Merge branch 'for-linus' of git://github.com/at91linux/linux-2.6-at91
[sfrench/cifs-2.6.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/err.h>
20 #include <linux/mutex.h>
21 #include <linux/suspend.h>
22 #include <linux/regulator/consumer.h>
23 #include <linux/regulator/driver.h>
24 #include <linux/regulator/machine.h>
25
26 #define REGULATOR_VERSION "0.5"
27
28 static DEFINE_MUTEX(regulator_list_mutex);
29 static LIST_HEAD(regulator_list);
30 static LIST_HEAD(regulator_map_list);
31 static int has_full_constraints;
32
33 /*
34  * struct regulator_map
35  *
36  * Used to provide symbolic supply names to devices.
37  */
38 struct regulator_map {
39         struct list_head list;
40         const char *dev_name;   /* The dev_name() for the consumer */
41         const char *supply;
42         struct regulator_dev *regulator;
43 };
44
45 /*
46  * struct regulator
47  *
48  * One for each consumer device.
49  */
50 struct regulator {
51         struct device *dev;
52         struct list_head list;
53         int uA_load;
54         int min_uV;
55         int max_uV;
56         char *supply_name;
57         struct device_attribute dev_attr;
58         struct regulator_dev *rdev;
59 };
60
61 static int _regulator_is_enabled(struct regulator_dev *rdev);
62 static int _regulator_disable(struct regulator_dev *rdev);
63 static int _regulator_get_voltage(struct regulator_dev *rdev);
64 static int _regulator_get_current_limit(struct regulator_dev *rdev);
65 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
66 static void _notifier_call_chain(struct regulator_dev *rdev,
67                                   unsigned long event, void *data);
68
69 /* gets the regulator for a given consumer device */
70 static struct regulator *get_device_regulator(struct device *dev)
71 {
72         struct regulator *regulator = NULL;
73         struct regulator_dev *rdev;
74
75         mutex_lock(&regulator_list_mutex);
76         list_for_each_entry(rdev, &regulator_list, list) {
77                 mutex_lock(&rdev->mutex);
78                 list_for_each_entry(regulator, &rdev->consumer_list, list) {
79                         if (regulator->dev == dev) {
80                                 mutex_unlock(&rdev->mutex);
81                                 mutex_unlock(&regulator_list_mutex);
82                                 return regulator;
83                         }
84                 }
85                 mutex_unlock(&rdev->mutex);
86         }
87         mutex_unlock(&regulator_list_mutex);
88         return NULL;
89 }
90
91 /* Platform voltage constraint check */
92 static int regulator_check_voltage(struct regulator_dev *rdev,
93                                    int *min_uV, int *max_uV)
94 {
95         BUG_ON(*min_uV > *max_uV);
96
97         if (!rdev->constraints) {
98                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
99                        rdev->desc->name);
100                 return -ENODEV;
101         }
102         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
103                 printk(KERN_ERR "%s: operation not allowed for %s\n",
104                        __func__, rdev->desc->name);
105                 return -EPERM;
106         }
107
108         if (*max_uV > rdev->constraints->max_uV)
109                 *max_uV = rdev->constraints->max_uV;
110         if (*min_uV < rdev->constraints->min_uV)
111                 *min_uV = rdev->constraints->min_uV;
112
113         if (*min_uV > *max_uV)
114                 return -EINVAL;
115
116         return 0;
117 }
118
119 /* current constraint check */
120 static int regulator_check_current_limit(struct regulator_dev *rdev,
121                                         int *min_uA, int *max_uA)
122 {
123         BUG_ON(*min_uA > *max_uA);
124
125         if (!rdev->constraints) {
126                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
127                        rdev->desc->name);
128                 return -ENODEV;
129         }
130         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
131                 printk(KERN_ERR "%s: operation not allowed for %s\n",
132                        __func__, rdev->desc->name);
133                 return -EPERM;
134         }
135
136         if (*max_uA > rdev->constraints->max_uA)
137                 *max_uA = rdev->constraints->max_uA;
138         if (*min_uA < rdev->constraints->min_uA)
139                 *min_uA = rdev->constraints->min_uA;
140
141         if (*min_uA > *max_uA)
142                 return -EINVAL;
143
144         return 0;
145 }
146
147 /* operating mode constraint check */
148 static int regulator_check_mode(struct regulator_dev *rdev, int mode)
149 {
150         switch (mode) {
151         case REGULATOR_MODE_FAST:
152         case REGULATOR_MODE_NORMAL:
153         case REGULATOR_MODE_IDLE:
154         case REGULATOR_MODE_STANDBY:
155                 break;
156         default:
157                 return -EINVAL;
158         }
159
160         if (!rdev->constraints) {
161                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
162                        rdev->desc->name);
163                 return -ENODEV;
164         }
165         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
166                 printk(KERN_ERR "%s: operation not allowed for %s\n",
167                        __func__, rdev->desc->name);
168                 return -EPERM;
169         }
170         if (!(rdev->constraints->valid_modes_mask & mode)) {
171                 printk(KERN_ERR "%s: invalid mode %x for %s\n",
172                        __func__, mode, rdev->desc->name);
173                 return -EINVAL;
174         }
175         return 0;
176 }
177
178 /* dynamic regulator mode switching constraint check */
179 static int regulator_check_drms(struct regulator_dev *rdev)
180 {
181         if (!rdev->constraints) {
182                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
183                        rdev->desc->name);
184                 return -ENODEV;
185         }
186         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
187                 printk(KERN_ERR "%s: operation not allowed for %s\n",
188                        __func__, rdev->desc->name);
189                 return -EPERM;
190         }
191         return 0;
192 }
193
194 static ssize_t device_requested_uA_show(struct device *dev,
195                              struct device_attribute *attr, char *buf)
196 {
197         struct regulator *regulator;
198
199         regulator = get_device_regulator(dev);
200         if (regulator == NULL)
201                 return 0;
202
203         return sprintf(buf, "%d\n", regulator->uA_load);
204 }
205
206 static ssize_t regulator_uV_show(struct device *dev,
207                                 struct device_attribute *attr, char *buf)
208 {
209         struct regulator_dev *rdev = dev_get_drvdata(dev);
210         ssize_t ret;
211
212         mutex_lock(&rdev->mutex);
213         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
214         mutex_unlock(&rdev->mutex);
215
216         return ret;
217 }
218 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
219
220 static ssize_t regulator_uA_show(struct device *dev,
221                                 struct device_attribute *attr, char *buf)
222 {
223         struct regulator_dev *rdev = dev_get_drvdata(dev);
224
225         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
226 }
227 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
228
229 static ssize_t regulator_name_show(struct device *dev,
230                              struct device_attribute *attr, char *buf)
231 {
232         struct regulator_dev *rdev = dev_get_drvdata(dev);
233         const char *name;
234
235         if (rdev->constraints && rdev->constraints->name)
236                 name = rdev->constraints->name;
237         else if (rdev->desc->name)
238                 name = rdev->desc->name;
239         else
240                 name = "";
241
242         return sprintf(buf, "%s\n", name);
243 }
244
245 static ssize_t regulator_print_opmode(char *buf, int mode)
246 {
247         switch (mode) {
248         case REGULATOR_MODE_FAST:
249                 return sprintf(buf, "fast\n");
250         case REGULATOR_MODE_NORMAL:
251                 return sprintf(buf, "normal\n");
252         case REGULATOR_MODE_IDLE:
253                 return sprintf(buf, "idle\n");
254         case REGULATOR_MODE_STANDBY:
255                 return sprintf(buf, "standby\n");
256         }
257         return sprintf(buf, "unknown\n");
258 }
259
260 static ssize_t regulator_opmode_show(struct device *dev,
261                                     struct device_attribute *attr, char *buf)
262 {
263         struct regulator_dev *rdev = dev_get_drvdata(dev);
264
265         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
266 }
267 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
268
269 static ssize_t regulator_print_state(char *buf, int state)
270 {
271         if (state > 0)
272                 return sprintf(buf, "enabled\n");
273         else if (state == 0)
274                 return sprintf(buf, "disabled\n");
275         else
276                 return sprintf(buf, "unknown\n");
277 }
278
279 static ssize_t regulator_state_show(struct device *dev,
280                                    struct device_attribute *attr, char *buf)
281 {
282         struct regulator_dev *rdev = dev_get_drvdata(dev);
283         ssize_t ret;
284
285         mutex_lock(&rdev->mutex);
286         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
287         mutex_unlock(&rdev->mutex);
288
289         return ret;
290 }
291 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
292
293 static ssize_t regulator_status_show(struct device *dev,
294                                    struct device_attribute *attr, char *buf)
295 {
296         struct regulator_dev *rdev = dev_get_drvdata(dev);
297         int status;
298         char *label;
299
300         status = rdev->desc->ops->get_status(rdev);
301         if (status < 0)
302                 return status;
303
304         switch (status) {
305         case REGULATOR_STATUS_OFF:
306                 label = "off";
307                 break;
308         case REGULATOR_STATUS_ON:
309                 label = "on";
310                 break;
311         case REGULATOR_STATUS_ERROR:
312                 label = "error";
313                 break;
314         case REGULATOR_STATUS_FAST:
315                 label = "fast";
316                 break;
317         case REGULATOR_STATUS_NORMAL:
318                 label = "normal";
319                 break;
320         case REGULATOR_STATUS_IDLE:
321                 label = "idle";
322                 break;
323         case REGULATOR_STATUS_STANDBY:
324                 label = "standby";
325                 break;
326         default:
327                 return -ERANGE;
328         }
329
330         return sprintf(buf, "%s\n", label);
331 }
332 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
333
334 static ssize_t regulator_min_uA_show(struct device *dev,
335                                     struct device_attribute *attr, char *buf)
336 {
337         struct regulator_dev *rdev = dev_get_drvdata(dev);
338
339         if (!rdev->constraints)
340                 return sprintf(buf, "constraint not defined\n");
341
342         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
343 }
344 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
345
346 static ssize_t regulator_max_uA_show(struct device *dev,
347                                     struct device_attribute *attr, char *buf)
348 {
349         struct regulator_dev *rdev = dev_get_drvdata(dev);
350
351         if (!rdev->constraints)
352                 return sprintf(buf, "constraint not defined\n");
353
354         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
355 }
356 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
357
358 static ssize_t regulator_min_uV_show(struct device *dev,
359                                     struct device_attribute *attr, char *buf)
360 {
361         struct regulator_dev *rdev = dev_get_drvdata(dev);
362
363         if (!rdev->constraints)
364                 return sprintf(buf, "constraint not defined\n");
365
366         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
367 }
368 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
369
370 static ssize_t regulator_max_uV_show(struct device *dev,
371                                     struct device_attribute *attr, char *buf)
372 {
373         struct regulator_dev *rdev = dev_get_drvdata(dev);
374
375         if (!rdev->constraints)
376                 return sprintf(buf, "constraint not defined\n");
377
378         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
379 }
380 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
381
382 static ssize_t regulator_total_uA_show(struct device *dev,
383                                       struct device_attribute *attr, char *buf)
384 {
385         struct regulator_dev *rdev = dev_get_drvdata(dev);
386         struct regulator *regulator;
387         int uA = 0;
388
389         mutex_lock(&rdev->mutex);
390         list_for_each_entry(regulator, &rdev->consumer_list, list)
391             uA += regulator->uA_load;
392         mutex_unlock(&rdev->mutex);
393         return sprintf(buf, "%d\n", uA);
394 }
395 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
396
397 static ssize_t regulator_num_users_show(struct device *dev,
398                                       struct device_attribute *attr, char *buf)
399 {
400         struct regulator_dev *rdev = dev_get_drvdata(dev);
401         return sprintf(buf, "%d\n", rdev->use_count);
402 }
403
404 static ssize_t regulator_type_show(struct device *dev,
405                                   struct device_attribute *attr, char *buf)
406 {
407         struct regulator_dev *rdev = dev_get_drvdata(dev);
408
409         switch (rdev->desc->type) {
410         case REGULATOR_VOLTAGE:
411                 return sprintf(buf, "voltage\n");
412         case REGULATOR_CURRENT:
413                 return sprintf(buf, "current\n");
414         }
415         return sprintf(buf, "unknown\n");
416 }
417
418 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
419                                 struct device_attribute *attr, char *buf)
420 {
421         struct regulator_dev *rdev = dev_get_drvdata(dev);
422
423         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
424 }
425 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
426                 regulator_suspend_mem_uV_show, NULL);
427
428 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
429                                 struct device_attribute *attr, char *buf)
430 {
431         struct regulator_dev *rdev = dev_get_drvdata(dev);
432
433         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
434 }
435 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
436                 regulator_suspend_disk_uV_show, NULL);
437
438 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
439                                 struct device_attribute *attr, char *buf)
440 {
441         struct regulator_dev *rdev = dev_get_drvdata(dev);
442
443         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
444 }
445 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
446                 regulator_suspend_standby_uV_show, NULL);
447
448 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
449                                 struct device_attribute *attr, char *buf)
450 {
451         struct regulator_dev *rdev = dev_get_drvdata(dev);
452
453         return regulator_print_opmode(buf,
454                 rdev->constraints->state_mem.mode);
455 }
456 static DEVICE_ATTR(suspend_mem_mode, 0444,
457                 regulator_suspend_mem_mode_show, NULL);
458
459 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
460                                 struct device_attribute *attr, char *buf)
461 {
462         struct regulator_dev *rdev = dev_get_drvdata(dev);
463
464         return regulator_print_opmode(buf,
465                 rdev->constraints->state_disk.mode);
466 }
467 static DEVICE_ATTR(suspend_disk_mode, 0444,
468                 regulator_suspend_disk_mode_show, NULL);
469
470 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
471                                 struct device_attribute *attr, char *buf)
472 {
473         struct regulator_dev *rdev = dev_get_drvdata(dev);
474
475         return regulator_print_opmode(buf,
476                 rdev->constraints->state_standby.mode);
477 }
478 static DEVICE_ATTR(suspend_standby_mode, 0444,
479                 regulator_suspend_standby_mode_show, NULL);
480
481 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
482                                    struct device_attribute *attr, char *buf)
483 {
484         struct regulator_dev *rdev = dev_get_drvdata(dev);
485
486         return regulator_print_state(buf,
487                         rdev->constraints->state_mem.enabled);
488 }
489 static DEVICE_ATTR(suspend_mem_state, 0444,
490                 regulator_suspend_mem_state_show, NULL);
491
492 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
493                                    struct device_attribute *attr, char *buf)
494 {
495         struct regulator_dev *rdev = dev_get_drvdata(dev);
496
497         return regulator_print_state(buf,
498                         rdev->constraints->state_disk.enabled);
499 }
500 static DEVICE_ATTR(suspend_disk_state, 0444,
501                 regulator_suspend_disk_state_show, NULL);
502
503 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
504                                    struct device_attribute *attr, char *buf)
505 {
506         struct regulator_dev *rdev = dev_get_drvdata(dev);
507
508         return regulator_print_state(buf,
509                         rdev->constraints->state_standby.enabled);
510 }
511 static DEVICE_ATTR(suspend_standby_state, 0444,
512                 regulator_suspend_standby_state_show, NULL);
513
514
515 /*
516  * These are the only attributes are present for all regulators.
517  * Other attributes are a function of regulator functionality.
518  */
519 static struct device_attribute regulator_dev_attrs[] = {
520         __ATTR(name, 0444, regulator_name_show, NULL),
521         __ATTR(num_users, 0444, regulator_num_users_show, NULL),
522         __ATTR(type, 0444, regulator_type_show, NULL),
523         __ATTR_NULL,
524 };
525
526 static void regulator_dev_release(struct device *dev)
527 {
528         struct regulator_dev *rdev = dev_get_drvdata(dev);
529         kfree(rdev);
530 }
531
532 static struct class regulator_class = {
533         .name = "regulator",
534         .dev_release = regulator_dev_release,
535         .dev_attrs = regulator_dev_attrs,
536 };
537
538 /* Calculate the new optimum regulator operating mode based on the new total
539  * consumer load. All locks held by caller */
540 static void drms_uA_update(struct regulator_dev *rdev)
541 {
542         struct regulator *sibling;
543         int current_uA = 0, output_uV, input_uV, err;
544         unsigned int mode;
545
546         err = regulator_check_drms(rdev);
547         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
548             !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode)
549                 return;
550
551         /* get output voltage */
552         output_uV = rdev->desc->ops->get_voltage(rdev);
553         if (output_uV <= 0)
554                 return;
555
556         /* get input voltage */
557         if (rdev->supply && rdev->supply->desc->ops->get_voltage)
558                 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
559         else
560                 input_uV = rdev->constraints->input_uV;
561         if (input_uV <= 0)
562                 return;
563
564         /* calc total requested load */
565         list_for_each_entry(sibling, &rdev->consumer_list, list)
566             current_uA += sibling->uA_load;
567
568         /* now get the optimum mode for our new total regulator load */
569         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
570                                                   output_uV, current_uA);
571
572         /* check the new mode is allowed */
573         err = regulator_check_mode(rdev, mode);
574         if (err == 0)
575                 rdev->desc->ops->set_mode(rdev, mode);
576 }
577
578 static int suspend_set_state(struct regulator_dev *rdev,
579         struct regulator_state *rstate)
580 {
581         int ret = 0;
582
583         /* enable & disable are mandatory for suspend control */
584         if (!rdev->desc->ops->set_suspend_enable ||
585                 !rdev->desc->ops->set_suspend_disable) {
586                 printk(KERN_ERR "%s: no way to set suspend state\n",
587                         __func__);
588                 return -EINVAL;
589         }
590
591         if (rstate->enabled)
592                 ret = rdev->desc->ops->set_suspend_enable(rdev);
593         else
594                 ret = rdev->desc->ops->set_suspend_disable(rdev);
595         if (ret < 0) {
596                 printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
597                 return ret;
598         }
599
600         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
601                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
602                 if (ret < 0) {
603                         printk(KERN_ERR "%s: failed to set voltage\n",
604                                 __func__);
605                         return ret;
606                 }
607         }
608
609         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
610                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
611                 if (ret < 0) {
612                         printk(KERN_ERR "%s: failed to set mode\n", __func__);
613                         return ret;
614                 }
615         }
616         return ret;
617 }
618
619 /* locks held by caller */
620 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
621 {
622         if (!rdev->constraints)
623                 return -EINVAL;
624
625         switch (state) {
626         case PM_SUSPEND_STANDBY:
627                 return suspend_set_state(rdev,
628                         &rdev->constraints->state_standby);
629         case PM_SUSPEND_MEM:
630                 return suspend_set_state(rdev,
631                         &rdev->constraints->state_mem);
632         case PM_SUSPEND_MAX:
633                 return suspend_set_state(rdev,
634                         &rdev->constraints->state_disk);
635         default:
636                 return -EINVAL;
637         }
638 }
639
640 static void print_constraints(struct regulator_dev *rdev)
641 {
642         struct regulation_constraints *constraints = rdev->constraints;
643         char buf[80];
644         int count;
645
646         if (rdev->desc->type == REGULATOR_VOLTAGE) {
647                 if (constraints->min_uV == constraints->max_uV)
648                         count = sprintf(buf, "%d mV ",
649                                         constraints->min_uV / 1000);
650                 else
651                         count = sprintf(buf, "%d <--> %d mV ",
652                                         constraints->min_uV / 1000,
653                                         constraints->max_uV / 1000);
654         } else {
655                 if (constraints->min_uA == constraints->max_uA)
656                         count = sprintf(buf, "%d mA ",
657                                         constraints->min_uA / 1000);
658                 else
659                         count = sprintf(buf, "%d <--> %d mA ",
660                                         constraints->min_uA / 1000,
661                                         constraints->max_uA / 1000);
662         }
663         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
664                 count += sprintf(buf + count, "fast ");
665         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
666                 count += sprintf(buf + count, "normal ");
667         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
668                 count += sprintf(buf + count, "idle ");
669         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
670                 count += sprintf(buf + count, "standby");
671
672         printk(KERN_INFO "regulator: %s: %s\n", rdev->desc->name, buf);
673 }
674
675 /**
676  * set_machine_constraints - sets regulator constraints
677  * @rdev: regulator source
678  * @constraints: constraints to apply
679  *
680  * Allows platform initialisation code to define and constrain
681  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
682  * Constraints *must* be set by platform code in order for some
683  * regulator operations to proceed i.e. set_voltage, set_current_limit,
684  * set_mode.
685  */
686 static int set_machine_constraints(struct regulator_dev *rdev,
687         struct regulation_constraints *constraints)
688 {
689         int ret = 0;
690         const char *name;
691         struct regulator_ops *ops = rdev->desc->ops;
692
693         if (constraints->name)
694                 name = constraints->name;
695         else if (rdev->desc->name)
696                 name = rdev->desc->name;
697         else
698                 name = "regulator";
699
700         /* constrain machine-level voltage specs to fit
701          * the actual range supported by this regulator.
702          */
703         if (ops->list_voltage && rdev->desc->n_voltages) {
704                 int     count = rdev->desc->n_voltages;
705                 int     i;
706                 int     min_uV = INT_MAX;
707                 int     max_uV = INT_MIN;
708                 int     cmin = constraints->min_uV;
709                 int     cmax = constraints->max_uV;
710
711                 /* it's safe to autoconfigure fixed-voltage supplies
712                    and the constraints are used by list_voltage. */
713                 if (count == 1 && !cmin) {
714                         cmin = 1;
715                         cmax = INT_MAX;
716                         constraints->min_uV = cmin;
717                         constraints->max_uV = cmax;
718                 }
719
720                 /* voltage constraints are optional */
721                 if ((cmin == 0) && (cmax == 0))
722                         goto out;
723
724                 /* else require explicit machine-level constraints */
725                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
726                         pr_err("%s: %s '%s' voltage constraints\n",
727                                        __func__, "invalid", name);
728                         ret = -EINVAL;
729                         goto out;
730                 }
731
732                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
733                 for (i = 0; i < count; i++) {
734                         int     value;
735
736                         value = ops->list_voltage(rdev, i);
737                         if (value <= 0)
738                                 continue;
739
740                         /* maybe adjust [min_uV..max_uV] */
741                         if (value >= cmin && value < min_uV)
742                                 min_uV = value;
743                         if (value <= cmax && value > max_uV)
744                                 max_uV = value;
745                 }
746
747                 /* final: [min_uV..max_uV] valid iff constraints valid */
748                 if (max_uV < min_uV) {
749                         pr_err("%s: %s '%s' voltage constraints\n",
750                                        __func__, "unsupportable", name);
751                         ret = -EINVAL;
752                         goto out;
753                 }
754
755                 /* use regulator's subset of machine constraints */
756                 if (constraints->min_uV < min_uV) {
757                         pr_debug("%s: override '%s' %s, %d -> %d\n",
758                                        __func__, name, "min_uV",
759                                         constraints->min_uV, min_uV);
760                         constraints->min_uV = min_uV;
761                 }
762                 if (constraints->max_uV > max_uV) {
763                         pr_debug("%s: override '%s' %s, %d -> %d\n",
764                                        __func__, name, "max_uV",
765                                         constraints->max_uV, max_uV);
766                         constraints->max_uV = max_uV;
767                 }
768         }
769
770         rdev->constraints = constraints;
771
772         /* do we need to apply the constraint voltage */
773         if (rdev->constraints->apply_uV &&
774                 rdev->constraints->min_uV == rdev->constraints->max_uV &&
775                 ops->set_voltage) {
776                 ret = ops->set_voltage(rdev,
777                         rdev->constraints->min_uV, rdev->constraints->max_uV);
778                         if (ret < 0) {
779                                 printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
780                                        __func__,
781                                        rdev->constraints->min_uV, name);
782                                 rdev->constraints = NULL;
783                                 goto out;
784                         }
785         }
786
787         /* do we need to setup our suspend state */
788         if (constraints->initial_state) {
789                 ret = suspend_prepare(rdev, constraints->initial_state);
790                 if (ret < 0) {
791                         printk(KERN_ERR "%s: failed to set suspend state for %s\n",
792                                __func__, name);
793                         rdev->constraints = NULL;
794                         goto out;
795                 }
796         }
797
798         if (constraints->initial_mode) {
799                 if (!ops->set_mode) {
800                         printk(KERN_ERR "%s: no set_mode operation for %s\n",
801                                __func__, name);
802                         ret = -EINVAL;
803                         goto out;
804                 }
805
806                 ret = ops->set_mode(rdev, constraints->initial_mode);
807                 if (ret < 0) {
808                         printk(KERN_ERR
809                                "%s: failed to set initial mode for %s: %d\n",
810                                __func__, name, ret);
811                         goto out;
812                 }
813         }
814
815         /* If the constraints say the regulator should be on at this point
816          * and we have control then make sure it is enabled.
817          */
818         if ((constraints->always_on || constraints->boot_on) && ops->enable) {
819                 ret = ops->enable(rdev);
820                 if (ret < 0) {
821                         printk(KERN_ERR "%s: failed to enable %s\n",
822                                __func__, name);
823                         rdev->constraints = NULL;
824                         goto out;
825                 }
826         }
827
828         print_constraints(rdev);
829 out:
830         return ret;
831 }
832
833 /**
834  * set_supply - set regulator supply regulator
835  * @rdev: regulator name
836  * @supply_rdev: supply regulator name
837  *
838  * Called by platform initialisation code to set the supply regulator for this
839  * regulator. This ensures that a regulators supply will also be enabled by the
840  * core if it's child is enabled.
841  */
842 static int set_supply(struct regulator_dev *rdev,
843         struct regulator_dev *supply_rdev)
844 {
845         int err;
846
847         err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
848                                 "supply");
849         if (err) {
850                 printk(KERN_ERR
851                        "%s: could not add device link %s err %d\n",
852                        __func__, supply_rdev->dev.kobj.name, err);
853                        goto out;
854         }
855         rdev->supply = supply_rdev;
856         list_add(&rdev->slist, &supply_rdev->supply_list);
857 out:
858         return err;
859 }
860
861 /**
862  * set_consumer_device_supply: Bind a regulator to a symbolic supply
863  * @rdev:         regulator source
864  * @consumer_dev: device the supply applies to
865  * @consumer_dev_name: dev_name() string for device supply applies to
866  * @supply:       symbolic name for supply
867  *
868  * Allows platform initialisation code to map physical regulator
869  * sources to symbolic names for supplies for use by devices.  Devices
870  * should use these symbolic names to request regulators, avoiding the
871  * need to provide board-specific regulator names as platform data.
872  *
873  * Only one of consumer_dev and consumer_dev_name may be specified.
874  */
875 static int set_consumer_device_supply(struct regulator_dev *rdev,
876         struct device *consumer_dev, const char *consumer_dev_name,
877         const char *supply)
878 {
879         struct regulator_map *node;
880         int has_dev;
881
882         if (consumer_dev && consumer_dev_name)
883                 return -EINVAL;
884
885         if (!consumer_dev_name && consumer_dev)
886                 consumer_dev_name = dev_name(consumer_dev);
887
888         if (supply == NULL)
889                 return -EINVAL;
890
891         if (consumer_dev_name != NULL)
892                 has_dev = 1;
893         else
894                 has_dev = 0;
895
896         list_for_each_entry(node, &regulator_map_list, list) {
897                 if (consumer_dev_name != node->dev_name)
898                         continue;
899                 if (strcmp(node->supply, supply) != 0)
900                         continue;
901
902                 dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
903                                 dev_name(&node->regulator->dev),
904                                 node->regulator->desc->name,
905                                 supply,
906                                 dev_name(&rdev->dev), rdev->desc->name);
907                 return -EBUSY;
908         }
909
910         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
911         if (node == NULL)
912                 return -ENOMEM;
913
914         node->regulator = rdev;
915         node->supply = supply;
916
917         if (has_dev) {
918                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
919                 if (node->dev_name == NULL) {
920                         kfree(node);
921                         return -ENOMEM;
922                 }
923         }
924
925         list_add(&node->list, &regulator_map_list);
926         return 0;
927 }
928
929 static void unset_consumer_device_supply(struct regulator_dev *rdev,
930         const char *consumer_dev_name, struct device *consumer_dev)
931 {
932         struct regulator_map *node, *n;
933
934         if (consumer_dev && !consumer_dev_name)
935                 consumer_dev_name = dev_name(consumer_dev);
936
937         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
938                 if (rdev != node->regulator)
939                         continue;
940
941                 if (consumer_dev_name && node->dev_name &&
942                     strcmp(consumer_dev_name, node->dev_name))
943                         continue;
944
945                 list_del(&node->list);
946                 kfree(node->dev_name);
947                 kfree(node);
948                 return;
949         }
950 }
951
952 static void unset_regulator_supplies(struct regulator_dev *rdev)
953 {
954         struct regulator_map *node, *n;
955
956         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
957                 if (rdev == node->regulator) {
958                         list_del(&node->list);
959                         kfree(node->dev_name);
960                         kfree(node);
961                         return;
962                 }
963         }
964 }
965
966 #define REG_STR_SIZE    32
967
968 static struct regulator *create_regulator(struct regulator_dev *rdev,
969                                           struct device *dev,
970                                           const char *supply_name)
971 {
972         struct regulator *regulator;
973         char buf[REG_STR_SIZE];
974         int err, size;
975
976         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
977         if (regulator == NULL)
978                 return NULL;
979
980         mutex_lock(&rdev->mutex);
981         regulator->rdev = rdev;
982         list_add(&regulator->list, &rdev->consumer_list);
983
984         if (dev) {
985                 /* create a 'requested_microamps_name' sysfs entry */
986                 size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
987                         supply_name);
988                 if (size >= REG_STR_SIZE)
989                         goto overflow_err;
990
991                 regulator->dev = dev;
992                 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
993                 if (regulator->dev_attr.attr.name == NULL)
994                         goto attr_name_err;
995
996                 regulator->dev_attr.attr.owner = THIS_MODULE;
997                 regulator->dev_attr.attr.mode = 0444;
998                 regulator->dev_attr.show = device_requested_uA_show;
999                 err = device_create_file(dev, &regulator->dev_attr);
1000                 if (err < 0) {
1001                         printk(KERN_WARNING "%s: could not add regulator_dev"
1002                                 " load sysfs\n", __func__);
1003                         goto attr_name_err;
1004                 }
1005
1006                 /* also add a link to the device sysfs entry */
1007                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1008                                  dev->kobj.name, supply_name);
1009                 if (size >= REG_STR_SIZE)
1010                         goto attr_err;
1011
1012                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1013                 if (regulator->supply_name == NULL)
1014                         goto attr_err;
1015
1016                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1017                                         buf);
1018                 if (err) {
1019                         printk(KERN_WARNING
1020                                "%s: could not add device link %s err %d\n",
1021                                __func__, dev->kobj.name, err);
1022                         device_remove_file(dev, &regulator->dev_attr);
1023                         goto link_name_err;
1024                 }
1025         }
1026         mutex_unlock(&rdev->mutex);
1027         return regulator;
1028 link_name_err:
1029         kfree(regulator->supply_name);
1030 attr_err:
1031         device_remove_file(regulator->dev, &regulator->dev_attr);
1032 attr_name_err:
1033         kfree(regulator->dev_attr.attr.name);
1034 overflow_err:
1035         list_del(&regulator->list);
1036         kfree(regulator);
1037         mutex_unlock(&rdev->mutex);
1038         return NULL;
1039 }
1040
1041 /* Internal regulator request function */
1042 static struct regulator *_regulator_get(struct device *dev, const char *id,
1043                                         int exclusive)
1044 {
1045         struct regulator_dev *rdev;
1046         struct regulator_map *map;
1047         struct regulator *regulator = ERR_PTR(-ENODEV);
1048         const char *devname = NULL;
1049         int ret;
1050
1051         if (id == NULL) {
1052                 printk(KERN_ERR "regulator: get() with no identifier\n");
1053                 return regulator;
1054         }
1055
1056         if (dev)
1057                 devname = dev_name(dev);
1058
1059         mutex_lock(&regulator_list_mutex);
1060
1061         list_for_each_entry(map, &regulator_map_list, list) {
1062                 /* If the mapping has a device set up it must match */
1063                 if (map->dev_name &&
1064                     (!devname || strcmp(map->dev_name, devname)))
1065                         continue;
1066
1067                 if (strcmp(map->supply, id) == 0) {
1068                         rdev = map->regulator;
1069                         goto found;
1070                 }
1071         }
1072         mutex_unlock(&regulator_list_mutex);
1073         return regulator;
1074
1075 found:
1076         if (rdev->exclusive) {
1077                 regulator = ERR_PTR(-EPERM);
1078                 goto out;
1079         }
1080
1081         if (exclusive && rdev->open_count) {
1082                 regulator = ERR_PTR(-EBUSY);
1083                 goto out;
1084         }
1085
1086         if (!try_module_get(rdev->owner))
1087                 goto out;
1088
1089         regulator = create_regulator(rdev, dev, id);
1090         if (regulator == NULL) {
1091                 regulator = ERR_PTR(-ENOMEM);
1092                 module_put(rdev->owner);
1093         }
1094
1095         rdev->open_count++;
1096         if (exclusive) {
1097                 rdev->exclusive = 1;
1098
1099                 ret = _regulator_is_enabled(rdev);
1100                 if (ret > 0)
1101                         rdev->use_count = 1;
1102                 else
1103                         rdev->use_count = 0;
1104         }
1105
1106 out:
1107         mutex_unlock(&regulator_list_mutex);
1108
1109         return regulator;
1110 }
1111
1112 /**
1113  * regulator_get - lookup and obtain a reference to a regulator.
1114  * @dev: device for regulator "consumer"
1115  * @id: Supply name or regulator ID.
1116  *
1117  * Returns a struct regulator corresponding to the regulator producer,
1118  * or IS_ERR() condition containing errno.
1119  *
1120  * Use of supply names configured via regulator_set_device_supply() is
1121  * strongly encouraged.  It is recommended that the supply name used
1122  * should match the name used for the supply and/or the relevant
1123  * device pins in the datasheet.
1124  */
1125 struct regulator *regulator_get(struct device *dev, const char *id)
1126 {
1127         return _regulator_get(dev, id, 0);
1128 }
1129 EXPORT_SYMBOL_GPL(regulator_get);
1130
1131 /**
1132  * regulator_get_exclusive - obtain exclusive access to a regulator.
1133  * @dev: device for regulator "consumer"
1134  * @id: Supply name or regulator ID.
1135  *
1136  * Returns a struct regulator corresponding to the regulator producer,
1137  * or IS_ERR() condition containing errno.  Other consumers will be
1138  * unable to obtain this reference is held and the use count for the
1139  * regulator will be initialised to reflect the current state of the
1140  * regulator.
1141  *
1142  * This is intended for use by consumers which cannot tolerate shared
1143  * use of the regulator such as those which need to force the
1144  * regulator off for correct operation of the hardware they are
1145  * controlling.
1146  *
1147  * Use of supply names configured via regulator_set_device_supply() is
1148  * strongly encouraged.  It is recommended that the supply name used
1149  * should match the name used for the supply and/or the relevant
1150  * device pins in the datasheet.
1151  */
1152 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1153 {
1154         return _regulator_get(dev, id, 1);
1155 }
1156 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1157
1158 /**
1159  * regulator_put - "free" the regulator source
1160  * @regulator: regulator source
1161  *
1162  * Note: drivers must ensure that all regulator_enable calls made on this
1163  * regulator source are balanced by regulator_disable calls prior to calling
1164  * this function.
1165  */
1166 void regulator_put(struct regulator *regulator)
1167 {
1168         struct regulator_dev *rdev;
1169
1170         if (regulator == NULL || IS_ERR(regulator))
1171                 return;
1172
1173         mutex_lock(&regulator_list_mutex);
1174         rdev = regulator->rdev;
1175
1176         /* remove any sysfs entries */
1177         if (regulator->dev) {
1178                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1179                 kfree(regulator->supply_name);
1180                 device_remove_file(regulator->dev, &regulator->dev_attr);
1181                 kfree(regulator->dev_attr.attr.name);
1182         }
1183         list_del(&regulator->list);
1184         kfree(regulator);
1185
1186         rdev->open_count--;
1187         rdev->exclusive = 0;
1188
1189         module_put(rdev->owner);
1190         mutex_unlock(&regulator_list_mutex);
1191 }
1192 EXPORT_SYMBOL_GPL(regulator_put);
1193
1194 static int _regulator_can_change_status(struct regulator_dev *rdev)
1195 {
1196         if (!rdev->constraints)
1197                 return 0;
1198
1199         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1200                 return 1;
1201         else
1202                 return 0;
1203 }
1204
1205 /* locks held by regulator_enable() */
1206 static int _regulator_enable(struct regulator_dev *rdev)
1207 {
1208         int ret;
1209
1210         /* do we need to enable the supply regulator first */
1211         if (rdev->supply) {
1212                 ret = _regulator_enable(rdev->supply);
1213                 if (ret < 0) {
1214                         printk(KERN_ERR "%s: failed to enable %s: %d\n",
1215                                __func__, rdev->desc->name, ret);
1216                         return ret;
1217                 }
1218         }
1219
1220         /* check voltage and requested load before enabling */
1221         if (rdev->constraints &&
1222             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1223                 drms_uA_update(rdev);
1224
1225         if (rdev->use_count == 0) {
1226                 /* The regulator may on if it's not switchable or left on */
1227                 ret = _regulator_is_enabled(rdev);
1228                 if (ret == -EINVAL || ret == 0) {
1229                         if (!_regulator_can_change_status(rdev))
1230                                 return -EPERM;
1231
1232                         if (rdev->desc->ops->enable) {
1233                                 ret = rdev->desc->ops->enable(rdev);
1234                                 if (ret < 0)
1235                                         return ret;
1236                         } else {
1237                                 return -EINVAL;
1238                         }
1239                 } else if (ret < 0) {
1240                         printk(KERN_ERR "%s: is_enabled() failed for %s: %d\n",
1241                                __func__, rdev->desc->name, ret);
1242                         return ret;
1243                 }
1244                 /* Fallthrough on positive return values - already enabled */
1245         }
1246
1247         rdev->use_count++;
1248
1249         return 0;
1250 }
1251
1252 /**
1253  * regulator_enable - enable regulator output
1254  * @regulator: regulator source
1255  *
1256  * Request that the regulator be enabled with the regulator output at
1257  * the predefined voltage or current value.  Calls to regulator_enable()
1258  * must be balanced with calls to regulator_disable().
1259  *
1260  * NOTE: the output value can be set by other drivers, boot loader or may be
1261  * hardwired in the regulator.
1262  */
1263 int regulator_enable(struct regulator *regulator)
1264 {
1265         struct regulator_dev *rdev = regulator->rdev;
1266         int ret = 0;
1267
1268         mutex_lock(&rdev->mutex);
1269         ret = _regulator_enable(rdev);
1270         mutex_unlock(&rdev->mutex);
1271         return ret;
1272 }
1273 EXPORT_SYMBOL_GPL(regulator_enable);
1274
1275 /* locks held by regulator_disable() */
1276 static int _regulator_disable(struct regulator_dev *rdev)
1277 {
1278         int ret = 0;
1279
1280         if (WARN(rdev->use_count <= 0,
1281                         "unbalanced disables for %s\n",
1282                         rdev->desc->name))
1283                 return -EIO;
1284
1285         /* are we the last user and permitted to disable ? */
1286         if (rdev->use_count == 1 && !rdev->constraints->always_on) {
1287
1288                 /* we are last user */
1289                 if (_regulator_can_change_status(rdev) &&
1290                     rdev->desc->ops->disable) {
1291                         ret = rdev->desc->ops->disable(rdev);
1292                         if (ret < 0) {
1293                                 printk(KERN_ERR "%s: failed to disable %s\n",
1294                                        __func__, rdev->desc->name);
1295                                 return ret;
1296                         }
1297                 }
1298
1299                 /* decrease our supplies ref count and disable if required */
1300                 if (rdev->supply)
1301                         _regulator_disable(rdev->supply);
1302
1303                 rdev->use_count = 0;
1304         } else if (rdev->use_count > 1) {
1305
1306                 if (rdev->constraints &&
1307                         (rdev->constraints->valid_ops_mask &
1308                         REGULATOR_CHANGE_DRMS))
1309                         drms_uA_update(rdev);
1310
1311                 rdev->use_count--;
1312         }
1313         return ret;
1314 }
1315
1316 /**
1317  * regulator_disable - disable regulator output
1318  * @regulator: regulator source
1319  *
1320  * Disable the regulator output voltage or current.  Calls to
1321  * regulator_enable() must be balanced with calls to
1322  * regulator_disable().
1323  *
1324  * NOTE: this will only disable the regulator output if no other consumer
1325  * devices have it enabled, the regulator device supports disabling and
1326  * machine constraints permit this operation.
1327  */
1328 int regulator_disable(struct regulator *regulator)
1329 {
1330         struct regulator_dev *rdev = regulator->rdev;
1331         int ret = 0;
1332
1333         mutex_lock(&rdev->mutex);
1334         ret = _regulator_disable(rdev);
1335         mutex_unlock(&rdev->mutex);
1336         return ret;
1337 }
1338 EXPORT_SYMBOL_GPL(regulator_disable);
1339
1340 /* locks held by regulator_force_disable() */
1341 static int _regulator_force_disable(struct regulator_dev *rdev)
1342 {
1343         int ret = 0;
1344
1345         /* force disable */
1346         if (rdev->desc->ops->disable) {
1347                 /* ah well, who wants to live forever... */
1348                 ret = rdev->desc->ops->disable(rdev);
1349                 if (ret < 0) {
1350                         printk(KERN_ERR "%s: failed to force disable %s\n",
1351                                __func__, rdev->desc->name);
1352                         return ret;
1353                 }
1354                 /* notify other consumers that power has been forced off */
1355                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE,
1356                         NULL);
1357         }
1358
1359         /* decrease our supplies ref count and disable if required */
1360         if (rdev->supply)
1361                 _regulator_disable(rdev->supply);
1362
1363         rdev->use_count = 0;
1364         return ret;
1365 }
1366
1367 /**
1368  * regulator_force_disable - force disable regulator output
1369  * @regulator: regulator source
1370  *
1371  * Forcibly disable the regulator output voltage or current.
1372  * NOTE: this *will* disable the regulator output even if other consumer
1373  * devices have it enabled. This should be used for situations when device
1374  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1375  */
1376 int regulator_force_disable(struct regulator *regulator)
1377 {
1378         int ret;
1379
1380         mutex_lock(&regulator->rdev->mutex);
1381         regulator->uA_load = 0;
1382         ret = _regulator_force_disable(regulator->rdev);
1383         mutex_unlock(&regulator->rdev->mutex);
1384         return ret;
1385 }
1386 EXPORT_SYMBOL_GPL(regulator_force_disable);
1387
1388 static int _regulator_is_enabled(struct regulator_dev *rdev)
1389 {
1390         /* sanity check */
1391         if (!rdev->desc->ops->is_enabled)
1392                 return -EINVAL;
1393
1394         return rdev->desc->ops->is_enabled(rdev);
1395 }
1396
1397 /**
1398  * regulator_is_enabled - is the regulator output enabled
1399  * @regulator: regulator source
1400  *
1401  * Returns positive if the regulator driver backing the source/client
1402  * has requested that the device be enabled, zero if it hasn't, else a
1403  * negative errno code.
1404  *
1405  * Note that the device backing this regulator handle can have multiple
1406  * users, so it might be enabled even if regulator_enable() was never
1407  * called for this particular source.
1408  */
1409 int regulator_is_enabled(struct regulator *regulator)
1410 {
1411         int ret;
1412
1413         mutex_lock(&regulator->rdev->mutex);
1414         ret = _regulator_is_enabled(regulator->rdev);
1415         mutex_unlock(&regulator->rdev->mutex);
1416
1417         return ret;
1418 }
1419 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1420
1421 /**
1422  * regulator_count_voltages - count regulator_list_voltage() selectors
1423  * @regulator: regulator source
1424  *
1425  * Returns number of selectors, or negative errno.  Selectors are
1426  * numbered starting at zero, and typically correspond to bitfields
1427  * in hardware registers.
1428  */
1429 int regulator_count_voltages(struct regulator *regulator)
1430 {
1431         struct regulator_dev    *rdev = regulator->rdev;
1432
1433         return rdev->desc->n_voltages ? : -EINVAL;
1434 }
1435 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1436
1437 /**
1438  * regulator_list_voltage - enumerate supported voltages
1439  * @regulator: regulator source
1440  * @selector: identify voltage to list
1441  * Context: can sleep
1442  *
1443  * Returns a voltage that can be passed to @regulator_set_voltage(),
1444  * zero if this selector code can't be used on this sytem, or a
1445  * negative errno.
1446  */
1447 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1448 {
1449         struct regulator_dev    *rdev = regulator->rdev;
1450         struct regulator_ops    *ops = rdev->desc->ops;
1451         int                     ret;
1452
1453         if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1454                 return -EINVAL;
1455
1456         mutex_lock(&rdev->mutex);
1457         ret = ops->list_voltage(rdev, selector);
1458         mutex_unlock(&rdev->mutex);
1459
1460         if (ret > 0) {
1461                 if (ret < rdev->constraints->min_uV)
1462                         ret = 0;
1463                 else if (ret > rdev->constraints->max_uV)
1464                         ret = 0;
1465         }
1466
1467         return ret;
1468 }
1469 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1470
1471 /**
1472  * regulator_is_supported_voltage - check if a voltage range can be supported
1473  *
1474  * @regulator: Regulator to check.
1475  * @min_uV: Minimum required voltage in uV.
1476  * @max_uV: Maximum required voltage in uV.
1477  *
1478  * Returns a boolean or a negative error code.
1479  */
1480 int regulator_is_supported_voltage(struct regulator *regulator,
1481                                    int min_uV, int max_uV)
1482 {
1483         int i, voltages, ret;
1484
1485         ret = regulator_count_voltages(regulator);
1486         if (ret < 0)
1487                 return ret;
1488         voltages = ret;
1489
1490         for (i = 0; i < voltages; i++) {
1491                 ret = regulator_list_voltage(regulator, i);
1492
1493                 if (ret >= min_uV && ret <= max_uV)
1494                         return 1;
1495         }
1496
1497         return 0;
1498 }
1499
1500 /**
1501  * regulator_set_voltage - set regulator output voltage
1502  * @regulator: regulator source
1503  * @min_uV: Minimum required voltage in uV
1504  * @max_uV: Maximum acceptable voltage in uV
1505  *
1506  * Sets a voltage regulator to the desired output voltage. This can be set
1507  * during any regulator state. IOW, regulator can be disabled or enabled.
1508  *
1509  * If the regulator is enabled then the voltage will change to the new value
1510  * immediately otherwise if the regulator is disabled the regulator will
1511  * output at the new voltage when enabled.
1512  *
1513  * NOTE: If the regulator is shared between several devices then the lowest
1514  * request voltage that meets the system constraints will be used.
1515  * Regulator system constraints must be set for this regulator before
1516  * calling this function otherwise this call will fail.
1517  */
1518 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1519 {
1520         struct regulator_dev *rdev = regulator->rdev;
1521         int ret;
1522
1523         mutex_lock(&rdev->mutex);
1524
1525         /* sanity check */
1526         if (!rdev->desc->ops->set_voltage) {
1527                 ret = -EINVAL;
1528                 goto out;
1529         }
1530
1531         /* constraints check */
1532         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1533         if (ret < 0)
1534                 goto out;
1535         regulator->min_uV = min_uV;
1536         regulator->max_uV = max_uV;
1537         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1538
1539 out:
1540         _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1541         mutex_unlock(&rdev->mutex);
1542         return ret;
1543 }
1544 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1545
1546 static int _regulator_get_voltage(struct regulator_dev *rdev)
1547 {
1548         /* sanity check */
1549         if (rdev->desc->ops->get_voltage)
1550                 return rdev->desc->ops->get_voltage(rdev);
1551         else
1552                 return -EINVAL;
1553 }
1554
1555 /**
1556  * regulator_get_voltage - get regulator output voltage
1557  * @regulator: regulator source
1558  *
1559  * This returns the current regulator voltage in uV.
1560  *
1561  * NOTE: If the regulator is disabled it will return the voltage value. This
1562  * function should not be used to determine regulator state.
1563  */
1564 int regulator_get_voltage(struct regulator *regulator)
1565 {
1566         int ret;
1567
1568         mutex_lock(&regulator->rdev->mutex);
1569
1570         ret = _regulator_get_voltage(regulator->rdev);
1571
1572         mutex_unlock(&regulator->rdev->mutex);
1573
1574         return ret;
1575 }
1576 EXPORT_SYMBOL_GPL(regulator_get_voltage);
1577
1578 /**
1579  * regulator_set_current_limit - set regulator output current limit
1580  * @regulator: regulator source
1581  * @min_uA: Minimuum supported current in uA
1582  * @max_uA: Maximum supported current in uA
1583  *
1584  * Sets current sink to the desired output current. This can be set during
1585  * any regulator state. IOW, regulator can be disabled or enabled.
1586  *
1587  * If the regulator is enabled then the current will change to the new value
1588  * immediately otherwise if the regulator is disabled the regulator will
1589  * output at the new current when enabled.
1590  *
1591  * NOTE: Regulator system constraints must be set for this regulator before
1592  * calling this function otherwise this call will fail.
1593  */
1594 int regulator_set_current_limit(struct regulator *regulator,
1595                                int min_uA, int max_uA)
1596 {
1597         struct regulator_dev *rdev = regulator->rdev;
1598         int ret;
1599
1600         mutex_lock(&rdev->mutex);
1601
1602         /* sanity check */
1603         if (!rdev->desc->ops->set_current_limit) {
1604                 ret = -EINVAL;
1605                 goto out;
1606         }
1607
1608         /* constraints check */
1609         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1610         if (ret < 0)
1611                 goto out;
1612
1613         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1614 out:
1615         mutex_unlock(&rdev->mutex);
1616         return ret;
1617 }
1618 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1619
1620 static int _regulator_get_current_limit(struct regulator_dev *rdev)
1621 {
1622         int ret;
1623
1624         mutex_lock(&rdev->mutex);
1625
1626         /* sanity check */
1627         if (!rdev->desc->ops->get_current_limit) {
1628                 ret = -EINVAL;
1629                 goto out;
1630         }
1631
1632         ret = rdev->desc->ops->get_current_limit(rdev);
1633 out:
1634         mutex_unlock(&rdev->mutex);
1635         return ret;
1636 }
1637
1638 /**
1639  * regulator_get_current_limit - get regulator output current
1640  * @regulator: regulator source
1641  *
1642  * This returns the current supplied by the specified current sink in uA.
1643  *
1644  * NOTE: If the regulator is disabled it will return the current value. This
1645  * function should not be used to determine regulator state.
1646  */
1647 int regulator_get_current_limit(struct regulator *regulator)
1648 {
1649         return _regulator_get_current_limit(regulator->rdev);
1650 }
1651 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1652
1653 /**
1654  * regulator_set_mode - set regulator operating mode
1655  * @regulator: regulator source
1656  * @mode: operating mode - one of the REGULATOR_MODE constants
1657  *
1658  * Set regulator operating mode to increase regulator efficiency or improve
1659  * regulation performance.
1660  *
1661  * NOTE: Regulator system constraints must be set for this regulator before
1662  * calling this function otherwise this call will fail.
1663  */
1664 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1665 {
1666         struct regulator_dev *rdev = regulator->rdev;
1667         int ret;
1668
1669         mutex_lock(&rdev->mutex);
1670
1671         /* sanity check */
1672         if (!rdev->desc->ops->set_mode) {
1673                 ret = -EINVAL;
1674                 goto out;
1675         }
1676
1677         /* constraints check */
1678         ret = regulator_check_mode(rdev, mode);
1679         if (ret < 0)
1680                 goto out;
1681
1682         ret = rdev->desc->ops->set_mode(rdev, mode);
1683 out:
1684         mutex_unlock(&rdev->mutex);
1685         return ret;
1686 }
1687 EXPORT_SYMBOL_GPL(regulator_set_mode);
1688
1689 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1690 {
1691         int ret;
1692
1693         mutex_lock(&rdev->mutex);
1694
1695         /* sanity check */
1696         if (!rdev->desc->ops->get_mode) {
1697                 ret = -EINVAL;
1698                 goto out;
1699         }
1700
1701         ret = rdev->desc->ops->get_mode(rdev);
1702 out:
1703         mutex_unlock(&rdev->mutex);
1704         return ret;
1705 }
1706
1707 /**
1708  * regulator_get_mode - get regulator operating mode
1709  * @regulator: regulator source
1710  *
1711  * Get the current regulator operating mode.
1712  */
1713 unsigned int regulator_get_mode(struct regulator *regulator)
1714 {
1715         return _regulator_get_mode(regulator->rdev);
1716 }
1717 EXPORT_SYMBOL_GPL(regulator_get_mode);
1718
1719 /**
1720  * regulator_set_optimum_mode - set regulator optimum operating mode
1721  * @regulator: regulator source
1722  * @uA_load: load current
1723  *
1724  * Notifies the regulator core of a new device load. This is then used by
1725  * DRMS (if enabled by constraints) to set the most efficient regulator
1726  * operating mode for the new regulator loading.
1727  *
1728  * Consumer devices notify their supply regulator of the maximum power
1729  * they will require (can be taken from device datasheet in the power
1730  * consumption tables) when they change operational status and hence power
1731  * state. Examples of operational state changes that can affect power
1732  * consumption are :-
1733  *
1734  *    o Device is opened / closed.
1735  *    o Device I/O is about to begin or has just finished.
1736  *    o Device is idling in between work.
1737  *
1738  * This information is also exported via sysfs to userspace.
1739  *
1740  * DRMS will sum the total requested load on the regulator and change
1741  * to the most efficient operating mode if platform constraints allow.
1742  *
1743  * Returns the new regulator mode or error.
1744  */
1745 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1746 {
1747         struct regulator_dev *rdev = regulator->rdev;
1748         struct regulator *consumer;
1749         int ret, output_uV, input_uV, total_uA_load = 0;
1750         unsigned int mode;
1751
1752         mutex_lock(&rdev->mutex);
1753
1754         regulator->uA_load = uA_load;
1755         ret = regulator_check_drms(rdev);
1756         if (ret < 0)
1757                 goto out;
1758         ret = -EINVAL;
1759
1760         /* sanity check */
1761         if (!rdev->desc->ops->get_optimum_mode)
1762                 goto out;
1763
1764         /* get output voltage */
1765         output_uV = rdev->desc->ops->get_voltage(rdev);
1766         if (output_uV <= 0) {
1767                 printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1768                         __func__, rdev->desc->name);
1769                 goto out;
1770         }
1771
1772         /* get input voltage */
1773         if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1774                 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1775         else
1776                 input_uV = rdev->constraints->input_uV;
1777         if (input_uV <= 0) {
1778                 printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1779                         __func__, rdev->desc->name);
1780                 goto out;
1781         }
1782
1783         /* calc total requested load for this regulator */
1784         list_for_each_entry(consumer, &rdev->consumer_list, list)
1785             total_uA_load += consumer->uA_load;
1786
1787         mode = rdev->desc->ops->get_optimum_mode(rdev,
1788                                                  input_uV, output_uV,
1789                                                  total_uA_load);
1790         ret = regulator_check_mode(rdev, mode);
1791         if (ret < 0) {
1792                 printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1793                         " %d uA %d -> %d uV\n", __func__, rdev->desc->name,
1794                         total_uA_load, input_uV, output_uV);
1795                 goto out;
1796         }
1797
1798         ret = rdev->desc->ops->set_mode(rdev, mode);
1799         if (ret < 0) {
1800                 printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1801                         __func__, mode, rdev->desc->name);
1802                 goto out;
1803         }
1804         ret = mode;
1805 out:
1806         mutex_unlock(&rdev->mutex);
1807         return ret;
1808 }
1809 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1810
1811 /**
1812  * regulator_register_notifier - register regulator event notifier
1813  * @regulator: regulator source
1814  * @nb: notifier block
1815  *
1816  * Register notifier block to receive regulator events.
1817  */
1818 int regulator_register_notifier(struct regulator *regulator,
1819                               struct notifier_block *nb)
1820 {
1821         return blocking_notifier_chain_register(&regulator->rdev->notifier,
1822                                                 nb);
1823 }
1824 EXPORT_SYMBOL_GPL(regulator_register_notifier);
1825
1826 /**
1827  * regulator_unregister_notifier - unregister regulator event notifier
1828  * @regulator: regulator source
1829  * @nb: notifier block
1830  *
1831  * Unregister regulator event notifier block.
1832  */
1833 int regulator_unregister_notifier(struct regulator *regulator,
1834                                 struct notifier_block *nb)
1835 {
1836         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1837                                                   nb);
1838 }
1839 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1840
1841 /* notify regulator consumers and downstream regulator consumers.
1842  * Note mutex must be held by caller.
1843  */
1844 static void _notifier_call_chain(struct regulator_dev *rdev,
1845                                   unsigned long event, void *data)
1846 {
1847         struct regulator_dev *_rdev;
1848
1849         /* call rdev chain first */
1850         blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1851
1852         /* now notify regulator we supply */
1853         list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1854           mutex_lock(&_rdev->mutex);
1855           _notifier_call_chain(_rdev, event, data);
1856           mutex_unlock(&_rdev->mutex);
1857         }
1858 }
1859
1860 /**
1861  * regulator_bulk_get - get multiple regulator consumers
1862  *
1863  * @dev:           Device to supply
1864  * @num_consumers: Number of consumers to register
1865  * @consumers:     Configuration of consumers; clients are stored here.
1866  *
1867  * @return 0 on success, an errno on failure.
1868  *
1869  * This helper function allows drivers to get several regulator
1870  * consumers in one operation.  If any of the regulators cannot be
1871  * acquired then any regulators that were allocated will be freed
1872  * before returning to the caller.
1873  */
1874 int regulator_bulk_get(struct device *dev, int num_consumers,
1875                        struct regulator_bulk_data *consumers)
1876 {
1877         int i;
1878         int ret;
1879
1880         for (i = 0; i < num_consumers; i++)
1881                 consumers[i].consumer = NULL;
1882
1883         for (i = 0; i < num_consumers; i++) {
1884                 consumers[i].consumer = regulator_get(dev,
1885                                                       consumers[i].supply);
1886                 if (IS_ERR(consumers[i].consumer)) {
1887                         dev_err(dev, "Failed to get supply '%s'\n",
1888                                 consumers[i].supply);
1889                         ret = PTR_ERR(consumers[i].consumer);
1890                         consumers[i].consumer = NULL;
1891                         goto err;
1892                 }
1893         }
1894
1895         return 0;
1896
1897 err:
1898         for (i = 0; i < num_consumers && consumers[i].consumer; i++)
1899                 regulator_put(consumers[i].consumer);
1900
1901         return ret;
1902 }
1903 EXPORT_SYMBOL_GPL(regulator_bulk_get);
1904
1905 /**
1906  * regulator_bulk_enable - enable multiple regulator consumers
1907  *
1908  * @num_consumers: Number of consumers
1909  * @consumers:     Consumer data; clients are stored here.
1910  * @return         0 on success, an errno on failure
1911  *
1912  * This convenience API allows consumers to enable multiple regulator
1913  * clients in a single API call.  If any consumers cannot be enabled
1914  * then any others that were enabled will be disabled again prior to
1915  * return.
1916  */
1917 int regulator_bulk_enable(int num_consumers,
1918                           struct regulator_bulk_data *consumers)
1919 {
1920         int i;
1921         int ret;
1922
1923         for (i = 0; i < num_consumers; i++) {
1924                 ret = regulator_enable(consumers[i].consumer);
1925                 if (ret != 0)
1926                         goto err;
1927         }
1928
1929         return 0;
1930
1931 err:
1932         printk(KERN_ERR "Failed to enable %s\n", consumers[i].supply);
1933         for (i = 0; i < num_consumers; i++)
1934                 regulator_disable(consumers[i].consumer);
1935
1936         return ret;
1937 }
1938 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
1939
1940 /**
1941  * regulator_bulk_disable - disable multiple regulator consumers
1942  *
1943  * @num_consumers: Number of consumers
1944  * @consumers:     Consumer data; clients are stored here.
1945  * @return         0 on success, an errno on failure
1946  *
1947  * This convenience API allows consumers to disable multiple regulator
1948  * clients in a single API call.  If any consumers cannot be enabled
1949  * then any others that were disabled will be disabled again prior to
1950  * return.
1951  */
1952 int regulator_bulk_disable(int num_consumers,
1953                            struct regulator_bulk_data *consumers)
1954 {
1955         int i;
1956         int ret;
1957
1958         for (i = 0; i < num_consumers; i++) {
1959                 ret = regulator_disable(consumers[i].consumer);
1960                 if (ret != 0)
1961                         goto err;
1962         }
1963
1964         return 0;
1965
1966 err:
1967         printk(KERN_ERR "Failed to disable %s\n", consumers[i].supply);
1968         for (i = 0; i < num_consumers; i++)
1969                 regulator_enable(consumers[i].consumer);
1970
1971         return ret;
1972 }
1973 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
1974
1975 /**
1976  * regulator_bulk_free - free multiple regulator consumers
1977  *
1978  * @num_consumers: Number of consumers
1979  * @consumers:     Consumer data; clients are stored here.
1980  *
1981  * This convenience API allows consumers to free multiple regulator
1982  * clients in a single API call.
1983  */
1984 void regulator_bulk_free(int num_consumers,
1985                          struct regulator_bulk_data *consumers)
1986 {
1987         int i;
1988
1989         for (i = 0; i < num_consumers; i++) {
1990                 regulator_put(consumers[i].consumer);
1991                 consumers[i].consumer = NULL;
1992         }
1993 }
1994 EXPORT_SYMBOL_GPL(regulator_bulk_free);
1995
1996 /**
1997  * regulator_notifier_call_chain - call regulator event notifier
1998  * @rdev: regulator source
1999  * @event: notifier block
2000  * @data: callback-specific data.
2001  *
2002  * Called by regulator drivers to notify clients a regulator event has
2003  * occurred. We also notify regulator clients downstream.
2004  * Note lock must be held by caller.
2005  */
2006 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2007                                   unsigned long event, void *data)
2008 {
2009         _notifier_call_chain(rdev, event, data);
2010         return NOTIFY_DONE;
2011
2012 }
2013 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2014
2015 /**
2016  * regulator_mode_to_status - convert a regulator mode into a status
2017  *
2018  * @mode: Mode to convert
2019  *
2020  * Convert a regulator mode into a status.
2021  */
2022 int regulator_mode_to_status(unsigned int mode)
2023 {
2024         switch (mode) {
2025         case REGULATOR_MODE_FAST:
2026                 return REGULATOR_STATUS_FAST;
2027         case REGULATOR_MODE_NORMAL:
2028                 return REGULATOR_STATUS_NORMAL;
2029         case REGULATOR_MODE_IDLE:
2030                 return REGULATOR_STATUS_IDLE;
2031         case REGULATOR_STATUS_STANDBY:
2032                 return REGULATOR_STATUS_STANDBY;
2033         default:
2034                 return 0;
2035         }
2036 }
2037 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2038
2039 /*
2040  * To avoid cluttering sysfs (and memory) with useless state, only
2041  * create attributes that can be meaningfully displayed.
2042  */
2043 static int add_regulator_attributes(struct regulator_dev *rdev)
2044 {
2045         struct device           *dev = &rdev->dev;
2046         struct regulator_ops    *ops = rdev->desc->ops;
2047         int                     status = 0;
2048
2049         /* some attributes need specific methods to be displayed */
2050         if (ops->get_voltage) {
2051                 status = device_create_file(dev, &dev_attr_microvolts);
2052                 if (status < 0)
2053                         return status;
2054         }
2055         if (ops->get_current_limit) {
2056                 status = device_create_file(dev, &dev_attr_microamps);
2057                 if (status < 0)
2058                         return status;
2059         }
2060         if (ops->get_mode) {
2061                 status = device_create_file(dev, &dev_attr_opmode);
2062                 if (status < 0)
2063                         return status;
2064         }
2065         if (ops->is_enabled) {
2066                 status = device_create_file(dev, &dev_attr_state);
2067                 if (status < 0)
2068                         return status;
2069         }
2070         if (ops->get_status) {
2071                 status = device_create_file(dev, &dev_attr_status);
2072                 if (status < 0)
2073                         return status;
2074         }
2075
2076         /* some attributes are type-specific */
2077         if (rdev->desc->type == REGULATOR_CURRENT) {
2078                 status = device_create_file(dev, &dev_attr_requested_microamps);
2079                 if (status < 0)
2080                         return status;
2081         }
2082
2083         /* all the other attributes exist to support constraints;
2084          * don't show them if there are no constraints, or if the
2085          * relevant supporting methods are missing.
2086          */
2087         if (!rdev->constraints)
2088                 return status;
2089
2090         /* constraints need specific supporting methods */
2091         if (ops->set_voltage) {
2092                 status = device_create_file(dev, &dev_attr_min_microvolts);
2093                 if (status < 0)
2094                         return status;
2095                 status = device_create_file(dev, &dev_attr_max_microvolts);
2096                 if (status < 0)
2097                         return status;
2098         }
2099         if (ops->set_current_limit) {
2100                 status = device_create_file(dev, &dev_attr_min_microamps);
2101                 if (status < 0)
2102                         return status;
2103                 status = device_create_file(dev, &dev_attr_max_microamps);
2104                 if (status < 0)
2105                         return status;
2106         }
2107
2108         /* suspend mode constraints need multiple supporting methods */
2109         if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2110                 return status;
2111
2112         status = device_create_file(dev, &dev_attr_suspend_standby_state);
2113         if (status < 0)
2114                 return status;
2115         status = device_create_file(dev, &dev_attr_suspend_mem_state);
2116         if (status < 0)
2117                 return status;
2118         status = device_create_file(dev, &dev_attr_suspend_disk_state);
2119         if (status < 0)
2120                 return status;
2121
2122         if (ops->set_suspend_voltage) {
2123                 status = device_create_file(dev,
2124                                 &dev_attr_suspend_standby_microvolts);
2125                 if (status < 0)
2126                         return status;
2127                 status = device_create_file(dev,
2128                                 &dev_attr_suspend_mem_microvolts);
2129                 if (status < 0)
2130                         return status;
2131                 status = device_create_file(dev,
2132                                 &dev_attr_suspend_disk_microvolts);
2133                 if (status < 0)
2134                         return status;
2135         }
2136
2137         if (ops->set_suspend_mode) {
2138                 status = device_create_file(dev,
2139                                 &dev_attr_suspend_standby_mode);
2140                 if (status < 0)
2141                         return status;
2142                 status = device_create_file(dev,
2143                                 &dev_attr_suspend_mem_mode);
2144                 if (status < 0)
2145                         return status;
2146                 status = device_create_file(dev,
2147                                 &dev_attr_suspend_disk_mode);
2148                 if (status < 0)
2149                         return status;
2150         }
2151
2152         return status;
2153 }
2154
2155 /**
2156  * regulator_register - register regulator
2157  * @regulator_desc: regulator to register
2158  * @dev: struct device for the regulator
2159  * @init_data: platform provided init data, passed through by driver
2160  * @driver_data: private regulator data
2161  *
2162  * Called by regulator drivers to register a regulator.
2163  * Returns 0 on success.
2164  */
2165 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2166         struct device *dev, struct regulator_init_data *init_data,
2167         void *driver_data)
2168 {
2169         static atomic_t regulator_no = ATOMIC_INIT(0);
2170         struct regulator_dev *rdev;
2171         int ret, i;
2172
2173         if (regulator_desc == NULL)
2174                 return ERR_PTR(-EINVAL);
2175
2176         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2177                 return ERR_PTR(-EINVAL);
2178
2179         if (regulator_desc->type != REGULATOR_VOLTAGE &&
2180             regulator_desc->type != REGULATOR_CURRENT)
2181                 return ERR_PTR(-EINVAL);
2182
2183         if (!init_data)
2184                 return ERR_PTR(-EINVAL);
2185
2186         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2187         if (rdev == NULL)
2188                 return ERR_PTR(-ENOMEM);
2189
2190         mutex_lock(&regulator_list_mutex);
2191
2192         mutex_init(&rdev->mutex);
2193         rdev->reg_data = driver_data;
2194         rdev->owner = regulator_desc->owner;
2195         rdev->desc = regulator_desc;
2196         INIT_LIST_HEAD(&rdev->consumer_list);
2197         INIT_LIST_HEAD(&rdev->supply_list);
2198         INIT_LIST_HEAD(&rdev->list);
2199         INIT_LIST_HEAD(&rdev->slist);
2200         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2201
2202         /* preform any regulator specific init */
2203         if (init_data->regulator_init) {
2204                 ret = init_data->regulator_init(rdev->reg_data);
2205                 if (ret < 0)
2206                         goto clean;
2207         }
2208
2209         /* register with sysfs */
2210         rdev->dev.class = &regulator_class;
2211         rdev->dev.parent = dev;
2212         dev_set_name(&rdev->dev, "regulator.%d",
2213                      atomic_inc_return(&regulator_no) - 1);
2214         ret = device_register(&rdev->dev);
2215         if (ret != 0)
2216                 goto clean;
2217
2218         dev_set_drvdata(&rdev->dev, rdev);
2219
2220         /* set regulator constraints */
2221         ret = set_machine_constraints(rdev, &init_data->constraints);
2222         if (ret < 0)
2223                 goto scrub;
2224
2225         /* add attributes supported by this regulator */
2226         ret = add_regulator_attributes(rdev);
2227         if (ret < 0)
2228                 goto scrub;
2229
2230         /* set supply regulator if it exists */
2231         if (init_data->supply_regulator_dev) {
2232                 ret = set_supply(rdev,
2233                         dev_get_drvdata(init_data->supply_regulator_dev));
2234                 if (ret < 0)
2235                         goto scrub;
2236         }
2237
2238         /* add consumers devices */
2239         for (i = 0; i < init_data->num_consumer_supplies; i++) {
2240                 ret = set_consumer_device_supply(rdev,
2241                         init_data->consumer_supplies[i].dev,
2242                         init_data->consumer_supplies[i].dev_name,
2243                         init_data->consumer_supplies[i].supply);
2244                 if (ret < 0) {
2245                         for (--i; i >= 0; i--)
2246                                 unset_consumer_device_supply(rdev,
2247                                     init_data->consumer_supplies[i].dev_name,
2248                                     init_data->consumer_supplies[i].dev);
2249                         goto scrub;
2250                 }
2251         }
2252
2253         list_add(&rdev->list, &regulator_list);
2254 out:
2255         mutex_unlock(&regulator_list_mutex);
2256         return rdev;
2257
2258 scrub:
2259         device_unregister(&rdev->dev);
2260         /* device core frees rdev */
2261         rdev = ERR_PTR(ret);
2262         goto out;
2263
2264 clean:
2265         kfree(rdev);
2266         rdev = ERR_PTR(ret);
2267         goto out;
2268 }
2269 EXPORT_SYMBOL_GPL(regulator_register);
2270
2271 /**
2272  * regulator_unregister - unregister regulator
2273  * @rdev: regulator to unregister
2274  *
2275  * Called by regulator drivers to unregister a regulator.
2276  */
2277 void regulator_unregister(struct regulator_dev *rdev)
2278 {
2279         if (rdev == NULL)
2280                 return;
2281
2282         mutex_lock(&regulator_list_mutex);
2283         WARN_ON(rdev->open_count);
2284         unset_regulator_supplies(rdev);
2285         list_del(&rdev->list);
2286         if (rdev->supply)
2287                 sysfs_remove_link(&rdev->dev.kobj, "supply");
2288         device_unregister(&rdev->dev);
2289         mutex_unlock(&regulator_list_mutex);
2290 }
2291 EXPORT_SYMBOL_GPL(regulator_unregister);
2292
2293 /**
2294  * regulator_suspend_prepare - prepare regulators for system wide suspend
2295  * @state: system suspend state
2296  *
2297  * Configure each regulator with it's suspend operating parameters for state.
2298  * This will usually be called by machine suspend code prior to supending.
2299  */
2300 int regulator_suspend_prepare(suspend_state_t state)
2301 {
2302         struct regulator_dev *rdev;
2303         int ret = 0;
2304
2305         /* ON is handled by regulator active state */
2306         if (state == PM_SUSPEND_ON)
2307                 return -EINVAL;
2308
2309         mutex_lock(&regulator_list_mutex);
2310         list_for_each_entry(rdev, &regulator_list, list) {
2311
2312                 mutex_lock(&rdev->mutex);
2313                 ret = suspend_prepare(rdev, state);
2314                 mutex_unlock(&rdev->mutex);
2315
2316                 if (ret < 0) {
2317                         printk(KERN_ERR "%s: failed to prepare %s\n",
2318                                 __func__, rdev->desc->name);
2319                         goto out;
2320                 }
2321         }
2322 out:
2323         mutex_unlock(&regulator_list_mutex);
2324         return ret;
2325 }
2326 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2327
2328 /**
2329  * regulator_has_full_constraints - the system has fully specified constraints
2330  *
2331  * Calling this function will cause the regulator API to disable all
2332  * regulators which have a zero use count and don't have an always_on
2333  * constraint in a late_initcall.
2334  *
2335  * The intention is that this will become the default behaviour in a
2336  * future kernel release so users are encouraged to use this facility
2337  * now.
2338  */
2339 void regulator_has_full_constraints(void)
2340 {
2341         has_full_constraints = 1;
2342 }
2343 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2344
2345 /**
2346  * rdev_get_drvdata - get rdev regulator driver data
2347  * @rdev: regulator
2348  *
2349  * Get rdev regulator driver private data. This call can be used in the
2350  * regulator driver context.
2351  */
2352 void *rdev_get_drvdata(struct regulator_dev *rdev)
2353 {
2354         return rdev->reg_data;
2355 }
2356 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2357
2358 /**
2359  * regulator_get_drvdata - get regulator driver data
2360  * @regulator: regulator
2361  *
2362  * Get regulator driver private data. This call can be used in the consumer
2363  * driver context when non API regulator specific functions need to be called.
2364  */
2365 void *regulator_get_drvdata(struct regulator *regulator)
2366 {
2367         return regulator->rdev->reg_data;
2368 }
2369 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2370
2371 /**
2372  * regulator_set_drvdata - set regulator driver data
2373  * @regulator: regulator
2374  * @data: data
2375  */
2376 void regulator_set_drvdata(struct regulator *regulator, void *data)
2377 {
2378         regulator->rdev->reg_data = data;
2379 }
2380 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2381
2382 /**
2383  * regulator_get_id - get regulator ID
2384  * @rdev: regulator
2385  */
2386 int rdev_get_id(struct regulator_dev *rdev)
2387 {
2388         return rdev->desc->id;
2389 }
2390 EXPORT_SYMBOL_GPL(rdev_get_id);
2391
2392 struct device *rdev_get_dev(struct regulator_dev *rdev)
2393 {
2394         return &rdev->dev;
2395 }
2396 EXPORT_SYMBOL_GPL(rdev_get_dev);
2397
2398 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2399 {
2400         return reg_init_data->driver_data;
2401 }
2402 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2403
2404 static int __init regulator_init(void)
2405 {
2406         printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
2407         return class_register(&regulator_class);
2408 }
2409
2410 /* init early to allow our consumers to complete system booting */
2411 core_initcall(regulator_init);
2412
2413 static int __init regulator_init_complete(void)
2414 {
2415         struct regulator_dev *rdev;
2416         struct regulator_ops *ops;
2417         struct regulation_constraints *c;
2418         int enabled, ret;
2419         const char *name;
2420
2421         mutex_lock(&regulator_list_mutex);
2422
2423         /* If we have a full configuration then disable any regulators
2424          * which are not in use or always_on.  This will become the
2425          * default behaviour in the future.
2426          */
2427         list_for_each_entry(rdev, &regulator_list, list) {
2428                 ops = rdev->desc->ops;
2429                 c = rdev->constraints;
2430
2431                 if (c && c->name)
2432                         name = c->name;
2433                 else if (rdev->desc->name)
2434                         name = rdev->desc->name;
2435                 else
2436                         name = "regulator";
2437
2438                 if (!ops->disable || (c && c->always_on))
2439                         continue;
2440
2441                 mutex_lock(&rdev->mutex);
2442
2443                 if (rdev->use_count)
2444                         goto unlock;
2445
2446                 /* If we can't read the status assume it's on. */
2447                 if (ops->is_enabled)
2448                         enabled = ops->is_enabled(rdev);
2449                 else
2450                         enabled = 1;
2451
2452                 if (!enabled)
2453                         goto unlock;
2454
2455                 if (has_full_constraints) {
2456                         /* We log since this may kill the system if it
2457                          * goes wrong. */
2458                         printk(KERN_INFO "%s: disabling %s\n",
2459                                __func__, name);
2460                         ret = ops->disable(rdev);
2461                         if (ret != 0) {
2462                                 printk(KERN_ERR
2463                                        "%s: couldn't disable %s: %d\n",
2464                                        __func__, name, ret);
2465                         }
2466                 } else {
2467                         /* The intention is that in future we will
2468                          * assume that full constraints are provided
2469                          * so warn even if we aren't going to do
2470                          * anything here.
2471                          */
2472                         printk(KERN_WARNING
2473                                "%s: incomplete constraints, leaving %s on\n",
2474                                __func__, name);
2475                 }
2476
2477 unlock:
2478                 mutex_unlock(&rdev->mutex);
2479         }
2480
2481         mutex_unlock(&regulator_list_mutex);
2482
2483         return 0;
2484 }
2485 late_initcall(regulator_init_complete);