Merge tag 'rproc-v5.3' of git://github.com/andersson/remoteproc
[sfrench/cifs-2.6.git] / drivers / remoteproc / remoteproc_core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Remote Processor Framework
4  *
5  * Copyright (C) 2011 Texas Instruments, Inc.
6  * Copyright (C) 2011 Google, Inc.
7  *
8  * Ohad Ben-Cohen <ohad@wizery.com>
9  * Brian Swetland <swetland@google.com>
10  * Mark Grosen <mgrosen@ti.com>
11  * Fernando Guzman Lugo <fernando.lugo@ti.com>
12  * Suman Anna <s-anna@ti.com>
13  * Robert Tivy <rtivy@ti.com>
14  * Armando Uribe De Leon <x0095078@ti.com>
15  */
16
17 #define pr_fmt(fmt)    "%s: " fmt, __func__
18
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/device.h>
22 #include <linux/slab.h>
23 #include <linux/mutex.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/firmware.h>
26 #include <linux/string.h>
27 #include <linux/debugfs.h>
28 #include <linux/devcoredump.h>
29 #include <linux/remoteproc.h>
30 #include <linux/iommu.h>
31 #include <linux/idr.h>
32 #include <linux/elf.h>
33 #include <linux/crc32.h>
34 #include <linux/of_reserved_mem.h>
35 #include <linux/virtio_ids.h>
36 #include <linux/virtio_ring.h>
37 #include <asm/byteorder.h>
38 #include <linux/platform_device.h>
39
40 #include "remoteproc_internal.h"
41
42 #define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL
43
44 static DEFINE_MUTEX(rproc_list_mutex);
45 static LIST_HEAD(rproc_list);
46
47 typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
48                                 struct resource_table *table, int len);
49 typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
50                                  void *, int offset, int avail);
51
52 static int rproc_alloc_carveout(struct rproc *rproc,
53                                 struct rproc_mem_entry *mem);
54 static int rproc_release_carveout(struct rproc *rproc,
55                                   struct rproc_mem_entry *mem);
56
57 /* Unique indices for remoteproc devices */
58 static DEFINE_IDA(rproc_dev_index);
59
60 static const char * const rproc_crash_names[] = {
61         [RPROC_MMUFAULT]        = "mmufault",
62         [RPROC_WATCHDOG]        = "watchdog",
63         [RPROC_FATAL_ERROR]     = "fatal error",
64 };
65
66 /* translate rproc_crash_type to string */
67 static const char *rproc_crash_to_string(enum rproc_crash_type type)
68 {
69         if (type < ARRAY_SIZE(rproc_crash_names))
70                 return rproc_crash_names[type];
71         return "unknown";
72 }
73
74 /*
75  * This is the IOMMU fault handler we register with the IOMMU API
76  * (when relevant; not all remote processors access memory through
77  * an IOMMU).
78  *
79  * IOMMU core will invoke this handler whenever the remote processor
80  * will try to access an unmapped device address.
81  */
82 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
83                              unsigned long iova, int flags, void *token)
84 {
85         struct rproc *rproc = token;
86
87         dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
88
89         rproc_report_crash(rproc, RPROC_MMUFAULT);
90
91         /*
92          * Let the iommu core know we're not really handling this fault;
93          * we just used it as a recovery trigger.
94          */
95         return -ENOSYS;
96 }
97
98 static int rproc_enable_iommu(struct rproc *rproc)
99 {
100         struct iommu_domain *domain;
101         struct device *dev = rproc->dev.parent;
102         int ret;
103
104         if (!rproc->has_iommu) {
105                 dev_dbg(dev, "iommu not present\n");
106                 return 0;
107         }
108
109         domain = iommu_domain_alloc(dev->bus);
110         if (!domain) {
111                 dev_err(dev, "can't alloc iommu domain\n");
112                 return -ENOMEM;
113         }
114
115         iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
116
117         ret = iommu_attach_device(domain, dev);
118         if (ret) {
119                 dev_err(dev, "can't attach iommu device: %d\n", ret);
120                 goto free_domain;
121         }
122
123         rproc->domain = domain;
124
125         return 0;
126
127 free_domain:
128         iommu_domain_free(domain);
129         return ret;
130 }
131
132 static void rproc_disable_iommu(struct rproc *rproc)
133 {
134         struct iommu_domain *domain = rproc->domain;
135         struct device *dev = rproc->dev.parent;
136
137         if (!domain)
138                 return;
139
140         iommu_detach_device(domain, dev);
141         iommu_domain_free(domain);
142 }
143
144 phys_addr_t rproc_va_to_pa(void *cpu_addr)
145 {
146         /*
147          * Return physical address according to virtual address location
148          * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent
149          * - in kernel: if region allocated in generic dma memory pool
150          */
151         if (is_vmalloc_addr(cpu_addr)) {
152                 return page_to_phys(vmalloc_to_page(cpu_addr)) +
153                                     offset_in_page(cpu_addr);
154         }
155
156         WARN_ON(!virt_addr_valid(cpu_addr));
157         return virt_to_phys(cpu_addr);
158 }
159 EXPORT_SYMBOL(rproc_va_to_pa);
160
161 /**
162  * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
163  * @rproc: handle of a remote processor
164  * @da: remoteproc device address to translate
165  * @len: length of the memory region @da is pointing to
166  *
167  * Some remote processors will ask us to allocate them physically contiguous
168  * memory regions (which we call "carveouts"), and map them to specific
169  * device addresses (which are hardcoded in the firmware). They may also have
170  * dedicated memory regions internal to the processors, and use them either
171  * exclusively or alongside carveouts.
172  *
173  * They may then ask us to copy objects into specific device addresses (e.g.
174  * code/data sections) or expose us certain symbols in other device address
175  * (e.g. their trace buffer).
176  *
177  * This function is a helper function with which we can go over the allocated
178  * carveouts and translate specific device addresses to kernel virtual addresses
179  * so we can access the referenced memory. This function also allows to perform
180  * translations on the internal remoteproc memory regions through a platform
181  * implementation specific da_to_va ops, if present.
182  *
183  * The function returns a valid kernel address on success or NULL on failure.
184  *
185  * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
186  * but only on kernel direct mapped RAM memory. Instead, we're just using
187  * here the output of the DMA API for the carveouts, which should be more
188  * correct.
189  */
190 void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
191 {
192         struct rproc_mem_entry *carveout;
193         void *ptr = NULL;
194
195         if (rproc->ops->da_to_va) {
196                 ptr = rproc->ops->da_to_va(rproc, da, len);
197                 if (ptr)
198                         goto out;
199         }
200
201         list_for_each_entry(carveout, &rproc->carveouts, node) {
202                 int offset = da - carveout->da;
203
204                 /*  Verify that carveout is allocated */
205                 if (!carveout->va)
206                         continue;
207
208                 /* try next carveout if da is too small */
209                 if (offset < 0)
210                         continue;
211
212                 /* try next carveout if da is too large */
213                 if (offset + len > carveout->len)
214                         continue;
215
216                 ptr = carveout->va + offset;
217
218                 break;
219         }
220
221 out:
222         return ptr;
223 }
224 EXPORT_SYMBOL(rproc_da_to_va);
225
226 /**
227  * rproc_find_carveout_by_name() - lookup the carveout region by a name
228  * @rproc: handle of a remote processor
229  * @name,..: carveout name to find (standard printf format)
230  *
231  * Platform driver has the capability to register some pre-allacoted carveout
232  * (physically contiguous memory regions) before rproc firmware loading and
233  * associated resource table analysis. These regions may be dedicated memory
234  * regions internal to the coprocessor or specified DDR region with specific
235  * attributes
236  *
237  * This function is a helper function with which we can go over the
238  * allocated carveouts and return associated region characteristics like
239  * coprocessor address, length or processor virtual address.
240  *
241  * Return: a valid pointer on carveout entry on success or NULL on failure.
242  */
243 struct rproc_mem_entry *
244 rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...)
245 {
246         va_list args;
247         char _name[32];
248         struct rproc_mem_entry *carveout, *mem = NULL;
249
250         if (!name)
251                 return NULL;
252
253         va_start(args, name);
254         vsnprintf(_name, sizeof(_name), name, args);
255         va_end(args);
256
257         list_for_each_entry(carveout, &rproc->carveouts, node) {
258                 /* Compare carveout and requested names */
259                 if (!strcmp(carveout->name, _name)) {
260                         mem = carveout;
261                         break;
262                 }
263         }
264
265         return mem;
266 }
267
268 /**
269  * rproc_check_carveout_da() - Check specified carveout da configuration
270  * @rproc: handle of a remote processor
271  * @mem: pointer on carveout to check
272  * @da: area device address
273  * @len: associated area size
274  *
275  * This function is a helper function to verify requested device area (couple
276  * da, len) is part of specified carveout.
277  * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is
278  * checked.
279  *
280  * Return: 0 if carveout matches request else error
281  */
282 static int rproc_check_carveout_da(struct rproc *rproc,
283                                    struct rproc_mem_entry *mem, u32 da, u32 len)
284 {
285         struct device *dev = &rproc->dev;
286         int delta;
287
288         /* Check requested resource length */
289         if (len > mem->len) {
290                 dev_err(dev, "Registered carveout doesn't fit len request\n");
291                 return -EINVAL;
292         }
293
294         if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) {
295                 /* Address doesn't match registered carveout configuration */
296                 return -EINVAL;
297         } else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) {
298                 delta = da - mem->da;
299
300                 /* Check requested resource belongs to registered carveout */
301                 if (delta < 0) {
302                         dev_err(dev,
303                                 "Registered carveout doesn't fit da request\n");
304                         return -EINVAL;
305                 }
306
307                 if (delta + len > mem->len) {
308                         dev_err(dev,
309                                 "Registered carveout doesn't fit len request\n");
310                         return -EINVAL;
311                 }
312         }
313
314         return 0;
315 }
316
317 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
318 {
319         struct rproc *rproc = rvdev->rproc;
320         struct device *dev = &rproc->dev;
321         struct rproc_vring *rvring = &rvdev->vring[i];
322         struct fw_rsc_vdev *rsc;
323         int ret, size, notifyid;
324         struct rproc_mem_entry *mem;
325
326         /* actual size of vring (in bytes) */
327         size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
328
329         rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
330
331         /* Search for pre-registered carveout */
332         mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index,
333                                           i);
334         if (mem) {
335                 if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size))
336                         return -ENOMEM;
337         } else {
338                 /* Register carveout in in list */
339                 mem = rproc_mem_entry_init(dev, 0, 0, size, rsc->vring[i].da,
340                                            rproc_alloc_carveout,
341                                            rproc_release_carveout,
342                                            "vdev%dvring%d",
343                                            rvdev->index, i);
344                 if (!mem) {
345                         dev_err(dev, "Can't allocate memory entry structure\n");
346                         return -ENOMEM;
347                 }
348
349                 rproc_add_carveout(rproc, mem);
350         }
351
352         /*
353          * Assign an rproc-wide unique index for this vring
354          * TODO: assign a notifyid for rvdev updates as well
355          * TODO: support predefined notifyids (via resource table)
356          */
357         ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
358         if (ret < 0) {
359                 dev_err(dev, "idr_alloc failed: %d\n", ret);
360                 return ret;
361         }
362         notifyid = ret;
363
364         /* Potentially bump max_notifyid */
365         if (notifyid > rproc->max_notifyid)
366                 rproc->max_notifyid = notifyid;
367
368         rvring->notifyid = notifyid;
369
370         /* Let the rproc know the notifyid of this vring.*/
371         rsc->vring[i].notifyid = notifyid;
372         return 0;
373 }
374
375 static int
376 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
377 {
378         struct rproc *rproc = rvdev->rproc;
379         struct device *dev = &rproc->dev;
380         struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
381         struct rproc_vring *rvring = &rvdev->vring[i];
382
383         dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
384                 i, vring->da, vring->num, vring->align);
385
386         /* verify queue size and vring alignment are sane */
387         if (!vring->num || !vring->align) {
388                 dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
389                         vring->num, vring->align);
390                 return -EINVAL;
391         }
392
393         rvring->len = vring->num;
394         rvring->align = vring->align;
395         rvring->rvdev = rvdev;
396
397         return 0;
398 }
399
400 void rproc_free_vring(struct rproc_vring *rvring)
401 {
402         struct rproc *rproc = rvring->rvdev->rproc;
403         int idx = rvring->rvdev->vring - rvring;
404         struct fw_rsc_vdev *rsc;
405
406         idr_remove(&rproc->notifyids, rvring->notifyid);
407
408         /* reset resource entry info */
409         rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
410         rsc->vring[idx].da = 0;
411         rsc->vring[idx].notifyid = -1;
412 }
413
414 static int rproc_vdev_do_start(struct rproc_subdev *subdev)
415 {
416         struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
417
418         return rproc_add_virtio_dev(rvdev, rvdev->id);
419 }
420
421 static void rproc_vdev_do_stop(struct rproc_subdev *subdev, bool crashed)
422 {
423         struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
424         int ret;
425
426         ret = device_for_each_child(&rvdev->dev, NULL, rproc_remove_virtio_dev);
427         if (ret)
428                 dev_warn(&rvdev->dev, "can't remove vdev child device: %d\n", ret);
429 }
430
431 /**
432  * rproc_rvdev_release() - release the existence of a rvdev
433  *
434  * @dev: the subdevice's dev
435  */
436 static void rproc_rvdev_release(struct device *dev)
437 {
438         struct rproc_vdev *rvdev = container_of(dev, struct rproc_vdev, dev);
439
440         of_reserved_mem_device_release(dev);
441
442         kfree(rvdev);
443 }
444
445 /**
446  * rproc_handle_vdev() - handle a vdev fw resource
447  * @rproc: the remote processor
448  * @rsc: the vring resource descriptor
449  * @avail: size of available data (for sanity checking the image)
450  *
451  * This resource entry requests the host to statically register a virtio
452  * device (vdev), and setup everything needed to support it. It contains
453  * everything needed to make it possible: the virtio device id, virtio
454  * device features, vrings information, virtio config space, etc...
455  *
456  * Before registering the vdev, the vrings are allocated from non-cacheable
457  * physically contiguous memory. Currently we only support two vrings per
458  * remote processor (temporary limitation). We might also want to consider
459  * doing the vring allocation only later when ->find_vqs() is invoked, and
460  * then release them upon ->del_vqs().
461  *
462  * Note: @da is currently not really handled correctly: we dynamically
463  * allocate it using the DMA API, ignoring requested hard coded addresses,
464  * and we don't take care of any required IOMMU programming. This is all
465  * going to be taken care of when the generic iommu-based DMA API will be
466  * merged. Meanwhile, statically-addressed iommu-based firmware images should
467  * use RSC_DEVMEM resource entries to map their required @da to the physical
468  * address of their base CMA region (ouch, hacky!).
469  *
470  * Returns 0 on success, or an appropriate error code otherwise
471  */
472 static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
473                              int offset, int avail)
474 {
475         struct device *dev = &rproc->dev;
476         struct rproc_vdev *rvdev;
477         int i, ret;
478         char name[16];
479
480         /* make sure resource isn't truncated */
481         if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
482                         + rsc->config_len > avail) {
483                 dev_err(dev, "vdev rsc is truncated\n");
484                 return -EINVAL;
485         }
486
487         /* make sure reserved bytes are zeroes */
488         if (rsc->reserved[0] || rsc->reserved[1]) {
489                 dev_err(dev, "vdev rsc has non zero reserved bytes\n");
490                 return -EINVAL;
491         }
492
493         dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
494                 rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
495
496         /* we currently support only two vrings per rvdev */
497         if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
498                 dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
499                 return -EINVAL;
500         }
501
502         rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL);
503         if (!rvdev)
504                 return -ENOMEM;
505
506         kref_init(&rvdev->refcount);
507
508         rvdev->id = rsc->id;
509         rvdev->rproc = rproc;
510         rvdev->index = rproc->nb_vdev++;
511
512         /* Initialise vdev subdevice */
513         snprintf(name, sizeof(name), "vdev%dbuffer", rvdev->index);
514         rvdev->dev.parent = rproc->dev.parent;
515         rvdev->dev.dma_pfn_offset = rproc->dev.parent->dma_pfn_offset;
516         rvdev->dev.release = rproc_rvdev_release;
517         dev_set_name(&rvdev->dev, "%s#%s", dev_name(rvdev->dev.parent), name);
518         dev_set_drvdata(&rvdev->dev, rvdev);
519
520         ret = device_register(&rvdev->dev);
521         if (ret) {
522                 put_device(&rvdev->dev);
523                 return ret;
524         }
525         /* Make device dma capable by inheriting from parent's capabilities */
526         set_dma_ops(&rvdev->dev, get_dma_ops(rproc->dev.parent));
527
528         ret = dma_coerce_mask_and_coherent(&rvdev->dev,
529                                            dma_get_mask(rproc->dev.parent));
530         if (ret) {
531                 dev_warn(dev,
532                          "Failed to set DMA mask %llx. Trying to continue... %x\n",
533                          dma_get_mask(rproc->dev.parent), ret);
534         }
535
536         /* parse the vrings */
537         for (i = 0; i < rsc->num_of_vrings; i++) {
538                 ret = rproc_parse_vring(rvdev, rsc, i);
539                 if (ret)
540                         goto free_rvdev;
541         }
542
543         /* remember the resource offset*/
544         rvdev->rsc_offset = offset;
545
546         /* allocate the vring resources */
547         for (i = 0; i < rsc->num_of_vrings; i++) {
548                 ret = rproc_alloc_vring(rvdev, i);
549                 if (ret)
550                         goto unwind_vring_allocations;
551         }
552
553         list_add_tail(&rvdev->node, &rproc->rvdevs);
554
555         rvdev->subdev.start = rproc_vdev_do_start;
556         rvdev->subdev.stop = rproc_vdev_do_stop;
557
558         rproc_add_subdev(rproc, &rvdev->subdev);
559
560         return 0;
561
562 unwind_vring_allocations:
563         for (i--; i >= 0; i--)
564                 rproc_free_vring(&rvdev->vring[i]);
565 free_rvdev:
566         device_unregister(&rvdev->dev);
567         return ret;
568 }
569
570 void rproc_vdev_release(struct kref *ref)
571 {
572         struct rproc_vdev *rvdev = container_of(ref, struct rproc_vdev, refcount);
573         struct rproc_vring *rvring;
574         struct rproc *rproc = rvdev->rproc;
575         int id;
576
577         for (id = 0; id < ARRAY_SIZE(rvdev->vring); id++) {
578                 rvring = &rvdev->vring[id];
579                 rproc_free_vring(rvring);
580         }
581
582         rproc_remove_subdev(rproc, &rvdev->subdev);
583         list_del(&rvdev->node);
584         device_unregister(&rvdev->dev);
585 }
586
587 /**
588  * rproc_handle_trace() - handle a shared trace buffer resource
589  * @rproc: the remote processor
590  * @rsc: the trace resource descriptor
591  * @avail: size of available data (for sanity checking the image)
592  *
593  * In case the remote processor dumps trace logs into memory,
594  * export it via debugfs.
595  *
596  * Currently, the 'da' member of @rsc should contain the device address
597  * where the remote processor is dumping the traces. Later we could also
598  * support dynamically allocating this address using the generic
599  * DMA API (but currently there isn't a use case for that).
600  *
601  * Returns 0 on success, or an appropriate error code otherwise
602  */
603 static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
604                               int offset, int avail)
605 {
606         struct rproc_debug_trace *trace;
607         struct device *dev = &rproc->dev;
608         char name[15];
609
610         if (sizeof(*rsc) > avail) {
611                 dev_err(dev, "trace rsc is truncated\n");
612                 return -EINVAL;
613         }
614
615         /* make sure reserved bytes are zeroes */
616         if (rsc->reserved) {
617                 dev_err(dev, "trace rsc has non zero reserved bytes\n");
618                 return -EINVAL;
619         }
620
621         trace = kzalloc(sizeof(*trace), GFP_KERNEL);
622         if (!trace)
623                 return -ENOMEM;
624
625         /* set the trace buffer dma properties */
626         trace->trace_mem.len = rsc->len;
627         trace->trace_mem.da = rsc->da;
628
629         /* set pointer on rproc device */
630         trace->rproc = rproc;
631
632         /* make sure snprintf always null terminates, even if truncating */
633         snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
634
635         /* create the debugfs entry */
636         trace->tfile = rproc_create_trace_file(name, rproc, trace);
637         if (!trace->tfile) {
638                 kfree(trace);
639                 return -EINVAL;
640         }
641
642         list_add_tail(&trace->node, &rproc->traces);
643
644         rproc->num_traces++;
645
646         dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n",
647                 name, rsc->da, rsc->len);
648
649         return 0;
650 }
651
652 /**
653  * rproc_handle_devmem() - handle devmem resource entry
654  * @rproc: remote processor handle
655  * @rsc: the devmem resource entry
656  * @avail: size of available data (for sanity checking the image)
657  *
658  * Remote processors commonly need to access certain on-chip peripherals.
659  *
660  * Some of these remote processors access memory via an iommu device,
661  * and might require us to configure their iommu before they can access
662  * the on-chip peripherals they need.
663  *
664  * This resource entry is a request to map such a peripheral device.
665  *
666  * These devmem entries will contain the physical address of the device in
667  * the 'pa' member. If a specific device address is expected, then 'da' will
668  * contain it (currently this is the only use case supported). 'len' will
669  * contain the size of the physical region we need to map.
670  *
671  * Currently we just "trust" those devmem entries to contain valid physical
672  * addresses, but this is going to change: we want the implementations to
673  * tell us ranges of physical addresses the firmware is allowed to request,
674  * and not allow firmwares to request access to physical addresses that
675  * are outside those ranges.
676  */
677 static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
678                                int offset, int avail)
679 {
680         struct rproc_mem_entry *mapping;
681         struct device *dev = &rproc->dev;
682         int ret;
683
684         /* no point in handling this resource without a valid iommu domain */
685         if (!rproc->domain)
686                 return -EINVAL;
687
688         if (sizeof(*rsc) > avail) {
689                 dev_err(dev, "devmem rsc is truncated\n");
690                 return -EINVAL;
691         }
692
693         /* make sure reserved bytes are zeroes */
694         if (rsc->reserved) {
695                 dev_err(dev, "devmem rsc has non zero reserved bytes\n");
696                 return -EINVAL;
697         }
698
699         mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
700         if (!mapping)
701                 return -ENOMEM;
702
703         ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
704         if (ret) {
705                 dev_err(dev, "failed to map devmem: %d\n", ret);
706                 goto out;
707         }
708
709         /*
710          * We'll need this info later when we'll want to unmap everything
711          * (e.g. on shutdown).
712          *
713          * We can't trust the remote processor not to change the resource
714          * table, so we must maintain this info independently.
715          */
716         mapping->da = rsc->da;
717         mapping->len = rsc->len;
718         list_add_tail(&mapping->node, &rproc->mappings);
719
720         dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
721                 rsc->pa, rsc->da, rsc->len);
722
723         return 0;
724
725 out:
726         kfree(mapping);
727         return ret;
728 }
729
730 /**
731  * rproc_alloc_carveout() - allocated specified carveout
732  * @rproc: rproc handle
733  * @mem: the memory entry to allocate
734  *
735  * This function allocate specified memory entry @mem using
736  * dma_alloc_coherent() as default allocator
737  */
738 static int rproc_alloc_carveout(struct rproc *rproc,
739                                 struct rproc_mem_entry *mem)
740 {
741         struct rproc_mem_entry *mapping = NULL;
742         struct device *dev = &rproc->dev;
743         dma_addr_t dma;
744         void *va;
745         int ret;
746
747         va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL);
748         if (!va) {
749                 dev_err(dev->parent,
750                         "failed to allocate dma memory: len 0x%x\n", mem->len);
751                 return -ENOMEM;
752         }
753
754         dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%x\n",
755                 va, &dma, mem->len);
756
757         if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) {
758                 /*
759                  * Check requested da is equal to dma address
760                  * and print a warn message in case of missalignment.
761                  * Don't stop rproc_start sequence as coprocessor may
762                  * build pa to da translation on its side.
763                  */
764                 if (mem->da != (u32)dma)
765                         dev_warn(dev->parent,
766                                  "Allocated carveout doesn't fit device address request\n");
767         }
768
769         /*
770          * Ok, this is non-standard.
771          *
772          * Sometimes we can't rely on the generic iommu-based DMA API
773          * to dynamically allocate the device address and then set the IOMMU
774          * tables accordingly, because some remote processors might
775          * _require_ us to use hard coded device addresses that their
776          * firmware was compiled with.
777          *
778          * In this case, we must use the IOMMU API directly and map
779          * the memory to the device address as expected by the remote
780          * processor.
781          *
782          * Obviously such remote processor devices should not be configured
783          * to use the iommu-based DMA API: we expect 'dma' to contain the
784          * physical address in this case.
785          */
786         if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) {
787                 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
788                 if (!mapping) {
789                         ret = -ENOMEM;
790                         goto dma_free;
791                 }
792
793                 ret = iommu_map(rproc->domain, mem->da, dma, mem->len,
794                                 mem->flags);
795                 if (ret) {
796                         dev_err(dev, "iommu_map failed: %d\n", ret);
797                         goto free_mapping;
798                 }
799
800                 /*
801                  * We'll need this info later when we'll want to unmap
802                  * everything (e.g. on shutdown).
803                  *
804                  * We can't trust the remote processor not to change the
805                  * resource table, so we must maintain this info independently.
806                  */
807                 mapping->da = mem->da;
808                 mapping->len = mem->len;
809                 list_add_tail(&mapping->node, &rproc->mappings);
810
811                 dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
812                         mem->da, &dma);
813         }
814
815         if (mem->da == FW_RSC_ADDR_ANY) {
816                 /* Update device address as undefined by requester */
817                 if ((u64)dma & HIGH_BITS_MASK)
818                         dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n");
819
820                 mem->da = (u32)dma;
821         }
822
823         mem->dma = dma;
824         mem->va = va;
825
826         return 0;
827
828 free_mapping:
829         kfree(mapping);
830 dma_free:
831         dma_free_coherent(dev->parent, mem->len, va, dma);
832         return ret;
833 }
834
835 /**
836  * rproc_release_carveout() - release acquired carveout
837  * @rproc: rproc handle
838  * @mem: the memory entry to release
839  *
840  * This function releases specified memory entry @mem allocated via
841  * rproc_alloc_carveout() function by @rproc.
842  */
843 static int rproc_release_carveout(struct rproc *rproc,
844                                   struct rproc_mem_entry *mem)
845 {
846         struct device *dev = &rproc->dev;
847
848         /* clean up carveout allocations */
849         dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma);
850         return 0;
851 }
852
853 /**
854  * rproc_handle_carveout() - handle phys contig memory allocation requests
855  * @rproc: rproc handle
856  * @rsc: the resource entry
857  * @avail: size of available data (for image validation)
858  *
859  * This function will handle firmware requests for allocation of physically
860  * contiguous memory regions.
861  *
862  * These request entries should come first in the firmware's resource table,
863  * as other firmware entries might request placing other data objects inside
864  * these memory regions (e.g. data/code segments, trace resource entries, ...).
865  *
866  * Allocating memory this way helps utilizing the reserved physical memory
867  * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
868  * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
869  * pressure is important; it may have a substantial impact on performance.
870  */
871 static int rproc_handle_carveout(struct rproc *rproc,
872                                  struct fw_rsc_carveout *rsc,
873                                  int offset, int avail)
874 {
875         struct rproc_mem_entry *carveout;
876         struct device *dev = &rproc->dev;
877
878         if (sizeof(*rsc) > avail) {
879                 dev_err(dev, "carveout rsc is truncated\n");
880                 return -EINVAL;
881         }
882
883         /* make sure reserved bytes are zeroes */
884         if (rsc->reserved) {
885                 dev_err(dev, "carveout rsc has non zero reserved bytes\n");
886                 return -EINVAL;
887         }
888
889         dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
890                 rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
891
892         /*
893          * Check carveout rsc already part of a registered carveout,
894          * Search by name, then check the da and length
895          */
896         carveout = rproc_find_carveout_by_name(rproc, rsc->name);
897
898         if (carveout) {
899                 if (carveout->rsc_offset != FW_RSC_ADDR_ANY) {
900                         dev_err(dev,
901                                 "Carveout already associated to resource table\n");
902                         return -ENOMEM;
903                 }
904
905                 if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len))
906                         return -ENOMEM;
907
908                 /* Update memory carveout with resource table info */
909                 carveout->rsc_offset = offset;
910                 carveout->flags = rsc->flags;
911
912                 return 0;
913         }
914
915         /* Register carveout in in list */
916         carveout = rproc_mem_entry_init(dev, 0, 0, rsc->len, rsc->da,
917                                         rproc_alloc_carveout,
918                                         rproc_release_carveout, rsc->name);
919         if (!carveout) {
920                 dev_err(dev, "Can't allocate memory entry structure\n");
921                 return -ENOMEM;
922         }
923
924         carveout->flags = rsc->flags;
925         carveout->rsc_offset = offset;
926         rproc_add_carveout(rproc, carveout);
927
928         return 0;
929 }
930
931 /**
932  * rproc_add_carveout() - register an allocated carveout region
933  * @rproc: rproc handle
934  * @mem: memory entry to register
935  *
936  * This function registers specified memory entry in @rproc carveouts list.
937  * Specified carveout should have been allocated before registering.
938  */
939 void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem)
940 {
941         list_add_tail(&mem->node, &rproc->carveouts);
942 }
943 EXPORT_SYMBOL(rproc_add_carveout);
944
945 /**
946  * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct
947  * @dev: pointer on device struct
948  * @va: virtual address
949  * @dma: dma address
950  * @len: memory carveout length
951  * @da: device address
952  * @alloc: memory carveout allocation function
953  * @release: memory carveout release function
954  * @name: carveout name
955  *
956  * This function allocates a rproc_mem_entry struct and fill it with parameters
957  * provided by client.
958  */
959 struct rproc_mem_entry *
960 rproc_mem_entry_init(struct device *dev,
961                      void *va, dma_addr_t dma, int len, u32 da,
962                      int (*alloc)(struct rproc *, struct rproc_mem_entry *),
963                      int (*release)(struct rproc *, struct rproc_mem_entry *),
964                      const char *name, ...)
965 {
966         struct rproc_mem_entry *mem;
967         va_list args;
968
969         mem = kzalloc(sizeof(*mem), GFP_KERNEL);
970         if (!mem)
971                 return mem;
972
973         mem->va = va;
974         mem->dma = dma;
975         mem->da = da;
976         mem->len = len;
977         mem->alloc = alloc;
978         mem->release = release;
979         mem->rsc_offset = FW_RSC_ADDR_ANY;
980         mem->of_resm_idx = -1;
981
982         va_start(args, name);
983         vsnprintf(mem->name, sizeof(mem->name), name, args);
984         va_end(args);
985
986         return mem;
987 }
988 EXPORT_SYMBOL(rproc_mem_entry_init);
989
990 /**
991  * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct
992  * from a reserved memory phandle
993  * @dev: pointer on device struct
994  * @of_resm_idx: reserved memory phandle index in "memory-region"
995  * @len: memory carveout length
996  * @da: device address
997  * @name: carveout name
998  *
999  * This function allocates a rproc_mem_entry struct and fill it with parameters
1000  * provided by client.
1001  */
1002 struct rproc_mem_entry *
1003 rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, int len,
1004                              u32 da, const char *name, ...)
1005 {
1006         struct rproc_mem_entry *mem;
1007         va_list args;
1008
1009         mem = kzalloc(sizeof(*mem), GFP_KERNEL);
1010         if (!mem)
1011                 return mem;
1012
1013         mem->da = da;
1014         mem->len = len;
1015         mem->rsc_offset = FW_RSC_ADDR_ANY;
1016         mem->of_resm_idx = of_resm_idx;
1017
1018         va_start(args, name);
1019         vsnprintf(mem->name, sizeof(mem->name), name, args);
1020         va_end(args);
1021
1022         return mem;
1023 }
1024 EXPORT_SYMBOL(rproc_of_resm_mem_entry_init);
1025
1026 /**
1027  * A lookup table for resource handlers. The indices are defined in
1028  * enum fw_resource_type.
1029  */
1030 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
1031         [RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
1032         [RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
1033         [RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
1034         [RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev,
1035 };
1036
1037 /* handle firmware resource entries before booting the remote processor */
1038 static int rproc_handle_resources(struct rproc *rproc,
1039                                   rproc_handle_resource_t handlers[RSC_LAST])
1040 {
1041         struct device *dev = &rproc->dev;
1042         rproc_handle_resource_t handler;
1043         int ret = 0, i;
1044
1045         if (!rproc->table_ptr)
1046                 return 0;
1047
1048         for (i = 0; i < rproc->table_ptr->num; i++) {
1049                 int offset = rproc->table_ptr->offset[i];
1050                 struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
1051                 int avail = rproc->table_sz - offset - sizeof(*hdr);
1052                 void *rsc = (void *)hdr + sizeof(*hdr);
1053
1054                 /* make sure table isn't truncated */
1055                 if (avail < 0) {
1056                         dev_err(dev, "rsc table is truncated\n");
1057                         return -EINVAL;
1058                 }
1059
1060                 dev_dbg(dev, "rsc: type %d\n", hdr->type);
1061
1062                 if (hdr->type >= RSC_VENDOR_START &&
1063                     hdr->type <= RSC_VENDOR_END) {
1064                         ret = rproc_handle_rsc(rproc, hdr->type, rsc,
1065                                                offset + sizeof(*hdr), avail);
1066                         if (ret == RSC_HANDLED)
1067                                 continue;
1068                         else if (ret < 0)
1069                                 break;
1070
1071                         dev_warn(dev, "unsupported vendor resource %d\n",
1072                                  hdr->type);
1073                         continue;
1074                 }
1075
1076                 if (hdr->type >= RSC_LAST) {
1077                         dev_warn(dev, "unsupported resource %d\n", hdr->type);
1078                         continue;
1079                 }
1080
1081                 handler = handlers[hdr->type];
1082                 if (!handler)
1083                         continue;
1084
1085                 ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
1086                 if (ret)
1087                         break;
1088         }
1089
1090         return ret;
1091 }
1092
1093 static int rproc_prepare_subdevices(struct rproc *rproc)
1094 {
1095         struct rproc_subdev *subdev;
1096         int ret;
1097
1098         list_for_each_entry(subdev, &rproc->subdevs, node) {
1099                 if (subdev->prepare) {
1100                         ret = subdev->prepare(subdev);
1101                         if (ret)
1102                                 goto unroll_preparation;
1103                 }
1104         }
1105
1106         return 0;
1107
1108 unroll_preparation:
1109         list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1110                 if (subdev->unprepare)
1111                         subdev->unprepare(subdev);
1112         }
1113
1114         return ret;
1115 }
1116
1117 static int rproc_start_subdevices(struct rproc *rproc)
1118 {
1119         struct rproc_subdev *subdev;
1120         int ret;
1121
1122         list_for_each_entry(subdev, &rproc->subdevs, node) {
1123                 if (subdev->start) {
1124                         ret = subdev->start(subdev);
1125                         if (ret)
1126                                 goto unroll_registration;
1127                 }
1128         }
1129
1130         return 0;
1131
1132 unroll_registration:
1133         list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1134                 if (subdev->stop)
1135                         subdev->stop(subdev, true);
1136         }
1137
1138         return ret;
1139 }
1140
1141 static void rproc_stop_subdevices(struct rproc *rproc, bool crashed)
1142 {
1143         struct rproc_subdev *subdev;
1144
1145         list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1146                 if (subdev->stop)
1147                         subdev->stop(subdev, crashed);
1148         }
1149 }
1150
1151 static void rproc_unprepare_subdevices(struct rproc *rproc)
1152 {
1153         struct rproc_subdev *subdev;
1154
1155         list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1156                 if (subdev->unprepare)
1157                         subdev->unprepare(subdev);
1158         }
1159 }
1160
1161 /**
1162  * rproc_alloc_registered_carveouts() - allocate all carveouts registered
1163  * in the list
1164  * @rproc: the remote processor handle
1165  *
1166  * This function parses registered carveout list, performs allocation
1167  * if alloc() ops registered and updates resource table information
1168  * if rsc_offset set.
1169  *
1170  * Return: 0 on success
1171  */
1172 static int rproc_alloc_registered_carveouts(struct rproc *rproc)
1173 {
1174         struct rproc_mem_entry *entry, *tmp;
1175         struct fw_rsc_carveout *rsc;
1176         struct device *dev = &rproc->dev;
1177         u64 pa;
1178         int ret;
1179
1180         list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1181                 if (entry->alloc) {
1182                         ret = entry->alloc(rproc, entry);
1183                         if (ret) {
1184                                 dev_err(dev, "Unable to allocate carveout %s: %d\n",
1185                                         entry->name, ret);
1186                                 return -ENOMEM;
1187                         }
1188                 }
1189
1190                 if (entry->rsc_offset != FW_RSC_ADDR_ANY) {
1191                         /* update resource table */
1192                         rsc = (void *)rproc->table_ptr + entry->rsc_offset;
1193
1194                         /*
1195                          * Some remote processors might need to know the pa
1196                          * even though they are behind an IOMMU. E.g., OMAP4's
1197                          * remote M3 processor needs this so it can control
1198                          * on-chip hardware accelerators that are not behind
1199                          * the IOMMU, and therefor must know the pa.
1200                          *
1201                          * Generally we don't want to expose physical addresses
1202                          * if we don't have to (remote processors are generally
1203                          * _not_ trusted), so we might want to do this only for
1204                          * remote processor that _must_ have this (e.g. OMAP4's
1205                          * dual M3 subsystem).
1206                          *
1207                          * Non-IOMMU processors might also want to have this info.
1208                          * In this case, the device address and the physical address
1209                          * are the same.
1210                          */
1211
1212                         /* Use va if defined else dma to generate pa */
1213                         if (entry->va)
1214                                 pa = (u64)rproc_va_to_pa(entry->va);
1215                         else
1216                                 pa = (u64)entry->dma;
1217
1218                         if (((u64)pa) & HIGH_BITS_MASK)
1219                                 dev_warn(dev,
1220                                          "Physical address cast in 32bit to fit resource table format\n");
1221
1222                         rsc->pa = (u32)pa;
1223                         rsc->da = entry->da;
1224                         rsc->len = entry->len;
1225                 }
1226         }
1227
1228         return 0;
1229 }
1230
1231 /**
1232  * rproc_coredump_cleanup() - clean up dump_segments list
1233  * @rproc: the remote processor handle
1234  */
1235 static void rproc_coredump_cleanup(struct rproc *rproc)
1236 {
1237         struct rproc_dump_segment *entry, *tmp;
1238
1239         list_for_each_entry_safe(entry, tmp, &rproc->dump_segments, node) {
1240                 list_del(&entry->node);
1241                 kfree(entry);
1242         }
1243 }
1244
1245 /**
1246  * rproc_resource_cleanup() - clean up and free all acquired resources
1247  * @rproc: rproc handle
1248  *
1249  * This function will free all resources acquired for @rproc, and it
1250  * is called whenever @rproc either shuts down or fails to boot.
1251  */
1252 static void rproc_resource_cleanup(struct rproc *rproc)
1253 {
1254         struct rproc_mem_entry *entry, *tmp;
1255         struct rproc_debug_trace *trace, *ttmp;
1256         struct rproc_vdev *rvdev, *rvtmp;
1257         struct device *dev = &rproc->dev;
1258
1259         /* clean up debugfs trace entries */
1260         list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) {
1261                 rproc_remove_trace_file(trace->tfile);
1262                 rproc->num_traces--;
1263                 list_del(&trace->node);
1264                 kfree(trace);
1265         }
1266
1267         /* clean up iommu mapping entries */
1268         list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
1269                 size_t unmapped;
1270
1271                 unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
1272                 if (unmapped != entry->len) {
1273                         /* nothing much to do besides complaining */
1274                         dev_err(dev, "failed to unmap %u/%zu\n", entry->len,
1275                                 unmapped);
1276                 }
1277
1278                 list_del(&entry->node);
1279                 kfree(entry);
1280         }
1281
1282         /* clean up carveout allocations */
1283         list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1284                 if (entry->release)
1285                         entry->release(rproc, entry);
1286                 list_del(&entry->node);
1287                 kfree(entry);
1288         }
1289
1290         /* clean up remote vdev entries */
1291         list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
1292                 kref_put(&rvdev->refcount, rproc_vdev_release);
1293
1294         rproc_coredump_cleanup(rproc);
1295 }
1296
1297 static int rproc_start(struct rproc *rproc, const struct firmware *fw)
1298 {
1299         struct resource_table *loaded_table;
1300         struct device *dev = &rproc->dev;
1301         int ret;
1302
1303         /* load the ELF segments to memory */
1304         ret = rproc_load_segments(rproc, fw);
1305         if (ret) {
1306                 dev_err(dev, "Failed to load program segments: %d\n", ret);
1307                 return ret;
1308         }
1309
1310         /*
1311          * The starting device has been given the rproc->cached_table as the
1312          * resource table. The address of the vring along with the other
1313          * allocated resources (carveouts etc) is stored in cached_table.
1314          * In order to pass this information to the remote device we must copy
1315          * this information to device memory. We also update the table_ptr so
1316          * that any subsequent changes will be applied to the loaded version.
1317          */
1318         loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
1319         if (loaded_table) {
1320                 memcpy(loaded_table, rproc->cached_table, rproc->table_sz);
1321                 rproc->table_ptr = loaded_table;
1322         }
1323
1324         ret = rproc_prepare_subdevices(rproc);
1325         if (ret) {
1326                 dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1327                         rproc->name, ret);
1328                 goto reset_table_ptr;
1329         }
1330
1331         /* power up the remote processor */
1332         ret = rproc->ops->start(rproc);
1333         if (ret) {
1334                 dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
1335                 goto unprepare_subdevices;
1336         }
1337
1338         /* Start any subdevices for the remote processor */
1339         ret = rproc_start_subdevices(rproc);
1340         if (ret) {
1341                 dev_err(dev, "failed to probe subdevices for %s: %d\n",
1342                         rproc->name, ret);
1343                 goto stop_rproc;
1344         }
1345
1346         rproc->state = RPROC_RUNNING;
1347
1348         dev_info(dev, "remote processor %s is now up\n", rproc->name);
1349
1350         return 0;
1351
1352 stop_rproc:
1353         rproc->ops->stop(rproc);
1354 unprepare_subdevices:
1355         rproc_unprepare_subdevices(rproc);
1356 reset_table_ptr:
1357         rproc->table_ptr = rproc->cached_table;
1358
1359         return ret;
1360 }
1361
1362 /*
1363  * take a firmware and boot a remote processor with it.
1364  */
1365 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
1366 {
1367         struct device *dev = &rproc->dev;
1368         const char *name = rproc->firmware;
1369         int ret;
1370
1371         ret = rproc_fw_sanity_check(rproc, fw);
1372         if (ret)
1373                 return ret;
1374
1375         dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
1376
1377         /*
1378          * if enabling an IOMMU isn't relevant for this rproc, this is
1379          * just a nop
1380          */
1381         ret = rproc_enable_iommu(rproc);
1382         if (ret) {
1383                 dev_err(dev, "can't enable iommu: %d\n", ret);
1384                 return ret;
1385         }
1386
1387         rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
1388
1389         /* Load resource table, core dump segment list etc from the firmware */
1390         ret = rproc_parse_fw(rproc, fw);
1391         if (ret)
1392                 goto disable_iommu;
1393
1394         /* reset max_notifyid */
1395         rproc->max_notifyid = -1;
1396
1397         /* reset handled vdev */
1398         rproc->nb_vdev = 0;
1399
1400         /* handle fw resources which are required to boot rproc */
1401         ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1402         if (ret) {
1403                 dev_err(dev, "Failed to process resources: %d\n", ret);
1404                 goto clean_up_resources;
1405         }
1406
1407         /* Allocate carveout resources associated to rproc */
1408         ret = rproc_alloc_registered_carveouts(rproc);
1409         if (ret) {
1410                 dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1411                         ret);
1412                 goto clean_up_resources;
1413         }
1414
1415         ret = rproc_start(rproc, fw);
1416         if (ret)
1417                 goto clean_up_resources;
1418
1419         return 0;
1420
1421 clean_up_resources:
1422         rproc_resource_cleanup(rproc);
1423         kfree(rproc->cached_table);
1424         rproc->cached_table = NULL;
1425         rproc->table_ptr = NULL;
1426 disable_iommu:
1427         rproc_disable_iommu(rproc);
1428         return ret;
1429 }
1430
1431 /*
1432  * take a firmware and boot it up.
1433  *
1434  * Note: this function is called asynchronously upon registration of the
1435  * remote processor (so we must wait until it completes before we try
1436  * to unregister the device. one other option is just to use kref here,
1437  * that might be cleaner).
1438  */
1439 static void rproc_auto_boot_callback(const struct firmware *fw, void *context)
1440 {
1441         struct rproc *rproc = context;
1442
1443         rproc_boot(rproc);
1444
1445         release_firmware(fw);
1446 }
1447
1448 static int rproc_trigger_auto_boot(struct rproc *rproc)
1449 {
1450         int ret;
1451
1452         /*
1453          * We're initiating an asynchronous firmware loading, so we can
1454          * be built-in kernel code, without hanging the boot process.
1455          */
1456         ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
1457                                       rproc->firmware, &rproc->dev, GFP_KERNEL,
1458                                       rproc, rproc_auto_boot_callback);
1459         if (ret < 0)
1460                 dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
1461
1462         return ret;
1463 }
1464
1465 static int rproc_stop(struct rproc *rproc, bool crashed)
1466 {
1467         struct device *dev = &rproc->dev;
1468         int ret;
1469
1470         /* Stop any subdevices for the remote processor */
1471         rproc_stop_subdevices(rproc, crashed);
1472
1473         /* the installed resource table is no longer accessible */
1474         rproc->table_ptr = rproc->cached_table;
1475
1476         /* power off the remote processor */
1477         ret = rproc->ops->stop(rproc);
1478         if (ret) {
1479                 dev_err(dev, "can't stop rproc: %d\n", ret);
1480                 return ret;
1481         }
1482
1483         rproc_unprepare_subdevices(rproc);
1484
1485         rproc->state = RPROC_OFFLINE;
1486
1487         dev_info(dev, "stopped remote processor %s\n", rproc->name);
1488
1489         return 0;
1490 }
1491
1492 /**
1493  * rproc_coredump_add_segment() - add segment of device memory to coredump
1494  * @rproc:      handle of a remote processor
1495  * @da:         device address
1496  * @size:       size of segment
1497  *
1498  * Add device memory to the list of segments to be included in a coredump for
1499  * the remoteproc.
1500  *
1501  * Return: 0 on success, negative errno on error.
1502  */
1503 int rproc_coredump_add_segment(struct rproc *rproc, dma_addr_t da, size_t size)
1504 {
1505         struct rproc_dump_segment *segment;
1506
1507         segment = kzalloc(sizeof(*segment), GFP_KERNEL);
1508         if (!segment)
1509                 return -ENOMEM;
1510
1511         segment->da = da;
1512         segment->size = size;
1513
1514         list_add_tail(&segment->node, &rproc->dump_segments);
1515
1516         return 0;
1517 }
1518 EXPORT_SYMBOL(rproc_coredump_add_segment);
1519
1520 /**
1521  * rproc_coredump_add_custom_segment() - add custom coredump segment
1522  * @rproc:      handle of a remote processor
1523  * @da:         device address
1524  * @size:       size of segment
1525  * @dumpfn:     custom dump function called for each segment during coredump
1526  * @priv:       private data
1527  *
1528  * Add device memory to the list of segments to be included in the coredump
1529  * and associate the segment with the given custom dump function and private
1530  * data.
1531  *
1532  * Return: 0 on success, negative errno on error.
1533  */
1534 int rproc_coredump_add_custom_segment(struct rproc *rproc,
1535                                       dma_addr_t da, size_t size,
1536                                       void (*dumpfn)(struct rproc *rproc,
1537                                                      struct rproc_dump_segment *segment,
1538                                                      void *dest),
1539                                       void *priv)
1540 {
1541         struct rproc_dump_segment *segment;
1542
1543         segment = kzalloc(sizeof(*segment), GFP_KERNEL);
1544         if (!segment)
1545                 return -ENOMEM;
1546
1547         segment->da = da;
1548         segment->size = size;
1549         segment->priv = priv;
1550         segment->dump = dumpfn;
1551
1552         list_add_tail(&segment->node, &rproc->dump_segments);
1553
1554         return 0;
1555 }
1556 EXPORT_SYMBOL(rproc_coredump_add_custom_segment);
1557
1558 /**
1559  * rproc_coredump() - perform coredump
1560  * @rproc:      rproc handle
1561  *
1562  * This function will generate an ELF header for the registered segments
1563  * and create a devcoredump device associated with rproc.
1564  */
1565 static void rproc_coredump(struct rproc *rproc)
1566 {
1567         struct rproc_dump_segment *segment;
1568         struct elf32_phdr *phdr;
1569         struct elf32_hdr *ehdr;
1570         size_t data_size;
1571         size_t offset;
1572         void *data;
1573         void *ptr;
1574         int phnum = 0;
1575
1576         if (list_empty(&rproc->dump_segments))
1577                 return;
1578
1579         data_size = sizeof(*ehdr);
1580         list_for_each_entry(segment, &rproc->dump_segments, node) {
1581                 data_size += sizeof(*phdr) + segment->size;
1582
1583                 phnum++;
1584         }
1585
1586         data = vmalloc(data_size);
1587         if (!data)
1588                 return;
1589
1590         ehdr = data;
1591
1592         memset(ehdr, 0, sizeof(*ehdr));
1593         memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1594         ehdr->e_ident[EI_CLASS] = ELFCLASS32;
1595         ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1596         ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1597         ehdr->e_ident[EI_OSABI] = ELFOSABI_NONE;
1598         ehdr->e_type = ET_CORE;
1599         ehdr->e_machine = EM_NONE;
1600         ehdr->e_version = EV_CURRENT;
1601         ehdr->e_entry = rproc->bootaddr;
1602         ehdr->e_phoff = sizeof(*ehdr);
1603         ehdr->e_ehsize = sizeof(*ehdr);
1604         ehdr->e_phentsize = sizeof(*phdr);
1605         ehdr->e_phnum = phnum;
1606
1607         phdr = data + ehdr->e_phoff;
1608         offset = ehdr->e_phoff + sizeof(*phdr) * ehdr->e_phnum;
1609         list_for_each_entry(segment, &rproc->dump_segments, node) {
1610                 memset(phdr, 0, sizeof(*phdr));
1611                 phdr->p_type = PT_LOAD;
1612                 phdr->p_offset = offset;
1613                 phdr->p_vaddr = segment->da;
1614                 phdr->p_paddr = segment->da;
1615                 phdr->p_filesz = segment->size;
1616                 phdr->p_memsz = segment->size;
1617                 phdr->p_flags = PF_R | PF_W | PF_X;
1618                 phdr->p_align = 0;
1619
1620                 if (segment->dump) {
1621                         segment->dump(rproc, segment, data + offset);
1622                 } else {
1623                         ptr = rproc_da_to_va(rproc, segment->da, segment->size);
1624                         if (!ptr) {
1625                                 dev_err(&rproc->dev,
1626                                         "invalid coredump segment (%pad, %zu)\n",
1627                                         &segment->da, segment->size);
1628                                 memset(data + offset, 0xff, segment->size);
1629                         } else {
1630                                 memcpy(data + offset, ptr, segment->size);
1631                         }
1632                 }
1633
1634                 offset += phdr->p_filesz;
1635                 phdr++;
1636         }
1637
1638         dev_coredumpv(&rproc->dev, data, data_size, GFP_KERNEL);
1639 }
1640
1641 /**
1642  * rproc_trigger_recovery() - recover a remoteproc
1643  * @rproc: the remote processor
1644  *
1645  * The recovery is done by resetting all the virtio devices, that way all the
1646  * rpmsg drivers will be reseted along with the remote processor making the
1647  * remoteproc functional again.
1648  *
1649  * This function can sleep, so it cannot be called from atomic context.
1650  */
1651 int rproc_trigger_recovery(struct rproc *rproc)
1652 {
1653         const struct firmware *firmware_p;
1654         struct device *dev = &rproc->dev;
1655         int ret;
1656
1657         dev_err(dev, "recovering %s\n", rproc->name);
1658
1659         ret = mutex_lock_interruptible(&rproc->lock);
1660         if (ret)
1661                 return ret;
1662
1663         ret = rproc_stop(rproc, true);
1664         if (ret)
1665                 goto unlock_mutex;
1666
1667         /* generate coredump */
1668         rproc_coredump(rproc);
1669
1670         /* load firmware */
1671         ret = request_firmware(&firmware_p, rproc->firmware, dev);
1672         if (ret < 0) {
1673                 dev_err(dev, "request_firmware failed: %d\n", ret);
1674                 goto unlock_mutex;
1675         }
1676
1677         /* boot the remote processor up again */
1678         ret = rproc_start(rproc, firmware_p);
1679
1680         release_firmware(firmware_p);
1681
1682 unlock_mutex:
1683         mutex_unlock(&rproc->lock);
1684         return ret;
1685 }
1686
1687 /**
1688  * rproc_crash_handler_work() - handle a crash
1689  *
1690  * This function needs to handle everything related to a crash, like cpu
1691  * registers and stack dump, information to help to debug the fatal error, etc.
1692  */
1693 static void rproc_crash_handler_work(struct work_struct *work)
1694 {
1695         struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1696         struct device *dev = &rproc->dev;
1697
1698         dev_dbg(dev, "enter %s\n", __func__);
1699
1700         mutex_lock(&rproc->lock);
1701
1702         if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
1703                 /* handle only the first crash detected */
1704                 mutex_unlock(&rproc->lock);
1705                 return;
1706         }
1707
1708         rproc->state = RPROC_CRASHED;
1709         dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1710                 rproc->name);
1711
1712         mutex_unlock(&rproc->lock);
1713
1714         if (!rproc->recovery_disabled)
1715                 rproc_trigger_recovery(rproc);
1716 }
1717
1718 /**
1719  * rproc_boot() - boot a remote processor
1720  * @rproc: handle of a remote processor
1721  *
1722  * Boot a remote processor (i.e. load its firmware, power it on, ...).
1723  *
1724  * If the remote processor is already powered on, this function immediately
1725  * returns (successfully).
1726  *
1727  * Returns 0 on success, and an appropriate error value otherwise.
1728  */
1729 int rproc_boot(struct rproc *rproc)
1730 {
1731         const struct firmware *firmware_p;
1732         struct device *dev;
1733         int ret;
1734
1735         if (!rproc) {
1736                 pr_err("invalid rproc handle\n");
1737                 return -EINVAL;
1738         }
1739
1740         dev = &rproc->dev;
1741
1742         ret = mutex_lock_interruptible(&rproc->lock);
1743         if (ret) {
1744                 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1745                 return ret;
1746         }
1747
1748         if (rproc->state == RPROC_DELETED) {
1749                 ret = -ENODEV;
1750                 dev_err(dev, "can't boot deleted rproc %s\n", rproc->name);
1751                 goto unlock_mutex;
1752         }
1753
1754         /* skip the boot process if rproc is already powered up */
1755         if (atomic_inc_return(&rproc->power) > 1) {
1756                 ret = 0;
1757                 goto unlock_mutex;
1758         }
1759
1760         dev_info(dev, "powering up %s\n", rproc->name);
1761
1762         /* load firmware */
1763         ret = request_firmware(&firmware_p, rproc->firmware, dev);
1764         if (ret < 0) {
1765                 dev_err(dev, "request_firmware failed: %d\n", ret);
1766                 goto downref_rproc;
1767         }
1768
1769         ret = rproc_fw_boot(rproc, firmware_p);
1770
1771         release_firmware(firmware_p);
1772
1773 downref_rproc:
1774         if (ret)
1775                 atomic_dec(&rproc->power);
1776 unlock_mutex:
1777         mutex_unlock(&rproc->lock);
1778         return ret;
1779 }
1780 EXPORT_SYMBOL(rproc_boot);
1781
1782 /**
1783  * rproc_shutdown() - power off the remote processor
1784  * @rproc: the remote processor
1785  *
1786  * Power off a remote processor (previously booted with rproc_boot()).
1787  *
1788  * In case @rproc is still being used by an additional user(s), then
1789  * this function will just decrement the power refcount and exit,
1790  * without really powering off the device.
1791  *
1792  * Every call to rproc_boot() must (eventually) be accompanied by a call
1793  * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1794  *
1795  * Notes:
1796  * - we're not decrementing the rproc's refcount, only the power refcount.
1797  *   which means that the @rproc handle stays valid even after rproc_shutdown()
1798  *   returns, and users can still use it with a subsequent rproc_boot(), if
1799  *   needed.
1800  */
1801 void rproc_shutdown(struct rproc *rproc)
1802 {
1803         struct device *dev = &rproc->dev;
1804         int ret;
1805
1806         ret = mutex_lock_interruptible(&rproc->lock);
1807         if (ret) {
1808                 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1809                 return;
1810         }
1811
1812         /* if the remote proc is still needed, bail out */
1813         if (!atomic_dec_and_test(&rproc->power))
1814                 goto out;
1815
1816         ret = rproc_stop(rproc, false);
1817         if (ret) {
1818                 atomic_inc(&rproc->power);
1819                 goto out;
1820         }
1821
1822         /* clean up all acquired resources */
1823         rproc_resource_cleanup(rproc);
1824
1825         rproc_disable_iommu(rproc);
1826
1827         /* Free the copy of the resource table */
1828         kfree(rproc->cached_table);
1829         rproc->cached_table = NULL;
1830         rproc->table_ptr = NULL;
1831 out:
1832         mutex_unlock(&rproc->lock);
1833 }
1834 EXPORT_SYMBOL(rproc_shutdown);
1835
1836 /**
1837  * rproc_get_by_phandle() - find a remote processor by phandle
1838  * @phandle: phandle to the rproc
1839  *
1840  * Finds an rproc handle using the remote processor's phandle, and then
1841  * return a handle to the rproc.
1842  *
1843  * This function increments the remote processor's refcount, so always
1844  * use rproc_put() to decrement it back once rproc isn't needed anymore.
1845  *
1846  * Returns the rproc handle on success, and NULL on failure.
1847  */
1848 #ifdef CONFIG_OF
1849 struct rproc *rproc_get_by_phandle(phandle phandle)
1850 {
1851         struct rproc *rproc = NULL, *r;
1852         struct device_node *np;
1853
1854         np = of_find_node_by_phandle(phandle);
1855         if (!np)
1856                 return NULL;
1857
1858         mutex_lock(&rproc_list_mutex);
1859         list_for_each_entry(r, &rproc_list, node) {
1860                 if (r->dev.parent && r->dev.parent->of_node == np) {
1861                         /* prevent underlying implementation from being removed */
1862                         if (!try_module_get(r->dev.parent->driver->owner)) {
1863                                 dev_err(&r->dev, "can't get owner\n");
1864                                 break;
1865                         }
1866
1867                         rproc = r;
1868                         get_device(&rproc->dev);
1869                         break;
1870                 }
1871         }
1872         mutex_unlock(&rproc_list_mutex);
1873
1874         of_node_put(np);
1875
1876         return rproc;
1877 }
1878 #else
1879 struct rproc *rproc_get_by_phandle(phandle phandle)
1880 {
1881         return NULL;
1882 }
1883 #endif
1884 EXPORT_SYMBOL(rproc_get_by_phandle);
1885
1886 /**
1887  * rproc_add() - register a remote processor
1888  * @rproc: the remote processor handle to register
1889  *
1890  * Registers @rproc with the remoteproc framework, after it has been
1891  * allocated with rproc_alloc().
1892  *
1893  * This is called by the platform-specific rproc implementation, whenever
1894  * a new remote processor device is probed.
1895  *
1896  * Returns 0 on success and an appropriate error code otherwise.
1897  *
1898  * Note: this function initiates an asynchronous firmware loading
1899  * context, which will look for virtio devices supported by the rproc's
1900  * firmware.
1901  *
1902  * If found, those virtio devices will be created and added, so as a result
1903  * of registering this remote processor, additional virtio drivers might be
1904  * probed.
1905  */
1906 int rproc_add(struct rproc *rproc)
1907 {
1908         struct device *dev = &rproc->dev;
1909         int ret;
1910
1911         ret = device_add(dev);
1912         if (ret < 0)
1913                 return ret;
1914
1915         dev_info(dev, "%s is available\n", rproc->name);
1916
1917         /* create debugfs entries */
1918         rproc_create_debug_dir(rproc);
1919
1920         /* if rproc is marked always-on, request it to boot */
1921         if (rproc->auto_boot) {
1922                 ret = rproc_trigger_auto_boot(rproc);
1923                 if (ret < 0)
1924                         return ret;
1925         }
1926
1927         /* expose to rproc_get_by_phandle users */
1928         mutex_lock(&rproc_list_mutex);
1929         list_add(&rproc->node, &rproc_list);
1930         mutex_unlock(&rproc_list_mutex);
1931
1932         return 0;
1933 }
1934 EXPORT_SYMBOL(rproc_add);
1935
1936 /**
1937  * rproc_type_release() - release a remote processor instance
1938  * @dev: the rproc's device
1939  *
1940  * This function should _never_ be called directly.
1941  *
1942  * It will be called by the driver core when no one holds a valid pointer
1943  * to @dev anymore.
1944  */
1945 static void rproc_type_release(struct device *dev)
1946 {
1947         struct rproc *rproc = container_of(dev, struct rproc, dev);
1948
1949         dev_info(&rproc->dev, "releasing %s\n", rproc->name);
1950
1951         idr_destroy(&rproc->notifyids);
1952
1953         if (rproc->index >= 0)
1954                 ida_simple_remove(&rproc_dev_index, rproc->index);
1955
1956         kfree(rproc->firmware);
1957         kfree(rproc->ops);
1958         kfree(rproc);
1959 }
1960
1961 static const struct device_type rproc_type = {
1962         .name           = "remoteproc",
1963         .release        = rproc_type_release,
1964 };
1965
1966 /**
1967  * rproc_alloc() - allocate a remote processor handle
1968  * @dev: the underlying device
1969  * @name: name of this remote processor
1970  * @ops: platform-specific handlers (mainly start/stop)
1971  * @firmware: name of firmware file to load, can be NULL
1972  * @len: length of private data needed by the rproc driver (in bytes)
1973  *
1974  * Allocates a new remote processor handle, but does not register
1975  * it yet. if @firmware is NULL, a default name is used.
1976  *
1977  * This function should be used by rproc implementations during initialization
1978  * of the remote processor.
1979  *
1980  * After creating an rproc handle using this function, and when ready,
1981  * implementations should then call rproc_add() to complete
1982  * the registration of the remote processor.
1983  *
1984  * On success the new rproc is returned, and on failure, NULL.
1985  *
1986  * Note: _never_ directly deallocate @rproc, even if it was not registered
1987  * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
1988  */
1989 struct rproc *rproc_alloc(struct device *dev, const char *name,
1990                           const struct rproc_ops *ops,
1991                           const char *firmware, int len)
1992 {
1993         struct rproc *rproc;
1994         char *p, *template = "rproc-%s-fw";
1995         int name_len;
1996
1997         if (!dev || !name || !ops)
1998                 return NULL;
1999
2000         if (!firmware) {
2001                 /*
2002                  * If the caller didn't pass in a firmware name then
2003                  * construct a default name.
2004                  */
2005                 name_len = strlen(name) + strlen(template) - 2 + 1;
2006                 p = kmalloc(name_len, GFP_KERNEL);
2007                 if (!p)
2008                         return NULL;
2009                 snprintf(p, name_len, template, name);
2010         } else {
2011                 p = kstrdup(firmware, GFP_KERNEL);
2012                 if (!p)
2013                         return NULL;
2014         }
2015
2016         rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
2017         if (!rproc) {
2018                 kfree(p);
2019                 return NULL;
2020         }
2021
2022         rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL);
2023         if (!rproc->ops) {
2024                 kfree(p);
2025                 kfree(rproc);
2026                 return NULL;
2027         }
2028
2029         rproc->firmware = p;
2030         rproc->name = name;
2031         rproc->priv = &rproc[1];
2032         rproc->auto_boot = true;
2033
2034         device_initialize(&rproc->dev);
2035         rproc->dev.parent = dev;
2036         rproc->dev.type = &rproc_type;
2037         rproc->dev.class = &rproc_class;
2038         rproc->dev.driver_data = rproc;
2039
2040         /* Assign a unique device index and name */
2041         rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
2042         if (rproc->index < 0) {
2043                 dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
2044                 put_device(&rproc->dev);
2045                 return NULL;
2046         }
2047
2048         dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
2049
2050         atomic_set(&rproc->power, 0);
2051
2052         /* Default to ELF loader if no load function is specified */
2053         if (!rproc->ops->load) {
2054                 rproc->ops->load = rproc_elf_load_segments;
2055                 rproc->ops->parse_fw = rproc_elf_load_rsc_table;
2056                 rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table;
2057                 rproc->ops->sanity_check = rproc_elf_sanity_check;
2058                 rproc->ops->get_boot_addr = rproc_elf_get_boot_addr;
2059         }
2060
2061         mutex_init(&rproc->lock);
2062
2063         idr_init(&rproc->notifyids);
2064
2065         INIT_LIST_HEAD(&rproc->carveouts);
2066         INIT_LIST_HEAD(&rproc->mappings);
2067         INIT_LIST_HEAD(&rproc->traces);
2068         INIT_LIST_HEAD(&rproc->rvdevs);
2069         INIT_LIST_HEAD(&rproc->subdevs);
2070         INIT_LIST_HEAD(&rproc->dump_segments);
2071
2072         INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
2073
2074         rproc->state = RPROC_OFFLINE;
2075
2076         return rproc;
2077 }
2078 EXPORT_SYMBOL(rproc_alloc);
2079
2080 /**
2081  * rproc_free() - unroll rproc_alloc()
2082  * @rproc: the remote processor handle
2083  *
2084  * This function decrements the rproc dev refcount.
2085  *
2086  * If no one holds any reference to rproc anymore, then its refcount would
2087  * now drop to zero, and it would be freed.
2088  */
2089 void rproc_free(struct rproc *rproc)
2090 {
2091         put_device(&rproc->dev);
2092 }
2093 EXPORT_SYMBOL(rproc_free);
2094
2095 /**
2096  * rproc_put() - release rproc reference
2097  * @rproc: the remote processor handle
2098  *
2099  * This function decrements the rproc dev refcount.
2100  *
2101  * If no one holds any reference to rproc anymore, then its refcount would
2102  * now drop to zero, and it would be freed.
2103  */
2104 void rproc_put(struct rproc *rproc)
2105 {
2106         module_put(rproc->dev.parent->driver->owner);
2107         put_device(&rproc->dev);
2108 }
2109 EXPORT_SYMBOL(rproc_put);
2110
2111 /**
2112  * rproc_del() - unregister a remote processor
2113  * @rproc: rproc handle to unregister
2114  *
2115  * This function should be called when the platform specific rproc
2116  * implementation decides to remove the rproc device. it should
2117  * _only_ be called if a previous invocation of rproc_add()
2118  * has completed successfully.
2119  *
2120  * After rproc_del() returns, @rproc isn't freed yet, because
2121  * of the outstanding reference created by rproc_alloc. To decrement that
2122  * one last refcount, one still needs to call rproc_free().
2123  *
2124  * Returns 0 on success and -EINVAL if @rproc isn't valid.
2125  */
2126 int rproc_del(struct rproc *rproc)
2127 {
2128         if (!rproc)
2129                 return -EINVAL;
2130
2131         /* if rproc is marked always-on, rproc_add() booted it */
2132         /* TODO: make sure this works with rproc->power > 1 */
2133         if (rproc->auto_boot)
2134                 rproc_shutdown(rproc);
2135
2136         mutex_lock(&rproc->lock);
2137         rproc->state = RPROC_DELETED;
2138         mutex_unlock(&rproc->lock);
2139
2140         rproc_delete_debug_dir(rproc);
2141
2142         /* the rproc is downref'ed as soon as it's removed from the klist */
2143         mutex_lock(&rproc_list_mutex);
2144         list_del(&rproc->node);
2145         mutex_unlock(&rproc_list_mutex);
2146
2147         device_del(&rproc->dev);
2148
2149         return 0;
2150 }
2151 EXPORT_SYMBOL(rproc_del);
2152
2153 /**
2154  * rproc_add_subdev() - add a subdevice to a remoteproc
2155  * @rproc: rproc handle to add the subdevice to
2156  * @subdev: subdev handle to register
2157  *
2158  * Caller is responsible for populating optional subdevice function pointers.
2159  */
2160 void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2161 {
2162         list_add_tail(&subdev->node, &rproc->subdevs);
2163 }
2164 EXPORT_SYMBOL(rproc_add_subdev);
2165
2166 /**
2167  * rproc_remove_subdev() - remove a subdevice from a remoteproc
2168  * @rproc: rproc handle to remove the subdevice from
2169  * @subdev: subdev handle, previously registered with rproc_add_subdev()
2170  */
2171 void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2172 {
2173         list_del(&subdev->node);
2174 }
2175 EXPORT_SYMBOL(rproc_remove_subdev);
2176
2177 /**
2178  * rproc_get_by_child() - acquire rproc handle of @dev's ancestor
2179  * @dev:        child device to find ancestor of
2180  *
2181  * Returns the ancestor rproc instance, or NULL if not found.
2182  */
2183 struct rproc *rproc_get_by_child(struct device *dev)
2184 {
2185         for (dev = dev->parent; dev; dev = dev->parent) {
2186                 if (dev->type == &rproc_type)
2187                         return dev->driver_data;
2188         }
2189
2190         return NULL;
2191 }
2192 EXPORT_SYMBOL(rproc_get_by_child);
2193
2194 /**
2195  * rproc_report_crash() - rproc crash reporter function
2196  * @rproc: remote processor
2197  * @type: crash type
2198  *
2199  * This function must be called every time a crash is detected by the low-level
2200  * drivers implementing a specific remoteproc. This should not be called from a
2201  * non-remoteproc driver.
2202  *
2203  * This function can be called from atomic/interrupt context.
2204  */
2205 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
2206 {
2207         if (!rproc) {
2208                 pr_err("NULL rproc pointer\n");
2209                 return;
2210         }
2211
2212         dev_err(&rproc->dev, "crash detected in %s: type %s\n",
2213                 rproc->name, rproc_crash_to_string(type));
2214
2215         /* create a new task to handle the error */
2216         schedule_work(&rproc->crash_handler);
2217 }
2218 EXPORT_SYMBOL(rproc_report_crash);
2219
2220 static int __init remoteproc_init(void)
2221 {
2222         rproc_init_sysfs();
2223         rproc_init_debugfs();
2224
2225         return 0;
2226 }
2227 module_init(remoteproc_init);
2228
2229 static void __exit remoteproc_exit(void)
2230 {
2231         ida_destroy(&rproc_dev_index);
2232
2233         rproc_exit_debugfs();
2234         rproc_exit_sysfs();
2235 }
2236 module_exit(remoteproc_exit);
2237
2238 MODULE_LICENSE("GPL v2");
2239 MODULE_DESCRIPTION("Generic Remote Processor Framework");