regulator: core: Fix application of "drop lockdep annotation in drms_uA_update()"
[sfrench/cifs-2.6.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio/consumer.h>
27 #include <linux/of.h>
28 #include <linux/regmap.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
37
38 #include "dummy.h"
39 #include "internal.h"
40
41 #define rdev_crit(rdev, fmt, ...)                                       \
42         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43 #define rdev_err(rdev, fmt, ...)                                        \
44         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
45 #define rdev_warn(rdev, fmt, ...)                                       \
46         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
47 #define rdev_info(rdev, fmt, ...)                                       \
48         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
49 #define rdev_dbg(rdev, fmt, ...)                                        \
50         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
51
52 static DEFINE_WW_CLASS(regulator_ww_class);
53 static DEFINE_MUTEX(regulator_nesting_mutex);
54 static DEFINE_MUTEX(regulator_list_mutex);
55 static LIST_HEAD(regulator_map_list);
56 static LIST_HEAD(regulator_ena_gpio_list);
57 static LIST_HEAD(regulator_supply_alias_list);
58 static bool has_full_constraints;
59
60 static struct dentry *debugfs_root;
61
62 /*
63  * struct regulator_map
64  *
65  * Used to provide symbolic supply names to devices.
66  */
67 struct regulator_map {
68         struct list_head list;
69         const char *dev_name;   /* The dev_name() for the consumer */
70         const char *supply;
71         struct regulator_dev *regulator;
72 };
73
74 /*
75  * struct regulator_enable_gpio
76  *
77  * Management for shared enable GPIO pin
78  */
79 struct regulator_enable_gpio {
80         struct list_head list;
81         struct gpio_desc *gpiod;
82         u32 enable_count;       /* a number of enabled shared GPIO */
83         u32 request_count;      /* a number of requested shared GPIO */
84 };
85
86 /*
87  * struct regulator_supply_alias
88  *
89  * Used to map lookups for a supply onto an alternative device.
90  */
91 struct regulator_supply_alias {
92         struct list_head list;
93         struct device *src_dev;
94         const char *src_supply;
95         struct device *alias_dev;
96         const char *alias_supply;
97 };
98
99 static int _regulator_is_enabled(struct regulator_dev *rdev);
100 static int _regulator_disable(struct regulator *regulator);
101 static int _regulator_get_voltage(struct regulator_dev *rdev);
102 static int _regulator_get_current_limit(struct regulator_dev *rdev);
103 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
104 static int _notifier_call_chain(struct regulator_dev *rdev,
105                                   unsigned long event, void *data);
106 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
107                                      int min_uV, int max_uV);
108 static int regulator_balance_voltage(struct regulator_dev *rdev,
109                                      suspend_state_t state);
110 static int regulator_set_voltage_rdev(struct regulator_dev *rdev,
111                                       int min_uV, int max_uV,
112                                       suspend_state_t state);
113 static struct regulator *create_regulator(struct regulator_dev *rdev,
114                                           struct device *dev,
115                                           const char *supply_name);
116 static void _regulator_put(struct regulator *regulator);
117
118 static const char *rdev_get_name(struct regulator_dev *rdev)
119 {
120         if (rdev->constraints && rdev->constraints->name)
121                 return rdev->constraints->name;
122         else if (rdev->desc->name)
123                 return rdev->desc->name;
124         else
125                 return "";
126 }
127
128 static bool have_full_constraints(void)
129 {
130         return has_full_constraints || of_have_populated_dt();
131 }
132
133 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
134 {
135         if (!rdev->constraints) {
136                 rdev_err(rdev, "no constraints\n");
137                 return false;
138         }
139
140         if (rdev->constraints->valid_ops_mask & ops)
141                 return true;
142
143         return false;
144 }
145
146 /**
147  * regulator_lock_nested - lock a single regulator
148  * @rdev:               regulator source
149  * @ww_ctx:             w/w mutex acquire context
150  *
151  * This function can be called many times by one task on
152  * a single regulator and its mutex will be locked only
153  * once. If a task, which is calling this function is other
154  * than the one, which initially locked the mutex, it will
155  * wait on mutex.
156  */
157 static inline int regulator_lock_nested(struct regulator_dev *rdev,
158                                         struct ww_acquire_ctx *ww_ctx)
159 {
160         bool lock = false;
161         int ret = 0;
162
163         mutex_lock(&regulator_nesting_mutex);
164
165         if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
166                 if (rdev->mutex_owner == current)
167                         rdev->ref_cnt++;
168                 else
169                         lock = true;
170
171                 if (lock) {
172                         mutex_unlock(&regulator_nesting_mutex);
173                         ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
174                         mutex_lock(&regulator_nesting_mutex);
175                 }
176         } else {
177                 lock = true;
178         }
179
180         if (lock && ret != -EDEADLK) {
181                 rdev->ref_cnt++;
182                 rdev->mutex_owner = current;
183         }
184
185         mutex_unlock(&regulator_nesting_mutex);
186
187         return ret;
188 }
189
190 /**
191  * regulator_lock - lock a single regulator
192  * @rdev:               regulator source
193  *
194  * This function can be called many times by one task on
195  * a single regulator and its mutex will be locked only
196  * once. If a task, which is calling this function is other
197  * than the one, which initially locked the mutex, it will
198  * wait on mutex.
199  */
200 void regulator_lock(struct regulator_dev *rdev)
201 {
202         regulator_lock_nested(rdev, NULL);
203 }
204 EXPORT_SYMBOL_GPL(regulator_lock);
205
206 /**
207  * regulator_unlock - unlock a single regulator
208  * @rdev:               regulator_source
209  *
210  * This function unlocks the mutex when the
211  * reference counter reaches 0.
212  */
213 void regulator_unlock(struct regulator_dev *rdev)
214 {
215         mutex_lock(&regulator_nesting_mutex);
216
217         if (--rdev->ref_cnt == 0) {
218                 rdev->mutex_owner = NULL;
219                 ww_mutex_unlock(&rdev->mutex);
220         }
221
222         WARN_ON_ONCE(rdev->ref_cnt < 0);
223
224         mutex_unlock(&regulator_nesting_mutex);
225 }
226 EXPORT_SYMBOL_GPL(regulator_unlock);
227
228 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
229 {
230         struct regulator_dev *c_rdev;
231         int i;
232
233         for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
234                 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
235
236                 if (rdev->supply->rdev == c_rdev)
237                         return true;
238         }
239
240         return false;
241 }
242
243 static void regulator_unlock_recursive(struct regulator_dev *rdev,
244                                        unsigned int n_coupled)
245 {
246         struct regulator_dev *c_rdev;
247         int i;
248
249         for (i = n_coupled; i > 0; i--) {
250                 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
251
252                 if (!c_rdev)
253                         continue;
254
255                 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev))
256                         regulator_unlock_recursive(
257                                         c_rdev->supply->rdev,
258                                         c_rdev->coupling_desc.n_coupled);
259
260                 regulator_unlock(c_rdev);
261         }
262 }
263
264 static int regulator_lock_recursive(struct regulator_dev *rdev,
265                                     struct regulator_dev **new_contended_rdev,
266                                     struct regulator_dev **old_contended_rdev,
267                                     struct ww_acquire_ctx *ww_ctx)
268 {
269         struct regulator_dev *c_rdev;
270         int i, err;
271
272         for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
273                 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
274
275                 if (!c_rdev)
276                         continue;
277
278                 if (c_rdev != *old_contended_rdev) {
279                         err = regulator_lock_nested(c_rdev, ww_ctx);
280                         if (err) {
281                                 if (err == -EDEADLK) {
282                                         *new_contended_rdev = c_rdev;
283                                         goto err_unlock;
284                                 }
285
286                                 /* shouldn't happen */
287                                 WARN_ON_ONCE(err != -EALREADY);
288                         }
289                 } else {
290                         *old_contended_rdev = NULL;
291                 }
292
293                 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
294                         err = regulator_lock_recursive(c_rdev->supply->rdev,
295                                                        new_contended_rdev,
296                                                        old_contended_rdev,
297                                                        ww_ctx);
298                         if (err) {
299                                 regulator_unlock(c_rdev);
300                                 goto err_unlock;
301                         }
302                 }
303         }
304
305         return 0;
306
307 err_unlock:
308         regulator_unlock_recursive(rdev, i);
309
310         return err;
311 }
312
313 /**
314  * regulator_unlock_dependent - unlock regulator's suppliers and coupled
315  *                              regulators
316  * @rdev:                       regulator source
317  * @ww_ctx:                     w/w mutex acquire context
318  *
319  * Unlock all regulators related with rdev by coupling or supplying.
320  */
321 static void regulator_unlock_dependent(struct regulator_dev *rdev,
322                                        struct ww_acquire_ctx *ww_ctx)
323 {
324         regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
325         ww_acquire_fini(ww_ctx);
326 }
327
328 /**
329  * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
330  * @rdev:                       regulator source
331  * @ww_ctx:                     w/w mutex acquire context
332  *
333  * This function as a wrapper on regulator_lock_recursive(), which locks
334  * all regulators related with rdev by coupling or supplying.
335  */
336 static void regulator_lock_dependent(struct regulator_dev *rdev,
337                                      struct ww_acquire_ctx *ww_ctx)
338 {
339         struct regulator_dev *new_contended_rdev = NULL;
340         struct regulator_dev *old_contended_rdev = NULL;
341         int err;
342
343         mutex_lock(&regulator_list_mutex);
344
345         ww_acquire_init(ww_ctx, &regulator_ww_class);
346
347         do {
348                 if (new_contended_rdev) {
349                         ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
350                         old_contended_rdev = new_contended_rdev;
351                         old_contended_rdev->ref_cnt++;
352                 }
353
354                 err = regulator_lock_recursive(rdev,
355                                                &new_contended_rdev,
356                                                &old_contended_rdev,
357                                                ww_ctx);
358
359                 if (old_contended_rdev)
360                         regulator_unlock(old_contended_rdev);
361
362         } while (err == -EDEADLK);
363
364         ww_acquire_done(ww_ctx);
365
366         mutex_unlock(&regulator_list_mutex);
367 }
368
369 /**
370  * of_get_child_regulator - get a child regulator device node
371  * based on supply name
372  * @parent: Parent device node
373  * @prop_name: Combination regulator supply name and "-supply"
374  *
375  * Traverse all child nodes.
376  * Extract the child regulator device node corresponding to the supply name.
377  * returns the device node corresponding to the regulator if found, else
378  * returns NULL.
379  */
380 static struct device_node *of_get_child_regulator(struct device_node *parent,
381                                                   const char *prop_name)
382 {
383         struct device_node *regnode = NULL;
384         struct device_node *child = NULL;
385
386         for_each_child_of_node(parent, child) {
387                 regnode = of_parse_phandle(child, prop_name, 0);
388
389                 if (!regnode) {
390                         regnode = of_get_child_regulator(child, prop_name);
391                         if (regnode)
392                                 return regnode;
393                 } else {
394                         return regnode;
395                 }
396         }
397         return NULL;
398 }
399
400 /**
401  * of_get_regulator - get a regulator device node based on supply name
402  * @dev: Device pointer for the consumer (of regulator) device
403  * @supply: regulator supply name
404  *
405  * Extract the regulator device node corresponding to the supply name.
406  * returns the device node corresponding to the regulator if found, else
407  * returns NULL.
408  */
409 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
410 {
411         struct device_node *regnode = NULL;
412         char prop_name[32]; /* 32 is max size of property name */
413
414         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
415
416         snprintf(prop_name, 32, "%s-supply", supply);
417         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
418
419         if (!regnode) {
420                 regnode = of_get_child_regulator(dev->of_node, prop_name);
421                 if (regnode)
422                         return regnode;
423
424                 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
425                                 prop_name, dev->of_node);
426                 return NULL;
427         }
428         return regnode;
429 }
430
431 /* Platform voltage constraint check */
432 static int regulator_check_voltage(struct regulator_dev *rdev,
433                                    int *min_uV, int *max_uV)
434 {
435         BUG_ON(*min_uV > *max_uV);
436
437         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
438                 rdev_err(rdev, "voltage operation not allowed\n");
439                 return -EPERM;
440         }
441
442         if (*max_uV > rdev->constraints->max_uV)
443                 *max_uV = rdev->constraints->max_uV;
444         if (*min_uV < rdev->constraints->min_uV)
445                 *min_uV = rdev->constraints->min_uV;
446
447         if (*min_uV > *max_uV) {
448                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
449                          *min_uV, *max_uV);
450                 return -EINVAL;
451         }
452
453         return 0;
454 }
455
456 /* return 0 if the state is valid */
457 static int regulator_check_states(suspend_state_t state)
458 {
459         return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
460 }
461
462 /* Make sure we select a voltage that suits the needs of all
463  * regulator consumers
464  */
465 static int regulator_check_consumers(struct regulator_dev *rdev,
466                                      int *min_uV, int *max_uV,
467                                      suspend_state_t state)
468 {
469         struct regulator *regulator;
470         struct regulator_voltage *voltage;
471
472         list_for_each_entry(regulator, &rdev->consumer_list, list) {
473                 voltage = &regulator->voltage[state];
474                 /*
475                  * Assume consumers that didn't say anything are OK
476                  * with anything in the constraint range.
477                  */
478                 if (!voltage->min_uV && !voltage->max_uV)
479                         continue;
480
481                 if (*max_uV > voltage->max_uV)
482                         *max_uV = voltage->max_uV;
483                 if (*min_uV < voltage->min_uV)
484                         *min_uV = voltage->min_uV;
485         }
486
487         if (*min_uV > *max_uV) {
488                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
489                         *min_uV, *max_uV);
490                 return -EINVAL;
491         }
492
493         return 0;
494 }
495
496 /* current constraint check */
497 static int regulator_check_current_limit(struct regulator_dev *rdev,
498                                         int *min_uA, int *max_uA)
499 {
500         BUG_ON(*min_uA > *max_uA);
501
502         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
503                 rdev_err(rdev, "current operation not allowed\n");
504                 return -EPERM;
505         }
506
507         if (*max_uA > rdev->constraints->max_uA)
508                 *max_uA = rdev->constraints->max_uA;
509         if (*min_uA < rdev->constraints->min_uA)
510                 *min_uA = rdev->constraints->min_uA;
511
512         if (*min_uA > *max_uA) {
513                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
514                          *min_uA, *max_uA);
515                 return -EINVAL;
516         }
517
518         return 0;
519 }
520
521 /* operating mode constraint check */
522 static int regulator_mode_constrain(struct regulator_dev *rdev,
523                                     unsigned int *mode)
524 {
525         switch (*mode) {
526         case REGULATOR_MODE_FAST:
527         case REGULATOR_MODE_NORMAL:
528         case REGULATOR_MODE_IDLE:
529         case REGULATOR_MODE_STANDBY:
530                 break;
531         default:
532                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
533                 return -EINVAL;
534         }
535
536         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
537                 rdev_err(rdev, "mode operation not allowed\n");
538                 return -EPERM;
539         }
540
541         /* The modes are bitmasks, the most power hungry modes having
542          * the lowest values. If the requested mode isn't supported
543          * try higher modes. */
544         while (*mode) {
545                 if (rdev->constraints->valid_modes_mask & *mode)
546                         return 0;
547                 *mode /= 2;
548         }
549
550         return -EINVAL;
551 }
552
553 static inline struct regulator_state *
554 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
555 {
556         if (rdev->constraints == NULL)
557                 return NULL;
558
559         switch (state) {
560         case PM_SUSPEND_STANDBY:
561                 return &rdev->constraints->state_standby;
562         case PM_SUSPEND_MEM:
563                 return &rdev->constraints->state_mem;
564         case PM_SUSPEND_MAX:
565                 return &rdev->constraints->state_disk;
566         default:
567                 return NULL;
568         }
569 }
570
571 static ssize_t regulator_uV_show(struct device *dev,
572                                 struct device_attribute *attr, char *buf)
573 {
574         struct regulator_dev *rdev = dev_get_drvdata(dev);
575         ssize_t ret;
576
577         regulator_lock(rdev);
578         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
579         regulator_unlock(rdev);
580
581         return ret;
582 }
583 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
584
585 static ssize_t regulator_uA_show(struct device *dev,
586                                 struct device_attribute *attr, char *buf)
587 {
588         struct regulator_dev *rdev = dev_get_drvdata(dev);
589
590         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
591 }
592 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
593
594 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
595                          char *buf)
596 {
597         struct regulator_dev *rdev = dev_get_drvdata(dev);
598
599         return sprintf(buf, "%s\n", rdev_get_name(rdev));
600 }
601 static DEVICE_ATTR_RO(name);
602
603 static const char *regulator_opmode_to_str(int mode)
604 {
605         switch (mode) {
606         case REGULATOR_MODE_FAST:
607                 return "fast";
608         case REGULATOR_MODE_NORMAL:
609                 return "normal";
610         case REGULATOR_MODE_IDLE:
611                 return "idle";
612         case REGULATOR_MODE_STANDBY:
613                 return "standby";
614         }
615         return "unknown";
616 }
617
618 static ssize_t regulator_print_opmode(char *buf, int mode)
619 {
620         return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
621 }
622
623 static ssize_t regulator_opmode_show(struct device *dev,
624                                     struct device_attribute *attr, char *buf)
625 {
626         struct regulator_dev *rdev = dev_get_drvdata(dev);
627
628         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
629 }
630 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
631
632 static ssize_t regulator_print_state(char *buf, int state)
633 {
634         if (state > 0)
635                 return sprintf(buf, "enabled\n");
636         else if (state == 0)
637                 return sprintf(buf, "disabled\n");
638         else
639                 return sprintf(buf, "unknown\n");
640 }
641
642 static ssize_t regulator_state_show(struct device *dev,
643                                    struct device_attribute *attr, char *buf)
644 {
645         struct regulator_dev *rdev = dev_get_drvdata(dev);
646         ssize_t ret;
647
648         regulator_lock(rdev);
649         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
650         regulator_unlock(rdev);
651
652         return ret;
653 }
654 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
655
656 static ssize_t regulator_status_show(struct device *dev,
657                                    struct device_attribute *attr, char *buf)
658 {
659         struct regulator_dev *rdev = dev_get_drvdata(dev);
660         int status;
661         char *label;
662
663         status = rdev->desc->ops->get_status(rdev);
664         if (status < 0)
665                 return status;
666
667         switch (status) {
668         case REGULATOR_STATUS_OFF:
669                 label = "off";
670                 break;
671         case REGULATOR_STATUS_ON:
672                 label = "on";
673                 break;
674         case REGULATOR_STATUS_ERROR:
675                 label = "error";
676                 break;
677         case REGULATOR_STATUS_FAST:
678                 label = "fast";
679                 break;
680         case REGULATOR_STATUS_NORMAL:
681                 label = "normal";
682                 break;
683         case REGULATOR_STATUS_IDLE:
684                 label = "idle";
685                 break;
686         case REGULATOR_STATUS_STANDBY:
687                 label = "standby";
688                 break;
689         case REGULATOR_STATUS_BYPASS:
690                 label = "bypass";
691                 break;
692         case REGULATOR_STATUS_UNDEFINED:
693                 label = "undefined";
694                 break;
695         default:
696                 return -ERANGE;
697         }
698
699         return sprintf(buf, "%s\n", label);
700 }
701 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
702
703 static ssize_t regulator_min_uA_show(struct device *dev,
704                                     struct device_attribute *attr, char *buf)
705 {
706         struct regulator_dev *rdev = dev_get_drvdata(dev);
707
708         if (!rdev->constraints)
709                 return sprintf(buf, "constraint not defined\n");
710
711         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
712 }
713 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
714
715 static ssize_t regulator_max_uA_show(struct device *dev,
716                                     struct device_attribute *attr, char *buf)
717 {
718         struct regulator_dev *rdev = dev_get_drvdata(dev);
719
720         if (!rdev->constraints)
721                 return sprintf(buf, "constraint not defined\n");
722
723         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
724 }
725 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
726
727 static ssize_t regulator_min_uV_show(struct device *dev,
728                                     struct device_attribute *attr, char *buf)
729 {
730         struct regulator_dev *rdev = dev_get_drvdata(dev);
731
732         if (!rdev->constraints)
733                 return sprintf(buf, "constraint not defined\n");
734
735         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
736 }
737 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
738
739 static ssize_t regulator_max_uV_show(struct device *dev,
740                                     struct device_attribute *attr, char *buf)
741 {
742         struct regulator_dev *rdev = dev_get_drvdata(dev);
743
744         if (!rdev->constraints)
745                 return sprintf(buf, "constraint not defined\n");
746
747         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
748 }
749 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
750
751 static ssize_t regulator_total_uA_show(struct device *dev,
752                                       struct device_attribute *attr, char *buf)
753 {
754         struct regulator_dev *rdev = dev_get_drvdata(dev);
755         struct regulator *regulator;
756         int uA = 0;
757
758         regulator_lock(rdev);
759         list_for_each_entry(regulator, &rdev->consumer_list, list) {
760                 if (regulator->enable_count)
761                         uA += regulator->uA_load;
762         }
763         regulator_unlock(rdev);
764         return sprintf(buf, "%d\n", uA);
765 }
766 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
767
768 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
769                               char *buf)
770 {
771         struct regulator_dev *rdev = dev_get_drvdata(dev);
772         return sprintf(buf, "%d\n", rdev->use_count);
773 }
774 static DEVICE_ATTR_RO(num_users);
775
776 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
777                          char *buf)
778 {
779         struct regulator_dev *rdev = dev_get_drvdata(dev);
780
781         switch (rdev->desc->type) {
782         case REGULATOR_VOLTAGE:
783                 return sprintf(buf, "voltage\n");
784         case REGULATOR_CURRENT:
785                 return sprintf(buf, "current\n");
786         }
787         return sprintf(buf, "unknown\n");
788 }
789 static DEVICE_ATTR_RO(type);
790
791 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
792                                 struct device_attribute *attr, char *buf)
793 {
794         struct regulator_dev *rdev = dev_get_drvdata(dev);
795
796         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
797 }
798 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
799                 regulator_suspend_mem_uV_show, NULL);
800
801 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
802                                 struct device_attribute *attr, char *buf)
803 {
804         struct regulator_dev *rdev = dev_get_drvdata(dev);
805
806         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
807 }
808 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
809                 regulator_suspend_disk_uV_show, NULL);
810
811 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
812                                 struct device_attribute *attr, char *buf)
813 {
814         struct regulator_dev *rdev = dev_get_drvdata(dev);
815
816         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
817 }
818 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
819                 regulator_suspend_standby_uV_show, NULL);
820
821 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
822                                 struct device_attribute *attr, char *buf)
823 {
824         struct regulator_dev *rdev = dev_get_drvdata(dev);
825
826         return regulator_print_opmode(buf,
827                 rdev->constraints->state_mem.mode);
828 }
829 static DEVICE_ATTR(suspend_mem_mode, 0444,
830                 regulator_suspend_mem_mode_show, NULL);
831
832 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
833                                 struct device_attribute *attr, char *buf)
834 {
835         struct regulator_dev *rdev = dev_get_drvdata(dev);
836
837         return regulator_print_opmode(buf,
838                 rdev->constraints->state_disk.mode);
839 }
840 static DEVICE_ATTR(suspend_disk_mode, 0444,
841                 regulator_suspend_disk_mode_show, NULL);
842
843 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
844                                 struct device_attribute *attr, char *buf)
845 {
846         struct regulator_dev *rdev = dev_get_drvdata(dev);
847
848         return regulator_print_opmode(buf,
849                 rdev->constraints->state_standby.mode);
850 }
851 static DEVICE_ATTR(suspend_standby_mode, 0444,
852                 regulator_suspend_standby_mode_show, NULL);
853
854 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
855                                    struct device_attribute *attr, char *buf)
856 {
857         struct regulator_dev *rdev = dev_get_drvdata(dev);
858
859         return regulator_print_state(buf,
860                         rdev->constraints->state_mem.enabled);
861 }
862 static DEVICE_ATTR(suspend_mem_state, 0444,
863                 regulator_suspend_mem_state_show, NULL);
864
865 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
866                                    struct device_attribute *attr, char *buf)
867 {
868         struct regulator_dev *rdev = dev_get_drvdata(dev);
869
870         return regulator_print_state(buf,
871                         rdev->constraints->state_disk.enabled);
872 }
873 static DEVICE_ATTR(suspend_disk_state, 0444,
874                 regulator_suspend_disk_state_show, NULL);
875
876 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
877                                    struct device_attribute *attr, char *buf)
878 {
879         struct regulator_dev *rdev = dev_get_drvdata(dev);
880
881         return regulator_print_state(buf,
882                         rdev->constraints->state_standby.enabled);
883 }
884 static DEVICE_ATTR(suspend_standby_state, 0444,
885                 regulator_suspend_standby_state_show, NULL);
886
887 static ssize_t regulator_bypass_show(struct device *dev,
888                                      struct device_attribute *attr, char *buf)
889 {
890         struct regulator_dev *rdev = dev_get_drvdata(dev);
891         const char *report;
892         bool bypass;
893         int ret;
894
895         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
896
897         if (ret != 0)
898                 report = "unknown";
899         else if (bypass)
900                 report = "enabled";
901         else
902                 report = "disabled";
903
904         return sprintf(buf, "%s\n", report);
905 }
906 static DEVICE_ATTR(bypass, 0444,
907                    regulator_bypass_show, NULL);
908
909 /* Calculate the new optimum regulator operating mode based on the new total
910  * consumer load. All locks held by caller */
911 static int drms_uA_update(struct regulator_dev *rdev)
912 {
913         struct regulator *sibling;
914         int current_uA = 0, output_uV, input_uV, err;
915         unsigned int mode;
916
917         /*
918          * first check to see if we can set modes at all, otherwise just
919          * tell the consumer everything is OK.
920          */
921         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
922                 rdev_dbg(rdev, "DRMS operation not allowed\n");
923                 return 0;
924         }
925
926         if (!rdev->desc->ops->get_optimum_mode &&
927             !rdev->desc->ops->set_load)
928                 return 0;
929
930         if (!rdev->desc->ops->set_mode &&
931             !rdev->desc->ops->set_load)
932                 return -EINVAL;
933
934         /* calc total requested load */
935         list_for_each_entry(sibling, &rdev->consumer_list, list) {
936                 if (sibling->enable_count)
937                         current_uA += sibling->uA_load;
938         }
939
940         current_uA += rdev->constraints->system_load;
941
942         if (rdev->desc->ops->set_load) {
943                 /* set the optimum mode for our new total regulator load */
944                 err = rdev->desc->ops->set_load(rdev, current_uA);
945                 if (err < 0)
946                         rdev_err(rdev, "failed to set load %d\n", current_uA);
947         } else {
948                 /* get output voltage */
949                 output_uV = _regulator_get_voltage(rdev);
950                 if (output_uV <= 0) {
951                         rdev_err(rdev, "invalid output voltage found\n");
952                         return -EINVAL;
953                 }
954
955                 /* get input voltage */
956                 input_uV = 0;
957                 if (rdev->supply)
958                         input_uV = regulator_get_voltage(rdev->supply);
959                 if (input_uV <= 0)
960                         input_uV = rdev->constraints->input_uV;
961                 if (input_uV <= 0) {
962                         rdev_err(rdev, "invalid input voltage found\n");
963                         return -EINVAL;
964                 }
965
966                 /* now get the optimum mode for our new total regulator load */
967                 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
968                                                          output_uV, current_uA);
969
970                 /* check the new mode is allowed */
971                 err = regulator_mode_constrain(rdev, &mode);
972                 if (err < 0) {
973                         rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
974                                  current_uA, input_uV, output_uV);
975                         return err;
976                 }
977
978                 err = rdev->desc->ops->set_mode(rdev, mode);
979                 if (err < 0)
980                         rdev_err(rdev, "failed to set optimum mode %x\n", mode);
981         }
982
983         return err;
984 }
985
986 static int suspend_set_state(struct regulator_dev *rdev,
987                                     suspend_state_t state)
988 {
989         int ret = 0;
990         struct regulator_state *rstate;
991
992         rstate = regulator_get_suspend_state(rdev, state);
993         if (rstate == NULL)
994                 return 0;
995
996         /* If we have no suspend mode configuration don't set anything;
997          * only warn if the driver implements set_suspend_voltage or
998          * set_suspend_mode callback.
999          */
1000         if (rstate->enabled != ENABLE_IN_SUSPEND &&
1001             rstate->enabled != DISABLE_IN_SUSPEND) {
1002                 if (rdev->desc->ops->set_suspend_voltage ||
1003                     rdev->desc->ops->set_suspend_mode)
1004                         rdev_warn(rdev, "No configuration\n");
1005                 return 0;
1006         }
1007
1008         if (rstate->enabled == ENABLE_IN_SUSPEND &&
1009                 rdev->desc->ops->set_suspend_enable)
1010                 ret = rdev->desc->ops->set_suspend_enable(rdev);
1011         else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1012                 rdev->desc->ops->set_suspend_disable)
1013                 ret = rdev->desc->ops->set_suspend_disable(rdev);
1014         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1015                 ret = 0;
1016
1017         if (ret < 0) {
1018                 rdev_err(rdev, "failed to enabled/disable\n");
1019                 return ret;
1020         }
1021
1022         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1023                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1024                 if (ret < 0) {
1025                         rdev_err(rdev, "failed to set voltage\n");
1026                         return ret;
1027                 }
1028         }
1029
1030         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1031                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1032                 if (ret < 0) {
1033                         rdev_err(rdev, "failed to set mode\n");
1034                         return ret;
1035                 }
1036         }
1037
1038         return ret;
1039 }
1040
1041 static void print_constraints(struct regulator_dev *rdev)
1042 {
1043         struct regulation_constraints *constraints = rdev->constraints;
1044         char buf[160] = "";
1045         size_t len = sizeof(buf) - 1;
1046         int count = 0;
1047         int ret;
1048
1049         if (constraints->min_uV && constraints->max_uV) {
1050                 if (constraints->min_uV == constraints->max_uV)
1051                         count += scnprintf(buf + count, len - count, "%d mV ",
1052                                            constraints->min_uV / 1000);
1053                 else
1054                         count += scnprintf(buf + count, len - count,
1055                                            "%d <--> %d mV ",
1056                                            constraints->min_uV / 1000,
1057                                            constraints->max_uV / 1000);
1058         }
1059
1060         if (!constraints->min_uV ||
1061             constraints->min_uV != constraints->max_uV) {
1062                 ret = _regulator_get_voltage(rdev);
1063                 if (ret > 0)
1064                         count += scnprintf(buf + count, len - count,
1065                                            "at %d mV ", ret / 1000);
1066         }
1067
1068         if (constraints->uV_offset)
1069                 count += scnprintf(buf + count, len - count, "%dmV offset ",
1070                                    constraints->uV_offset / 1000);
1071
1072         if (constraints->min_uA && constraints->max_uA) {
1073                 if (constraints->min_uA == constraints->max_uA)
1074                         count += scnprintf(buf + count, len - count, "%d mA ",
1075                                            constraints->min_uA / 1000);
1076                 else
1077                         count += scnprintf(buf + count, len - count,
1078                                            "%d <--> %d mA ",
1079                                            constraints->min_uA / 1000,
1080                                            constraints->max_uA / 1000);
1081         }
1082
1083         if (!constraints->min_uA ||
1084             constraints->min_uA != constraints->max_uA) {
1085                 ret = _regulator_get_current_limit(rdev);
1086                 if (ret > 0)
1087                         count += scnprintf(buf + count, len - count,
1088                                            "at %d mA ", ret / 1000);
1089         }
1090
1091         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1092                 count += scnprintf(buf + count, len - count, "fast ");
1093         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1094                 count += scnprintf(buf + count, len - count, "normal ");
1095         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1096                 count += scnprintf(buf + count, len - count, "idle ");
1097         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1098                 count += scnprintf(buf + count, len - count, "standby");
1099
1100         if (!count)
1101                 scnprintf(buf, len, "no parameters");
1102
1103         rdev_dbg(rdev, "%s\n", buf);
1104
1105         if ((constraints->min_uV != constraints->max_uV) &&
1106             !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1107                 rdev_warn(rdev,
1108                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1109 }
1110
1111 static int machine_constraints_voltage(struct regulator_dev *rdev,
1112         struct regulation_constraints *constraints)
1113 {
1114         const struct regulator_ops *ops = rdev->desc->ops;
1115         int ret;
1116
1117         /* do we need to apply the constraint voltage */
1118         if (rdev->constraints->apply_uV &&
1119             rdev->constraints->min_uV && rdev->constraints->max_uV) {
1120                 int target_min, target_max;
1121                 int current_uV = _regulator_get_voltage(rdev);
1122
1123                 if (current_uV == -ENOTRECOVERABLE) {
1124                         /* This regulator can't be read and must be initialized */
1125                         rdev_info(rdev, "Setting %d-%duV\n",
1126                                   rdev->constraints->min_uV,
1127                                   rdev->constraints->max_uV);
1128                         _regulator_do_set_voltage(rdev,
1129                                                   rdev->constraints->min_uV,
1130                                                   rdev->constraints->max_uV);
1131                         current_uV = _regulator_get_voltage(rdev);
1132                 }
1133
1134                 if (current_uV < 0) {
1135                         rdev_err(rdev,
1136                                  "failed to get the current voltage(%d)\n",
1137                                  current_uV);
1138                         return current_uV;
1139                 }
1140
1141                 /*
1142                  * If we're below the minimum voltage move up to the
1143                  * minimum voltage, if we're above the maximum voltage
1144                  * then move down to the maximum.
1145                  */
1146                 target_min = current_uV;
1147                 target_max = current_uV;
1148
1149                 if (current_uV < rdev->constraints->min_uV) {
1150                         target_min = rdev->constraints->min_uV;
1151                         target_max = rdev->constraints->min_uV;
1152                 }
1153
1154                 if (current_uV > rdev->constraints->max_uV) {
1155                         target_min = rdev->constraints->max_uV;
1156                         target_max = rdev->constraints->max_uV;
1157                 }
1158
1159                 if (target_min != current_uV || target_max != current_uV) {
1160                         rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1161                                   current_uV, target_min, target_max);
1162                         ret = _regulator_do_set_voltage(
1163                                 rdev, target_min, target_max);
1164                         if (ret < 0) {
1165                                 rdev_err(rdev,
1166                                         "failed to apply %d-%duV constraint(%d)\n",
1167                                         target_min, target_max, ret);
1168                                 return ret;
1169                         }
1170                 }
1171         }
1172
1173         /* constrain machine-level voltage specs to fit
1174          * the actual range supported by this regulator.
1175          */
1176         if (ops->list_voltage && rdev->desc->n_voltages) {
1177                 int     count = rdev->desc->n_voltages;
1178                 int     i;
1179                 int     min_uV = INT_MAX;
1180                 int     max_uV = INT_MIN;
1181                 int     cmin = constraints->min_uV;
1182                 int     cmax = constraints->max_uV;
1183
1184                 /* it's safe to autoconfigure fixed-voltage supplies
1185                    and the constraints are used by list_voltage. */
1186                 if (count == 1 && !cmin) {
1187                         cmin = 1;
1188                         cmax = INT_MAX;
1189                         constraints->min_uV = cmin;
1190                         constraints->max_uV = cmax;
1191                 }
1192
1193                 /* voltage constraints are optional */
1194                 if ((cmin == 0) && (cmax == 0))
1195                         return 0;
1196
1197                 /* else require explicit machine-level constraints */
1198                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1199                         rdev_err(rdev, "invalid voltage constraints\n");
1200                         return -EINVAL;
1201                 }
1202
1203                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1204                 for (i = 0; i < count; i++) {
1205                         int     value;
1206
1207                         value = ops->list_voltage(rdev, i);
1208                         if (value <= 0)
1209                                 continue;
1210
1211                         /* maybe adjust [min_uV..max_uV] */
1212                         if (value >= cmin && value < min_uV)
1213                                 min_uV = value;
1214                         if (value <= cmax && value > max_uV)
1215                                 max_uV = value;
1216                 }
1217
1218                 /* final: [min_uV..max_uV] valid iff constraints valid */
1219                 if (max_uV < min_uV) {
1220                         rdev_err(rdev,
1221                                  "unsupportable voltage constraints %u-%uuV\n",
1222                                  min_uV, max_uV);
1223                         return -EINVAL;
1224                 }
1225
1226                 /* use regulator's subset of machine constraints */
1227                 if (constraints->min_uV < min_uV) {
1228                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1229                                  constraints->min_uV, min_uV);
1230                         constraints->min_uV = min_uV;
1231                 }
1232                 if (constraints->max_uV > max_uV) {
1233                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1234                                  constraints->max_uV, max_uV);
1235                         constraints->max_uV = max_uV;
1236                 }
1237         }
1238
1239         return 0;
1240 }
1241
1242 static int machine_constraints_current(struct regulator_dev *rdev,
1243         struct regulation_constraints *constraints)
1244 {
1245         const struct regulator_ops *ops = rdev->desc->ops;
1246         int ret;
1247
1248         if (!constraints->min_uA && !constraints->max_uA)
1249                 return 0;
1250
1251         if (constraints->min_uA > constraints->max_uA) {
1252                 rdev_err(rdev, "Invalid current constraints\n");
1253                 return -EINVAL;
1254         }
1255
1256         if (!ops->set_current_limit || !ops->get_current_limit) {
1257                 rdev_warn(rdev, "Operation of current configuration missing\n");
1258                 return 0;
1259         }
1260
1261         /* Set regulator current in constraints range */
1262         ret = ops->set_current_limit(rdev, constraints->min_uA,
1263                         constraints->max_uA);
1264         if (ret < 0) {
1265                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1266                 return ret;
1267         }
1268
1269         return 0;
1270 }
1271
1272 static int _regulator_do_enable(struct regulator_dev *rdev);
1273
1274 /**
1275  * set_machine_constraints - sets regulator constraints
1276  * @rdev: regulator source
1277  * @constraints: constraints to apply
1278  *
1279  * Allows platform initialisation code to define and constrain
1280  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1281  * Constraints *must* be set by platform code in order for some
1282  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1283  * set_mode.
1284  */
1285 static int set_machine_constraints(struct regulator_dev *rdev,
1286         const struct regulation_constraints *constraints)
1287 {
1288         int ret = 0;
1289         const struct regulator_ops *ops = rdev->desc->ops;
1290
1291         if (constraints)
1292                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1293                                             GFP_KERNEL);
1294         else
1295                 rdev->constraints = kzalloc(sizeof(*constraints),
1296                                             GFP_KERNEL);
1297         if (!rdev->constraints)
1298                 return -ENOMEM;
1299
1300         ret = machine_constraints_voltage(rdev, rdev->constraints);
1301         if (ret != 0)
1302                 return ret;
1303
1304         ret = machine_constraints_current(rdev, rdev->constraints);
1305         if (ret != 0)
1306                 return ret;
1307
1308         if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1309                 ret = ops->set_input_current_limit(rdev,
1310                                                    rdev->constraints->ilim_uA);
1311                 if (ret < 0) {
1312                         rdev_err(rdev, "failed to set input limit\n");
1313                         return ret;
1314                 }
1315         }
1316
1317         /* do we need to setup our suspend state */
1318         if (rdev->constraints->initial_state) {
1319                 ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1320                 if (ret < 0) {
1321                         rdev_err(rdev, "failed to set suspend state\n");
1322                         return ret;
1323                 }
1324         }
1325
1326         if (rdev->constraints->initial_mode) {
1327                 if (!ops->set_mode) {
1328                         rdev_err(rdev, "no set_mode operation\n");
1329                         return -EINVAL;
1330                 }
1331
1332                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1333                 if (ret < 0) {
1334                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1335                         return ret;
1336                 }
1337         } else if (rdev->constraints->system_load) {
1338                 /*
1339                  * We'll only apply the initial system load if an
1340                  * initial mode wasn't specified.
1341                  */
1342                 drms_uA_update(rdev);
1343         }
1344
1345         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1346                 && ops->set_ramp_delay) {
1347                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1348                 if (ret < 0) {
1349                         rdev_err(rdev, "failed to set ramp_delay\n");
1350                         return ret;
1351                 }
1352         }
1353
1354         if (rdev->constraints->pull_down && ops->set_pull_down) {
1355                 ret = ops->set_pull_down(rdev);
1356                 if (ret < 0) {
1357                         rdev_err(rdev, "failed to set pull down\n");
1358                         return ret;
1359                 }
1360         }
1361
1362         if (rdev->constraints->soft_start && ops->set_soft_start) {
1363                 ret = ops->set_soft_start(rdev);
1364                 if (ret < 0) {
1365                         rdev_err(rdev, "failed to set soft start\n");
1366                         return ret;
1367                 }
1368         }
1369
1370         if (rdev->constraints->over_current_protection
1371                 && ops->set_over_current_protection) {
1372                 ret = ops->set_over_current_protection(rdev);
1373                 if (ret < 0) {
1374                         rdev_err(rdev, "failed to set over current protection\n");
1375                         return ret;
1376                 }
1377         }
1378
1379         if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1380                 bool ad_state = (rdev->constraints->active_discharge ==
1381                               REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1382
1383                 ret = ops->set_active_discharge(rdev, ad_state);
1384                 if (ret < 0) {
1385                         rdev_err(rdev, "failed to set active discharge\n");
1386                         return ret;
1387                 }
1388         }
1389
1390         /* If the constraints say the regulator should be on at this point
1391          * and we have control then make sure it is enabled.
1392          */
1393         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1394                 if (rdev->supply) {
1395                         ret = regulator_enable(rdev->supply);
1396                         if (ret < 0) {
1397                                 _regulator_put(rdev->supply);
1398                                 rdev->supply = NULL;
1399                                 return ret;
1400                         }
1401                 }
1402
1403                 ret = _regulator_do_enable(rdev);
1404                 if (ret < 0 && ret != -EINVAL) {
1405                         rdev_err(rdev, "failed to enable\n");
1406                         return ret;
1407                 }
1408                 rdev->use_count++;
1409         }
1410
1411         print_constraints(rdev);
1412         return 0;
1413 }
1414
1415 /**
1416  * set_supply - set regulator supply regulator
1417  * @rdev: regulator name
1418  * @supply_rdev: supply regulator name
1419  *
1420  * Called by platform initialisation code to set the supply regulator for this
1421  * regulator. This ensures that a regulators supply will also be enabled by the
1422  * core if it's child is enabled.
1423  */
1424 static int set_supply(struct regulator_dev *rdev,
1425                       struct regulator_dev *supply_rdev)
1426 {
1427         int err;
1428
1429         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1430
1431         if (!try_module_get(supply_rdev->owner))
1432                 return -ENODEV;
1433
1434         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1435         if (rdev->supply == NULL) {
1436                 err = -ENOMEM;
1437                 return err;
1438         }
1439         supply_rdev->open_count++;
1440
1441         return 0;
1442 }
1443
1444 /**
1445  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1446  * @rdev:         regulator source
1447  * @consumer_dev_name: dev_name() string for device supply applies to
1448  * @supply:       symbolic name for supply
1449  *
1450  * Allows platform initialisation code to map physical regulator
1451  * sources to symbolic names for supplies for use by devices.  Devices
1452  * should use these symbolic names to request regulators, avoiding the
1453  * need to provide board-specific regulator names as platform data.
1454  */
1455 static int set_consumer_device_supply(struct regulator_dev *rdev,
1456                                       const char *consumer_dev_name,
1457                                       const char *supply)
1458 {
1459         struct regulator_map *node;
1460         int has_dev;
1461
1462         if (supply == NULL)
1463                 return -EINVAL;
1464
1465         if (consumer_dev_name != NULL)
1466                 has_dev = 1;
1467         else
1468                 has_dev = 0;
1469
1470         list_for_each_entry(node, &regulator_map_list, list) {
1471                 if (node->dev_name && consumer_dev_name) {
1472                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1473                                 continue;
1474                 } else if (node->dev_name || consumer_dev_name) {
1475                         continue;
1476                 }
1477
1478                 if (strcmp(node->supply, supply) != 0)
1479                         continue;
1480
1481                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1482                          consumer_dev_name,
1483                          dev_name(&node->regulator->dev),
1484                          node->regulator->desc->name,
1485                          supply,
1486                          dev_name(&rdev->dev), rdev_get_name(rdev));
1487                 return -EBUSY;
1488         }
1489
1490         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1491         if (node == NULL)
1492                 return -ENOMEM;
1493
1494         node->regulator = rdev;
1495         node->supply = supply;
1496
1497         if (has_dev) {
1498                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1499                 if (node->dev_name == NULL) {
1500                         kfree(node);
1501                         return -ENOMEM;
1502                 }
1503         }
1504
1505         list_add(&node->list, &regulator_map_list);
1506         return 0;
1507 }
1508
1509 static void unset_regulator_supplies(struct regulator_dev *rdev)
1510 {
1511         struct regulator_map *node, *n;
1512
1513         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1514                 if (rdev == node->regulator) {
1515                         list_del(&node->list);
1516                         kfree(node->dev_name);
1517                         kfree(node);
1518                 }
1519         }
1520 }
1521
1522 #ifdef CONFIG_DEBUG_FS
1523 static ssize_t constraint_flags_read_file(struct file *file,
1524                                           char __user *user_buf,
1525                                           size_t count, loff_t *ppos)
1526 {
1527         const struct regulator *regulator = file->private_data;
1528         const struct regulation_constraints *c = regulator->rdev->constraints;
1529         char *buf;
1530         ssize_t ret;
1531
1532         if (!c)
1533                 return 0;
1534
1535         buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1536         if (!buf)
1537                 return -ENOMEM;
1538
1539         ret = snprintf(buf, PAGE_SIZE,
1540                         "always_on: %u\n"
1541                         "boot_on: %u\n"
1542                         "apply_uV: %u\n"
1543                         "ramp_disable: %u\n"
1544                         "soft_start: %u\n"
1545                         "pull_down: %u\n"
1546                         "over_current_protection: %u\n",
1547                         c->always_on,
1548                         c->boot_on,
1549                         c->apply_uV,
1550                         c->ramp_disable,
1551                         c->soft_start,
1552                         c->pull_down,
1553                         c->over_current_protection);
1554
1555         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1556         kfree(buf);
1557
1558         return ret;
1559 }
1560
1561 #endif
1562
1563 static const struct file_operations constraint_flags_fops = {
1564 #ifdef CONFIG_DEBUG_FS
1565         .open = simple_open,
1566         .read = constraint_flags_read_file,
1567         .llseek = default_llseek,
1568 #endif
1569 };
1570
1571 #define REG_STR_SIZE    64
1572
1573 static struct regulator *create_regulator(struct regulator_dev *rdev,
1574                                           struct device *dev,
1575                                           const char *supply_name)
1576 {
1577         struct regulator *regulator;
1578         char buf[REG_STR_SIZE];
1579         int err, size;
1580
1581         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1582         if (regulator == NULL)
1583                 return NULL;
1584
1585         regulator_lock(rdev);
1586         regulator->rdev = rdev;
1587         list_add(&regulator->list, &rdev->consumer_list);
1588
1589         if (dev) {
1590                 regulator->dev = dev;
1591
1592                 /* Add a link to the device sysfs entry */
1593                 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1594                                 dev->kobj.name, supply_name);
1595                 if (size >= REG_STR_SIZE)
1596                         goto overflow_err;
1597
1598                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1599                 if (regulator->supply_name == NULL)
1600                         goto overflow_err;
1601
1602                 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1603                                         buf);
1604                 if (err) {
1605                         rdev_dbg(rdev, "could not add device link %s err %d\n",
1606                                   dev->kobj.name, err);
1607                         /* non-fatal */
1608                 }
1609         } else {
1610                 regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1611                 if (regulator->supply_name == NULL)
1612                         goto overflow_err;
1613         }
1614
1615         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1616                                                 rdev->debugfs);
1617         if (!regulator->debugfs) {
1618                 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1619         } else {
1620                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1621                                    &regulator->uA_load);
1622                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1623                                    &regulator->voltage[PM_SUSPEND_ON].min_uV);
1624                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1625                                    &regulator->voltage[PM_SUSPEND_ON].max_uV);
1626                 debugfs_create_file("constraint_flags", 0444,
1627                                     regulator->debugfs, regulator,
1628                                     &constraint_flags_fops);
1629         }
1630
1631         /*
1632          * Check now if the regulator is an always on regulator - if
1633          * it is then we don't need to do nearly so much work for
1634          * enable/disable calls.
1635          */
1636         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1637             _regulator_is_enabled(rdev))
1638                 regulator->always_on = true;
1639
1640         regulator_unlock(rdev);
1641         return regulator;
1642 overflow_err:
1643         list_del(&regulator->list);
1644         kfree(regulator);
1645         regulator_unlock(rdev);
1646         return NULL;
1647 }
1648
1649 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1650 {
1651         if (rdev->constraints && rdev->constraints->enable_time)
1652                 return rdev->constraints->enable_time;
1653         if (!rdev->desc->ops->enable_time)
1654                 return rdev->desc->enable_time;
1655         return rdev->desc->ops->enable_time(rdev);
1656 }
1657
1658 static struct regulator_supply_alias *regulator_find_supply_alias(
1659                 struct device *dev, const char *supply)
1660 {
1661         struct regulator_supply_alias *map;
1662
1663         list_for_each_entry(map, &regulator_supply_alias_list, list)
1664                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1665                         return map;
1666
1667         return NULL;
1668 }
1669
1670 static void regulator_supply_alias(struct device **dev, const char **supply)
1671 {
1672         struct regulator_supply_alias *map;
1673
1674         map = regulator_find_supply_alias(*dev, *supply);
1675         if (map) {
1676                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1677                                 *supply, map->alias_supply,
1678                                 dev_name(map->alias_dev));
1679                 *dev = map->alias_dev;
1680                 *supply = map->alias_supply;
1681         }
1682 }
1683
1684 static int regulator_match(struct device *dev, const void *data)
1685 {
1686         struct regulator_dev *r = dev_to_rdev(dev);
1687
1688         return strcmp(rdev_get_name(r), data) == 0;
1689 }
1690
1691 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1692 {
1693         struct device *dev;
1694
1695         dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1696
1697         return dev ? dev_to_rdev(dev) : NULL;
1698 }
1699
1700 /**
1701  * regulator_dev_lookup - lookup a regulator device.
1702  * @dev: device for regulator "consumer".
1703  * @supply: Supply name or regulator ID.
1704  *
1705  * If successful, returns a struct regulator_dev that corresponds to the name
1706  * @supply and with the embedded struct device refcount incremented by one.
1707  * The refcount must be dropped by calling put_device().
1708  * On failure one of the following ERR-PTR-encoded values is returned:
1709  * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1710  * in the future.
1711  */
1712 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1713                                                   const char *supply)
1714 {
1715         struct regulator_dev *r = NULL;
1716         struct device_node *node;
1717         struct regulator_map *map;
1718         const char *devname = NULL;
1719
1720         regulator_supply_alias(&dev, &supply);
1721
1722         /* first do a dt based lookup */
1723         if (dev && dev->of_node) {
1724                 node = of_get_regulator(dev, supply);
1725                 if (node) {
1726                         r = of_find_regulator_by_node(node);
1727                         if (r)
1728                                 return r;
1729
1730                         /*
1731                          * We have a node, but there is no device.
1732                          * assume it has not registered yet.
1733                          */
1734                         return ERR_PTR(-EPROBE_DEFER);
1735                 }
1736         }
1737
1738         /* if not found, try doing it non-dt way */
1739         if (dev)
1740                 devname = dev_name(dev);
1741
1742         mutex_lock(&regulator_list_mutex);
1743         list_for_each_entry(map, &regulator_map_list, list) {
1744                 /* If the mapping has a device set up it must match */
1745                 if (map->dev_name &&
1746                     (!devname || strcmp(map->dev_name, devname)))
1747                         continue;
1748
1749                 if (strcmp(map->supply, supply) == 0 &&
1750                     get_device(&map->regulator->dev)) {
1751                         r = map->regulator;
1752                         break;
1753                 }
1754         }
1755         mutex_unlock(&regulator_list_mutex);
1756
1757         if (r)
1758                 return r;
1759
1760         r = regulator_lookup_by_name(supply);
1761         if (r)
1762                 return r;
1763
1764         return ERR_PTR(-ENODEV);
1765 }
1766
1767 static int regulator_resolve_supply(struct regulator_dev *rdev)
1768 {
1769         struct regulator_dev *r;
1770         struct device *dev = rdev->dev.parent;
1771         int ret;
1772
1773         /* No supply to resolve? */
1774         if (!rdev->supply_name)
1775                 return 0;
1776
1777         /* Supply already resolved? */
1778         if (rdev->supply)
1779                 return 0;
1780
1781         r = regulator_dev_lookup(dev, rdev->supply_name);
1782         if (IS_ERR(r)) {
1783                 ret = PTR_ERR(r);
1784
1785                 /* Did the lookup explicitly defer for us? */
1786                 if (ret == -EPROBE_DEFER)
1787                         return ret;
1788
1789                 if (have_full_constraints()) {
1790                         r = dummy_regulator_rdev;
1791                         get_device(&r->dev);
1792                 } else {
1793                         dev_err(dev, "Failed to resolve %s-supply for %s\n",
1794                                 rdev->supply_name, rdev->desc->name);
1795                         return -EPROBE_DEFER;
1796                 }
1797         }
1798
1799         /*
1800          * If the supply's parent device is not the same as the
1801          * regulator's parent device, then ensure the parent device
1802          * is bound before we resolve the supply, in case the parent
1803          * device get probe deferred and unregisters the supply.
1804          */
1805         if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1806                 if (!device_is_bound(r->dev.parent)) {
1807                         put_device(&r->dev);
1808                         return -EPROBE_DEFER;
1809                 }
1810         }
1811
1812         /* Recursively resolve the supply of the supply */
1813         ret = regulator_resolve_supply(r);
1814         if (ret < 0) {
1815                 put_device(&r->dev);
1816                 return ret;
1817         }
1818
1819         ret = set_supply(rdev, r);
1820         if (ret < 0) {
1821                 put_device(&r->dev);
1822                 return ret;
1823         }
1824
1825         /*
1826          * In set_machine_constraints() we may have turned this regulator on
1827          * but we couldn't propagate to the supply if it hadn't been resolved
1828          * yet.  Do it now.
1829          */
1830         if (rdev->use_count) {
1831                 ret = regulator_enable(rdev->supply);
1832                 if (ret < 0) {
1833                         _regulator_put(rdev->supply);
1834                         rdev->supply = NULL;
1835                         return ret;
1836                 }
1837         }
1838
1839         return 0;
1840 }
1841
1842 /* Internal regulator request function */
1843 struct regulator *_regulator_get(struct device *dev, const char *id,
1844                                  enum regulator_get_type get_type)
1845 {
1846         struct regulator_dev *rdev;
1847         struct regulator *regulator;
1848         const char *devname = dev ? dev_name(dev) : "deviceless";
1849         int ret;
1850
1851         if (get_type >= MAX_GET_TYPE) {
1852                 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1853                 return ERR_PTR(-EINVAL);
1854         }
1855
1856         if (id == NULL) {
1857                 pr_err("get() with no identifier\n");
1858                 return ERR_PTR(-EINVAL);
1859         }
1860
1861         rdev = regulator_dev_lookup(dev, id);
1862         if (IS_ERR(rdev)) {
1863                 ret = PTR_ERR(rdev);
1864
1865                 /*
1866                  * If regulator_dev_lookup() fails with error other
1867                  * than -ENODEV our job here is done, we simply return it.
1868                  */
1869                 if (ret != -ENODEV)
1870                         return ERR_PTR(ret);
1871
1872                 if (!have_full_constraints()) {
1873                         dev_warn(dev,
1874                                  "incomplete constraints, dummy supplies not allowed\n");
1875                         return ERR_PTR(-ENODEV);
1876                 }
1877
1878                 switch (get_type) {
1879                 case NORMAL_GET:
1880                         /*
1881                          * Assume that a regulator is physically present and
1882                          * enabled, even if it isn't hooked up, and just
1883                          * provide a dummy.
1884                          */
1885                         dev_warn(dev,
1886                                  "%s supply %s not found, using dummy regulator\n",
1887                                  devname, id);
1888                         rdev = dummy_regulator_rdev;
1889                         get_device(&rdev->dev);
1890                         break;
1891
1892                 case EXCLUSIVE_GET:
1893                         dev_warn(dev,
1894                                  "dummy supplies not allowed for exclusive requests\n");
1895                         /* fall through */
1896
1897                 default:
1898                         return ERR_PTR(-ENODEV);
1899                 }
1900         }
1901
1902         if (rdev->exclusive) {
1903                 regulator = ERR_PTR(-EPERM);
1904                 put_device(&rdev->dev);
1905                 return regulator;
1906         }
1907
1908         if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1909                 regulator = ERR_PTR(-EBUSY);
1910                 put_device(&rdev->dev);
1911                 return regulator;
1912         }
1913
1914         mutex_lock(&regulator_list_mutex);
1915         ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
1916         mutex_unlock(&regulator_list_mutex);
1917
1918         if (ret != 0) {
1919                 regulator = ERR_PTR(-EPROBE_DEFER);
1920                 put_device(&rdev->dev);
1921                 return regulator;
1922         }
1923
1924         ret = regulator_resolve_supply(rdev);
1925         if (ret < 0) {
1926                 regulator = ERR_PTR(ret);
1927                 put_device(&rdev->dev);
1928                 return regulator;
1929         }
1930
1931         if (!try_module_get(rdev->owner)) {
1932                 regulator = ERR_PTR(-EPROBE_DEFER);
1933                 put_device(&rdev->dev);
1934                 return regulator;
1935         }
1936
1937         regulator = create_regulator(rdev, dev, id);
1938         if (regulator == NULL) {
1939                 regulator = ERR_PTR(-ENOMEM);
1940                 put_device(&rdev->dev);
1941                 module_put(rdev->owner);
1942                 return regulator;
1943         }
1944
1945         rdev->open_count++;
1946         if (get_type == EXCLUSIVE_GET) {
1947                 rdev->exclusive = 1;
1948
1949                 ret = _regulator_is_enabled(rdev);
1950                 if (ret > 0)
1951                         rdev->use_count = 1;
1952                 else
1953                         rdev->use_count = 0;
1954         }
1955
1956         device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
1957
1958         return regulator;
1959 }
1960
1961 /**
1962  * regulator_get - lookup and obtain a reference to a regulator.
1963  * @dev: device for regulator "consumer"
1964  * @id: Supply name or regulator ID.
1965  *
1966  * Returns a struct regulator corresponding to the regulator producer,
1967  * or IS_ERR() condition containing errno.
1968  *
1969  * Use of supply names configured via regulator_set_device_supply() is
1970  * strongly encouraged.  It is recommended that the supply name used
1971  * should match the name used for the supply and/or the relevant
1972  * device pins in the datasheet.
1973  */
1974 struct regulator *regulator_get(struct device *dev, const char *id)
1975 {
1976         return _regulator_get(dev, id, NORMAL_GET);
1977 }
1978 EXPORT_SYMBOL_GPL(regulator_get);
1979
1980 /**
1981  * regulator_get_exclusive - obtain exclusive access to a regulator.
1982  * @dev: device for regulator "consumer"
1983  * @id: Supply name or regulator ID.
1984  *
1985  * Returns a struct regulator corresponding to the regulator producer,
1986  * or IS_ERR() condition containing errno.  Other consumers will be
1987  * unable to obtain this regulator while this reference is held and the
1988  * use count for the regulator will be initialised to reflect the current
1989  * state of the regulator.
1990  *
1991  * This is intended for use by consumers which cannot tolerate shared
1992  * use of the regulator such as those which need to force the
1993  * regulator off for correct operation of the hardware they are
1994  * controlling.
1995  *
1996  * Use of supply names configured via regulator_set_device_supply() is
1997  * strongly encouraged.  It is recommended that the supply name used
1998  * should match the name used for the supply and/or the relevant
1999  * device pins in the datasheet.
2000  */
2001 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2002 {
2003         return _regulator_get(dev, id, EXCLUSIVE_GET);
2004 }
2005 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2006
2007 /**
2008  * regulator_get_optional - obtain optional access to a regulator.
2009  * @dev: device for regulator "consumer"
2010  * @id: Supply name or regulator ID.
2011  *
2012  * Returns a struct regulator corresponding to the regulator producer,
2013  * or IS_ERR() condition containing errno.
2014  *
2015  * This is intended for use by consumers for devices which can have
2016  * some supplies unconnected in normal use, such as some MMC devices.
2017  * It can allow the regulator core to provide stub supplies for other
2018  * supplies requested using normal regulator_get() calls without
2019  * disrupting the operation of drivers that can handle absent
2020  * supplies.
2021  *
2022  * Use of supply names configured via regulator_set_device_supply() is
2023  * strongly encouraged.  It is recommended that the supply name used
2024  * should match the name used for the supply and/or the relevant
2025  * device pins in the datasheet.
2026  */
2027 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2028 {
2029         return _regulator_get(dev, id, OPTIONAL_GET);
2030 }
2031 EXPORT_SYMBOL_GPL(regulator_get_optional);
2032
2033 /* regulator_list_mutex lock held by regulator_put() */
2034 static void _regulator_put(struct regulator *regulator)
2035 {
2036         struct regulator_dev *rdev;
2037
2038         if (IS_ERR_OR_NULL(regulator))
2039                 return;
2040
2041         lockdep_assert_held_once(&regulator_list_mutex);
2042
2043         /* Docs say you must disable before calling regulator_put() */
2044         WARN_ON(regulator->enable_count);
2045
2046         rdev = regulator->rdev;
2047
2048         debugfs_remove_recursive(regulator->debugfs);
2049
2050         if (regulator->dev) {
2051                 device_link_remove(regulator->dev, &rdev->dev);
2052
2053                 /* remove any sysfs entries */
2054                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2055         }
2056
2057         regulator_lock(rdev);
2058         list_del(&regulator->list);
2059
2060         rdev->open_count--;
2061         rdev->exclusive = 0;
2062         put_device(&rdev->dev);
2063         regulator_unlock(rdev);
2064
2065         kfree_const(regulator->supply_name);
2066         kfree(regulator);
2067
2068         module_put(rdev->owner);
2069 }
2070
2071 /**
2072  * regulator_put - "free" the regulator source
2073  * @regulator: regulator source
2074  *
2075  * Note: drivers must ensure that all regulator_enable calls made on this
2076  * regulator source are balanced by regulator_disable calls prior to calling
2077  * this function.
2078  */
2079 void regulator_put(struct regulator *regulator)
2080 {
2081         mutex_lock(&regulator_list_mutex);
2082         _regulator_put(regulator);
2083         mutex_unlock(&regulator_list_mutex);
2084 }
2085 EXPORT_SYMBOL_GPL(regulator_put);
2086
2087 /**
2088  * regulator_register_supply_alias - Provide device alias for supply lookup
2089  *
2090  * @dev: device that will be given as the regulator "consumer"
2091  * @id: Supply name or regulator ID
2092  * @alias_dev: device that should be used to lookup the supply
2093  * @alias_id: Supply name or regulator ID that should be used to lookup the
2094  * supply
2095  *
2096  * All lookups for id on dev will instead be conducted for alias_id on
2097  * alias_dev.
2098  */
2099 int regulator_register_supply_alias(struct device *dev, const char *id,
2100                                     struct device *alias_dev,
2101                                     const char *alias_id)
2102 {
2103         struct regulator_supply_alias *map;
2104
2105         map = regulator_find_supply_alias(dev, id);
2106         if (map)
2107                 return -EEXIST;
2108
2109         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2110         if (!map)
2111                 return -ENOMEM;
2112
2113         map->src_dev = dev;
2114         map->src_supply = id;
2115         map->alias_dev = alias_dev;
2116         map->alias_supply = alias_id;
2117
2118         list_add(&map->list, &regulator_supply_alias_list);
2119
2120         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2121                 id, dev_name(dev), alias_id, dev_name(alias_dev));
2122
2123         return 0;
2124 }
2125 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2126
2127 /**
2128  * regulator_unregister_supply_alias - Remove device alias
2129  *
2130  * @dev: device that will be given as the regulator "consumer"
2131  * @id: Supply name or regulator ID
2132  *
2133  * Remove a lookup alias if one exists for id on dev.
2134  */
2135 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2136 {
2137         struct regulator_supply_alias *map;
2138
2139         map = regulator_find_supply_alias(dev, id);
2140         if (map) {
2141                 list_del(&map->list);
2142                 kfree(map);
2143         }
2144 }
2145 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2146
2147 /**
2148  * regulator_bulk_register_supply_alias - register multiple aliases
2149  *
2150  * @dev: device that will be given as the regulator "consumer"
2151  * @id: List of supply names or regulator IDs
2152  * @alias_dev: device that should be used to lookup the supply
2153  * @alias_id: List of supply names or regulator IDs that should be used to
2154  * lookup the supply
2155  * @num_id: Number of aliases to register
2156  *
2157  * @return 0 on success, an errno on failure.
2158  *
2159  * This helper function allows drivers to register several supply
2160  * aliases in one operation.  If any of the aliases cannot be
2161  * registered any aliases that were registered will be removed
2162  * before returning to the caller.
2163  */
2164 int regulator_bulk_register_supply_alias(struct device *dev,
2165                                          const char *const *id,
2166                                          struct device *alias_dev,
2167                                          const char *const *alias_id,
2168                                          int num_id)
2169 {
2170         int i;
2171         int ret;
2172
2173         for (i = 0; i < num_id; ++i) {
2174                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2175                                                       alias_id[i]);
2176                 if (ret < 0)
2177                         goto err;
2178         }
2179
2180         return 0;
2181
2182 err:
2183         dev_err(dev,
2184                 "Failed to create supply alias %s,%s -> %s,%s\n",
2185                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2186
2187         while (--i >= 0)
2188                 regulator_unregister_supply_alias(dev, id[i]);
2189
2190         return ret;
2191 }
2192 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2193
2194 /**
2195  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2196  *
2197  * @dev: device that will be given as the regulator "consumer"
2198  * @id: List of supply names or regulator IDs
2199  * @num_id: Number of aliases to unregister
2200  *
2201  * This helper function allows drivers to unregister several supply
2202  * aliases in one operation.
2203  */
2204 void regulator_bulk_unregister_supply_alias(struct device *dev,
2205                                             const char *const *id,
2206                                             int num_id)
2207 {
2208         int i;
2209
2210         for (i = 0; i < num_id; ++i)
2211                 regulator_unregister_supply_alias(dev, id[i]);
2212 }
2213 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2214
2215
2216 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2217 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2218                                 const struct regulator_config *config)
2219 {
2220         struct regulator_enable_gpio *pin;
2221         struct gpio_desc *gpiod;
2222
2223         gpiod = config->ena_gpiod;
2224
2225         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2226                 if (pin->gpiod == gpiod) {
2227                         rdev_dbg(rdev, "GPIO is already used\n");
2228                         goto update_ena_gpio_to_rdev;
2229                 }
2230         }
2231
2232         pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
2233         if (pin == NULL)
2234                 return -ENOMEM;
2235
2236         pin->gpiod = gpiod;
2237         list_add(&pin->list, &regulator_ena_gpio_list);
2238
2239 update_ena_gpio_to_rdev:
2240         pin->request_count++;
2241         rdev->ena_pin = pin;
2242         return 0;
2243 }
2244
2245 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2246 {
2247         struct regulator_enable_gpio *pin, *n;
2248
2249         if (!rdev->ena_pin)
2250                 return;
2251
2252         /* Free the GPIO only in case of no use */
2253         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2254                 if (pin->gpiod == rdev->ena_pin->gpiod) {
2255                         if (pin->request_count <= 1) {
2256                                 pin->request_count = 0;
2257                                 list_del(&pin->list);
2258                                 kfree(pin);
2259                                 rdev->ena_pin = NULL;
2260                                 return;
2261                         } else {
2262                                 pin->request_count--;
2263                         }
2264                 }
2265         }
2266 }
2267
2268 /**
2269  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2270  * @rdev: regulator_dev structure
2271  * @enable: enable GPIO at initial use?
2272  *
2273  * GPIO is enabled in case of initial use. (enable_count is 0)
2274  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2275  */
2276 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2277 {
2278         struct regulator_enable_gpio *pin = rdev->ena_pin;
2279
2280         if (!pin)
2281                 return -EINVAL;
2282
2283         if (enable) {
2284                 /* Enable GPIO at initial use */
2285                 if (pin->enable_count == 0)
2286                         gpiod_set_value_cansleep(pin->gpiod, 1);
2287
2288                 pin->enable_count++;
2289         } else {
2290                 if (pin->enable_count > 1) {
2291                         pin->enable_count--;
2292                         return 0;
2293                 }
2294
2295                 /* Disable GPIO if not used */
2296                 if (pin->enable_count <= 1) {
2297                         gpiod_set_value_cansleep(pin->gpiod, 0);
2298                         pin->enable_count = 0;
2299                 }
2300         }
2301
2302         return 0;
2303 }
2304
2305 /**
2306  * _regulator_enable_delay - a delay helper function
2307  * @delay: time to delay in microseconds
2308  *
2309  * Delay for the requested amount of time as per the guidelines in:
2310  *
2311  *     Documentation/timers/timers-howto.txt
2312  *
2313  * The assumption here is that regulators will never be enabled in
2314  * atomic context and therefore sleeping functions can be used.
2315  */
2316 static void _regulator_enable_delay(unsigned int delay)
2317 {
2318         unsigned int ms = delay / 1000;
2319         unsigned int us = delay % 1000;
2320
2321         if (ms > 0) {
2322                 /*
2323                  * For small enough values, handle super-millisecond
2324                  * delays in the usleep_range() call below.
2325                  */
2326                 if (ms < 20)
2327                         us += ms * 1000;
2328                 else
2329                         msleep(ms);
2330         }
2331
2332         /*
2333          * Give the scheduler some room to coalesce with any other
2334          * wakeup sources. For delays shorter than 10 us, don't even
2335          * bother setting up high-resolution timers and just busy-
2336          * loop.
2337          */
2338         if (us >= 10)
2339                 usleep_range(us, us + 100);
2340         else
2341                 udelay(us);
2342 }
2343
2344 static int _regulator_do_enable(struct regulator_dev *rdev)
2345 {
2346         int ret, delay;
2347
2348         /* Query before enabling in case configuration dependent.  */
2349         ret = _regulator_get_enable_time(rdev);
2350         if (ret >= 0) {
2351                 delay = ret;
2352         } else {
2353                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2354                 delay = 0;
2355         }
2356
2357         trace_regulator_enable(rdev_get_name(rdev));
2358
2359         if (rdev->desc->off_on_delay) {
2360                 /* if needed, keep a distance of off_on_delay from last time
2361                  * this regulator was disabled.
2362                  */
2363                 unsigned long start_jiffy = jiffies;
2364                 unsigned long intended, max_delay, remaining;
2365
2366                 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2367                 intended = rdev->last_off_jiffy + max_delay;
2368
2369                 if (time_before(start_jiffy, intended)) {
2370                         /* calc remaining jiffies to deal with one-time
2371                          * timer wrapping.
2372                          * in case of multiple timer wrapping, either it can be
2373                          * detected by out-of-range remaining, or it cannot be
2374                          * detected and we get a penalty of
2375                          * _regulator_enable_delay().
2376                          */
2377                         remaining = intended - start_jiffy;
2378                         if (remaining <= max_delay)
2379                                 _regulator_enable_delay(
2380                                                 jiffies_to_usecs(remaining));
2381                 }
2382         }
2383
2384         if (rdev->ena_pin) {
2385                 if (!rdev->ena_gpio_state) {
2386                         ret = regulator_ena_gpio_ctrl(rdev, true);
2387                         if (ret < 0)
2388                                 return ret;
2389                         rdev->ena_gpio_state = 1;
2390                 }
2391         } else if (rdev->desc->ops->enable) {
2392                 ret = rdev->desc->ops->enable(rdev);
2393                 if (ret < 0)
2394                         return ret;
2395         } else {
2396                 return -EINVAL;
2397         }
2398
2399         /* Allow the regulator to ramp; it would be useful to extend
2400          * this for bulk operations so that the regulators can ramp
2401          * together.  */
2402         trace_regulator_enable_delay(rdev_get_name(rdev));
2403
2404         _regulator_enable_delay(delay);
2405
2406         trace_regulator_enable_complete(rdev_get_name(rdev));
2407
2408         return 0;
2409 }
2410
2411 /**
2412  * _regulator_handle_consumer_enable - handle that a consumer enabled
2413  * @regulator: regulator source
2414  *
2415  * Some things on a regulator consumer (like the contribution towards total
2416  * load on the regulator) only have an effect when the consumer wants the
2417  * regulator enabled.  Explained in example with two consumers of the same
2418  * regulator:
2419  *   consumer A: set_load(100);       => total load = 0
2420  *   consumer A: regulator_enable();  => total load = 100
2421  *   consumer B: set_load(1000);      => total load = 100
2422  *   consumer B: regulator_enable();  => total load = 1100
2423  *   consumer A: regulator_disable(); => total_load = 1000
2424  *
2425  * This function (together with _regulator_handle_consumer_disable) is
2426  * responsible for keeping track of the refcount for a given regulator consumer
2427  * and applying / unapplying these things.
2428  *
2429  * Returns 0 upon no error; -error upon error.
2430  */
2431 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2432 {
2433         struct regulator_dev *rdev = regulator->rdev;
2434
2435         lockdep_assert_held_once(&rdev->mutex.base);
2436
2437         regulator->enable_count++;
2438         if (regulator->uA_load && regulator->enable_count == 1)
2439                 return drms_uA_update(rdev);
2440
2441         return 0;
2442 }
2443
2444 /**
2445  * _regulator_handle_consumer_disable - handle that a consumer disabled
2446  * @regulator: regulator source
2447  *
2448  * The opposite of _regulator_handle_consumer_enable().
2449  *
2450  * Returns 0 upon no error; -error upon error.
2451  */
2452 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2453 {
2454         struct regulator_dev *rdev = regulator->rdev;
2455
2456         lockdep_assert_held_once(&rdev->mutex.base);
2457
2458         if (!regulator->enable_count) {
2459                 rdev_err(rdev, "Underflow of regulator enable count\n");
2460                 return -EINVAL;
2461         }
2462
2463         regulator->enable_count--;
2464         if (regulator->uA_load && regulator->enable_count == 0)
2465                 return drms_uA_update(rdev);
2466
2467         return 0;
2468 }
2469
2470 /* locks held by regulator_enable() */
2471 static int _regulator_enable(struct regulator *regulator)
2472 {
2473         struct regulator_dev *rdev = regulator->rdev;
2474         int ret;
2475
2476         lockdep_assert_held_once(&rdev->mutex.base);
2477
2478         if (rdev->use_count == 0 && rdev->supply) {
2479                 ret = _regulator_enable(rdev->supply);
2480                 if (ret < 0)
2481                         return ret;
2482         }
2483
2484         /* balance only if there are regulators coupled */
2485         if (rdev->coupling_desc.n_coupled > 1) {
2486                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2487                 if (ret < 0)
2488                         goto err_disable_supply;
2489         }
2490
2491         ret = _regulator_handle_consumer_enable(regulator);
2492         if (ret < 0)
2493                 goto err_disable_supply;
2494
2495         if (rdev->use_count == 0) {
2496                 /* The regulator may on if it's not switchable or left on */
2497                 ret = _regulator_is_enabled(rdev);
2498                 if (ret == -EINVAL || ret == 0) {
2499                         if (!regulator_ops_is_valid(rdev,
2500                                         REGULATOR_CHANGE_STATUS)) {
2501                                 ret = -EPERM;
2502                                 goto err_consumer_disable;
2503                         }
2504
2505                         ret = _regulator_do_enable(rdev);
2506                         if (ret < 0)
2507                                 goto err_consumer_disable;
2508
2509                         _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2510                                              NULL);
2511                 } else if (ret < 0) {
2512                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2513                         goto err_consumer_disable;
2514                 }
2515                 /* Fallthrough on positive return values - already enabled */
2516         }
2517
2518         rdev->use_count++;
2519
2520         return 0;
2521
2522 err_consumer_disable:
2523         _regulator_handle_consumer_disable(regulator);
2524
2525 err_disable_supply:
2526         if (rdev->use_count == 0 && rdev->supply)
2527                 _regulator_disable(rdev->supply);
2528
2529         return ret;
2530 }
2531
2532 /**
2533  * regulator_enable - enable regulator output
2534  * @regulator: regulator source
2535  *
2536  * Request that the regulator be enabled with the regulator output at
2537  * the predefined voltage or current value.  Calls to regulator_enable()
2538  * must be balanced with calls to regulator_disable().
2539  *
2540  * NOTE: the output value can be set by other drivers, boot loader or may be
2541  * hardwired in the regulator.
2542  */
2543 int regulator_enable(struct regulator *regulator)
2544 {
2545         struct regulator_dev *rdev = regulator->rdev;
2546         struct ww_acquire_ctx ww_ctx;
2547         int ret;
2548
2549         regulator_lock_dependent(rdev, &ww_ctx);
2550         ret = _regulator_enable(regulator);
2551         regulator_unlock_dependent(rdev, &ww_ctx);
2552
2553         return ret;
2554 }
2555 EXPORT_SYMBOL_GPL(regulator_enable);
2556
2557 static int _regulator_do_disable(struct regulator_dev *rdev)
2558 {
2559         int ret;
2560
2561         trace_regulator_disable(rdev_get_name(rdev));
2562
2563         if (rdev->ena_pin) {
2564                 if (rdev->ena_gpio_state) {
2565                         ret = regulator_ena_gpio_ctrl(rdev, false);
2566                         if (ret < 0)
2567                                 return ret;
2568                         rdev->ena_gpio_state = 0;
2569                 }
2570
2571         } else if (rdev->desc->ops->disable) {
2572                 ret = rdev->desc->ops->disable(rdev);
2573                 if (ret != 0)
2574                         return ret;
2575         }
2576
2577         /* cares about last_off_jiffy only if off_on_delay is required by
2578          * device.
2579          */
2580         if (rdev->desc->off_on_delay)
2581                 rdev->last_off_jiffy = jiffies;
2582
2583         trace_regulator_disable_complete(rdev_get_name(rdev));
2584
2585         return 0;
2586 }
2587
2588 /* locks held by regulator_disable() */
2589 static int _regulator_disable(struct regulator *regulator)
2590 {
2591         struct regulator_dev *rdev = regulator->rdev;
2592         int ret = 0;
2593
2594         lockdep_assert_held_once(&rdev->mutex.base);
2595
2596         if (WARN(rdev->use_count <= 0,
2597                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
2598                 return -EIO;
2599
2600         /* are we the last user and permitted to disable ? */
2601         if (rdev->use_count == 1 &&
2602             (rdev->constraints && !rdev->constraints->always_on)) {
2603
2604                 /* we are last user */
2605                 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2606                         ret = _notifier_call_chain(rdev,
2607                                                    REGULATOR_EVENT_PRE_DISABLE,
2608                                                    NULL);
2609                         if (ret & NOTIFY_STOP_MASK)
2610                                 return -EINVAL;
2611
2612                         ret = _regulator_do_disable(rdev);
2613                         if (ret < 0) {
2614                                 rdev_err(rdev, "failed to disable\n");
2615                                 _notifier_call_chain(rdev,
2616                                                 REGULATOR_EVENT_ABORT_DISABLE,
2617                                                 NULL);
2618                                 return ret;
2619                         }
2620                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2621                                         NULL);
2622                 }
2623
2624                 rdev->use_count = 0;
2625         } else if (rdev->use_count > 1) {
2626                 rdev->use_count--;
2627         }
2628
2629         if (ret == 0)
2630                 ret = _regulator_handle_consumer_disable(regulator);
2631
2632         if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2633                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2634
2635         if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2636                 ret = _regulator_disable(rdev->supply);
2637
2638         return ret;
2639 }
2640
2641 /**
2642  * regulator_disable - disable regulator output
2643  * @regulator: regulator source
2644  *
2645  * Disable the regulator output voltage or current.  Calls to
2646  * regulator_enable() must be balanced with calls to
2647  * regulator_disable().
2648  *
2649  * NOTE: this will only disable the regulator output if no other consumer
2650  * devices have it enabled, the regulator device supports disabling and
2651  * machine constraints permit this operation.
2652  */
2653 int regulator_disable(struct regulator *regulator)
2654 {
2655         struct regulator_dev *rdev = regulator->rdev;
2656         struct ww_acquire_ctx ww_ctx;
2657         int ret;
2658
2659         regulator_lock_dependent(rdev, &ww_ctx);
2660         ret = _regulator_disable(regulator);
2661         regulator_unlock_dependent(rdev, &ww_ctx);
2662
2663         return ret;
2664 }
2665 EXPORT_SYMBOL_GPL(regulator_disable);
2666
2667 /* locks held by regulator_force_disable() */
2668 static int _regulator_force_disable(struct regulator_dev *rdev)
2669 {
2670         int ret = 0;
2671
2672         lockdep_assert_held_once(&rdev->mutex.base);
2673
2674         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2675                         REGULATOR_EVENT_PRE_DISABLE, NULL);
2676         if (ret & NOTIFY_STOP_MASK)
2677                 return -EINVAL;
2678
2679         ret = _regulator_do_disable(rdev);
2680         if (ret < 0) {
2681                 rdev_err(rdev, "failed to force disable\n");
2682                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2683                                 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2684                 return ret;
2685         }
2686
2687         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2688                         REGULATOR_EVENT_DISABLE, NULL);
2689
2690         return 0;
2691 }
2692
2693 /**
2694  * regulator_force_disable - force disable regulator output
2695  * @regulator: regulator source
2696  *
2697  * Forcibly disable the regulator output voltage or current.
2698  * NOTE: this *will* disable the regulator output even if other consumer
2699  * devices have it enabled. This should be used for situations when device
2700  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2701  */
2702 int regulator_force_disable(struct regulator *regulator)
2703 {
2704         struct regulator_dev *rdev = regulator->rdev;
2705         struct ww_acquire_ctx ww_ctx;
2706         int ret;
2707
2708         regulator_lock_dependent(rdev, &ww_ctx);
2709
2710         ret = _regulator_force_disable(regulator->rdev);
2711
2712         if (rdev->coupling_desc.n_coupled > 1)
2713                 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2714
2715         if (regulator->uA_load) {
2716                 regulator->uA_load = 0;
2717                 ret = drms_uA_update(rdev);
2718         }
2719
2720         if (rdev->use_count != 0 && rdev->supply)
2721                 _regulator_disable(rdev->supply);
2722
2723         regulator_unlock_dependent(rdev, &ww_ctx);
2724
2725         return ret;
2726 }
2727 EXPORT_SYMBOL_GPL(regulator_force_disable);
2728
2729 static void regulator_disable_work(struct work_struct *work)
2730 {
2731         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2732                                                   disable_work.work);
2733         struct ww_acquire_ctx ww_ctx;
2734         int count, i, ret;
2735         struct regulator *regulator;
2736         int total_count = 0;
2737
2738         regulator_lock_dependent(rdev, &ww_ctx);
2739
2740         /*
2741          * Workqueue functions queue the new work instance while the previous
2742          * work instance is being processed. Cancel the queued work instance
2743          * as the work instance under processing does the job of the queued
2744          * work instance.
2745          */
2746         cancel_delayed_work(&rdev->disable_work);
2747
2748         list_for_each_entry(regulator, &rdev->consumer_list, list) {
2749                 count = regulator->deferred_disables;
2750
2751                 if (!count)
2752                         continue;
2753
2754                 total_count += count;
2755                 regulator->deferred_disables = 0;
2756
2757                 for (i = 0; i < count; i++) {
2758                         ret = _regulator_disable(regulator);
2759                         if (ret != 0)
2760                                 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2761                 }
2762         }
2763         WARN_ON(!total_count);
2764
2765         if (rdev->coupling_desc.n_coupled > 1)
2766                 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2767
2768         regulator_unlock_dependent(rdev, &ww_ctx);
2769 }
2770
2771 /**
2772  * regulator_disable_deferred - disable regulator output with delay
2773  * @regulator: regulator source
2774  * @ms: milliseconds until the regulator is disabled
2775  *
2776  * Execute regulator_disable() on the regulator after a delay.  This
2777  * is intended for use with devices that require some time to quiesce.
2778  *
2779  * NOTE: this will only disable the regulator output if no other consumer
2780  * devices have it enabled, the regulator device supports disabling and
2781  * machine constraints permit this operation.
2782  */
2783 int regulator_disable_deferred(struct regulator *regulator, int ms)
2784 {
2785         struct regulator_dev *rdev = regulator->rdev;
2786
2787         if (!ms)
2788                 return regulator_disable(regulator);
2789
2790         regulator_lock(rdev);
2791         regulator->deferred_disables++;
2792         mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2793                          msecs_to_jiffies(ms));
2794         regulator_unlock(rdev);
2795
2796         return 0;
2797 }
2798 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2799
2800 static int _regulator_is_enabled(struct regulator_dev *rdev)
2801 {
2802         /* A GPIO control always takes precedence */
2803         if (rdev->ena_pin)
2804                 return rdev->ena_gpio_state;
2805
2806         /* If we don't know then assume that the regulator is always on */
2807         if (!rdev->desc->ops->is_enabled)
2808                 return 1;
2809
2810         return rdev->desc->ops->is_enabled(rdev);
2811 }
2812
2813 static int _regulator_list_voltage(struct regulator_dev *rdev,
2814                                    unsigned selector, int lock)
2815 {
2816         const struct regulator_ops *ops = rdev->desc->ops;
2817         int ret;
2818
2819         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2820                 return rdev->desc->fixed_uV;
2821
2822         if (ops->list_voltage) {
2823                 if (selector >= rdev->desc->n_voltages)
2824                         return -EINVAL;
2825                 if (lock)
2826                         regulator_lock(rdev);
2827                 ret = ops->list_voltage(rdev, selector);
2828                 if (lock)
2829                         regulator_unlock(rdev);
2830         } else if (rdev->is_switch && rdev->supply) {
2831                 ret = _regulator_list_voltage(rdev->supply->rdev,
2832                                               selector, lock);
2833         } else {
2834                 return -EINVAL;
2835         }
2836
2837         if (ret > 0) {
2838                 if (ret < rdev->constraints->min_uV)
2839                         ret = 0;
2840                 else if (ret > rdev->constraints->max_uV)
2841                         ret = 0;
2842         }
2843
2844         return ret;
2845 }
2846
2847 /**
2848  * regulator_is_enabled - is the regulator output enabled
2849  * @regulator: regulator source
2850  *
2851  * Returns positive if the regulator driver backing the source/client
2852  * has requested that the device be enabled, zero if it hasn't, else a
2853  * negative errno code.
2854  *
2855  * Note that the device backing this regulator handle can have multiple
2856  * users, so it might be enabled even if regulator_enable() was never
2857  * called for this particular source.
2858  */
2859 int regulator_is_enabled(struct regulator *regulator)
2860 {
2861         int ret;
2862
2863         if (regulator->always_on)
2864                 return 1;
2865
2866         regulator_lock(regulator->rdev);
2867         ret = _regulator_is_enabled(regulator->rdev);
2868         regulator_unlock(regulator->rdev);
2869
2870         return ret;
2871 }
2872 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2873
2874 /**
2875  * regulator_count_voltages - count regulator_list_voltage() selectors
2876  * @regulator: regulator source
2877  *
2878  * Returns number of selectors, or negative errno.  Selectors are
2879  * numbered starting at zero, and typically correspond to bitfields
2880  * in hardware registers.
2881  */
2882 int regulator_count_voltages(struct regulator *regulator)
2883 {
2884         struct regulator_dev    *rdev = regulator->rdev;
2885
2886         if (rdev->desc->n_voltages)
2887                 return rdev->desc->n_voltages;
2888
2889         if (!rdev->is_switch || !rdev->supply)
2890                 return -EINVAL;
2891
2892         return regulator_count_voltages(rdev->supply);
2893 }
2894 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2895
2896 /**
2897  * regulator_list_voltage - enumerate supported voltages
2898  * @regulator: regulator source
2899  * @selector: identify voltage to list
2900  * Context: can sleep
2901  *
2902  * Returns a voltage that can be passed to @regulator_set_voltage(),
2903  * zero if this selector code can't be used on this system, or a
2904  * negative errno.
2905  */
2906 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2907 {
2908         return _regulator_list_voltage(regulator->rdev, selector, 1);
2909 }
2910 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2911
2912 /**
2913  * regulator_get_regmap - get the regulator's register map
2914  * @regulator: regulator source
2915  *
2916  * Returns the register map for the given regulator, or an ERR_PTR value
2917  * if the regulator doesn't use regmap.
2918  */
2919 struct regmap *regulator_get_regmap(struct regulator *regulator)
2920 {
2921         struct regmap *map = regulator->rdev->regmap;
2922
2923         return map ? map : ERR_PTR(-EOPNOTSUPP);
2924 }
2925
2926 /**
2927  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2928  * @regulator: regulator source
2929  * @vsel_reg: voltage selector register, output parameter
2930  * @vsel_mask: mask for voltage selector bitfield, output parameter
2931  *
2932  * Returns the hardware register offset and bitmask used for setting the
2933  * regulator voltage. This might be useful when configuring voltage-scaling
2934  * hardware or firmware that can make I2C requests behind the kernel's back,
2935  * for example.
2936  *
2937  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2938  * and 0 is returned, otherwise a negative errno is returned.
2939  */
2940 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2941                                          unsigned *vsel_reg,
2942                                          unsigned *vsel_mask)
2943 {
2944         struct regulator_dev *rdev = regulator->rdev;
2945         const struct regulator_ops *ops = rdev->desc->ops;
2946
2947         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2948                 return -EOPNOTSUPP;
2949
2950         *vsel_reg = rdev->desc->vsel_reg;
2951         *vsel_mask = rdev->desc->vsel_mask;
2952
2953          return 0;
2954 }
2955 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2956
2957 /**
2958  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2959  * @regulator: regulator source
2960  * @selector: identify voltage to list
2961  *
2962  * Converts the selector to a hardware-specific voltage selector that can be
2963  * directly written to the regulator registers. The address of the voltage
2964  * register can be determined by calling @regulator_get_hardware_vsel_register.
2965  *
2966  * On error a negative errno is returned.
2967  */
2968 int regulator_list_hardware_vsel(struct regulator *regulator,
2969                                  unsigned selector)
2970 {
2971         struct regulator_dev *rdev = regulator->rdev;
2972         const struct regulator_ops *ops = rdev->desc->ops;
2973
2974         if (selector >= rdev->desc->n_voltages)
2975                 return -EINVAL;
2976         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2977                 return -EOPNOTSUPP;
2978
2979         return selector;
2980 }
2981 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2982
2983 /**
2984  * regulator_get_linear_step - return the voltage step size between VSEL values
2985  * @regulator: regulator source
2986  *
2987  * Returns the voltage step size between VSEL values for linear
2988  * regulators, or return 0 if the regulator isn't a linear regulator.
2989  */
2990 unsigned int regulator_get_linear_step(struct regulator *regulator)
2991 {
2992         struct regulator_dev *rdev = regulator->rdev;
2993
2994         return rdev->desc->uV_step;
2995 }
2996 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2997
2998 /**
2999  * regulator_is_supported_voltage - check if a voltage range can be supported
3000  *
3001  * @regulator: Regulator to check.
3002  * @min_uV: Minimum required voltage in uV.
3003  * @max_uV: Maximum required voltage in uV.
3004  *
3005  * Returns a boolean or a negative error code.
3006  */
3007 int regulator_is_supported_voltage(struct regulator *regulator,
3008                                    int min_uV, int max_uV)
3009 {
3010         struct regulator_dev *rdev = regulator->rdev;
3011         int i, voltages, ret;
3012
3013         /* If we can't change voltage check the current voltage */
3014         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3015                 ret = regulator_get_voltage(regulator);
3016                 if (ret >= 0)
3017                         return min_uV <= ret && ret <= max_uV;
3018                 else
3019                         return ret;
3020         }
3021
3022         /* Any voltage within constrains range is fine? */
3023         if (rdev->desc->continuous_voltage_range)
3024                 return min_uV >= rdev->constraints->min_uV &&
3025                                 max_uV <= rdev->constraints->max_uV;
3026
3027         ret = regulator_count_voltages(regulator);
3028         if (ret < 0)
3029                 return ret;
3030         voltages = ret;
3031
3032         for (i = 0; i < voltages; i++) {
3033                 ret = regulator_list_voltage(regulator, i);
3034
3035                 if (ret >= min_uV && ret <= max_uV)
3036                         return 1;
3037         }
3038
3039         return 0;
3040 }
3041 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3042
3043 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3044                                  int max_uV)
3045 {
3046         const struct regulator_desc *desc = rdev->desc;
3047
3048         if (desc->ops->map_voltage)
3049                 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3050
3051         if (desc->ops->list_voltage == regulator_list_voltage_linear)
3052                 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3053
3054         if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3055                 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3056
3057         if (desc->ops->list_voltage ==
3058                 regulator_list_voltage_pickable_linear_range)
3059                 return regulator_map_voltage_pickable_linear_range(rdev,
3060                                                         min_uV, max_uV);
3061
3062         return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3063 }
3064
3065 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3066                                        int min_uV, int max_uV,
3067                                        unsigned *selector)
3068 {
3069         struct pre_voltage_change_data data;
3070         int ret;
3071
3072         data.old_uV = _regulator_get_voltage(rdev);
3073         data.min_uV = min_uV;
3074         data.max_uV = max_uV;
3075         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3076                                    &data);
3077         if (ret & NOTIFY_STOP_MASK)
3078                 return -EINVAL;
3079
3080         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3081         if (ret >= 0)
3082                 return ret;
3083
3084         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3085                              (void *)data.old_uV);
3086
3087         return ret;
3088 }
3089
3090 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3091                                            int uV, unsigned selector)
3092 {
3093         struct pre_voltage_change_data data;
3094         int ret;
3095
3096         data.old_uV = _regulator_get_voltage(rdev);
3097         data.min_uV = uV;
3098         data.max_uV = uV;
3099         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3100                                    &data);
3101         if (ret & NOTIFY_STOP_MASK)
3102                 return -EINVAL;
3103
3104         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3105         if (ret >= 0)
3106                 return ret;
3107
3108         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3109                              (void *)data.old_uV);
3110
3111         return ret;
3112 }
3113
3114 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3115                                        int old_uV, int new_uV)
3116 {
3117         unsigned int ramp_delay = 0;
3118
3119         if (rdev->constraints->ramp_delay)
3120                 ramp_delay = rdev->constraints->ramp_delay;
3121         else if (rdev->desc->ramp_delay)
3122                 ramp_delay = rdev->desc->ramp_delay;
3123         else if (rdev->constraints->settling_time)
3124                 return rdev->constraints->settling_time;
3125         else if (rdev->constraints->settling_time_up &&
3126                  (new_uV > old_uV))
3127                 return rdev->constraints->settling_time_up;
3128         else if (rdev->constraints->settling_time_down &&
3129                  (new_uV < old_uV))
3130                 return rdev->constraints->settling_time_down;
3131
3132         if (ramp_delay == 0) {
3133                 rdev_dbg(rdev, "ramp_delay not set\n");
3134                 return 0;
3135         }
3136
3137         return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3138 }
3139
3140 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3141                                      int min_uV, int max_uV)
3142 {
3143         int ret;
3144         int delay = 0;
3145         int best_val = 0;
3146         unsigned int selector;
3147         int old_selector = -1;
3148         const struct regulator_ops *ops = rdev->desc->ops;
3149         int old_uV = _regulator_get_voltage(rdev);
3150
3151         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3152
3153         min_uV += rdev->constraints->uV_offset;
3154         max_uV += rdev->constraints->uV_offset;
3155
3156         /*
3157          * If we can't obtain the old selector there is not enough
3158          * info to call set_voltage_time_sel().
3159          */
3160         if (_regulator_is_enabled(rdev) &&
3161             ops->set_voltage_time_sel && ops->get_voltage_sel) {
3162                 old_selector = ops->get_voltage_sel(rdev);
3163                 if (old_selector < 0)
3164                         return old_selector;
3165         }
3166
3167         if (ops->set_voltage) {
3168                 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3169                                                   &selector);
3170
3171                 if (ret >= 0) {
3172                         if (ops->list_voltage)
3173                                 best_val = ops->list_voltage(rdev,
3174                                                              selector);
3175                         else
3176                                 best_val = _regulator_get_voltage(rdev);
3177                 }
3178
3179         } else if (ops->set_voltage_sel) {
3180                 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3181                 if (ret >= 0) {
3182                         best_val = ops->list_voltage(rdev, ret);
3183                         if (min_uV <= best_val && max_uV >= best_val) {
3184                                 selector = ret;
3185                                 if (old_selector == selector)
3186                                         ret = 0;
3187                                 else
3188                                         ret = _regulator_call_set_voltage_sel(
3189                                                 rdev, best_val, selector);
3190                         } else {
3191                                 ret = -EINVAL;
3192                         }
3193                 }
3194         } else {
3195                 ret = -EINVAL;
3196         }
3197
3198         if (ret)
3199                 goto out;
3200
3201         if (ops->set_voltage_time_sel) {
3202                 /*
3203                  * Call set_voltage_time_sel if successfully obtained
3204                  * old_selector
3205                  */
3206                 if (old_selector >= 0 && old_selector != selector)
3207                         delay = ops->set_voltage_time_sel(rdev, old_selector,
3208                                                           selector);
3209         } else {
3210                 if (old_uV != best_val) {
3211                         if (ops->set_voltage_time)
3212                                 delay = ops->set_voltage_time(rdev, old_uV,
3213                                                               best_val);
3214                         else
3215                                 delay = _regulator_set_voltage_time(rdev,
3216                                                                     old_uV,
3217                                                                     best_val);
3218                 }
3219         }
3220
3221         if (delay < 0) {
3222                 rdev_warn(rdev, "failed to get delay: %d\n", delay);
3223                 delay = 0;
3224         }
3225
3226         /* Insert any necessary delays */
3227         if (delay >= 1000) {
3228                 mdelay(delay / 1000);
3229                 udelay(delay % 1000);
3230         } else if (delay) {
3231                 udelay(delay);
3232         }
3233
3234         if (best_val >= 0) {
3235                 unsigned long data = best_val;
3236
3237                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3238                                      (void *)data);
3239         }
3240
3241 out:
3242         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3243
3244         return ret;
3245 }
3246
3247 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3248                                   int min_uV, int max_uV, suspend_state_t state)
3249 {
3250         struct regulator_state *rstate;
3251         int uV, sel;
3252
3253         rstate = regulator_get_suspend_state(rdev, state);
3254         if (rstate == NULL)
3255                 return -EINVAL;
3256
3257         if (min_uV < rstate->min_uV)
3258                 min_uV = rstate->min_uV;
3259         if (max_uV > rstate->max_uV)
3260                 max_uV = rstate->max_uV;
3261
3262         sel = regulator_map_voltage(rdev, min_uV, max_uV);
3263         if (sel < 0)
3264                 return sel;
3265
3266         uV = rdev->desc->ops->list_voltage(rdev, sel);
3267         if (uV >= min_uV && uV <= max_uV)
3268                 rstate->uV = uV;
3269
3270         return 0;
3271 }
3272
3273 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3274                                           int min_uV, int max_uV,
3275                                           suspend_state_t state)
3276 {
3277         struct regulator_dev *rdev = regulator->rdev;
3278         struct regulator_voltage *voltage = &regulator->voltage[state];
3279         int ret = 0;
3280         int old_min_uV, old_max_uV;
3281         int current_uV;
3282
3283         /* If we're setting the same range as last time the change
3284          * should be a noop (some cpufreq implementations use the same
3285          * voltage for multiple frequencies, for example).
3286          */
3287         if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3288                 goto out;
3289
3290         /* If we're trying to set a range that overlaps the current voltage,
3291          * return successfully even though the regulator does not support
3292          * changing the voltage.
3293          */
3294         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3295                 current_uV = _regulator_get_voltage(rdev);
3296                 if (min_uV <= current_uV && current_uV <= max_uV) {
3297                         voltage->min_uV = min_uV;
3298                         voltage->max_uV = max_uV;
3299                         goto out;
3300                 }
3301         }
3302
3303         /* sanity check */
3304         if (!rdev->desc->ops->set_voltage &&
3305             !rdev->desc->ops->set_voltage_sel) {
3306                 ret = -EINVAL;
3307                 goto out;
3308         }
3309
3310         /* constraints check */
3311         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3312         if (ret < 0)
3313                 goto out;
3314
3315         /* restore original values in case of error */
3316         old_min_uV = voltage->min_uV;
3317         old_max_uV = voltage->max_uV;
3318         voltage->min_uV = min_uV;
3319         voltage->max_uV = max_uV;
3320
3321         /* for not coupled regulators this will just set the voltage */
3322         ret = regulator_balance_voltage(rdev, state);
3323         if (ret < 0)
3324                 goto out2;
3325
3326 out:
3327         return 0;
3328 out2:
3329         voltage->min_uV = old_min_uV;
3330         voltage->max_uV = old_max_uV;
3331
3332         return ret;
3333 }
3334
3335 static int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3336                                       int max_uV, suspend_state_t state)
3337 {
3338         int best_supply_uV = 0;
3339         int supply_change_uV = 0;
3340         int ret;
3341
3342         if (rdev->supply &&
3343             regulator_ops_is_valid(rdev->supply->rdev,
3344                                    REGULATOR_CHANGE_VOLTAGE) &&
3345             (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3346                                            rdev->desc->ops->get_voltage_sel))) {
3347                 int current_supply_uV;
3348                 int selector;
3349
3350                 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3351                 if (selector < 0) {
3352                         ret = selector;
3353                         goto out;
3354                 }
3355
3356                 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3357                 if (best_supply_uV < 0) {
3358                         ret = best_supply_uV;
3359                         goto out;
3360                 }
3361
3362                 best_supply_uV += rdev->desc->min_dropout_uV;
3363
3364                 current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
3365                 if (current_supply_uV < 0) {
3366                         ret = current_supply_uV;
3367                         goto out;
3368                 }
3369
3370                 supply_change_uV = best_supply_uV - current_supply_uV;
3371         }
3372
3373         if (supply_change_uV > 0) {
3374                 ret = regulator_set_voltage_unlocked(rdev->supply,
3375                                 best_supply_uV, INT_MAX, state);
3376                 if (ret) {
3377                         dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
3378                                         ret);
3379                         goto out;
3380                 }
3381         }
3382
3383         if (state == PM_SUSPEND_ON)
3384                 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3385         else
3386                 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3387                                                         max_uV, state);
3388         if (ret < 0)
3389                 goto out;
3390
3391         if (supply_change_uV < 0) {
3392                 ret = regulator_set_voltage_unlocked(rdev->supply,
3393                                 best_supply_uV, INT_MAX, state);
3394                 if (ret)
3395                         dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
3396                                         ret);
3397                 /* No need to fail here */
3398                 ret = 0;
3399         }
3400
3401 out:
3402         return ret;
3403 }
3404
3405 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3406                                         int *current_uV, int *min_uV)
3407 {
3408         struct regulation_constraints *constraints = rdev->constraints;
3409
3410         /* Limit voltage change only if necessary */
3411         if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3412                 return 1;
3413
3414         if (*current_uV < 0) {
3415                 *current_uV = _regulator_get_voltage(rdev);
3416
3417                 if (*current_uV < 0)
3418                         return *current_uV;
3419         }
3420
3421         if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3422                 return 1;
3423
3424         /* Clamp target voltage within the given step */
3425         if (*current_uV < *min_uV)
3426                 *min_uV = min(*current_uV + constraints->max_uV_step,
3427                               *min_uV);
3428         else
3429                 *min_uV = max(*current_uV - constraints->max_uV_step,
3430                               *min_uV);
3431
3432         return 0;
3433 }
3434
3435 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3436                                          int *current_uV,
3437                                          int *min_uV, int *max_uV,
3438                                          suspend_state_t state,
3439                                          int n_coupled)
3440 {
3441         struct coupling_desc *c_desc = &rdev->coupling_desc;
3442         struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3443         struct regulation_constraints *constraints = rdev->constraints;
3444         int max_spread = constraints->max_spread;
3445         int desired_min_uV = 0, desired_max_uV = INT_MAX;
3446         int max_current_uV = 0, min_current_uV = INT_MAX;
3447         int highest_min_uV = 0, target_uV, possible_uV;
3448         int i, ret;
3449         bool done;
3450
3451         *current_uV = -1;
3452
3453         /*
3454          * If there are no coupled regulators, simply set the voltage
3455          * demanded by consumers.
3456          */
3457         if (n_coupled == 1) {
3458                 /*
3459                  * If consumers don't provide any demands, set voltage
3460                  * to min_uV
3461                  */
3462                 desired_min_uV = constraints->min_uV;
3463                 desired_max_uV = constraints->max_uV;
3464
3465                 ret = regulator_check_consumers(rdev,
3466                                                 &desired_min_uV,
3467                                                 &desired_max_uV, state);
3468                 if (ret < 0)
3469                         return ret;
3470
3471                 possible_uV = desired_min_uV;
3472                 done = true;
3473
3474                 goto finish;
3475         }
3476
3477         /* Find highest min desired voltage */
3478         for (i = 0; i < n_coupled; i++) {
3479                 int tmp_min = 0;
3480                 int tmp_max = INT_MAX;
3481
3482                 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3483
3484                 ret = regulator_check_consumers(c_rdevs[i],
3485                                                 &tmp_min,
3486                                                 &tmp_max, state);
3487                 if (ret < 0)
3488                         return ret;
3489
3490                 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3491                 if (ret < 0)
3492                         return ret;
3493
3494                 highest_min_uV = max(highest_min_uV, tmp_min);
3495
3496                 if (i == 0) {
3497                         desired_min_uV = tmp_min;
3498                         desired_max_uV = tmp_max;
3499                 }
3500         }
3501
3502         /*
3503          * Let target_uV be equal to the desired one if possible.
3504          * If not, set it to minimum voltage, allowed by other coupled
3505          * regulators.
3506          */
3507         target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3508
3509         /*
3510          * Find min and max voltages, which currently aren't violating
3511          * max_spread.
3512          */
3513         for (i = 1; i < n_coupled; i++) {
3514                 int tmp_act;
3515
3516                 if (!_regulator_is_enabled(c_rdevs[i]))
3517                         continue;
3518
3519                 tmp_act = _regulator_get_voltage(c_rdevs[i]);
3520                 if (tmp_act < 0)
3521                         return tmp_act;
3522
3523                 min_current_uV = min(tmp_act, min_current_uV);
3524                 max_current_uV = max(tmp_act, max_current_uV);
3525         }
3526
3527         /* There aren't any other regulators enabled */
3528         if (max_current_uV == 0) {
3529                 possible_uV = target_uV;
3530         } else {
3531                 /*
3532                  * Correct target voltage, so as it currently isn't
3533                  * violating max_spread
3534                  */
3535                 possible_uV = max(target_uV, max_current_uV - max_spread);
3536                 possible_uV = min(possible_uV, min_current_uV + max_spread);
3537         }
3538
3539         if (possible_uV > desired_max_uV)
3540                 return -EINVAL;
3541
3542         done = (possible_uV == target_uV);
3543         desired_min_uV = possible_uV;
3544
3545 finish:
3546         /* Apply max_uV_step constraint if necessary */
3547         if (state == PM_SUSPEND_ON) {
3548                 ret = regulator_limit_voltage_step(rdev, current_uV,
3549                                                    &desired_min_uV);
3550                 if (ret < 0)
3551                         return ret;
3552
3553                 if (ret == 0)
3554                         done = false;
3555         }
3556
3557         /* Set current_uV if wasn't done earlier in the code and if necessary */
3558         if (n_coupled > 1 && *current_uV == -1) {
3559
3560                 if (_regulator_is_enabled(rdev)) {
3561                         ret = _regulator_get_voltage(rdev);
3562                         if (ret < 0)
3563                                 return ret;
3564
3565                         *current_uV = ret;
3566                 } else {
3567                         *current_uV = desired_min_uV;
3568                 }
3569         }
3570
3571         *min_uV = desired_min_uV;
3572         *max_uV = desired_max_uV;
3573
3574         return done;
3575 }
3576
3577 static int regulator_balance_voltage(struct regulator_dev *rdev,
3578                                      suspend_state_t state)
3579 {
3580         struct regulator_dev **c_rdevs;
3581         struct regulator_dev *best_rdev;
3582         struct coupling_desc *c_desc = &rdev->coupling_desc;
3583         int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3584         bool best_c_rdev_done, c_rdev_done[MAX_COUPLED];
3585         unsigned int delta, best_delta;
3586
3587         c_rdevs = c_desc->coupled_rdevs;
3588         n_coupled = c_desc->n_coupled;
3589
3590         /*
3591          * If system is in a state other than PM_SUSPEND_ON, don't check
3592          * other coupled regulators.
3593          */
3594         if (state != PM_SUSPEND_ON)
3595                 n_coupled = 1;
3596
3597         if (c_desc->n_resolved < n_coupled) {
3598                 rdev_err(rdev, "Not all coupled regulators registered\n");
3599                 return -EPERM;
3600         }
3601
3602         for (i = 0; i < n_coupled; i++)
3603                 c_rdev_done[i] = false;
3604
3605         /*
3606          * Find the best possible voltage change on each loop. Leave the loop
3607          * if there isn't any possible change.
3608          */
3609         do {
3610                 best_c_rdev_done = false;
3611                 best_delta = 0;
3612                 best_min_uV = 0;
3613                 best_max_uV = 0;
3614                 best_c_rdev = 0;
3615                 best_rdev = NULL;
3616
3617                 /*
3618                  * Find highest difference between optimal voltage
3619                  * and current voltage.
3620                  */
3621                 for (i = 0; i < n_coupled; i++) {
3622                         /*
3623                          * optimal_uV is the best voltage that can be set for
3624                          * i-th regulator at the moment without violating
3625                          * max_spread constraint in order to balance
3626                          * the coupled voltages.
3627                          */
3628                         int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3629
3630                         if (c_rdev_done[i])
3631                                 continue;
3632
3633                         ret = regulator_get_optimal_voltage(c_rdevs[i],
3634                                                             &current_uV,
3635                                                             &optimal_uV,
3636                                                             &optimal_max_uV,
3637                                                             state, n_coupled);
3638                         if (ret < 0)
3639                                 goto out;
3640
3641                         delta = abs(optimal_uV - current_uV);
3642
3643                         if (delta && best_delta <= delta) {
3644                                 best_c_rdev_done = ret;
3645                                 best_delta = delta;
3646                                 best_rdev = c_rdevs[i];
3647                                 best_min_uV = optimal_uV;
3648                                 best_max_uV = optimal_max_uV;
3649                                 best_c_rdev = i;
3650                         }
3651                 }
3652
3653                 /* Nothing to change, return successfully */
3654                 if (!best_rdev) {
3655                         ret = 0;
3656                         goto out;
3657                 }
3658
3659                 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3660                                                  best_max_uV, state);
3661
3662                 if (ret < 0)
3663                         goto out;
3664
3665                 c_rdev_done[best_c_rdev] = best_c_rdev_done;
3666
3667         } while (n_coupled > 1);
3668
3669 out:
3670         return ret;
3671 }
3672
3673 /**
3674  * regulator_set_voltage - set regulator output voltage
3675  * @regulator: regulator source
3676  * @min_uV: Minimum required voltage in uV
3677  * @max_uV: Maximum acceptable voltage in uV
3678  *
3679  * Sets a voltage regulator to the desired output voltage. This can be set
3680  * during any regulator state. IOW, regulator can be disabled or enabled.
3681  *
3682  * If the regulator is enabled then the voltage will change to the new value
3683  * immediately otherwise if the regulator is disabled the regulator will
3684  * output at the new voltage when enabled.
3685  *
3686  * NOTE: If the regulator is shared between several devices then the lowest
3687  * request voltage that meets the system constraints will be used.
3688  * Regulator system constraints must be set for this regulator before
3689  * calling this function otherwise this call will fail.
3690  */
3691 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3692 {
3693         struct ww_acquire_ctx ww_ctx;
3694         int ret;
3695
3696         regulator_lock_dependent(regulator->rdev, &ww_ctx);
3697
3698         ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3699                                              PM_SUSPEND_ON);
3700
3701         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3702
3703         return ret;
3704 }
3705 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3706
3707 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3708                                            suspend_state_t state, bool en)
3709 {
3710         struct regulator_state *rstate;
3711
3712         rstate = regulator_get_suspend_state(rdev, state);
3713         if (rstate == NULL)
3714                 return -EINVAL;
3715
3716         if (!rstate->changeable)
3717                 return -EPERM;
3718
3719         rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3720
3721         return 0;
3722 }
3723
3724 int regulator_suspend_enable(struct regulator_dev *rdev,
3725                                     suspend_state_t state)
3726 {
3727         return regulator_suspend_toggle(rdev, state, true);
3728 }
3729 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3730
3731 int regulator_suspend_disable(struct regulator_dev *rdev,
3732                                      suspend_state_t state)
3733 {
3734         struct regulator *regulator;
3735         struct regulator_voltage *voltage;
3736
3737         /*
3738          * if any consumer wants this regulator device keeping on in
3739          * suspend states, don't set it as disabled.
3740          */
3741         list_for_each_entry(regulator, &rdev->consumer_list, list) {
3742                 voltage = &regulator->voltage[state];
3743                 if (voltage->min_uV || voltage->max_uV)
3744                         return 0;
3745         }
3746
3747         return regulator_suspend_toggle(rdev, state, false);
3748 }
3749 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
3750
3751 static int _regulator_set_suspend_voltage(struct regulator *regulator,
3752                                           int min_uV, int max_uV,
3753                                           suspend_state_t state)
3754 {
3755         struct regulator_dev *rdev = regulator->rdev;
3756         struct regulator_state *rstate;
3757
3758         rstate = regulator_get_suspend_state(rdev, state);
3759         if (rstate == NULL)
3760                 return -EINVAL;
3761
3762         if (rstate->min_uV == rstate->max_uV) {
3763                 rdev_err(rdev, "The suspend voltage can't be changed!\n");
3764                 return -EPERM;
3765         }
3766
3767         return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
3768 }
3769
3770 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
3771                                   int max_uV, suspend_state_t state)
3772 {
3773         struct ww_acquire_ctx ww_ctx;
3774         int ret;
3775
3776         /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
3777         if (regulator_check_states(state) || state == PM_SUSPEND_ON)
3778                 return -EINVAL;
3779
3780         regulator_lock_dependent(regulator->rdev, &ww_ctx);
3781
3782         ret = _regulator_set_suspend_voltage(regulator, min_uV,
3783                                              max_uV, state);
3784
3785         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3786
3787         return ret;
3788 }
3789 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
3790
3791 /**
3792  * regulator_set_voltage_time - get raise/fall time
3793  * @regulator: regulator source
3794  * @old_uV: starting voltage in microvolts
3795  * @new_uV: target voltage in microvolts
3796  *
3797  * Provided with the starting and ending voltage, this function attempts to
3798  * calculate the time in microseconds required to rise or fall to this new
3799  * voltage.
3800  */
3801 int regulator_set_voltage_time(struct regulator *regulator,
3802                                int old_uV, int new_uV)
3803 {
3804         struct regulator_dev *rdev = regulator->rdev;
3805         const struct regulator_ops *ops = rdev->desc->ops;
3806         int old_sel = -1;
3807         int new_sel = -1;
3808         int voltage;
3809         int i;
3810
3811         if (ops->set_voltage_time)
3812                 return ops->set_voltage_time(rdev, old_uV, new_uV);
3813         else if (!ops->set_voltage_time_sel)
3814                 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3815
3816         /* Currently requires operations to do this */
3817         if (!ops->list_voltage || !rdev->desc->n_voltages)
3818                 return -EINVAL;
3819
3820         for (i = 0; i < rdev->desc->n_voltages; i++) {
3821                 /* We only look for exact voltage matches here */
3822                 voltage = regulator_list_voltage(regulator, i);
3823                 if (voltage < 0)
3824                         return -EINVAL;
3825                 if (voltage == 0)
3826                         continue;
3827                 if (voltage == old_uV)
3828                         old_sel = i;
3829                 if (voltage == new_uV)
3830                         new_sel = i;
3831         }
3832
3833         if (old_sel < 0 || new_sel < 0)
3834                 return -EINVAL;
3835
3836         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3837 }
3838 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3839
3840 /**
3841  * regulator_set_voltage_time_sel - get raise/fall time
3842  * @rdev: regulator source device
3843  * @old_selector: selector for starting voltage
3844  * @new_selector: selector for target voltage
3845  *
3846  * Provided with the starting and target voltage selectors, this function
3847  * returns time in microseconds required to rise or fall to this new voltage
3848  *
3849  * Drivers providing ramp_delay in regulation_constraints can use this as their
3850  * set_voltage_time_sel() operation.
3851  */
3852 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3853                                    unsigned int old_selector,
3854                                    unsigned int new_selector)
3855 {
3856         int old_volt, new_volt;
3857
3858         /* sanity check */
3859         if (!rdev->desc->ops->list_voltage)
3860                 return -EINVAL;
3861
3862         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3863         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3864
3865         if (rdev->desc->ops->set_voltage_time)
3866                 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
3867                                                          new_volt);
3868         else
3869                 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3870 }
3871 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3872
3873 /**
3874  * regulator_sync_voltage - re-apply last regulator output voltage
3875  * @regulator: regulator source
3876  *
3877  * Re-apply the last configured voltage.  This is intended to be used
3878  * where some external control source the consumer is cooperating with
3879  * has caused the configured voltage to change.
3880  */
3881 int regulator_sync_voltage(struct regulator *regulator)
3882 {
3883         struct regulator_dev *rdev = regulator->rdev;
3884         struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
3885         int ret, min_uV, max_uV;
3886
3887         regulator_lock(rdev);
3888
3889         if (!rdev->desc->ops->set_voltage &&
3890             !rdev->desc->ops->set_voltage_sel) {
3891                 ret = -EINVAL;
3892                 goto out;
3893         }
3894
3895         /* This is only going to work if we've had a voltage configured. */
3896         if (!voltage->min_uV && !voltage->max_uV) {
3897                 ret = -EINVAL;
3898                 goto out;
3899         }
3900
3901         min_uV = voltage->min_uV;
3902         max_uV = voltage->max_uV;
3903
3904         /* This should be a paranoia check... */
3905         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3906         if (ret < 0)
3907                 goto out;
3908
3909         ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
3910         if (ret < 0)
3911                 goto out;
3912
3913         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3914
3915 out:
3916         regulator_unlock(rdev);
3917         return ret;
3918 }
3919 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3920
3921 static int _regulator_get_voltage(struct regulator_dev *rdev)
3922 {
3923         int sel, ret;
3924         bool bypassed;
3925
3926         if (rdev->desc->ops->get_bypass) {
3927                 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
3928                 if (ret < 0)
3929                         return ret;
3930                 if (bypassed) {
3931                         /* if bypassed the regulator must have a supply */
3932                         if (!rdev->supply) {
3933                                 rdev_err(rdev,
3934                                          "bypassed regulator has no supply!\n");
3935                                 return -EPROBE_DEFER;
3936                         }
3937
3938                         return _regulator_get_voltage(rdev->supply->rdev);
3939                 }
3940         }
3941
3942         if (rdev->desc->ops->get_voltage_sel) {
3943                 sel = rdev->desc->ops->get_voltage_sel(rdev);
3944                 if (sel < 0)
3945                         return sel;
3946                 ret = rdev->desc->ops->list_voltage(rdev, sel);
3947         } else if (rdev->desc->ops->get_voltage) {
3948                 ret = rdev->desc->ops->get_voltage(rdev);
3949         } else if (rdev->desc->ops->list_voltage) {
3950                 ret = rdev->desc->ops->list_voltage(rdev, 0);
3951         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3952                 ret = rdev->desc->fixed_uV;
3953         } else if (rdev->supply) {
3954                 ret = _regulator_get_voltage(rdev->supply->rdev);
3955         } else {
3956                 return -EINVAL;
3957         }
3958
3959         if (ret < 0)
3960                 return ret;
3961         return ret - rdev->constraints->uV_offset;
3962 }
3963
3964 /**
3965  * regulator_get_voltage - get regulator output voltage
3966  * @regulator: regulator source
3967  *
3968  * This returns the current regulator voltage in uV.
3969  *
3970  * NOTE: If the regulator is disabled it will return the voltage value. This
3971  * function should not be used to determine regulator state.
3972  */
3973 int regulator_get_voltage(struct regulator *regulator)
3974 {
3975         struct ww_acquire_ctx ww_ctx;
3976         int ret;
3977
3978         regulator_lock_dependent(regulator->rdev, &ww_ctx);
3979         ret = _regulator_get_voltage(regulator->rdev);
3980         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3981
3982         return ret;
3983 }
3984 EXPORT_SYMBOL_GPL(regulator_get_voltage);
3985
3986 /**
3987  * regulator_set_current_limit - set regulator output current limit
3988  * @regulator: regulator source
3989  * @min_uA: Minimum supported current in uA
3990  * @max_uA: Maximum supported current in uA
3991  *
3992  * Sets current sink to the desired output current. This can be set during
3993  * any regulator state. IOW, regulator can be disabled or enabled.
3994  *
3995  * If the regulator is enabled then the current will change to the new value
3996  * immediately otherwise if the regulator is disabled the regulator will
3997  * output at the new current when enabled.
3998  *
3999  * NOTE: Regulator system constraints must be set for this regulator before
4000  * calling this function otherwise this call will fail.
4001  */
4002 int regulator_set_current_limit(struct regulator *regulator,
4003                                int min_uA, int max_uA)
4004 {
4005         struct regulator_dev *rdev = regulator->rdev;
4006         int ret;
4007
4008         regulator_lock(rdev);
4009
4010         /* sanity check */
4011         if (!rdev->desc->ops->set_current_limit) {
4012                 ret = -EINVAL;
4013                 goto out;
4014         }
4015
4016         /* constraints check */
4017         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4018         if (ret < 0)
4019                 goto out;
4020
4021         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4022 out:
4023         regulator_unlock(rdev);
4024         return ret;
4025 }
4026 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4027
4028 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4029 {
4030         /* sanity check */
4031         if (!rdev->desc->ops->get_current_limit)
4032                 return -EINVAL;
4033
4034         return rdev->desc->ops->get_current_limit(rdev);
4035 }
4036
4037 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4038 {
4039         int ret;
4040
4041         regulator_lock(rdev);
4042         ret = _regulator_get_current_limit_unlocked(rdev);
4043         regulator_unlock(rdev);
4044
4045         return ret;
4046 }
4047
4048 /**
4049  * regulator_get_current_limit - get regulator output current
4050  * @regulator: regulator source
4051  *
4052  * This returns the current supplied by the specified current sink in uA.
4053  *
4054  * NOTE: If the regulator is disabled it will return the current value. This
4055  * function should not be used to determine regulator state.
4056  */
4057 int regulator_get_current_limit(struct regulator *regulator)
4058 {
4059         return _regulator_get_current_limit(regulator->rdev);
4060 }
4061 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4062
4063 /**
4064  * regulator_set_mode - set regulator operating mode
4065  * @regulator: regulator source
4066  * @mode: operating mode - one of the REGULATOR_MODE constants
4067  *
4068  * Set regulator operating mode to increase regulator efficiency or improve
4069  * regulation performance.
4070  *
4071  * NOTE: Regulator system constraints must be set for this regulator before
4072  * calling this function otherwise this call will fail.
4073  */
4074 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4075 {
4076         struct regulator_dev *rdev = regulator->rdev;
4077         int ret;
4078         int regulator_curr_mode;
4079
4080         regulator_lock(rdev);
4081
4082         /* sanity check */
4083         if (!rdev->desc->ops->set_mode) {
4084                 ret = -EINVAL;
4085                 goto out;
4086         }
4087
4088         /* return if the same mode is requested */
4089         if (rdev->desc->ops->get_mode) {
4090                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4091                 if (regulator_curr_mode == mode) {
4092                         ret = 0;
4093                         goto out;
4094                 }
4095         }
4096
4097         /* constraints check */
4098         ret = regulator_mode_constrain(rdev, &mode);
4099         if (ret < 0)
4100                 goto out;
4101
4102         ret = rdev->desc->ops->set_mode(rdev, mode);
4103 out:
4104         regulator_unlock(rdev);
4105         return ret;
4106 }
4107 EXPORT_SYMBOL_GPL(regulator_set_mode);
4108
4109 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4110 {
4111         /* sanity check */
4112         if (!rdev->desc->ops->get_mode)
4113                 return -EINVAL;
4114
4115         return rdev->desc->ops->get_mode(rdev);
4116 }
4117
4118 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4119 {
4120         int ret;
4121
4122         regulator_lock(rdev);
4123         ret = _regulator_get_mode_unlocked(rdev);
4124         regulator_unlock(rdev);
4125
4126         return ret;
4127 }
4128
4129 /**
4130  * regulator_get_mode - get regulator operating mode
4131  * @regulator: regulator source
4132  *
4133  * Get the current regulator operating mode.
4134  */
4135 unsigned int regulator_get_mode(struct regulator *regulator)
4136 {
4137         return _regulator_get_mode(regulator->rdev);
4138 }
4139 EXPORT_SYMBOL_GPL(regulator_get_mode);
4140
4141 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4142                                         unsigned int *flags)
4143 {
4144         int ret;
4145
4146         regulator_lock(rdev);
4147
4148         /* sanity check */
4149         if (!rdev->desc->ops->get_error_flags) {
4150                 ret = -EINVAL;
4151                 goto out;
4152         }
4153
4154         ret = rdev->desc->ops->get_error_flags(rdev, flags);
4155 out:
4156         regulator_unlock(rdev);
4157         return ret;
4158 }
4159
4160 /**
4161  * regulator_get_error_flags - get regulator error information
4162  * @regulator: regulator source
4163  * @flags: pointer to store error flags
4164  *
4165  * Get the current regulator error information.
4166  */
4167 int regulator_get_error_flags(struct regulator *regulator,
4168                                 unsigned int *flags)
4169 {
4170         return _regulator_get_error_flags(regulator->rdev, flags);
4171 }
4172 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4173
4174 /**
4175  * regulator_set_load - set regulator load
4176  * @regulator: regulator source
4177  * @uA_load: load current
4178  *
4179  * Notifies the regulator core of a new device load. This is then used by
4180  * DRMS (if enabled by constraints) to set the most efficient regulator
4181  * operating mode for the new regulator loading.
4182  *
4183  * Consumer devices notify their supply regulator of the maximum power
4184  * they will require (can be taken from device datasheet in the power
4185  * consumption tables) when they change operational status and hence power
4186  * state. Examples of operational state changes that can affect power
4187  * consumption are :-
4188  *
4189  *    o Device is opened / closed.
4190  *    o Device I/O is about to begin or has just finished.
4191  *    o Device is idling in between work.
4192  *
4193  * This information is also exported via sysfs to userspace.
4194  *
4195  * DRMS will sum the total requested load on the regulator and change
4196  * to the most efficient operating mode if platform constraints allow.
4197  *
4198  * NOTE: when a regulator consumer requests to have a regulator
4199  * disabled then any load that consumer requested no longer counts
4200  * toward the total requested load.  If the regulator is re-enabled
4201  * then the previously requested load will start counting again.
4202  *
4203  * If a regulator is an always-on regulator then an individual consumer's
4204  * load will still be removed if that consumer is fully disabled.
4205  *
4206  * On error a negative errno is returned.
4207  */
4208 int regulator_set_load(struct regulator *regulator, int uA_load)
4209 {
4210         struct regulator_dev *rdev = regulator->rdev;
4211         int old_uA_load;
4212         int ret = 0;
4213
4214         regulator_lock(rdev);
4215         old_uA_load = regulator->uA_load;
4216         regulator->uA_load = uA_load;
4217         if (regulator->enable_count && old_uA_load != uA_load) {
4218                 ret = drms_uA_update(rdev);
4219                 if (ret < 0)
4220                         regulator->uA_load = old_uA_load;
4221         }
4222         regulator_unlock(rdev);
4223
4224         return ret;
4225 }
4226 EXPORT_SYMBOL_GPL(regulator_set_load);
4227
4228 /**
4229  * regulator_allow_bypass - allow the regulator to go into bypass mode
4230  *
4231  * @regulator: Regulator to configure
4232  * @enable: enable or disable bypass mode
4233  *
4234  * Allow the regulator to go into bypass mode if all other consumers
4235  * for the regulator also enable bypass mode and the machine
4236  * constraints allow this.  Bypass mode means that the regulator is
4237  * simply passing the input directly to the output with no regulation.
4238  */
4239 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4240 {
4241         struct regulator_dev *rdev = regulator->rdev;
4242         int ret = 0;
4243
4244         if (!rdev->desc->ops->set_bypass)
4245                 return 0;
4246
4247         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4248                 return 0;
4249
4250         regulator_lock(rdev);
4251
4252         if (enable && !regulator->bypass) {
4253                 rdev->bypass_count++;
4254
4255                 if (rdev->bypass_count == rdev->open_count) {
4256                         ret = rdev->desc->ops->set_bypass(rdev, enable);
4257                         if (ret != 0)
4258                                 rdev->bypass_count--;
4259                 }
4260
4261         } else if (!enable && regulator->bypass) {
4262                 rdev->bypass_count--;
4263
4264                 if (rdev->bypass_count != rdev->open_count) {
4265                         ret = rdev->desc->ops->set_bypass(rdev, enable);
4266                         if (ret != 0)
4267                                 rdev->bypass_count++;
4268                 }
4269         }
4270
4271         if (ret == 0)
4272                 regulator->bypass = enable;
4273
4274         regulator_unlock(rdev);
4275
4276         return ret;
4277 }
4278 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4279
4280 /**
4281  * regulator_register_notifier - register regulator event notifier
4282  * @regulator: regulator source
4283  * @nb: notifier block
4284  *
4285  * Register notifier block to receive regulator events.
4286  */
4287 int regulator_register_notifier(struct regulator *regulator,
4288                               struct notifier_block *nb)
4289 {
4290         return blocking_notifier_chain_register(&regulator->rdev->notifier,
4291                                                 nb);
4292 }
4293 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4294
4295 /**
4296  * regulator_unregister_notifier - unregister regulator event notifier
4297  * @regulator: regulator source
4298  * @nb: notifier block
4299  *
4300  * Unregister regulator event notifier block.
4301  */
4302 int regulator_unregister_notifier(struct regulator *regulator,
4303                                 struct notifier_block *nb)
4304 {
4305         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4306                                                   nb);
4307 }
4308 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4309
4310 /* notify regulator consumers and downstream regulator consumers.
4311  * Note mutex must be held by caller.
4312  */
4313 static int _notifier_call_chain(struct regulator_dev *rdev,
4314                                   unsigned long event, void *data)
4315 {
4316         /* call rdev chain first */
4317         return blocking_notifier_call_chain(&rdev->notifier, event, data);
4318 }
4319
4320 /**
4321  * regulator_bulk_get - get multiple regulator consumers
4322  *
4323  * @dev:           Device to supply
4324  * @num_consumers: Number of consumers to register
4325  * @consumers:     Configuration of consumers; clients are stored here.
4326  *
4327  * @return 0 on success, an errno on failure.
4328  *
4329  * This helper function allows drivers to get several regulator
4330  * consumers in one operation.  If any of the regulators cannot be
4331  * acquired then any regulators that were allocated will be freed
4332  * before returning to the caller.
4333  */
4334 int regulator_bulk_get(struct device *dev, int num_consumers,
4335                        struct regulator_bulk_data *consumers)
4336 {
4337         int i;
4338         int ret;
4339
4340         for (i = 0; i < num_consumers; i++)
4341                 consumers[i].consumer = NULL;
4342
4343         for (i = 0; i < num_consumers; i++) {
4344                 consumers[i].consumer = regulator_get(dev,
4345                                                       consumers[i].supply);
4346                 if (IS_ERR(consumers[i].consumer)) {
4347                         ret = PTR_ERR(consumers[i].consumer);
4348                         dev_err(dev, "Failed to get supply '%s': %d\n",
4349                                 consumers[i].supply, ret);
4350                         consumers[i].consumer = NULL;
4351                         goto err;
4352                 }
4353         }
4354
4355         return 0;
4356
4357 err:
4358         while (--i >= 0)
4359                 regulator_put(consumers[i].consumer);
4360
4361         return ret;
4362 }
4363 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4364
4365 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4366 {
4367         struct regulator_bulk_data *bulk = data;
4368
4369         bulk->ret = regulator_enable(bulk->consumer);
4370 }
4371
4372 /**
4373  * regulator_bulk_enable - enable multiple regulator consumers
4374  *
4375  * @num_consumers: Number of consumers
4376  * @consumers:     Consumer data; clients are stored here.
4377  * @return         0 on success, an errno on failure
4378  *
4379  * This convenience API allows consumers to enable multiple regulator
4380  * clients in a single API call.  If any consumers cannot be enabled
4381  * then any others that were enabled will be disabled again prior to
4382  * return.
4383  */
4384 int regulator_bulk_enable(int num_consumers,
4385                           struct regulator_bulk_data *consumers)
4386 {
4387         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4388         int i;
4389         int ret = 0;
4390
4391         for (i = 0; i < num_consumers; i++) {
4392                 async_schedule_domain(regulator_bulk_enable_async,
4393                                       &consumers[i], &async_domain);
4394         }
4395
4396         async_synchronize_full_domain(&async_domain);
4397
4398         /* If any consumer failed we need to unwind any that succeeded */
4399         for (i = 0; i < num_consumers; i++) {
4400                 if (consumers[i].ret != 0) {
4401                         ret = consumers[i].ret;
4402                         goto err;
4403                 }
4404         }
4405
4406         return 0;
4407
4408 err:
4409         for (i = 0; i < num_consumers; i++) {
4410                 if (consumers[i].ret < 0)
4411                         pr_err("Failed to enable %s: %d\n", consumers[i].supply,
4412                                consumers[i].ret);
4413                 else
4414                         regulator_disable(consumers[i].consumer);
4415         }
4416
4417         return ret;
4418 }
4419 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4420
4421 /**
4422  * regulator_bulk_disable - disable multiple regulator consumers
4423  *
4424  * @num_consumers: Number of consumers
4425  * @consumers:     Consumer data; clients are stored here.
4426  * @return         0 on success, an errno on failure
4427  *
4428  * This convenience API allows consumers to disable multiple regulator
4429  * clients in a single API call.  If any consumers cannot be disabled
4430  * then any others that were disabled will be enabled again prior to
4431  * return.
4432  */
4433 int regulator_bulk_disable(int num_consumers,
4434                            struct regulator_bulk_data *consumers)
4435 {
4436         int i;
4437         int ret, r;
4438
4439         for (i = num_consumers - 1; i >= 0; --i) {
4440                 ret = regulator_disable(consumers[i].consumer);
4441                 if (ret != 0)
4442                         goto err;
4443         }
4444
4445         return 0;
4446
4447 err:
4448         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
4449         for (++i; i < num_consumers; ++i) {
4450                 r = regulator_enable(consumers[i].consumer);
4451                 if (r != 0)
4452                         pr_err("Failed to re-enable %s: %d\n",
4453                                consumers[i].supply, r);
4454         }
4455
4456         return ret;
4457 }
4458 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4459
4460 /**
4461  * regulator_bulk_force_disable - force disable multiple regulator consumers
4462  *
4463  * @num_consumers: Number of consumers
4464  * @consumers:     Consumer data; clients are stored here.
4465  * @return         0 on success, an errno on failure
4466  *
4467  * This convenience API allows consumers to forcibly disable multiple regulator
4468  * clients in a single API call.
4469  * NOTE: This should be used for situations when device damage will
4470  * likely occur if the regulators are not disabled (e.g. over temp).
4471  * Although regulator_force_disable function call for some consumers can
4472  * return error numbers, the function is called for all consumers.
4473  */
4474 int regulator_bulk_force_disable(int num_consumers,
4475                            struct regulator_bulk_data *consumers)
4476 {
4477         int i;
4478         int ret = 0;
4479
4480         for (i = 0; i < num_consumers; i++) {
4481                 consumers[i].ret =
4482                             regulator_force_disable(consumers[i].consumer);
4483
4484                 /* Store first error for reporting */
4485                 if (consumers[i].ret && !ret)
4486                         ret = consumers[i].ret;
4487         }
4488
4489         return ret;
4490 }
4491 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4492
4493 /**
4494  * regulator_bulk_free - free multiple regulator consumers
4495  *
4496  * @num_consumers: Number of consumers
4497  * @consumers:     Consumer data; clients are stored here.
4498  *
4499  * This convenience API allows consumers to free multiple regulator
4500  * clients in a single API call.
4501  */
4502 void regulator_bulk_free(int num_consumers,
4503                          struct regulator_bulk_data *consumers)
4504 {
4505         int i;
4506
4507         for (i = 0; i < num_consumers; i++) {
4508                 regulator_put(consumers[i].consumer);
4509                 consumers[i].consumer = NULL;
4510         }
4511 }
4512 EXPORT_SYMBOL_GPL(regulator_bulk_free);
4513
4514 /**
4515  * regulator_notifier_call_chain - call regulator event notifier
4516  * @rdev: regulator source
4517  * @event: notifier block
4518  * @data: callback-specific data.
4519  *
4520  * Called by regulator drivers to notify clients a regulator event has
4521  * occurred. We also notify regulator clients downstream.
4522  * Note lock must be held by caller.
4523  */
4524 int regulator_notifier_call_chain(struct regulator_dev *rdev,
4525                                   unsigned long event, void *data)
4526 {
4527         lockdep_assert_held_once(&rdev->mutex.base);
4528
4529         _notifier_call_chain(rdev, event, data);
4530         return NOTIFY_DONE;
4531
4532 }
4533 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4534
4535 /**
4536  * regulator_mode_to_status - convert a regulator mode into a status
4537  *
4538  * @mode: Mode to convert
4539  *
4540  * Convert a regulator mode into a status.
4541  */
4542 int regulator_mode_to_status(unsigned int mode)
4543 {
4544         switch (mode) {
4545         case REGULATOR_MODE_FAST:
4546                 return REGULATOR_STATUS_FAST;
4547         case REGULATOR_MODE_NORMAL:
4548                 return REGULATOR_STATUS_NORMAL;
4549         case REGULATOR_MODE_IDLE:
4550                 return REGULATOR_STATUS_IDLE;
4551         case REGULATOR_MODE_STANDBY:
4552                 return REGULATOR_STATUS_STANDBY;
4553         default:
4554                 return REGULATOR_STATUS_UNDEFINED;
4555         }
4556 }
4557 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4558
4559 static struct attribute *regulator_dev_attrs[] = {
4560         &dev_attr_name.attr,
4561         &dev_attr_num_users.attr,
4562         &dev_attr_type.attr,
4563         &dev_attr_microvolts.attr,
4564         &dev_attr_microamps.attr,
4565         &dev_attr_opmode.attr,
4566         &dev_attr_state.attr,
4567         &dev_attr_status.attr,
4568         &dev_attr_bypass.attr,
4569         &dev_attr_requested_microamps.attr,
4570         &dev_attr_min_microvolts.attr,
4571         &dev_attr_max_microvolts.attr,
4572         &dev_attr_min_microamps.attr,
4573         &dev_attr_max_microamps.attr,
4574         &dev_attr_suspend_standby_state.attr,
4575         &dev_attr_suspend_mem_state.attr,
4576         &dev_attr_suspend_disk_state.attr,
4577         &dev_attr_suspend_standby_microvolts.attr,
4578         &dev_attr_suspend_mem_microvolts.attr,
4579         &dev_attr_suspend_disk_microvolts.attr,
4580         &dev_attr_suspend_standby_mode.attr,
4581         &dev_attr_suspend_mem_mode.attr,
4582         &dev_attr_suspend_disk_mode.attr,
4583         NULL
4584 };
4585
4586 /*
4587  * To avoid cluttering sysfs (and memory) with useless state, only
4588  * create attributes that can be meaningfully displayed.
4589  */
4590 static umode_t regulator_attr_is_visible(struct kobject *kobj,
4591                                          struct attribute *attr, int idx)
4592 {
4593         struct device *dev = kobj_to_dev(kobj);
4594         struct regulator_dev *rdev = dev_to_rdev(dev);
4595         const struct regulator_ops *ops = rdev->desc->ops;
4596         umode_t mode = attr->mode;
4597
4598         /* these three are always present */
4599         if (attr == &dev_attr_name.attr ||
4600             attr == &dev_attr_num_users.attr ||
4601             attr == &dev_attr_type.attr)
4602                 return mode;
4603
4604         /* some attributes need specific methods to be displayed */
4605         if (attr == &dev_attr_microvolts.attr) {
4606                 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4607                     (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4608                     (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4609                     (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4610                         return mode;
4611                 return 0;
4612         }
4613
4614         if (attr == &dev_attr_microamps.attr)
4615                 return ops->get_current_limit ? mode : 0;
4616
4617         if (attr == &dev_attr_opmode.attr)
4618                 return ops->get_mode ? mode : 0;
4619
4620         if (attr == &dev_attr_state.attr)
4621                 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4622
4623         if (attr == &dev_attr_status.attr)
4624                 return ops->get_status ? mode : 0;
4625
4626         if (attr == &dev_attr_bypass.attr)
4627                 return ops->get_bypass ? mode : 0;
4628
4629         /* constraints need specific supporting methods */
4630         if (attr == &dev_attr_min_microvolts.attr ||
4631             attr == &dev_attr_max_microvolts.attr)
4632                 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4633
4634         if (attr == &dev_attr_min_microamps.attr ||
4635             attr == &dev_attr_max_microamps.attr)
4636                 return ops->set_current_limit ? mode : 0;
4637
4638         if (attr == &dev_attr_suspend_standby_state.attr ||
4639             attr == &dev_attr_suspend_mem_state.attr ||
4640             attr == &dev_attr_suspend_disk_state.attr)
4641                 return mode;
4642
4643         if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4644             attr == &dev_attr_suspend_mem_microvolts.attr ||
4645             attr == &dev_attr_suspend_disk_microvolts.attr)
4646                 return ops->set_suspend_voltage ? mode : 0;
4647
4648         if (attr == &dev_attr_suspend_standby_mode.attr ||
4649             attr == &dev_attr_suspend_mem_mode.attr ||
4650             attr == &dev_attr_suspend_disk_mode.attr)
4651                 return ops->set_suspend_mode ? mode : 0;
4652
4653         return mode;
4654 }
4655
4656 static const struct attribute_group regulator_dev_group = {
4657         .attrs = regulator_dev_attrs,
4658         .is_visible = regulator_attr_is_visible,
4659 };
4660
4661 static const struct attribute_group *regulator_dev_groups[] = {
4662         &regulator_dev_group,
4663         NULL
4664 };
4665
4666 static void regulator_dev_release(struct device *dev)
4667 {
4668         struct regulator_dev *rdev = dev_get_drvdata(dev);
4669
4670         kfree(rdev->constraints);
4671         of_node_put(rdev->dev.of_node);
4672         kfree(rdev);
4673 }
4674
4675 static void rdev_init_debugfs(struct regulator_dev *rdev)
4676 {
4677         struct device *parent = rdev->dev.parent;
4678         const char *rname = rdev_get_name(rdev);
4679         char name[NAME_MAX];
4680
4681         /* Avoid duplicate debugfs directory names */
4682         if (parent && rname == rdev->desc->name) {
4683                 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4684                          rname);
4685                 rname = name;
4686         }
4687
4688         rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4689         if (!rdev->debugfs) {
4690                 rdev_warn(rdev, "Failed to create debugfs directory\n");
4691                 return;
4692         }
4693
4694         debugfs_create_u32("use_count", 0444, rdev->debugfs,
4695                            &rdev->use_count);
4696         debugfs_create_u32("open_count", 0444, rdev->debugfs,
4697                            &rdev->open_count);
4698         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
4699                            &rdev->bypass_count);
4700 }
4701
4702 static int regulator_register_resolve_supply(struct device *dev, void *data)
4703 {
4704         struct regulator_dev *rdev = dev_to_rdev(dev);
4705
4706         if (regulator_resolve_supply(rdev))
4707                 rdev_dbg(rdev, "unable to resolve supply\n");
4708
4709         return 0;
4710 }
4711
4712 static void regulator_resolve_coupling(struct regulator_dev *rdev)
4713 {
4714         struct coupling_desc *c_desc = &rdev->coupling_desc;
4715         int n_coupled = c_desc->n_coupled;
4716         struct regulator_dev *c_rdev;
4717         int i;
4718
4719         for (i = 1; i < n_coupled; i++) {
4720                 /* already resolved */
4721                 if (c_desc->coupled_rdevs[i])
4722                         continue;
4723
4724                 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
4725
4726                 if (!c_rdev)
4727                         continue;
4728
4729                 regulator_lock(c_rdev);
4730
4731                 c_desc->coupled_rdevs[i] = c_rdev;
4732                 c_desc->n_resolved++;
4733
4734                 regulator_unlock(c_rdev);
4735
4736                 regulator_resolve_coupling(c_rdev);
4737         }
4738 }
4739
4740 static void regulator_remove_coupling(struct regulator_dev *rdev)
4741 {
4742         struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
4743         struct regulator_dev *__c_rdev, *c_rdev;
4744         unsigned int __n_coupled, n_coupled;
4745         int i, k;
4746
4747         n_coupled = c_desc->n_coupled;
4748
4749         for (i = 1; i < n_coupled; i++) {
4750                 c_rdev = c_desc->coupled_rdevs[i];
4751
4752                 if (!c_rdev)
4753                         continue;
4754
4755                 regulator_lock(c_rdev);
4756
4757                 __c_desc = &c_rdev->coupling_desc;
4758                 __n_coupled = __c_desc->n_coupled;
4759
4760                 for (k = 1; k < __n_coupled; k++) {
4761                         __c_rdev = __c_desc->coupled_rdevs[k];
4762
4763                         if (__c_rdev == rdev) {
4764                                 __c_desc->coupled_rdevs[k] = NULL;
4765                                 __c_desc->n_resolved--;
4766                                 break;
4767                         }
4768                 }
4769
4770                 regulator_unlock(c_rdev);
4771
4772                 c_desc->coupled_rdevs[i] = NULL;
4773                 c_desc->n_resolved--;
4774         }
4775 }
4776
4777 static int regulator_init_coupling(struct regulator_dev *rdev)
4778 {
4779         int n_phandles;
4780
4781         if (!IS_ENABLED(CONFIG_OF))
4782                 n_phandles = 0;
4783         else
4784                 n_phandles = of_get_n_coupled(rdev);
4785
4786         if (n_phandles + 1 > MAX_COUPLED) {
4787                 rdev_err(rdev, "too many regulators coupled\n");
4788                 return -EPERM;
4789         }
4790
4791         /*
4792          * Every regulator should always have coupling descriptor filled with
4793          * at least pointer to itself.
4794          */
4795         rdev->coupling_desc.coupled_rdevs[0] = rdev;
4796         rdev->coupling_desc.n_coupled = n_phandles + 1;
4797         rdev->coupling_desc.n_resolved++;
4798
4799         /* regulator isn't coupled */
4800         if (n_phandles == 0)
4801                 return 0;
4802
4803         /* regulator, which can't change its voltage, can't be coupled */
4804         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
4805                 rdev_err(rdev, "voltage operation not allowed\n");
4806                 return -EPERM;
4807         }
4808
4809         if (rdev->constraints->max_spread <= 0) {
4810                 rdev_err(rdev, "wrong max_spread value\n");
4811                 return -EPERM;
4812         }
4813
4814         if (!of_check_coupling_data(rdev))
4815                 return -EPERM;
4816
4817         return 0;
4818 }
4819
4820 /**
4821  * regulator_register - register regulator
4822  * @regulator_desc: regulator to register
4823  * @cfg: runtime configuration for regulator
4824  *
4825  * Called by regulator drivers to register a regulator.
4826  * Returns a valid pointer to struct regulator_dev on success
4827  * or an ERR_PTR() on error.
4828  */
4829 struct regulator_dev *
4830 regulator_register(const struct regulator_desc *regulator_desc,
4831                    const struct regulator_config *cfg)
4832 {
4833         const struct regulation_constraints *constraints = NULL;
4834         const struct regulator_init_data *init_data;
4835         struct regulator_config *config = NULL;
4836         static atomic_t regulator_no = ATOMIC_INIT(-1);
4837         struct regulator_dev *rdev;
4838         bool dangling_cfg_gpiod = false;
4839         bool dangling_of_gpiod = false;
4840         struct device *dev;
4841         int ret, i;
4842
4843         if (cfg == NULL)
4844                 return ERR_PTR(-EINVAL);
4845         if (cfg->ena_gpiod)
4846                 dangling_cfg_gpiod = true;
4847         if (regulator_desc == NULL) {
4848                 ret = -EINVAL;
4849                 goto rinse;
4850         }
4851
4852         dev = cfg->dev;
4853         WARN_ON(!dev);
4854
4855         if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
4856                 ret = -EINVAL;
4857                 goto rinse;
4858         }
4859
4860         if (regulator_desc->type != REGULATOR_VOLTAGE &&
4861             regulator_desc->type != REGULATOR_CURRENT) {
4862                 ret = -EINVAL;
4863                 goto rinse;
4864         }
4865
4866         /* Only one of each should be implemented */
4867         WARN_ON(regulator_desc->ops->get_voltage &&
4868                 regulator_desc->ops->get_voltage_sel);
4869         WARN_ON(regulator_desc->ops->set_voltage &&
4870                 regulator_desc->ops->set_voltage_sel);
4871
4872         /* If we're using selectors we must implement list_voltage. */
4873         if (regulator_desc->ops->get_voltage_sel &&
4874             !regulator_desc->ops->list_voltage) {
4875                 ret = -EINVAL;
4876                 goto rinse;
4877         }
4878         if (regulator_desc->ops->set_voltage_sel &&
4879             !regulator_desc->ops->list_voltage) {
4880                 ret = -EINVAL;
4881                 goto rinse;
4882         }
4883
4884         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
4885         if (rdev == NULL) {
4886                 ret = -ENOMEM;
4887                 goto rinse;
4888         }
4889
4890         /*
4891          * Duplicate the config so the driver could override it after
4892          * parsing init data.
4893          */
4894         config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
4895         if (config == NULL) {
4896                 kfree(rdev);
4897                 ret = -ENOMEM;
4898                 goto rinse;
4899         }
4900
4901         init_data = regulator_of_get_init_data(dev, regulator_desc, config,
4902                                                &rdev->dev.of_node);
4903         /*
4904          * We need to keep track of any GPIO descriptor coming from the
4905          * device tree until we have handled it over to the core. If the
4906          * config that was passed in to this function DOES NOT contain
4907          * a descriptor, and the config after this call DOES contain
4908          * a descriptor, we definitely got one from parsing the device
4909          * tree.
4910          */
4911         if (!cfg->ena_gpiod && config->ena_gpiod)
4912                 dangling_of_gpiod = true;
4913         if (!init_data) {
4914                 init_data = config->init_data;
4915                 rdev->dev.of_node = of_node_get(config->of_node);
4916         }
4917
4918         ww_mutex_init(&rdev->mutex, &regulator_ww_class);
4919         rdev->reg_data = config->driver_data;
4920         rdev->owner = regulator_desc->owner;
4921         rdev->desc = regulator_desc;
4922         if (config->regmap)
4923                 rdev->regmap = config->regmap;
4924         else if (dev_get_regmap(dev, NULL))
4925                 rdev->regmap = dev_get_regmap(dev, NULL);
4926         else if (dev->parent)
4927                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
4928         INIT_LIST_HEAD(&rdev->consumer_list);
4929         INIT_LIST_HEAD(&rdev->list);
4930         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
4931         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
4932
4933         /* preform any regulator specific init */
4934         if (init_data && init_data->regulator_init) {
4935                 ret = init_data->regulator_init(rdev->reg_data);
4936                 if (ret < 0)
4937                         goto clean;
4938         }
4939
4940         if (config->ena_gpiod) {
4941                 mutex_lock(&regulator_list_mutex);
4942                 ret = regulator_ena_gpio_request(rdev, config);
4943                 mutex_unlock(&regulator_list_mutex);
4944                 if (ret != 0) {
4945                         rdev_err(rdev, "Failed to request enable GPIO: %d\n",
4946                                  ret);
4947                         goto clean;
4948                 }
4949                 /* The regulator core took over the GPIO descriptor */
4950                 dangling_cfg_gpiod = false;
4951                 dangling_of_gpiod = false;
4952         }
4953
4954         /* register with sysfs */
4955         rdev->dev.class = &regulator_class;
4956         rdev->dev.parent = dev;
4957         dev_set_name(&rdev->dev, "regulator.%lu",
4958                     (unsigned long) atomic_inc_return(&regulator_no));
4959
4960         /* set regulator constraints */
4961         if (init_data)
4962                 constraints = &init_data->constraints;
4963
4964         if (init_data && init_data->supply_regulator)
4965                 rdev->supply_name = init_data->supply_regulator;
4966         else if (regulator_desc->supply_name)
4967                 rdev->supply_name = regulator_desc->supply_name;
4968
4969         /*
4970          * Attempt to resolve the regulator supply, if specified,
4971          * but don't return an error if we fail because we will try
4972          * to resolve it again later as more regulators are added.
4973          */
4974         if (regulator_resolve_supply(rdev))
4975                 rdev_dbg(rdev, "unable to resolve supply\n");
4976
4977         ret = set_machine_constraints(rdev, constraints);
4978         if (ret < 0)
4979                 goto wash;
4980
4981         ret = regulator_init_coupling(rdev);
4982         if (ret < 0)
4983                 goto wash;
4984
4985         /* add consumers devices */
4986         if (init_data) {
4987                 mutex_lock(&regulator_list_mutex);
4988                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
4989                         ret = set_consumer_device_supply(rdev,
4990                                 init_data->consumer_supplies[i].dev_name,
4991                                 init_data->consumer_supplies[i].supply);
4992                         if (ret < 0) {
4993                                 mutex_unlock(&regulator_list_mutex);
4994                                 dev_err(dev, "Failed to set supply %s\n",
4995                                         init_data->consumer_supplies[i].supply);
4996                                 goto unset_supplies;
4997                         }
4998                 }
4999                 mutex_unlock(&regulator_list_mutex);
5000         }
5001
5002         if (!rdev->desc->ops->get_voltage &&
5003             !rdev->desc->ops->list_voltage &&
5004             !rdev->desc->fixed_uV)
5005                 rdev->is_switch = true;
5006
5007         dev_set_drvdata(&rdev->dev, rdev);
5008         ret = device_register(&rdev->dev);
5009         if (ret != 0) {
5010                 put_device(&rdev->dev);
5011                 goto unset_supplies;
5012         }
5013
5014         rdev_init_debugfs(rdev);
5015
5016         /* try to resolve regulators coupling since a new one was registered */
5017         mutex_lock(&regulator_list_mutex);
5018         regulator_resolve_coupling(rdev);
5019         mutex_unlock(&regulator_list_mutex);
5020
5021         /* try to resolve regulators supply since a new one was registered */
5022         class_for_each_device(&regulator_class, NULL, NULL,
5023                               regulator_register_resolve_supply);
5024         kfree(config);
5025         return rdev;
5026
5027 unset_supplies:
5028         mutex_lock(&regulator_list_mutex);
5029         unset_regulator_supplies(rdev);
5030         mutex_unlock(&regulator_list_mutex);
5031 wash:
5032         kfree(rdev->constraints);
5033         mutex_lock(&regulator_list_mutex);
5034         regulator_ena_gpio_free(rdev);
5035         mutex_unlock(&regulator_list_mutex);
5036 clean:
5037         if (dangling_of_gpiod)
5038                 gpiod_put(config->ena_gpiod);
5039         kfree(rdev);
5040         kfree(config);
5041 rinse:
5042         if (dangling_cfg_gpiod)
5043                 gpiod_put(cfg->ena_gpiod);
5044         return ERR_PTR(ret);
5045 }
5046 EXPORT_SYMBOL_GPL(regulator_register);
5047
5048 /**
5049  * regulator_unregister - unregister regulator
5050  * @rdev: regulator to unregister
5051  *
5052  * Called by regulator drivers to unregister a regulator.
5053  */
5054 void regulator_unregister(struct regulator_dev *rdev)
5055 {
5056         if (rdev == NULL)
5057                 return;
5058
5059         if (rdev->supply) {
5060                 while (rdev->use_count--)
5061                         regulator_disable(rdev->supply);
5062                 regulator_put(rdev->supply);
5063         }
5064
5065         mutex_lock(&regulator_list_mutex);
5066
5067         debugfs_remove_recursive(rdev->debugfs);
5068         flush_work(&rdev->disable_work.work);
5069         WARN_ON(rdev->open_count);
5070         regulator_remove_coupling(rdev);
5071         unset_regulator_supplies(rdev);
5072         list_del(&rdev->list);
5073         regulator_ena_gpio_free(rdev);
5074         device_unregister(&rdev->dev);
5075
5076         mutex_unlock(&regulator_list_mutex);
5077 }
5078 EXPORT_SYMBOL_GPL(regulator_unregister);
5079
5080 #ifdef CONFIG_SUSPEND
5081 /**
5082  * regulator_suspend - prepare regulators for system wide suspend
5083  * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5084  *
5085  * Configure each regulator with it's suspend operating parameters for state.
5086  */
5087 static int regulator_suspend(struct device *dev)
5088 {
5089         struct regulator_dev *rdev = dev_to_rdev(dev);
5090         suspend_state_t state = pm_suspend_target_state;
5091         int ret;
5092
5093         regulator_lock(rdev);
5094         ret = suspend_set_state(rdev, state);
5095         regulator_unlock(rdev);
5096
5097         return ret;
5098 }
5099
5100 static int regulator_resume(struct device *dev)
5101 {
5102         suspend_state_t state = pm_suspend_target_state;
5103         struct regulator_dev *rdev = dev_to_rdev(dev);
5104         struct regulator_state *rstate;
5105         int ret = 0;
5106
5107         rstate = regulator_get_suspend_state(rdev, state);
5108         if (rstate == NULL)
5109                 return 0;
5110
5111         regulator_lock(rdev);
5112
5113         if (rdev->desc->ops->resume &&
5114             (rstate->enabled == ENABLE_IN_SUSPEND ||
5115              rstate->enabled == DISABLE_IN_SUSPEND))
5116                 ret = rdev->desc->ops->resume(rdev);
5117
5118         regulator_unlock(rdev);
5119
5120         return ret;
5121 }
5122 #else /* !CONFIG_SUSPEND */
5123
5124 #define regulator_suspend       NULL
5125 #define regulator_resume        NULL
5126
5127 #endif /* !CONFIG_SUSPEND */
5128
5129 #ifdef CONFIG_PM
5130 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5131         .suspend        = regulator_suspend,
5132         .resume         = regulator_resume,
5133 };
5134 #endif
5135
5136 struct class regulator_class = {
5137         .name = "regulator",
5138         .dev_release = regulator_dev_release,
5139         .dev_groups = regulator_dev_groups,
5140 #ifdef CONFIG_PM
5141         .pm = &regulator_pm_ops,
5142 #endif
5143 };
5144 /**
5145  * regulator_has_full_constraints - the system has fully specified constraints
5146  *
5147  * Calling this function will cause the regulator API to disable all
5148  * regulators which have a zero use count and don't have an always_on
5149  * constraint in a late_initcall.
5150  *
5151  * The intention is that this will become the default behaviour in a
5152  * future kernel release so users are encouraged to use this facility
5153  * now.
5154  */
5155 void regulator_has_full_constraints(void)
5156 {
5157         has_full_constraints = 1;
5158 }
5159 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5160
5161 /**
5162  * rdev_get_drvdata - get rdev regulator driver data
5163  * @rdev: regulator
5164  *
5165  * Get rdev regulator driver private data. This call can be used in the
5166  * regulator driver context.
5167  */
5168 void *rdev_get_drvdata(struct regulator_dev *rdev)
5169 {
5170         return rdev->reg_data;
5171 }
5172 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5173
5174 /**
5175  * regulator_get_drvdata - get regulator driver data
5176  * @regulator: regulator
5177  *
5178  * Get regulator driver private data. This call can be used in the consumer
5179  * driver context when non API regulator specific functions need to be called.
5180  */
5181 void *regulator_get_drvdata(struct regulator *regulator)
5182 {
5183         return regulator->rdev->reg_data;
5184 }
5185 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5186
5187 /**
5188  * regulator_set_drvdata - set regulator driver data
5189  * @regulator: regulator
5190  * @data: data
5191  */
5192 void regulator_set_drvdata(struct regulator *regulator, void *data)
5193 {
5194         regulator->rdev->reg_data = data;
5195 }
5196 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5197
5198 /**
5199  * regulator_get_id - get regulator ID
5200  * @rdev: regulator
5201  */
5202 int rdev_get_id(struct regulator_dev *rdev)
5203 {
5204         return rdev->desc->id;
5205 }
5206 EXPORT_SYMBOL_GPL(rdev_get_id);
5207
5208 struct device *rdev_get_dev(struct regulator_dev *rdev)
5209 {
5210         return &rdev->dev;
5211 }
5212 EXPORT_SYMBOL_GPL(rdev_get_dev);
5213
5214 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5215 {
5216         return rdev->regmap;
5217 }
5218 EXPORT_SYMBOL_GPL(rdev_get_regmap);
5219
5220 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5221 {
5222         return reg_init_data->driver_data;
5223 }
5224 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5225
5226 #ifdef CONFIG_DEBUG_FS
5227 static int supply_map_show(struct seq_file *sf, void *data)
5228 {
5229         struct regulator_map *map;
5230
5231         list_for_each_entry(map, &regulator_map_list, list) {
5232                 seq_printf(sf, "%s -> %s.%s\n",
5233                                 rdev_get_name(map->regulator), map->dev_name,
5234                                 map->supply);
5235         }
5236
5237         return 0;
5238 }
5239 DEFINE_SHOW_ATTRIBUTE(supply_map);
5240
5241 struct summary_data {
5242         struct seq_file *s;
5243         struct regulator_dev *parent;
5244         int level;
5245 };
5246
5247 static void regulator_summary_show_subtree(struct seq_file *s,
5248                                            struct regulator_dev *rdev,
5249                                            int level);
5250
5251 static int regulator_summary_show_children(struct device *dev, void *data)
5252 {
5253         struct regulator_dev *rdev = dev_to_rdev(dev);
5254         struct summary_data *summary_data = data;
5255
5256         if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5257                 regulator_summary_show_subtree(summary_data->s, rdev,
5258                                                summary_data->level + 1);
5259
5260         return 0;
5261 }
5262
5263 static void regulator_summary_show_subtree(struct seq_file *s,
5264                                            struct regulator_dev *rdev,
5265                                            int level)
5266 {
5267         struct regulation_constraints *c;
5268         struct regulator *consumer;
5269         struct summary_data summary_data;
5270         unsigned int opmode;
5271
5272         if (!rdev)
5273                 return;
5274
5275         opmode = _regulator_get_mode_unlocked(rdev);
5276         seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5277                    level * 3 + 1, "",
5278                    30 - level * 3, rdev_get_name(rdev),
5279                    rdev->use_count, rdev->open_count, rdev->bypass_count,
5280                    regulator_opmode_to_str(opmode));
5281
5282         seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
5283         seq_printf(s, "%5dmA ",
5284                    _regulator_get_current_limit_unlocked(rdev) / 1000);
5285
5286         c = rdev->constraints;
5287         if (c) {
5288                 switch (rdev->desc->type) {
5289                 case REGULATOR_VOLTAGE:
5290                         seq_printf(s, "%5dmV %5dmV ",
5291                                    c->min_uV / 1000, c->max_uV / 1000);
5292                         break;
5293                 case REGULATOR_CURRENT:
5294                         seq_printf(s, "%5dmA %5dmA ",
5295                                    c->min_uA / 1000, c->max_uA / 1000);
5296                         break;
5297                 }
5298         }
5299
5300         seq_puts(s, "\n");
5301
5302         list_for_each_entry(consumer, &rdev->consumer_list, list) {
5303                 if (consumer->dev && consumer->dev->class == &regulator_class)
5304                         continue;
5305
5306                 seq_printf(s, "%*s%-*s ",
5307                            (level + 1) * 3 + 1, "",
5308                            30 - (level + 1) * 3,
5309                            consumer->dev ? dev_name(consumer->dev) : "deviceless");
5310
5311                 switch (rdev->desc->type) {
5312                 case REGULATOR_VOLTAGE:
5313                         seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5314                                    consumer->enable_count,
5315                                    consumer->uA_load / 1000,
5316                                    consumer->uA_load && !consumer->enable_count ?
5317                                    '*' : ' ',
5318                                    consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5319                                    consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5320                         break;
5321                 case REGULATOR_CURRENT:
5322                         break;
5323                 }
5324
5325                 seq_puts(s, "\n");
5326         }
5327
5328         summary_data.s = s;
5329         summary_data.level = level;
5330         summary_data.parent = rdev;
5331
5332         class_for_each_device(&regulator_class, NULL, &summary_data,
5333                               regulator_summary_show_children);
5334 }
5335
5336 struct summary_lock_data {
5337         struct ww_acquire_ctx *ww_ctx;
5338         struct regulator_dev **new_contended_rdev;
5339         struct regulator_dev **old_contended_rdev;
5340 };
5341
5342 static int regulator_summary_lock_one(struct device *dev, void *data)
5343 {
5344         struct regulator_dev *rdev = dev_to_rdev(dev);
5345         struct summary_lock_data *lock_data = data;
5346         int ret = 0;
5347
5348         if (rdev != *lock_data->old_contended_rdev) {
5349                 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5350
5351                 if (ret == -EDEADLK)
5352                         *lock_data->new_contended_rdev = rdev;
5353                 else
5354                         WARN_ON_ONCE(ret);
5355         } else {
5356                 *lock_data->old_contended_rdev = NULL;
5357         }
5358
5359         return ret;
5360 }
5361
5362 static int regulator_summary_unlock_one(struct device *dev, void *data)
5363 {
5364         struct regulator_dev *rdev = dev_to_rdev(dev);
5365         struct summary_lock_data *lock_data = data;
5366
5367         if (lock_data) {
5368                 if (rdev == *lock_data->new_contended_rdev)
5369                         return -EDEADLK;
5370         }
5371
5372         regulator_unlock(rdev);
5373
5374         return 0;
5375 }
5376
5377 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5378                                       struct regulator_dev **new_contended_rdev,
5379                                       struct regulator_dev **old_contended_rdev)
5380 {
5381         struct summary_lock_data lock_data;
5382         int ret;
5383
5384         lock_data.ww_ctx = ww_ctx;
5385         lock_data.new_contended_rdev = new_contended_rdev;
5386         lock_data.old_contended_rdev = old_contended_rdev;
5387
5388         ret = class_for_each_device(&regulator_class, NULL, &lock_data,
5389                                     regulator_summary_lock_one);
5390         if (ret)
5391                 class_for_each_device(&regulator_class, NULL, &lock_data,
5392                                       regulator_summary_unlock_one);
5393
5394         return ret;
5395 }
5396
5397 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5398 {
5399         struct regulator_dev *new_contended_rdev = NULL;
5400         struct regulator_dev *old_contended_rdev = NULL;
5401         int err;
5402
5403         mutex_lock(&regulator_list_mutex);
5404
5405         ww_acquire_init(ww_ctx, &regulator_ww_class);
5406
5407         do {
5408                 if (new_contended_rdev) {
5409                         ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5410                         old_contended_rdev = new_contended_rdev;
5411                         old_contended_rdev->ref_cnt++;
5412                 }
5413
5414                 err = regulator_summary_lock_all(ww_ctx,
5415                                                  &new_contended_rdev,
5416                                                  &old_contended_rdev);
5417
5418                 if (old_contended_rdev)
5419                         regulator_unlock(old_contended_rdev);
5420
5421         } while (err == -EDEADLK);
5422
5423         ww_acquire_done(ww_ctx);
5424 }
5425
5426 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5427 {
5428         class_for_each_device(&regulator_class, NULL, NULL,
5429                               regulator_summary_unlock_one);
5430         ww_acquire_fini(ww_ctx);
5431
5432         mutex_unlock(&regulator_list_mutex);
5433 }
5434
5435 static int regulator_summary_show_roots(struct device *dev, void *data)
5436 {
5437         struct regulator_dev *rdev = dev_to_rdev(dev);
5438         struct seq_file *s = data;
5439
5440         if (!rdev->supply)
5441                 regulator_summary_show_subtree(s, rdev, 0);
5442
5443         return 0;
5444 }
5445
5446 static int regulator_summary_show(struct seq_file *s, void *data)
5447 {
5448         struct ww_acquire_ctx ww_ctx;
5449
5450         seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
5451         seq_puts(s, "---------------------------------------------------------------------------------------\n");
5452
5453         regulator_summary_lock(&ww_ctx);
5454
5455         class_for_each_device(&regulator_class, NULL, s,
5456                               regulator_summary_show_roots);
5457
5458         regulator_summary_unlock(&ww_ctx);
5459
5460         return 0;
5461 }
5462 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5463 #endif /* CONFIG_DEBUG_FS */
5464
5465 static int __init regulator_init(void)
5466 {
5467         int ret;
5468
5469         ret = class_register(&regulator_class);
5470
5471         debugfs_root = debugfs_create_dir("regulator", NULL);
5472         if (!debugfs_root)
5473                 pr_warn("regulator: Failed to create debugfs directory\n");
5474
5475 #ifdef CONFIG_DEBUG_FS
5476         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5477                             &supply_map_fops);
5478
5479         debugfs_create_file("regulator_summary", 0444, debugfs_root,
5480                             NULL, &regulator_summary_fops);
5481 #endif
5482         regulator_dummy_init();
5483
5484         return ret;
5485 }
5486
5487 /* init early to allow our consumers to complete system booting */
5488 core_initcall(regulator_init);
5489
5490 static int __init regulator_late_cleanup(struct device *dev, void *data)
5491 {
5492         struct regulator_dev *rdev = dev_to_rdev(dev);
5493         const struct regulator_ops *ops = rdev->desc->ops;
5494         struct regulation_constraints *c = rdev->constraints;
5495         int enabled, ret;
5496
5497         if (c && c->always_on)
5498                 return 0;
5499
5500         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5501                 return 0;
5502
5503         regulator_lock(rdev);
5504
5505         if (rdev->use_count)
5506                 goto unlock;
5507
5508         /* If we can't read the status assume it's on. */
5509         if (ops->is_enabled)
5510                 enabled = ops->is_enabled(rdev);
5511         else
5512                 enabled = 1;
5513
5514         if (!enabled)
5515                 goto unlock;
5516
5517         if (have_full_constraints()) {
5518                 /* We log since this may kill the system if it goes
5519                  * wrong. */
5520                 rdev_info(rdev, "disabling\n");
5521                 ret = _regulator_do_disable(rdev);
5522                 if (ret != 0)
5523                         rdev_err(rdev, "couldn't disable: %d\n", ret);
5524         } else {
5525                 /* The intention is that in future we will
5526                  * assume that full constraints are provided
5527                  * so warn even if we aren't going to do
5528                  * anything here.
5529                  */
5530                 rdev_warn(rdev, "incomplete constraints, leaving on\n");
5531         }
5532
5533 unlock:
5534         regulator_unlock(rdev);
5535
5536         return 0;
5537 }
5538
5539 static int __init regulator_init_complete(void)
5540 {
5541         /*
5542          * Since DT doesn't provide an idiomatic mechanism for
5543          * enabling full constraints and since it's much more natural
5544          * with DT to provide them just assume that a DT enabled
5545          * system has full constraints.
5546          */
5547         if (of_have_populated_dt())
5548                 has_full_constraints = true;
5549
5550         /*
5551          * Regulators may had failed to resolve their input supplies
5552          * when were registered, either because the input supply was
5553          * not registered yet or because its parent device was not
5554          * bound yet. So attempt to resolve the input supplies for
5555          * pending regulators before trying to disable unused ones.
5556          */
5557         class_for_each_device(&regulator_class, NULL, NULL,
5558                               regulator_register_resolve_supply);
5559
5560         /* If we have a full configuration then disable any regulators
5561          * we have permission to change the status for and which are
5562          * not in use or always_on.  This is effectively the default
5563          * for DT and ACPI as they have full constraints.
5564          */
5565         class_for_each_device(&regulator_class, NULL, NULL,
5566                               regulator_late_cleanup);
5567
5568         return 0;
5569 }
5570 late_initcall_sync(regulator_init_complete);