Merge branch 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / drivers / platform / x86 / toshiba_acpi.c
1 /*
2  *  toshiba_acpi.c - Toshiba Laptop ACPI Extras
3  *
4  *
5  *  Copyright (C) 2002-2004 John Belmonte
6  *  Copyright (C) 2008 Philip Langdale
7  *
8  *  This program is free software; you can redistribute it and/or modify
9  *  it under the terms of the GNU General Public License as published by
10  *  the Free Software Foundation; either version 2 of the License, or
11  *  (at your option) any later version.
12  *
13  *  This program is distributed in the hope that it will be useful,
14  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *  GNU General Public License for more details.
17  *
18  *  You should have received a copy of the GNU General Public License
19  *  along with this program; if not, write to the Free Software
20  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  *
22  *
23  *  The devolpment page for this driver is located at
24  *  http://memebeam.org/toys/ToshibaAcpiDriver.
25  *
26  *  Credits:
27  *      Jonathan A. Buzzard - Toshiba HCI info, and critical tips on reverse
28  *              engineering the Windows drivers
29  *      Yasushi Nagato - changes for linux kernel 2.4 -> 2.5
30  *      Rob Miller - TV out and hotkeys help
31  *
32  *
33  *  TODO
34  *
35  */
36
37 #define TOSHIBA_ACPI_VERSION    "0.19"
38 #define PROC_INTERFACE_VERSION  1
39
40 #include <linux/kernel.h>
41 #include <linux/module.h>
42 #include <linux/init.h>
43 #include <linux/types.h>
44 #include <linux/proc_fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/backlight.h>
47 #include <linux/platform_device.h>
48 #include <linux/rfkill.h>
49
50 #include <asm/uaccess.h>
51
52 #include <acpi/acpi_drivers.h>
53
54 MODULE_AUTHOR("John Belmonte");
55 MODULE_DESCRIPTION("Toshiba Laptop ACPI Extras Driver");
56 MODULE_LICENSE("GPL");
57
58 #define MY_LOGPREFIX "toshiba_acpi: "
59 #define MY_ERR KERN_ERR MY_LOGPREFIX
60 #define MY_NOTICE KERN_NOTICE MY_LOGPREFIX
61 #define MY_INFO KERN_INFO MY_LOGPREFIX
62
63 /* Toshiba ACPI method paths */
64 #define METHOD_LCD_BRIGHTNESS   "\\_SB_.PCI0.VGA_.LCD_._BCM"
65 #define METHOD_HCI_1            "\\_SB_.VALD.GHCI"
66 #define METHOD_HCI_2            "\\_SB_.VALZ.GHCI"
67 #define METHOD_VIDEO_OUT        "\\_SB_.VALX.DSSX"
68
69 /* Toshiba HCI interface definitions
70  *
71  * HCI is Toshiba's "Hardware Control Interface" which is supposed to
72  * be uniform across all their models.  Ideally we would just call
73  * dedicated ACPI methods instead of using this primitive interface.
74  * However the ACPI methods seem to be incomplete in some areas (for
75  * example they allow setting, but not reading, the LCD brightness value),
76  * so this is still useful.
77  */
78
79 #define HCI_WORDS                       6
80
81 /* operations */
82 #define HCI_SET                         0xff00
83 #define HCI_GET                         0xfe00
84
85 /* return codes */
86 #define HCI_SUCCESS                     0x0000
87 #define HCI_FAILURE                     0x1000
88 #define HCI_NOT_SUPPORTED               0x8000
89 #define HCI_EMPTY                       0x8c00
90
91 /* registers */
92 #define HCI_FAN                         0x0004
93 #define HCI_SYSTEM_EVENT                0x0016
94 #define HCI_VIDEO_OUT                   0x001c
95 #define HCI_HOTKEY_EVENT                0x001e
96 #define HCI_LCD_BRIGHTNESS              0x002a
97 #define HCI_WIRELESS                    0x0056
98
99 /* field definitions */
100 #define HCI_LCD_BRIGHTNESS_BITS         3
101 #define HCI_LCD_BRIGHTNESS_SHIFT        (16-HCI_LCD_BRIGHTNESS_BITS)
102 #define HCI_LCD_BRIGHTNESS_LEVELS       (1 << HCI_LCD_BRIGHTNESS_BITS)
103 #define HCI_VIDEO_OUT_LCD               0x1
104 #define HCI_VIDEO_OUT_CRT               0x2
105 #define HCI_VIDEO_OUT_TV                0x4
106 #define HCI_WIRELESS_KILL_SWITCH        0x01
107 #define HCI_WIRELESS_BT_PRESENT         0x0f
108 #define HCI_WIRELESS_BT_ATTACH          0x40
109 #define HCI_WIRELESS_BT_POWER           0x80
110
111 static const struct acpi_device_id toshiba_device_ids[] = {
112         {"TOS6200", 0},
113         {"TOS6208", 0},
114         {"TOS1900", 0},
115         {"", 0},
116 };
117 MODULE_DEVICE_TABLE(acpi, toshiba_device_ids);
118
119 /* utility
120  */
121
122 static __inline__ void _set_bit(u32 * word, u32 mask, int value)
123 {
124         *word = (*word & ~mask) | (mask * value);
125 }
126
127 /* acpi interface wrappers
128  */
129
130 static int is_valid_acpi_path(const char *methodName)
131 {
132         acpi_handle handle;
133         acpi_status status;
134
135         status = acpi_get_handle(NULL, (char *)methodName, &handle);
136         return !ACPI_FAILURE(status);
137 }
138
139 static int write_acpi_int(const char *methodName, int val)
140 {
141         struct acpi_object_list params;
142         union acpi_object in_objs[1];
143         acpi_status status;
144
145         params.count = ARRAY_SIZE(in_objs);
146         params.pointer = in_objs;
147         in_objs[0].type = ACPI_TYPE_INTEGER;
148         in_objs[0].integer.value = val;
149
150         status = acpi_evaluate_object(NULL, (char *)methodName, &params, NULL);
151         return (status == AE_OK);
152 }
153
154 #if 0
155 static int read_acpi_int(const char *methodName, int *pVal)
156 {
157         struct acpi_buffer results;
158         union acpi_object out_objs[1];
159         acpi_status status;
160
161         results.length = sizeof(out_objs);
162         results.pointer = out_objs;
163
164         status = acpi_evaluate_object(0, (char *)methodName, 0, &results);
165         *pVal = out_objs[0].integer.value;
166
167         return (status == AE_OK) && (out_objs[0].type == ACPI_TYPE_INTEGER);
168 }
169 #endif
170
171 static const char *method_hci /*= 0*/ ;
172
173 /* Perform a raw HCI call.  Here we don't care about input or output buffer
174  * format.
175  */
176 static acpi_status hci_raw(const u32 in[HCI_WORDS], u32 out[HCI_WORDS])
177 {
178         struct acpi_object_list params;
179         union acpi_object in_objs[HCI_WORDS];
180         struct acpi_buffer results;
181         union acpi_object out_objs[HCI_WORDS + 1];
182         acpi_status status;
183         int i;
184
185         params.count = HCI_WORDS;
186         params.pointer = in_objs;
187         for (i = 0; i < HCI_WORDS; ++i) {
188                 in_objs[i].type = ACPI_TYPE_INTEGER;
189                 in_objs[i].integer.value = in[i];
190         }
191
192         results.length = sizeof(out_objs);
193         results.pointer = out_objs;
194
195         status = acpi_evaluate_object(NULL, (char *)method_hci, &params,
196                                       &results);
197         if ((status == AE_OK) && (out_objs->package.count <= HCI_WORDS)) {
198                 for (i = 0; i < out_objs->package.count; ++i) {
199                         out[i] = out_objs->package.elements[i].integer.value;
200                 }
201         }
202
203         return status;
204 }
205
206 /* common hci tasks (get or set one or two value)
207  *
208  * In addition to the ACPI status, the HCI system returns a result which
209  * may be useful (such as "not supported").
210  */
211
212 static acpi_status hci_write1(u32 reg, u32 in1, u32 * result)
213 {
214         u32 in[HCI_WORDS] = { HCI_SET, reg, in1, 0, 0, 0 };
215         u32 out[HCI_WORDS];
216         acpi_status status = hci_raw(in, out);
217         *result = (status == AE_OK) ? out[0] : HCI_FAILURE;
218         return status;
219 }
220
221 static acpi_status hci_read1(u32 reg, u32 * out1, u32 * result)
222 {
223         u32 in[HCI_WORDS] = { HCI_GET, reg, 0, 0, 0, 0 };
224         u32 out[HCI_WORDS];
225         acpi_status status = hci_raw(in, out);
226         *out1 = out[2];
227         *result = (status == AE_OK) ? out[0] : HCI_FAILURE;
228         return status;
229 }
230
231 static acpi_status hci_write2(u32 reg, u32 in1, u32 in2, u32 *result)
232 {
233         u32 in[HCI_WORDS] = { HCI_SET, reg, in1, in2, 0, 0 };
234         u32 out[HCI_WORDS];
235         acpi_status status = hci_raw(in, out);
236         *result = (status == AE_OK) ? out[0] : HCI_FAILURE;
237         return status;
238 }
239
240 static acpi_status hci_read2(u32 reg, u32 *out1, u32 *out2, u32 *result)
241 {
242         u32 in[HCI_WORDS] = { HCI_GET, reg, *out1, *out2, 0, 0 };
243         u32 out[HCI_WORDS];
244         acpi_status status = hci_raw(in, out);
245         *out1 = out[2];
246         *out2 = out[3];
247         *result = (status == AE_OK) ? out[0] : HCI_FAILURE;
248         return status;
249 }
250
251 struct toshiba_acpi_dev {
252         struct platform_device *p_dev;
253         struct rfkill *bt_rfk;
254
255         const char *bt_name;
256
257         struct mutex mutex;
258 };
259
260 static struct toshiba_acpi_dev toshiba_acpi = {
261         .bt_name = "Toshiba Bluetooth",
262 };
263
264 /* Bluetooth rfkill handlers */
265
266 static u32 hci_get_bt_present(bool *present)
267 {
268         u32 hci_result;
269         u32 value, value2;
270
271         value = 0;
272         value2 = 0;
273         hci_read2(HCI_WIRELESS, &value, &value2, &hci_result);
274         if (hci_result == HCI_SUCCESS)
275                 *present = (value & HCI_WIRELESS_BT_PRESENT) ? true : false;
276
277         return hci_result;
278 }
279
280 static u32 hci_get_radio_state(bool *radio_state)
281 {
282         u32 hci_result;
283         u32 value, value2;
284
285         value = 0;
286         value2 = 0x0001;
287         hci_read2(HCI_WIRELESS, &value, &value2, &hci_result);
288
289         *radio_state = value & HCI_WIRELESS_KILL_SWITCH;
290         return hci_result;
291 }
292
293 static int bt_rfkill_set_block(void *data, bool blocked)
294 {
295         struct toshiba_acpi_dev *dev = data;
296         u32 result1, result2;
297         u32 value;
298         int err;
299         bool radio_state;
300
301         value = (blocked == false);
302
303         mutex_lock(&dev->mutex);
304         if (hci_get_radio_state(&radio_state) != HCI_SUCCESS) {
305                 err = -EBUSY;
306                 goto out;
307         }
308
309         if (!radio_state) {
310                 err = 0;
311                 goto out;
312         }
313
314         hci_write2(HCI_WIRELESS, value, HCI_WIRELESS_BT_POWER, &result1);
315         hci_write2(HCI_WIRELESS, value, HCI_WIRELESS_BT_ATTACH, &result2);
316
317         if (result1 != HCI_SUCCESS || result2 != HCI_SUCCESS)
318                 err = -EBUSY;
319         else
320                 err = 0;
321  out:
322         mutex_unlock(&dev->mutex);
323         return err;
324 }
325
326 static void bt_rfkill_poll(struct rfkill *rfkill, void *data)
327 {
328         bool new_rfk_state;
329         bool value;
330         u32 hci_result;
331         struct toshiba_acpi_dev *dev = data;
332
333         mutex_lock(&dev->mutex);
334
335         hci_result = hci_get_radio_state(&value);
336         if (hci_result != HCI_SUCCESS) {
337                 /* Can't do anything useful */
338                 mutex_unlock(&dev->mutex);
339                 return;
340         }
341
342         new_rfk_state = value;
343
344         mutex_unlock(&dev->mutex);
345
346         if (rfkill_set_hw_state(rfkill, !new_rfk_state))
347                 bt_rfkill_set_block(data, true);
348 }
349
350 static const struct rfkill_ops toshiba_rfk_ops = {
351         .set_block = bt_rfkill_set_block,
352         .poll = bt_rfkill_poll,
353 };
354
355 static struct proc_dir_entry *toshiba_proc_dir /*= 0*/ ;
356 static struct backlight_device *toshiba_backlight_device;
357 static int force_fan;
358 static int last_key_event;
359 static int key_event_valid;
360
361 static int get_lcd(struct backlight_device *bd)
362 {
363         u32 hci_result;
364         u32 value;
365
366         hci_read1(HCI_LCD_BRIGHTNESS, &value, &hci_result);
367         if (hci_result == HCI_SUCCESS) {
368                 return (value >> HCI_LCD_BRIGHTNESS_SHIFT);
369         } else
370                 return -EFAULT;
371 }
372
373 static int lcd_proc_show(struct seq_file *m, void *v)
374 {
375         int value = get_lcd(NULL);
376
377         if (value >= 0) {
378                 seq_printf(m, "brightness:              %d\n", value);
379                 seq_printf(m, "brightness_levels:       %d\n",
380                              HCI_LCD_BRIGHTNESS_LEVELS);
381         } else {
382                 printk(MY_ERR "Error reading LCD brightness\n");
383         }
384
385         return 0;
386 }
387
388 static int lcd_proc_open(struct inode *inode, struct file *file)
389 {
390         return single_open(file, lcd_proc_show, NULL);
391 }
392
393 static int set_lcd(int value)
394 {
395         u32 hci_result;
396
397         value = value << HCI_LCD_BRIGHTNESS_SHIFT;
398         hci_write1(HCI_LCD_BRIGHTNESS, value, &hci_result);
399         if (hci_result != HCI_SUCCESS)
400                 return -EFAULT;
401
402         return 0;
403 }
404
405 static int set_lcd_status(struct backlight_device *bd)
406 {
407         return set_lcd(bd->props.brightness);
408 }
409
410 static ssize_t lcd_proc_write(struct file *file, const char __user *buf,
411                               size_t count, loff_t *pos)
412 {
413         char cmd[42];
414         size_t len;
415         int value;
416         int ret;
417
418         len = min(count, sizeof(cmd) - 1);
419         if (copy_from_user(cmd, buf, len))
420                 return -EFAULT;
421         cmd[len] = '\0';
422
423         if (sscanf(cmd, " brightness : %i", &value) == 1 &&
424             value >= 0 && value < HCI_LCD_BRIGHTNESS_LEVELS) {
425                 ret = set_lcd(value);
426                 if (ret == 0)
427                         ret = count;
428         } else {
429                 ret = -EINVAL;
430         }
431         return ret;
432 }
433
434 static const struct file_operations lcd_proc_fops = {
435         .owner          = THIS_MODULE,
436         .open           = lcd_proc_open,
437         .read           = seq_read,
438         .llseek         = seq_lseek,
439         .release        = single_release,
440         .write          = lcd_proc_write,
441 };
442
443 static int video_proc_show(struct seq_file *m, void *v)
444 {
445         u32 hci_result;
446         u32 value;
447
448         hci_read1(HCI_VIDEO_OUT, &value, &hci_result);
449         if (hci_result == HCI_SUCCESS) {
450                 int is_lcd = (value & HCI_VIDEO_OUT_LCD) ? 1 : 0;
451                 int is_crt = (value & HCI_VIDEO_OUT_CRT) ? 1 : 0;
452                 int is_tv = (value & HCI_VIDEO_OUT_TV) ? 1 : 0;
453                 seq_printf(m, "lcd_out:                 %d\n", is_lcd);
454                 seq_printf(m, "crt_out:                 %d\n", is_crt);
455                 seq_printf(m, "tv_out:                  %d\n", is_tv);
456         } else {
457                 printk(MY_ERR "Error reading video out status\n");
458         }
459
460         return 0;
461 }
462
463 static int video_proc_open(struct inode *inode, struct file *file)
464 {
465         return single_open(file, video_proc_show, NULL);
466 }
467
468 static ssize_t video_proc_write(struct file *file, const char __user *buf,
469                                 size_t count, loff_t *pos)
470 {
471         char *cmd, *buffer;
472         int value;
473         int remain = count;
474         int lcd_out = -1;
475         int crt_out = -1;
476         int tv_out = -1;
477         u32 hci_result;
478         u32 video_out;
479
480         cmd = kmalloc(count + 1, GFP_KERNEL);
481         if (!cmd)
482                 return -ENOMEM;
483         if (copy_from_user(cmd, buf, count)) {
484                 kfree(cmd);
485                 return -EFAULT;
486         }
487         cmd[count] = '\0';
488
489         buffer = cmd;
490
491         /* scan expression.  Multiple expressions may be delimited with ;
492          *
493          *  NOTE: to keep scanning simple, invalid fields are ignored
494          */
495         while (remain) {
496                 if (sscanf(buffer, " lcd_out : %i", &value) == 1)
497                         lcd_out = value & 1;
498                 else if (sscanf(buffer, " crt_out : %i", &value) == 1)
499                         crt_out = value & 1;
500                 else if (sscanf(buffer, " tv_out : %i", &value) == 1)
501                         tv_out = value & 1;
502                 /* advance to one character past the next ; */
503                 do {
504                         ++buffer;
505                         --remain;
506                 }
507                 while (remain && *(buffer - 1) != ';');
508         }
509
510         kfree(cmd);
511
512         hci_read1(HCI_VIDEO_OUT, &video_out, &hci_result);
513         if (hci_result == HCI_SUCCESS) {
514                 unsigned int new_video_out = video_out;
515                 if (lcd_out != -1)
516                         _set_bit(&new_video_out, HCI_VIDEO_OUT_LCD, lcd_out);
517                 if (crt_out != -1)
518                         _set_bit(&new_video_out, HCI_VIDEO_OUT_CRT, crt_out);
519                 if (tv_out != -1)
520                         _set_bit(&new_video_out, HCI_VIDEO_OUT_TV, tv_out);
521                 /* To avoid unnecessary video disruption, only write the new
522                  * video setting if something changed. */
523                 if (new_video_out != video_out)
524                         write_acpi_int(METHOD_VIDEO_OUT, new_video_out);
525         } else {
526                 return -EFAULT;
527         }
528
529         return count;
530 }
531
532 static const struct file_operations video_proc_fops = {
533         .owner          = THIS_MODULE,
534         .open           = video_proc_open,
535         .read           = seq_read,
536         .llseek         = seq_lseek,
537         .release        = single_release,
538         .write          = video_proc_write,
539 };
540
541 static int fan_proc_show(struct seq_file *m, void *v)
542 {
543         u32 hci_result;
544         u32 value;
545
546         hci_read1(HCI_FAN, &value, &hci_result);
547         if (hci_result == HCI_SUCCESS) {
548                 seq_printf(m, "running:                 %d\n", (value > 0));
549                 seq_printf(m, "force_on:                %d\n", force_fan);
550         } else {
551                 printk(MY_ERR "Error reading fan status\n");
552         }
553
554         return 0;
555 }
556
557 static int fan_proc_open(struct inode *inode, struct file *file)
558 {
559         return single_open(file, fan_proc_show, NULL);
560 }
561
562 static ssize_t fan_proc_write(struct file *file, const char __user *buf,
563                               size_t count, loff_t *pos)
564 {
565         char cmd[42];
566         size_t len;
567         int value;
568         u32 hci_result;
569
570         len = min(count, sizeof(cmd) - 1);
571         if (copy_from_user(cmd, buf, len))
572                 return -EFAULT;
573         cmd[len] = '\0';
574
575         if (sscanf(cmd, " force_on : %i", &value) == 1 &&
576             value >= 0 && value <= 1) {
577                 hci_write1(HCI_FAN, value, &hci_result);
578                 if (hci_result != HCI_SUCCESS)
579                         return -EFAULT;
580                 else
581                         force_fan = value;
582         } else {
583                 return -EINVAL;
584         }
585
586         return count;
587 }
588
589 static const struct file_operations fan_proc_fops = {
590         .owner          = THIS_MODULE,
591         .open           = fan_proc_open,
592         .read           = seq_read,
593         .llseek         = seq_lseek,
594         .release        = single_release,
595         .write          = fan_proc_write,
596 };
597
598 static int keys_proc_show(struct seq_file *m, void *v)
599 {
600         u32 hci_result;
601         u32 value;
602
603         if (!key_event_valid) {
604                 hci_read1(HCI_SYSTEM_EVENT, &value, &hci_result);
605                 if (hci_result == HCI_SUCCESS) {
606                         key_event_valid = 1;
607                         last_key_event = value;
608                 } else if (hci_result == HCI_EMPTY) {
609                         /* better luck next time */
610                 } else if (hci_result == HCI_NOT_SUPPORTED) {
611                         /* This is a workaround for an unresolved issue on
612                          * some machines where system events sporadically
613                          * become disabled. */
614                         hci_write1(HCI_SYSTEM_EVENT, 1, &hci_result);
615                         printk(MY_NOTICE "Re-enabled hotkeys\n");
616                 } else {
617                         printk(MY_ERR "Error reading hotkey status\n");
618                         goto end;
619                 }
620         }
621
622         seq_printf(m, "hotkey_ready:            %d\n", key_event_valid);
623         seq_printf(m, "hotkey:                  0x%04x\n", last_key_event);
624 end:
625         return 0;
626 }
627
628 static int keys_proc_open(struct inode *inode, struct file *file)
629 {
630         return single_open(file, keys_proc_show, NULL);
631 }
632
633 static ssize_t keys_proc_write(struct file *file, const char __user *buf,
634                                size_t count, loff_t *pos)
635 {
636         char cmd[42];
637         size_t len;
638         int value;
639
640         len = min(count, sizeof(cmd) - 1);
641         if (copy_from_user(cmd, buf, len))
642                 return -EFAULT;
643         cmd[len] = '\0';
644
645         if (sscanf(cmd, " hotkey_ready : %i", &value) == 1 && value == 0) {
646                 key_event_valid = 0;
647         } else {
648                 return -EINVAL;
649         }
650
651         return count;
652 }
653
654 static const struct file_operations keys_proc_fops = {
655         .owner          = THIS_MODULE,
656         .open           = keys_proc_open,
657         .read           = seq_read,
658         .llseek         = seq_lseek,
659         .release        = single_release,
660         .write          = keys_proc_write,
661 };
662
663 static int version_proc_show(struct seq_file *m, void *v)
664 {
665         seq_printf(m, "driver:                  %s\n", TOSHIBA_ACPI_VERSION);
666         seq_printf(m, "proc_interface:          %d\n", PROC_INTERFACE_VERSION);
667         return 0;
668 }
669
670 static int version_proc_open(struct inode *inode, struct file *file)
671 {
672         return single_open(file, version_proc_show, PDE(inode)->data);
673 }
674
675 static const struct file_operations version_proc_fops = {
676         .owner          = THIS_MODULE,
677         .open           = version_proc_open,
678         .read           = seq_read,
679         .llseek         = seq_lseek,
680         .release        = single_release,
681 };
682
683 /* proc and module init
684  */
685
686 #define PROC_TOSHIBA            "toshiba"
687
688 static acpi_status __init add_device(void)
689 {
690         proc_create("lcd", S_IRUGO | S_IWUSR, toshiba_proc_dir, &lcd_proc_fops);
691         proc_create("video", S_IRUGO | S_IWUSR, toshiba_proc_dir, &video_proc_fops);
692         proc_create("fan", S_IRUGO | S_IWUSR, toshiba_proc_dir, &fan_proc_fops);
693         proc_create("keys", S_IRUGO | S_IWUSR, toshiba_proc_dir, &keys_proc_fops);
694         proc_create("version", S_IRUGO, toshiba_proc_dir, &version_proc_fops);
695
696         return AE_OK;
697 }
698
699 static acpi_status remove_device(void)
700 {
701         remove_proc_entry("lcd", toshiba_proc_dir);
702         remove_proc_entry("video", toshiba_proc_dir);
703         remove_proc_entry("fan", toshiba_proc_dir);
704         remove_proc_entry("keys", toshiba_proc_dir);
705         remove_proc_entry("version", toshiba_proc_dir);
706         return AE_OK;
707 }
708
709 static struct backlight_ops toshiba_backlight_data = {
710         .get_brightness = get_lcd,
711         .update_status  = set_lcd_status,
712 };
713
714 static void toshiba_acpi_exit(void)
715 {
716         if (toshiba_acpi.bt_rfk) {
717                 rfkill_unregister(toshiba_acpi.bt_rfk);
718                 rfkill_destroy(toshiba_acpi.bt_rfk);
719         }
720
721         if (toshiba_backlight_device)
722                 backlight_device_unregister(toshiba_backlight_device);
723
724         remove_device();
725
726         if (toshiba_proc_dir)
727                 remove_proc_entry(PROC_TOSHIBA, acpi_root_dir);
728
729         platform_device_unregister(toshiba_acpi.p_dev);
730
731         return;
732 }
733
734 static int __init toshiba_acpi_init(void)
735 {
736         acpi_status status = AE_OK;
737         u32 hci_result;
738         bool bt_present;
739         int ret = 0;
740
741         if (acpi_disabled)
742                 return -ENODEV;
743
744         /* simple device detection: look for HCI method */
745         if (is_valid_acpi_path(METHOD_HCI_1))
746                 method_hci = METHOD_HCI_1;
747         else if (is_valid_acpi_path(METHOD_HCI_2))
748                 method_hci = METHOD_HCI_2;
749         else
750                 return -ENODEV;
751
752         printk(MY_INFO "Toshiba Laptop ACPI Extras version %s\n",
753                TOSHIBA_ACPI_VERSION);
754         printk(MY_INFO "    HCI method: %s\n", method_hci);
755
756         mutex_init(&toshiba_acpi.mutex);
757
758         toshiba_acpi.p_dev = platform_device_register_simple("toshiba_acpi",
759                                                               -1, NULL, 0);
760         if (IS_ERR(toshiba_acpi.p_dev)) {
761                 ret = PTR_ERR(toshiba_acpi.p_dev);
762                 printk(MY_ERR "unable to register platform device\n");
763                 toshiba_acpi.p_dev = NULL;
764                 toshiba_acpi_exit();
765                 return ret;
766         }
767
768         force_fan = 0;
769         key_event_valid = 0;
770
771         /* enable event fifo */
772         hci_write1(HCI_SYSTEM_EVENT, 1, &hci_result);
773
774         toshiba_proc_dir = proc_mkdir(PROC_TOSHIBA, acpi_root_dir);
775         if (!toshiba_proc_dir) {
776                 toshiba_acpi_exit();
777                 return -ENODEV;
778         } else {
779                 status = add_device();
780                 if (ACPI_FAILURE(status)) {
781                         toshiba_acpi_exit();
782                         return -ENODEV;
783                 }
784         }
785
786         toshiba_backlight_device = backlight_device_register("toshiba",
787                                                 &toshiba_acpi.p_dev->dev,
788                                                 NULL,
789                                                 &toshiba_backlight_data);
790         if (IS_ERR(toshiba_backlight_device)) {
791                 ret = PTR_ERR(toshiba_backlight_device);
792
793                 printk(KERN_ERR "Could not register toshiba backlight device\n");
794                 toshiba_backlight_device = NULL;
795                 toshiba_acpi_exit();
796                 return ret;
797         }
798         toshiba_backlight_device->props.max_brightness = HCI_LCD_BRIGHTNESS_LEVELS - 1;
799
800         /* Register rfkill switch for Bluetooth */
801         if (hci_get_bt_present(&bt_present) == HCI_SUCCESS && bt_present) {
802                 toshiba_acpi.bt_rfk = rfkill_alloc(toshiba_acpi.bt_name,
803                                                    &toshiba_acpi.p_dev->dev,
804                                                    RFKILL_TYPE_BLUETOOTH,
805                                                    &toshiba_rfk_ops,
806                                                    &toshiba_acpi);
807                 if (!toshiba_acpi.bt_rfk) {
808                         printk(MY_ERR "unable to allocate rfkill device\n");
809                         toshiba_acpi_exit();
810                         return -ENOMEM;
811                 }
812
813                 ret = rfkill_register(toshiba_acpi.bt_rfk);
814                 if (ret) {
815                         printk(MY_ERR "unable to register rfkill device\n");
816                         rfkill_destroy(toshiba_acpi.bt_rfk);
817                         toshiba_acpi_exit();
818                         return ret;
819                 }
820         }
821
822         return 0;
823 }
824
825 module_init(toshiba_acpi_init);
826 module_exit(toshiba_acpi_exit);