Merge branch 'merge' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc
[sfrench/cifs-2.6.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/of.h>
28 #include <linux/regmap.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
37
38 #include "dummy.h"
39
40 #define rdev_crit(rdev, fmt, ...)                                       \
41         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_err(rdev, fmt, ...)                                        \
43         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_warn(rdev, fmt, ...)                                       \
45         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_info(rdev, fmt, ...)                                       \
47         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_dbg(rdev, fmt, ...)                                        \
49         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50
51 static DEFINE_MUTEX(regulator_list_mutex);
52 static LIST_HEAD(regulator_list);
53 static LIST_HEAD(regulator_map_list);
54 static bool has_full_constraints;
55 static bool board_wants_dummy_regulator;
56
57 static struct dentry *debugfs_root;
58
59 /*
60  * struct regulator_map
61  *
62  * Used to provide symbolic supply names to devices.
63  */
64 struct regulator_map {
65         struct list_head list;
66         const char *dev_name;   /* The dev_name() for the consumer */
67         const char *supply;
68         struct regulator_dev *regulator;
69 };
70
71 /*
72  * struct regulator
73  *
74  * One for each consumer device.
75  */
76 struct regulator {
77         struct device *dev;
78         struct list_head list;
79         unsigned int always_on:1;
80         unsigned int bypass:1;
81         int uA_load;
82         int min_uV;
83         int max_uV;
84         char *supply_name;
85         struct device_attribute dev_attr;
86         struct regulator_dev *rdev;
87         struct dentry *debugfs;
88 };
89
90 static int _regulator_is_enabled(struct regulator_dev *rdev);
91 static int _regulator_disable(struct regulator_dev *rdev);
92 static int _regulator_get_voltage(struct regulator_dev *rdev);
93 static int _regulator_get_current_limit(struct regulator_dev *rdev);
94 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
95 static void _notifier_call_chain(struct regulator_dev *rdev,
96                                   unsigned long event, void *data);
97 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
98                                      int min_uV, int max_uV);
99 static struct regulator *create_regulator(struct regulator_dev *rdev,
100                                           struct device *dev,
101                                           const char *supply_name);
102
103 static const char *rdev_get_name(struct regulator_dev *rdev)
104 {
105         if (rdev->constraints && rdev->constraints->name)
106                 return rdev->constraints->name;
107         else if (rdev->desc->name)
108                 return rdev->desc->name;
109         else
110                 return "";
111 }
112
113 /**
114  * of_get_regulator - get a regulator device node based on supply name
115  * @dev: Device pointer for the consumer (of regulator) device
116  * @supply: regulator supply name
117  *
118  * Extract the regulator device node corresponding to the supply name.
119  * retruns the device node corresponding to the regulator if found, else
120  * returns NULL.
121  */
122 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
123 {
124         struct device_node *regnode = NULL;
125         char prop_name[32]; /* 32 is max size of property name */
126
127         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
128
129         snprintf(prop_name, 32, "%s-supply", supply);
130         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
131
132         if (!regnode) {
133                 dev_dbg(dev, "Looking up %s property in node %s failed",
134                                 prop_name, dev->of_node->full_name);
135                 return NULL;
136         }
137         return regnode;
138 }
139
140 static int _regulator_can_change_status(struct regulator_dev *rdev)
141 {
142         if (!rdev->constraints)
143                 return 0;
144
145         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
146                 return 1;
147         else
148                 return 0;
149 }
150
151 /* Platform voltage constraint check */
152 static int regulator_check_voltage(struct regulator_dev *rdev,
153                                    int *min_uV, int *max_uV)
154 {
155         BUG_ON(*min_uV > *max_uV);
156
157         if (!rdev->constraints) {
158                 rdev_err(rdev, "no constraints\n");
159                 return -ENODEV;
160         }
161         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
162                 rdev_err(rdev, "operation not allowed\n");
163                 return -EPERM;
164         }
165
166         if (*max_uV > rdev->constraints->max_uV)
167                 *max_uV = rdev->constraints->max_uV;
168         if (*min_uV < rdev->constraints->min_uV)
169                 *min_uV = rdev->constraints->min_uV;
170
171         if (*min_uV > *max_uV) {
172                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
173                          *min_uV, *max_uV);
174                 return -EINVAL;
175         }
176
177         return 0;
178 }
179
180 /* Make sure we select a voltage that suits the needs of all
181  * regulator consumers
182  */
183 static int regulator_check_consumers(struct regulator_dev *rdev,
184                                      int *min_uV, int *max_uV)
185 {
186         struct regulator *regulator;
187
188         list_for_each_entry(regulator, &rdev->consumer_list, list) {
189                 /*
190                  * Assume consumers that didn't say anything are OK
191                  * with anything in the constraint range.
192                  */
193                 if (!regulator->min_uV && !regulator->max_uV)
194                         continue;
195
196                 if (*max_uV > regulator->max_uV)
197                         *max_uV = regulator->max_uV;
198                 if (*min_uV < regulator->min_uV)
199                         *min_uV = regulator->min_uV;
200         }
201
202         if (*min_uV > *max_uV)
203                 return -EINVAL;
204
205         return 0;
206 }
207
208 /* current constraint check */
209 static int regulator_check_current_limit(struct regulator_dev *rdev,
210                                         int *min_uA, int *max_uA)
211 {
212         BUG_ON(*min_uA > *max_uA);
213
214         if (!rdev->constraints) {
215                 rdev_err(rdev, "no constraints\n");
216                 return -ENODEV;
217         }
218         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
219                 rdev_err(rdev, "operation not allowed\n");
220                 return -EPERM;
221         }
222
223         if (*max_uA > rdev->constraints->max_uA)
224                 *max_uA = rdev->constraints->max_uA;
225         if (*min_uA < rdev->constraints->min_uA)
226                 *min_uA = rdev->constraints->min_uA;
227
228         if (*min_uA > *max_uA) {
229                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
230                          *min_uA, *max_uA);
231                 return -EINVAL;
232         }
233
234         return 0;
235 }
236
237 /* operating mode constraint check */
238 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
239 {
240         switch (*mode) {
241         case REGULATOR_MODE_FAST:
242         case REGULATOR_MODE_NORMAL:
243         case REGULATOR_MODE_IDLE:
244         case REGULATOR_MODE_STANDBY:
245                 break;
246         default:
247                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
248                 return -EINVAL;
249         }
250
251         if (!rdev->constraints) {
252                 rdev_err(rdev, "no constraints\n");
253                 return -ENODEV;
254         }
255         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
256                 rdev_err(rdev, "operation not allowed\n");
257                 return -EPERM;
258         }
259
260         /* The modes are bitmasks, the most power hungry modes having
261          * the lowest values. If the requested mode isn't supported
262          * try higher modes. */
263         while (*mode) {
264                 if (rdev->constraints->valid_modes_mask & *mode)
265                         return 0;
266                 *mode /= 2;
267         }
268
269         return -EINVAL;
270 }
271
272 /* dynamic regulator mode switching constraint check */
273 static int regulator_check_drms(struct regulator_dev *rdev)
274 {
275         if (!rdev->constraints) {
276                 rdev_err(rdev, "no constraints\n");
277                 return -ENODEV;
278         }
279         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
280                 rdev_err(rdev, "operation not allowed\n");
281                 return -EPERM;
282         }
283         return 0;
284 }
285
286 static ssize_t regulator_uV_show(struct device *dev,
287                                 struct device_attribute *attr, char *buf)
288 {
289         struct regulator_dev *rdev = dev_get_drvdata(dev);
290         ssize_t ret;
291
292         mutex_lock(&rdev->mutex);
293         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
294         mutex_unlock(&rdev->mutex);
295
296         return ret;
297 }
298 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
299
300 static ssize_t regulator_uA_show(struct device *dev,
301                                 struct device_attribute *attr, char *buf)
302 {
303         struct regulator_dev *rdev = dev_get_drvdata(dev);
304
305         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
306 }
307 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
308
309 static ssize_t regulator_name_show(struct device *dev,
310                              struct device_attribute *attr, char *buf)
311 {
312         struct regulator_dev *rdev = dev_get_drvdata(dev);
313
314         return sprintf(buf, "%s\n", rdev_get_name(rdev));
315 }
316
317 static ssize_t regulator_print_opmode(char *buf, int mode)
318 {
319         switch (mode) {
320         case REGULATOR_MODE_FAST:
321                 return sprintf(buf, "fast\n");
322         case REGULATOR_MODE_NORMAL:
323                 return sprintf(buf, "normal\n");
324         case REGULATOR_MODE_IDLE:
325                 return sprintf(buf, "idle\n");
326         case REGULATOR_MODE_STANDBY:
327                 return sprintf(buf, "standby\n");
328         }
329         return sprintf(buf, "unknown\n");
330 }
331
332 static ssize_t regulator_opmode_show(struct device *dev,
333                                     struct device_attribute *attr, char *buf)
334 {
335         struct regulator_dev *rdev = dev_get_drvdata(dev);
336
337         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
338 }
339 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
340
341 static ssize_t regulator_print_state(char *buf, int state)
342 {
343         if (state > 0)
344                 return sprintf(buf, "enabled\n");
345         else if (state == 0)
346                 return sprintf(buf, "disabled\n");
347         else
348                 return sprintf(buf, "unknown\n");
349 }
350
351 static ssize_t regulator_state_show(struct device *dev,
352                                    struct device_attribute *attr, char *buf)
353 {
354         struct regulator_dev *rdev = dev_get_drvdata(dev);
355         ssize_t ret;
356
357         mutex_lock(&rdev->mutex);
358         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
359         mutex_unlock(&rdev->mutex);
360
361         return ret;
362 }
363 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
364
365 static ssize_t regulator_status_show(struct device *dev,
366                                    struct device_attribute *attr, char *buf)
367 {
368         struct regulator_dev *rdev = dev_get_drvdata(dev);
369         int status;
370         char *label;
371
372         status = rdev->desc->ops->get_status(rdev);
373         if (status < 0)
374                 return status;
375
376         switch (status) {
377         case REGULATOR_STATUS_OFF:
378                 label = "off";
379                 break;
380         case REGULATOR_STATUS_ON:
381                 label = "on";
382                 break;
383         case REGULATOR_STATUS_ERROR:
384                 label = "error";
385                 break;
386         case REGULATOR_STATUS_FAST:
387                 label = "fast";
388                 break;
389         case REGULATOR_STATUS_NORMAL:
390                 label = "normal";
391                 break;
392         case REGULATOR_STATUS_IDLE:
393                 label = "idle";
394                 break;
395         case REGULATOR_STATUS_STANDBY:
396                 label = "standby";
397                 break;
398         case REGULATOR_STATUS_BYPASS:
399                 label = "bypass";
400                 break;
401         case REGULATOR_STATUS_UNDEFINED:
402                 label = "undefined";
403                 break;
404         default:
405                 return -ERANGE;
406         }
407
408         return sprintf(buf, "%s\n", label);
409 }
410 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
411
412 static ssize_t regulator_min_uA_show(struct device *dev,
413                                     struct device_attribute *attr, char *buf)
414 {
415         struct regulator_dev *rdev = dev_get_drvdata(dev);
416
417         if (!rdev->constraints)
418                 return sprintf(buf, "constraint not defined\n");
419
420         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
421 }
422 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
423
424 static ssize_t regulator_max_uA_show(struct device *dev,
425                                     struct device_attribute *attr, char *buf)
426 {
427         struct regulator_dev *rdev = dev_get_drvdata(dev);
428
429         if (!rdev->constraints)
430                 return sprintf(buf, "constraint not defined\n");
431
432         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
433 }
434 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
435
436 static ssize_t regulator_min_uV_show(struct device *dev,
437                                     struct device_attribute *attr, char *buf)
438 {
439         struct regulator_dev *rdev = dev_get_drvdata(dev);
440
441         if (!rdev->constraints)
442                 return sprintf(buf, "constraint not defined\n");
443
444         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
445 }
446 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
447
448 static ssize_t regulator_max_uV_show(struct device *dev,
449                                     struct device_attribute *attr, char *buf)
450 {
451         struct regulator_dev *rdev = dev_get_drvdata(dev);
452
453         if (!rdev->constraints)
454                 return sprintf(buf, "constraint not defined\n");
455
456         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
457 }
458 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
459
460 static ssize_t regulator_total_uA_show(struct device *dev,
461                                       struct device_attribute *attr, char *buf)
462 {
463         struct regulator_dev *rdev = dev_get_drvdata(dev);
464         struct regulator *regulator;
465         int uA = 0;
466
467         mutex_lock(&rdev->mutex);
468         list_for_each_entry(regulator, &rdev->consumer_list, list)
469                 uA += regulator->uA_load;
470         mutex_unlock(&rdev->mutex);
471         return sprintf(buf, "%d\n", uA);
472 }
473 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
474
475 static ssize_t regulator_num_users_show(struct device *dev,
476                                       struct device_attribute *attr, char *buf)
477 {
478         struct regulator_dev *rdev = dev_get_drvdata(dev);
479         return sprintf(buf, "%d\n", rdev->use_count);
480 }
481
482 static ssize_t regulator_type_show(struct device *dev,
483                                   struct device_attribute *attr, char *buf)
484 {
485         struct regulator_dev *rdev = dev_get_drvdata(dev);
486
487         switch (rdev->desc->type) {
488         case REGULATOR_VOLTAGE:
489                 return sprintf(buf, "voltage\n");
490         case REGULATOR_CURRENT:
491                 return sprintf(buf, "current\n");
492         }
493         return sprintf(buf, "unknown\n");
494 }
495
496 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
497                                 struct device_attribute *attr, char *buf)
498 {
499         struct regulator_dev *rdev = dev_get_drvdata(dev);
500
501         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
502 }
503 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
504                 regulator_suspend_mem_uV_show, NULL);
505
506 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
507                                 struct device_attribute *attr, char *buf)
508 {
509         struct regulator_dev *rdev = dev_get_drvdata(dev);
510
511         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
512 }
513 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
514                 regulator_suspend_disk_uV_show, NULL);
515
516 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
517                                 struct device_attribute *attr, char *buf)
518 {
519         struct regulator_dev *rdev = dev_get_drvdata(dev);
520
521         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
522 }
523 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
524                 regulator_suspend_standby_uV_show, NULL);
525
526 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
527                                 struct device_attribute *attr, char *buf)
528 {
529         struct regulator_dev *rdev = dev_get_drvdata(dev);
530
531         return regulator_print_opmode(buf,
532                 rdev->constraints->state_mem.mode);
533 }
534 static DEVICE_ATTR(suspend_mem_mode, 0444,
535                 regulator_suspend_mem_mode_show, NULL);
536
537 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
538                                 struct device_attribute *attr, char *buf)
539 {
540         struct regulator_dev *rdev = dev_get_drvdata(dev);
541
542         return regulator_print_opmode(buf,
543                 rdev->constraints->state_disk.mode);
544 }
545 static DEVICE_ATTR(suspend_disk_mode, 0444,
546                 regulator_suspend_disk_mode_show, NULL);
547
548 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
549                                 struct device_attribute *attr, char *buf)
550 {
551         struct regulator_dev *rdev = dev_get_drvdata(dev);
552
553         return regulator_print_opmode(buf,
554                 rdev->constraints->state_standby.mode);
555 }
556 static DEVICE_ATTR(suspend_standby_mode, 0444,
557                 regulator_suspend_standby_mode_show, NULL);
558
559 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
560                                    struct device_attribute *attr, char *buf)
561 {
562         struct regulator_dev *rdev = dev_get_drvdata(dev);
563
564         return regulator_print_state(buf,
565                         rdev->constraints->state_mem.enabled);
566 }
567 static DEVICE_ATTR(suspend_mem_state, 0444,
568                 regulator_suspend_mem_state_show, NULL);
569
570 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
571                                    struct device_attribute *attr, char *buf)
572 {
573         struct regulator_dev *rdev = dev_get_drvdata(dev);
574
575         return regulator_print_state(buf,
576                         rdev->constraints->state_disk.enabled);
577 }
578 static DEVICE_ATTR(suspend_disk_state, 0444,
579                 regulator_suspend_disk_state_show, NULL);
580
581 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
582                                    struct device_attribute *attr, char *buf)
583 {
584         struct regulator_dev *rdev = dev_get_drvdata(dev);
585
586         return regulator_print_state(buf,
587                         rdev->constraints->state_standby.enabled);
588 }
589 static DEVICE_ATTR(suspend_standby_state, 0444,
590                 regulator_suspend_standby_state_show, NULL);
591
592 static ssize_t regulator_bypass_show(struct device *dev,
593                                      struct device_attribute *attr, char *buf)
594 {
595         struct regulator_dev *rdev = dev_get_drvdata(dev);
596         const char *report;
597         bool bypass;
598         int ret;
599
600         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
601
602         if (ret != 0)
603                 report = "unknown";
604         else if (bypass)
605                 report = "enabled";
606         else
607                 report = "disabled";
608
609         return sprintf(buf, "%s\n", report);
610 }
611 static DEVICE_ATTR(bypass, 0444,
612                    regulator_bypass_show, NULL);
613
614 /*
615  * These are the only attributes are present for all regulators.
616  * Other attributes are a function of regulator functionality.
617  */
618 static struct device_attribute regulator_dev_attrs[] = {
619         __ATTR(name, 0444, regulator_name_show, NULL),
620         __ATTR(num_users, 0444, regulator_num_users_show, NULL),
621         __ATTR(type, 0444, regulator_type_show, NULL),
622         __ATTR_NULL,
623 };
624
625 static void regulator_dev_release(struct device *dev)
626 {
627         struct regulator_dev *rdev = dev_get_drvdata(dev);
628         kfree(rdev);
629 }
630
631 static struct class regulator_class = {
632         .name = "regulator",
633         .dev_release = regulator_dev_release,
634         .dev_attrs = regulator_dev_attrs,
635 };
636
637 /* Calculate the new optimum regulator operating mode based on the new total
638  * consumer load. All locks held by caller */
639 static void drms_uA_update(struct regulator_dev *rdev)
640 {
641         struct regulator *sibling;
642         int current_uA = 0, output_uV, input_uV, err;
643         unsigned int mode;
644
645         err = regulator_check_drms(rdev);
646         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
647             (!rdev->desc->ops->get_voltage &&
648              !rdev->desc->ops->get_voltage_sel) ||
649             !rdev->desc->ops->set_mode)
650                 return;
651
652         /* get output voltage */
653         output_uV = _regulator_get_voltage(rdev);
654         if (output_uV <= 0)
655                 return;
656
657         /* get input voltage */
658         input_uV = 0;
659         if (rdev->supply)
660                 input_uV = regulator_get_voltage(rdev->supply);
661         if (input_uV <= 0)
662                 input_uV = rdev->constraints->input_uV;
663         if (input_uV <= 0)
664                 return;
665
666         /* calc total requested load */
667         list_for_each_entry(sibling, &rdev->consumer_list, list)
668                 current_uA += sibling->uA_load;
669
670         /* now get the optimum mode for our new total regulator load */
671         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
672                                                   output_uV, current_uA);
673
674         /* check the new mode is allowed */
675         err = regulator_mode_constrain(rdev, &mode);
676         if (err == 0)
677                 rdev->desc->ops->set_mode(rdev, mode);
678 }
679
680 static int suspend_set_state(struct regulator_dev *rdev,
681         struct regulator_state *rstate)
682 {
683         int ret = 0;
684
685         /* If we have no suspend mode configration don't set anything;
686          * only warn if the driver implements set_suspend_voltage or
687          * set_suspend_mode callback.
688          */
689         if (!rstate->enabled && !rstate->disabled) {
690                 if (rdev->desc->ops->set_suspend_voltage ||
691                     rdev->desc->ops->set_suspend_mode)
692                         rdev_warn(rdev, "No configuration\n");
693                 return 0;
694         }
695
696         if (rstate->enabled && rstate->disabled) {
697                 rdev_err(rdev, "invalid configuration\n");
698                 return -EINVAL;
699         }
700
701         if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
702                 ret = rdev->desc->ops->set_suspend_enable(rdev);
703         else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
704                 ret = rdev->desc->ops->set_suspend_disable(rdev);
705         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
706                 ret = 0;
707
708         if (ret < 0) {
709                 rdev_err(rdev, "failed to enabled/disable\n");
710                 return ret;
711         }
712
713         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
714                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
715                 if (ret < 0) {
716                         rdev_err(rdev, "failed to set voltage\n");
717                         return ret;
718                 }
719         }
720
721         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
722                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
723                 if (ret < 0) {
724                         rdev_err(rdev, "failed to set mode\n");
725                         return ret;
726                 }
727         }
728         return ret;
729 }
730
731 /* locks held by caller */
732 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
733 {
734         if (!rdev->constraints)
735                 return -EINVAL;
736
737         switch (state) {
738         case PM_SUSPEND_STANDBY:
739                 return suspend_set_state(rdev,
740                         &rdev->constraints->state_standby);
741         case PM_SUSPEND_MEM:
742                 return suspend_set_state(rdev,
743                         &rdev->constraints->state_mem);
744         case PM_SUSPEND_MAX:
745                 return suspend_set_state(rdev,
746                         &rdev->constraints->state_disk);
747         default:
748                 return -EINVAL;
749         }
750 }
751
752 static void print_constraints(struct regulator_dev *rdev)
753 {
754         struct regulation_constraints *constraints = rdev->constraints;
755         char buf[80] = "";
756         int count = 0;
757         int ret;
758
759         if (constraints->min_uV && constraints->max_uV) {
760                 if (constraints->min_uV == constraints->max_uV)
761                         count += sprintf(buf + count, "%d mV ",
762                                          constraints->min_uV / 1000);
763                 else
764                         count += sprintf(buf + count, "%d <--> %d mV ",
765                                          constraints->min_uV / 1000,
766                                          constraints->max_uV / 1000);
767         }
768
769         if (!constraints->min_uV ||
770             constraints->min_uV != constraints->max_uV) {
771                 ret = _regulator_get_voltage(rdev);
772                 if (ret > 0)
773                         count += sprintf(buf + count, "at %d mV ", ret / 1000);
774         }
775
776         if (constraints->uV_offset)
777                 count += sprintf(buf, "%dmV offset ",
778                                  constraints->uV_offset / 1000);
779
780         if (constraints->min_uA && constraints->max_uA) {
781                 if (constraints->min_uA == constraints->max_uA)
782                         count += sprintf(buf + count, "%d mA ",
783                                          constraints->min_uA / 1000);
784                 else
785                         count += sprintf(buf + count, "%d <--> %d mA ",
786                                          constraints->min_uA / 1000,
787                                          constraints->max_uA / 1000);
788         }
789
790         if (!constraints->min_uA ||
791             constraints->min_uA != constraints->max_uA) {
792                 ret = _regulator_get_current_limit(rdev);
793                 if (ret > 0)
794                         count += sprintf(buf + count, "at %d mA ", ret / 1000);
795         }
796
797         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
798                 count += sprintf(buf + count, "fast ");
799         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
800                 count += sprintf(buf + count, "normal ");
801         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
802                 count += sprintf(buf + count, "idle ");
803         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
804                 count += sprintf(buf + count, "standby");
805
806         if (!count)
807                 sprintf(buf, "no parameters");
808
809         rdev_info(rdev, "%s\n", buf);
810
811         if ((constraints->min_uV != constraints->max_uV) &&
812             !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
813                 rdev_warn(rdev,
814                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
815 }
816
817 static int machine_constraints_voltage(struct regulator_dev *rdev,
818         struct regulation_constraints *constraints)
819 {
820         struct regulator_ops *ops = rdev->desc->ops;
821         int ret;
822
823         /* do we need to apply the constraint voltage */
824         if (rdev->constraints->apply_uV &&
825             rdev->constraints->min_uV == rdev->constraints->max_uV) {
826                 ret = _regulator_do_set_voltage(rdev,
827                                                 rdev->constraints->min_uV,
828                                                 rdev->constraints->max_uV);
829                 if (ret < 0) {
830                         rdev_err(rdev, "failed to apply %duV constraint\n",
831                                  rdev->constraints->min_uV);
832                         return ret;
833                 }
834         }
835
836         /* constrain machine-level voltage specs to fit
837          * the actual range supported by this regulator.
838          */
839         if (ops->list_voltage && rdev->desc->n_voltages) {
840                 int     count = rdev->desc->n_voltages;
841                 int     i;
842                 int     min_uV = INT_MAX;
843                 int     max_uV = INT_MIN;
844                 int     cmin = constraints->min_uV;
845                 int     cmax = constraints->max_uV;
846
847                 /* it's safe to autoconfigure fixed-voltage supplies
848                    and the constraints are used by list_voltage. */
849                 if (count == 1 && !cmin) {
850                         cmin = 1;
851                         cmax = INT_MAX;
852                         constraints->min_uV = cmin;
853                         constraints->max_uV = cmax;
854                 }
855
856                 /* voltage constraints are optional */
857                 if ((cmin == 0) && (cmax == 0))
858                         return 0;
859
860                 /* else require explicit machine-level constraints */
861                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
862                         rdev_err(rdev, "invalid voltage constraints\n");
863                         return -EINVAL;
864                 }
865
866                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
867                 for (i = 0; i < count; i++) {
868                         int     value;
869
870                         value = ops->list_voltage(rdev, i);
871                         if (value <= 0)
872                                 continue;
873
874                         /* maybe adjust [min_uV..max_uV] */
875                         if (value >= cmin && value < min_uV)
876                                 min_uV = value;
877                         if (value <= cmax && value > max_uV)
878                                 max_uV = value;
879                 }
880
881                 /* final: [min_uV..max_uV] valid iff constraints valid */
882                 if (max_uV < min_uV) {
883                         rdev_err(rdev, "unsupportable voltage constraints\n");
884                         return -EINVAL;
885                 }
886
887                 /* use regulator's subset of machine constraints */
888                 if (constraints->min_uV < min_uV) {
889                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
890                                  constraints->min_uV, min_uV);
891                         constraints->min_uV = min_uV;
892                 }
893                 if (constraints->max_uV > max_uV) {
894                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
895                                  constraints->max_uV, max_uV);
896                         constraints->max_uV = max_uV;
897                 }
898         }
899
900         return 0;
901 }
902
903 /**
904  * set_machine_constraints - sets regulator constraints
905  * @rdev: regulator source
906  * @constraints: constraints to apply
907  *
908  * Allows platform initialisation code to define and constrain
909  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
910  * Constraints *must* be set by platform code in order for some
911  * regulator operations to proceed i.e. set_voltage, set_current_limit,
912  * set_mode.
913  */
914 static int set_machine_constraints(struct regulator_dev *rdev,
915         const struct regulation_constraints *constraints)
916 {
917         int ret = 0;
918         struct regulator_ops *ops = rdev->desc->ops;
919
920         if (constraints)
921                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
922                                             GFP_KERNEL);
923         else
924                 rdev->constraints = kzalloc(sizeof(*constraints),
925                                             GFP_KERNEL);
926         if (!rdev->constraints)
927                 return -ENOMEM;
928
929         ret = machine_constraints_voltage(rdev, rdev->constraints);
930         if (ret != 0)
931                 goto out;
932
933         /* do we need to setup our suspend state */
934         if (rdev->constraints->initial_state) {
935                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
936                 if (ret < 0) {
937                         rdev_err(rdev, "failed to set suspend state\n");
938                         goto out;
939                 }
940         }
941
942         if (rdev->constraints->initial_mode) {
943                 if (!ops->set_mode) {
944                         rdev_err(rdev, "no set_mode operation\n");
945                         ret = -EINVAL;
946                         goto out;
947                 }
948
949                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
950                 if (ret < 0) {
951                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
952                         goto out;
953                 }
954         }
955
956         /* If the constraints say the regulator should be on at this point
957          * and we have control then make sure it is enabled.
958          */
959         if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
960             ops->enable) {
961                 ret = ops->enable(rdev);
962                 if (ret < 0) {
963                         rdev_err(rdev, "failed to enable\n");
964                         goto out;
965                 }
966         }
967
968         if (rdev->constraints->ramp_delay && ops->set_ramp_delay) {
969                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
970                 if (ret < 0) {
971                         rdev_err(rdev, "failed to set ramp_delay\n");
972                         goto out;
973                 }
974         }
975
976         print_constraints(rdev);
977         return 0;
978 out:
979         kfree(rdev->constraints);
980         rdev->constraints = NULL;
981         return ret;
982 }
983
984 /**
985  * set_supply - set regulator supply regulator
986  * @rdev: regulator name
987  * @supply_rdev: supply regulator name
988  *
989  * Called by platform initialisation code to set the supply regulator for this
990  * regulator. This ensures that a regulators supply will also be enabled by the
991  * core if it's child is enabled.
992  */
993 static int set_supply(struct regulator_dev *rdev,
994                       struct regulator_dev *supply_rdev)
995 {
996         int err;
997
998         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
999
1000         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1001         if (rdev->supply == NULL) {
1002                 err = -ENOMEM;
1003                 return err;
1004         }
1005         supply_rdev->open_count++;
1006
1007         return 0;
1008 }
1009
1010 /**
1011  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1012  * @rdev:         regulator source
1013  * @consumer_dev_name: dev_name() string for device supply applies to
1014  * @supply:       symbolic name for supply
1015  *
1016  * Allows platform initialisation code to map physical regulator
1017  * sources to symbolic names for supplies for use by devices.  Devices
1018  * should use these symbolic names to request regulators, avoiding the
1019  * need to provide board-specific regulator names as platform data.
1020  */
1021 static int set_consumer_device_supply(struct regulator_dev *rdev,
1022                                       const char *consumer_dev_name,
1023                                       const char *supply)
1024 {
1025         struct regulator_map *node;
1026         int has_dev;
1027
1028         if (supply == NULL)
1029                 return -EINVAL;
1030
1031         if (consumer_dev_name != NULL)
1032                 has_dev = 1;
1033         else
1034                 has_dev = 0;
1035
1036         list_for_each_entry(node, &regulator_map_list, list) {
1037                 if (node->dev_name && consumer_dev_name) {
1038                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1039                                 continue;
1040                 } else if (node->dev_name || consumer_dev_name) {
1041                         continue;
1042                 }
1043
1044                 if (strcmp(node->supply, supply) != 0)
1045                         continue;
1046
1047                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1048                          consumer_dev_name,
1049                          dev_name(&node->regulator->dev),
1050                          node->regulator->desc->name,
1051                          supply,
1052                          dev_name(&rdev->dev), rdev_get_name(rdev));
1053                 return -EBUSY;
1054         }
1055
1056         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1057         if (node == NULL)
1058                 return -ENOMEM;
1059
1060         node->regulator = rdev;
1061         node->supply = supply;
1062
1063         if (has_dev) {
1064                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1065                 if (node->dev_name == NULL) {
1066                         kfree(node);
1067                         return -ENOMEM;
1068                 }
1069         }
1070
1071         list_add(&node->list, &regulator_map_list);
1072         return 0;
1073 }
1074
1075 static void unset_regulator_supplies(struct regulator_dev *rdev)
1076 {
1077         struct regulator_map *node, *n;
1078
1079         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1080                 if (rdev == node->regulator) {
1081                         list_del(&node->list);
1082                         kfree(node->dev_name);
1083                         kfree(node);
1084                 }
1085         }
1086 }
1087
1088 #define REG_STR_SIZE    64
1089
1090 static struct regulator *create_regulator(struct regulator_dev *rdev,
1091                                           struct device *dev,
1092                                           const char *supply_name)
1093 {
1094         struct regulator *regulator;
1095         char buf[REG_STR_SIZE];
1096         int err, size;
1097
1098         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1099         if (regulator == NULL)
1100                 return NULL;
1101
1102         mutex_lock(&rdev->mutex);
1103         regulator->rdev = rdev;
1104         list_add(&regulator->list, &rdev->consumer_list);
1105
1106         if (dev) {
1107                 regulator->dev = dev;
1108
1109                 /* Add a link to the device sysfs entry */
1110                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1111                                  dev->kobj.name, supply_name);
1112                 if (size >= REG_STR_SIZE)
1113                         goto overflow_err;
1114
1115                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1116                 if (regulator->supply_name == NULL)
1117                         goto overflow_err;
1118
1119                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1120                                         buf);
1121                 if (err) {
1122                         rdev_warn(rdev, "could not add device link %s err %d\n",
1123                                   dev->kobj.name, err);
1124                         /* non-fatal */
1125                 }
1126         } else {
1127                 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1128                 if (regulator->supply_name == NULL)
1129                         goto overflow_err;
1130         }
1131
1132         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1133                                                 rdev->debugfs);
1134         if (!regulator->debugfs) {
1135                 rdev_warn(rdev, "Failed to create debugfs directory\n");
1136         } else {
1137                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1138                                    &regulator->uA_load);
1139                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1140                                    &regulator->min_uV);
1141                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1142                                    &regulator->max_uV);
1143         }
1144
1145         /*
1146          * Check now if the regulator is an always on regulator - if
1147          * it is then we don't need to do nearly so much work for
1148          * enable/disable calls.
1149          */
1150         if (!_regulator_can_change_status(rdev) &&
1151             _regulator_is_enabled(rdev))
1152                 regulator->always_on = true;
1153
1154         mutex_unlock(&rdev->mutex);
1155         return regulator;
1156 overflow_err:
1157         list_del(&regulator->list);
1158         kfree(regulator);
1159         mutex_unlock(&rdev->mutex);
1160         return NULL;
1161 }
1162
1163 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1164 {
1165         if (!rdev->desc->ops->enable_time)
1166                 return rdev->desc->enable_time;
1167         return rdev->desc->ops->enable_time(rdev);
1168 }
1169
1170 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1171                                                   const char *supply,
1172                                                   int *ret)
1173 {
1174         struct regulator_dev *r;
1175         struct device_node *node;
1176         struct regulator_map *map;
1177         const char *devname = NULL;
1178
1179         /* first do a dt based lookup */
1180         if (dev && dev->of_node) {
1181                 node = of_get_regulator(dev, supply);
1182                 if (node) {
1183                         list_for_each_entry(r, &regulator_list, list)
1184                                 if (r->dev.parent &&
1185                                         node == r->dev.of_node)
1186                                         return r;
1187                 } else {
1188                         /*
1189                          * If we couldn't even get the node then it's
1190                          * not just that the device didn't register
1191                          * yet, there's no node and we'll never
1192                          * succeed.
1193                          */
1194                         *ret = -ENODEV;
1195                 }
1196         }
1197
1198         /* if not found, try doing it non-dt way */
1199         if (dev)
1200                 devname = dev_name(dev);
1201
1202         list_for_each_entry(r, &regulator_list, list)
1203                 if (strcmp(rdev_get_name(r), supply) == 0)
1204                         return r;
1205
1206         list_for_each_entry(map, &regulator_map_list, list) {
1207                 /* If the mapping has a device set up it must match */
1208                 if (map->dev_name &&
1209                     (!devname || strcmp(map->dev_name, devname)))
1210                         continue;
1211
1212                 if (strcmp(map->supply, supply) == 0)
1213                         return map->regulator;
1214         }
1215
1216
1217         return NULL;
1218 }
1219
1220 /* Internal regulator request function */
1221 static struct regulator *_regulator_get(struct device *dev, const char *id,
1222                                         int exclusive)
1223 {
1224         struct regulator_dev *rdev;
1225         struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1226         const char *devname = NULL;
1227         int ret;
1228
1229         if (id == NULL) {
1230                 pr_err("get() with no identifier\n");
1231                 return regulator;
1232         }
1233
1234         if (dev)
1235                 devname = dev_name(dev);
1236
1237         mutex_lock(&regulator_list_mutex);
1238
1239         rdev = regulator_dev_lookup(dev, id, &ret);
1240         if (rdev)
1241                 goto found;
1242
1243         if (board_wants_dummy_regulator) {
1244                 rdev = dummy_regulator_rdev;
1245                 goto found;
1246         }
1247
1248 #ifdef CONFIG_REGULATOR_DUMMY
1249         if (!devname)
1250                 devname = "deviceless";
1251
1252         /* If the board didn't flag that it was fully constrained then
1253          * substitute in a dummy regulator so consumers can continue.
1254          */
1255         if (!has_full_constraints) {
1256                 pr_warn("%s supply %s not found, using dummy regulator\n",
1257                         devname, id);
1258                 rdev = dummy_regulator_rdev;
1259                 goto found;
1260         }
1261 #endif
1262
1263         mutex_unlock(&regulator_list_mutex);
1264         return regulator;
1265
1266 found:
1267         if (rdev->exclusive) {
1268                 regulator = ERR_PTR(-EPERM);
1269                 goto out;
1270         }
1271
1272         if (exclusive && rdev->open_count) {
1273                 regulator = ERR_PTR(-EBUSY);
1274                 goto out;
1275         }
1276
1277         if (!try_module_get(rdev->owner))
1278                 goto out;
1279
1280         regulator = create_regulator(rdev, dev, id);
1281         if (regulator == NULL) {
1282                 regulator = ERR_PTR(-ENOMEM);
1283                 module_put(rdev->owner);
1284                 goto out;
1285         }
1286
1287         rdev->open_count++;
1288         if (exclusive) {
1289                 rdev->exclusive = 1;
1290
1291                 ret = _regulator_is_enabled(rdev);
1292                 if (ret > 0)
1293                         rdev->use_count = 1;
1294                 else
1295                         rdev->use_count = 0;
1296         }
1297
1298 out:
1299         mutex_unlock(&regulator_list_mutex);
1300
1301         return regulator;
1302 }
1303
1304 /**
1305  * regulator_get - lookup and obtain a reference to a regulator.
1306  * @dev: device for regulator "consumer"
1307  * @id: Supply name or regulator ID.
1308  *
1309  * Returns a struct regulator corresponding to the regulator producer,
1310  * or IS_ERR() condition containing errno.
1311  *
1312  * Use of supply names configured via regulator_set_device_supply() is
1313  * strongly encouraged.  It is recommended that the supply name used
1314  * should match the name used for the supply and/or the relevant
1315  * device pins in the datasheet.
1316  */
1317 struct regulator *regulator_get(struct device *dev, const char *id)
1318 {
1319         return _regulator_get(dev, id, 0);
1320 }
1321 EXPORT_SYMBOL_GPL(regulator_get);
1322
1323 static void devm_regulator_release(struct device *dev, void *res)
1324 {
1325         regulator_put(*(struct regulator **)res);
1326 }
1327
1328 /**
1329  * devm_regulator_get - Resource managed regulator_get()
1330  * @dev: device for regulator "consumer"
1331  * @id: Supply name or regulator ID.
1332  *
1333  * Managed regulator_get(). Regulators returned from this function are
1334  * automatically regulator_put() on driver detach. See regulator_get() for more
1335  * information.
1336  */
1337 struct regulator *devm_regulator_get(struct device *dev, const char *id)
1338 {
1339         struct regulator **ptr, *regulator;
1340
1341         ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1342         if (!ptr)
1343                 return ERR_PTR(-ENOMEM);
1344
1345         regulator = regulator_get(dev, id);
1346         if (!IS_ERR(regulator)) {
1347                 *ptr = regulator;
1348                 devres_add(dev, ptr);
1349         } else {
1350                 devres_free(ptr);
1351         }
1352
1353         return regulator;
1354 }
1355 EXPORT_SYMBOL_GPL(devm_regulator_get);
1356
1357 /**
1358  * regulator_get_exclusive - obtain exclusive access to a regulator.
1359  * @dev: device for regulator "consumer"
1360  * @id: Supply name or regulator ID.
1361  *
1362  * Returns a struct regulator corresponding to the regulator producer,
1363  * or IS_ERR() condition containing errno.  Other consumers will be
1364  * unable to obtain this reference is held and the use count for the
1365  * regulator will be initialised to reflect the current state of the
1366  * regulator.
1367  *
1368  * This is intended for use by consumers which cannot tolerate shared
1369  * use of the regulator such as those which need to force the
1370  * regulator off for correct operation of the hardware they are
1371  * controlling.
1372  *
1373  * Use of supply names configured via regulator_set_device_supply() is
1374  * strongly encouraged.  It is recommended that the supply name used
1375  * should match the name used for the supply and/or the relevant
1376  * device pins in the datasheet.
1377  */
1378 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1379 {
1380         return _regulator_get(dev, id, 1);
1381 }
1382 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1383
1384 /* Locks held by regulator_put() */
1385 static void _regulator_put(struct regulator *regulator)
1386 {
1387         struct regulator_dev *rdev;
1388
1389         if (regulator == NULL || IS_ERR(regulator))
1390                 return;
1391
1392         rdev = regulator->rdev;
1393
1394         debugfs_remove_recursive(regulator->debugfs);
1395
1396         /* remove any sysfs entries */
1397         if (regulator->dev)
1398                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1399         kfree(regulator->supply_name);
1400         list_del(&regulator->list);
1401         kfree(regulator);
1402
1403         rdev->open_count--;
1404         rdev->exclusive = 0;
1405
1406         module_put(rdev->owner);
1407 }
1408
1409 /**
1410  * regulator_put - "free" the regulator source
1411  * @regulator: regulator source
1412  *
1413  * Note: drivers must ensure that all regulator_enable calls made on this
1414  * regulator source are balanced by regulator_disable calls prior to calling
1415  * this function.
1416  */
1417 void regulator_put(struct regulator *regulator)
1418 {
1419         mutex_lock(&regulator_list_mutex);
1420         _regulator_put(regulator);
1421         mutex_unlock(&regulator_list_mutex);
1422 }
1423 EXPORT_SYMBOL_GPL(regulator_put);
1424
1425 static int devm_regulator_match(struct device *dev, void *res, void *data)
1426 {
1427         struct regulator **r = res;
1428         if (!r || !*r) {
1429                 WARN_ON(!r || !*r);
1430                 return 0;
1431         }
1432         return *r == data;
1433 }
1434
1435 /**
1436  * devm_regulator_put - Resource managed regulator_put()
1437  * @regulator: regulator to free
1438  *
1439  * Deallocate a regulator allocated with devm_regulator_get(). Normally
1440  * this function will not need to be called and the resource management
1441  * code will ensure that the resource is freed.
1442  */
1443 void devm_regulator_put(struct regulator *regulator)
1444 {
1445         int rc;
1446
1447         rc = devres_release(regulator->dev, devm_regulator_release,
1448                             devm_regulator_match, regulator);
1449         if (rc != 0)
1450                 WARN_ON(rc);
1451 }
1452 EXPORT_SYMBOL_GPL(devm_regulator_put);
1453
1454 static int _regulator_do_enable(struct regulator_dev *rdev)
1455 {
1456         int ret, delay;
1457
1458         /* Query before enabling in case configuration dependent.  */
1459         ret = _regulator_get_enable_time(rdev);
1460         if (ret >= 0) {
1461                 delay = ret;
1462         } else {
1463                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1464                 delay = 0;
1465         }
1466
1467         trace_regulator_enable(rdev_get_name(rdev));
1468
1469         if (rdev->ena_gpio) {
1470                 gpio_set_value_cansleep(rdev->ena_gpio,
1471                                         !rdev->ena_gpio_invert);
1472                 rdev->ena_gpio_state = 1;
1473         } else if (rdev->desc->ops->enable) {
1474                 ret = rdev->desc->ops->enable(rdev);
1475                 if (ret < 0)
1476                         return ret;
1477         } else {
1478                 return -EINVAL;
1479         }
1480
1481         /* Allow the regulator to ramp; it would be useful to extend
1482          * this for bulk operations so that the regulators can ramp
1483          * together.  */
1484         trace_regulator_enable_delay(rdev_get_name(rdev));
1485
1486         if (delay >= 1000) {
1487                 mdelay(delay / 1000);
1488                 udelay(delay % 1000);
1489         } else if (delay) {
1490                 udelay(delay);
1491         }
1492
1493         trace_regulator_enable_complete(rdev_get_name(rdev));
1494
1495         return 0;
1496 }
1497
1498 /* locks held by regulator_enable() */
1499 static int _regulator_enable(struct regulator_dev *rdev)
1500 {
1501         int ret;
1502
1503         /* check voltage and requested load before enabling */
1504         if (rdev->constraints &&
1505             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1506                 drms_uA_update(rdev);
1507
1508         if (rdev->use_count == 0) {
1509                 /* The regulator may on if it's not switchable or left on */
1510                 ret = _regulator_is_enabled(rdev);
1511                 if (ret == -EINVAL || ret == 0) {
1512                         if (!_regulator_can_change_status(rdev))
1513                                 return -EPERM;
1514
1515                         ret = _regulator_do_enable(rdev);
1516                         if (ret < 0)
1517                                 return ret;
1518
1519                 } else if (ret < 0) {
1520                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1521                         return ret;
1522                 }
1523                 /* Fallthrough on positive return values - already enabled */
1524         }
1525
1526         rdev->use_count++;
1527
1528         return 0;
1529 }
1530
1531 /**
1532  * regulator_enable - enable regulator output
1533  * @regulator: regulator source
1534  *
1535  * Request that the regulator be enabled with the regulator output at
1536  * the predefined voltage or current value.  Calls to regulator_enable()
1537  * must be balanced with calls to regulator_disable().
1538  *
1539  * NOTE: the output value can be set by other drivers, boot loader or may be
1540  * hardwired in the regulator.
1541  */
1542 int regulator_enable(struct regulator *regulator)
1543 {
1544         struct regulator_dev *rdev = regulator->rdev;
1545         int ret = 0;
1546
1547         if (regulator->always_on)
1548                 return 0;
1549
1550         if (rdev->supply) {
1551                 ret = regulator_enable(rdev->supply);
1552                 if (ret != 0)
1553                         return ret;
1554         }
1555
1556         mutex_lock(&rdev->mutex);
1557         ret = _regulator_enable(rdev);
1558         mutex_unlock(&rdev->mutex);
1559
1560         if (ret != 0 && rdev->supply)
1561                 regulator_disable(rdev->supply);
1562
1563         return ret;
1564 }
1565 EXPORT_SYMBOL_GPL(regulator_enable);
1566
1567 static int _regulator_do_disable(struct regulator_dev *rdev)
1568 {
1569         int ret;
1570
1571         trace_regulator_disable(rdev_get_name(rdev));
1572
1573         if (rdev->ena_gpio) {
1574                 gpio_set_value_cansleep(rdev->ena_gpio,
1575                                         rdev->ena_gpio_invert);
1576                 rdev->ena_gpio_state = 0;
1577
1578         } else if (rdev->desc->ops->disable) {
1579                 ret = rdev->desc->ops->disable(rdev);
1580                 if (ret != 0)
1581                         return ret;
1582         }
1583
1584         trace_regulator_disable_complete(rdev_get_name(rdev));
1585
1586         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1587                              NULL);
1588         return 0;
1589 }
1590
1591 /* locks held by regulator_disable() */
1592 static int _regulator_disable(struct regulator_dev *rdev)
1593 {
1594         int ret = 0;
1595
1596         if (WARN(rdev->use_count <= 0,
1597                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
1598                 return -EIO;
1599
1600         /* are we the last user and permitted to disable ? */
1601         if (rdev->use_count == 1 &&
1602             (rdev->constraints && !rdev->constraints->always_on)) {
1603
1604                 /* we are last user */
1605                 if (_regulator_can_change_status(rdev)) {
1606                         ret = _regulator_do_disable(rdev);
1607                         if (ret < 0) {
1608                                 rdev_err(rdev, "failed to disable\n");
1609                                 return ret;
1610                         }
1611                 }
1612
1613                 rdev->use_count = 0;
1614         } else if (rdev->use_count > 1) {
1615
1616                 if (rdev->constraints &&
1617                         (rdev->constraints->valid_ops_mask &
1618                         REGULATOR_CHANGE_DRMS))
1619                         drms_uA_update(rdev);
1620
1621                 rdev->use_count--;
1622         }
1623
1624         return ret;
1625 }
1626
1627 /**
1628  * regulator_disable - disable regulator output
1629  * @regulator: regulator source
1630  *
1631  * Disable the regulator output voltage or current.  Calls to
1632  * regulator_enable() must be balanced with calls to
1633  * regulator_disable().
1634  *
1635  * NOTE: this will only disable the regulator output if no other consumer
1636  * devices have it enabled, the regulator device supports disabling and
1637  * machine constraints permit this operation.
1638  */
1639 int regulator_disable(struct regulator *regulator)
1640 {
1641         struct regulator_dev *rdev = regulator->rdev;
1642         int ret = 0;
1643
1644         if (regulator->always_on)
1645                 return 0;
1646
1647         mutex_lock(&rdev->mutex);
1648         ret = _regulator_disable(rdev);
1649         mutex_unlock(&rdev->mutex);
1650
1651         if (ret == 0 && rdev->supply)
1652                 regulator_disable(rdev->supply);
1653
1654         return ret;
1655 }
1656 EXPORT_SYMBOL_GPL(regulator_disable);
1657
1658 /* locks held by regulator_force_disable() */
1659 static int _regulator_force_disable(struct regulator_dev *rdev)
1660 {
1661         int ret = 0;
1662
1663         /* force disable */
1664         if (rdev->desc->ops->disable) {
1665                 /* ah well, who wants to live forever... */
1666                 ret = rdev->desc->ops->disable(rdev);
1667                 if (ret < 0) {
1668                         rdev_err(rdev, "failed to force disable\n");
1669                         return ret;
1670                 }
1671                 /* notify other consumers that power has been forced off */
1672                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1673                         REGULATOR_EVENT_DISABLE, NULL);
1674         }
1675
1676         return ret;
1677 }
1678
1679 /**
1680  * regulator_force_disable - force disable regulator output
1681  * @regulator: regulator source
1682  *
1683  * Forcibly disable the regulator output voltage or current.
1684  * NOTE: this *will* disable the regulator output even if other consumer
1685  * devices have it enabled. This should be used for situations when device
1686  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1687  */
1688 int regulator_force_disable(struct regulator *regulator)
1689 {
1690         struct regulator_dev *rdev = regulator->rdev;
1691         int ret;
1692
1693         mutex_lock(&rdev->mutex);
1694         regulator->uA_load = 0;
1695         ret = _regulator_force_disable(regulator->rdev);
1696         mutex_unlock(&rdev->mutex);
1697
1698         if (rdev->supply)
1699                 while (rdev->open_count--)
1700                         regulator_disable(rdev->supply);
1701
1702         return ret;
1703 }
1704 EXPORT_SYMBOL_GPL(regulator_force_disable);
1705
1706 static void regulator_disable_work(struct work_struct *work)
1707 {
1708         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1709                                                   disable_work.work);
1710         int count, i, ret;
1711
1712         mutex_lock(&rdev->mutex);
1713
1714         BUG_ON(!rdev->deferred_disables);
1715
1716         count = rdev->deferred_disables;
1717         rdev->deferred_disables = 0;
1718
1719         for (i = 0; i < count; i++) {
1720                 ret = _regulator_disable(rdev);
1721                 if (ret != 0)
1722                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1723         }
1724
1725         mutex_unlock(&rdev->mutex);
1726
1727         if (rdev->supply) {
1728                 for (i = 0; i < count; i++) {
1729                         ret = regulator_disable(rdev->supply);
1730                         if (ret != 0) {
1731                                 rdev_err(rdev,
1732                                          "Supply disable failed: %d\n", ret);
1733                         }
1734                 }
1735         }
1736 }
1737
1738 /**
1739  * regulator_disable_deferred - disable regulator output with delay
1740  * @regulator: regulator source
1741  * @ms: miliseconds until the regulator is disabled
1742  *
1743  * Execute regulator_disable() on the regulator after a delay.  This
1744  * is intended for use with devices that require some time to quiesce.
1745  *
1746  * NOTE: this will only disable the regulator output if no other consumer
1747  * devices have it enabled, the regulator device supports disabling and
1748  * machine constraints permit this operation.
1749  */
1750 int regulator_disable_deferred(struct regulator *regulator, int ms)
1751 {
1752         struct regulator_dev *rdev = regulator->rdev;
1753         int ret;
1754
1755         if (regulator->always_on)
1756                 return 0;
1757
1758         if (!ms)
1759                 return regulator_disable(regulator);
1760
1761         mutex_lock(&rdev->mutex);
1762         rdev->deferred_disables++;
1763         mutex_unlock(&rdev->mutex);
1764
1765         ret = schedule_delayed_work(&rdev->disable_work,
1766                                     msecs_to_jiffies(ms));
1767         if (ret < 0)
1768                 return ret;
1769         else
1770                 return 0;
1771 }
1772 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1773
1774 /**
1775  * regulator_is_enabled_regmap - standard is_enabled() for regmap users
1776  *
1777  * @rdev: regulator to operate on
1778  *
1779  * Regulators that use regmap for their register I/O can set the
1780  * enable_reg and enable_mask fields in their descriptor and then use
1781  * this as their is_enabled operation, saving some code.
1782  */
1783 int regulator_is_enabled_regmap(struct regulator_dev *rdev)
1784 {
1785         unsigned int val;
1786         int ret;
1787
1788         ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
1789         if (ret != 0)
1790                 return ret;
1791
1792         return (val & rdev->desc->enable_mask) != 0;
1793 }
1794 EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
1795
1796 /**
1797  * regulator_enable_regmap - standard enable() for regmap users
1798  *
1799  * @rdev: regulator to operate on
1800  *
1801  * Regulators that use regmap for their register I/O can set the
1802  * enable_reg and enable_mask fields in their descriptor and then use
1803  * this as their enable() operation, saving some code.
1804  */
1805 int regulator_enable_regmap(struct regulator_dev *rdev)
1806 {
1807         return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1808                                   rdev->desc->enable_mask,
1809                                   rdev->desc->enable_mask);
1810 }
1811 EXPORT_SYMBOL_GPL(regulator_enable_regmap);
1812
1813 /**
1814  * regulator_disable_regmap - standard disable() for regmap users
1815  *
1816  * @rdev: regulator to operate on
1817  *
1818  * Regulators that use regmap for their register I/O can set the
1819  * enable_reg and enable_mask fields in their descriptor and then use
1820  * this as their disable() operation, saving some code.
1821  */
1822 int regulator_disable_regmap(struct regulator_dev *rdev)
1823 {
1824         return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1825                                   rdev->desc->enable_mask, 0);
1826 }
1827 EXPORT_SYMBOL_GPL(regulator_disable_regmap);
1828
1829 static int _regulator_is_enabled(struct regulator_dev *rdev)
1830 {
1831         /* A GPIO control always takes precedence */
1832         if (rdev->ena_gpio)
1833                 return rdev->ena_gpio_state;
1834
1835         /* If we don't know then assume that the regulator is always on */
1836         if (!rdev->desc->ops->is_enabled)
1837                 return 1;
1838
1839         return rdev->desc->ops->is_enabled(rdev);
1840 }
1841
1842 /**
1843  * regulator_is_enabled - is the regulator output enabled
1844  * @regulator: regulator source
1845  *
1846  * Returns positive if the regulator driver backing the source/client
1847  * has requested that the device be enabled, zero if it hasn't, else a
1848  * negative errno code.
1849  *
1850  * Note that the device backing this regulator handle can have multiple
1851  * users, so it might be enabled even if regulator_enable() was never
1852  * called for this particular source.
1853  */
1854 int regulator_is_enabled(struct regulator *regulator)
1855 {
1856         int ret;
1857
1858         if (regulator->always_on)
1859                 return 1;
1860
1861         mutex_lock(&regulator->rdev->mutex);
1862         ret = _regulator_is_enabled(regulator->rdev);
1863         mutex_unlock(&regulator->rdev->mutex);
1864
1865         return ret;
1866 }
1867 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1868
1869 /**
1870  * regulator_count_voltages - count regulator_list_voltage() selectors
1871  * @regulator: regulator source
1872  *
1873  * Returns number of selectors, or negative errno.  Selectors are
1874  * numbered starting at zero, and typically correspond to bitfields
1875  * in hardware registers.
1876  */
1877 int regulator_count_voltages(struct regulator *regulator)
1878 {
1879         struct regulator_dev    *rdev = regulator->rdev;
1880
1881         return rdev->desc->n_voltages ? : -EINVAL;
1882 }
1883 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1884
1885 /**
1886  * regulator_list_voltage_linear - List voltages with simple calculation
1887  *
1888  * @rdev: Regulator device
1889  * @selector: Selector to convert into a voltage
1890  *
1891  * Regulators with a simple linear mapping between voltages and
1892  * selectors can set min_uV and uV_step in the regulator descriptor
1893  * and then use this function as their list_voltage() operation,
1894  */
1895 int regulator_list_voltage_linear(struct regulator_dev *rdev,
1896                                   unsigned int selector)
1897 {
1898         if (selector >= rdev->desc->n_voltages)
1899                 return -EINVAL;
1900
1901         return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
1902 }
1903 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
1904
1905 /**
1906  * regulator_list_voltage_table - List voltages with table based mapping
1907  *
1908  * @rdev: Regulator device
1909  * @selector: Selector to convert into a voltage
1910  *
1911  * Regulators with table based mapping between voltages and
1912  * selectors can set volt_table in the regulator descriptor
1913  * and then use this function as their list_voltage() operation.
1914  */
1915 int regulator_list_voltage_table(struct regulator_dev *rdev,
1916                                  unsigned int selector)
1917 {
1918         if (!rdev->desc->volt_table) {
1919                 BUG_ON(!rdev->desc->volt_table);
1920                 return -EINVAL;
1921         }
1922
1923         if (selector >= rdev->desc->n_voltages)
1924                 return -EINVAL;
1925
1926         return rdev->desc->volt_table[selector];
1927 }
1928 EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
1929
1930 /**
1931  * regulator_list_voltage - enumerate supported voltages
1932  * @regulator: regulator source
1933  * @selector: identify voltage to list
1934  * Context: can sleep
1935  *
1936  * Returns a voltage that can be passed to @regulator_set_voltage(),
1937  * zero if this selector code can't be used on this system, or a
1938  * negative errno.
1939  */
1940 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1941 {
1942         struct regulator_dev    *rdev = regulator->rdev;
1943         struct regulator_ops    *ops = rdev->desc->ops;
1944         int                     ret;
1945
1946         if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1947                 return -EINVAL;
1948
1949         mutex_lock(&rdev->mutex);
1950         ret = ops->list_voltage(rdev, selector);
1951         mutex_unlock(&rdev->mutex);
1952
1953         if (ret > 0) {
1954                 if (ret < rdev->constraints->min_uV)
1955                         ret = 0;
1956                 else if (ret > rdev->constraints->max_uV)
1957                         ret = 0;
1958         }
1959
1960         return ret;
1961 }
1962 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1963
1964 /**
1965  * regulator_is_supported_voltage - check if a voltage range can be supported
1966  *
1967  * @regulator: Regulator to check.
1968  * @min_uV: Minimum required voltage in uV.
1969  * @max_uV: Maximum required voltage in uV.
1970  *
1971  * Returns a boolean or a negative error code.
1972  */
1973 int regulator_is_supported_voltage(struct regulator *regulator,
1974                                    int min_uV, int max_uV)
1975 {
1976         struct regulator_dev *rdev = regulator->rdev;
1977         int i, voltages, ret;
1978
1979         /* If we can't change voltage check the current voltage */
1980         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
1981                 ret = regulator_get_voltage(regulator);
1982                 if (ret >= 0)
1983                         return (min_uV <= ret && ret <= max_uV);
1984                 else
1985                         return ret;
1986         }
1987
1988         ret = regulator_count_voltages(regulator);
1989         if (ret < 0)
1990                 return ret;
1991         voltages = ret;
1992
1993         for (i = 0; i < voltages; i++) {
1994                 ret = regulator_list_voltage(regulator, i);
1995
1996                 if (ret >= min_uV && ret <= max_uV)
1997                         return 1;
1998         }
1999
2000         return 0;
2001 }
2002 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2003
2004 /**
2005  * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
2006  *
2007  * @rdev: regulator to operate on
2008  *
2009  * Regulators that use regmap for their register I/O can set the
2010  * vsel_reg and vsel_mask fields in their descriptor and then use this
2011  * as their get_voltage_vsel operation, saving some code.
2012  */
2013 int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
2014 {
2015         unsigned int val;
2016         int ret;
2017
2018         ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
2019         if (ret != 0)
2020                 return ret;
2021
2022         val &= rdev->desc->vsel_mask;
2023         val >>= ffs(rdev->desc->vsel_mask) - 1;
2024
2025         return val;
2026 }
2027 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
2028
2029 /**
2030  * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
2031  *
2032  * @rdev: regulator to operate on
2033  * @sel: Selector to set
2034  *
2035  * Regulators that use regmap for their register I/O can set the
2036  * vsel_reg and vsel_mask fields in their descriptor and then use this
2037  * as their set_voltage_vsel operation, saving some code.
2038  */
2039 int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
2040 {
2041         sel <<= ffs(rdev->desc->vsel_mask) - 1;
2042
2043         return regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
2044                                   rdev->desc->vsel_mask, sel);
2045 }
2046 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
2047
2048 /**
2049  * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
2050  *
2051  * @rdev: Regulator to operate on
2052  * @min_uV: Lower bound for voltage
2053  * @max_uV: Upper bound for voltage
2054  *
2055  * Drivers implementing set_voltage_sel() and list_voltage() can use
2056  * this as their map_voltage() operation.  It will find a suitable
2057  * voltage by calling list_voltage() until it gets something in bounds
2058  * for the requested voltages.
2059  */
2060 int regulator_map_voltage_iterate(struct regulator_dev *rdev,
2061                                   int min_uV, int max_uV)
2062 {
2063         int best_val = INT_MAX;
2064         int selector = 0;
2065         int i, ret;
2066
2067         /* Find the smallest voltage that falls within the specified
2068          * range.
2069          */
2070         for (i = 0; i < rdev->desc->n_voltages; i++) {
2071                 ret = rdev->desc->ops->list_voltage(rdev, i);
2072                 if (ret < 0)
2073                         continue;
2074
2075                 if (ret < best_val && ret >= min_uV && ret <= max_uV) {
2076                         best_val = ret;
2077                         selector = i;
2078                 }
2079         }
2080
2081         if (best_val != INT_MAX)
2082                 return selector;
2083         else
2084                 return -EINVAL;
2085 }
2086 EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
2087
2088 /**
2089  * regulator_map_voltage_linear - map_voltage() for simple linear mappings
2090  *
2091  * @rdev: Regulator to operate on
2092  * @min_uV: Lower bound for voltage
2093  * @max_uV: Upper bound for voltage
2094  *
2095  * Drivers providing min_uV and uV_step in their regulator_desc can
2096  * use this as their map_voltage() operation.
2097  */
2098 int regulator_map_voltage_linear(struct regulator_dev *rdev,
2099                                  int min_uV, int max_uV)
2100 {
2101         int ret, voltage;
2102
2103         /* Allow uV_step to be 0 for fixed voltage */
2104         if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
2105                 if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
2106                         return 0;
2107                 else
2108                         return -EINVAL;
2109         }
2110
2111         if (!rdev->desc->uV_step) {
2112                 BUG_ON(!rdev->desc->uV_step);
2113                 return -EINVAL;
2114         }
2115
2116         if (min_uV < rdev->desc->min_uV)
2117                 min_uV = rdev->desc->min_uV;
2118
2119         ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
2120         if (ret < 0)
2121                 return ret;
2122
2123         /* Map back into a voltage to verify we're still in bounds */
2124         voltage = rdev->desc->ops->list_voltage(rdev, ret);
2125         if (voltage < min_uV || voltage > max_uV)
2126                 return -EINVAL;
2127
2128         return ret;
2129 }
2130 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
2131
2132 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2133                                      int min_uV, int max_uV)
2134 {
2135         int ret;
2136         int delay = 0;
2137         int best_val = 0;
2138         unsigned int selector;
2139         int old_selector = -1;
2140
2141         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2142
2143         min_uV += rdev->constraints->uV_offset;
2144         max_uV += rdev->constraints->uV_offset;
2145
2146         /*
2147          * If we can't obtain the old selector there is not enough
2148          * info to call set_voltage_time_sel().
2149          */
2150         if (_regulator_is_enabled(rdev) &&
2151             rdev->desc->ops->set_voltage_time_sel &&
2152             rdev->desc->ops->get_voltage_sel) {
2153                 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2154                 if (old_selector < 0)
2155                         return old_selector;
2156         }
2157
2158         if (rdev->desc->ops->set_voltage) {
2159                 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2160                                                    &selector);
2161
2162                 if (ret >= 0) {
2163                         if (rdev->desc->ops->list_voltage)
2164                                 best_val = rdev->desc->ops->list_voltage(rdev,
2165                                                                          selector);
2166                         else
2167                                 best_val = _regulator_get_voltage(rdev);
2168                 }
2169
2170         } else if (rdev->desc->ops->set_voltage_sel) {
2171                 if (rdev->desc->ops->map_voltage) {
2172                         ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2173                                                            max_uV);
2174                 } else {
2175                         if (rdev->desc->ops->list_voltage ==
2176                             regulator_list_voltage_linear)
2177                                 ret = regulator_map_voltage_linear(rdev,
2178                                                                 min_uV, max_uV);
2179                         else
2180                                 ret = regulator_map_voltage_iterate(rdev,
2181                                                                 min_uV, max_uV);
2182                 }
2183
2184                 if (ret >= 0) {
2185                         best_val = rdev->desc->ops->list_voltage(rdev, ret);
2186                         if (min_uV <= best_val && max_uV >= best_val) {
2187                                 selector = ret;
2188                                 ret = rdev->desc->ops->set_voltage_sel(rdev,
2189                                                                        ret);
2190                         } else {
2191                                 ret = -EINVAL;
2192                         }
2193                 }
2194         } else {
2195                 ret = -EINVAL;
2196         }
2197
2198         /* Call set_voltage_time_sel if successfully obtained old_selector */
2199         if (ret == 0 && _regulator_is_enabled(rdev) && old_selector >= 0 &&
2200             rdev->desc->ops->set_voltage_time_sel) {
2201
2202                 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2203                                                 old_selector, selector);
2204                 if (delay < 0) {
2205                         rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2206                                   delay);
2207                         delay = 0;
2208                 }
2209
2210                 /* Insert any necessary delays */
2211                 if (delay >= 1000) {
2212                         mdelay(delay / 1000);
2213                         udelay(delay % 1000);
2214                 } else if (delay) {
2215                         udelay(delay);
2216                 }
2217         }
2218
2219         if (ret == 0 && best_val >= 0) {
2220                 unsigned long data = best_val;
2221
2222                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2223                                      (void *)data);
2224         }
2225
2226         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2227
2228         return ret;
2229 }
2230
2231 /**
2232  * regulator_set_voltage - set regulator output voltage
2233  * @regulator: regulator source
2234  * @min_uV: Minimum required voltage in uV
2235  * @max_uV: Maximum acceptable voltage in uV
2236  *
2237  * Sets a voltage regulator to the desired output voltage. This can be set
2238  * during any regulator state. IOW, regulator can be disabled or enabled.
2239  *
2240  * If the regulator is enabled then the voltage will change to the new value
2241  * immediately otherwise if the regulator is disabled the regulator will
2242  * output at the new voltage when enabled.
2243  *
2244  * NOTE: If the regulator is shared between several devices then the lowest
2245  * request voltage that meets the system constraints will be used.
2246  * Regulator system constraints must be set for this regulator before
2247  * calling this function otherwise this call will fail.
2248  */
2249 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2250 {
2251         struct regulator_dev *rdev = regulator->rdev;
2252         int ret = 0;
2253
2254         mutex_lock(&rdev->mutex);
2255
2256         /* If we're setting the same range as last time the change
2257          * should be a noop (some cpufreq implementations use the same
2258          * voltage for multiple frequencies, for example).
2259          */
2260         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2261                 goto out;
2262
2263         /* sanity check */
2264         if (!rdev->desc->ops->set_voltage &&
2265             !rdev->desc->ops->set_voltage_sel) {
2266                 ret = -EINVAL;
2267                 goto out;
2268         }
2269
2270         /* constraints check */
2271         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2272         if (ret < 0)
2273                 goto out;
2274         regulator->min_uV = min_uV;
2275         regulator->max_uV = max_uV;
2276
2277         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2278         if (ret < 0)
2279                 goto out;
2280
2281         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2282
2283 out:
2284         mutex_unlock(&rdev->mutex);
2285         return ret;
2286 }
2287 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2288
2289 /**
2290  * regulator_set_voltage_time - get raise/fall time
2291  * @regulator: regulator source
2292  * @old_uV: starting voltage in microvolts
2293  * @new_uV: target voltage in microvolts
2294  *
2295  * Provided with the starting and ending voltage, this function attempts to
2296  * calculate the time in microseconds required to rise or fall to this new
2297  * voltage.
2298  */
2299 int regulator_set_voltage_time(struct regulator *regulator,
2300                                int old_uV, int new_uV)
2301 {
2302         struct regulator_dev    *rdev = regulator->rdev;
2303         struct regulator_ops    *ops = rdev->desc->ops;
2304         int old_sel = -1;
2305         int new_sel = -1;
2306         int voltage;
2307         int i;
2308
2309         /* Currently requires operations to do this */
2310         if (!ops->list_voltage || !ops->set_voltage_time_sel
2311             || !rdev->desc->n_voltages)
2312                 return -EINVAL;
2313
2314         for (i = 0; i < rdev->desc->n_voltages; i++) {
2315                 /* We only look for exact voltage matches here */
2316                 voltage = regulator_list_voltage(regulator, i);
2317                 if (voltage < 0)
2318                         return -EINVAL;
2319                 if (voltage == 0)
2320                         continue;
2321                 if (voltage == old_uV)
2322                         old_sel = i;
2323                 if (voltage == new_uV)
2324                         new_sel = i;
2325         }
2326
2327         if (old_sel < 0 || new_sel < 0)
2328                 return -EINVAL;
2329
2330         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2331 }
2332 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2333
2334 /**
2335  * regulator_set_voltage_time_sel - get raise/fall time
2336  * @rdev: regulator source device
2337  * @old_selector: selector for starting voltage
2338  * @new_selector: selector for target voltage
2339  *
2340  * Provided with the starting and target voltage selectors, this function
2341  * returns time in microseconds required to rise or fall to this new voltage
2342  *
2343  * Drivers providing ramp_delay in regulation_constraints can use this as their
2344  * set_voltage_time_sel() operation.
2345  */
2346 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2347                                    unsigned int old_selector,
2348                                    unsigned int new_selector)
2349 {
2350         unsigned int ramp_delay = 0;
2351         int old_volt, new_volt;
2352
2353         if (rdev->constraints->ramp_delay)
2354                 ramp_delay = rdev->constraints->ramp_delay;
2355         else if (rdev->desc->ramp_delay)
2356                 ramp_delay = rdev->desc->ramp_delay;
2357
2358         if (ramp_delay == 0) {
2359                 rdev_warn(rdev, "ramp_delay not set\n");
2360                 return 0;
2361         }
2362
2363         /* sanity check */
2364         if (!rdev->desc->ops->list_voltage)
2365                 return -EINVAL;
2366
2367         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2368         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2369
2370         return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2371 }
2372 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2373
2374 /**
2375  * regulator_sync_voltage - re-apply last regulator output voltage
2376  * @regulator: regulator source
2377  *
2378  * Re-apply the last configured voltage.  This is intended to be used
2379  * where some external control source the consumer is cooperating with
2380  * has caused the configured voltage to change.
2381  */
2382 int regulator_sync_voltage(struct regulator *regulator)
2383 {
2384         struct regulator_dev *rdev = regulator->rdev;
2385         int ret, min_uV, max_uV;
2386
2387         mutex_lock(&rdev->mutex);
2388
2389         if (!rdev->desc->ops->set_voltage &&
2390             !rdev->desc->ops->set_voltage_sel) {
2391                 ret = -EINVAL;
2392                 goto out;
2393         }
2394
2395         /* This is only going to work if we've had a voltage configured. */
2396         if (!regulator->min_uV && !regulator->max_uV) {
2397                 ret = -EINVAL;
2398                 goto out;
2399         }
2400
2401         min_uV = regulator->min_uV;
2402         max_uV = regulator->max_uV;
2403
2404         /* This should be a paranoia check... */
2405         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2406         if (ret < 0)
2407                 goto out;
2408
2409         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2410         if (ret < 0)
2411                 goto out;
2412
2413         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2414
2415 out:
2416         mutex_unlock(&rdev->mutex);
2417         return ret;
2418 }
2419 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2420
2421 static int _regulator_get_voltage(struct regulator_dev *rdev)
2422 {
2423         int sel, ret;
2424
2425         if (rdev->desc->ops->get_voltage_sel) {
2426                 sel = rdev->desc->ops->get_voltage_sel(rdev);
2427                 if (sel < 0)
2428                         return sel;
2429                 ret = rdev->desc->ops->list_voltage(rdev, sel);
2430         } else if (rdev->desc->ops->get_voltage) {
2431                 ret = rdev->desc->ops->get_voltage(rdev);
2432         } else if (rdev->desc->ops->list_voltage) {
2433                 ret = rdev->desc->ops->list_voltage(rdev, 0);
2434         } else {
2435                 return -EINVAL;
2436         }
2437
2438         if (ret < 0)
2439                 return ret;
2440         return ret - rdev->constraints->uV_offset;
2441 }
2442
2443 /**
2444  * regulator_get_voltage - get regulator output voltage
2445  * @regulator: regulator source
2446  *
2447  * This returns the current regulator voltage in uV.
2448  *
2449  * NOTE: If the regulator is disabled it will return the voltage value. This
2450  * function should not be used to determine regulator state.
2451  */
2452 int regulator_get_voltage(struct regulator *regulator)
2453 {
2454         int ret;
2455
2456         mutex_lock(&regulator->rdev->mutex);
2457
2458         ret = _regulator_get_voltage(regulator->rdev);
2459
2460         mutex_unlock(&regulator->rdev->mutex);
2461
2462         return ret;
2463 }
2464 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2465
2466 /**
2467  * regulator_set_current_limit - set regulator output current limit
2468  * @regulator: regulator source
2469  * @min_uA: Minimuum supported current in uA
2470  * @max_uA: Maximum supported current in uA
2471  *
2472  * Sets current sink to the desired output current. This can be set during
2473  * any regulator state. IOW, regulator can be disabled or enabled.
2474  *
2475  * If the regulator is enabled then the current will change to the new value
2476  * immediately otherwise if the regulator is disabled the regulator will
2477  * output at the new current when enabled.
2478  *
2479  * NOTE: Regulator system constraints must be set for this regulator before
2480  * calling this function otherwise this call will fail.
2481  */
2482 int regulator_set_current_limit(struct regulator *regulator,
2483                                int min_uA, int max_uA)
2484 {
2485         struct regulator_dev *rdev = regulator->rdev;
2486         int ret;
2487
2488         mutex_lock(&rdev->mutex);
2489
2490         /* sanity check */
2491         if (!rdev->desc->ops->set_current_limit) {
2492                 ret = -EINVAL;
2493                 goto out;
2494         }
2495
2496         /* constraints check */
2497         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2498         if (ret < 0)
2499                 goto out;
2500
2501         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2502 out:
2503         mutex_unlock(&rdev->mutex);
2504         return ret;
2505 }
2506 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2507
2508 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2509 {
2510         int ret;
2511
2512         mutex_lock(&rdev->mutex);
2513
2514         /* sanity check */
2515         if (!rdev->desc->ops->get_current_limit) {
2516                 ret = -EINVAL;
2517                 goto out;
2518         }
2519
2520         ret = rdev->desc->ops->get_current_limit(rdev);
2521 out:
2522         mutex_unlock(&rdev->mutex);
2523         return ret;
2524 }
2525
2526 /**
2527  * regulator_get_current_limit - get regulator output current
2528  * @regulator: regulator source
2529  *
2530  * This returns the current supplied by the specified current sink in uA.
2531  *
2532  * NOTE: If the regulator is disabled it will return the current value. This
2533  * function should not be used to determine regulator state.
2534  */
2535 int regulator_get_current_limit(struct regulator *regulator)
2536 {
2537         return _regulator_get_current_limit(regulator->rdev);
2538 }
2539 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2540
2541 /**
2542  * regulator_set_mode - set regulator operating mode
2543  * @regulator: regulator source
2544  * @mode: operating mode - one of the REGULATOR_MODE constants
2545  *
2546  * Set regulator operating mode to increase regulator efficiency or improve
2547  * regulation performance.
2548  *
2549  * NOTE: Regulator system constraints must be set for this regulator before
2550  * calling this function otherwise this call will fail.
2551  */
2552 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2553 {
2554         struct regulator_dev *rdev = regulator->rdev;
2555         int ret;
2556         int regulator_curr_mode;
2557
2558         mutex_lock(&rdev->mutex);
2559
2560         /* sanity check */
2561         if (!rdev->desc->ops->set_mode) {
2562                 ret = -EINVAL;
2563                 goto out;
2564         }
2565
2566         /* return if the same mode is requested */
2567         if (rdev->desc->ops->get_mode) {
2568                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2569                 if (regulator_curr_mode == mode) {
2570                         ret = 0;
2571                         goto out;
2572                 }
2573         }
2574
2575         /* constraints check */
2576         ret = regulator_mode_constrain(rdev, &mode);
2577         if (ret < 0)
2578                 goto out;
2579
2580         ret = rdev->desc->ops->set_mode(rdev, mode);
2581 out:
2582         mutex_unlock(&rdev->mutex);
2583         return ret;
2584 }
2585 EXPORT_SYMBOL_GPL(regulator_set_mode);
2586
2587 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2588 {
2589         int ret;
2590
2591         mutex_lock(&rdev->mutex);
2592
2593         /* sanity check */
2594         if (!rdev->desc->ops->get_mode) {
2595                 ret = -EINVAL;
2596                 goto out;
2597         }
2598
2599         ret = rdev->desc->ops->get_mode(rdev);
2600 out:
2601         mutex_unlock(&rdev->mutex);
2602         return ret;
2603 }
2604
2605 /**
2606  * regulator_get_mode - get regulator operating mode
2607  * @regulator: regulator source
2608  *
2609  * Get the current regulator operating mode.
2610  */
2611 unsigned int regulator_get_mode(struct regulator *regulator)
2612 {
2613         return _regulator_get_mode(regulator->rdev);
2614 }
2615 EXPORT_SYMBOL_GPL(regulator_get_mode);
2616
2617 /**
2618  * regulator_set_optimum_mode - set regulator optimum operating mode
2619  * @regulator: regulator source
2620  * @uA_load: load current
2621  *
2622  * Notifies the regulator core of a new device load. This is then used by
2623  * DRMS (if enabled by constraints) to set the most efficient regulator
2624  * operating mode for the new regulator loading.
2625  *
2626  * Consumer devices notify their supply regulator of the maximum power
2627  * they will require (can be taken from device datasheet in the power
2628  * consumption tables) when they change operational status and hence power
2629  * state. Examples of operational state changes that can affect power
2630  * consumption are :-
2631  *
2632  *    o Device is opened / closed.
2633  *    o Device I/O is about to begin or has just finished.
2634  *    o Device is idling in between work.
2635  *
2636  * This information is also exported via sysfs to userspace.
2637  *
2638  * DRMS will sum the total requested load on the regulator and change
2639  * to the most efficient operating mode if platform constraints allow.
2640  *
2641  * Returns the new regulator mode or error.
2642  */
2643 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2644 {
2645         struct regulator_dev *rdev = regulator->rdev;
2646         struct regulator *consumer;
2647         int ret, output_uV, input_uV = 0, total_uA_load = 0;
2648         unsigned int mode;
2649
2650         if (rdev->supply)
2651                 input_uV = regulator_get_voltage(rdev->supply);
2652
2653         mutex_lock(&rdev->mutex);
2654
2655         /*
2656          * first check to see if we can set modes at all, otherwise just
2657          * tell the consumer everything is OK.
2658          */
2659         regulator->uA_load = uA_load;
2660         ret = regulator_check_drms(rdev);
2661         if (ret < 0) {
2662                 ret = 0;
2663                 goto out;
2664         }
2665
2666         if (!rdev->desc->ops->get_optimum_mode)
2667                 goto out;
2668
2669         /*
2670          * we can actually do this so any errors are indicators of
2671          * potential real failure.
2672          */
2673         ret = -EINVAL;
2674
2675         if (!rdev->desc->ops->set_mode)
2676                 goto out;
2677
2678         /* get output voltage */
2679         output_uV = _regulator_get_voltage(rdev);
2680         if (output_uV <= 0) {
2681                 rdev_err(rdev, "invalid output voltage found\n");
2682                 goto out;
2683         }
2684
2685         /* No supply? Use constraint voltage */
2686         if (input_uV <= 0)
2687                 input_uV = rdev->constraints->input_uV;
2688         if (input_uV <= 0) {
2689                 rdev_err(rdev, "invalid input voltage found\n");
2690                 goto out;
2691         }
2692
2693         /* calc total requested load for this regulator */
2694         list_for_each_entry(consumer, &rdev->consumer_list, list)
2695                 total_uA_load += consumer->uA_load;
2696
2697         mode = rdev->desc->ops->get_optimum_mode(rdev,
2698                                                  input_uV, output_uV,
2699                                                  total_uA_load);
2700         ret = regulator_mode_constrain(rdev, &mode);
2701         if (ret < 0) {
2702                 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2703                          total_uA_load, input_uV, output_uV);
2704                 goto out;
2705         }
2706
2707         ret = rdev->desc->ops->set_mode(rdev, mode);
2708         if (ret < 0) {
2709                 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2710                 goto out;
2711         }
2712         ret = mode;
2713 out:
2714         mutex_unlock(&rdev->mutex);
2715         return ret;
2716 }
2717 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2718
2719 /**
2720  * regulator_set_bypass_regmap - Default set_bypass() using regmap
2721  *
2722  * @rdev: device to operate on.
2723  * @enable: state to set.
2724  */
2725 int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
2726 {
2727         unsigned int val;
2728
2729         if (enable)
2730                 val = rdev->desc->bypass_mask;
2731         else
2732                 val = 0;
2733
2734         return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
2735                                   rdev->desc->bypass_mask, val);
2736 }
2737 EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);
2738
2739 /**
2740  * regulator_get_bypass_regmap - Default get_bypass() using regmap
2741  *
2742  * @rdev: device to operate on.
2743  * @enable: current state.
2744  */
2745 int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
2746 {
2747         unsigned int val;
2748         int ret;
2749
2750         ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
2751         if (ret != 0)
2752                 return ret;
2753
2754         *enable = val & rdev->desc->bypass_mask;
2755
2756         return 0;
2757 }
2758 EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);
2759
2760 /**
2761  * regulator_allow_bypass - allow the regulator to go into bypass mode
2762  *
2763  * @regulator: Regulator to configure
2764  * @allow: enable or disable bypass mode
2765  *
2766  * Allow the regulator to go into bypass mode if all other consumers
2767  * for the regulator also enable bypass mode and the machine
2768  * constraints allow this.  Bypass mode means that the regulator is
2769  * simply passing the input directly to the output with no regulation.
2770  */
2771 int regulator_allow_bypass(struct regulator *regulator, bool enable)
2772 {
2773         struct regulator_dev *rdev = regulator->rdev;
2774         int ret = 0;
2775
2776         if (!rdev->desc->ops->set_bypass)
2777                 return 0;
2778
2779         if (rdev->constraints &&
2780             !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
2781                 return 0;
2782
2783         mutex_lock(&rdev->mutex);
2784
2785         if (enable && !regulator->bypass) {
2786                 rdev->bypass_count++;
2787
2788                 if (rdev->bypass_count == rdev->open_count) {
2789                         ret = rdev->desc->ops->set_bypass(rdev, enable);
2790                         if (ret != 0)
2791                                 rdev->bypass_count--;
2792                 }
2793
2794         } else if (!enable && regulator->bypass) {
2795                 rdev->bypass_count--;
2796
2797                 if (rdev->bypass_count != rdev->open_count) {
2798                         ret = rdev->desc->ops->set_bypass(rdev, enable);
2799                         if (ret != 0)
2800                                 rdev->bypass_count++;
2801                 }
2802         }
2803
2804         if (ret == 0)
2805                 regulator->bypass = enable;
2806
2807         mutex_unlock(&rdev->mutex);
2808
2809         return ret;
2810 }
2811 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
2812
2813 /**
2814  * regulator_register_notifier - register regulator event notifier
2815  * @regulator: regulator source
2816  * @nb: notifier block
2817  *
2818  * Register notifier block to receive regulator events.
2819  */
2820 int regulator_register_notifier(struct regulator *regulator,
2821                               struct notifier_block *nb)
2822 {
2823         return blocking_notifier_chain_register(&regulator->rdev->notifier,
2824                                                 nb);
2825 }
2826 EXPORT_SYMBOL_GPL(regulator_register_notifier);
2827
2828 /**
2829  * regulator_unregister_notifier - unregister regulator event notifier
2830  * @regulator: regulator source
2831  * @nb: notifier block
2832  *
2833  * Unregister regulator event notifier block.
2834  */
2835 int regulator_unregister_notifier(struct regulator *regulator,
2836                                 struct notifier_block *nb)
2837 {
2838         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2839                                                   nb);
2840 }
2841 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2842
2843 /* notify regulator consumers and downstream regulator consumers.
2844  * Note mutex must be held by caller.
2845  */
2846 static void _notifier_call_chain(struct regulator_dev *rdev,
2847                                   unsigned long event, void *data)
2848 {
2849         /* call rdev chain first */
2850         blocking_notifier_call_chain(&rdev->notifier, event, data);
2851 }
2852
2853 /**
2854  * regulator_bulk_get - get multiple regulator consumers
2855  *
2856  * @dev:           Device to supply
2857  * @num_consumers: Number of consumers to register
2858  * @consumers:     Configuration of consumers; clients are stored here.
2859  *
2860  * @return 0 on success, an errno on failure.
2861  *
2862  * This helper function allows drivers to get several regulator
2863  * consumers in one operation.  If any of the regulators cannot be
2864  * acquired then any regulators that were allocated will be freed
2865  * before returning to the caller.
2866  */
2867 int regulator_bulk_get(struct device *dev, int num_consumers,
2868                        struct regulator_bulk_data *consumers)
2869 {
2870         int i;
2871         int ret;
2872
2873         for (i = 0; i < num_consumers; i++)
2874                 consumers[i].consumer = NULL;
2875
2876         for (i = 0; i < num_consumers; i++) {
2877                 consumers[i].consumer = regulator_get(dev,
2878                                                       consumers[i].supply);
2879                 if (IS_ERR(consumers[i].consumer)) {
2880                         ret = PTR_ERR(consumers[i].consumer);
2881                         dev_err(dev, "Failed to get supply '%s': %d\n",
2882                                 consumers[i].supply, ret);
2883                         consumers[i].consumer = NULL;
2884                         goto err;
2885                 }
2886         }
2887
2888         return 0;
2889
2890 err:
2891         while (--i >= 0)
2892                 regulator_put(consumers[i].consumer);
2893
2894         return ret;
2895 }
2896 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2897
2898 /**
2899  * devm_regulator_bulk_get - managed get multiple regulator consumers
2900  *
2901  * @dev:           Device to supply
2902  * @num_consumers: Number of consumers to register
2903  * @consumers:     Configuration of consumers; clients are stored here.
2904  *
2905  * @return 0 on success, an errno on failure.
2906  *
2907  * This helper function allows drivers to get several regulator
2908  * consumers in one operation with management, the regulators will
2909  * automatically be freed when the device is unbound.  If any of the
2910  * regulators cannot be acquired then any regulators that were
2911  * allocated will be freed before returning to the caller.
2912  */
2913 int devm_regulator_bulk_get(struct device *dev, int num_consumers,
2914                             struct regulator_bulk_data *consumers)
2915 {
2916         int i;
2917         int ret;
2918
2919         for (i = 0; i < num_consumers; i++)
2920                 consumers[i].consumer = NULL;
2921
2922         for (i = 0; i < num_consumers; i++) {
2923                 consumers[i].consumer = devm_regulator_get(dev,
2924                                                            consumers[i].supply);
2925                 if (IS_ERR(consumers[i].consumer)) {
2926                         ret = PTR_ERR(consumers[i].consumer);
2927                         dev_err(dev, "Failed to get supply '%s': %d\n",
2928                                 consumers[i].supply, ret);
2929                         consumers[i].consumer = NULL;
2930                         goto err;
2931                 }
2932         }
2933
2934         return 0;
2935
2936 err:
2937         for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2938                 devm_regulator_put(consumers[i].consumer);
2939
2940         return ret;
2941 }
2942 EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
2943
2944 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2945 {
2946         struct regulator_bulk_data *bulk = data;
2947
2948         bulk->ret = regulator_enable(bulk->consumer);
2949 }
2950
2951 /**
2952  * regulator_bulk_enable - enable multiple regulator consumers
2953  *
2954  * @num_consumers: Number of consumers
2955  * @consumers:     Consumer data; clients are stored here.
2956  * @return         0 on success, an errno on failure
2957  *
2958  * This convenience API allows consumers to enable multiple regulator
2959  * clients in a single API call.  If any consumers cannot be enabled
2960  * then any others that were enabled will be disabled again prior to
2961  * return.
2962  */
2963 int regulator_bulk_enable(int num_consumers,
2964                           struct regulator_bulk_data *consumers)
2965 {
2966         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
2967         int i;
2968         int ret = 0;
2969
2970         for (i = 0; i < num_consumers; i++) {
2971                 if (consumers[i].consumer->always_on)
2972                         consumers[i].ret = 0;
2973                 else
2974                         async_schedule_domain(regulator_bulk_enable_async,
2975                                               &consumers[i], &async_domain);
2976         }
2977
2978         async_synchronize_full_domain(&async_domain);
2979
2980         /* If any consumer failed we need to unwind any that succeeded */
2981         for (i = 0; i < num_consumers; i++) {
2982                 if (consumers[i].ret != 0) {
2983                         ret = consumers[i].ret;
2984                         goto err;
2985                 }
2986         }
2987
2988         return 0;
2989
2990 err:
2991         pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
2992         while (--i >= 0)
2993                 regulator_disable(consumers[i].consumer);
2994
2995         return ret;
2996 }
2997 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2998
2999 /**
3000  * regulator_bulk_disable - disable multiple regulator consumers
3001  *
3002  * @num_consumers: Number of consumers
3003  * @consumers:     Consumer data; clients are stored here.
3004  * @return         0 on success, an errno on failure
3005  *
3006  * This convenience API allows consumers to disable multiple regulator
3007  * clients in a single API call.  If any consumers cannot be disabled
3008  * then any others that were disabled will be enabled again prior to
3009  * return.
3010  */
3011 int regulator_bulk_disable(int num_consumers,
3012                            struct regulator_bulk_data *consumers)
3013 {
3014         int i;
3015         int ret, r;
3016
3017         for (i = num_consumers - 1; i >= 0; --i) {
3018                 ret = regulator_disable(consumers[i].consumer);
3019                 if (ret != 0)
3020                         goto err;
3021         }
3022
3023         return 0;
3024
3025 err:
3026         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3027         for (++i; i < num_consumers; ++i) {
3028                 r = regulator_enable(consumers[i].consumer);
3029                 if (r != 0)
3030                         pr_err("Failed to reename %s: %d\n",
3031                                consumers[i].supply, r);
3032         }
3033
3034         return ret;
3035 }
3036 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3037
3038 /**
3039  * regulator_bulk_force_disable - force disable multiple regulator consumers
3040  *
3041  * @num_consumers: Number of consumers
3042  * @consumers:     Consumer data; clients are stored here.
3043  * @return         0 on success, an errno on failure
3044  *
3045  * This convenience API allows consumers to forcibly disable multiple regulator
3046  * clients in a single API call.
3047  * NOTE: This should be used for situations when device damage will
3048  * likely occur if the regulators are not disabled (e.g. over temp).
3049  * Although regulator_force_disable function call for some consumers can
3050  * return error numbers, the function is called for all consumers.
3051  */
3052 int regulator_bulk_force_disable(int num_consumers,
3053                            struct regulator_bulk_data *consumers)
3054 {
3055         int i;
3056         int ret;
3057
3058         for (i = 0; i < num_consumers; i++)
3059                 consumers[i].ret =
3060                             regulator_force_disable(consumers[i].consumer);
3061
3062         for (i = 0; i < num_consumers; i++) {
3063                 if (consumers[i].ret != 0) {
3064                         ret = consumers[i].ret;
3065                         goto out;
3066                 }
3067         }
3068
3069         return 0;
3070 out:
3071         return ret;
3072 }
3073 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3074
3075 /**
3076  * regulator_bulk_free - free multiple regulator consumers
3077  *
3078  * @num_consumers: Number of consumers
3079  * @consumers:     Consumer data; clients are stored here.
3080  *
3081  * This convenience API allows consumers to free multiple regulator
3082  * clients in a single API call.
3083  */
3084 void regulator_bulk_free(int num_consumers,
3085                          struct regulator_bulk_data *consumers)
3086 {
3087         int i;
3088
3089         for (i = 0; i < num_consumers; i++) {
3090                 regulator_put(consumers[i].consumer);
3091                 consumers[i].consumer = NULL;
3092         }
3093 }
3094 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3095
3096 /**
3097  * regulator_notifier_call_chain - call regulator event notifier
3098  * @rdev: regulator source
3099  * @event: notifier block
3100  * @data: callback-specific data.
3101  *
3102  * Called by regulator drivers to notify clients a regulator event has
3103  * occurred. We also notify regulator clients downstream.
3104  * Note lock must be held by caller.
3105  */
3106 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3107                                   unsigned long event, void *data)
3108 {
3109         _notifier_call_chain(rdev, event, data);
3110         return NOTIFY_DONE;
3111
3112 }
3113 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3114
3115 /**
3116  * regulator_mode_to_status - convert a regulator mode into a status
3117  *
3118  * @mode: Mode to convert
3119  *
3120  * Convert a regulator mode into a status.
3121  */
3122 int regulator_mode_to_status(unsigned int mode)
3123 {
3124         switch (mode) {
3125         case REGULATOR_MODE_FAST:
3126                 return REGULATOR_STATUS_FAST;
3127         case REGULATOR_MODE_NORMAL:
3128                 return REGULATOR_STATUS_NORMAL;
3129         case REGULATOR_MODE_IDLE:
3130                 return REGULATOR_STATUS_IDLE;
3131         case REGULATOR_MODE_STANDBY:
3132                 return REGULATOR_STATUS_STANDBY;
3133         default:
3134                 return REGULATOR_STATUS_UNDEFINED;
3135         }
3136 }
3137 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3138
3139 /*
3140  * To avoid cluttering sysfs (and memory) with useless state, only
3141  * create attributes that can be meaningfully displayed.
3142  */
3143 static int add_regulator_attributes(struct regulator_dev *rdev)
3144 {
3145         struct device           *dev = &rdev->dev;
3146         struct regulator_ops    *ops = rdev->desc->ops;
3147         int                     status = 0;
3148
3149         /* some attributes need specific methods to be displayed */
3150         if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3151             (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3152             (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0)) {
3153                 status = device_create_file(dev, &dev_attr_microvolts);
3154                 if (status < 0)
3155                         return status;
3156         }
3157         if (ops->get_current_limit) {
3158                 status = device_create_file(dev, &dev_attr_microamps);
3159                 if (status < 0)
3160                         return status;
3161         }
3162         if (ops->get_mode) {
3163                 status = device_create_file(dev, &dev_attr_opmode);
3164                 if (status < 0)
3165                         return status;
3166         }
3167         if (ops->is_enabled) {
3168                 status = device_create_file(dev, &dev_attr_state);
3169                 if (status < 0)
3170                         return status;
3171         }
3172         if (ops->get_status) {
3173                 status = device_create_file(dev, &dev_attr_status);
3174                 if (status < 0)
3175                         return status;
3176         }
3177         if (ops->get_bypass) {
3178                 status = device_create_file(dev, &dev_attr_bypass);
3179                 if (status < 0)
3180                         return status;
3181         }
3182
3183         /* some attributes are type-specific */
3184         if (rdev->desc->type == REGULATOR_CURRENT) {
3185                 status = device_create_file(dev, &dev_attr_requested_microamps);
3186                 if (status < 0)
3187                         return status;
3188         }
3189
3190         /* all the other attributes exist to support constraints;
3191          * don't show them if there are no constraints, or if the
3192          * relevant supporting methods are missing.
3193          */
3194         if (!rdev->constraints)
3195                 return status;
3196
3197         /* constraints need specific supporting methods */
3198         if (ops->set_voltage || ops->set_voltage_sel) {
3199                 status = device_create_file(dev, &dev_attr_min_microvolts);
3200                 if (status < 0)
3201                         return status;
3202                 status = device_create_file(dev, &dev_attr_max_microvolts);
3203                 if (status < 0)
3204                         return status;
3205         }
3206         if (ops->set_current_limit) {
3207                 status = device_create_file(dev, &dev_attr_min_microamps);
3208                 if (status < 0)
3209                         return status;
3210                 status = device_create_file(dev, &dev_attr_max_microamps);
3211                 if (status < 0)
3212                         return status;
3213         }
3214
3215         status = device_create_file(dev, &dev_attr_suspend_standby_state);
3216         if (status < 0)
3217                 return status;
3218         status = device_create_file(dev, &dev_attr_suspend_mem_state);
3219         if (status < 0)
3220                 return status;
3221         status = device_create_file(dev, &dev_attr_suspend_disk_state);
3222         if (status < 0)
3223                 return status;
3224
3225         if (ops->set_suspend_voltage) {
3226                 status = device_create_file(dev,
3227                                 &dev_attr_suspend_standby_microvolts);
3228                 if (status < 0)
3229                         return status;
3230                 status = device_create_file(dev,
3231                                 &dev_attr_suspend_mem_microvolts);
3232                 if (status < 0)
3233                         return status;
3234                 status = device_create_file(dev,
3235                                 &dev_attr_suspend_disk_microvolts);
3236                 if (status < 0)
3237                         return status;
3238         }
3239
3240         if (ops->set_suspend_mode) {
3241                 status = device_create_file(dev,
3242                                 &dev_attr_suspend_standby_mode);
3243                 if (status < 0)
3244                         return status;
3245                 status = device_create_file(dev,
3246                                 &dev_attr_suspend_mem_mode);
3247                 if (status < 0)
3248                         return status;
3249                 status = device_create_file(dev,
3250                                 &dev_attr_suspend_disk_mode);
3251                 if (status < 0)
3252                         return status;
3253         }
3254
3255         return status;
3256 }
3257
3258 static void rdev_init_debugfs(struct regulator_dev *rdev)
3259 {
3260         rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3261         if (!rdev->debugfs) {
3262                 rdev_warn(rdev, "Failed to create debugfs directory\n");
3263                 return;
3264         }
3265
3266         debugfs_create_u32("use_count", 0444, rdev->debugfs,
3267                            &rdev->use_count);
3268         debugfs_create_u32("open_count", 0444, rdev->debugfs,
3269                            &rdev->open_count);
3270         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3271                            &rdev->bypass_count);
3272 }
3273
3274 /**
3275  * regulator_register - register regulator
3276  * @regulator_desc: regulator to register
3277  * @config: runtime configuration for regulator
3278  *
3279  * Called by regulator drivers to register a regulator.
3280  * Returns 0 on success.
3281  */
3282 struct regulator_dev *
3283 regulator_register(const struct regulator_desc *regulator_desc,
3284                    const struct regulator_config *config)
3285 {
3286         const struct regulation_constraints *constraints = NULL;
3287         const struct regulator_init_data *init_data;
3288         static atomic_t regulator_no = ATOMIC_INIT(0);
3289         struct regulator_dev *rdev;
3290         struct device *dev;
3291         int ret, i;
3292         const char *supply = NULL;
3293
3294         if (regulator_desc == NULL || config == NULL)
3295                 return ERR_PTR(-EINVAL);
3296
3297         dev = config->dev;
3298         WARN_ON(!dev);
3299
3300         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3301                 return ERR_PTR(-EINVAL);
3302
3303         if (regulator_desc->type != REGULATOR_VOLTAGE &&
3304             regulator_desc->type != REGULATOR_CURRENT)
3305                 return ERR_PTR(-EINVAL);
3306
3307         /* Only one of each should be implemented */
3308         WARN_ON(regulator_desc->ops->get_voltage &&
3309                 regulator_desc->ops->get_voltage_sel);
3310         WARN_ON(regulator_desc->ops->set_voltage &&
3311                 regulator_desc->ops->set_voltage_sel);
3312
3313         /* If we're using selectors we must implement list_voltage. */
3314         if (regulator_desc->ops->get_voltage_sel &&
3315             !regulator_desc->ops->list_voltage) {
3316                 return ERR_PTR(-EINVAL);
3317         }
3318         if (regulator_desc->ops->set_voltage_sel &&
3319             !regulator_desc->ops->list_voltage) {
3320                 return ERR_PTR(-EINVAL);
3321         }
3322
3323         init_data = config->init_data;
3324
3325         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3326         if (rdev == NULL)
3327                 return ERR_PTR(-ENOMEM);
3328
3329         mutex_lock(&regulator_list_mutex);
3330
3331         mutex_init(&rdev->mutex);
3332         rdev->reg_data = config->driver_data;
3333         rdev->owner = regulator_desc->owner;
3334         rdev->desc = regulator_desc;
3335         if (config->regmap)
3336                 rdev->regmap = config->regmap;
3337         else if (dev_get_regmap(dev, NULL))
3338                 rdev->regmap = dev_get_regmap(dev, NULL);
3339         else if (dev->parent)
3340                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3341         INIT_LIST_HEAD(&rdev->consumer_list);
3342         INIT_LIST_HEAD(&rdev->list);
3343         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3344         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3345
3346         /* preform any regulator specific init */
3347         if (init_data && init_data->regulator_init) {
3348                 ret = init_data->regulator_init(rdev->reg_data);
3349                 if (ret < 0)
3350                         goto clean;
3351         }
3352
3353         /* register with sysfs */
3354         rdev->dev.class = &regulator_class;
3355         rdev->dev.of_node = config->of_node;
3356         rdev->dev.parent = dev;
3357         dev_set_name(&rdev->dev, "regulator.%d",
3358                      atomic_inc_return(&regulator_no) - 1);
3359         ret = device_register(&rdev->dev);
3360         if (ret != 0) {
3361                 put_device(&rdev->dev);
3362                 goto clean;
3363         }
3364
3365         dev_set_drvdata(&rdev->dev, rdev);
3366
3367         if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3368                 ret = gpio_request_one(config->ena_gpio,
3369                                        GPIOF_DIR_OUT | config->ena_gpio_flags,
3370                                        rdev_get_name(rdev));
3371                 if (ret != 0) {
3372                         rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3373                                  config->ena_gpio, ret);
3374                         goto wash;
3375                 }
3376
3377                 rdev->ena_gpio = config->ena_gpio;
3378                 rdev->ena_gpio_invert = config->ena_gpio_invert;
3379
3380                 if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3381                         rdev->ena_gpio_state = 1;
3382
3383                 if (rdev->ena_gpio_invert)
3384                         rdev->ena_gpio_state = !rdev->ena_gpio_state;
3385         }
3386
3387         /* set regulator constraints */
3388         if (init_data)
3389                 constraints = &init_data->constraints;
3390
3391         ret = set_machine_constraints(rdev, constraints);
3392         if (ret < 0)
3393                 goto scrub;
3394
3395         /* add attributes supported by this regulator */
3396         ret = add_regulator_attributes(rdev);
3397         if (ret < 0)
3398                 goto scrub;
3399
3400         if (init_data && init_data->supply_regulator)
3401                 supply = init_data->supply_regulator;
3402         else if (regulator_desc->supply_name)
3403                 supply = regulator_desc->supply_name;
3404
3405         if (supply) {
3406                 struct regulator_dev *r;
3407
3408                 r = regulator_dev_lookup(dev, supply, &ret);
3409
3410                 if (!r) {
3411                         dev_err(dev, "Failed to find supply %s\n", supply);
3412                         ret = -EPROBE_DEFER;
3413                         goto scrub;
3414                 }
3415
3416                 ret = set_supply(rdev, r);
3417                 if (ret < 0)
3418                         goto scrub;
3419
3420                 /* Enable supply if rail is enabled */
3421                 if (_regulator_is_enabled(rdev)) {
3422                         ret = regulator_enable(rdev->supply);
3423                         if (ret < 0)
3424                                 goto scrub;
3425                 }
3426         }
3427
3428         /* add consumers devices */
3429         if (init_data) {
3430                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3431                         ret = set_consumer_device_supply(rdev,
3432                                 init_data->consumer_supplies[i].dev_name,
3433                                 init_data->consumer_supplies[i].supply);
3434                         if (ret < 0) {
3435                                 dev_err(dev, "Failed to set supply %s\n",
3436                                         init_data->consumer_supplies[i].supply);
3437                                 goto unset_supplies;
3438                         }
3439                 }
3440         }
3441
3442         list_add(&rdev->list, &regulator_list);
3443
3444         rdev_init_debugfs(rdev);
3445 out:
3446         mutex_unlock(&regulator_list_mutex);
3447         return rdev;
3448
3449 unset_supplies:
3450         unset_regulator_supplies(rdev);
3451
3452 scrub:
3453         if (rdev->supply)
3454                 _regulator_put(rdev->supply);
3455         if (rdev->ena_gpio)
3456                 gpio_free(rdev->ena_gpio);
3457         kfree(rdev->constraints);
3458 wash:
3459         device_unregister(&rdev->dev);
3460         /* device core frees rdev */
3461         rdev = ERR_PTR(ret);
3462         goto out;
3463
3464 clean:
3465         kfree(rdev);
3466         rdev = ERR_PTR(ret);
3467         goto out;
3468 }
3469 EXPORT_SYMBOL_GPL(regulator_register);
3470
3471 /**
3472  * regulator_unregister - unregister regulator
3473  * @rdev: regulator to unregister
3474  *
3475  * Called by regulator drivers to unregister a regulator.
3476  */
3477 void regulator_unregister(struct regulator_dev *rdev)
3478 {
3479         if (rdev == NULL)
3480                 return;
3481
3482         if (rdev->supply)
3483                 regulator_put(rdev->supply);
3484         mutex_lock(&regulator_list_mutex);
3485         debugfs_remove_recursive(rdev->debugfs);
3486         flush_work(&rdev->disable_work.work);
3487         WARN_ON(rdev->open_count);
3488         unset_regulator_supplies(rdev);
3489         list_del(&rdev->list);
3490         kfree(rdev->constraints);
3491         if (rdev->ena_gpio)
3492                 gpio_free(rdev->ena_gpio);
3493         device_unregister(&rdev->dev);
3494         mutex_unlock(&regulator_list_mutex);
3495 }
3496 EXPORT_SYMBOL_GPL(regulator_unregister);
3497
3498 /**
3499  * regulator_suspend_prepare - prepare regulators for system wide suspend
3500  * @state: system suspend state
3501  *
3502  * Configure each regulator with it's suspend operating parameters for state.
3503  * This will usually be called by machine suspend code prior to supending.
3504  */
3505 int regulator_suspend_prepare(suspend_state_t state)
3506 {
3507         struct regulator_dev *rdev;
3508         int ret = 0;
3509
3510         /* ON is handled by regulator active state */
3511         if (state == PM_SUSPEND_ON)
3512                 return -EINVAL;
3513
3514         mutex_lock(&regulator_list_mutex);
3515         list_for_each_entry(rdev, &regulator_list, list) {
3516
3517                 mutex_lock(&rdev->mutex);
3518                 ret = suspend_prepare(rdev, state);
3519                 mutex_unlock(&rdev->mutex);
3520
3521                 if (ret < 0) {
3522                         rdev_err(rdev, "failed to prepare\n");
3523                         goto out;
3524                 }
3525         }
3526 out:
3527         mutex_unlock(&regulator_list_mutex);
3528         return ret;
3529 }
3530 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3531
3532 /**
3533  * regulator_suspend_finish - resume regulators from system wide suspend
3534  *
3535  * Turn on regulators that might be turned off by regulator_suspend_prepare
3536  * and that should be turned on according to the regulators properties.
3537  */
3538 int regulator_suspend_finish(void)
3539 {
3540         struct regulator_dev *rdev;
3541         int ret = 0, error;
3542
3543         mutex_lock(&regulator_list_mutex);
3544         list_for_each_entry(rdev, &regulator_list, list) {
3545                 struct regulator_ops *ops = rdev->desc->ops;
3546
3547                 mutex_lock(&rdev->mutex);
3548                 if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
3549                                 ops->enable) {
3550                         error = ops->enable(rdev);
3551                         if (error)
3552                                 ret = error;
3553                 } else {
3554                         if (!has_full_constraints)
3555                                 goto unlock;
3556                         if (!ops->disable)
3557                                 goto unlock;
3558                         if (!_regulator_is_enabled(rdev))
3559                                 goto unlock;
3560
3561                         error = ops->disable(rdev);
3562                         if (error)
3563                                 ret = error;
3564                 }
3565 unlock:
3566                 mutex_unlock(&rdev->mutex);
3567         }
3568         mutex_unlock(&regulator_list_mutex);
3569         return ret;
3570 }
3571 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3572
3573 /**
3574  * regulator_has_full_constraints - the system has fully specified constraints
3575  *
3576  * Calling this function will cause the regulator API to disable all
3577  * regulators which have a zero use count and don't have an always_on
3578  * constraint in a late_initcall.
3579  *
3580  * The intention is that this will become the default behaviour in a
3581  * future kernel release so users are encouraged to use this facility
3582  * now.
3583  */
3584 void regulator_has_full_constraints(void)
3585 {
3586         has_full_constraints = 1;
3587 }
3588 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3589
3590 /**
3591  * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3592  *
3593  * Calling this function will cause the regulator API to provide a
3594  * dummy regulator to consumers if no physical regulator is found,
3595  * allowing most consumers to proceed as though a regulator were
3596  * configured.  This allows systems such as those with software
3597  * controllable regulators for the CPU core only to be brought up more
3598  * readily.
3599  */
3600 void regulator_use_dummy_regulator(void)
3601 {
3602         board_wants_dummy_regulator = true;
3603 }
3604 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3605
3606 /**
3607  * rdev_get_drvdata - get rdev regulator driver data
3608  * @rdev: regulator
3609  *
3610  * Get rdev regulator driver private data. This call can be used in the
3611  * regulator driver context.
3612  */
3613 void *rdev_get_drvdata(struct regulator_dev *rdev)
3614 {
3615         return rdev->reg_data;
3616 }
3617 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3618
3619 /**
3620  * regulator_get_drvdata - get regulator driver data
3621  * @regulator: regulator
3622  *
3623  * Get regulator driver private data. This call can be used in the consumer
3624  * driver context when non API regulator specific functions need to be called.
3625  */
3626 void *regulator_get_drvdata(struct regulator *regulator)
3627 {
3628         return regulator->rdev->reg_data;
3629 }
3630 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3631
3632 /**
3633  * regulator_set_drvdata - set regulator driver data
3634  * @regulator: regulator
3635  * @data: data
3636  */
3637 void regulator_set_drvdata(struct regulator *regulator, void *data)
3638 {
3639         regulator->rdev->reg_data = data;
3640 }
3641 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3642
3643 /**
3644  * regulator_get_id - get regulator ID
3645  * @rdev: regulator
3646  */
3647 int rdev_get_id(struct regulator_dev *rdev)
3648 {
3649         return rdev->desc->id;
3650 }
3651 EXPORT_SYMBOL_GPL(rdev_get_id);
3652
3653 struct device *rdev_get_dev(struct regulator_dev *rdev)
3654 {
3655         return &rdev->dev;
3656 }
3657 EXPORT_SYMBOL_GPL(rdev_get_dev);
3658
3659 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3660 {
3661         return reg_init_data->driver_data;
3662 }
3663 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3664
3665 #ifdef CONFIG_DEBUG_FS
3666 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3667                                     size_t count, loff_t *ppos)
3668 {
3669         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3670         ssize_t len, ret = 0;
3671         struct regulator_map *map;
3672
3673         if (!buf)
3674                 return -ENOMEM;
3675
3676         list_for_each_entry(map, &regulator_map_list, list) {
3677                 len = snprintf(buf + ret, PAGE_SIZE - ret,
3678                                "%s -> %s.%s\n",
3679                                rdev_get_name(map->regulator), map->dev_name,
3680                                map->supply);
3681                 if (len >= 0)
3682                         ret += len;
3683                 if (ret > PAGE_SIZE) {
3684                         ret = PAGE_SIZE;
3685                         break;
3686                 }
3687         }
3688
3689         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3690
3691         kfree(buf);
3692
3693         return ret;
3694 }
3695 #endif
3696
3697 static const struct file_operations supply_map_fops = {
3698 #ifdef CONFIG_DEBUG_FS
3699         .read = supply_map_read_file,
3700         .llseek = default_llseek,
3701 #endif
3702 };
3703
3704 static int __init regulator_init(void)
3705 {
3706         int ret;
3707
3708         ret = class_register(&regulator_class);
3709
3710         debugfs_root = debugfs_create_dir("regulator", NULL);
3711         if (!debugfs_root)
3712                 pr_warn("regulator: Failed to create debugfs directory\n");
3713
3714         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3715                             &supply_map_fops);
3716
3717         regulator_dummy_init();
3718
3719         return ret;
3720 }
3721
3722 /* init early to allow our consumers to complete system booting */
3723 core_initcall(regulator_init);
3724
3725 static int __init regulator_init_complete(void)
3726 {
3727         struct regulator_dev *rdev;
3728         struct regulator_ops *ops;
3729         struct regulation_constraints *c;
3730         int enabled, ret;
3731
3732         /*
3733          * Since DT doesn't provide an idiomatic mechanism for
3734          * enabling full constraints and since it's much more natural
3735          * with DT to provide them just assume that a DT enabled
3736          * system has full constraints.
3737          */
3738         if (of_have_populated_dt())
3739                 has_full_constraints = true;
3740
3741         mutex_lock(&regulator_list_mutex);
3742
3743         /* If we have a full configuration then disable any regulators
3744          * which are not in use or always_on.  This will become the
3745          * default behaviour in the future.
3746          */
3747         list_for_each_entry(rdev, &regulator_list, list) {
3748                 ops = rdev->desc->ops;
3749                 c = rdev->constraints;
3750
3751                 if (!ops->disable || (c && c->always_on))
3752                         continue;
3753
3754                 mutex_lock(&rdev->mutex);
3755
3756                 if (rdev->use_count)
3757                         goto unlock;
3758
3759                 /* If we can't read the status assume it's on. */
3760                 if (ops->is_enabled)
3761                         enabled = ops->is_enabled(rdev);
3762                 else
3763                         enabled = 1;
3764
3765                 if (!enabled)
3766                         goto unlock;
3767
3768                 if (has_full_constraints) {
3769                         /* We log since this may kill the system if it
3770                          * goes wrong. */
3771                         rdev_info(rdev, "disabling\n");
3772                         ret = ops->disable(rdev);
3773                         if (ret != 0) {
3774                                 rdev_err(rdev, "couldn't disable: %d\n", ret);
3775                         }
3776                 } else {
3777                         /* The intention is that in future we will
3778                          * assume that full constraints are provided
3779                          * so warn even if we aren't going to do
3780                          * anything here.
3781                          */
3782                         rdev_warn(rdev, "incomplete constraints, leaving on\n");
3783                 }
3784
3785 unlock:
3786                 mutex_unlock(&rdev->mutex);
3787         }
3788
3789         mutex_unlock(&regulator_list_mutex);
3790
3791         return 0;
3792 }
3793 late_initcall(regulator_init_complete);