Merge tag 'for-linus-20170713' of git://git.infradead.org/linux-mtd
[sfrench/cifs-2.6.git] / drivers / rtc / rtc-mxc.c
1 /*
2  * Copyright 2004-2008 Freescale Semiconductor, Inc. All Rights Reserved.
3  *
4  * The code contained herein is licensed under the GNU General Public
5  * License. You may obtain a copy of the GNU General Public License
6  * Version 2 or later at the following locations:
7  *
8  * http://www.opensource.org/licenses/gpl-license.html
9  * http://www.gnu.org/copyleft/gpl.html
10  */
11
12 #include <linux/io.h>
13 #include <linux/rtc.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/interrupt.h>
17 #include <linux/platform_device.h>
18 #include <linux/clk.h>
19 #include <linux/of.h>
20 #include <linux/of_device.h>
21
22 #define RTC_INPUT_CLK_32768HZ   (0x00 << 5)
23 #define RTC_INPUT_CLK_32000HZ   (0x01 << 5)
24 #define RTC_INPUT_CLK_38400HZ   (0x02 << 5)
25
26 #define RTC_SW_BIT      (1 << 0)
27 #define RTC_ALM_BIT     (1 << 2)
28 #define RTC_1HZ_BIT     (1 << 4)
29 #define RTC_2HZ_BIT     (1 << 7)
30 #define RTC_SAM0_BIT    (1 << 8)
31 #define RTC_SAM1_BIT    (1 << 9)
32 #define RTC_SAM2_BIT    (1 << 10)
33 #define RTC_SAM3_BIT    (1 << 11)
34 #define RTC_SAM4_BIT    (1 << 12)
35 #define RTC_SAM5_BIT    (1 << 13)
36 #define RTC_SAM6_BIT    (1 << 14)
37 #define RTC_SAM7_BIT    (1 << 15)
38 #define PIT_ALL_ON      (RTC_2HZ_BIT | RTC_SAM0_BIT | RTC_SAM1_BIT | \
39                          RTC_SAM2_BIT | RTC_SAM3_BIT | RTC_SAM4_BIT | \
40                          RTC_SAM5_BIT | RTC_SAM6_BIT | RTC_SAM7_BIT)
41
42 #define RTC_ENABLE_BIT  (1 << 7)
43
44 #define MAX_PIE_NUM     9
45 #define MAX_PIE_FREQ    512
46 static const u32 PIE_BIT_DEF[MAX_PIE_NUM][2] = {
47         { 2,            RTC_2HZ_BIT },
48         { 4,            RTC_SAM0_BIT },
49         { 8,            RTC_SAM1_BIT },
50         { 16,           RTC_SAM2_BIT },
51         { 32,           RTC_SAM3_BIT },
52         { 64,           RTC_SAM4_BIT },
53         { 128,          RTC_SAM5_BIT },
54         { 256,          RTC_SAM6_BIT },
55         { MAX_PIE_FREQ, RTC_SAM7_BIT },
56 };
57
58 #define MXC_RTC_TIME    0
59 #define MXC_RTC_ALARM   1
60
61 #define RTC_HOURMIN     0x00    /*  32bit rtc hour/min counter reg */
62 #define RTC_SECOND      0x04    /*  32bit rtc seconds counter reg */
63 #define RTC_ALRM_HM     0x08    /*  32bit rtc alarm hour/min reg */
64 #define RTC_ALRM_SEC    0x0C    /*  32bit rtc alarm seconds reg */
65 #define RTC_RTCCTL      0x10    /*  32bit rtc control reg */
66 #define RTC_RTCISR      0x14    /*  32bit rtc interrupt status reg */
67 #define RTC_RTCIENR     0x18    /*  32bit rtc interrupt enable reg */
68 #define RTC_STPWCH      0x1C    /*  32bit rtc stopwatch min reg */
69 #define RTC_DAYR        0x20    /*  32bit rtc days counter reg */
70 #define RTC_DAYALARM    0x24    /*  32bit rtc day alarm reg */
71 #define RTC_TEST1       0x28    /*  32bit rtc test reg 1 */
72 #define RTC_TEST2       0x2C    /*  32bit rtc test reg 2 */
73 #define RTC_TEST3       0x30    /*  32bit rtc test reg 3 */
74
75 enum imx_rtc_type {
76         IMX1_RTC,
77         IMX21_RTC,
78 };
79
80 struct rtc_plat_data {
81         struct rtc_device *rtc;
82         void __iomem *ioaddr;
83         int irq;
84         struct clk *clk_ref;
85         struct clk *clk_ipg;
86         struct rtc_time g_rtc_alarm;
87         enum imx_rtc_type devtype;
88 };
89
90 static const struct platform_device_id imx_rtc_devtype[] = {
91         {
92                 .name = "imx1-rtc",
93                 .driver_data = IMX1_RTC,
94         }, {
95                 .name = "imx21-rtc",
96                 .driver_data = IMX21_RTC,
97         }, {
98                 /* sentinel */
99         }
100 };
101 MODULE_DEVICE_TABLE(platform, imx_rtc_devtype);
102
103 #ifdef CONFIG_OF
104 static const struct of_device_id imx_rtc_dt_ids[] = {
105         { .compatible = "fsl,imx1-rtc", .data = (const void *)IMX1_RTC },
106         { .compatible = "fsl,imx21-rtc", .data = (const void *)IMX21_RTC },
107         {}
108 };
109 MODULE_DEVICE_TABLE(of, imx_rtc_dt_ids);
110 #endif
111
112 static inline int is_imx1_rtc(struct rtc_plat_data *data)
113 {
114         return data->devtype == IMX1_RTC;
115 }
116
117 /*
118  * This function is used to obtain the RTC time or the alarm value in
119  * second.
120  */
121 static time64_t get_alarm_or_time(struct device *dev, int time_alarm)
122 {
123         struct platform_device *pdev = to_platform_device(dev);
124         struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
125         void __iomem *ioaddr = pdata->ioaddr;
126         u32 day = 0, hr = 0, min = 0, sec = 0, hr_min = 0;
127
128         switch (time_alarm) {
129         case MXC_RTC_TIME:
130                 day = readw(ioaddr + RTC_DAYR);
131                 hr_min = readw(ioaddr + RTC_HOURMIN);
132                 sec = readw(ioaddr + RTC_SECOND);
133                 break;
134         case MXC_RTC_ALARM:
135                 day = readw(ioaddr + RTC_DAYALARM);
136                 hr_min = readw(ioaddr + RTC_ALRM_HM) & 0xffff;
137                 sec = readw(ioaddr + RTC_ALRM_SEC);
138                 break;
139         }
140
141         hr = hr_min >> 8;
142         min = hr_min & 0xff;
143
144         return ((((time64_t)day * 24 + hr) * 60) + min) * 60 + sec;
145 }
146
147 /*
148  * This function sets the RTC alarm value or the time value.
149  */
150 static void set_alarm_or_time(struct device *dev, int time_alarm, time64_t time)
151 {
152         u32 tod, day, hr, min, sec, temp;
153         struct platform_device *pdev = to_platform_device(dev);
154         struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
155         void __iomem *ioaddr = pdata->ioaddr;
156
157         day = div_s64_rem(time, 86400, &tod);
158
159         /* time is within a day now */
160         hr = tod / 3600;
161         tod -= hr * 3600;
162
163         /* time is within an hour now */
164         min = tod / 60;
165         sec = tod - min * 60;
166
167         temp = (hr << 8) + min;
168
169         switch (time_alarm) {
170         case MXC_RTC_TIME:
171                 writew(day, ioaddr + RTC_DAYR);
172                 writew(sec, ioaddr + RTC_SECOND);
173                 writew(temp, ioaddr + RTC_HOURMIN);
174                 break;
175         case MXC_RTC_ALARM:
176                 writew(day, ioaddr + RTC_DAYALARM);
177                 writew(sec, ioaddr + RTC_ALRM_SEC);
178                 writew(temp, ioaddr + RTC_ALRM_HM);
179                 break;
180         }
181 }
182
183 /*
184  * This function updates the RTC alarm registers and then clears all the
185  * interrupt status bits.
186  */
187 static void rtc_update_alarm(struct device *dev, struct rtc_time *alrm)
188 {
189         time64_t time;
190         struct platform_device *pdev = to_platform_device(dev);
191         struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
192         void __iomem *ioaddr = pdata->ioaddr;
193
194         time = rtc_tm_to_time64(alrm);
195
196         /* clear all the interrupt status bits */
197         writew(readw(ioaddr + RTC_RTCISR), ioaddr + RTC_RTCISR);
198         set_alarm_or_time(dev, MXC_RTC_ALARM, time);
199 }
200
201 static void mxc_rtc_irq_enable(struct device *dev, unsigned int bit,
202                                 unsigned int enabled)
203 {
204         struct platform_device *pdev = to_platform_device(dev);
205         struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
206         void __iomem *ioaddr = pdata->ioaddr;
207         u32 reg;
208
209         spin_lock_irq(&pdata->rtc->irq_lock);
210         reg = readw(ioaddr + RTC_RTCIENR);
211
212         if (enabled)
213                 reg |= bit;
214         else
215                 reg &= ~bit;
216
217         writew(reg, ioaddr + RTC_RTCIENR);
218         spin_unlock_irq(&pdata->rtc->irq_lock);
219 }
220
221 /* This function is the RTC interrupt service routine. */
222 static irqreturn_t mxc_rtc_interrupt(int irq, void *dev_id)
223 {
224         struct platform_device *pdev = dev_id;
225         struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
226         void __iomem *ioaddr = pdata->ioaddr;
227         unsigned long flags;
228         u32 status;
229         u32 events = 0;
230
231         spin_lock_irqsave(&pdata->rtc->irq_lock, flags);
232         status = readw(ioaddr + RTC_RTCISR) & readw(ioaddr + RTC_RTCIENR);
233         /* clear interrupt sources */
234         writew(status, ioaddr + RTC_RTCISR);
235
236         /* update irq data & counter */
237         if (status & RTC_ALM_BIT) {
238                 events |= (RTC_AF | RTC_IRQF);
239                 /* RTC alarm should be one-shot */
240                 mxc_rtc_irq_enable(&pdev->dev, RTC_ALM_BIT, 0);
241         }
242
243         if (status & PIT_ALL_ON)
244                 events |= (RTC_PF | RTC_IRQF);
245
246         rtc_update_irq(pdata->rtc, 1, events);
247         spin_unlock_irqrestore(&pdata->rtc->irq_lock, flags);
248
249         return IRQ_HANDLED;
250 }
251
252 /*
253  * Clear all interrupts and release the IRQ
254  */
255 static void mxc_rtc_release(struct device *dev)
256 {
257         struct platform_device *pdev = to_platform_device(dev);
258         struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
259         void __iomem *ioaddr = pdata->ioaddr;
260
261         spin_lock_irq(&pdata->rtc->irq_lock);
262
263         /* Disable all rtc interrupts */
264         writew(0, ioaddr + RTC_RTCIENR);
265
266         /* Clear all interrupt status */
267         writew(0xffffffff, ioaddr + RTC_RTCISR);
268
269         spin_unlock_irq(&pdata->rtc->irq_lock);
270 }
271
272 static int mxc_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
273 {
274         mxc_rtc_irq_enable(dev, RTC_ALM_BIT, enabled);
275         return 0;
276 }
277
278 /*
279  * This function reads the current RTC time into tm in Gregorian date.
280  */
281 static int mxc_rtc_read_time(struct device *dev, struct rtc_time *tm)
282 {
283         time64_t val;
284
285         /* Avoid roll-over from reading the different registers */
286         do {
287                 val = get_alarm_or_time(dev, MXC_RTC_TIME);
288         } while (val != get_alarm_or_time(dev, MXC_RTC_TIME));
289
290         rtc_time64_to_tm(val, tm);
291
292         return 0;
293 }
294
295 /*
296  * This function sets the internal RTC time based on tm in Gregorian date.
297  */
298 static int mxc_rtc_set_mmss(struct device *dev, time64_t time)
299 {
300         struct platform_device *pdev = to_platform_device(dev);
301         struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
302
303         /*
304          * TTC_DAYR register is 9-bit in MX1 SoC, save time and day of year only
305          */
306         if (is_imx1_rtc(pdata)) {
307                 struct rtc_time tm;
308
309                 rtc_time64_to_tm(time, &tm);
310                 tm.tm_year = 70;
311                 time = rtc_tm_to_time64(&tm);
312         }
313
314         /* Avoid roll-over from reading the different registers */
315         do {
316                 set_alarm_or_time(dev, MXC_RTC_TIME, time);
317         } while (time != get_alarm_or_time(dev, MXC_RTC_TIME));
318
319         return 0;
320 }
321
322 /*
323  * This function reads the current alarm value into the passed in 'alrm'
324  * argument. It updates the alrm's pending field value based on the whether
325  * an alarm interrupt occurs or not.
326  */
327 static int mxc_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
328 {
329         struct platform_device *pdev = to_platform_device(dev);
330         struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
331         void __iomem *ioaddr = pdata->ioaddr;
332
333         rtc_time64_to_tm(get_alarm_or_time(dev, MXC_RTC_ALARM), &alrm->time);
334         alrm->pending = ((readw(ioaddr + RTC_RTCISR) & RTC_ALM_BIT)) ? 1 : 0;
335
336         return 0;
337 }
338
339 /*
340  * This function sets the RTC alarm based on passed in alrm.
341  */
342 static int mxc_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
343 {
344         struct platform_device *pdev = to_platform_device(dev);
345         struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
346
347         rtc_update_alarm(dev, &alrm->time);
348
349         memcpy(&pdata->g_rtc_alarm, &alrm->time, sizeof(struct rtc_time));
350         mxc_rtc_irq_enable(dev, RTC_ALM_BIT, alrm->enabled);
351
352         return 0;
353 }
354
355 /* RTC layer */
356 static const struct rtc_class_ops mxc_rtc_ops = {
357         .release                = mxc_rtc_release,
358         .read_time              = mxc_rtc_read_time,
359         .set_mmss64             = mxc_rtc_set_mmss,
360         .read_alarm             = mxc_rtc_read_alarm,
361         .set_alarm              = mxc_rtc_set_alarm,
362         .alarm_irq_enable       = mxc_rtc_alarm_irq_enable,
363 };
364
365 static int mxc_rtc_probe(struct platform_device *pdev)
366 {
367         struct resource *res;
368         struct rtc_device *rtc;
369         struct rtc_plat_data *pdata = NULL;
370         u32 reg;
371         unsigned long rate;
372         int ret;
373         const struct of_device_id *of_id;
374
375         pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
376         if (!pdata)
377                 return -ENOMEM;
378
379         of_id = of_match_device(imx_rtc_dt_ids, &pdev->dev);
380         if (of_id)
381                 pdata->devtype = (enum imx_rtc_type)of_id->data;
382         else
383                 pdata->devtype = pdev->id_entry->driver_data;
384
385         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
386         pdata->ioaddr = devm_ioremap_resource(&pdev->dev, res);
387         if (IS_ERR(pdata->ioaddr))
388                 return PTR_ERR(pdata->ioaddr);
389
390         pdata->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
391         if (IS_ERR(pdata->clk_ipg)) {
392                 dev_err(&pdev->dev, "unable to get ipg clock!\n");
393                 return PTR_ERR(pdata->clk_ipg);
394         }
395
396         ret = clk_prepare_enable(pdata->clk_ipg);
397         if (ret)
398                 return ret;
399
400         pdata->clk_ref = devm_clk_get(&pdev->dev, "ref");
401         if (IS_ERR(pdata->clk_ref)) {
402                 dev_err(&pdev->dev, "unable to get ref clock!\n");
403                 ret = PTR_ERR(pdata->clk_ref);
404                 goto exit_put_clk_ipg;
405         }
406
407         ret = clk_prepare_enable(pdata->clk_ref);
408         if (ret)
409                 goto exit_put_clk_ipg;
410
411         rate = clk_get_rate(pdata->clk_ref);
412
413         if (rate == 32768)
414                 reg = RTC_INPUT_CLK_32768HZ;
415         else if (rate == 32000)
416                 reg = RTC_INPUT_CLK_32000HZ;
417         else if (rate == 38400)
418                 reg = RTC_INPUT_CLK_38400HZ;
419         else {
420                 dev_err(&pdev->dev, "rtc clock is not valid (%lu)\n", rate);
421                 ret = -EINVAL;
422                 goto exit_put_clk_ref;
423         }
424
425         reg |= RTC_ENABLE_BIT;
426         writew(reg, (pdata->ioaddr + RTC_RTCCTL));
427         if (((readw(pdata->ioaddr + RTC_RTCCTL)) & RTC_ENABLE_BIT) == 0) {
428                 dev_err(&pdev->dev, "hardware module can't be enabled!\n");
429                 ret = -EIO;
430                 goto exit_put_clk_ref;
431         }
432
433         platform_set_drvdata(pdev, pdata);
434
435         /* Configure and enable the RTC */
436         pdata->irq = platform_get_irq(pdev, 0);
437
438         if (pdata->irq >= 0 &&
439             devm_request_irq(&pdev->dev, pdata->irq, mxc_rtc_interrupt,
440                              IRQF_SHARED, pdev->name, pdev) < 0) {
441                 dev_warn(&pdev->dev, "interrupt not available.\n");
442                 pdata->irq = -1;
443         }
444
445         if (pdata->irq >= 0)
446                 device_init_wakeup(&pdev->dev, 1);
447
448         rtc = devm_rtc_device_register(&pdev->dev, pdev->name, &mxc_rtc_ops,
449                                   THIS_MODULE);
450         if (IS_ERR(rtc)) {
451                 ret = PTR_ERR(rtc);
452                 goto exit_put_clk_ref;
453         }
454
455         pdata->rtc = rtc;
456
457         return 0;
458
459 exit_put_clk_ref:
460         clk_disable_unprepare(pdata->clk_ref);
461 exit_put_clk_ipg:
462         clk_disable_unprepare(pdata->clk_ipg);
463
464         return ret;
465 }
466
467 static int mxc_rtc_remove(struct platform_device *pdev)
468 {
469         struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
470
471         clk_disable_unprepare(pdata->clk_ref);
472         clk_disable_unprepare(pdata->clk_ipg);
473
474         return 0;
475 }
476
477 #ifdef CONFIG_PM_SLEEP
478 static int mxc_rtc_suspend(struct device *dev)
479 {
480         struct rtc_plat_data *pdata = dev_get_drvdata(dev);
481
482         if (device_may_wakeup(dev))
483                 enable_irq_wake(pdata->irq);
484
485         return 0;
486 }
487
488 static int mxc_rtc_resume(struct device *dev)
489 {
490         struct rtc_plat_data *pdata = dev_get_drvdata(dev);
491
492         if (device_may_wakeup(dev))
493                 disable_irq_wake(pdata->irq);
494
495         return 0;
496 }
497 #endif
498
499 static SIMPLE_DEV_PM_OPS(mxc_rtc_pm_ops, mxc_rtc_suspend, mxc_rtc_resume);
500
501 static struct platform_driver mxc_rtc_driver = {
502         .driver = {
503                    .name        = "mxc_rtc",
504                    .of_match_table = of_match_ptr(imx_rtc_dt_ids),
505                    .pm          = &mxc_rtc_pm_ops,
506         },
507         .id_table = imx_rtc_devtype,
508         .probe = mxc_rtc_probe,
509         .remove = mxc_rtc_remove,
510 };
511
512 module_platform_driver(mxc_rtc_driver)
513
514 MODULE_AUTHOR("Daniel Mack <daniel@caiaq.de>");
515 MODULE_DESCRIPTION("RTC driver for Freescale MXC");
516 MODULE_LICENSE("GPL");
517