c20b28a63d15ad24cd90e8c3f818865f1d8e772f
[sfrench/cifs-2.6.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38
39 #include "dummy.h"
40 #include "internal.h"
41
42 #define rdev_crit(rdev, fmt, ...)                                       \
43         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...)                                        \
45         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...)                                       \
47         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...)                                       \
49         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...)                                        \
51         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
58
59 static struct dentry *debugfs_root;
60
61 static struct class regulator_class;
62
63 /*
64  * struct regulator_map
65  *
66  * Used to provide symbolic supply names to devices.
67  */
68 struct regulator_map {
69         struct list_head list;
70         const char *dev_name;   /* The dev_name() for the consumer */
71         const char *supply;
72         struct regulator_dev *regulator;
73 };
74
75 /*
76  * struct regulator_enable_gpio
77  *
78  * Management for shared enable GPIO pin
79  */
80 struct regulator_enable_gpio {
81         struct list_head list;
82         struct gpio_desc *gpiod;
83         u32 enable_count;       /* a number of enabled shared GPIO */
84         u32 request_count;      /* a number of requested shared GPIO */
85         unsigned int ena_gpio_invert:1;
86 };
87
88 /*
89  * struct regulator_supply_alias
90  *
91  * Used to map lookups for a supply onto an alternative device.
92  */
93 struct regulator_supply_alias {
94         struct list_head list;
95         struct device *src_dev;
96         const char *src_supply;
97         struct device *alias_dev;
98         const char *alias_supply;
99 };
100
101 static int _regulator_is_enabled(struct regulator_dev *rdev);
102 static int _regulator_disable(struct regulator_dev *rdev);
103 static int _regulator_get_voltage(struct regulator_dev *rdev);
104 static int _regulator_get_current_limit(struct regulator_dev *rdev);
105 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
106 static int _notifier_call_chain(struct regulator_dev *rdev,
107                                   unsigned long event, void *data);
108 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
109                                      int min_uV, int max_uV);
110 static struct regulator *create_regulator(struct regulator_dev *rdev,
111                                           struct device *dev,
112                                           const char *supply_name);
113 static void _regulator_put(struct regulator *regulator);
114
115 static struct regulator_dev *dev_to_rdev(struct device *dev)
116 {
117         return container_of(dev, struct regulator_dev, dev);
118 }
119
120 static const char *rdev_get_name(struct regulator_dev *rdev)
121 {
122         if (rdev->constraints && rdev->constraints->name)
123                 return rdev->constraints->name;
124         else if (rdev->desc->name)
125                 return rdev->desc->name;
126         else
127                 return "";
128 }
129
130 static bool have_full_constraints(void)
131 {
132         return has_full_constraints || of_have_populated_dt();
133 }
134
135 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
136 {
137         if (!rdev->constraints) {
138                 rdev_err(rdev, "no constraints\n");
139                 return false;
140         }
141
142         if (rdev->constraints->valid_ops_mask & ops)
143                 return true;
144
145         return false;
146 }
147
148 static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
149 {
150         if (rdev && rdev->supply)
151                 return rdev->supply->rdev;
152
153         return NULL;
154 }
155
156 /**
157  * regulator_lock_supply - lock a regulator and its supplies
158  * @rdev:         regulator source
159  */
160 static void regulator_lock_supply(struct regulator_dev *rdev)
161 {
162         int i;
163
164         for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
165                 mutex_lock_nested(&rdev->mutex, i);
166 }
167
168 /**
169  * regulator_unlock_supply - unlock a regulator and its supplies
170  * @rdev:         regulator source
171  */
172 static void regulator_unlock_supply(struct regulator_dev *rdev)
173 {
174         struct regulator *supply;
175
176         while (1) {
177                 mutex_unlock(&rdev->mutex);
178                 supply = rdev->supply;
179
180                 if (!rdev->supply)
181                         return;
182
183                 rdev = supply->rdev;
184         }
185 }
186
187 /**
188  * of_get_regulator - get a regulator device node based on supply name
189  * @dev: Device pointer for the consumer (of regulator) device
190  * @supply: regulator supply name
191  *
192  * Extract the regulator device node corresponding to the supply name.
193  * returns the device node corresponding to the regulator if found, else
194  * returns NULL.
195  */
196 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
197 {
198         struct device_node *regnode = NULL;
199         char prop_name[32]; /* 32 is max size of property name */
200
201         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
202
203         snprintf(prop_name, 32, "%s-supply", supply);
204         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
205
206         if (!regnode) {
207                 dev_dbg(dev, "Looking up %s property in node %s failed\n",
208                                 prop_name, dev->of_node->full_name);
209                 return NULL;
210         }
211         return regnode;
212 }
213
214 /* Platform voltage constraint check */
215 static int regulator_check_voltage(struct regulator_dev *rdev,
216                                    int *min_uV, int *max_uV)
217 {
218         BUG_ON(*min_uV > *max_uV);
219
220         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
221                 rdev_err(rdev, "voltage operation not allowed\n");
222                 return -EPERM;
223         }
224
225         if (*max_uV > rdev->constraints->max_uV)
226                 *max_uV = rdev->constraints->max_uV;
227         if (*min_uV < rdev->constraints->min_uV)
228                 *min_uV = rdev->constraints->min_uV;
229
230         if (*min_uV > *max_uV) {
231                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
232                          *min_uV, *max_uV);
233                 return -EINVAL;
234         }
235
236         return 0;
237 }
238
239 /* Make sure we select a voltage that suits the needs of all
240  * regulator consumers
241  */
242 static int regulator_check_consumers(struct regulator_dev *rdev,
243                                      int *min_uV, int *max_uV)
244 {
245         struct regulator *regulator;
246
247         list_for_each_entry(regulator, &rdev->consumer_list, list) {
248                 /*
249                  * Assume consumers that didn't say anything are OK
250                  * with anything in the constraint range.
251                  */
252                 if (!regulator->min_uV && !regulator->max_uV)
253                         continue;
254
255                 if (*max_uV > regulator->max_uV)
256                         *max_uV = regulator->max_uV;
257                 if (*min_uV < regulator->min_uV)
258                         *min_uV = regulator->min_uV;
259         }
260
261         if (*min_uV > *max_uV) {
262                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
263                         *min_uV, *max_uV);
264                 return -EINVAL;
265         }
266
267         return 0;
268 }
269
270 /* current constraint check */
271 static int regulator_check_current_limit(struct regulator_dev *rdev,
272                                         int *min_uA, int *max_uA)
273 {
274         BUG_ON(*min_uA > *max_uA);
275
276         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
277                 rdev_err(rdev, "current operation not allowed\n");
278                 return -EPERM;
279         }
280
281         if (*max_uA > rdev->constraints->max_uA)
282                 *max_uA = rdev->constraints->max_uA;
283         if (*min_uA < rdev->constraints->min_uA)
284                 *min_uA = rdev->constraints->min_uA;
285
286         if (*min_uA > *max_uA) {
287                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
288                          *min_uA, *max_uA);
289                 return -EINVAL;
290         }
291
292         return 0;
293 }
294
295 /* operating mode constraint check */
296 static int regulator_mode_constrain(struct regulator_dev *rdev,
297                                     unsigned int *mode)
298 {
299         switch (*mode) {
300         case REGULATOR_MODE_FAST:
301         case REGULATOR_MODE_NORMAL:
302         case REGULATOR_MODE_IDLE:
303         case REGULATOR_MODE_STANDBY:
304                 break;
305         default:
306                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
307                 return -EINVAL;
308         }
309
310         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
311                 rdev_err(rdev, "mode operation not allowed\n");
312                 return -EPERM;
313         }
314
315         /* The modes are bitmasks, the most power hungry modes having
316          * the lowest values. If the requested mode isn't supported
317          * try higher modes. */
318         while (*mode) {
319                 if (rdev->constraints->valid_modes_mask & *mode)
320                         return 0;
321                 *mode /= 2;
322         }
323
324         return -EINVAL;
325 }
326
327 static ssize_t regulator_uV_show(struct device *dev,
328                                 struct device_attribute *attr, char *buf)
329 {
330         struct regulator_dev *rdev = dev_get_drvdata(dev);
331         ssize_t ret;
332
333         mutex_lock(&rdev->mutex);
334         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
335         mutex_unlock(&rdev->mutex);
336
337         return ret;
338 }
339 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
340
341 static ssize_t regulator_uA_show(struct device *dev,
342                                 struct device_attribute *attr, char *buf)
343 {
344         struct regulator_dev *rdev = dev_get_drvdata(dev);
345
346         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
347 }
348 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
349
350 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
351                          char *buf)
352 {
353         struct regulator_dev *rdev = dev_get_drvdata(dev);
354
355         return sprintf(buf, "%s\n", rdev_get_name(rdev));
356 }
357 static DEVICE_ATTR_RO(name);
358
359 static ssize_t regulator_print_opmode(char *buf, int mode)
360 {
361         switch (mode) {
362         case REGULATOR_MODE_FAST:
363                 return sprintf(buf, "fast\n");
364         case REGULATOR_MODE_NORMAL:
365                 return sprintf(buf, "normal\n");
366         case REGULATOR_MODE_IDLE:
367                 return sprintf(buf, "idle\n");
368         case REGULATOR_MODE_STANDBY:
369                 return sprintf(buf, "standby\n");
370         }
371         return sprintf(buf, "unknown\n");
372 }
373
374 static ssize_t regulator_opmode_show(struct device *dev,
375                                     struct device_attribute *attr, char *buf)
376 {
377         struct regulator_dev *rdev = dev_get_drvdata(dev);
378
379         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
380 }
381 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
382
383 static ssize_t regulator_print_state(char *buf, int state)
384 {
385         if (state > 0)
386                 return sprintf(buf, "enabled\n");
387         else if (state == 0)
388                 return sprintf(buf, "disabled\n");
389         else
390                 return sprintf(buf, "unknown\n");
391 }
392
393 static ssize_t regulator_state_show(struct device *dev,
394                                    struct device_attribute *attr, char *buf)
395 {
396         struct regulator_dev *rdev = dev_get_drvdata(dev);
397         ssize_t ret;
398
399         mutex_lock(&rdev->mutex);
400         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
401         mutex_unlock(&rdev->mutex);
402
403         return ret;
404 }
405 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
406
407 static ssize_t regulator_status_show(struct device *dev,
408                                    struct device_attribute *attr, char *buf)
409 {
410         struct regulator_dev *rdev = dev_get_drvdata(dev);
411         int status;
412         char *label;
413
414         status = rdev->desc->ops->get_status(rdev);
415         if (status < 0)
416                 return status;
417
418         switch (status) {
419         case REGULATOR_STATUS_OFF:
420                 label = "off";
421                 break;
422         case REGULATOR_STATUS_ON:
423                 label = "on";
424                 break;
425         case REGULATOR_STATUS_ERROR:
426                 label = "error";
427                 break;
428         case REGULATOR_STATUS_FAST:
429                 label = "fast";
430                 break;
431         case REGULATOR_STATUS_NORMAL:
432                 label = "normal";
433                 break;
434         case REGULATOR_STATUS_IDLE:
435                 label = "idle";
436                 break;
437         case REGULATOR_STATUS_STANDBY:
438                 label = "standby";
439                 break;
440         case REGULATOR_STATUS_BYPASS:
441                 label = "bypass";
442                 break;
443         case REGULATOR_STATUS_UNDEFINED:
444                 label = "undefined";
445                 break;
446         default:
447                 return -ERANGE;
448         }
449
450         return sprintf(buf, "%s\n", label);
451 }
452 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
453
454 static ssize_t regulator_min_uA_show(struct device *dev,
455                                     struct device_attribute *attr, char *buf)
456 {
457         struct regulator_dev *rdev = dev_get_drvdata(dev);
458
459         if (!rdev->constraints)
460                 return sprintf(buf, "constraint not defined\n");
461
462         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
463 }
464 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
465
466 static ssize_t regulator_max_uA_show(struct device *dev,
467                                     struct device_attribute *attr, char *buf)
468 {
469         struct regulator_dev *rdev = dev_get_drvdata(dev);
470
471         if (!rdev->constraints)
472                 return sprintf(buf, "constraint not defined\n");
473
474         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
475 }
476 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
477
478 static ssize_t regulator_min_uV_show(struct device *dev,
479                                     struct device_attribute *attr, char *buf)
480 {
481         struct regulator_dev *rdev = dev_get_drvdata(dev);
482
483         if (!rdev->constraints)
484                 return sprintf(buf, "constraint not defined\n");
485
486         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
487 }
488 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
489
490 static ssize_t regulator_max_uV_show(struct device *dev,
491                                     struct device_attribute *attr, char *buf)
492 {
493         struct regulator_dev *rdev = dev_get_drvdata(dev);
494
495         if (!rdev->constraints)
496                 return sprintf(buf, "constraint not defined\n");
497
498         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
499 }
500 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
501
502 static ssize_t regulator_total_uA_show(struct device *dev,
503                                       struct device_attribute *attr, char *buf)
504 {
505         struct regulator_dev *rdev = dev_get_drvdata(dev);
506         struct regulator *regulator;
507         int uA = 0;
508
509         mutex_lock(&rdev->mutex);
510         list_for_each_entry(regulator, &rdev->consumer_list, list)
511                 uA += regulator->uA_load;
512         mutex_unlock(&rdev->mutex);
513         return sprintf(buf, "%d\n", uA);
514 }
515 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
516
517 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
518                               char *buf)
519 {
520         struct regulator_dev *rdev = dev_get_drvdata(dev);
521         return sprintf(buf, "%d\n", rdev->use_count);
522 }
523 static DEVICE_ATTR_RO(num_users);
524
525 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
526                          char *buf)
527 {
528         struct regulator_dev *rdev = dev_get_drvdata(dev);
529
530         switch (rdev->desc->type) {
531         case REGULATOR_VOLTAGE:
532                 return sprintf(buf, "voltage\n");
533         case REGULATOR_CURRENT:
534                 return sprintf(buf, "current\n");
535         }
536         return sprintf(buf, "unknown\n");
537 }
538 static DEVICE_ATTR_RO(type);
539
540 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
541                                 struct device_attribute *attr, char *buf)
542 {
543         struct regulator_dev *rdev = dev_get_drvdata(dev);
544
545         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
546 }
547 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
548                 regulator_suspend_mem_uV_show, NULL);
549
550 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
551                                 struct device_attribute *attr, char *buf)
552 {
553         struct regulator_dev *rdev = dev_get_drvdata(dev);
554
555         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
556 }
557 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
558                 regulator_suspend_disk_uV_show, NULL);
559
560 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
561                                 struct device_attribute *attr, char *buf)
562 {
563         struct regulator_dev *rdev = dev_get_drvdata(dev);
564
565         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
566 }
567 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
568                 regulator_suspend_standby_uV_show, NULL);
569
570 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
571                                 struct device_attribute *attr, char *buf)
572 {
573         struct regulator_dev *rdev = dev_get_drvdata(dev);
574
575         return regulator_print_opmode(buf,
576                 rdev->constraints->state_mem.mode);
577 }
578 static DEVICE_ATTR(suspend_mem_mode, 0444,
579                 regulator_suspend_mem_mode_show, NULL);
580
581 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
582                                 struct device_attribute *attr, char *buf)
583 {
584         struct regulator_dev *rdev = dev_get_drvdata(dev);
585
586         return regulator_print_opmode(buf,
587                 rdev->constraints->state_disk.mode);
588 }
589 static DEVICE_ATTR(suspend_disk_mode, 0444,
590                 regulator_suspend_disk_mode_show, NULL);
591
592 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
593                                 struct device_attribute *attr, char *buf)
594 {
595         struct regulator_dev *rdev = dev_get_drvdata(dev);
596
597         return regulator_print_opmode(buf,
598                 rdev->constraints->state_standby.mode);
599 }
600 static DEVICE_ATTR(suspend_standby_mode, 0444,
601                 regulator_suspend_standby_mode_show, NULL);
602
603 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
604                                    struct device_attribute *attr, char *buf)
605 {
606         struct regulator_dev *rdev = dev_get_drvdata(dev);
607
608         return regulator_print_state(buf,
609                         rdev->constraints->state_mem.enabled);
610 }
611 static DEVICE_ATTR(suspend_mem_state, 0444,
612                 regulator_suspend_mem_state_show, NULL);
613
614 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
615                                    struct device_attribute *attr, char *buf)
616 {
617         struct regulator_dev *rdev = dev_get_drvdata(dev);
618
619         return regulator_print_state(buf,
620                         rdev->constraints->state_disk.enabled);
621 }
622 static DEVICE_ATTR(suspend_disk_state, 0444,
623                 regulator_suspend_disk_state_show, NULL);
624
625 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
626                                    struct device_attribute *attr, char *buf)
627 {
628         struct regulator_dev *rdev = dev_get_drvdata(dev);
629
630         return regulator_print_state(buf,
631                         rdev->constraints->state_standby.enabled);
632 }
633 static DEVICE_ATTR(suspend_standby_state, 0444,
634                 regulator_suspend_standby_state_show, NULL);
635
636 static ssize_t regulator_bypass_show(struct device *dev,
637                                      struct device_attribute *attr, char *buf)
638 {
639         struct regulator_dev *rdev = dev_get_drvdata(dev);
640         const char *report;
641         bool bypass;
642         int ret;
643
644         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
645
646         if (ret != 0)
647                 report = "unknown";
648         else if (bypass)
649                 report = "enabled";
650         else
651                 report = "disabled";
652
653         return sprintf(buf, "%s\n", report);
654 }
655 static DEVICE_ATTR(bypass, 0444,
656                    regulator_bypass_show, NULL);
657
658 /* Calculate the new optimum regulator operating mode based on the new total
659  * consumer load. All locks held by caller */
660 static int drms_uA_update(struct regulator_dev *rdev)
661 {
662         struct regulator *sibling;
663         int current_uA = 0, output_uV, input_uV, err;
664         unsigned int mode;
665
666         lockdep_assert_held_once(&rdev->mutex);
667
668         /*
669          * first check to see if we can set modes at all, otherwise just
670          * tell the consumer everything is OK.
671          */
672         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
673                 return 0;
674
675         if (!rdev->desc->ops->get_optimum_mode &&
676             !rdev->desc->ops->set_load)
677                 return 0;
678
679         if (!rdev->desc->ops->set_mode &&
680             !rdev->desc->ops->set_load)
681                 return -EINVAL;
682
683         /* calc total requested load */
684         list_for_each_entry(sibling, &rdev->consumer_list, list)
685                 current_uA += sibling->uA_load;
686
687         current_uA += rdev->constraints->system_load;
688
689         if (rdev->desc->ops->set_load) {
690                 /* set the optimum mode for our new total regulator load */
691                 err = rdev->desc->ops->set_load(rdev, current_uA);
692                 if (err < 0)
693                         rdev_err(rdev, "failed to set load %d\n", current_uA);
694         } else {
695                 /* get output voltage */
696                 output_uV = _regulator_get_voltage(rdev);
697                 if (output_uV <= 0) {
698                         rdev_err(rdev, "invalid output voltage found\n");
699                         return -EINVAL;
700                 }
701
702                 /* get input voltage */
703                 input_uV = 0;
704                 if (rdev->supply)
705                         input_uV = regulator_get_voltage(rdev->supply);
706                 if (input_uV <= 0)
707                         input_uV = rdev->constraints->input_uV;
708                 if (input_uV <= 0) {
709                         rdev_err(rdev, "invalid input voltage found\n");
710                         return -EINVAL;
711                 }
712
713                 /* now get the optimum mode for our new total regulator load */
714                 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
715                                                          output_uV, current_uA);
716
717                 /* check the new mode is allowed */
718                 err = regulator_mode_constrain(rdev, &mode);
719                 if (err < 0) {
720                         rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
721                                  current_uA, input_uV, output_uV);
722                         return err;
723                 }
724
725                 err = rdev->desc->ops->set_mode(rdev, mode);
726                 if (err < 0)
727                         rdev_err(rdev, "failed to set optimum mode %x\n", mode);
728         }
729
730         return err;
731 }
732
733 static int suspend_set_state(struct regulator_dev *rdev,
734         struct regulator_state *rstate)
735 {
736         int ret = 0;
737
738         /* If we have no suspend mode configration don't set anything;
739          * only warn if the driver implements set_suspend_voltage or
740          * set_suspend_mode callback.
741          */
742         if (!rstate->enabled && !rstate->disabled) {
743                 if (rdev->desc->ops->set_suspend_voltage ||
744                     rdev->desc->ops->set_suspend_mode)
745                         rdev_warn(rdev, "No configuration\n");
746                 return 0;
747         }
748
749         if (rstate->enabled && rstate->disabled) {
750                 rdev_err(rdev, "invalid configuration\n");
751                 return -EINVAL;
752         }
753
754         if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
755                 ret = rdev->desc->ops->set_suspend_enable(rdev);
756         else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
757                 ret = rdev->desc->ops->set_suspend_disable(rdev);
758         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
759                 ret = 0;
760
761         if (ret < 0) {
762                 rdev_err(rdev, "failed to enabled/disable\n");
763                 return ret;
764         }
765
766         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
767                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
768                 if (ret < 0) {
769                         rdev_err(rdev, "failed to set voltage\n");
770                         return ret;
771                 }
772         }
773
774         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
775                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
776                 if (ret < 0) {
777                         rdev_err(rdev, "failed to set mode\n");
778                         return ret;
779                 }
780         }
781         return ret;
782 }
783
784 /* locks held by caller */
785 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
786 {
787         if (!rdev->constraints)
788                 return -EINVAL;
789
790         switch (state) {
791         case PM_SUSPEND_STANDBY:
792                 return suspend_set_state(rdev,
793                         &rdev->constraints->state_standby);
794         case PM_SUSPEND_MEM:
795                 return suspend_set_state(rdev,
796                         &rdev->constraints->state_mem);
797         case PM_SUSPEND_MAX:
798                 return suspend_set_state(rdev,
799                         &rdev->constraints->state_disk);
800         default:
801                 return -EINVAL;
802         }
803 }
804
805 static void print_constraints(struct regulator_dev *rdev)
806 {
807         struct regulation_constraints *constraints = rdev->constraints;
808         char buf[160] = "";
809         size_t len = sizeof(buf) - 1;
810         int count = 0;
811         int ret;
812
813         if (constraints->min_uV && constraints->max_uV) {
814                 if (constraints->min_uV == constraints->max_uV)
815                         count += scnprintf(buf + count, len - count, "%d mV ",
816                                            constraints->min_uV / 1000);
817                 else
818                         count += scnprintf(buf + count, len - count,
819                                            "%d <--> %d mV ",
820                                            constraints->min_uV / 1000,
821                                            constraints->max_uV / 1000);
822         }
823
824         if (!constraints->min_uV ||
825             constraints->min_uV != constraints->max_uV) {
826                 ret = _regulator_get_voltage(rdev);
827                 if (ret > 0)
828                         count += scnprintf(buf + count, len - count,
829                                            "at %d mV ", ret / 1000);
830         }
831
832         if (constraints->uV_offset)
833                 count += scnprintf(buf + count, len - count, "%dmV offset ",
834                                    constraints->uV_offset / 1000);
835
836         if (constraints->min_uA && constraints->max_uA) {
837                 if (constraints->min_uA == constraints->max_uA)
838                         count += scnprintf(buf + count, len - count, "%d mA ",
839                                            constraints->min_uA / 1000);
840                 else
841                         count += scnprintf(buf + count, len - count,
842                                            "%d <--> %d mA ",
843                                            constraints->min_uA / 1000,
844                                            constraints->max_uA / 1000);
845         }
846
847         if (!constraints->min_uA ||
848             constraints->min_uA != constraints->max_uA) {
849                 ret = _regulator_get_current_limit(rdev);
850                 if (ret > 0)
851                         count += scnprintf(buf + count, len - count,
852                                            "at %d mA ", ret / 1000);
853         }
854
855         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
856                 count += scnprintf(buf + count, len - count, "fast ");
857         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
858                 count += scnprintf(buf + count, len - count, "normal ");
859         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
860                 count += scnprintf(buf + count, len - count, "idle ");
861         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
862                 count += scnprintf(buf + count, len - count, "standby");
863
864         if (!count)
865                 scnprintf(buf, len, "no parameters");
866
867         rdev_dbg(rdev, "%s\n", buf);
868
869         if ((constraints->min_uV != constraints->max_uV) &&
870             !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
871                 rdev_warn(rdev,
872                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
873 }
874
875 static int machine_constraints_voltage(struct regulator_dev *rdev,
876         struct regulation_constraints *constraints)
877 {
878         const struct regulator_ops *ops = rdev->desc->ops;
879         int ret;
880
881         /* do we need to apply the constraint voltage */
882         if (rdev->constraints->apply_uV &&
883             rdev->constraints->min_uV && rdev->constraints->max_uV) {
884                 int target_min, target_max;
885                 int current_uV = _regulator_get_voltage(rdev);
886                 if (current_uV < 0) {
887                         rdev_err(rdev,
888                                  "failed to get the current voltage(%d)\n",
889                                  current_uV);
890                         return current_uV;
891                 }
892
893                 /*
894                  * If we're below the minimum voltage move up to the
895                  * minimum voltage, if we're above the maximum voltage
896                  * then move down to the maximum.
897                  */
898                 target_min = current_uV;
899                 target_max = current_uV;
900
901                 if (current_uV < rdev->constraints->min_uV) {
902                         target_min = rdev->constraints->min_uV;
903                         target_max = rdev->constraints->min_uV;
904                 }
905
906                 if (current_uV > rdev->constraints->max_uV) {
907                         target_min = rdev->constraints->max_uV;
908                         target_max = rdev->constraints->max_uV;
909                 }
910
911                 if (target_min != current_uV || target_max != current_uV) {
912                         rdev_info(rdev, "Bringing %duV into %d-%duV\n",
913                                   current_uV, target_min, target_max);
914                         ret = _regulator_do_set_voltage(
915                                 rdev, target_min, target_max);
916                         if (ret < 0) {
917                                 rdev_err(rdev,
918                                         "failed to apply %d-%duV constraint(%d)\n",
919                                         target_min, target_max, ret);
920                                 return ret;
921                         }
922                 }
923         }
924
925         /* constrain machine-level voltage specs to fit
926          * the actual range supported by this regulator.
927          */
928         if (ops->list_voltage && rdev->desc->n_voltages) {
929                 int     count = rdev->desc->n_voltages;
930                 int     i;
931                 int     min_uV = INT_MAX;
932                 int     max_uV = INT_MIN;
933                 int     cmin = constraints->min_uV;
934                 int     cmax = constraints->max_uV;
935
936                 /* it's safe to autoconfigure fixed-voltage supplies
937                    and the constraints are used by list_voltage. */
938                 if (count == 1 && !cmin) {
939                         cmin = 1;
940                         cmax = INT_MAX;
941                         constraints->min_uV = cmin;
942                         constraints->max_uV = cmax;
943                 }
944
945                 /* voltage constraints are optional */
946                 if ((cmin == 0) && (cmax == 0))
947                         return 0;
948
949                 /* else require explicit machine-level constraints */
950                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
951                         rdev_err(rdev, "invalid voltage constraints\n");
952                         return -EINVAL;
953                 }
954
955                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
956                 for (i = 0; i < count; i++) {
957                         int     value;
958
959                         value = ops->list_voltage(rdev, i);
960                         if (value <= 0)
961                                 continue;
962
963                         /* maybe adjust [min_uV..max_uV] */
964                         if (value >= cmin && value < min_uV)
965                                 min_uV = value;
966                         if (value <= cmax && value > max_uV)
967                                 max_uV = value;
968                 }
969
970                 /* final: [min_uV..max_uV] valid iff constraints valid */
971                 if (max_uV < min_uV) {
972                         rdev_err(rdev,
973                                  "unsupportable voltage constraints %u-%uuV\n",
974                                  min_uV, max_uV);
975                         return -EINVAL;
976                 }
977
978                 /* use regulator's subset of machine constraints */
979                 if (constraints->min_uV < min_uV) {
980                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
981                                  constraints->min_uV, min_uV);
982                         constraints->min_uV = min_uV;
983                 }
984                 if (constraints->max_uV > max_uV) {
985                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
986                                  constraints->max_uV, max_uV);
987                         constraints->max_uV = max_uV;
988                 }
989         }
990
991         return 0;
992 }
993
994 static int machine_constraints_current(struct regulator_dev *rdev,
995         struct regulation_constraints *constraints)
996 {
997         const struct regulator_ops *ops = rdev->desc->ops;
998         int ret;
999
1000         if (!constraints->min_uA && !constraints->max_uA)
1001                 return 0;
1002
1003         if (constraints->min_uA > constraints->max_uA) {
1004                 rdev_err(rdev, "Invalid current constraints\n");
1005                 return -EINVAL;
1006         }
1007
1008         if (!ops->set_current_limit || !ops->get_current_limit) {
1009                 rdev_warn(rdev, "Operation of current configuration missing\n");
1010                 return 0;
1011         }
1012
1013         /* Set regulator current in constraints range */
1014         ret = ops->set_current_limit(rdev, constraints->min_uA,
1015                         constraints->max_uA);
1016         if (ret < 0) {
1017                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1018                 return ret;
1019         }
1020
1021         return 0;
1022 }
1023
1024 static int _regulator_do_enable(struct regulator_dev *rdev);
1025
1026 /**
1027  * set_machine_constraints - sets regulator constraints
1028  * @rdev: regulator source
1029  * @constraints: constraints to apply
1030  *
1031  * Allows platform initialisation code to define and constrain
1032  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1033  * Constraints *must* be set by platform code in order for some
1034  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1035  * set_mode.
1036  */
1037 static int set_machine_constraints(struct regulator_dev *rdev,
1038         const struct regulation_constraints *constraints)
1039 {
1040         int ret = 0;
1041         const struct regulator_ops *ops = rdev->desc->ops;
1042
1043         if (constraints)
1044                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1045                                             GFP_KERNEL);
1046         else
1047                 rdev->constraints = kzalloc(sizeof(*constraints),
1048                                             GFP_KERNEL);
1049         if (!rdev->constraints)
1050                 return -ENOMEM;
1051
1052         ret = machine_constraints_voltage(rdev, rdev->constraints);
1053         if (ret != 0)
1054                 return ret;
1055
1056         ret = machine_constraints_current(rdev, rdev->constraints);
1057         if (ret != 0)
1058                 return ret;
1059
1060         if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1061                 ret = ops->set_input_current_limit(rdev,
1062                                                    rdev->constraints->ilim_uA);
1063                 if (ret < 0) {
1064                         rdev_err(rdev, "failed to set input limit\n");
1065                         return ret;
1066                 }
1067         }
1068
1069         /* do we need to setup our suspend state */
1070         if (rdev->constraints->initial_state) {
1071                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1072                 if (ret < 0) {
1073                         rdev_err(rdev, "failed to set suspend state\n");
1074                         return ret;
1075                 }
1076         }
1077
1078         if (rdev->constraints->initial_mode) {
1079                 if (!ops->set_mode) {
1080                         rdev_err(rdev, "no set_mode operation\n");
1081                         return -EINVAL;
1082                 }
1083
1084                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1085                 if (ret < 0) {
1086                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1087                         return ret;
1088                 }
1089         }
1090
1091         /* If the constraints say the regulator should be on at this point
1092          * and we have control then make sure it is enabled.
1093          */
1094         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1095                 ret = _regulator_do_enable(rdev);
1096                 if (ret < 0 && ret != -EINVAL) {
1097                         rdev_err(rdev, "failed to enable\n");
1098                         return ret;
1099                 }
1100         }
1101
1102         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1103                 && ops->set_ramp_delay) {
1104                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1105                 if (ret < 0) {
1106                         rdev_err(rdev, "failed to set ramp_delay\n");
1107                         return ret;
1108                 }
1109         }
1110
1111         if (rdev->constraints->pull_down && ops->set_pull_down) {
1112                 ret = ops->set_pull_down(rdev);
1113                 if (ret < 0) {
1114                         rdev_err(rdev, "failed to set pull down\n");
1115                         return ret;
1116                 }
1117         }
1118
1119         if (rdev->constraints->soft_start && ops->set_soft_start) {
1120                 ret = ops->set_soft_start(rdev);
1121                 if (ret < 0) {
1122                         rdev_err(rdev, "failed to set soft start\n");
1123                         return ret;
1124                 }
1125         }
1126
1127         if (rdev->constraints->over_current_protection
1128                 && ops->set_over_current_protection) {
1129                 ret = ops->set_over_current_protection(rdev);
1130                 if (ret < 0) {
1131                         rdev_err(rdev, "failed to set over current protection\n");
1132                         return ret;
1133                 }
1134         }
1135
1136         if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1137                 bool ad_state = (rdev->constraints->active_discharge ==
1138                               REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1139
1140                 ret = ops->set_active_discharge(rdev, ad_state);
1141                 if (ret < 0) {
1142                         rdev_err(rdev, "failed to set active discharge\n");
1143                         return ret;
1144                 }
1145         }
1146
1147         print_constraints(rdev);
1148         return 0;
1149 }
1150
1151 /**
1152  * set_supply - set regulator supply regulator
1153  * @rdev: regulator name
1154  * @supply_rdev: supply regulator name
1155  *
1156  * Called by platform initialisation code to set the supply regulator for this
1157  * regulator. This ensures that a regulators supply will also be enabled by the
1158  * core if it's child is enabled.
1159  */
1160 static int set_supply(struct regulator_dev *rdev,
1161                       struct regulator_dev *supply_rdev)
1162 {
1163         int err;
1164
1165         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1166
1167         if (!try_module_get(supply_rdev->owner))
1168                 return -ENODEV;
1169
1170         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1171         if (rdev->supply == NULL) {
1172                 err = -ENOMEM;
1173                 return err;
1174         }
1175         supply_rdev->open_count++;
1176
1177         return 0;
1178 }
1179
1180 /**
1181  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1182  * @rdev:         regulator source
1183  * @consumer_dev_name: dev_name() string for device supply applies to
1184  * @supply:       symbolic name for supply
1185  *
1186  * Allows platform initialisation code to map physical regulator
1187  * sources to symbolic names for supplies for use by devices.  Devices
1188  * should use these symbolic names to request regulators, avoiding the
1189  * need to provide board-specific regulator names as platform data.
1190  */
1191 static int set_consumer_device_supply(struct regulator_dev *rdev,
1192                                       const char *consumer_dev_name,
1193                                       const char *supply)
1194 {
1195         struct regulator_map *node;
1196         int has_dev;
1197
1198         if (supply == NULL)
1199                 return -EINVAL;
1200
1201         if (consumer_dev_name != NULL)
1202                 has_dev = 1;
1203         else
1204                 has_dev = 0;
1205
1206         list_for_each_entry(node, &regulator_map_list, list) {
1207                 if (node->dev_name && consumer_dev_name) {
1208                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1209                                 continue;
1210                 } else if (node->dev_name || consumer_dev_name) {
1211                         continue;
1212                 }
1213
1214                 if (strcmp(node->supply, supply) != 0)
1215                         continue;
1216
1217                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1218                          consumer_dev_name,
1219                          dev_name(&node->regulator->dev),
1220                          node->regulator->desc->name,
1221                          supply,
1222                          dev_name(&rdev->dev), rdev_get_name(rdev));
1223                 return -EBUSY;
1224         }
1225
1226         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1227         if (node == NULL)
1228                 return -ENOMEM;
1229
1230         node->regulator = rdev;
1231         node->supply = supply;
1232
1233         if (has_dev) {
1234                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1235                 if (node->dev_name == NULL) {
1236                         kfree(node);
1237                         return -ENOMEM;
1238                 }
1239         }
1240
1241         list_add(&node->list, &regulator_map_list);
1242         return 0;
1243 }
1244
1245 static void unset_regulator_supplies(struct regulator_dev *rdev)
1246 {
1247         struct regulator_map *node, *n;
1248
1249         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1250                 if (rdev == node->regulator) {
1251                         list_del(&node->list);
1252                         kfree(node->dev_name);
1253                         kfree(node);
1254                 }
1255         }
1256 }
1257
1258 #ifdef CONFIG_DEBUG_FS
1259 static ssize_t constraint_flags_read_file(struct file *file,
1260                                           char __user *user_buf,
1261                                           size_t count, loff_t *ppos)
1262 {
1263         const struct regulator *regulator = file->private_data;
1264         const struct regulation_constraints *c = regulator->rdev->constraints;
1265         char *buf;
1266         ssize_t ret;
1267
1268         if (!c)
1269                 return 0;
1270
1271         buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1272         if (!buf)
1273                 return -ENOMEM;
1274
1275         ret = snprintf(buf, PAGE_SIZE,
1276                         "always_on: %u\n"
1277                         "boot_on: %u\n"
1278                         "apply_uV: %u\n"
1279                         "ramp_disable: %u\n"
1280                         "soft_start: %u\n"
1281                         "pull_down: %u\n"
1282                         "over_current_protection: %u\n",
1283                         c->always_on,
1284                         c->boot_on,
1285                         c->apply_uV,
1286                         c->ramp_disable,
1287                         c->soft_start,
1288                         c->pull_down,
1289                         c->over_current_protection);
1290
1291         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1292         kfree(buf);
1293
1294         return ret;
1295 }
1296
1297 #endif
1298
1299 static const struct file_operations constraint_flags_fops = {
1300 #ifdef CONFIG_DEBUG_FS
1301         .open = simple_open,
1302         .read = constraint_flags_read_file,
1303         .llseek = default_llseek,
1304 #endif
1305 };
1306
1307 #define REG_STR_SIZE    64
1308
1309 static struct regulator *create_regulator(struct regulator_dev *rdev,
1310                                           struct device *dev,
1311                                           const char *supply_name)
1312 {
1313         struct regulator *regulator;
1314         char buf[REG_STR_SIZE];
1315         int err, size;
1316
1317         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1318         if (regulator == NULL)
1319                 return NULL;
1320
1321         mutex_lock(&rdev->mutex);
1322         regulator->rdev = rdev;
1323         list_add(&regulator->list, &rdev->consumer_list);
1324
1325         if (dev) {
1326                 regulator->dev = dev;
1327
1328                 /* Add a link to the device sysfs entry */
1329                 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1330                                 dev->kobj.name, supply_name);
1331                 if (size >= REG_STR_SIZE)
1332                         goto overflow_err;
1333
1334                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1335                 if (regulator->supply_name == NULL)
1336                         goto overflow_err;
1337
1338                 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1339                                         buf);
1340                 if (err) {
1341                         rdev_dbg(rdev, "could not add device link %s err %d\n",
1342                                   dev->kobj.name, err);
1343                         /* non-fatal */
1344                 }
1345         } else {
1346                 regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1347                 if (regulator->supply_name == NULL)
1348                         goto overflow_err;
1349         }
1350
1351         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1352                                                 rdev->debugfs);
1353         if (!regulator->debugfs) {
1354                 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1355         } else {
1356                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1357                                    &regulator->uA_load);
1358                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1359                                    &regulator->min_uV);
1360                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1361                                    &regulator->max_uV);
1362                 debugfs_create_file("constraint_flags", 0444,
1363                                     regulator->debugfs, regulator,
1364                                     &constraint_flags_fops);
1365         }
1366
1367         /*
1368          * Check now if the regulator is an always on regulator - if
1369          * it is then we don't need to do nearly so much work for
1370          * enable/disable calls.
1371          */
1372         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1373             _regulator_is_enabled(rdev))
1374                 regulator->always_on = true;
1375
1376         mutex_unlock(&rdev->mutex);
1377         return regulator;
1378 overflow_err:
1379         list_del(&regulator->list);
1380         kfree(regulator);
1381         mutex_unlock(&rdev->mutex);
1382         return NULL;
1383 }
1384
1385 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1386 {
1387         if (rdev->constraints && rdev->constraints->enable_time)
1388                 return rdev->constraints->enable_time;
1389         if (!rdev->desc->ops->enable_time)
1390                 return rdev->desc->enable_time;
1391         return rdev->desc->ops->enable_time(rdev);
1392 }
1393
1394 static struct regulator_supply_alias *regulator_find_supply_alias(
1395                 struct device *dev, const char *supply)
1396 {
1397         struct regulator_supply_alias *map;
1398
1399         list_for_each_entry(map, &regulator_supply_alias_list, list)
1400                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1401                         return map;
1402
1403         return NULL;
1404 }
1405
1406 static void regulator_supply_alias(struct device **dev, const char **supply)
1407 {
1408         struct regulator_supply_alias *map;
1409
1410         map = regulator_find_supply_alias(*dev, *supply);
1411         if (map) {
1412                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1413                                 *supply, map->alias_supply,
1414                                 dev_name(map->alias_dev));
1415                 *dev = map->alias_dev;
1416                 *supply = map->alias_supply;
1417         }
1418 }
1419
1420 static int of_node_match(struct device *dev, const void *data)
1421 {
1422         return dev->of_node == data;
1423 }
1424
1425 static struct regulator_dev *of_find_regulator_by_node(struct device_node *np)
1426 {
1427         struct device *dev;
1428
1429         dev = class_find_device(&regulator_class, NULL, np, of_node_match);
1430
1431         return dev ? dev_to_rdev(dev) : NULL;
1432 }
1433
1434 static int regulator_match(struct device *dev, const void *data)
1435 {
1436         struct regulator_dev *r = dev_to_rdev(dev);
1437
1438         return strcmp(rdev_get_name(r), data) == 0;
1439 }
1440
1441 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1442 {
1443         struct device *dev;
1444
1445         dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1446
1447         return dev ? dev_to_rdev(dev) : NULL;
1448 }
1449
1450 /**
1451  * regulator_dev_lookup - lookup a regulator device.
1452  * @dev: device for regulator "consumer".
1453  * @supply: Supply name or regulator ID.
1454  *
1455  * If successful, returns a struct regulator_dev that corresponds to the name
1456  * @supply and with the embedded struct device refcount incremented by one.
1457  * The refcount must be dropped by calling put_device().
1458  * On failure one of the following ERR-PTR-encoded values is returned:
1459  * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1460  * in the future.
1461  */
1462 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1463                                                   const char *supply)
1464 {
1465         struct regulator_dev *r;
1466         struct device_node *node;
1467         struct regulator_map *map;
1468         const char *devname = NULL;
1469
1470         regulator_supply_alias(&dev, &supply);
1471
1472         /* first do a dt based lookup */
1473         if (dev && dev->of_node) {
1474                 node = of_get_regulator(dev, supply);
1475                 if (node) {
1476                         r = of_find_regulator_by_node(node);
1477                         if (r)
1478                                 return r;
1479
1480                         /*
1481                          * We have a node, but there is no device.
1482                          * assume it has not registered yet.
1483                          */
1484                         return ERR_PTR(-EPROBE_DEFER);
1485                 }
1486         }
1487
1488         /* if not found, try doing it non-dt way */
1489         if (dev)
1490                 devname = dev_name(dev);
1491
1492         r = regulator_lookup_by_name(supply);
1493         if (r)
1494                 return r;
1495
1496         mutex_lock(&regulator_list_mutex);
1497         list_for_each_entry(map, &regulator_map_list, list) {
1498                 /* If the mapping has a device set up it must match */
1499                 if (map->dev_name &&
1500                     (!devname || strcmp(map->dev_name, devname)))
1501                         continue;
1502
1503                 if (strcmp(map->supply, supply) == 0 &&
1504                     get_device(&map->regulator->dev)) {
1505                         r = map->regulator;
1506                         break;
1507                 }
1508         }
1509         mutex_unlock(&regulator_list_mutex);
1510
1511         if (r)
1512                 return r;
1513
1514         return ERR_PTR(-ENODEV);
1515 }
1516
1517 static int regulator_resolve_supply(struct regulator_dev *rdev)
1518 {
1519         struct regulator_dev *r;
1520         struct device *dev = rdev->dev.parent;
1521         int ret;
1522
1523         /* No supply to resovle? */
1524         if (!rdev->supply_name)
1525                 return 0;
1526
1527         /* Supply already resolved? */
1528         if (rdev->supply)
1529                 return 0;
1530
1531         r = regulator_dev_lookup(dev, rdev->supply_name);
1532         if (IS_ERR(r)) {
1533                 ret = PTR_ERR(r);
1534
1535                 if (ret == -ENODEV) {
1536                         /*
1537                          * No supply was specified for this regulator and
1538                          * there will never be one.
1539                          */
1540                         return 0;
1541                 }
1542
1543                 /* Did the lookup explicitly defer for us? */
1544                 if (ret == -EPROBE_DEFER)
1545                         return ret;
1546
1547                 if (have_full_constraints()) {
1548                         r = dummy_regulator_rdev;
1549                         get_device(&r->dev);
1550                 } else {
1551                         dev_err(dev, "Failed to resolve %s-supply for %s\n",
1552                                 rdev->supply_name, rdev->desc->name);
1553                         return -EPROBE_DEFER;
1554                 }
1555         }
1556
1557         /*
1558          * If the supply's parent device is not the same as the
1559          * regulator's parent device, then ensure the parent device
1560          * is bound before we resolve the supply, in case the parent
1561          * device get probe deferred and unregisters the supply.
1562          */
1563         if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1564                 if (!device_is_bound(r->dev.parent)) {
1565                         put_device(&r->dev);
1566                         return -EPROBE_DEFER;
1567                 }
1568         }
1569
1570         /* Recursively resolve the supply of the supply */
1571         ret = regulator_resolve_supply(r);
1572         if (ret < 0) {
1573                 put_device(&r->dev);
1574                 return ret;
1575         }
1576
1577         ret = set_supply(rdev, r);
1578         if (ret < 0) {
1579                 put_device(&r->dev);
1580                 return ret;
1581         }
1582
1583         /* Cascade always-on state to supply */
1584         if (_regulator_is_enabled(rdev)) {
1585                 ret = regulator_enable(rdev->supply);
1586                 if (ret < 0) {
1587                         _regulator_put(rdev->supply);
1588                         rdev->supply = NULL;
1589                         return ret;
1590                 }
1591         }
1592
1593         return 0;
1594 }
1595
1596 /* Internal regulator request function */
1597 struct regulator *_regulator_get(struct device *dev, const char *id,
1598                                  enum regulator_get_type get_type)
1599 {
1600         struct regulator_dev *rdev;
1601         struct regulator *regulator;
1602         const char *devname = dev ? dev_name(dev) : "deviceless";
1603         int ret;
1604
1605         if (get_type >= MAX_GET_TYPE) {
1606                 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1607                 return ERR_PTR(-EINVAL);
1608         }
1609
1610         if (id == NULL) {
1611                 pr_err("get() with no identifier\n");
1612                 return ERR_PTR(-EINVAL);
1613         }
1614
1615         rdev = regulator_dev_lookup(dev, id);
1616         if (IS_ERR(rdev)) {
1617                 ret = PTR_ERR(rdev);
1618
1619                 /*
1620                  * If regulator_dev_lookup() fails with error other
1621                  * than -ENODEV our job here is done, we simply return it.
1622                  */
1623                 if (ret != -ENODEV)
1624                         return ERR_PTR(ret);
1625
1626                 if (!have_full_constraints()) {
1627                         dev_warn(dev,
1628                                  "incomplete constraints, dummy supplies not allowed\n");
1629                         return ERR_PTR(-ENODEV);
1630                 }
1631
1632                 switch (get_type) {
1633                 case NORMAL_GET:
1634                         /*
1635                          * Assume that a regulator is physically present and
1636                          * enabled, even if it isn't hooked up, and just
1637                          * provide a dummy.
1638                          */
1639                         dev_warn(dev,
1640                                  "%s supply %s not found, using dummy regulator\n",
1641                                  devname, id);
1642                         rdev = dummy_regulator_rdev;
1643                         get_device(&rdev->dev);
1644                         break;
1645
1646                 case EXCLUSIVE_GET:
1647                         dev_warn(dev,
1648                                  "dummy supplies not allowed for exclusive requests\n");
1649                         /* fall through */
1650
1651                 default:
1652                         return ERR_PTR(-ENODEV);
1653                 }
1654         }
1655
1656         if (rdev->exclusive) {
1657                 regulator = ERR_PTR(-EPERM);
1658                 put_device(&rdev->dev);
1659                 return regulator;
1660         }
1661
1662         if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1663                 regulator = ERR_PTR(-EBUSY);
1664                 put_device(&rdev->dev);
1665                 return regulator;
1666         }
1667
1668         ret = regulator_resolve_supply(rdev);
1669         if (ret < 0) {
1670                 regulator = ERR_PTR(ret);
1671                 put_device(&rdev->dev);
1672                 return regulator;
1673         }
1674
1675         if (!try_module_get(rdev->owner)) {
1676                 regulator = ERR_PTR(-EPROBE_DEFER);
1677                 put_device(&rdev->dev);
1678                 return regulator;
1679         }
1680
1681         regulator = create_regulator(rdev, dev, id);
1682         if (regulator == NULL) {
1683                 regulator = ERR_PTR(-ENOMEM);
1684                 put_device(&rdev->dev);
1685                 module_put(rdev->owner);
1686                 return regulator;
1687         }
1688
1689         rdev->open_count++;
1690         if (get_type == EXCLUSIVE_GET) {
1691                 rdev->exclusive = 1;
1692
1693                 ret = _regulator_is_enabled(rdev);
1694                 if (ret > 0)
1695                         rdev->use_count = 1;
1696                 else
1697                         rdev->use_count = 0;
1698         }
1699
1700         return regulator;
1701 }
1702
1703 /**
1704  * regulator_get - lookup and obtain a reference to a regulator.
1705  * @dev: device for regulator "consumer"
1706  * @id: Supply name or regulator ID.
1707  *
1708  * Returns a struct regulator corresponding to the regulator producer,
1709  * or IS_ERR() condition containing errno.
1710  *
1711  * Use of supply names configured via regulator_set_device_supply() is
1712  * strongly encouraged.  It is recommended that the supply name used
1713  * should match the name used for the supply and/or the relevant
1714  * device pins in the datasheet.
1715  */
1716 struct regulator *regulator_get(struct device *dev, const char *id)
1717 {
1718         return _regulator_get(dev, id, NORMAL_GET);
1719 }
1720 EXPORT_SYMBOL_GPL(regulator_get);
1721
1722 /**
1723  * regulator_get_exclusive - obtain exclusive access to a regulator.
1724  * @dev: device for regulator "consumer"
1725  * @id: Supply name or regulator ID.
1726  *
1727  * Returns a struct regulator corresponding to the regulator producer,
1728  * or IS_ERR() condition containing errno.  Other consumers will be
1729  * unable to obtain this regulator while this reference is held and the
1730  * use count for the regulator will be initialised to reflect the current
1731  * state of the regulator.
1732  *
1733  * This is intended for use by consumers which cannot tolerate shared
1734  * use of the regulator such as those which need to force the
1735  * regulator off for correct operation of the hardware they are
1736  * controlling.
1737  *
1738  * Use of supply names configured via regulator_set_device_supply() is
1739  * strongly encouraged.  It is recommended that the supply name used
1740  * should match the name used for the supply and/or the relevant
1741  * device pins in the datasheet.
1742  */
1743 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1744 {
1745         return _regulator_get(dev, id, EXCLUSIVE_GET);
1746 }
1747 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1748
1749 /**
1750  * regulator_get_optional - obtain optional access to a regulator.
1751  * @dev: device for regulator "consumer"
1752  * @id: Supply name or regulator ID.
1753  *
1754  * Returns a struct regulator corresponding to the regulator producer,
1755  * or IS_ERR() condition containing errno.
1756  *
1757  * This is intended for use by consumers for devices which can have
1758  * some supplies unconnected in normal use, such as some MMC devices.
1759  * It can allow the regulator core to provide stub supplies for other
1760  * supplies requested using normal regulator_get() calls without
1761  * disrupting the operation of drivers that can handle absent
1762  * supplies.
1763  *
1764  * Use of supply names configured via regulator_set_device_supply() is
1765  * strongly encouraged.  It is recommended that the supply name used
1766  * should match the name used for the supply and/or the relevant
1767  * device pins in the datasheet.
1768  */
1769 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1770 {
1771         return _regulator_get(dev, id, OPTIONAL_GET);
1772 }
1773 EXPORT_SYMBOL_GPL(regulator_get_optional);
1774
1775 /* regulator_list_mutex lock held by regulator_put() */
1776 static void _regulator_put(struct regulator *regulator)
1777 {
1778         struct regulator_dev *rdev;
1779
1780         if (IS_ERR_OR_NULL(regulator))
1781                 return;
1782
1783         lockdep_assert_held_once(&regulator_list_mutex);
1784
1785         rdev = regulator->rdev;
1786
1787         debugfs_remove_recursive(regulator->debugfs);
1788
1789         /* remove any sysfs entries */
1790         if (regulator->dev)
1791                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1792         mutex_lock(&rdev->mutex);
1793         list_del(&regulator->list);
1794
1795         rdev->open_count--;
1796         rdev->exclusive = 0;
1797         put_device(&rdev->dev);
1798         mutex_unlock(&rdev->mutex);
1799
1800         kfree_const(regulator->supply_name);
1801         kfree(regulator);
1802
1803         module_put(rdev->owner);
1804 }
1805
1806 /**
1807  * regulator_put - "free" the regulator source
1808  * @regulator: regulator source
1809  *
1810  * Note: drivers must ensure that all regulator_enable calls made on this
1811  * regulator source are balanced by regulator_disable calls prior to calling
1812  * this function.
1813  */
1814 void regulator_put(struct regulator *regulator)
1815 {
1816         mutex_lock(&regulator_list_mutex);
1817         _regulator_put(regulator);
1818         mutex_unlock(&regulator_list_mutex);
1819 }
1820 EXPORT_SYMBOL_GPL(regulator_put);
1821
1822 /**
1823  * regulator_register_supply_alias - Provide device alias for supply lookup
1824  *
1825  * @dev: device that will be given as the regulator "consumer"
1826  * @id: Supply name or regulator ID
1827  * @alias_dev: device that should be used to lookup the supply
1828  * @alias_id: Supply name or regulator ID that should be used to lookup the
1829  * supply
1830  *
1831  * All lookups for id on dev will instead be conducted for alias_id on
1832  * alias_dev.
1833  */
1834 int regulator_register_supply_alias(struct device *dev, const char *id,
1835                                     struct device *alias_dev,
1836                                     const char *alias_id)
1837 {
1838         struct regulator_supply_alias *map;
1839
1840         map = regulator_find_supply_alias(dev, id);
1841         if (map)
1842                 return -EEXIST;
1843
1844         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1845         if (!map)
1846                 return -ENOMEM;
1847
1848         map->src_dev = dev;
1849         map->src_supply = id;
1850         map->alias_dev = alias_dev;
1851         map->alias_supply = alias_id;
1852
1853         list_add(&map->list, &regulator_supply_alias_list);
1854
1855         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1856                 id, dev_name(dev), alias_id, dev_name(alias_dev));
1857
1858         return 0;
1859 }
1860 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1861
1862 /**
1863  * regulator_unregister_supply_alias - Remove device alias
1864  *
1865  * @dev: device that will be given as the regulator "consumer"
1866  * @id: Supply name or regulator ID
1867  *
1868  * Remove a lookup alias if one exists for id on dev.
1869  */
1870 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1871 {
1872         struct regulator_supply_alias *map;
1873
1874         map = regulator_find_supply_alias(dev, id);
1875         if (map) {
1876                 list_del(&map->list);
1877                 kfree(map);
1878         }
1879 }
1880 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1881
1882 /**
1883  * regulator_bulk_register_supply_alias - register multiple aliases
1884  *
1885  * @dev: device that will be given as the regulator "consumer"
1886  * @id: List of supply names or regulator IDs
1887  * @alias_dev: device that should be used to lookup the supply
1888  * @alias_id: List of supply names or regulator IDs that should be used to
1889  * lookup the supply
1890  * @num_id: Number of aliases to register
1891  *
1892  * @return 0 on success, an errno on failure.
1893  *
1894  * This helper function allows drivers to register several supply
1895  * aliases in one operation.  If any of the aliases cannot be
1896  * registered any aliases that were registered will be removed
1897  * before returning to the caller.
1898  */
1899 int regulator_bulk_register_supply_alias(struct device *dev,
1900                                          const char *const *id,
1901                                          struct device *alias_dev,
1902                                          const char *const *alias_id,
1903                                          int num_id)
1904 {
1905         int i;
1906         int ret;
1907
1908         for (i = 0; i < num_id; ++i) {
1909                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1910                                                       alias_id[i]);
1911                 if (ret < 0)
1912                         goto err;
1913         }
1914
1915         return 0;
1916
1917 err:
1918         dev_err(dev,
1919                 "Failed to create supply alias %s,%s -> %s,%s\n",
1920                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1921
1922         while (--i >= 0)
1923                 regulator_unregister_supply_alias(dev, id[i]);
1924
1925         return ret;
1926 }
1927 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1928
1929 /**
1930  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1931  *
1932  * @dev: device that will be given as the regulator "consumer"
1933  * @id: List of supply names or regulator IDs
1934  * @num_id: Number of aliases to unregister
1935  *
1936  * This helper function allows drivers to unregister several supply
1937  * aliases in one operation.
1938  */
1939 void regulator_bulk_unregister_supply_alias(struct device *dev,
1940                                             const char *const *id,
1941                                             int num_id)
1942 {
1943         int i;
1944
1945         for (i = 0; i < num_id; ++i)
1946                 regulator_unregister_supply_alias(dev, id[i]);
1947 }
1948 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1949
1950
1951 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1952 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1953                                 const struct regulator_config *config)
1954 {
1955         struct regulator_enable_gpio *pin;
1956         struct gpio_desc *gpiod;
1957         int ret;
1958
1959         gpiod = gpio_to_desc(config->ena_gpio);
1960
1961         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1962                 if (pin->gpiod == gpiod) {
1963                         rdev_dbg(rdev, "GPIO %d is already used\n",
1964                                 config->ena_gpio);
1965                         goto update_ena_gpio_to_rdev;
1966                 }
1967         }
1968
1969         ret = gpio_request_one(config->ena_gpio,
1970                                 GPIOF_DIR_OUT | config->ena_gpio_flags,
1971                                 rdev_get_name(rdev));
1972         if (ret)
1973                 return ret;
1974
1975         pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1976         if (pin == NULL) {
1977                 gpio_free(config->ena_gpio);
1978                 return -ENOMEM;
1979         }
1980
1981         pin->gpiod = gpiod;
1982         pin->ena_gpio_invert = config->ena_gpio_invert;
1983         list_add(&pin->list, &regulator_ena_gpio_list);
1984
1985 update_ena_gpio_to_rdev:
1986         pin->request_count++;
1987         rdev->ena_pin = pin;
1988         return 0;
1989 }
1990
1991 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1992 {
1993         struct regulator_enable_gpio *pin, *n;
1994
1995         if (!rdev->ena_pin)
1996                 return;
1997
1998         /* Free the GPIO only in case of no use */
1999         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2000                 if (pin->gpiod == rdev->ena_pin->gpiod) {
2001                         if (pin->request_count <= 1) {
2002                                 pin->request_count = 0;
2003                                 gpiod_put(pin->gpiod);
2004                                 list_del(&pin->list);
2005                                 kfree(pin);
2006                                 rdev->ena_pin = NULL;
2007                                 return;
2008                         } else {
2009                                 pin->request_count--;
2010                         }
2011                 }
2012         }
2013 }
2014
2015 /**
2016  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2017  * @rdev: regulator_dev structure
2018  * @enable: enable GPIO at initial use?
2019  *
2020  * GPIO is enabled in case of initial use. (enable_count is 0)
2021  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2022  */
2023 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2024 {
2025         struct regulator_enable_gpio *pin = rdev->ena_pin;
2026
2027         if (!pin)
2028                 return -EINVAL;
2029
2030         if (enable) {
2031                 /* Enable GPIO at initial use */
2032                 if (pin->enable_count == 0)
2033                         gpiod_set_value_cansleep(pin->gpiod,
2034                                                  !pin->ena_gpio_invert);
2035
2036                 pin->enable_count++;
2037         } else {
2038                 if (pin->enable_count > 1) {
2039                         pin->enable_count--;
2040                         return 0;
2041                 }
2042
2043                 /* Disable GPIO if not used */
2044                 if (pin->enable_count <= 1) {
2045                         gpiod_set_value_cansleep(pin->gpiod,
2046                                                  pin->ena_gpio_invert);
2047                         pin->enable_count = 0;
2048                 }
2049         }
2050
2051         return 0;
2052 }
2053
2054 /**
2055  * _regulator_enable_delay - a delay helper function
2056  * @delay: time to delay in microseconds
2057  *
2058  * Delay for the requested amount of time as per the guidelines in:
2059  *
2060  *     Documentation/timers/timers-howto.txt
2061  *
2062  * The assumption here is that regulators will never be enabled in
2063  * atomic context and therefore sleeping functions can be used.
2064  */
2065 static void _regulator_enable_delay(unsigned int delay)
2066 {
2067         unsigned int ms = delay / 1000;
2068         unsigned int us = delay % 1000;
2069
2070         if (ms > 0) {
2071                 /*
2072                  * For small enough values, handle super-millisecond
2073                  * delays in the usleep_range() call below.
2074                  */
2075                 if (ms < 20)
2076                         us += ms * 1000;
2077                 else
2078                         msleep(ms);
2079         }
2080
2081         /*
2082          * Give the scheduler some room to coalesce with any other
2083          * wakeup sources. For delays shorter than 10 us, don't even
2084          * bother setting up high-resolution timers and just busy-
2085          * loop.
2086          */
2087         if (us >= 10)
2088                 usleep_range(us, us + 100);
2089         else
2090                 udelay(us);
2091 }
2092
2093 static int _regulator_do_enable(struct regulator_dev *rdev)
2094 {
2095         int ret, delay;
2096
2097         /* Query before enabling in case configuration dependent.  */
2098         ret = _regulator_get_enable_time(rdev);
2099         if (ret >= 0) {
2100                 delay = ret;
2101         } else {
2102                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2103                 delay = 0;
2104         }
2105
2106         trace_regulator_enable(rdev_get_name(rdev));
2107
2108         if (rdev->desc->off_on_delay) {
2109                 /* if needed, keep a distance of off_on_delay from last time
2110                  * this regulator was disabled.
2111                  */
2112                 unsigned long start_jiffy = jiffies;
2113                 unsigned long intended, max_delay, remaining;
2114
2115                 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2116                 intended = rdev->last_off_jiffy + max_delay;
2117
2118                 if (time_before(start_jiffy, intended)) {
2119                         /* calc remaining jiffies to deal with one-time
2120                          * timer wrapping.
2121                          * in case of multiple timer wrapping, either it can be
2122                          * detected by out-of-range remaining, or it cannot be
2123                          * detected and we gets a panelty of
2124                          * _regulator_enable_delay().
2125                          */
2126                         remaining = intended - start_jiffy;
2127                         if (remaining <= max_delay)
2128                                 _regulator_enable_delay(
2129                                                 jiffies_to_usecs(remaining));
2130                 }
2131         }
2132
2133         if (rdev->ena_pin) {
2134                 if (!rdev->ena_gpio_state) {
2135                         ret = regulator_ena_gpio_ctrl(rdev, true);
2136                         if (ret < 0)
2137                                 return ret;
2138                         rdev->ena_gpio_state = 1;
2139                 }
2140         } else if (rdev->desc->ops->enable) {
2141                 ret = rdev->desc->ops->enable(rdev);
2142                 if (ret < 0)
2143                         return ret;
2144         } else {
2145                 return -EINVAL;
2146         }
2147
2148         /* Allow the regulator to ramp; it would be useful to extend
2149          * this for bulk operations so that the regulators can ramp
2150          * together.  */
2151         trace_regulator_enable_delay(rdev_get_name(rdev));
2152
2153         _regulator_enable_delay(delay);
2154
2155         trace_regulator_enable_complete(rdev_get_name(rdev));
2156
2157         return 0;
2158 }
2159
2160 /* locks held by regulator_enable() */
2161 static int _regulator_enable(struct regulator_dev *rdev)
2162 {
2163         int ret;
2164
2165         lockdep_assert_held_once(&rdev->mutex);
2166
2167         /* check voltage and requested load before enabling */
2168         if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2169                 drms_uA_update(rdev);
2170
2171         if (rdev->use_count == 0) {
2172                 /* The regulator may on if it's not switchable or left on */
2173                 ret = _regulator_is_enabled(rdev);
2174                 if (ret == -EINVAL || ret == 0) {
2175                         if (!regulator_ops_is_valid(rdev,
2176                                         REGULATOR_CHANGE_STATUS))
2177                                 return -EPERM;
2178
2179                         ret = _regulator_do_enable(rdev);
2180                         if (ret < 0)
2181                                 return ret;
2182
2183                 } else if (ret < 0) {
2184                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2185                         return ret;
2186                 }
2187                 /* Fallthrough on positive return values - already enabled */
2188         }
2189
2190         rdev->use_count++;
2191
2192         return 0;
2193 }
2194
2195 /**
2196  * regulator_enable - enable regulator output
2197  * @regulator: regulator source
2198  *
2199  * Request that the regulator be enabled with the regulator output at
2200  * the predefined voltage or current value.  Calls to regulator_enable()
2201  * must be balanced with calls to regulator_disable().
2202  *
2203  * NOTE: the output value can be set by other drivers, boot loader or may be
2204  * hardwired in the regulator.
2205  */
2206 int regulator_enable(struct regulator *regulator)
2207 {
2208         struct regulator_dev *rdev = regulator->rdev;
2209         int ret = 0;
2210
2211         if (regulator->always_on)
2212                 return 0;
2213
2214         if (rdev->supply) {
2215                 ret = regulator_enable(rdev->supply);
2216                 if (ret != 0)
2217                         return ret;
2218         }
2219
2220         mutex_lock(&rdev->mutex);
2221         ret = _regulator_enable(rdev);
2222         mutex_unlock(&rdev->mutex);
2223
2224         if (ret != 0 && rdev->supply)
2225                 regulator_disable(rdev->supply);
2226
2227         return ret;
2228 }
2229 EXPORT_SYMBOL_GPL(regulator_enable);
2230
2231 static int _regulator_do_disable(struct regulator_dev *rdev)
2232 {
2233         int ret;
2234
2235         trace_regulator_disable(rdev_get_name(rdev));
2236
2237         if (rdev->ena_pin) {
2238                 if (rdev->ena_gpio_state) {
2239                         ret = regulator_ena_gpio_ctrl(rdev, false);
2240                         if (ret < 0)
2241                                 return ret;
2242                         rdev->ena_gpio_state = 0;
2243                 }
2244
2245         } else if (rdev->desc->ops->disable) {
2246                 ret = rdev->desc->ops->disable(rdev);
2247                 if (ret != 0)
2248                         return ret;
2249         }
2250
2251         /* cares about last_off_jiffy only if off_on_delay is required by
2252          * device.
2253          */
2254         if (rdev->desc->off_on_delay)
2255                 rdev->last_off_jiffy = jiffies;
2256
2257         trace_regulator_disable_complete(rdev_get_name(rdev));
2258
2259         return 0;
2260 }
2261
2262 /* locks held by regulator_disable() */
2263 static int _regulator_disable(struct regulator_dev *rdev)
2264 {
2265         int ret = 0;
2266
2267         lockdep_assert_held_once(&rdev->mutex);
2268
2269         if (WARN(rdev->use_count <= 0,
2270                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
2271                 return -EIO;
2272
2273         /* are we the last user and permitted to disable ? */
2274         if (rdev->use_count == 1 &&
2275             (rdev->constraints && !rdev->constraints->always_on)) {
2276
2277                 /* we are last user */
2278                 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2279                         ret = _notifier_call_chain(rdev,
2280                                                    REGULATOR_EVENT_PRE_DISABLE,
2281                                                    NULL);
2282                         if (ret & NOTIFY_STOP_MASK)
2283                                 return -EINVAL;
2284
2285                         ret = _regulator_do_disable(rdev);
2286                         if (ret < 0) {
2287                                 rdev_err(rdev, "failed to disable\n");
2288                                 _notifier_call_chain(rdev,
2289                                                 REGULATOR_EVENT_ABORT_DISABLE,
2290                                                 NULL);
2291                                 return ret;
2292                         }
2293                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2294                                         NULL);
2295                 }
2296
2297                 rdev->use_count = 0;
2298         } else if (rdev->use_count > 1) {
2299                 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2300                         drms_uA_update(rdev);
2301
2302                 rdev->use_count--;
2303         }
2304
2305         return ret;
2306 }
2307
2308 /**
2309  * regulator_disable - disable regulator output
2310  * @regulator: regulator source
2311  *
2312  * Disable the regulator output voltage or current.  Calls to
2313  * regulator_enable() must be balanced with calls to
2314  * regulator_disable().
2315  *
2316  * NOTE: this will only disable the regulator output if no other consumer
2317  * devices have it enabled, the regulator device supports disabling and
2318  * machine constraints permit this operation.
2319  */
2320 int regulator_disable(struct regulator *regulator)
2321 {
2322         struct regulator_dev *rdev = regulator->rdev;
2323         int ret = 0;
2324
2325         if (regulator->always_on)
2326                 return 0;
2327
2328         mutex_lock(&rdev->mutex);
2329         ret = _regulator_disable(rdev);
2330         mutex_unlock(&rdev->mutex);
2331
2332         if (ret == 0 && rdev->supply)
2333                 regulator_disable(rdev->supply);
2334
2335         return ret;
2336 }
2337 EXPORT_SYMBOL_GPL(regulator_disable);
2338
2339 /* locks held by regulator_force_disable() */
2340 static int _regulator_force_disable(struct regulator_dev *rdev)
2341 {
2342         int ret = 0;
2343
2344         lockdep_assert_held_once(&rdev->mutex);
2345
2346         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2347                         REGULATOR_EVENT_PRE_DISABLE, NULL);
2348         if (ret & NOTIFY_STOP_MASK)
2349                 return -EINVAL;
2350
2351         ret = _regulator_do_disable(rdev);
2352         if (ret < 0) {
2353                 rdev_err(rdev, "failed to force disable\n");
2354                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2355                                 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2356                 return ret;
2357         }
2358
2359         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2360                         REGULATOR_EVENT_DISABLE, NULL);
2361
2362         return 0;
2363 }
2364
2365 /**
2366  * regulator_force_disable - force disable regulator output
2367  * @regulator: regulator source
2368  *
2369  * Forcibly disable the regulator output voltage or current.
2370  * NOTE: this *will* disable the regulator output even if other consumer
2371  * devices have it enabled. This should be used for situations when device
2372  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2373  */
2374 int regulator_force_disable(struct regulator *regulator)
2375 {
2376         struct regulator_dev *rdev = regulator->rdev;
2377         int ret;
2378
2379         mutex_lock(&rdev->mutex);
2380         regulator->uA_load = 0;
2381         ret = _regulator_force_disable(regulator->rdev);
2382         mutex_unlock(&rdev->mutex);
2383
2384         if (rdev->supply)
2385                 while (rdev->open_count--)
2386                         regulator_disable(rdev->supply);
2387
2388         return ret;
2389 }
2390 EXPORT_SYMBOL_GPL(regulator_force_disable);
2391
2392 static void regulator_disable_work(struct work_struct *work)
2393 {
2394         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2395                                                   disable_work.work);
2396         int count, i, ret;
2397
2398         mutex_lock(&rdev->mutex);
2399
2400         BUG_ON(!rdev->deferred_disables);
2401
2402         count = rdev->deferred_disables;
2403         rdev->deferred_disables = 0;
2404
2405         for (i = 0; i < count; i++) {
2406                 ret = _regulator_disable(rdev);
2407                 if (ret != 0)
2408                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2409         }
2410
2411         mutex_unlock(&rdev->mutex);
2412
2413         if (rdev->supply) {
2414                 for (i = 0; i < count; i++) {
2415                         ret = regulator_disable(rdev->supply);
2416                         if (ret != 0) {
2417                                 rdev_err(rdev,
2418                                          "Supply disable failed: %d\n", ret);
2419                         }
2420                 }
2421         }
2422 }
2423
2424 /**
2425  * regulator_disable_deferred - disable regulator output with delay
2426  * @regulator: regulator source
2427  * @ms: miliseconds until the regulator is disabled
2428  *
2429  * Execute regulator_disable() on the regulator after a delay.  This
2430  * is intended for use with devices that require some time to quiesce.
2431  *
2432  * NOTE: this will only disable the regulator output if no other consumer
2433  * devices have it enabled, the regulator device supports disabling and
2434  * machine constraints permit this operation.
2435  */
2436 int regulator_disable_deferred(struct regulator *regulator, int ms)
2437 {
2438         struct regulator_dev *rdev = regulator->rdev;
2439
2440         if (regulator->always_on)
2441                 return 0;
2442
2443         if (!ms)
2444                 return regulator_disable(regulator);
2445
2446         mutex_lock(&rdev->mutex);
2447         rdev->deferred_disables++;
2448         mutex_unlock(&rdev->mutex);
2449
2450         queue_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2451                            msecs_to_jiffies(ms));
2452         return 0;
2453 }
2454 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2455
2456 static int _regulator_is_enabled(struct regulator_dev *rdev)
2457 {
2458         /* A GPIO control always takes precedence */
2459         if (rdev->ena_pin)
2460                 return rdev->ena_gpio_state;
2461
2462         /* If we don't know then assume that the regulator is always on */
2463         if (!rdev->desc->ops->is_enabled)
2464                 return 1;
2465
2466         return rdev->desc->ops->is_enabled(rdev);
2467 }
2468
2469 static int _regulator_list_voltage(struct regulator *regulator,
2470                                     unsigned selector, int lock)
2471 {
2472         struct regulator_dev *rdev = regulator->rdev;
2473         const struct regulator_ops *ops = rdev->desc->ops;
2474         int ret;
2475
2476         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2477                 return rdev->desc->fixed_uV;
2478
2479         if (ops->list_voltage) {
2480                 if (selector >= rdev->desc->n_voltages)
2481                         return -EINVAL;
2482                 if (lock)
2483                         mutex_lock(&rdev->mutex);
2484                 ret = ops->list_voltage(rdev, selector);
2485                 if (lock)
2486                         mutex_unlock(&rdev->mutex);
2487         } else if (rdev->supply) {
2488                 ret = _regulator_list_voltage(rdev->supply, selector, lock);
2489         } else {
2490                 return -EINVAL;
2491         }
2492
2493         if (ret > 0) {
2494                 if (ret < rdev->constraints->min_uV)
2495                         ret = 0;
2496                 else if (ret > rdev->constraints->max_uV)
2497                         ret = 0;
2498         }
2499
2500         return ret;
2501 }
2502
2503 /**
2504  * regulator_is_enabled - is the regulator output enabled
2505  * @regulator: regulator source
2506  *
2507  * Returns positive if the regulator driver backing the source/client
2508  * has requested that the device be enabled, zero if it hasn't, else a
2509  * negative errno code.
2510  *
2511  * Note that the device backing this regulator handle can have multiple
2512  * users, so it might be enabled even if regulator_enable() was never
2513  * called for this particular source.
2514  */
2515 int regulator_is_enabled(struct regulator *regulator)
2516 {
2517         int ret;
2518
2519         if (regulator->always_on)
2520                 return 1;
2521
2522         mutex_lock(&regulator->rdev->mutex);
2523         ret = _regulator_is_enabled(regulator->rdev);
2524         mutex_unlock(&regulator->rdev->mutex);
2525
2526         return ret;
2527 }
2528 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2529
2530 /**
2531  * regulator_count_voltages - count regulator_list_voltage() selectors
2532  * @regulator: regulator source
2533  *
2534  * Returns number of selectors, or negative errno.  Selectors are
2535  * numbered starting at zero, and typically correspond to bitfields
2536  * in hardware registers.
2537  */
2538 int regulator_count_voltages(struct regulator *regulator)
2539 {
2540         struct regulator_dev    *rdev = regulator->rdev;
2541
2542         if (rdev->desc->n_voltages)
2543                 return rdev->desc->n_voltages;
2544
2545         if (!rdev->supply)
2546                 return -EINVAL;
2547
2548         return regulator_count_voltages(rdev->supply);
2549 }
2550 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2551
2552 /**
2553  * regulator_list_voltage - enumerate supported voltages
2554  * @regulator: regulator source
2555  * @selector: identify voltage to list
2556  * Context: can sleep
2557  *
2558  * Returns a voltage that can be passed to @regulator_set_voltage(),
2559  * zero if this selector code can't be used on this system, or a
2560  * negative errno.
2561  */
2562 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2563 {
2564         return _regulator_list_voltage(regulator, selector, 1);
2565 }
2566 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2567
2568 /**
2569  * regulator_get_regmap - get the regulator's register map
2570  * @regulator: regulator source
2571  *
2572  * Returns the register map for the given regulator, or an ERR_PTR value
2573  * if the regulator doesn't use regmap.
2574  */
2575 struct regmap *regulator_get_regmap(struct regulator *regulator)
2576 {
2577         struct regmap *map = regulator->rdev->regmap;
2578
2579         return map ? map : ERR_PTR(-EOPNOTSUPP);
2580 }
2581
2582 /**
2583  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2584  * @regulator: regulator source
2585  * @vsel_reg: voltage selector register, output parameter
2586  * @vsel_mask: mask for voltage selector bitfield, output parameter
2587  *
2588  * Returns the hardware register offset and bitmask used for setting the
2589  * regulator voltage. This might be useful when configuring voltage-scaling
2590  * hardware or firmware that can make I2C requests behind the kernel's back,
2591  * for example.
2592  *
2593  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2594  * and 0 is returned, otherwise a negative errno is returned.
2595  */
2596 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2597                                          unsigned *vsel_reg,
2598                                          unsigned *vsel_mask)
2599 {
2600         struct regulator_dev *rdev = regulator->rdev;
2601         const struct regulator_ops *ops = rdev->desc->ops;
2602
2603         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2604                 return -EOPNOTSUPP;
2605
2606          *vsel_reg = rdev->desc->vsel_reg;
2607          *vsel_mask = rdev->desc->vsel_mask;
2608
2609          return 0;
2610 }
2611 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2612
2613 /**
2614  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2615  * @regulator: regulator source
2616  * @selector: identify voltage to list
2617  *
2618  * Converts the selector to a hardware-specific voltage selector that can be
2619  * directly written to the regulator registers. The address of the voltage
2620  * register can be determined by calling @regulator_get_hardware_vsel_register.
2621  *
2622  * On error a negative errno is returned.
2623  */
2624 int regulator_list_hardware_vsel(struct regulator *regulator,
2625                                  unsigned selector)
2626 {
2627         struct regulator_dev *rdev = regulator->rdev;
2628         const struct regulator_ops *ops = rdev->desc->ops;
2629
2630         if (selector >= rdev->desc->n_voltages)
2631                 return -EINVAL;
2632         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2633                 return -EOPNOTSUPP;
2634
2635         return selector;
2636 }
2637 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2638
2639 /**
2640  * regulator_get_linear_step - return the voltage step size between VSEL values
2641  * @regulator: regulator source
2642  *
2643  * Returns the voltage step size between VSEL values for linear
2644  * regulators, or return 0 if the regulator isn't a linear regulator.
2645  */
2646 unsigned int regulator_get_linear_step(struct regulator *regulator)
2647 {
2648         struct regulator_dev *rdev = regulator->rdev;
2649
2650         return rdev->desc->uV_step;
2651 }
2652 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2653
2654 /**
2655  * regulator_is_supported_voltage - check if a voltage range can be supported
2656  *
2657  * @regulator: Regulator to check.
2658  * @min_uV: Minimum required voltage in uV.
2659  * @max_uV: Maximum required voltage in uV.
2660  *
2661  * Returns a boolean or a negative error code.
2662  */
2663 int regulator_is_supported_voltage(struct regulator *regulator,
2664                                    int min_uV, int max_uV)
2665 {
2666         struct regulator_dev *rdev = regulator->rdev;
2667         int i, voltages, ret;
2668
2669         /* If we can't change voltage check the current voltage */
2670         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2671                 ret = regulator_get_voltage(regulator);
2672                 if (ret >= 0)
2673                         return min_uV <= ret && ret <= max_uV;
2674                 else
2675                         return ret;
2676         }
2677
2678         /* Any voltage within constrains range is fine? */
2679         if (rdev->desc->continuous_voltage_range)
2680                 return min_uV >= rdev->constraints->min_uV &&
2681                                 max_uV <= rdev->constraints->max_uV;
2682
2683         ret = regulator_count_voltages(regulator);
2684         if (ret < 0)
2685                 return ret;
2686         voltages = ret;
2687
2688         for (i = 0; i < voltages; i++) {
2689                 ret = regulator_list_voltage(regulator, i);
2690
2691                 if (ret >= min_uV && ret <= max_uV)
2692                         return 1;
2693         }
2694
2695         return 0;
2696 }
2697 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2698
2699 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
2700                                  int max_uV)
2701 {
2702         const struct regulator_desc *desc = rdev->desc;
2703
2704         if (desc->ops->map_voltage)
2705                 return desc->ops->map_voltage(rdev, min_uV, max_uV);
2706
2707         if (desc->ops->list_voltage == regulator_list_voltage_linear)
2708                 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
2709
2710         if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
2711                 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
2712
2713         return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
2714 }
2715
2716 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2717                                        int min_uV, int max_uV,
2718                                        unsigned *selector)
2719 {
2720         struct pre_voltage_change_data data;
2721         int ret;
2722
2723         data.old_uV = _regulator_get_voltage(rdev);
2724         data.min_uV = min_uV;
2725         data.max_uV = max_uV;
2726         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2727                                    &data);
2728         if (ret & NOTIFY_STOP_MASK)
2729                 return -EINVAL;
2730
2731         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2732         if (ret >= 0)
2733                 return ret;
2734
2735         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2736                              (void *)data.old_uV);
2737
2738         return ret;
2739 }
2740
2741 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2742                                            int uV, unsigned selector)
2743 {
2744         struct pre_voltage_change_data data;
2745         int ret;
2746
2747         data.old_uV = _regulator_get_voltage(rdev);
2748         data.min_uV = uV;
2749         data.max_uV = uV;
2750         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2751                                    &data);
2752         if (ret & NOTIFY_STOP_MASK)
2753                 return -EINVAL;
2754
2755         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2756         if (ret >= 0)
2757                 return ret;
2758
2759         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2760                              (void *)data.old_uV);
2761
2762         return ret;
2763 }
2764
2765 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
2766                                        int old_uV, int new_uV)
2767 {
2768         unsigned int ramp_delay = 0;
2769
2770         if (rdev->constraints->ramp_delay)
2771                 ramp_delay = rdev->constraints->ramp_delay;
2772         else if (rdev->desc->ramp_delay)
2773                 ramp_delay = rdev->desc->ramp_delay;
2774
2775         if (ramp_delay == 0) {
2776                 rdev_dbg(rdev, "ramp_delay not set\n");
2777                 return 0;
2778         }
2779
2780         return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
2781 }
2782
2783 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2784                                      int min_uV, int max_uV)
2785 {
2786         int ret;
2787         int delay = 0;
2788         int best_val = 0;
2789         unsigned int selector;
2790         int old_selector = -1;
2791         const struct regulator_ops *ops = rdev->desc->ops;
2792         int old_uV = _regulator_get_voltage(rdev);
2793
2794         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2795
2796         min_uV += rdev->constraints->uV_offset;
2797         max_uV += rdev->constraints->uV_offset;
2798
2799         /*
2800          * If we can't obtain the old selector there is not enough
2801          * info to call set_voltage_time_sel().
2802          */
2803         if (_regulator_is_enabled(rdev) &&
2804             ops->set_voltage_time_sel && ops->get_voltage_sel) {
2805                 old_selector = ops->get_voltage_sel(rdev);
2806                 if (old_selector < 0)
2807                         return old_selector;
2808         }
2809
2810         if (ops->set_voltage) {
2811                 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2812                                                   &selector);
2813
2814                 if (ret >= 0) {
2815                         if (ops->list_voltage)
2816                                 best_val = ops->list_voltage(rdev,
2817                                                              selector);
2818                         else
2819                                 best_val = _regulator_get_voltage(rdev);
2820                 }
2821
2822         } else if (ops->set_voltage_sel) {
2823                 ret = regulator_map_voltage(rdev, min_uV, max_uV);
2824                 if (ret >= 0) {
2825                         best_val = ops->list_voltage(rdev, ret);
2826                         if (min_uV <= best_val && max_uV >= best_val) {
2827                                 selector = ret;
2828                                 if (old_selector == selector)
2829                                         ret = 0;
2830                                 else
2831                                         ret = _regulator_call_set_voltage_sel(
2832                                                 rdev, best_val, selector);
2833                         } else {
2834                                 ret = -EINVAL;
2835                         }
2836                 }
2837         } else {
2838                 ret = -EINVAL;
2839         }
2840
2841         if (ret)
2842                 goto out;
2843
2844         if (ops->set_voltage_time_sel) {
2845                 /*
2846                  * Call set_voltage_time_sel if successfully obtained
2847                  * old_selector
2848                  */
2849                 if (old_selector >= 0 && old_selector != selector)
2850                         delay = ops->set_voltage_time_sel(rdev, old_selector,
2851                                                           selector);
2852         } else {
2853                 if (old_uV != best_val) {
2854                         if (ops->set_voltage_time)
2855                                 delay = ops->set_voltage_time(rdev, old_uV,
2856                                                               best_val);
2857                         else
2858                                 delay = _regulator_set_voltage_time(rdev,
2859                                                                     old_uV,
2860                                                                     best_val);
2861                 }
2862         }
2863
2864         if (delay < 0) {
2865                 rdev_warn(rdev, "failed to get delay: %d\n", delay);
2866                 delay = 0;
2867         }
2868
2869         /* Insert any necessary delays */
2870         if (delay >= 1000) {
2871                 mdelay(delay / 1000);
2872                 udelay(delay % 1000);
2873         } else if (delay) {
2874                 udelay(delay);
2875         }
2876
2877         if (best_val >= 0) {
2878                 unsigned long data = best_val;
2879
2880                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2881                                      (void *)data);
2882         }
2883
2884 out:
2885         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2886
2887         return ret;
2888 }
2889
2890 static int regulator_set_voltage_unlocked(struct regulator *regulator,
2891                                           int min_uV, int max_uV)
2892 {
2893         struct regulator_dev *rdev = regulator->rdev;
2894         int ret = 0;
2895         int old_min_uV, old_max_uV;
2896         int current_uV;
2897         int best_supply_uV = 0;
2898         int supply_change_uV = 0;
2899
2900         /* If we're setting the same range as last time the change
2901          * should be a noop (some cpufreq implementations use the same
2902          * voltage for multiple frequencies, for example).
2903          */
2904         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2905                 goto out;
2906
2907         /* If we're trying to set a range that overlaps the current voltage,
2908          * return successfully even though the regulator does not support
2909          * changing the voltage.
2910          */
2911         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2912                 current_uV = _regulator_get_voltage(rdev);
2913                 if (min_uV <= current_uV && current_uV <= max_uV) {
2914                         regulator->min_uV = min_uV;
2915                         regulator->max_uV = max_uV;
2916                         goto out;
2917                 }
2918         }
2919
2920         /* sanity check */
2921         if (!rdev->desc->ops->set_voltage &&
2922             !rdev->desc->ops->set_voltage_sel) {
2923                 ret = -EINVAL;
2924                 goto out;
2925         }
2926
2927         /* constraints check */
2928         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2929         if (ret < 0)
2930                 goto out;
2931
2932         /* restore original values in case of error */
2933         old_min_uV = regulator->min_uV;
2934         old_max_uV = regulator->max_uV;
2935         regulator->min_uV = min_uV;
2936         regulator->max_uV = max_uV;
2937
2938         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2939         if (ret < 0)
2940                 goto out2;
2941
2942         if (rdev->supply && (rdev->desc->min_dropout_uV ||
2943                                 !rdev->desc->ops->get_voltage)) {
2944                 int current_supply_uV;
2945                 int selector;
2946
2947                 selector = regulator_map_voltage(rdev, min_uV, max_uV);
2948                 if (selector < 0) {
2949                         ret = selector;
2950                         goto out2;
2951                 }
2952
2953                 best_supply_uV = _regulator_list_voltage(regulator, selector, 0);
2954                 if (best_supply_uV < 0) {
2955                         ret = best_supply_uV;
2956                         goto out2;
2957                 }
2958
2959                 best_supply_uV += rdev->desc->min_dropout_uV;
2960
2961                 current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
2962                 if (current_supply_uV < 0) {
2963                         ret = current_supply_uV;
2964                         goto out2;
2965                 }
2966
2967                 supply_change_uV = best_supply_uV - current_supply_uV;
2968         }
2969
2970         if (supply_change_uV > 0) {
2971                 ret = regulator_set_voltage_unlocked(rdev->supply,
2972                                 best_supply_uV, INT_MAX);
2973                 if (ret) {
2974                         dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
2975                                         ret);
2976                         goto out2;
2977                 }
2978         }
2979
2980         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2981         if (ret < 0)
2982                 goto out2;
2983
2984         if (supply_change_uV < 0) {
2985                 ret = regulator_set_voltage_unlocked(rdev->supply,
2986                                 best_supply_uV, INT_MAX);
2987                 if (ret)
2988                         dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
2989                                         ret);
2990                 /* No need to fail here */
2991                 ret = 0;
2992         }
2993
2994 out:
2995         return ret;
2996 out2:
2997         regulator->min_uV = old_min_uV;
2998         regulator->max_uV = old_max_uV;
2999
3000         return ret;
3001 }
3002
3003 /**
3004  * regulator_set_voltage - set regulator output voltage
3005  * @regulator: regulator source
3006  * @min_uV: Minimum required voltage in uV
3007  * @max_uV: Maximum acceptable voltage in uV
3008  *
3009  * Sets a voltage regulator to the desired output voltage. This can be set
3010  * during any regulator state. IOW, regulator can be disabled or enabled.
3011  *
3012  * If the regulator is enabled then the voltage will change to the new value
3013  * immediately otherwise if the regulator is disabled the regulator will
3014  * output at the new voltage when enabled.
3015  *
3016  * NOTE: If the regulator is shared between several devices then the lowest
3017  * request voltage that meets the system constraints will be used.
3018  * Regulator system constraints must be set for this regulator before
3019  * calling this function otherwise this call will fail.
3020  */
3021 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3022 {
3023         int ret = 0;
3024
3025         regulator_lock_supply(regulator->rdev);
3026
3027         ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV);
3028
3029         regulator_unlock_supply(regulator->rdev);
3030
3031         return ret;
3032 }
3033 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3034
3035 /**
3036  * regulator_set_voltage_time - get raise/fall time
3037  * @regulator: regulator source
3038  * @old_uV: starting voltage in microvolts
3039  * @new_uV: target voltage in microvolts
3040  *
3041  * Provided with the starting and ending voltage, this function attempts to
3042  * calculate the time in microseconds required to rise or fall to this new
3043  * voltage.
3044  */
3045 int regulator_set_voltage_time(struct regulator *regulator,
3046                                int old_uV, int new_uV)
3047 {
3048         struct regulator_dev *rdev = regulator->rdev;
3049         const struct regulator_ops *ops = rdev->desc->ops;
3050         int old_sel = -1;
3051         int new_sel = -1;
3052         int voltage;
3053         int i;
3054
3055         if (ops->set_voltage_time)
3056                 return ops->set_voltage_time(rdev, old_uV, new_uV);
3057         else if (!ops->set_voltage_time_sel)
3058                 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3059
3060         /* Currently requires operations to do this */
3061         if (!ops->list_voltage || !rdev->desc->n_voltages)
3062                 return -EINVAL;
3063
3064         for (i = 0; i < rdev->desc->n_voltages; i++) {
3065                 /* We only look for exact voltage matches here */
3066                 voltage = regulator_list_voltage(regulator, i);
3067                 if (voltage < 0)
3068                         return -EINVAL;
3069                 if (voltage == 0)
3070                         continue;
3071                 if (voltage == old_uV)
3072                         old_sel = i;
3073                 if (voltage == new_uV)
3074                         new_sel = i;
3075         }
3076
3077         if (old_sel < 0 || new_sel < 0)
3078                 return -EINVAL;
3079
3080         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3081 }
3082 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3083
3084 /**
3085  * regulator_set_voltage_time_sel - get raise/fall time
3086  * @rdev: regulator source device
3087  * @old_selector: selector for starting voltage
3088  * @new_selector: selector for target voltage
3089  *
3090  * Provided with the starting and target voltage selectors, this function
3091  * returns time in microseconds required to rise or fall to this new voltage
3092  *
3093  * Drivers providing ramp_delay in regulation_constraints can use this as their
3094  * set_voltage_time_sel() operation.
3095  */
3096 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3097                                    unsigned int old_selector,
3098                                    unsigned int new_selector)
3099 {
3100         int old_volt, new_volt;
3101
3102         /* sanity check */
3103         if (!rdev->desc->ops->list_voltage)
3104                 return -EINVAL;
3105
3106         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3107         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3108
3109         if (rdev->desc->ops->set_voltage_time)
3110                 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
3111                                                          new_volt);
3112         else
3113                 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3114 }
3115 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3116
3117 /**
3118  * regulator_sync_voltage - re-apply last regulator output voltage
3119  * @regulator: regulator source
3120  *
3121  * Re-apply the last configured voltage.  This is intended to be used
3122  * where some external control source the consumer is cooperating with
3123  * has caused the configured voltage to change.
3124  */
3125 int regulator_sync_voltage(struct regulator *regulator)
3126 {
3127         struct regulator_dev *rdev = regulator->rdev;
3128         int ret, min_uV, max_uV;
3129
3130         mutex_lock(&rdev->mutex);
3131
3132         if (!rdev->desc->ops->set_voltage &&
3133             !rdev->desc->ops->set_voltage_sel) {
3134                 ret = -EINVAL;
3135                 goto out;
3136         }
3137
3138         /* This is only going to work if we've had a voltage configured. */
3139         if (!regulator->min_uV && !regulator->max_uV) {
3140                 ret = -EINVAL;
3141                 goto out;
3142         }
3143
3144         min_uV = regulator->min_uV;
3145         max_uV = regulator->max_uV;
3146
3147         /* This should be a paranoia check... */
3148         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3149         if (ret < 0)
3150                 goto out;
3151
3152         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
3153         if (ret < 0)
3154                 goto out;
3155
3156         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3157
3158 out:
3159         mutex_unlock(&rdev->mutex);
3160         return ret;
3161 }
3162 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3163
3164 static int _regulator_get_voltage(struct regulator_dev *rdev)
3165 {
3166         int sel, ret;
3167         bool bypassed;
3168
3169         if (rdev->desc->ops->get_bypass) {
3170                 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
3171                 if (ret < 0)
3172                         return ret;
3173                 if (bypassed) {
3174                         /* if bypassed the regulator must have a supply */
3175                         if (!rdev->supply) {
3176                                 rdev_err(rdev,
3177                                          "bypassed regulator has no supply!\n");
3178                                 return -EPROBE_DEFER;
3179                         }
3180
3181                         return _regulator_get_voltage(rdev->supply->rdev);
3182                 }
3183         }
3184
3185         if (rdev->desc->ops->get_voltage_sel) {
3186                 sel = rdev->desc->ops->get_voltage_sel(rdev);
3187                 if (sel < 0)
3188                         return sel;
3189                 ret = rdev->desc->ops->list_voltage(rdev, sel);
3190         } else if (rdev->desc->ops->get_voltage) {
3191                 ret = rdev->desc->ops->get_voltage(rdev);
3192         } else if (rdev->desc->ops->list_voltage) {
3193                 ret = rdev->desc->ops->list_voltage(rdev, 0);
3194         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3195                 ret = rdev->desc->fixed_uV;
3196         } else if (rdev->supply) {
3197                 ret = _regulator_get_voltage(rdev->supply->rdev);
3198         } else {
3199                 return -EINVAL;
3200         }
3201
3202         if (ret < 0)
3203                 return ret;
3204         return ret - rdev->constraints->uV_offset;
3205 }
3206
3207 /**
3208  * regulator_get_voltage - get regulator output voltage
3209  * @regulator: regulator source
3210  *
3211  * This returns the current regulator voltage in uV.
3212  *
3213  * NOTE: If the regulator is disabled it will return the voltage value. This
3214  * function should not be used to determine regulator state.
3215  */
3216 int regulator_get_voltage(struct regulator *regulator)
3217 {
3218         int ret;
3219
3220         regulator_lock_supply(regulator->rdev);
3221
3222         ret = _regulator_get_voltage(regulator->rdev);
3223
3224         regulator_unlock_supply(regulator->rdev);
3225
3226         return ret;
3227 }
3228 EXPORT_SYMBOL_GPL(regulator_get_voltage);
3229
3230 /**
3231  * regulator_set_current_limit - set regulator output current limit
3232  * @regulator: regulator source
3233  * @min_uA: Minimum supported current in uA
3234  * @max_uA: Maximum supported current in uA
3235  *
3236  * Sets current sink to the desired output current. This can be set during
3237  * any regulator state. IOW, regulator can be disabled or enabled.
3238  *
3239  * If the regulator is enabled then the current will change to the new value
3240  * immediately otherwise if the regulator is disabled the regulator will
3241  * output at the new current when enabled.
3242  *
3243  * NOTE: Regulator system constraints must be set for this regulator before
3244  * calling this function otherwise this call will fail.
3245  */
3246 int regulator_set_current_limit(struct regulator *regulator,
3247                                int min_uA, int max_uA)
3248 {
3249         struct regulator_dev *rdev = regulator->rdev;
3250         int ret;
3251
3252         mutex_lock(&rdev->mutex);
3253
3254         /* sanity check */
3255         if (!rdev->desc->ops->set_current_limit) {
3256                 ret = -EINVAL;
3257                 goto out;
3258         }
3259
3260         /* constraints check */
3261         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3262         if (ret < 0)
3263                 goto out;
3264
3265         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3266 out:
3267         mutex_unlock(&rdev->mutex);
3268         return ret;
3269 }
3270 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3271
3272 static int _regulator_get_current_limit(struct regulator_dev *rdev)
3273 {
3274         int ret;
3275
3276         mutex_lock(&rdev->mutex);
3277
3278         /* sanity check */
3279         if (!rdev->desc->ops->get_current_limit) {
3280                 ret = -EINVAL;
3281                 goto out;
3282         }
3283
3284         ret = rdev->desc->ops->get_current_limit(rdev);
3285 out:
3286         mutex_unlock(&rdev->mutex);
3287         return ret;
3288 }
3289
3290 /**
3291  * regulator_get_current_limit - get regulator output current
3292  * @regulator: regulator source
3293  *
3294  * This returns the current supplied by the specified current sink in uA.
3295  *
3296  * NOTE: If the regulator is disabled it will return the current value. This
3297  * function should not be used to determine regulator state.
3298  */
3299 int regulator_get_current_limit(struct regulator *regulator)
3300 {
3301         return _regulator_get_current_limit(regulator->rdev);
3302 }
3303 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3304
3305 /**
3306  * regulator_set_mode - set regulator operating mode
3307  * @regulator: regulator source
3308  * @mode: operating mode - one of the REGULATOR_MODE constants
3309  *
3310  * Set regulator operating mode to increase regulator efficiency or improve
3311  * regulation performance.
3312  *
3313  * NOTE: Regulator system constraints must be set for this regulator before
3314  * calling this function otherwise this call will fail.
3315  */
3316 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3317 {
3318         struct regulator_dev *rdev = regulator->rdev;
3319         int ret;
3320         int regulator_curr_mode;
3321
3322         mutex_lock(&rdev->mutex);
3323
3324         /* sanity check */
3325         if (!rdev->desc->ops->set_mode) {
3326                 ret = -EINVAL;
3327                 goto out;
3328         }
3329
3330         /* return if the same mode is requested */
3331         if (rdev->desc->ops->get_mode) {
3332                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3333                 if (regulator_curr_mode == mode) {
3334                         ret = 0;
3335                         goto out;
3336                 }
3337         }
3338
3339         /* constraints check */
3340         ret = regulator_mode_constrain(rdev, &mode);
3341         if (ret < 0)
3342                 goto out;
3343
3344         ret = rdev->desc->ops->set_mode(rdev, mode);
3345 out:
3346         mutex_unlock(&rdev->mutex);
3347         return ret;
3348 }
3349 EXPORT_SYMBOL_GPL(regulator_set_mode);
3350
3351 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3352 {
3353         int ret;
3354
3355         mutex_lock(&rdev->mutex);
3356
3357         /* sanity check */
3358         if (!rdev->desc->ops->get_mode) {
3359                 ret = -EINVAL;
3360                 goto out;
3361         }
3362
3363         ret = rdev->desc->ops->get_mode(rdev);
3364 out:
3365         mutex_unlock(&rdev->mutex);
3366         return ret;
3367 }
3368
3369 /**
3370  * regulator_get_mode - get regulator operating mode
3371  * @regulator: regulator source
3372  *
3373  * Get the current regulator operating mode.
3374  */
3375 unsigned int regulator_get_mode(struct regulator *regulator)
3376 {
3377         return _regulator_get_mode(regulator->rdev);
3378 }
3379 EXPORT_SYMBOL_GPL(regulator_get_mode);
3380
3381 static int _regulator_get_error_flags(struct regulator_dev *rdev,
3382                                         unsigned int *flags)
3383 {
3384         int ret;
3385
3386         mutex_lock(&rdev->mutex);
3387
3388         /* sanity check */
3389         if (!rdev->desc->ops->get_error_flags) {
3390                 ret = -EINVAL;
3391                 goto out;
3392         }
3393
3394         ret = rdev->desc->ops->get_error_flags(rdev, flags);
3395 out:
3396         mutex_unlock(&rdev->mutex);
3397         return ret;
3398 }
3399
3400 /**
3401  * regulator_get_error_flags - get regulator error information
3402  * @regulator: regulator source
3403  * @flags: pointer to store error flags
3404  *
3405  * Get the current regulator error information.
3406  */
3407 int regulator_get_error_flags(struct regulator *regulator,
3408                                 unsigned int *flags)
3409 {
3410         return _regulator_get_error_flags(regulator->rdev, flags);
3411 }
3412 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
3413
3414 /**
3415  * regulator_set_load - set regulator load
3416  * @regulator: regulator source
3417  * @uA_load: load current
3418  *
3419  * Notifies the regulator core of a new device load. This is then used by
3420  * DRMS (if enabled by constraints) to set the most efficient regulator
3421  * operating mode for the new regulator loading.
3422  *
3423  * Consumer devices notify their supply regulator of the maximum power
3424  * they will require (can be taken from device datasheet in the power
3425  * consumption tables) when they change operational status and hence power
3426  * state. Examples of operational state changes that can affect power
3427  * consumption are :-
3428  *
3429  *    o Device is opened / closed.
3430  *    o Device I/O is about to begin or has just finished.
3431  *    o Device is idling in between work.
3432  *
3433  * This information is also exported via sysfs to userspace.
3434  *
3435  * DRMS will sum the total requested load on the regulator and change
3436  * to the most efficient operating mode if platform constraints allow.
3437  *
3438  * On error a negative errno is returned.
3439  */
3440 int regulator_set_load(struct regulator *regulator, int uA_load)
3441 {
3442         struct regulator_dev *rdev = regulator->rdev;
3443         int ret;
3444
3445         mutex_lock(&rdev->mutex);
3446         regulator->uA_load = uA_load;
3447         ret = drms_uA_update(rdev);
3448         mutex_unlock(&rdev->mutex);
3449
3450         return ret;
3451 }
3452 EXPORT_SYMBOL_GPL(regulator_set_load);
3453
3454 /**
3455  * regulator_allow_bypass - allow the regulator to go into bypass mode
3456  *
3457  * @regulator: Regulator to configure
3458  * @enable: enable or disable bypass mode
3459  *
3460  * Allow the regulator to go into bypass mode if all other consumers
3461  * for the regulator also enable bypass mode and the machine
3462  * constraints allow this.  Bypass mode means that the regulator is
3463  * simply passing the input directly to the output with no regulation.
3464  */
3465 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3466 {
3467         struct regulator_dev *rdev = regulator->rdev;
3468         int ret = 0;
3469
3470         if (!rdev->desc->ops->set_bypass)
3471                 return 0;
3472
3473         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
3474                 return 0;
3475
3476         mutex_lock(&rdev->mutex);
3477
3478         if (enable && !regulator->bypass) {
3479                 rdev->bypass_count++;
3480
3481                 if (rdev->bypass_count == rdev->open_count) {
3482                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3483                         if (ret != 0)
3484                                 rdev->bypass_count--;
3485                 }
3486
3487         } else if (!enable && regulator->bypass) {
3488                 rdev->bypass_count--;
3489
3490                 if (rdev->bypass_count != rdev->open_count) {
3491                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3492                         if (ret != 0)
3493                                 rdev->bypass_count++;
3494                 }
3495         }
3496
3497         if (ret == 0)
3498                 regulator->bypass = enable;
3499
3500         mutex_unlock(&rdev->mutex);
3501
3502         return ret;
3503 }
3504 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3505
3506 /**
3507  * regulator_register_notifier - register regulator event notifier
3508  * @regulator: regulator source
3509  * @nb: notifier block
3510  *
3511  * Register notifier block to receive regulator events.
3512  */
3513 int regulator_register_notifier(struct regulator *regulator,
3514                               struct notifier_block *nb)
3515 {
3516         return blocking_notifier_chain_register(&regulator->rdev->notifier,
3517                                                 nb);
3518 }
3519 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3520
3521 /**
3522  * regulator_unregister_notifier - unregister regulator event notifier
3523  * @regulator: regulator source
3524  * @nb: notifier block
3525  *
3526  * Unregister regulator event notifier block.
3527  */
3528 int regulator_unregister_notifier(struct regulator *regulator,
3529                                 struct notifier_block *nb)
3530 {
3531         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3532                                                   nb);
3533 }
3534 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3535
3536 /* notify regulator consumers and downstream regulator consumers.
3537  * Note mutex must be held by caller.
3538  */
3539 static int _notifier_call_chain(struct regulator_dev *rdev,
3540                                   unsigned long event, void *data)
3541 {
3542         /* call rdev chain first */
3543         return blocking_notifier_call_chain(&rdev->notifier, event, data);
3544 }
3545
3546 /**
3547  * regulator_bulk_get - get multiple regulator consumers
3548  *
3549  * @dev:           Device to supply
3550  * @num_consumers: Number of consumers to register
3551  * @consumers:     Configuration of consumers; clients are stored here.
3552  *
3553  * @return 0 on success, an errno on failure.
3554  *
3555  * This helper function allows drivers to get several regulator
3556  * consumers in one operation.  If any of the regulators cannot be
3557  * acquired then any regulators that were allocated will be freed
3558  * before returning to the caller.
3559  */
3560 int regulator_bulk_get(struct device *dev, int num_consumers,
3561                        struct regulator_bulk_data *consumers)
3562 {
3563         int i;
3564         int ret;
3565
3566         for (i = 0; i < num_consumers; i++)
3567                 consumers[i].consumer = NULL;
3568
3569         for (i = 0; i < num_consumers; i++) {
3570                 consumers[i].consumer = regulator_get(dev,
3571                                                       consumers[i].supply);
3572                 if (IS_ERR(consumers[i].consumer)) {
3573                         ret = PTR_ERR(consumers[i].consumer);
3574                         dev_err(dev, "Failed to get supply '%s': %d\n",
3575                                 consumers[i].supply, ret);
3576                         consumers[i].consumer = NULL;
3577                         goto err;
3578                 }
3579         }
3580
3581         return 0;
3582
3583 err:
3584         while (--i >= 0)
3585                 regulator_put(consumers[i].consumer);
3586
3587         return ret;
3588 }
3589 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3590
3591 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3592 {
3593         struct regulator_bulk_data *bulk = data;
3594
3595         bulk->ret = regulator_enable(bulk->consumer);
3596 }
3597
3598 /**
3599  * regulator_bulk_enable - enable multiple regulator consumers
3600  *
3601  * @num_consumers: Number of consumers
3602  * @consumers:     Consumer data; clients are stored here.
3603  * @return         0 on success, an errno on failure
3604  *
3605  * This convenience API allows consumers to enable multiple regulator
3606  * clients in a single API call.  If any consumers cannot be enabled
3607  * then any others that were enabled will be disabled again prior to
3608  * return.
3609  */
3610 int regulator_bulk_enable(int num_consumers,
3611                           struct regulator_bulk_data *consumers)
3612 {
3613         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3614         int i;
3615         int ret = 0;
3616
3617         for (i = 0; i < num_consumers; i++) {
3618                 if (consumers[i].consumer->always_on)
3619                         consumers[i].ret = 0;
3620                 else
3621                         async_schedule_domain(regulator_bulk_enable_async,
3622                                               &consumers[i], &async_domain);
3623         }
3624
3625         async_synchronize_full_domain(&async_domain);
3626
3627         /* If any consumer failed we need to unwind any that succeeded */
3628         for (i = 0; i < num_consumers; i++) {
3629                 if (consumers[i].ret != 0) {
3630                         ret = consumers[i].ret;
3631                         goto err;
3632                 }
3633         }
3634
3635         return 0;
3636
3637 err:
3638         for (i = 0; i < num_consumers; i++) {
3639                 if (consumers[i].ret < 0)
3640                         pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3641                                consumers[i].ret);
3642                 else
3643                         regulator_disable(consumers[i].consumer);
3644         }
3645
3646         return ret;
3647 }
3648 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3649
3650 /**
3651  * regulator_bulk_disable - disable multiple regulator consumers
3652  *
3653  * @num_consumers: Number of consumers
3654  * @consumers:     Consumer data; clients are stored here.
3655  * @return         0 on success, an errno on failure
3656  *
3657  * This convenience API allows consumers to disable multiple regulator
3658  * clients in a single API call.  If any consumers cannot be disabled
3659  * then any others that were disabled will be enabled again prior to
3660  * return.
3661  */
3662 int regulator_bulk_disable(int num_consumers,
3663                            struct regulator_bulk_data *consumers)
3664 {
3665         int i;
3666         int ret, r;
3667
3668         for (i = num_consumers - 1; i >= 0; --i) {
3669                 ret = regulator_disable(consumers[i].consumer);
3670                 if (ret != 0)
3671                         goto err;
3672         }
3673
3674         return 0;
3675
3676 err:
3677         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3678         for (++i; i < num_consumers; ++i) {
3679                 r = regulator_enable(consumers[i].consumer);
3680                 if (r != 0)
3681                         pr_err("Failed to re-enable %s: %d\n",
3682                                consumers[i].supply, r);
3683         }
3684
3685         return ret;
3686 }
3687 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3688
3689 /**
3690  * regulator_bulk_force_disable - force disable multiple regulator consumers
3691  *
3692  * @num_consumers: Number of consumers
3693  * @consumers:     Consumer data; clients are stored here.
3694  * @return         0 on success, an errno on failure
3695  *
3696  * This convenience API allows consumers to forcibly disable multiple regulator
3697  * clients in a single API call.
3698  * NOTE: This should be used for situations when device damage will
3699  * likely occur if the regulators are not disabled (e.g. over temp).
3700  * Although regulator_force_disable function call for some consumers can
3701  * return error numbers, the function is called for all consumers.
3702  */
3703 int regulator_bulk_force_disable(int num_consumers,
3704                            struct regulator_bulk_data *consumers)
3705 {
3706         int i;
3707         int ret = 0;
3708
3709         for (i = 0; i < num_consumers; i++) {
3710                 consumers[i].ret =
3711                             regulator_force_disable(consumers[i].consumer);
3712
3713                 /* Store first error for reporting */
3714                 if (consumers[i].ret && !ret)
3715                         ret = consumers[i].ret;
3716         }
3717
3718         return ret;
3719 }
3720 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3721
3722 /**
3723  * regulator_bulk_free - free multiple regulator consumers
3724  *
3725  * @num_consumers: Number of consumers
3726  * @consumers:     Consumer data; clients are stored here.
3727  *
3728  * This convenience API allows consumers to free multiple regulator
3729  * clients in a single API call.
3730  */
3731 void regulator_bulk_free(int num_consumers,
3732                          struct regulator_bulk_data *consumers)
3733 {
3734         int i;
3735
3736         for (i = 0; i < num_consumers; i++) {
3737                 regulator_put(consumers[i].consumer);
3738                 consumers[i].consumer = NULL;
3739         }
3740 }
3741 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3742
3743 /**
3744  * regulator_notifier_call_chain - call regulator event notifier
3745  * @rdev: regulator source
3746  * @event: notifier block
3747  * @data: callback-specific data.
3748  *
3749  * Called by regulator drivers to notify clients a regulator event has
3750  * occurred. We also notify regulator clients downstream.
3751  * Note lock must be held by caller.
3752  */
3753 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3754                                   unsigned long event, void *data)
3755 {
3756         lockdep_assert_held_once(&rdev->mutex);
3757
3758         _notifier_call_chain(rdev, event, data);
3759         return NOTIFY_DONE;
3760
3761 }
3762 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3763
3764 /**
3765  * regulator_mode_to_status - convert a regulator mode into a status
3766  *
3767  * @mode: Mode to convert
3768  *
3769  * Convert a regulator mode into a status.
3770  */
3771 int regulator_mode_to_status(unsigned int mode)
3772 {
3773         switch (mode) {
3774         case REGULATOR_MODE_FAST:
3775                 return REGULATOR_STATUS_FAST;
3776         case REGULATOR_MODE_NORMAL:
3777                 return REGULATOR_STATUS_NORMAL;
3778         case REGULATOR_MODE_IDLE:
3779                 return REGULATOR_STATUS_IDLE;
3780         case REGULATOR_MODE_STANDBY:
3781                 return REGULATOR_STATUS_STANDBY;
3782         default:
3783                 return REGULATOR_STATUS_UNDEFINED;
3784         }
3785 }
3786 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3787
3788 static struct attribute *regulator_dev_attrs[] = {
3789         &dev_attr_name.attr,
3790         &dev_attr_num_users.attr,
3791         &dev_attr_type.attr,
3792         &dev_attr_microvolts.attr,
3793         &dev_attr_microamps.attr,
3794         &dev_attr_opmode.attr,
3795         &dev_attr_state.attr,
3796         &dev_attr_status.attr,
3797         &dev_attr_bypass.attr,
3798         &dev_attr_requested_microamps.attr,
3799         &dev_attr_min_microvolts.attr,
3800         &dev_attr_max_microvolts.attr,
3801         &dev_attr_min_microamps.attr,
3802         &dev_attr_max_microamps.attr,
3803         &dev_attr_suspend_standby_state.attr,
3804         &dev_attr_suspend_mem_state.attr,
3805         &dev_attr_suspend_disk_state.attr,
3806         &dev_attr_suspend_standby_microvolts.attr,
3807         &dev_attr_suspend_mem_microvolts.attr,
3808         &dev_attr_suspend_disk_microvolts.attr,
3809         &dev_attr_suspend_standby_mode.attr,
3810         &dev_attr_suspend_mem_mode.attr,
3811         &dev_attr_suspend_disk_mode.attr,
3812         NULL
3813 };
3814
3815 /*
3816  * To avoid cluttering sysfs (and memory) with useless state, only
3817  * create attributes that can be meaningfully displayed.
3818  */
3819 static umode_t regulator_attr_is_visible(struct kobject *kobj,
3820                                          struct attribute *attr, int idx)
3821 {
3822         struct device *dev = kobj_to_dev(kobj);
3823         struct regulator_dev *rdev = dev_to_rdev(dev);
3824         const struct regulator_ops *ops = rdev->desc->ops;
3825         umode_t mode = attr->mode;
3826
3827         /* these three are always present */
3828         if (attr == &dev_attr_name.attr ||
3829             attr == &dev_attr_num_users.attr ||
3830             attr == &dev_attr_type.attr)
3831                 return mode;
3832
3833         /* some attributes need specific methods to be displayed */
3834         if (attr == &dev_attr_microvolts.attr) {
3835                 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3836                     (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3837                     (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3838                     (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3839                         return mode;
3840                 return 0;
3841         }
3842
3843         if (attr == &dev_attr_microamps.attr)
3844                 return ops->get_current_limit ? mode : 0;
3845
3846         if (attr == &dev_attr_opmode.attr)
3847                 return ops->get_mode ? mode : 0;
3848
3849         if (attr == &dev_attr_state.attr)
3850                 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3851
3852         if (attr == &dev_attr_status.attr)
3853                 return ops->get_status ? mode : 0;
3854
3855         if (attr == &dev_attr_bypass.attr)
3856                 return ops->get_bypass ? mode : 0;
3857
3858         /* some attributes are type-specific */
3859         if (attr == &dev_attr_requested_microamps.attr)
3860                 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3861
3862         /* constraints need specific supporting methods */
3863         if (attr == &dev_attr_min_microvolts.attr ||
3864             attr == &dev_attr_max_microvolts.attr)
3865                 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3866
3867         if (attr == &dev_attr_min_microamps.attr ||
3868             attr == &dev_attr_max_microamps.attr)
3869                 return ops->set_current_limit ? mode : 0;
3870
3871         if (attr == &dev_attr_suspend_standby_state.attr ||
3872             attr == &dev_attr_suspend_mem_state.attr ||
3873             attr == &dev_attr_suspend_disk_state.attr)
3874                 return mode;
3875
3876         if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3877             attr == &dev_attr_suspend_mem_microvolts.attr ||
3878             attr == &dev_attr_suspend_disk_microvolts.attr)
3879                 return ops->set_suspend_voltage ? mode : 0;
3880
3881         if (attr == &dev_attr_suspend_standby_mode.attr ||
3882             attr == &dev_attr_suspend_mem_mode.attr ||
3883             attr == &dev_attr_suspend_disk_mode.attr)
3884                 return ops->set_suspend_mode ? mode : 0;
3885
3886         return mode;
3887 }
3888
3889 static const struct attribute_group regulator_dev_group = {
3890         .attrs = regulator_dev_attrs,
3891         .is_visible = regulator_attr_is_visible,
3892 };
3893
3894 static const struct attribute_group *regulator_dev_groups[] = {
3895         &regulator_dev_group,
3896         NULL
3897 };
3898
3899 static void regulator_dev_release(struct device *dev)
3900 {
3901         struct regulator_dev *rdev = dev_get_drvdata(dev);
3902
3903         kfree(rdev->constraints);
3904         of_node_put(rdev->dev.of_node);
3905         kfree(rdev);
3906 }
3907
3908 static struct class regulator_class = {
3909         .name = "regulator",
3910         .dev_release = regulator_dev_release,
3911         .dev_groups = regulator_dev_groups,
3912 };
3913
3914 static void rdev_init_debugfs(struct regulator_dev *rdev)
3915 {
3916         struct device *parent = rdev->dev.parent;
3917         const char *rname = rdev_get_name(rdev);
3918         char name[NAME_MAX];
3919
3920         /* Avoid duplicate debugfs directory names */
3921         if (parent && rname == rdev->desc->name) {
3922                 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3923                          rname);
3924                 rname = name;
3925         }
3926
3927         rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3928         if (!rdev->debugfs) {
3929                 rdev_warn(rdev, "Failed to create debugfs directory\n");
3930                 return;
3931         }
3932
3933         debugfs_create_u32("use_count", 0444, rdev->debugfs,
3934                            &rdev->use_count);
3935         debugfs_create_u32("open_count", 0444, rdev->debugfs,
3936                            &rdev->open_count);
3937         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3938                            &rdev->bypass_count);
3939 }
3940
3941 static int regulator_register_resolve_supply(struct device *dev, void *data)
3942 {
3943         struct regulator_dev *rdev = dev_to_rdev(dev);
3944
3945         if (regulator_resolve_supply(rdev))
3946                 rdev_dbg(rdev, "unable to resolve supply\n");
3947
3948         return 0;
3949 }
3950
3951 /**
3952  * regulator_register - register regulator
3953  * @regulator_desc: regulator to register
3954  * @cfg: runtime configuration for regulator
3955  *
3956  * Called by regulator drivers to register a regulator.
3957  * Returns a valid pointer to struct regulator_dev on success
3958  * or an ERR_PTR() on error.
3959  */
3960 struct regulator_dev *
3961 regulator_register(const struct regulator_desc *regulator_desc,
3962                    const struct regulator_config *cfg)
3963 {
3964         const struct regulation_constraints *constraints = NULL;
3965         const struct regulator_init_data *init_data;
3966         struct regulator_config *config = NULL;
3967         static atomic_t regulator_no = ATOMIC_INIT(-1);
3968         struct regulator_dev *rdev;
3969         struct device *dev;
3970         int ret, i;
3971
3972         if (regulator_desc == NULL || cfg == NULL)
3973                 return ERR_PTR(-EINVAL);
3974
3975         dev = cfg->dev;
3976         WARN_ON(!dev);
3977
3978         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3979                 return ERR_PTR(-EINVAL);
3980
3981         if (regulator_desc->type != REGULATOR_VOLTAGE &&
3982             regulator_desc->type != REGULATOR_CURRENT)
3983                 return ERR_PTR(-EINVAL);
3984
3985         /* Only one of each should be implemented */
3986         WARN_ON(regulator_desc->ops->get_voltage &&
3987                 regulator_desc->ops->get_voltage_sel);
3988         WARN_ON(regulator_desc->ops->set_voltage &&
3989                 regulator_desc->ops->set_voltage_sel);
3990
3991         /* If we're using selectors we must implement list_voltage. */
3992         if (regulator_desc->ops->get_voltage_sel &&
3993             !regulator_desc->ops->list_voltage) {
3994                 return ERR_PTR(-EINVAL);
3995         }
3996         if (regulator_desc->ops->set_voltage_sel &&
3997             !regulator_desc->ops->list_voltage) {
3998                 return ERR_PTR(-EINVAL);
3999         }
4000
4001         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
4002         if (rdev == NULL)
4003                 return ERR_PTR(-ENOMEM);
4004
4005         /*
4006          * Duplicate the config so the driver could override it after
4007          * parsing init data.
4008          */
4009         config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
4010         if (config == NULL) {
4011                 kfree(rdev);
4012                 return ERR_PTR(-ENOMEM);
4013         }
4014
4015         init_data = regulator_of_get_init_data(dev, regulator_desc, config,
4016                                                &rdev->dev.of_node);
4017         if (!init_data) {
4018                 init_data = config->init_data;
4019                 rdev->dev.of_node = of_node_get(config->of_node);
4020         }
4021
4022         mutex_init(&rdev->mutex);
4023         rdev->reg_data = config->driver_data;
4024         rdev->owner = regulator_desc->owner;
4025         rdev->desc = regulator_desc;
4026         if (config->regmap)
4027                 rdev->regmap = config->regmap;
4028         else if (dev_get_regmap(dev, NULL))
4029                 rdev->regmap = dev_get_regmap(dev, NULL);
4030         else if (dev->parent)
4031                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
4032         INIT_LIST_HEAD(&rdev->consumer_list);
4033         INIT_LIST_HEAD(&rdev->list);
4034         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
4035         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
4036
4037         /* preform any regulator specific init */
4038         if (init_data && init_data->regulator_init) {
4039                 ret = init_data->regulator_init(rdev->reg_data);
4040                 if (ret < 0)
4041                         goto clean;
4042         }
4043
4044         if ((config->ena_gpio || config->ena_gpio_initialized) &&
4045             gpio_is_valid(config->ena_gpio)) {
4046                 mutex_lock(&regulator_list_mutex);
4047                 ret = regulator_ena_gpio_request(rdev, config);
4048                 mutex_unlock(&regulator_list_mutex);
4049                 if (ret != 0) {
4050                         rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
4051                                  config->ena_gpio, ret);
4052                         goto clean;
4053                 }
4054         }
4055
4056         /* register with sysfs */
4057         rdev->dev.class = &regulator_class;
4058         rdev->dev.parent = dev;
4059         dev_set_name(&rdev->dev, "regulator.%lu",
4060                     (unsigned long) atomic_inc_return(&regulator_no));
4061
4062         /* set regulator constraints */
4063         if (init_data)
4064                 constraints = &init_data->constraints;
4065
4066         if (init_data && init_data->supply_regulator)
4067                 rdev->supply_name = init_data->supply_regulator;
4068         else if (regulator_desc->supply_name)
4069                 rdev->supply_name = regulator_desc->supply_name;
4070
4071         /*
4072          * Attempt to resolve the regulator supply, if specified,
4073          * but don't return an error if we fail because we will try
4074          * to resolve it again later as more regulators are added.
4075          */
4076         if (regulator_resolve_supply(rdev))
4077                 rdev_dbg(rdev, "unable to resolve supply\n");
4078
4079         ret = set_machine_constraints(rdev, constraints);
4080         if (ret < 0)
4081                 goto wash;
4082
4083         /* add consumers devices */
4084         if (init_data) {
4085                 mutex_lock(&regulator_list_mutex);
4086                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
4087                         ret = set_consumer_device_supply(rdev,
4088                                 init_data->consumer_supplies[i].dev_name,
4089                                 init_data->consumer_supplies[i].supply);
4090                         if (ret < 0) {
4091                                 mutex_unlock(&regulator_list_mutex);
4092                                 dev_err(dev, "Failed to set supply %s\n",
4093                                         init_data->consumer_supplies[i].supply);
4094                                 goto unset_supplies;
4095                         }
4096                 }
4097                 mutex_unlock(&regulator_list_mutex);
4098         }
4099
4100         ret = device_register(&rdev->dev);
4101         if (ret != 0) {
4102                 put_device(&rdev->dev);
4103                 goto unset_supplies;
4104         }
4105
4106         dev_set_drvdata(&rdev->dev, rdev);
4107         rdev_init_debugfs(rdev);
4108
4109         /* try to resolve regulators supply since a new one was registered */
4110         class_for_each_device(&regulator_class, NULL, NULL,
4111                               regulator_register_resolve_supply);
4112         kfree(config);
4113         return rdev;
4114
4115 unset_supplies:
4116         mutex_lock(&regulator_list_mutex);
4117         unset_regulator_supplies(rdev);
4118         mutex_unlock(&regulator_list_mutex);
4119 wash:
4120         kfree(rdev->constraints);
4121         mutex_lock(&regulator_list_mutex);
4122         regulator_ena_gpio_free(rdev);
4123         mutex_unlock(&regulator_list_mutex);
4124 clean:
4125         kfree(rdev);
4126         kfree(config);
4127         return ERR_PTR(ret);
4128 }
4129 EXPORT_SYMBOL_GPL(regulator_register);
4130
4131 /**
4132  * regulator_unregister - unregister regulator
4133  * @rdev: regulator to unregister
4134  *
4135  * Called by regulator drivers to unregister a regulator.
4136  */
4137 void regulator_unregister(struct regulator_dev *rdev)
4138 {
4139         if (rdev == NULL)
4140                 return;
4141
4142         if (rdev->supply) {
4143                 while (rdev->use_count--)
4144                         regulator_disable(rdev->supply);
4145                 regulator_put(rdev->supply);
4146         }
4147         mutex_lock(&regulator_list_mutex);
4148         debugfs_remove_recursive(rdev->debugfs);
4149         flush_work(&rdev->disable_work.work);
4150         WARN_ON(rdev->open_count);
4151         unset_regulator_supplies(rdev);
4152         list_del(&rdev->list);
4153         regulator_ena_gpio_free(rdev);
4154         mutex_unlock(&regulator_list_mutex);
4155         device_unregister(&rdev->dev);
4156 }
4157 EXPORT_SYMBOL_GPL(regulator_unregister);
4158
4159 static int _regulator_suspend_prepare(struct device *dev, void *data)
4160 {
4161         struct regulator_dev *rdev = dev_to_rdev(dev);
4162         const suspend_state_t *state = data;
4163         int ret;
4164
4165         mutex_lock(&rdev->mutex);
4166         ret = suspend_prepare(rdev, *state);
4167         mutex_unlock(&rdev->mutex);
4168
4169         return ret;
4170 }
4171
4172 /**
4173  * regulator_suspend_prepare - prepare regulators for system wide suspend
4174  * @state: system suspend state
4175  *
4176  * Configure each regulator with it's suspend operating parameters for state.
4177  * This will usually be called by machine suspend code prior to supending.
4178  */
4179 int regulator_suspend_prepare(suspend_state_t state)
4180 {
4181         /* ON is handled by regulator active state */
4182         if (state == PM_SUSPEND_ON)
4183                 return -EINVAL;
4184
4185         return class_for_each_device(&regulator_class, NULL, &state,
4186                                      _regulator_suspend_prepare);
4187 }
4188 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
4189
4190 static int _regulator_suspend_finish(struct device *dev, void *data)
4191 {
4192         struct regulator_dev *rdev = dev_to_rdev(dev);
4193         int ret;
4194
4195         mutex_lock(&rdev->mutex);
4196         if (rdev->use_count > 0  || rdev->constraints->always_on) {
4197                 if (!_regulator_is_enabled(rdev)) {
4198                         ret = _regulator_do_enable(rdev);
4199                         if (ret)
4200                                 dev_err(dev,
4201                                         "Failed to resume regulator %d\n",
4202                                         ret);
4203                 }
4204         } else {
4205                 if (!have_full_constraints())
4206                         goto unlock;
4207                 if (!_regulator_is_enabled(rdev))
4208                         goto unlock;
4209
4210                 ret = _regulator_do_disable(rdev);
4211                 if (ret)
4212                         dev_err(dev, "Failed to suspend regulator %d\n", ret);
4213         }
4214 unlock:
4215         mutex_unlock(&rdev->mutex);
4216
4217         /* Keep processing regulators in spite of any errors */
4218         return 0;
4219 }
4220
4221 /**
4222  * regulator_suspend_finish - resume regulators from system wide suspend
4223  *
4224  * Turn on regulators that might be turned off by regulator_suspend_prepare
4225  * and that should be turned on according to the regulators properties.
4226  */
4227 int regulator_suspend_finish(void)
4228 {
4229         return class_for_each_device(&regulator_class, NULL, NULL,
4230                                      _regulator_suspend_finish);
4231 }
4232 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
4233
4234 /**
4235  * regulator_has_full_constraints - the system has fully specified constraints
4236  *
4237  * Calling this function will cause the regulator API to disable all
4238  * regulators which have a zero use count and don't have an always_on
4239  * constraint in a late_initcall.
4240  *
4241  * The intention is that this will become the default behaviour in a
4242  * future kernel release so users are encouraged to use this facility
4243  * now.
4244  */
4245 void regulator_has_full_constraints(void)
4246 {
4247         has_full_constraints = 1;
4248 }
4249 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
4250
4251 /**
4252  * rdev_get_drvdata - get rdev regulator driver data
4253  * @rdev: regulator
4254  *
4255  * Get rdev regulator driver private data. This call can be used in the
4256  * regulator driver context.
4257  */
4258 void *rdev_get_drvdata(struct regulator_dev *rdev)
4259 {
4260         return rdev->reg_data;
4261 }
4262 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
4263
4264 /**
4265  * regulator_get_drvdata - get regulator driver data
4266  * @regulator: regulator
4267  *
4268  * Get regulator driver private data. This call can be used in the consumer
4269  * driver context when non API regulator specific functions need to be called.
4270  */
4271 void *regulator_get_drvdata(struct regulator *regulator)
4272 {
4273         return regulator->rdev->reg_data;
4274 }
4275 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
4276
4277 /**
4278  * regulator_set_drvdata - set regulator driver data
4279  * @regulator: regulator
4280  * @data: data
4281  */
4282 void regulator_set_drvdata(struct regulator *regulator, void *data)
4283 {
4284         regulator->rdev->reg_data = data;
4285 }
4286 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4287
4288 /**
4289  * regulator_get_id - get regulator ID
4290  * @rdev: regulator
4291  */
4292 int rdev_get_id(struct regulator_dev *rdev)
4293 {
4294         return rdev->desc->id;
4295 }
4296 EXPORT_SYMBOL_GPL(rdev_get_id);
4297
4298 struct device *rdev_get_dev(struct regulator_dev *rdev)
4299 {
4300         return &rdev->dev;
4301 }
4302 EXPORT_SYMBOL_GPL(rdev_get_dev);
4303
4304 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4305 {
4306         return reg_init_data->driver_data;
4307 }
4308 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4309
4310 #ifdef CONFIG_DEBUG_FS
4311 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
4312                                     size_t count, loff_t *ppos)
4313 {
4314         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4315         ssize_t len, ret = 0;
4316         struct regulator_map *map;
4317
4318         if (!buf)
4319                 return -ENOMEM;
4320
4321         list_for_each_entry(map, &regulator_map_list, list) {
4322                 len = snprintf(buf + ret, PAGE_SIZE - ret,
4323                                "%s -> %s.%s\n",
4324                                rdev_get_name(map->regulator), map->dev_name,
4325                                map->supply);
4326                 if (len >= 0)
4327                         ret += len;
4328                 if (ret > PAGE_SIZE) {
4329                         ret = PAGE_SIZE;
4330                         break;
4331                 }
4332         }
4333
4334         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
4335
4336         kfree(buf);
4337
4338         return ret;
4339 }
4340 #endif
4341
4342 static const struct file_operations supply_map_fops = {
4343 #ifdef CONFIG_DEBUG_FS
4344         .read = supply_map_read_file,
4345         .llseek = default_llseek,
4346 #endif
4347 };
4348
4349 #ifdef CONFIG_DEBUG_FS
4350 struct summary_data {
4351         struct seq_file *s;
4352         struct regulator_dev *parent;
4353         int level;
4354 };
4355
4356 static void regulator_summary_show_subtree(struct seq_file *s,
4357                                            struct regulator_dev *rdev,
4358                                            int level);
4359
4360 static int regulator_summary_show_children(struct device *dev, void *data)
4361 {
4362         struct regulator_dev *rdev = dev_to_rdev(dev);
4363         struct summary_data *summary_data = data;
4364
4365         if (rdev->supply && rdev->supply->rdev == summary_data->parent)
4366                 regulator_summary_show_subtree(summary_data->s, rdev,
4367                                                summary_data->level + 1);
4368
4369         return 0;
4370 }
4371
4372 static void regulator_summary_show_subtree(struct seq_file *s,
4373                                            struct regulator_dev *rdev,
4374                                            int level)
4375 {
4376         struct regulation_constraints *c;
4377         struct regulator *consumer;
4378         struct summary_data summary_data;
4379
4380         if (!rdev)
4381                 return;
4382
4383         seq_printf(s, "%*s%-*s %3d %4d %6d ",
4384                    level * 3 + 1, "",
4385                    30 - level * 3, rdev_get_name(rdev),
4386                    rdev->use_count, rdev->open_count, rdev->bypass_count);
4387
4388         seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4389         seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4390
4391         c = rdev->constraints;
4392         if (c) {
4393                 switch (rdev->desc->type) {
4394                 case REGULATOR_VOLTAGE:
4395                         seq_printf(s, "%5dmV %5dmV ",
4396                                    c->min_uV / 1000, c->max_uV / 1000);
4397                         break;
4398                 case REGULATOR_CURRENT:
4399                         seq_printf(s, "%5dmA %5dmA ",
4400                                    c->min_uA / 1000, c->max_uA / 1000);
4401                         break;
4402                 }
4403         }
4404
4405         seq_puts(s, "\n");
4406
4407         list_for_each_entry(consumer, &rdev->consumer_list, list) {
4408                 if (consumer->dev && consumer->dev->class == &regulator_class)
4409                         continue;
4410
4411                 seq_printf(s, "%*s%-*s ",
4412                            (level + 1) * 3 + 1, "",
4413                            30 - (level + 1) * 3,
4414                            consumer->dev ? dev_name(consumer->dev) : "deviceless");
4415
4416                 switch (rdev->desc->type) {
4417                 case REGULATOR_VOLTAGE:
4418                         seq_printf(s, "%37dmV %5dmV",
4419                                    consumer->min_uV / 1000,
4420                                    consumer->max_uV / 1000);
4421                         break;
4422                 case REGULATOR_CURRENT:
4423                         break;
4424                 }
4425
4426                 seq_puts(s, "\n");
4427         }
4428
4429         summary_data.s = s;
4430         summary_data.level = level;
4431         summary_data.parent = rdev;
4432
4433         class_for_each_device(&regulator_class, NULL, &summary_data,
4434                               regulator_summary_show_children);
4435 }
4436
4437 static int regulator_summary_show_roots(struct device *dev, void *data)
4438 {
4439         struct regulator_dev *rdev = dev_to_rdev(dev);
4440         struct seq_file *s = data;
4441
4442         if (!rdev->supply)
4443                 regulator_summary_show_subtree(s, rdev, 0);
4444
4445         return 0;
4446 }
4447
4448 static int regulator_summary_show(struct seq_file *s, void *data)
4449 {
4450         seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
4451         seq_puts(s, "-------------------------------------------------------------------------------\n");
4452
4453         class_for_each_device(&regulator_class, NULL, s,
4454                               regulator_summary_show_roots);
4455
4456         return 0;
4457 }
4458
4459 static int regulator_summary_open(struct inode *inode, struct file *file)
4460 {
4461         return single_open(file, regulator_summary_show, inode->i_private);
4462 }
4463 #endif
4464
4465 static const struct file_operations regulator_summary_fops = {
4466 #ifdef CONFIG_DEBUG_FS
4467         .open           = regulator_summary_open,
4468         .read           = seq_read,
4469         .llseek         = seq_lseek,
4470         .release        = single_release,
4471 #endif
4472 };
4473
4474 static int __init regulator_init(void)
4475 {
4476         int ret;
4477
4478         ret = class_register(&regulator_class);
4479
4480         debugfs_root = debugfs_create_dir("regulator", NULL);
4481         if (!debugfs_root)
4482                 pr_warn("regulator: Failed to create debugfs directory\n");
4483
4484         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4485                             &supply_map_fops);
4486
4487         debugfs_create_file("regulator_summary", 0444, debugfs_root,
4488                             NULL, &regulator_summary_fops);
4489
4490         regulator_dummy_init();
4491
4492         return ret;
4493 }
4494
4495 /* init early to allow our consumers to complete system booting */
4496 core_initcall(regulator_init);
4497
4498 static int __init regulator_late_cleanup(struct device *dev, void *data)
4499 {
4500         struct regulator_dev *rdev = dev_to_rdev(dev);
4501         const struct regulator_ops *ops = rdev->desc->ops;
4502         struct regulation_constraints *c = rdev->constraints;
4503         int enabled, ret;
4504
4505         if (c && c->always_on)
4506                 return 0;
4507
4508         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
4509                 return 0;
4510
4511         mutex_lock(&rdev->mutex);
4512
4513         if (rdev->use_count)
4514                 goto unlock;
4515
4516         /* If we can't read the status assume it's on. */
4517         if (ops->is_enabled)
4518                 enabled = ops->is_enabled(rdev);
4519         else
4520                 enabled = 1;
4521
4522         if (!enabled)
4523                 goto unlock;
4524
4525         if (have_full_constraints()) {
4526                 /* We log since this may kill the system if it goes
4527                  * wrong. */
4528                 rdev_info(rdev, "disabling\n");
4529                 ret = _regulator_do_disable(rdev);
4530                 if (ret != 0)
4531                         rdev_err(rdev, "couldn't disable: %d\n", ret);
4532         } else {
4533                 /* The intention is that in future we will
4534                  * assume that full constraints are provided
4535                  * so warn even if we aren't going to do
4536                  * anything here.
4537                  */
4538                 rdev_warn(rdev, "incomplete constraints, leaving on\n");
4539         }
4540
4541 unlock:
4542         mutex_unlock(&rdev->mutex);
4543
4544         return 0;
4545 }
4546
4547 static int __init regulator_init_complete(void)
4548 {
4549         /*
4550          * Since DT doesn't provide an idiomatic mechanism for
4551          * enabling full constraints and since it's much more natural
4552          * with DT to provide them just assume that a DT enabled
4553          * system has full constraints.
4554          */
4555         if (of_have_populated_dt())
4556                 has_full_constraints = true;
4557
4558         /*
4559          * Regulators may had failed to resolve their input supplies
4560          * when were registered, either because the input supply was
4561          * not registered yet or because its parent device was not
4562          * bound yet. So attempt to resolve the input supplies for
4563          * pending regulators before trying to disable unused ones.
4564          */
4565         class_for_each_device(&regulator_class, NULL, NULL,
4566                               regulator_register_resolve_supply);
4567
4568         /* If we have a full configuration then disable any regulators
4569          * we have permission to change the status for and which are
4570          * not in use or always_on.  This is effectively the default
4571          * for DT and ACPI as they have full constraints.
4572          */
4573         class_for_each_device(&regulator_class, NULL, NULL,
4574                               regulator_late_cleanup);
4575
4576         return 0;
4577 }
4578 late_initcall_sync(regulator_init_complete);