crypt.hdware_info->device_type_array[index] = 2;
3006                 else if (deviceType == PCIXCC_MCL2)
3007                         z90crypt.hdware_info->device_type_array[index] = 3;
3008                 else if (deviceType == PCIXCC_MCL3)
3009                         z90crypt.hdware_info->device_type_array[index] = 4;
3010                 else if (deviceType == CEX2C)
3011                         z90crypt.hdware_info->device_type_array[index] = 5;
3012                 else
3013                         z90crypt.hdware_info->device_type_array[index] = -1;
3014         }
3015
3016         /**
3017          * 'q_depth' returned by the hardware is one less than
3018          * the actual depth
3019          */
3020         dev_ptr->dev_q_depth = z90crypt.q_depth_array[index];
3021         dev_ptr->dev_type = z90crypt.dev_type_array[index];
3022         dev_ptr->dev_stat = devstat;
3023         dev_ptr->disabled = 0;
3024         z90crypt.device_p[index] = dev_ptr;
3025
3026         if (devstat == DEV_ONLINE) {
3027                 if (z90crypt.mask.st_mask[index] != DEV_ONLINE) {
3028                         z90crypt.mask.st_mask[index] = DEV_ONLINE;
3029                         z90crypt.mask.st_count++;
3030                 }
3031                 deviceType = dev_ptr->dev_type;
3032                 type_str_p = &z90crypt.hdware_info->type_mask[deviceType];
3033                 if (type_str_p->st_mask[index] != DEV_ONLINE) {
3034                         type_str_p->st_mask[index] = DEV_ONLINE;
3035                         type_str_p->st_count++;
3036                 }
3037         }
3038
3039         return 0;
3040 }
3041
3042 static int
3043 destroy_crypto_device(int index)
3044 {
3045         struct device *dev_ptr;
3046         int t, disabledFlag;
3047
3048         dev_ptr = z90crypt.device_p[index];
3049
3050         /* remember device type; get rid of device struct */
3051         if (dev_ptr) {
3052                 disabledFlag = dev_ptr->disabled;
3053                 t = dev_ptr->dev_type;
3054                 kfree(dev_ptr->dev_resp_p);
3055                 kfree(dev_ptr);
3056         } else {
3057                 disabledFlag = 0;
3058                 t = -1;
3059         }
3060         z90crypt.device_p[index] = 0;
3061
3062         /* if the type is valid, remove the device from the type_mask */
3063         if ((t != -1) && z90crypt.hdware_info->type_mask[t].st_mask[index]) {
3064                   z90crypt.hdware_info->type_mask[t].st_mask[index] = 0x00;
3065                   z90crypt.hdware_info->type_mask[t].st_count--;
3066                   if (disabledFlag == 1)
3067                         z90crypt.hdware_info->type_mask[t].disabled_count--;
3068         }
3069         if (z90crypt.mask.st_mask[index] != DEV_GONE) {
3070                 z90crypt.mask.st_mask[index] = DEV_GONE;
3071                 z90crypt.mask.st_count--;
3072         }
3073         z90crypt.hdware_info->device_type_array[index] = 0;
3074
3075         return 0;
3076 }
3077
3078 static void
3079 destroy_z90crypt(void)
3080 {
3081         int i;
3082
3083         for (i = 0; i < z90crypt.max_count; i++)
3084                 if (z90crypt.device_p[i])
3085                         destroy_crypto_device(i);
3086         kfree(z90crypt.hdware_info);
3087         memset((void *)&z90crypt, 0, sizeof(z90crypt));
3088 }
3089
3090 static unsigned char static_testmsg[384] = {
3091 0x00,0x00,0x00,0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x00,0x06,0x00,0x00,
3092 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x58,
3093 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x43,0x43,
3094 0x41,0x2d,0x41,0x50,0x50,0x4c,0x20,0x20,0x20,0x01,0x01,0x01,0x00,0x00,0x00,0x00,
3095 0x50,0x4b,0x00,0x00,0x00,0x00,0x01,0x1c,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3096 0x00,0x00,0x00,0x00,0x00,0x00,0x05,0xb8,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3097 0x00,0x00,0x00,0x00,0x70,0x00,0x41,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x54,0x32,
3098 0x01,0x00,0xa0,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3099 0xb8,0x05,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3100 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3101 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3102 0x00,0x00,0x00,0x00,0x00,0x00,0x0a,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3103 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x08,0x00,0x49,0x43,0x53,0x46,
3104 0x20,0x20,0x20,0x20,0x50,0x4b,0x0a,0x00,0x50,0x4b,0x43,0x53,0x2d,0x31,0x2e,0x32,
3105 0x37,0x00,0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,0x99,0x00,0x11,0x22,0x33,0x44,
3106 0x55,0x66,0x77,0x88,0x99,0x00,0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,0x99,0x00,
3107 0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,0x99,0x00,0x11,0x22,0x33,0x44,0x55,0x66,
3108 0x77,0x88,0x99,0x00,0x11,0x22,0x33,0x5d,0x00,0x5b,0x00,0x77,0x88,0x1e,0x00,0x00,
3109 0x57,0x00,0x00,0x00,0x00,0x04,0x00,0x00,0x4f,0x00,0x00,0x00,0x03,0x02,0x00,0x00,
3110 0x40,0x01,0x00,0x01,0xce,0x02,0x68,0x2d,0x5f,0xa9,0xde,0x0c,0xf6,0xd2,0x7b,0x58,
3111 0x4b,0xf9,0x28,0x68,0x3d,0xb4,0xf4,0xef,0x78,0xd5,0xbe,0x66,0x63,0x42,0xef,0xf8,
3112 0xfd,0xa4,0xf8,0xb0,0x8e,0x29,0xc2,0xc9,0x2e,0xd8,0x45,0xb8,0x53,0x8c,0x6f,0x4e,
3113 0x72,0x8f,0x6c,0x04,0x9c,0x88,0xfc,0x1e,0xc5,0x83,0x55,0x57,0xf7,0xdd,0xfd,0x4f,
3114 0x11,0x36,0x95,0x5d,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
3115 };
3116
3117 static int
3118 probe_device_type(struct device *devPtr)
3119 {
3120         int rv, dv, i, index, length;
3121         unsigned char psmid[8];
3122         static unsigned char loc_testmsg[sizeof(static_testmsg)];
3123
3124         index = devPtr->dev_self_x;
3125         rv = 0;
3126         do {
3127                 memcpy(loc_testmsg, static_testmsg, sizeof(static_testmsg));
3128                 length = sizeof(static_testmsg) - 24;
3129                 /* the -24 allows for the header */
3130                 dv = send_to_AP(index, z90crypt.cdx, length, loc_testmsg);
3131                 if (dv) {
3132                         PDEBUG("dv returned by send during probe: %d\n", dv);
3133                         if (dv == DEV_SEN_EXCEPTION) {
3134                                 rv = SEN_FATAL_ERROR;
3135                                 PRINTKC("exception in send to AP %d\n", index);
3136                                 break;
3137                         }
3138                         PDEBUG("return value from send_to_AP: %d\n", rv);
3139                         switch (dv) {
3140                         case DEV_GONE:
3141                                 PDEBUG("dev %d not available\n", index);
3142                                 rv = SEN_NOT_AVAIL;
3143                                 break;
3144                         case DEV_ONLINE:
3145                                 rv = 0;
3146                                 break;
3147                         case DEV_EMPTY:
3148                                 rv = SEN_NOT_AVAIL;
3149                                 break;
3150                         case DEV_NO_WORK:
3151                                 rv = SEN_FATAL_ERROR;
3152                                 break;
3153                         case DEV_BAD_MESSAGE:
3154                                 rv = SEN_USER_ERROR;
3155                                 break;
3156                         case DEV_QUEUE_FULL:
3157                                 rv = SEN_QUEUE_FULL;
3158                                 break;
3159                         default:
3160                                 PRINTK("unknown dv=%d for dev %d\n", dv, index);
3161                                 rv = SEN_NOT_AVAIL;
3162                                 break;
3163                         }
3164                 }
3165
3166                 if (rv)
3167                         break;
3168
3169                 for (i = 0; i < 6; i++) {
3170                         mdelay(300);
3171                         dv = receive_from_AP(index, z90crypt.cdx,
3172                                              devPtr->dev_resp_l,
3173                                              devPtr->dev_resp_p, psmid);
3174                         PDEBUG("dv returned by DQ = %d\n", dv);
3175                         if (dv == DEV_REC_EXCEPTION) {
3176                                 rv = REC_FATAL_ERROR;
3177                                 PRINTKC("exception in dequeue %d\n",
3178                                         index);
3179                                 break;
3180                         }
3181                         switch (dv) {
3182                         case DEV_ONLINE:
3183                                 rv = 0;
3184                                 break;
3185                         case DEV_EMPTY:
3186                                 rv = REC_EMPTY;
3187                                 break;
3188                         case DEV_NO_WORK:
3189                                 rv = REC_NO_WORK;
3190                                 break;
3191                         case DEV_BAD_MESSAGE:
3192                         case DEV_GONE:
3193                         default:
3194                                 rv = REC_NO_RESPONSE;
3195                                 break;
3196                         }
3197                         if ((rv != 0) && (rv != REC_NO_WORK))
3198                                 break;
3199                         if (rv == 0)
3200                                 break;
3201                 }
3202                 if (rv)
3203                         break;
3204                 rv = (devPtr->dev_resp_p[0] == 0x00) &&
3205                      (devPtr->dev_resp_p[1] == 0x86);
3206                 if (rv)
3207                         devPtr->dev_type = PCICC;
3208                 else
3209                         devPtr->dev_type = PCICA;
3210                 rv = 0;
3211         } while (0);
3212         /* In a general error case, the card is not marked online */
3213         return rv;
3214 }
3215
3216 static unsigned char MCL3_testmsg[] = {
3217 0x00,0x00,0x00,0x00,0xEE,0xEE,0xEE,0xEE,0xEE,0xEE,0xEE,0xEE,
3218 0x00,0x06,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3219 0x00,0x00,0x00,0x58,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3220 0x43,0x41,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3221 0x00,0x00,0x00,0x00,0x50,0x4B,0x00,0x00,0x00,0x00,0x01,0xC4,0x00,0x00,0x00,0x00,
3222 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x07,0x24,0x00,0x00,0x00,0x00,
3223 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xDC,0x02,0x00,0x00,0x00,0x54,0x32,
3224 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xE8,0x00,0x00,0x00,0x00,0x00,0x00,0x07,0x24,
3225 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3226 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3227 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3228 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3229 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3230 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3231 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3232 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3233 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3234 0x00,0x00,0x00,0x04,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3235 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3236 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3237 0x00,0x00,0x00,0x00,0x50,0x4B,0x00,0x0A,0x4D,0x52,0x50,0x20,0x20,0x20,0x20,0x20,
3238 0x00,0x42,0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0A,0x0B,0x0C,0x0D,
3239 0x0E,0x0F,0x00,0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,0x99,0xAA,0xBB,0xCC,0xDD,
3240 0xEE,0xFF,0xFF,0xEE,0xDD,0xCC,0xBB,0xAA,0x99,0x88,0x77,0x66,0x55,0x44,0x33,0x22,
3241 0x11,0x00,0x01,0x23,0x45,0x67,0x89,0xAB,0xCD,0xEF,0xFE,0xDC,0xBA,0x98,0x76,0x54,
3242 0x32,0x10,0x00,0x9A,0x00,0x98,0x00,0x00,0x1E,0x00,0x00,0x94,0x00,0x00,0x00,0x00,
3243 0x04,0x00,0x00,0x8C,0x00,0x00,0x00,0x40,0x02,0x00,0x00,0x40,0xBA,0xE8,0x23,0x3C,
3244 0x75,0xF3,0x91,0x61,0xD6,0x73,0x39,0xCF,0x7B,0x6D,0x8E,0x61,0x97,0x63,0x9E,0xD9,
3245 0x60,0x55,0xD6,0xC7,0xEF,0xF8,0x1E,0x63,0x95,0x17,0xCC,0x28,0x45,0x60,0x11,0xC5,
3246 0xC4,0x4E,0x66,0xC6,0xE6,0xC3,0xDE,0x8A,0x19,0x30,0xCF,0x0E,0xD7,0xAA,0xDB,0x01,
3247 0xD8,0x00,0xBB,0x8F,0x39,0x9F,0x64,0x28,0xF5,0x7A,0x77,0x49,0xCC,0x6B,0xA3,0x91,
3248 0x97,0x70,0xE7,0x60,0x1E,0x39,0xE1,0xE5,0x33,0xE1,0x15,0x63,0x69,0x08,0x80,0x4C,
3249 0x67,0xC4,0x41,0x8F,0x48,0xDF,0x26,0x98,0xF1,0xD5,0x8D,0x88,0xD9,0x6A,0xA4,0x96,
3250 0xC5,0x84,0xD9,0x30,0x49,0x67,0x7D,0x19,0xB1,0xB3,0x45,0x4D,0xB2,0x53,0x9A,0x47,
3251 0x3C,0x7C,0x55,0xBF,0xCC,0x85,0x00,0x36,0xF1,0x3D,0x93,0x53
3252 };
3253
3254 static int
3255 probe_PCIXCC_type(struct device *devPtr)
3256 {
3257         int rv, dv, i, index, length;
3258         unsigned char psmid[8];
3259         static unsigned char loc_testmsg[548];
3260         struct CPRBX *cprbx_p;
3261
3262         index = devPtr->dev_self_x;
3263         rv = 0;
3264         do {
3265                 memcpy(loc_testmsg, MCL3_testmsg, sizeof(MCL3_testmsg));
3266                 length = sizeof(MCL3_testmsg) - 0x0C;
3267                 dv = send_to_AP(index, z90crypt.cdx, length, loc_testmsg);
3268                 if (dv) {
3269                         PDEBUG("dv returned = %d\n", dv);
3270                         if (dv == DEV_SEN_EXCEPTION) {
3271                                 rv = SEN_FATAL_ERROR;
3272                                 PRINTKC("exception in send to AP %d\n", index);
3273                                 break;
3274                         }
3275                         PDEBUG("return value from send_to_AP: %d\n", rv);
3276                         switch (dv) {
3277                         case DEV_GONE:
3278                                 PDEBUG("dev %d not available\n", index);
3279                                 rv = SEN_NOT_AVAIL;
3280                                 break;
3281                         case DEV_ONLINE:
3282                                 rv = 0;
3283                                 break;
3284                         case DEV_EMPTY:
3285                                 rv = SEN_NOT_AVAIL;
3286                                 break;
3287                         case DEV_NO_WORK:
3288                                 rv = SEN_FATAL_ERROR;
3289                                 break;
3290                         case DEV_BAD_MESSAGE:
3291                                 rv = SEN_USER_ERROR;
3292                                 break;
3293                         case DEV_QUEUE_FULL:
3294                                 rv = SEN_QUEUE_FULL;
3295                                 break;
3296                         default:
3297                                 PRINTK("unknown dv=%d for dev %d\n", dv, index);
3298                                 rv = SEN_NOT_AVAIL;
3299                                 break;
3300                         }
3301                 }
3302
3303                 if (rv)
3304                         break;
3305
3306                 for (i = 0; i < 6; i++) {
3307                         mdelay(300);
3308                         dv = receive_from_AP(index, z90crypt.cdx,
3309                                              devPtr->dev_resp_l,
3310                                              devPtr->dev_resp_p, psmid);
3311                         PDEBUG("dv returned by DQ = %d\n", dv);
3312                         if (dv == DEV_REC_EXCEPTION) {
3313                                 rv = REC_FATAL_ERROR;
3314                                 PRINTKC("exception in dequeue %d\n",
3315                                         index);
3316                                 break;
3317                         }
3318                         switch (dv) {
3319                         case DEV_ONLINE:
3320                                 rv = 0;
3321                                 break;
3322                         case DEV_EMPTY:
3323                                 rv = REC_EMPTY;
3324                                 break;
3325                         case DEV_NO_WORK:
3326                                 rv = REC_NO_WORK;
3327                                 break;
3328                         case DEV_BAD_MESSAGE:
3329                         case DEV_GONE:
3330                         default:
3331                                 rv = REC_NO_RESPONSE;
3332                                 break;
3333                         }
3334                         if ((rv != 0) && (rv != REC_NO_WORK))
3335                                 break;
3336                         if (rv == 0)
3337                                 break;
3338                 }
3339                 if (rv)
3340                         break;
3341                 cprbx_p = (struct CPRBX *) (devPtr->dev_resp_p + 48);
3342                 if ((cprbx_p->ccp_rtcode == 8) && (cprbx_p->ccp_rscode == 33)) {
3343                         devPtr->dev_type = PCIXCC_MCL2;
3344                         PDEBUG("device %d is MCL2\n", index);
3345                 } else {
3346                         devPtr->dev_type = PCIXCC_MCL3;
3347                         PDEBUG("device %d is MCL3\n", index);
3348                 }
3349         } while (0);
3350         /* In a general error case, the card is not marked online */
3351         return rv;
3352 }
3353
3354 module_init(z90crypt_init_module);
3355 module_exit(z90crypt_cleanup_module);