Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jbarnes...
[sfrench/cifs-2.6.git] / drivers / pci / intel-iommu.c
1 /*
2  * Copyright (c) 2006, Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15  * Place - Suite 330, Boston, MA 02111-1307 USA.
16  *
17  * Copyright (C) 2006-2008 Intel Corporation
18  * Author: Ashok Raj <ashok.raj@intel.com>
19  * Author: Shaohua Li <shaohua.li@intel.com>
20  * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21  * Author: Fenghua Yu <fenghua.yu@intel.com>
22  */
23
24 #include <linux/init.h>
25 #include <linux/bitmap.h>
26 #include <linux/debugfs.h>
27 #include <linux/slab.h>
28 #include <linux/irq.h>
29 #include <linux/interrupt.h>
30 #include <linux/spinlock.h>
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/mempool.h>
35 #include <linux/timer.h>
36 #include <linux/iova.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/sysdev.h>
40 #include <linux/tboot.h>
41 #include <linux/dmi.h>
42 #include <asm/cacheflush.h>
43 #include <asm/iommu.h>
44 #include "pci.h"
45
46 #define ROOT_SIZE               VTD_PAGE_SIZE
47 #define CONTEXT_SIZE            VTD_PAGE_SIZE
48
49 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
50 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
51 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
52
53 #define IOAPIC_RANGE_START      (0xfee00000)
54 #define IOAPIC_RANGE_END        (0xfeefffff)
55 #define IOVA_START_ADDR         (0x1000)
56
57 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
58
59 #define MAX_AGAW_WIDTH 64
60
61 #define __DOMAIN_MAX_PFN(gaw)  ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
62 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
63
64 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
65    to match. That way, we can use 'unsigned long' for PFNs with impunity. */
66 #define DOMAIN_MAX_PFN(gaw)     ((unsigned long) min_t(uint64_t, \
67                                 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
68 #define DOMAIN_MAX_ADDR(gaw)    (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
69
70 #define IOVA_PFN(addr)          ((addr) >> PAGE_SHIFT)
71 #define DMA_32BIT_PFN           IOVA_PFN(DMA_BIT_MASK(32))
72 #define DMA_64BIT_PFN           IOVA_PFN(DMA_BIT_MASK(64))
73
74
75 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
76    are never going to work. */
77 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
78 {
79         return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
80 }
81
82 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
83 {
84         return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
85 }
86 static inline unsigned long page_to_dma_pfn(struct page *pg)
87 {
88         return mm_to_dma_pfn(page_to_pfn(pg));
89 }
90 static inline unsigned long virt_to_dma_pfn(void *p)
91 {
92         return page_to_dma_pfn(virt_to_page(p));
93 }
94
95 /* global iommu list, set NULL for ignored DMAR units */
96 static struct intel_iommu **g_iommus;
97
98 static void __init check_tylersburg_isoch(void);
99 static int rwbf_quirk;
100
101 /*
102  * 0: Present
103  * 1-11: Reserved
104  * 12-63: Context Ptr (12 - (haw-1))
105  * 64-127: Reserved
106  */
107 struct root_entry {
108         u64     val;
109         u64     rsvd1;
110 };
111 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
112 static inline bool root_present(struct root_entry *root)
113 {
114         return (root->val & 1);
115 }
116 static inline void set_root_present(struct root_entry *root)
117 {
118         root->val |= 1;
119 }
120 static inline void set_root_value(struct root_entry *root, unsigned long value)
121 {
122         root->val |= value & VTD_PAGE_MASK;
123 }
124
125 static inline struct context_entry *
126 get_context_addr_from_root(struct root_entry *root)
127 {
128         return (struct context_entry *)
129                 (root_present(root)?phys_to_virt(
130                 root->val & VTD_PAGE_MASK) :
131                 NULL);
132 }
133
134 /*
135  * low 64 bits:
136  * 0: present
137  * 1: fault processing disable
138  * 2-3: translation type
139  * 12-63: address space root
140  * high 64 bits:
141  * 0-2: address width
142  * 3-6: aval
143  * 8-23: domain id
144  */
145 struct context_entry {
146         u64 lo;
147         u64 hi;
148 };
149
150 static inline bool context_present(struct context_entry *context)
151 {
152         return (context->lo & 1);
153 }
154 static inline void context_set_present(struct context_entry *context)
155 {
156         context->lo |= 1;
157 }
158
159 static inline void context_set_fault_enable(struct context_entry *context)
160 {
161         context->lo &= (((u64)-1) << 2) | 1;
162 }
163
164 static inline void context_set_translation_type(struct context_entry *context,
165                                                 unsigned long value)
166 {
167         context->lo &= (((u64)-1) << 4) | 3;
168         context->lo |= (value & 3) << 2;
169 }
170
171 static inline void context_set_address_root(struct context_entry *context,
172                                             unsigned long value)
173 {
174         context->lo |= value & VTD_PAGE_MASK;
175 }
176
177 static inline void context_set_address_width(struct context_entry *context,
178                                              unsigned long value)
179 {
180         context->hi |= value & 7;
181 }
182
183 static inline void context_set_domain_id(struct context_entry *context,
184                                          unsigned long value)
185 {
186         context->hi |= (value & ((1 << 16) - 1)) << 8;
187 }
188
189 static inline void context_clear_entry(struct context_entry *context)
190 {
191         context->lo = 0;
192         context->hi = 0;
193 }
194
195 /*
196  * 0: readable
197  * 1: writable
198  * 2-6: reserved
199  * 7: super page
200  * 8-10: available
201  * 11: snoop behavior
202  * 12-63: Host physcial address
203  */
204 struct dma_pte {
205         u64 val;
206 };
207
208 static inline void dma_clear_pte(struct dma_pte *pte)
209 {
210         pte->val = 0;
211 }
212
213 static inline void dma_set_pte_readable(struct dma_pte *pte)
214 {
215         pte->val |= DMA_PTE_READ;
216 }
217
218 static inline void dma_set_pte_writable(struct dma_pte *pte)
219 {
220         pte->val |= DMA_PTE_WRITE;
221 }
222
223 static inline void dma_set_pte_snp(struct dma_pte *pte)
224 {
225         pte->val |= DMA_PTE_SNP;
226 }
227
228 static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot)
229 {
230         pte->val = (pte->val & ~3) | (prot & 3);
231 }
232
233 static inline u64 dma_pte_addr(struct dma_pte *pte)
234 {
235 #ifdef CONFIG_64BIT
236         return pte->val & VTD_PAGE_MASK;
237 #else
238         /* Must have a full atomic 64-bit read */
239         return  __cmpxchg64(pte, 0ULL, 0ULL) & VTD_PAGE_MASK;
240 #endif
241 }
242
243 static inline void dma_set_pte_pfn(struct dma_pte *pte, unsigned long pfn)
244 {
245         pte->val |= (uint64_t)pfn << VTD_PAGE_SHIFT;
246 }
247
248 static inline bool dma_pte_present(struct dma_pte *pte)
249 {
250         return (pte->val & 3) != 0;
251 }
252
253 static inline int first_pte_in_page(struct dma_pte *pte)
254 {
255         return !((unsigned long)pte & ~VTD_PAGE_MASK);
256 }
257
258 /*
259  * This domain is a statically identity mapping domain.
260  *      1. This domain creats a static 1:1 mapping to all usable memory.
261  *      2. It maps to each iommu if successful.
262  *      3. Each iommu mapps to this domain if successful.
263  */
264 static struct dmar_domain *si_domain;
265 static int hw_pass_through = 1;
266
267 /* devices under the same p2p bridge are owned in one domain */
268 #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
269
270 /* domain represents a virtual machine, more than one devices
271  * across iommus may be owned in one domain, e.g. kvm guest.
272  */
273 #define DOMAIN_FLAG_VIRTUAL_MACHINE     (1 << 1)
274
275 /* si_domain contains mulitple devices */
276 #define DOMAIN_FLAG_STATIC_IDENTITY     (1 << 2)
277
278 struct dmar_domain {
279         int     id;                     /* domain id */
280         int     nid;                    /* node id */
281         unsigned long iommu_bmp;        /* bitmap of iommus this domain uses*/
282
283         struct list_head devices;       /* all devices' list */
284         struct iova_domain iovad;       /* iova's that belong to this domain */
285
286         struct dma_pte  *pgd;           /* virtual address */
287         int             gaw;            /* max guest address width */
288
289         /* adjusted guest address width, 0 is level 2 30-bit */
290         int             agaw;
291
292         int             flags;          /* flags to find out type of domain */
293
294         int             iommu_coherency;/* indicate coherency of iommu access */
295         int             iommu_snooping; /* indicate snooping control feature*/
296         int             iommu_count;    /* reference count of iommu */
297         spinlock_t      iommu_lock;     /* protect iommu set in domain */
298         u64             max_addr;       /* maximum mapped address */
299 };
300
301 /* PCI domain-device relationship */
302 struct device_domain_info {
303         struct list_head link;  /* link to domain siblings */
304         struct list_head global; /* link to global list */
305         int segment;            /* PCI domain */
306         u8 bus;                 /* PCI bus number */
307         u8 devfn;               /* PCI devfn number */
308         struct pci_dev *dev; /* it's NULL for PCIe-to-PCI bridge */
309         struct intel_iommu *iommu; /* IOMMU used by this device */
310         struct dmar_domain *domain; /* pointer to domain */
311 };
312
313 static void flush_unmaps_timeout(unsigned long data);
314
315 DEFINE_TIMER(unmap_timer,  flush_unmaps_timeout, 0, 0);
316
317 #define HIGH_WATER_MARK 250
318 struct deferred_flush_tables {
319         int next;
320         struct iova *iova[HIGH_WATER_MARK];
321         struct dmar_domain *domain[HIGH_WATER_MARK];
322 };
323
324 static struct deferred_flush_tables *deferred_flush;
325
326 /* bitmap for indexing intel_iommus */
327 static int g_num_of_iommus;
328
329 static DEFINE_SPINLOCK(async_umap_flush_lock);
330 static LIST_HEAD(unmaps_to_do);
331
332 static int timer_on;
333 static long list_size;
334
335 static void domain_remove_dev_info(struct dmar_domain *domain);
336
337 #ifdef CONFIG_DMAR_DEFAULT_ON
338 int dmar_disabled = 0;
339 #else
340 int dmar_disabled = 1;
341 #endif /*CONFIG_DMAR_DEFAULT_ON*/
342
343 static int __initdata dmar_map_gfx = 1;
344 static int dmar_forcedac;
345 static int intel_iommu_strict;
346
347 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
348 static DEFINE_SPINLOCK(device_domain_lock);
349 static LIST_HEAD(device_domain_list);
350
351 static struct iommu_ops intel_iommu_ops;
352
353 static int __init intel_iommu_setup(char *str)
354 {
355         if (!str)
356                 return -EINVAL;
357         while (*str) {
358                 if (!strncmp(str, "on", 2)) {
359                         dmar_disabled = 0;
360                         printk(KERN_INFO "Intel-IOMMU: enabled\n");
361                 } else if (!strncmp(str, "off", 3)) {
362                         dmar_disabled = 1;
363                         printk(KERN_INFO "Intel-IOMMU: disabled\n");
364                 } else if (!strncmp(str, "igfx_off", 8)) {
365                         dmar_map_gfx = 0;
366                         printk(KERN_INFO
367                                 "Intel-IOMMU: disable GFX device mapping\n");
368                 } else if (!strncmp(str, "forcedac", 8)) {
369                         printk(KERN_INFO
370                                 "Intel-IOMMU: Forcing DAC for PCI devices\n");
371                         dmar_forcedac = 1;
372                 } else if (!strncmp(str, "strict", 6)) {
373                         printk(KERN_INFO
374                                 "Intel-IOMMU: disable batched IOTLB flush\n");
375                         intel_iommu_strict = 1;
376                 }
377
378                 str += strcspn(str, ",");
379                 while (*str == ',')
380                         str++;
381         }
382         return 0;
383 }
384 __setup("intel_iommu=", intel_iommu_setup);
385
386 static struct kmem_cache *iommu_domain_cache;
387 static struct kmem_cache *iommu_devinfo_cache;
388 static struct kmem_cache *iommu_iova_cache;
389
390 static inline void *alloc_pgtable_page(int node)
391 {
392         struct page *page;
393         void *vaddr = NULL;
394
395         page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
396         if (page)
397                 vaddr = page_address(page);
398         return vaddr;
399 }
400
401 static inline void free_pgtable_page(void *vaddr)
402 {
403         free_page((unsigned long)vaddr);
404 }
405
406 static inline void *alloc_domain_mem(void)
407 {
408         return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
409 }
410
411 static void free_domain_mem(void *vaddr)
412 {
413         kmem_cache_free(iommu_domain_cache, vaddr);
414 }
415
416 static inline void * alloc_devinfo_mem(void)
417 {
418         return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
419 }
420
421 static inline void free_devinfo_mem(void *vaddr)
422 {
423         kmem_cache_free(iommu_devinfo_cache, vaddr);
424 }
425
426 struct iova *alloc_iova_mem(void)
427 {
428         return kmem_cache_alloc(iommu_iova_cache, GFP_ATOMIC);
429 }
430
431 void free_iova_mem(struct iova *iova)
432 {
433         kmem_cache_free(iommu_iova_cache, iova);
434 }
435
436
437 static inline int width_to_agaw(int width);
438
439 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
440 {
441         unsigned long sagaw;
442         int agaw = -1;
443
444         sagaw = cap_sagaw(iommu->cap);
445         for (agaw = width_to_agaw(max_gaw);
446              agaw >= 0; agaw--) {
447                 if (test_bit(agaw, &sagaw))
448                         break;
449         }
450
451         return agaw;
452 }
453
454 /*
455  * Calculate max SAGAW for each iommu.
456  */
457 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
458 {
459         return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
460 }
461
462 /*
463  * calculate agaw for each iommu.
464  * "SAGAW" may be different across iommus, use a default agaw, and
465  * get a supported less agaw for iommus that don't support the default agaw.
466  */
467 int iommu_calculate_agaw(struct intel_iommu *iommu)
468 {
469         return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
470 }
471
472 /* This functionin only returns single iommu in a domain */
473 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
474 {
475         int iommu_id;
476
477         /* si_domain and vm domain should not get here. */
478         BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
479         BUG_ON(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY);
480
481         iommu_id = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
482         if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
483                 return NULL;
484
485         return g_iommus[iommu_id];
486 }
487
488 static void domain_update_iommu_coherency(struct dmar_domain *domain)
489 {
490         int i;
491
492         domain->iommu_coherency = 1;
493
494         i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
495         for (; i < g_num_of_iommus; ) {
496                 if (!ecap_coherent(g_iommus[i]->ecap)) {
497                         domain->iommu_coherency = 0;
498                         break;
499                 }
500                 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
501         }
502 }
503
504 static void domain_update_iommu_snooping(struct dmar_domain *domain)
505 {
506         int i;
507
508         domain->iommu_snooping = 1;
509
510         i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
511         for (; i < g_num_of_iommus; ) {
512                 if (!ecap_sc_support(g_iommus[i]->ecap)) {
513                         domain->iommu_snooping = 0;
514                         break;
515                 }
516                 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
517         }
518 }
519
520 /* Some capabilities may be different across iommus */
521 static void domain_update_iommu_cap(struct dmar_domain *domain)
522 {
523         domain_update_iommu_coherency(domain);
524         domain_update_iommu_snooping(domain);
525 }
526
527 static struct intel_iommu *device_to_iommu(int segment, u8 bus, u8 devfn)
528 {
529         struct dmar_drhd_unit *drhd = NULL;
530         int i;
531
532         for_each_drhd_unit(drhd) {
533                 if (drhd->ignored)
534                         continue;
535                 if (segment != drhd->segment)
536                         continue;
537
538                 for (i = 0; i < drhd->devices_cnt; i++) {
539                         if (drhd->devices[i] &&
540                             drhd->devices[i]->bus->number == bus &&
541                             drhd->devices[i]->devfn == devfn)
542                                 return drhd->iommu;
543                         if (drhd->devices[i] &&
544                             drhd->devices[i]->subordinate &&
545                             drhd->devices[i]->subordinate->number <= bus &&
546                             drhd->devices[i]->subordinate->subordinate >= bus)
547                                 return drhd->iommu;
548                 }
549
550                 if (drhd->include_all)
551                         return drhd->iommu;
552         }
553
554         return NULL;
555 }
556
557 static void domain_flush_cache(struct dmar_domain *domain,
558                                void *addr, int size)
559 {
560         if (!domain->iommu_coherency)
561                 clflush_cache_range(addr, size);
562 }
563
564 /* Gets context entry for a given bus and devfn */
565 static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
566                 u8 bus, u8 devfn)
567 {
568         struct root_entry *root;
569         struct context_entry *context;
570         unsigned long phy_addr;
571         unsigned long flags;
572
573         spin_lock_irqsave(&iommu->lock, flags);
574         root = &iommu->root_entry[bus];
575         context = get_context_addr_from_root(root);
576         if (!context) {
577                 context = (struct context_entry *)
578                                 alloc_pgtable_page(iommu->node);
579                 if (!context) {
580                         spin_unlock_irqrestore(&iommu->lock, flags);
581                         return NULL;
582                 }
583                 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
584                 phy_addr = virt_to_phys((void *)context);
585                 set_root_value(root, phy_addr);
586                 set_root_present(root);
587                 __iommu_flush_cache(iommu, root, sizeof(*root));
588         }
589         spin_unlock_irqrestore(&iommu->lock, flags);
590         return &context[devfn];
591 }
592
593 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
594 {
595         struct root_entry *root;
596         struct context_entry *context;
597         int ret;
598         unsigned long flags;
599
600         spin_lock_irqsave(&iommu->lock, flags);
601         root = &iommu->root_entry[bus];
602         context = get_context_addr_from_root(root);
603         if (!context) {
604                 ret = 0;
605                 goto out;
606         }
607         ret = context_present(&context[devfn]);
608 out:
609         spin_unlock_irqrestore(&iommu->lock, flags);
610         return ret;
611 }
612
613 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
614 {
615         struct root_entry *root;
616         struct context_entry *context;
617         unsigned long flags;
618
619         spin_lock_irqsave(&iommu->lock, flags);
620         root = &iommu->root_entry[bus];
621         context = get_context_addr_from_root(root);
622         if (context) {
623                 context_clear_entry(&context[devfn]);
624                 __iommu_flush_cache(iommu, &context[devfn], \
625                         sizeof(*context));
626         }
627         spin_unlock_irqrestore(&iommu->lock, flags);
628 }
629
630 static void free_context_table(struct intel_iommu *iommu)
631 {
632         struct root_entry *root;
633         int i;
634         unsigned long flags;
635         struct context_entry *context;
636
637         spin_lock_irqsave(&iommu->lock, flags);
638         if (!iommu->root_entry) {
639                 goto out;
640         }
641         for (i = 0; i < ROOT_ENTRY_NR; i++) {
642                 root = &iommu->root_entry[i];
643                 context = get_context_addr_from_root(root);
644                 if (context)
645                         free_pgtable_page(context);
646         }
647         free_pgtable_page(iommu->root_entry);
648         iommu->root_entry = NULL;
649 out:
650         spin_unlock_irqrestore(&iommu->lock, flags);
651 }
652
653 /* page table handling */
654 #define LEVEL_STRIDE            (9)
655 #define LEVEL_MASK              (((u64)1 << LEVEL_STRIDE) - 1)
656
657 static inline int agaw_to_level(int agaw)
658 {
659         return agaw + 2;
660 }
661
662 static inline int agaw_to_width(int agaw)
663 {
664         return 30 + agaw * LEVEL_STRIDE;
665
666 }
667
668 static inline int width_to_agaw(int width)
669 {
670         return (width - 30) / LEVEL_STRIDE;
671 }
672
673 static inline unsigned int level_to_offset_bits(int level)
674 {
675         return (level - 1) * LEVEL_STRIDE;
676 }
677
678 static inline int pfn_level_offset(unsigned long pfn, int level)
679 {
680         return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
681 }
682
683 static inline unsigned long level_mask(int level)
684 {
685         return -1UL << level_to_offset_bits(level);
686 }
687
688 static inline unsigned long level_size(int level)
689 {
690         return 1UL << level_to_offset_bits(level);
691 }
692
693 static inline unsigned long align_to_level(unsigned long pfn, int level)
694 {
695         return (pfn + level_size(level) - 1) & level_mask(level);
696 }
697
698 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
699                                       unsigned long pfn)
700 {
701         int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
702         struct dma_pte *parent, *pte = NULL;
703         int level = agaw_to_level(domain->agaw);
704         int offset;
705
706         BUG_ON(!domain->pgd);
707         BUG_ON(addr_width < BITS_PER_LONG && pfn >> addr_width);
708         parent = domain->pgd;
709
710         while (level > 0) {
711                 void *tmp_page;
712
713                 offset = pfn_level_offset(pfn, level);
714                 pte = &parent[offset];
715                 if (level == 1)
716                         break;
717
718                 if (!dma_pte_present(pte)) {
719                         uint64_t pteval;
720
721                         tmp_page = alloc_pgtable_page(domain->nid);
722
723                         if (!tmp_page)
724                                 return NULL;
725
726                         domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
727                         pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
728                         if (cmpxchg64(&pte->val, 0ULL, pteval)) {
729                                 /* Someone else set it while we were thinking; use theirs. */
730                                 free_pgtable_page(tmp_page);
731                         } else {
732                                 dma_pte_addr(pte);
733                                 domain_flush_cache(domain, pte, sizeof(*pte));
734                         }
735                 }
736                 parent = phys_to_virt(dma_pte_addr(pte));
737                 level--;
738         }
739
740         return pte;
741 }
742
743 /* return address's pte at specific level */
744 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
745                                          unsigned long pfn,
746                                          int level)
747 {
748         struct dma_pte *parent, *pte = NULL;
749         int total = agaw_to_level(domain->agaw);
750         int offset;
751
752         parent = domain->pgd;
753         while (level <= total) {
754                 offset = pfn_level_offset(pfn, total);
755                 pte = &parent[offset];
756                 if (level == total)
757                         return pte;
758
759                 if (!dma_pte_present(pte))
760                         break;
761                 parent = phys_to_virt(dma_pte_addr(pte));
762                 total--;
763         }
764         return NULL;
765 }
766
767 /* clear last level pte, a tlb flush should be followed */
768 static void dma_pte_clear_range(struct dmar_domain *domain,
769                                 unsigned long start_pfn,
770                                 unsigned long last_pfn)
771 {
772         int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
773         struct dma_pte *first_pte, *pte;
774
775         BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
776         BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
777         BUG_ON(start_pfn > last_pfn);
778
779         /* we don't need lock here; nobody else touches the iova range */
780         do {
781                 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1);
782                 if (!pte) {
783                         start_pfn = align_to_level(start_pfn + 1, 2);
784                         continue;
785                 }
786                 do { 
787                         dma_clear_pte(pte);
788                         start_pfn++;
789                         pte++;
790                 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
791
792                 domain_flush_cache(domain, first_pte,
793                                    (void *)pte - (void *)first_pte);
794
795         } while (start_pfn && start_pfn <= last_pfn);
796 }
797
798 /* free page table pages. last level pte should already be cleared */
799 static void dma_pte_free_pagetable(struct dmar_domain *domain,
800                                    unsigned long start_pfn,
801                                    unsigned long last_pfn)
802 {
803         int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
804         struct dma_pte *first_pte, *pte;
805         int total = agaw_to_level(domain->agaw);
806         int level;
807         unsigned long tmp;
808
809         BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
810         BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
811         BUG_ON(start_pfn > last_pfn);
812
813         /* We don't need lock here; nobody else touches the iova range */
814         level = 2;
815         while (level <= total) {
816                 tmp = align_to_level(start_pfn, level);
817
818                 /* If we can't even clear one PTE at this level, we're done */
819                 if (tmp + level_size(level) - 1 > last_pfn)
820                         return;
821
822                 do {
823                         first_pte = pte = dma_pfn_level_pte(domain, tmp, level);
824                         if (!pte) {
825                                 tmp = align_to_level(tmp + 1, level + 1);
826                                 continue;
827                         }
828                         do {
829                                 if (dma_pte_present(pte)) {
830                                         free_pgtable_page(phys_to_virt(dma_pte_addr(pte)));
831                                         dma_clear_pte(pte);
832                                 }
833                                 pte++;
834                                 tmp += level_size(level);
835                         } while (!first_pte_in_page(pte) &&
836                                  tmp + level_size(level) - 1 <= last_pfn);
837
838                         domain_flush_cache(domain, first_pte,
839                                            (void *)pte - (void *)first_pte);
840                         
841                 } while (tmp && tmp + level_size(level) - 1 <= last_pfn);
842                 level++;
843         }
844         /* free pgd */
845         if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
846                 free_pgtable_page(domain->pgd);
847                 domain->pgd = NULL;
848         }
849 }
850
851 /* iommu handling */
852 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
853 {
854         struct root_entry *root;
855         unsigned long flags;
856
857         root = (struct root_entry *)alloc_pgtable_page(iommu->node);
858         if (!root)
859                 return -ENOMEM;
860
861         __iommu_flush_cache(iommu, root, ROOT_SIZE);
862
863         spin_lock_irqsave(&iommu->lock, flags);
864         iommu->root_entry = root;
865         spin_unlock_irqrestore(&iommu->lock, flags);
866
867         return 0;
868 }
869
870 static void iommu_set_root_entry(struct intel_iommu *iommu)
871 {
872         void *addr;
873         u32 sts;
874         unsigned long flag;
875
876         addr = iommu->root_entry;
877
878         spin_lock_irqsave(&iommu->register_lock, flag);
879         dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
880
881         writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
882
883         /* Make sure hardware complete it */
884         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
885                       readl, (sts & DMA_GSTS_RTPS), sts);
886
887         spin_unlock_irqrestore(&iommu->register_lock, flag);
888 }
889
890 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
891 {
892         u32 val;
893         unsigned long flag;
894
895         if (!rwbf_quirk && !cap_rwbf(iommu->cap))
896                 return;
897
898         spin_lock_irqsave(&iommu->register_lock, flag);
899         writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
900
901         /* Make sure hardware complete it */
902         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
903                       readl, (!(val & DMA_GSTS_WBFS)), val);
904
905         spin_unlock_irqrestore(&iommu->register_lock, flag);
906 }
907
908 /* return value determine if we need a write buffer flush */
909 static void __iommu_flush_context(struct intel_iommu *iommu,
910                                   u16 did, u16 source_id, u8 function_mask,
911                                   u64 type)
912 {
913         u64 val = 0;
914         unsigned long flag;
915
916         switch (type) {
917         case DMA_CCMD_GLOBAL_INVL:
918                 val = DMA_CCMD_GLOBAL_INVL;
919                 break;
920         case DMA_CCMD_DOMAIN_INVL:
921                 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
922                 break;
923         case DMA_CCMD_DEVICE_INVL:
924                 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
925                         | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
926                 break;
927         default:
928                 BUG();
929         }
930         val |= DMA_CCMD_ICC;
931
932         spin_lock_irqsave(&iommu->register_lock, flag);
933         dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
934
935         /* Make sure hardware complete it */
936         IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
937                 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
938
939         spin_unlock_irqrestore(&iommu->register_lock, flag);
940 }
941
942 /* return value determine if we need a write buffer flush */
943 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
944                                 u64 addr, unsigned int size_order, u64 type)
945 {
946         int tlb_offset = ecap_iotlb_offset(iommu->ecap);
947         u64 val = 0, val_iva = 0;
948         unsigned long flag;
949
950         switch (type) {
951         case DMA_TLB_GLOBAL_FLUSH:
952                 /* global flush doesn't need set IVA_REG */
953                 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
954                 break;
955         case DMA_TLB_DSI_FLUSH:
956                 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
957                 break;
958         case DMA_TLB_PSI_FLUSH:
959                 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
960                 /* Note: always flush non-leaf currently */
961                 val_iva = size_order | addr;
962                 break;
963         default:
964                 BUG();
965         }
966         /* Note: set drain read/write */
967 #if 0
968         /*
969          * This is probably to be super secure.. Looks like we can
970          * ignore it without any impact.
971          */
972         if (cap_read_drain(iommu->cap))
973                 val |= DMA_TLB_READ_DRAIN;
974 #endif
975         if (cap_write_drain(iommu->cap))
976                 val |= DMA_TLB_WRITE_DRAIN;
977
978         spin_lock_irqsave(&iommu->register_lock, flag);
979         /* Note: Only uses first TLB reg currently */
980         if (val_iva)
981                 dmar_writeq(iommu->reg + tlb_offset, val_iva);
982         dmar_writeq(iommu->reg + tlb_offset + 8, val);
983
984         /* Make sure hardware complete it */
985         IOMMU_WAIT_OP(iommu, tlb_offset + 8,
986                 dmar_readq, (!(val & DMA_TLB_IVT)), val);
987
988         spin_unlock_irqrestore(&iommu->register_lock, flag);
989
990         /* check IOTLB invalidation granularity */
991         if (DMA_TLB_IAIG(val) == 0)
992                 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
993         if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
994                 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
995                         (unsigned long long)DMA_TLB_IIRG(type),
996                         (unsigned long long)DMA_TLB_IAIG(val));
997 }
998
999 static struct device_domain_info *iommu_support_dev_iotlb(
1000         struct dmar_domain *domain, int segment, u8 bus, u8 devfn)
1001 {
1002         int found = 0;
1003         unsigned long flags;
1004         struct device_domain_info *info;
1005         struct intel_iommu *iommu = device_to_iommu(segment, bus, devfn);
1006
1007         if (!ecap_dev_iotlb_support(iommu->ecap))
1008                 return NULL;
1009
1010         if (!iommu->qi)
1011                 return NULL;
1012
1013         spin_lock_irqsave(&device_domain_lock, flags);
1014         list_for_each_entry(info, &domain->devices, link)
1015                 if (info->bus == bus && info->devfn == devfn) {
1016                         found = 1;
1017                         break;
1018                 }
1019         spin_unlock_irqrestore(&device_domain_lock, flags);
1020
1021         if (!found || !info->dev)
1022                 return NULL;
1023
1024         if (!pci_find_ext_capability(info->dev, PCI_EXT_CAP_ID_ATS))
1025                 return NULL;
1026
1027         if (!dmar_find_matched_atsr_unit(info->dev))
1028                 return NULL;
1029
1030         info->iommu = iommu;
1031
1032         return info;
1033 }
1034
1035 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1036 {
1037         if (!info)
1038                 return;
1039
1040         pci_enable_ats(info->dev, VTD_PAGE_SHIFT);
1041 }
1042
1043 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1044 {
1045         if (!info->dev || !pci_ats_enabled(info->dev))
1046                 return;
1047
1048         pci_disable_ats(info->dev);
1049 }
1050
1051 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1052                                   u64 addr, unsigned mask)
1053 {
1054         u16 sid, qdep;
1055         unsigned long flags;
1056         struct device_domain_info *info;
1057
1058         spin_lock_irqsave(&device_domain_lock, flags);
1059         list_for_each_entry(info, &domain->devices, link) {
1060                 if (!info->dev || !pci_ats_enabled(info->dev))
1061                         continue;
1062
1063                 sid = info->bus << 8 | info->devfn;
1064                 qdep = pci_ats_queue_depth(info->dev);
1065                 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1066         }
1067         spin_unlock_irqrestore(&device_domain_lock, flags);
1068 }
1069
1070 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
1071                                   unsigned long pfn, unsigned int pages)
1072 {
1073         unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1074         uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1075
1076         BUG_ON(pages == 0);
1077
1078         /*
1079          * Fallback to domain selective flush if no PSI support or the size is
1080          * too big.
1081          * PSI requires page size to be 2 ^ x, and the base address is naturally
1082          * aligned to the size
1083          */
1084         if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1085                 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1086                                                 DMA_TLB_DSI_FLUSH);
1087         else
1088                 iommu->flush.flush_iotlb(iommu, did, addr, mask,
1089                                                 DMA_TLB_PSI_FLUSH);
1090
1091         /*
1092          * In caching mode, domain ID 0 is reserved for non-present to present
1093          * mapping flush. Device IOTLB doesn't need to be flushed in this case.
1094          */
1095         if (!cap_caching_mode(iommu->cap) || did)
1096                 iommu_flush_dev_iotlb(iommu->domains[did], addr, mask);
1097 }
1098
1099 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1100 {
1101         u32 pmen;
1102         unsigned long flags;
1103
1104         spin_lock_irqsave(&iommu->register_lock, flags);
1105         pmen = readl(iommu->reg + DMAR_PMEN_REG);
1106         pmen &= ~DMA_PMEN_EPM;
1107         writel(pmen, iommu->reg + DMAR_PMEN_REG);
1108
1109         /* wait for the protected region status bit to clear */
1110         IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1111                 readl, !(pmen & DMA_PMEN_PRS), pmen);
1112
1113         spin_unlock_irqrestore(&iommu->register_lock, flags);
1114 }
1115
1116 static int iommu_enable_translation(struct intel_iommu *iommu)
1117 {
1118         u32 sts;
1119         unsigned long flags;
1120
1121         spin_lock_irqsave(&iommu->register_lock, flags);
1122         iommu->gcmd |= DMA_GCMD_TE;
1123         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1124
1125         /* Make sure hardware complete it */
1126         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1127                       readl, (sts & DMA_GSTS_TES), sts);
1128
1129         spin_unlock_irqrestore(&iommu->register_lock, flags);
1130         return 0;
1131 }
1132
1133 static int iommu_disable_translation(struct intel_iommu *iommu)
1134 {
1135         u32 sts;
1136         unsigned long flag;
1137
1138         spin_lock_irqsave(&iommu->register_lock, flag);
1139         iommu->gcmd &= ~DMA_GCMD_TE;
1140         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1141
1142         /* Make sure hardware complete it */
1143         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1144                       readl, (!(sts & DMA_GSTS_TES)), sts);
1145
1146         spin_unlock_irqrestore(&iommu->register_lock, flag);
1147         return 0;
1148 }
1149
1150
1151 static int iommu_init_domains(struct intel_iommu *iommu)
1152 {
1153         unsigned long ndomains;
1154         unsigned long nlongs;
1155
1156         ndomains = cap_ndoms(iommu->cap);
1157         pr_debug("Number of Domains supportd <%ld>\n", ndomains);
1158         nlongs = BITS_TO_LONGS(ndomains);
1159
1160         spin_lock_init(&iommu->lock);
1161
1162         /* TBD: there might be 64K domains,
1163          * consider other allocation for future chip
1164          */
1165         iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1166         if (!iommu->domain_ids) {
1167                 printk(KERN_ERR "Allocating domain id array failed\n");
1168                 return -ENOMEM;
1169         }
1170         iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1171                         GFP_KERNEL);
1172         if (!iommu->domains) {
1173                 printk(KERN_ERR "Allocating domain array failed\n");
1174                 return -ENOMEM;
1175         }
1176
1177         /*
1178          * if Caching mode is set, then invalid translations are tagged
1179          * with domainid 0. Hence we need to pre-allocate it.
1180          */
1181         if (cap_caching_mode(iommu->cap))
1182                 set_bit(0, iommu->domain_ids);
1183         return 0;
1184 }
1185
1186
1187 static void domain_exit(struct dmar_domain *domain);
1188 static void vm_domain_exit(struct dmar_domain *domain);
1189
1190 void free_dmar_iommu(struct intel_iommu *iommu)
1191 {
1192         struct dmar_domain *domain;
1193         int i;
1194         unsigned long flags;
1195
1196         if ((iommu->domains) && (iommu->domain_ids)) {
1197                 i = find_first_bit(iommu->domain_ids, cap_ndoms(iommu->cap));
1198                 for (; i < cap_ndoms(iommu->cap); ) {
1199                         domain = iommu->domains[i];
1200                         clear_bit(i, iommu->domain_ids);
1201
1202                         spin_lock_irqsave(&domain->iommu_lock, flags);
1203                         if (--domain->iommu_count == 0) {
1204                                 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1205                                         vm_domain_exit(domain);
1206                                 else
1207                                         domain_exit(domain);
1208                         }
1209                         spin_unlock_irqrestore(&domain->iommu_lock, flags);
1210
1211                         i = find_next_bit(iommu->domain_ids,
1212                                 cap_ndoms(iommu->cap), i+1);
1213                 }
1214         }
1215
1216         if (iommu->gcmd & DMA_GCMD_TE)
1217                 iommu_disable_translation(iommu);
1218
1219         if (iommu->irq) {
1220                 set_irq_data(iommu->irq, NULL);
1221                 /* This will mask the irq */
1222                 free_irq(iommu->irq, iommu);
1223                 destroy_irq(iommu->irq);
1224         }
1225
1226         kfree(iommu->domains);
1227         kfree(iommu->domain_ids);
1228
1229         g_iommus[iommu->seq_id] = NULL;
1230
1231         /* if all iommus are freed, free g_iommus */
1232         for (i = 0; i < g_num_of_iommus; i++) {
1233                 if (g_iommus[i])
1234                         break;
1235         }
1236
1237         if (i == g_num_of_iommus)
1238                 kfree(g_iommus);
1239
1240         /* free context mapping */
1241         free_context_table(iommu);
1242 }
1243
1244 static struct dmar_domain *alloc_domain(void)
1245 {
1246         struct dmar_domain *domain;
1247
1248         domain = alloc_domain_mem();
1249         if (!domain)
1250                 return NULL;
1251
1252         domain->nid = -1;
1253         memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
1254         domain->flags = 0;
1255
1256         return domain;
1257 }
1258
1259 static int iommu_attach_domain(struct dmar_domain *domain,
1260                                struct intel_iommu *iommu)
1261 {
1262         int num;
1263         unsigned long ndomains;
1264         unsigned long flags;
1265
1266         ndomains = cap_ndoms(iommu->cap);
1267
1268         spin_lock_irqsave(&iommu->lock, flags);
1269
1270         num = find_first_zero_bit(iommu->domain_ids, ndomains);
1271         if (num >= ndomains) {
1272                 spin_unlock_irqrestore(&iommu->lock, flags);
1273                 printk(KERN_ERR "IOMMU: no free domain ids\n");
1274                 return -ENOMEM;
1275         }
1276
1277         domain->id = num;
1278         set_bit(num, iommu->domain_ids);
1279         set_bit(iommu->seq_id, &domain->iommu_bmp);
1280         iommu->domains[num] = domain;
1281         spin_unlock_irqrestore(&iommu->lock, flags);
1282
1283         return 0;
1284 }
1285
1286 static void iommu_detach_domain(struct dmar_domain *domain,
1287                                 struct intel_iommu *iommu)
1288 {
1289         unsigned long flags;
1290         int num, ndomains;
1291         int found = 0;
1292
1293         spin_lock_irqsave(&iommu->lock, flags);
1294         ndomains = cap_ndoms(iommu->cap);
1295         num = find_first_bit(iommu->domain_ids, ndomains);
1296         for (; num < ndomains; ) {
1297                 if (iommu->domains[num] == domain) {
1298                         found = 1;
1299                         break;
1300                 }
1301                 num = find_next_bit(iommu->domain_ids,
1302                                     cap_ndoms(iommu->cap), num+1);
1303         }
1304
1305         if (found) {
1306                 clear_bit(num, iommu->domain_ids);
1307                 clear_bit(iommu->seq_id, &domain->iommu_bmp);
1308                 iommu->domains[num] = NULL;
1309         }
1310         spin_unlock_irqrestore(&iommu->lock, flags);
1311 }
1312
1313 static struct iova_domain reserved_iova_list;
1314 static struct lock_class_key reserved_rbtree_key;
1315
1316 static void dmar_init_reserved_ranges(void)
1317 {
1318         struct pci_dev *pdev = NULL;
1319         struct iova *iova;
1320         int i;
1321
1322         init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
1323
1324         lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1325                 &reserved_rbtree_key);
1326
1327         /* IOAPIC ranges shouldn't be accessed by DMA */
1328         iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1329                 IOVA_PFN(IOAPIC_RANGE_END));
1330         if (!iova)
1331                 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1332
1333         /* Reserve all PCI MMIO to avoid peer-to-peer access */
1334         for_each_pci_dev(pdev) {
1335                 struct resource *r;
1336
1337                 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1338                         r = &pdev->resource[i];
1339                         if (!r->flags || !(r->flags & IORESOURCE_MEM))
1340                                 continue;
1341                         iova = reserve_iova(&reserved_iova_list,
1342                                             IOVA_PFN(r->start),
1343                                             IOVA_PFN(r->end));
1344                         if (!iova)
1345                                 printk(KERN_ERR "Reserve iova failed\n");
1346                 }
1347         }
1348
1349 }
1350
1351 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1352 {
1353         copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1354 }
1355
1356 static inline int guestwidth_to_adjustwidth(int gaw)
1357 {
1358         int agaw;
1359         int r = (gaw - 12) % 9;
1360
1361         if (r == 0)
1362                 agaw = gaw;
1363         else
1364                 agaw = gaw + 9 - r;
1365         if (agaw > 64)
1366                 agaw = 64;
1367         return agaw;
1368 }
1369
1370 static int domain_init(struct dmar_domain *domain, int guest_width)
1371 {
1372         struct intel_iommu *iommu;
1373         int adjust_width, agaw;
1374         unsigned long sagaw;
1375
1376         init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
1377         spin_lock_init(&domain->iommu_lock);
1378
1379         domain_reserve_special_ranges(domain);
1380
1381         /* calculate AGAW */
1382         iommu = domain_get_iommu(domain);
1383         if (guest_width > cap_mgaw(iommu->cap))
1384                 guest_width = cap_mgaw(iommu->cap);
1385         domain->gaw = guest_width;
1386         adjust_width = guestwidth_to_adjustwidth(guest_width);
1387         agaw = width_to_agaw(adjust_width);
1388         sagaw = cap_sagaw(iommu->cap);
1389         if (!test_bit(agaw, &sagaw)) {
1390                 /* hardware doesn't support it, choose a bigger one */
1391                 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1392                 agaw = find_next_bit(&sagaw, 5, agaw);
1393                 if (agaw >= 5)
1394                         return -ENODEV;
1395         }
1396         domain->agaw = agaw;
1397         INIT_LIST_HEAD(&domain->devices);
1398
1399         if (ecap_coherent(iommu->ecap))
1400                 domain->iommu_coherency = 1;
1401         else
1402                 domain->iommu_coherency = 0;
1403
1404         if (ecap_sc_support(iommu->ecap))
1405                 domain->iommu_snooping = 1;
1406         else
1407                 domain->iommu_snooping = 0;
1408
1409         domain->iommu_count = 1;
1410         domain->nid = iommu->node;
1411
1412         /* always allocate the top pgd */
1413         domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1414         if (!domain->pgd)
1415                 return -ENOMEM;
1416         __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1417         return 0;
1418 }
1419
1420 static void domain_exit(struct dmar_domain *domain)
1421 {
1422         struct dmar_drhd_unit *drhd;
1423         struct intel_iommu *iommu;
1424
1425         /* Domain 0 is reserved, so dont process it */
1426         if (!domain)
1427                 return;
1428
1429         domain_remove_dev_info(domain);
1430         /* destroy iovas */
1431         put_iova_domain(&domain->iovad);
1432
1433         /* clear ptes */
1434         dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1435
1436         /* free page tables */
1437         dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1438
1439         for_each_active_iommu(iommu, drhd)
1440                 if (test_bit(iommu->seq_id, &domain->iommu_bmp))
1441                         iommu_detach_domain(domain, iommu);
1442
1443         free_domain_mem(domain);
1444 }
1445
1446 static int domain_context_mapping_one(struct dmar_domain *domain, int segment,
1447                                  u8 bus, u8 devfn, int translation)
1448 {
1449         struct context_entry *context;
1450         unsigned long flags;
1451         struct intel_iommu *iommu;
1452         struct dma_pte *pgd;
1453         unsigned long num;
1454         unsigned long ndomains;
1455         int id;
1456         int agaw;
1457         struct device_domain_info *info = NULL;
1458
1459         pr_debug("Set context mapping for %02x:%02x.%d\n",
1460                 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1461
1462         BUG_ON(!domain->pgd);
1463         BUG_ON(translation != CONTEXT_TT_PASS_THROUGH &&
1464                translation != CONTEXT_TT_MULTI_LEVEL);
1465
1466         iommu = device_to_iommu(segment, bus, devfn);
1467         if (!iommu)
1468                 return -ENODEV;
1469
1470         context = device_to_context_entry(iommu, bus, devfn);
1471         if (!context)
1472                 return -ENOMEM;
1473         spin_lock_irqsave(&iommu->lock, flags);
1474         if (context_present(context)) {
1475                 spin_unlock_irqrestore(&iommu->lock, flags);
1476                 return 0;
1477         }
1478
1479         id = domain->id;
1480         pgd = domain->pgd;
1481
1482         if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
1483             domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) {
1484                 int found = 0;
1485
1486                 /* find an available domain id for this device in iommu */
1487                 ndomains = cap_ndoms(iommu->cap);
1488                 num = find_first_bit(iommu->domain_ids, ndomains);
1489                 for (; num < ndomains; ) {
1490                         if (iommu->domains[num] == domain) {
1491                                 id = num;
1492                                 found = 1;
1493                                 break;
1494                         }
1495                         num = find_next_bit(iommu->domain_ids,
1496                                             cap_ndoms(iommu->cap), num+1);
1497                 }
1498
1499                 if (found == 0) {
1500                         num = find_first_zero_bit(iommu->domain_ids, ndomains);
1501                         if (num >= ndomains) {
1502                                 spin_unlock_irqrestore(&iommu->lock, flags);
1503                                 printk(KERN_ERR "IOMMU: no free domain ids\n");
1504                                 return -EFAULT;
1505                         }
1506
1507                         set_bit(num, iommu->domain_ids);
1508                         iommu->domains[num] = domain;
1509                         id = num;
1510                 }
1511
1512                 /* Skip top levels of page tables for
1513                  * iommu which has less agaw than default.
1514                  * Unnecessary for PT mode.
1515                  */
1516                 if (translation != CONTEXT_TT_PASS_THROUGH) {
1517                         for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1518                                 pgd = phys_to_virt(dma_pte_addr(pgd));
1519                                 if (!dma_pte_present(pgd)) {
1520                                         spin_unlock_irqrestore(&iommu->lock, flags);
1521                                         return -ENOMEM;
1522                                 }
1523                         }
1524                 }
1525         }
1526
1527         context_set_domain_id(context, id);
1528
1529         if (translation != CONTEXT_TT_PASS_THROUGH) {
1530                 info = iommu_support_dev_iotlb(domain, segment, bus, devfn);
1531                 translation = info ? CONTEXT_TT_DEV_IOTLB :
1532                                      CONTEXT_TT_MULTI_LEVEL;
1533         }
1534         /*
1535          * In pass through mode, AW must be programmed to indicate the largest
1536          * AGAW value supported by hardware. And ASR is ignored by hardware.
1537          */
1538         if (unlikely(translation == CONTEXT_TT_PASS_THROUGH))
1539                 context_set_address_width(context, iommu->msagaw);
1540         else {
1541                 context_set_address_root(context, virt_to_phys(pgd));
1542                 context_set_address_width(context, iommu->agaw);
1543         }
1544
1545         context_set_translation_type(context, translation);
1546         context_set_fault_enable(context);
1547         context_set_present(context);
1548         domain_flush_cache(domain, context, sizeof(*context));
1549
1550         /*
1551          * It's a non-present to present mapping. If hardware doesn't cache
1552          * non-present entry we only need to flush the write-buffer. If the
1553          * _does_ cache non-present entries, then it does so in the special
1554          * domain #0, which we have to flush:
1555          */
1556         if (cap_caching_mode(iommu->cap)) {
1557                 iommu->flush.flush_context(iommu, 0,
1558                                            (((u16)bus) << 8) | devfn,
1559                                            DMA_CCMD_MASK_NOBIT,
1560                                            DMA_CCMD_DEVICE_INVL);
1561                 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_DSI_FLUSH);
1562         } else {
1563                 iommu_flush_write_buffer(iommu);
1564         }
1565         iommu_enable_dev_iotlb(info);
1566         spin_unlock_irqrestore(&iommu->lock, flags);
1567
1568         spin_lock_irqsave(&domain->iommu_lock, flags);
1569         if (!test_and_set_bit(iommu->seq_id, &domain->iommu_bmp)) {
1570                 domain->iommu_count++;
1571                 if (domain->iommu_count == 1)
1572                         domain->nid = iommu->node;
1573                 domain_update_iommu_cap(domain);
1574         }
1575         spin_unlock_irqrestore(&domain->iommu_lock, flags);
1576         return 0;
1577 }
1578
1579 static int
1580 domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev,
1581                         int translation)
1582 {
1583         int ret;
1584         struct pci_dev *tmp, *parent;
1585
1586         ret = domain_context_mapping_one(domain, pci_domain_nr(pdev->bus),
1587                                          pdev->bus->number, pdev->devfn,
1588                                          translation);
1589         if (ret)
1590                 return ret;
1591
1592         /* dependent device mapping */
1593         tmp = pci_find_upstream_pcie_bridge(pdev);
1594         if (!tmp)
1595                 return 0;
1596         /* Secondary interface's bus number and devfn 0 */
1597         parent = pdev->bus->self;
1598         while (parent != tmp) {
1599                 ret = domain_context_mapping_one(domain,
1600                                                  pci_domain_nr(parent->bus),
1601                                                  parent->bus->number,
1602                                                  parent->devfn, translation);
1603                 if (ret)
1604                         return ret;
1605                 parent = parent->bus->self;
1606         }
1607         if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */
1608                 return domain_context_mapping_one(domain,
1609                                         pci_domain_nr(tmp->subordinate),
1610                                         tmp->subordinate->number, 0,
1611                                         translation);
1612         else /* this is a legacy PCI bridge */
1613                 return domain_context_mapping_one(domain,
1614                                                   pci_domain_nr(tmp->bus),
1615                                                   tmp->bus->number,
1616                                                   tmp->devfn,
1617                                                   translation);
1618 }
1619
1620 static int domain_context_mapped(struct pci_dev *pdev)
1621 {
1622         int ret;
1623         struct pci_dev *tmp, *parent;
1624         struct intel_iommu *iommu;
1625
1626         iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
1627                                 pdev->devfn);
1628         if (!iommu)
1629                 return -ENODEV;
1630
1631         ret = device_context_mapped(iommu, pdev->bus->number, pdev->devfn);
1632         if (!ret)
1633                 return ret;
1634         /* dependent device mapping */
1635         tmp = pci_find_upstream_pcie_bridge(pdev);
1636         if (!tmp)
1637                 return ret;
1638         /* Secondary interface's bus number and devfn 0 */
1639         parent = pdev->bus->self;
1640         while (parent != tmp) {
1641                 ret = device_context_mapped(iommu, parent->bus->number,
1642                                             parent->devfn);
1643                 if (!ret)
1644                         return ret;
1645                 parent = parent->bus->self;
1646         }
1647         if (pci_is_pcie(tmp))
1648                 return device_context_mapped(iommu, tmp->subordinate->number,
1649                                              0);
1650         else
1651                 return device_context_mapped(iommu, tmp->bus->number,
1652                                              tmp->devfn);
1653 }
1654
1655 /* Returns a number of VTD pages, but aligned to MM page size */
1656 static inline unsigned long aligned_nrpages(unsigned long host_addr,
1657                                             size_t size)
1658 {
1659         host_addr &= ~PAGE_MASK;
1660         return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
1661 }
1662
1663 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1664                             struct scatterlist *sg, unsigned long phys_pfn,
1665                             unsigned long nr_pages, int prot)
1666 {
1667         struct dma_pte *first_pte = NULL, *pte = NULL;
1668         phys_addr_t uninitialized_var(pteval);
1669         int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
1670         unsigned long sg_res;
1671
1672         BUG_ON(addr_width < BITS_PER_LONG && (iov_pfn + nr_pages - 1) >> addr_width);
1673
1674         if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1675                 return -EINVAL;
1676
1677         prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
1678
1679         if (sg)
1680                 sg_res = 0;
1681         else {
1682                 sg_res = nr_pages + 1;
1683                 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
1684         }
1685
1686         while (nr_pages--) {
1687                 uint64_t tmp;
1688
1689                 if (!sg_res) {
1690                         sg_res = aligned_nrpages(sg->offset, sg->length);
1691                         sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
1692                         sg->dma_length = sg->length;
1693                         pteval = page_to_phys(sg_page(sg)) | prot;
1694                 }
1695                 if (!pte) {
1696                         first_pte = pte = pfn_to_dma_pte(domain, iov_pfn);
1697                         if (!pte)
1698                                 return -ENOMEM;
1699                 }
1700                 /* We don't need lock here, nobody else
1701                  * touches the iova range
1702                  */
1703                 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
1704                 if (tmp) {
1705                         static int dumps = 5;
1706                         printk(KERN_CRIT "ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
1707                                iov_pfn, tmp, (unsigned long long)pteval);
1708                         if (dumps) {
1709                                 dumps--;
1710                                 debug_dma_dump_mappings(NULL);
1711                         }
1712                         WARN_ON(1);
1713                 }
1714                 pte++;
1715                 if (!nr_pages || first_pte_in_page(pte)) {
1716                         domain_flush_cache(domain, first_pte,
1717                                            (void *)pte - (void *)first_pte);
1718                         pte = NULL;
1719                 }
1720                 iov_pfn++;
1721                 pteval += VTD_PAGE_SIZE;
1722                 sg_res--;
1723                 if (!sg_res)
1724                         sg = sg_next(sg);
1725         }
1726         return 0;
1727 }
1728
1729 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1730                                     struct scatterlist *sg, unsigned long nr_pages,
1731                                     int prot)
1732 {
1733         return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
1734 }
1735
1736 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1737                                      unsigned long phys_pfn, unsigned long nr_pages,
1738                                      int prot)
1739 {
1740         return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
1741 }
1742
1743 static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
1744 {
1745         if (!iommu)
1746                 return;
1747
1748         clear_context_table(iommu, bus, devfn);
1749         iommu->flush.flush_context(iommu, 0, 0, 0,
1750                                            DMA_CCMD_GLOBAL_INVL);
1751         iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
1752 }
1753
1754 static void domain_remove_dev_info(struct dmar_domain *domain)
1755 {
1756         struct device_domain_info *info;
1757         unsigned long flags;
1758         struct intel_iommu *iommu;
1759
1760         spin_lock_irqsave(&device_domain_lock, flags);
1761         while (!list_empty(&domain->devices)) {
1762                 info = list_entry(domain->devices.next,
1763                         struct device_domain_info, link);
1764                 list_del(&info->link);
1765                 list_del(&info->global);
1766                 if (info->dev)
1767                         info->dev->dev.archdata.iommu = NULL;
1768                 spin_unlock_irqrestore(&device_domain_lock, flags);
1769
1770                 iommu_disable_dev_iotlb(info);
1771                 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
1772                 iommu_detach_dev(iommu, info->bus, info->devfn);
1773                 free_devinfo_mem(info);
1774
1775                 spin_lock_irqsave(&device_domain_lock, flags);
1776         }
1777         spin_unlock_irqrestore(&device_domain_lock, flags);
1778 }
1779
1780 /*
1781  * find_domain
1782  * Note: we use struct pci_dev->dev.archdata.iommu stores the info
1783  */
1784 static struct dmar_domain *
1785 find_domain(struct pci_dev *pdev)
1786 {
1787         struct device_domain_info *info;
1788
1789         /* No lock here, assumes no domain exit in normal case */
1790         info = pdev->dev.archdata.iommu;
1791         if (info)
1792                 return info->domain;
1793         return NULL;
1794 }
1795
1796 /* domain is initialized */
1797 static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
1798 {
1799         struct dmar_domain *domain, *found = NULL;
1800         struct intel_iommu *iommu;
1801         struct dmar_drhd_unit *drhd;
1802         struct device_domain_info *info, *tmp;
1803         struct pci_dev *dev_tmp;
1804         unsigned long flags;
1805         int bus = 0, devfn = 0;
1806         int segment;
1807         int ret;
1808
1809         domain = find_domain(pdev);
1810         if (domain)
1811                 return domain;
1812
1813         segment = pci_domain_nr(pdev->bus);
1814
1815         dev_tmp = pci_find_upstream_pcie_bridge(pdev);
1816         if (dev_tmp) {
1817                 if (pci_is_pcie(dev_tmp)) {
1818                         bus = dev_tmp->subordinate->number;
1819                         devfn = 0;
1820                 } else {
1821                         bus = dev_tmp->bus->number;
1822                         devfn = dev_tmp->devfn;
1823                 }
1824                 spin_lock_irqsave(&device_domain_lock, flags);
1825                 list_for_each_entry(info, &device_domain_list, global) {
1826                         if (info->segment == segment &&
1827                             info->bus == bus && info->devfn == devfn) {
1828                                 found = info->domain;
1829                                 break;
1830                         }
1831                 }
1832                 spin_unlock_irqrestore(&device_domain_lock, flags);
1833                 /* pcie-pci bridge already has a domain, uses it */
1834                 if (found) {
1835                         domain = found;
1836                         goto found_domain;
1837                 }
1838         }
1839
1840         domain = alloc_domain();
1841         if (!domain)
1842                 goto error;
1843
1844         /* Allocate new domain for the device */
1845         drhd = dmar_find_matched_drhd_unit(pdev);
1846         if (!drhd) {
1847                 printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
1848                         pci_name(pdev));
1849                 return NULL;
1850         }
1851         iommu = drhd->iommu;
1852
1853         ret = iommu_attach_domain(domain, iommu);
1854         if (ret) {
1855                 domain_exit(domain);
1856                 goto error;
1857         }
1858
1859         if (domain_init(domain, gaw)) {
1860                 domain_exit(domain);
1861                 goto error;
1862         }
1863
1864         /* register pcie-to-pci device */
1865         if (dev_tmp) {
1866                 info = alloc_devinfo_mem();
1867                 if (!info) {
1868                         domain_exit(domain);
1869                         goto error;
1870                 }
1871                 info->segment = segment;
1872                 info->bus = bus;
1873                 info->devfn = devfn;
1874                 info->dev = NULL;
1875                 info->domain = domain;
1876                 /* This domain is shared by devices under p2p bridge */
1877                 domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
1878
1879                 /* pcie-to-pci bridge already has a domain, uses it */
1880                 found = NULL;
1881                 spin_lock_irqsave(&device_domain_lock, flags);
1882                 list_for_each_entry(tmp, &device_domain_list, global) {
1883                         if (tmp->segment == segment &&
1884                             tmp->bus == bus && tmp->devfn == devfn) {
1885                                 found = tmp->domain;
1886                                 break;
1887                         }
1888                 }
1889                 if (found) {
1890                         free_devinfo_mem(info);
1891                         domain_exit(domain);
1892                         domain = found;
1893                 } else {
1894                         list_add(&info->link, &domain->devices);
1895                         list_add(&info->global, &device_domain_list);
1896                 }
1897                 spin_unlock_irqrestore(&device_domain_lock, flags);
1898         }
1899
1900 found_domain:
1901         info = alloc_devinfo_mem();
1902         if (!info)
1903                 goto error;
1904         info->segment = segment;
1905         info->bus = pdev->bus->number;
1906         info->devfn = pdev->devfn;
1907         info->dev = pdev;
1908         info->domain = domain;
1909         spin_lock_irqsave(&device_domain_lock, flags);
1910         /* somebody is fast */
1911         found = find_domain(pdev);
1912         if (found != NULL) {
1913                 spin_unlock_irqrestore(&device_domain_lock, flags);
1914                 if (found != domain) {
1915                         domain_exit(domain);
1916                         domain = found;
1917                 }
1918                 free_devinfo_mem(info);
1919                 return domain;
1920         }
1921         list_add(&info->link, &domain->devices);
1922         list_add(&info->global, &device_domain_list);
1923         pdev->dev.archdata.iommu = info;
1924         spin_unlock_irqrestore(&device_domain_lock, flags);
1925         return domain;
1926 error:
1927         /* recheck it here, maybe others set it */
1928         return find_domain(pdev);
1929 }
1930
1931 static int iommu_identity_mapping;
1932 #define IDENTMAP_ALL            1
1933 #define IDENTMAP_GFX            2
1934 #define IDENTMAP_AZALIA         4
1935
1936 static int iommu_domain_identity_map(struct dmar_domain *domain,
1937                                      unsigned long long start,
1938                                      unsigned long long end)
1939 {
1940         unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
1941         unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
1942
1943         if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
1944                           dma_to_mm_pfn(last_vpfn))) {
1945                 printk(KERN_ERR "IOMMU: reserve iova failed\n");
1946                 return -ENOMEM;
1947         }
1948
1949         pr_debug("Mapping reserved region %llx-%llx for domain %d\n",
1950                  start, end, domain->id);
1951         /*
1952          * RMRR range might have overlap with physical memory range,
1953          * clear it first
1954          */
1955         dma_pte_clear_range(domain, first_vpfn, last_vpfn);
1956
1957         return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
1958                                   last_vpfn - first_vpfn + 1,
1959                                   DMA_PTE_READ|DMA_PTE_WRITE);
1960 }
1961
1962 static int iommu_prepare_identity_map(struct pci_dev *pdev,
1963                                       unsigned long long start,
1964                                       unsigned long long end)
1965 {
1966         struct dmar_domain *domain;
1967         int ret;
1968
1969         domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
1970         if (!domain)
1971                 return -ENOMEM;
1972
1973         /* For _hardware_ passthrough, don't bother. But for software
1974            passthrough, we do it anyway -- it may indicate a memory
1975            range which is reserved in E820, so which didn't get set
1976            up to start with in si_domain */
1977         if (domain == si_domain && hw_pass_through) {
1978                 printk("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
1979                        pci_name(pdev), start, end);
1980                 return 0;
1981         }
1982
1983         printk(KERN_INFO
1984                "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
1985                pci_name(pdev), start, end);
1986         
1987         if (end < start) {
1988                 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
1989                         "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
1990                         dmi_get_system_info(DMI_BIOS_VENDOR),
1991                         dmi_get_system_info(DMI_BIOS_VERSION),
1992                      dmi_get_system_info(DMI_PRODUCT_VERSION));
1993                 ret = -EIO;
1994                 goto error;
1995         }
1996
1997         if (end >> agaw_to_width(domain->agaw)) {
1998                 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
1999                      "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2000                      agaw_to_width(domain->agaw),
2001                      dmi_get_system_info(DMI_BIOS_VENDOR),
2002                      dmi_get_system_info(DMI_BIOS_VERSION),
2003                      dmi_get_system_info(DMI_PRODUCT_VERSION));
2004                 ret = -EIO;
2005                 goto error;
2006         }
2007
2008         ret = iommu_domain_identity_map(domain, start, end);
2009         if (ret)
2010                 goto error;
2011
2012         /* context entry init */
2013         ret = domain_context_mapping(domain, pdev, CONTEXT_TT_MULTI_LEVEL);
2014         if (ret)
2015                 goto error;
2016
2017         return 0;
2018
2019  error:
2020         domain_exit(domain);
2021         return ret;
2022 }
2023
2024 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2025         struct pci_dev *pdev)
2026 {
2027         if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2028                 return 0;
2029         return iommu_prepare_identity_map(pdev, rmrr->base_address,
2030                 rmrr->end_address + 1);
2031 }
2032
2033 #ifdef CONFIG_DMAR_FLOPPY_WA
2034 static inline void iommu_prepare_isa(void)
2035 {
2036         struct pci_dev *pdev;
2037         int ret;
2038
2039         pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2040         if (!pdev)
2041                 return;
2042
2043         printk(KERN_INFO "IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
2044         ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024);
2045
2046         if (ret)
2047                 printk(KERN_ERR "IOMMU: Failed to create 0-16MiB identity map; "
2048                        "floppy might not work\n");
2049
2050 }
2051 #else
2052 static inline void iommu_prepare_isa(void)
2053 {
2054         return;
2055 }
2056 #endif /* !CONFIG_DMAR_FLPY_WA */
2057
2058 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2059
2060 static int __init si_domain_work_fn(unsigned long start_pfn,
2061                                     unsigned long end_pfn, void *datax)
2062 {
2063         int *ret = datax;
2064
2065         *ret = iommu_domain_identity_map(si_domain,
2066                                          (uint64_t)start_pfn << PAGE_SHIFT,
2067                                          (uint64_t)end_pfn << PAGE_SHIFT);
2068         return *ret;
2069
2070 }
2071
2072 static int __init si_domain_init(int hw)
2073 {
2074         struct dmar_drhd_unit *drhd;
2075         struct intel_iommu *iommu;
2076         int nid, ret = 0;
2077
2078         si_domain = alloc_domain();
2079         if (!si_domain)
2080                 return -EFAULT;
2081
2082         pr_debug("Identity mapping domain is domain %d\n", si_domain->id);
2083
2084         for_each_active_iommu(iommu, drhd) {
2085                 ret = iommu_attach_domain(si_domain, iommu);
2086                 if (ret) {
2087                         domain_exit(si_domain);
2088                         return -EFAULT;
2089                 }
2090         }
2091
2092         if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2093                 domain_exit(si_domain);
2094                 return -EFAULT;
2095         }
2096
2097         si_domain->flags = DOMAIN_FLAG_STATIC_IDENTITY;
2098
2099         if (hw)
2100                 return 0;
2101
2102         for_each_online_node(nid) {
2103                 work_with_active_regions(nid, si_domain_work_fn, &ret);
2104                 if (ret)
2105                         return ret;
2106         }
2107
2108         return 0;
2109 }
2110
2111 static void domain_remove_one_dev_info(struct dmar_domain *domain,
2112                                           struct pci_dev *pdev);
2113 static int identity_mapping(struct pci_dev *pdev)
2114 {
2115         struct device_domain_info *info;
2116
2117         if (likely(!iommu_identity_mapping))
2118                 return 0;
2119
2120
2121         list_for_each_entry(info, &si_domain->devices, link)
2122                 if (info->dev == pdev)
2123                         return 1;
2124         return 0;
2125 }
2126
2127 static int domain_add_dev_info(struct dmar_domain *domain,
2128                                struct pci_dev *pdev,
2129                                int translation)
2130 {
2131         struct device_domain_info *info;
2132         unsigned long flags;
2133         int ret;
2134
2135         info = alloc_devinfo_mem();
2136         if (!info)
2137                 return -ENOMEM;
2138
2139         ret = domain_context_mapping(domain, pdev, translation);
2140         if (ret) {
2141                 free_devinfo_mem(info);
2142                 return ret;
2143         }
2144
2145         info->segment = pci_domain_nr(pdev->bus);
2146         info->bus = pdev->bus->number;
2147         info->devfn = pdev->devfn;
2148         info->dev = pdev;
2149         info->domain = domain;
2150
2151         spin_lock_irqsave(&device_domain_lock, flags);
2152         list_add(&info->link, &domain->devices);
2153         list_add(&info->global, &device_domain_list);
2154         pdev->dev.archdata.iommu = info;
2155         spin_unlock_irqrestore(&device_domain_lock, flags);
2156
2157         return 0;
2158 }
2159
2160 static int iommu_should_identity_map(struct pci_dev *pdev, int startup)
2161 {
2162         if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2163                 return 1;
2164
2165         if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2166                 return 1;
2167
2168         if (!(iommu_identity_mapping & IDENTMAP_ALL))
2169                 return 0;
2170
2171         /*
2172          * We want to start off with all devices in the 1:1 domain, and
2173          * take them out later if we find they can't access all of memory.
2174          *
2175          * However, we can't do this for PCI devices behind bridges,
2176          * because all PCI devices behind the same bridge will end up
2177          * with the same source-id on their transactions.
2178          *
2179          * Practically speaking, we can't change things around for these
2180          * devices at run-time, because we can't be sure there'll be no
2181          * DMA transactions in flight for any of their siblings.
2182          * 
2183          * So PCI devices (unless they're on the root bus) as well as
2184          * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2185          * the 1:1 domain, just in _case_ one of their siblings turns out
2186          * not to be able to map all of memory.
2187          */
2188         if (!pci_is_pcie(pdev)) {
2189                 if (!pci_is_root_bus(pdev->bus))
2190                         return 0;
2191                 if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2192                         return 0;
2193         } else if (pdev->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE)
2194                 return 0;
2195
2196         /* 
2197          * At boot time, we don't yet know if devices will be 64-bit capable.
2198          * Assume that they will -- if they turn out not to be, then we can 
2199          * take them out of the 1:1 domain later.
2200          */
2201         if (!startup)
2202                 return pdev->dma_mask > DMA_BIT_MASK(32);
2203
2204         return 1;
2205 }
2206
2207 static int __init iommu_prepare_static_identity_mapping(int hw)
2208 {
2209         struct pci_dev *pdev = NULL;
2210         int ret;
2211
2212         ret = si_domain_init(hw);
2213         if (ret)
2214                 return -EFAULT;
2215
2216         for_each_pci_dev(pdev) {
2217                 if (iommu_should_identity_map(pdev, 1)) {
2218                         printk(KERN_INFO "IOMMU: %s identity mapping for device %s\n",
2219                                hw ? "hardware" : "software", pci_name(pdev));
2220
2221                         ret = domain_add_dev_info(si_domain, pdev,
2222                                                      hw ? CONTEXT_TT_PASS_THROUGH :
2223                                                      CONTEXT_TT_MULTI_LEVEL);
2224                         if (ret)
2225                                 return ret;
2226                 }
2227         }
2228
2229         return 0;
2230 }
2231
2232 int __init init_dmars(void)
2233 {
2234         struct dmar_drhd_unit *drhd;
2235         struct dmar_rmrr_unit *rmrr;
2236         struct pci_dev *pdev;
2237         struct intel_iommu *iommu;
2238         int i, ret;
2239
2240         /*
2241          * for each drhd
2242          *    allocate root
2243          *    initialize and program root entry to not present
2244          * endfor
2245          */
2246         for_each_drhd_unit(drhd) {
2247                 g_num_of_iommus++;
2248                 /*
2249                  * lock not needed as this is only incremented in the single
2250                  * threaded kernel __init code path all other access are read
2251                  * only
2252                  */
2253         }
2254
2255         g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
2256                         GFP_KERNEL);
2257         if (!g_iommus) {
2258                 printk(KERN_ERR "Allocating global iommu array failed\n");
2259                 ret = -ENOMEM;
2260                 goto error;
2261         }
2262
2263         deferred_flush = kzalloc(g_num_of_iommus *
2264                 sizeof(struct deferred_flush_tables), GFP_KERNEL);
2265         if (!deferred_flush) {
2266                 ret = -ENOMEM;
2267                 goto error;
2268         }
2269
2270         for_each_drhd_unit(drhd) {
2271                 if (drhd->ignored)
2272                         continue;
2273
2274                 iommu = drhd->iommu;
2275                 g_iommus[iommu->seq_id] = iommu;
2276
2277                 ret = iommu_init_domains(iommu);
2278                 if (ret)
2279                         goto error;
2280
2281                 /*
2282                  * TBD:
2283                  * we could share the same root & context tables
2284                  * amoung all IOMMU's. Need to Split it later.
2285                  */
2286                 ret = iommu_alloc_root_entry(iommu);
2287                 if (ret) {
2288                         printk(KERN_ERR "IOMMU: allocate root entry failed\n");
2289                         goto error;
2290                 }
2291                 if (!ecap_pass_through(iommu->ecap))
2292                         hw_pass_through = 0;
2293         }
2294
2295         /*
2296          * Start from the sane iommu hardware state.
2297          */
2298         for_each_drhd_unit(drhd) {
2299                 if (drhd->ignored)
2300                         continue;
2301
2302                 iommu = drhd->iommu;
2303
2304                 /*
2305                  * If the queued invalidation is already initialized by us
2306                  * (for example, while enabling interrupt-remapping) then
2307                  * we got the things already rolling from a sane state.
2308                  */
2309                 if (iommu->qi)
2310                         continue;
2311
2312                 /*
2313                  * Clear any previous faults.
2314                  */
2315                 dmar_fault(-1, iommu);
2316                 /*
2317                  * Disable queued invalidation if supported and already enabled
2318                  * before OS handover.
2319                  */
2320                 dmar_disable_qi(iommu);
2321         }
2322
2323         for_each_drhd_unit(drhd) {
2324                 if (drhd->ignored)
2325                         continue;
2326
2327                 iommu = drhd->iommu;
2328
2329                 if (dmar_enable_qi(iommu)) {
2330                         /*
2331                          * Queued Invalidate not enabled, use Register Based
2332                          * Invalidate
2333                          */
2334                         iommu->flush.flush_context = __iommu_flush_context;
2335                         iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2336                         printk(KERN_INFO "IOMMU 0x%Lx: using Register based "
2337                                "invalidation\n",
2338                                (unsigned long long)drhd->reg_base_addr);
2339                 } else {
2340                         iommu->flush.flush_context = qi_flush_context;
2341                         iommu->flush.flush_iotlb = qi_flush_iotlb;
2342                         printk(KERN_INFO "IOMMU 0x%Lx: using Queued "
2343                                "invalidation\n",
2344                                (unsigned long long)drhd->reg_base_addr);
2345                 }
2346         }
2347
2348         if (iommu_pass_through)
2349                 iommu_identity_mapping |= IDENTMAP_ALL;
2350
2351 #ifdef CONFIG_DMAR_BROKEN_GFX_WA
2352         iommu_identity_mapping |= IDENTMAP_GFX;
2353 #endif
2354
2355         check_tylersburg_isoch();
2356
2357         /*
2358          * If pass through is not set or not enabled, setup context entries for
2359          * identity mappings for rmrr, gfx, and isa and may fall back to static
2360          * identity mapping if iommu_identity_mapping is set.
2361          */
2362         if (iommu_identity_mapping) {
2363                 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
2364                 if (ret) {
2365                         printk(KERN_CRIT "Failed to setup IOMMU pass-through\n");
2366                         goto error;
2367                 }
2368         }
2369         /*
2370          * For each rmrr
2371          *   for each dev attached to rmrr
2372          *   do
2373          *     locate drhd for dev, alloc domain for dev
2374          *     allocate free domain
2375          *     allocate page table entries for rmrr
2376          *     if context not allocated for bus
2377          *           allocate and init context
2378          *           set present in root table for this bus
2379          *     init context with domain, translation etc
2380          *    endfor
2381          * endfor
2382          */
2383         printk(KERN_INFO "IOMMU: Setting RMRR:\n");
2384         for_each_rmrr_units(rmrr) {
2385                 for (i = 0; i < rmrr->devices_cnt; i++) {
2386                         pdev = rmrr->devices[i];
2387                         /*
2388                          * some BIOS lists non-exist devices in DMAR
2389                          * table.
2390                          */
2391                         if (!pdev)
2392                                 continue;
2393                         ret = iommu_prepare_rmrr_dev(rmrr, pdev);
2394                         if (ret)
2395                                 printk(KERN_ERR
2396                                        "IOMMU: mapping reserved region failed\n");
2397                 }
2398         }
2399
2400         iommu_prepare_isa();
2401
2402         /*
2403          * for each drhd
2404          *   enable fault log
2405          *   global invalidate context cache
2406          *   global invalidate iotlb
2407          *   enable translation
2408          */
2409         for_each_drhd_unit(drhd) {
2410                 if (drhd->ignored)
2411                         continue;
2412                 iommu = drhd->iommu;
2413
2414                 iommu_flush_write_buffer(iommu);
2415
2416                 ret = dmar_set_interrupt(iommu);
2417                 if (ret)
2418                         goto error;
2419
2420                 iommu_set_root_entry(iommu);
2421
2422                 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
2423                 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2424
2425                 ret = iommu_enable_translation(iommu);
2426                 if (ret)
2427                         goto error;
2428
2429                 iommu_disable_protect_mem_regions(iommu);
2430         }
2431
2432         return 0;
2433 error:
2434         for_each_drhd_unit(drhd) {
2435                 if (drhd->ignored)
2436                         continue;
2437                 iommu = drhd->iommu;
2438                 free_iommu(iommu);
2439         }
2440         kfree(g_iommus);
2441         return ret;
2442 }
2443
2444 /* This takes a number of _MM_ pages, not VTD pages */
2445 static struct iova *intel_alloc_iova(struct device *dev,
2446                                      struct dmar_domain *domain,
2447                                      unsigned long nrpages, uint64_t dma_mask)
2448 {
2449         struct pci_dev *pdev = to_pci_dev(dev);
2450         struct iova *iova = NULL;
2451
2452         /* Restrict dma_mask to the width that the iommu can handle */
2453         dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
2454
2455         if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
2456                 /*
2457                  * First try to allocate an io virtual address in
2458                  * DMA_BIT_MASK(32) and if that fails then try allocating
2459                  * from higher range
2460                  */
2461                 iova = alloc_iova(&domain->iovad, nrpages,
2462                                   IOVA_PFN(DMA_BIT_MASK(32)), 1);
2463                 if (iova)
2464                         return iova;
2465         }
2466         iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1);
2467         if (unlikely(!iova)) {
2468                 printk(KERN_ERR "Allocating %ld-page iova for %s failed",
2469                        nrpages, pci_name(pdev));
2470                 return NULL;
2471         }
2472
2473         return iova;
2474 }
2475
2476 static struct dmar_domain *__get_valid_domain_for_dev(struct pci_dev *pdev)
2477 {
2478         struct dmar_domain *domain;
2479         int ret;
2480
2481         domain = get_domain_for_dev(pdev,
2482                         DEFAULT_DOMAIN_ADDRESS_WIDTH);
2483         if (!domain) {
2484                 printk(KERN_ERR
2485                         "Allocating domain for %s failed", pci_name(pdev));
2486                 return NULL;
2487         }
2488
2489         /* make sure context mapping is ok */
2490         if (unlikely(!domain_context_mapped(pdev))) {
2491                 ret = domain_context_mapping(domain, pdev,
2492                                              CONTEXT_TT_MULTI_LEVEL);
2493                 if (ret) {
2494                         printk(KERN_ERR
2495                                 "Domain context map for %s failed",
2496                                 pci_name(pdev));
2497                         return NULL;
2498                 }
2499         }
2500
2501         return domain;
2502 }
2503
2504 static inline struct dmar_domain *get_valid_domain_for_dev(struct pci_dev *dev)
2505 {
2506         struct device_domain_info *info;
2507
2508         /* No lock here, assumes no domain exit in normal case */
2509         info = dev->dev.archdata.iommu;
2510         if (likely(info))
2511                 return info->domain;
2512
2513         return __get_valid_domain_for_dev(dev);
2514 }
2515
2516 static int iommu_dummy(struct pci_dev *pdev)
2517 {
2518         return pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
2519 }
2520
2521 /* Check if the pdev needs to go through non-identity map and unmap process.*/
2522 static int iommu_no_mapping(struct device *dev)
2523 {
2524         struct pci_dev *pdev;
2525         int found;
2526
2527         if (unlikely(dev->bus != &pci_bus_type))
2528                 return 1;
2529
2530         pdev = to_pci_dev(dev);
2531         if (iommu_dummy(pdev))
2532                 return 1;
2533
2534         if (!iommu_identity_mapping)
2535                 return 0;
2536
2537         found = identity_mapping(pdev);
2538         if (found) {
2539                 if (iommu_should_identity_map(pdev, 0))
2540                         return 1;
2541                 else {
2542                         /*
2543                          * 32 bit DMA is removed from si_domain and fall back
2544                          * to non-identity mapping.
2545                          */
2546                         domain_remove_one_dev_info(si_domain, pdev);
2547                         printk(KERN_INFO "32bit %s uses non-identity mapping\n",
2548                                pci_name(pdev));
2549                         return 0;
2550                 }
2551         } else {
2552                 /*
2553                  * In case of a detached 64 bit DMA device from vm, the device
2554                  * is put into si_domain for identity mapping.
2555                  */
2556                 if (iommu_should_identity_map(pdev, 0)) {
2557                         int ret;
2558                         ret = domain_add_dev_info(si_domain, pdev,
2559                                                   hw_pass_through ?
2560                                                   CONTEXT_TT_PASS_THROUGH :
2561                                                   CONTEXT_TT_MULTI_LEVEL);
2562                         if (!ret) {
2563                                 printk(KERN_INFO "64bit %s uses identity mapping\n",
2564                                        pci_name(pdev));
2565                                 return 1;
2566                         }
2567                 }
2568         }
2569
2570         return 0;
2571 }
2572
2573 static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr,
2574                                      size_t size, int dir, u64 dma_mask)
2575 {
2576         struct pci_dev *pdev = to_pci_dev(hwdev);
2577         struct dmar_domain *domain;
2578         phys_addr_t start_paddr;
2579         struct iova *iova;
2580         int prot = 0;
2581         int ret;
2582         struct intel_iommu *iommu;
2583         unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
2584
2585         BUG_ON(dir == DMA_NONE);
2586
2587         if (iommu_no_mapping(hwdev))
2588                 return paddr;
2589
2590         domain = get_valid_domain_for_dev(pdev);
2591         if (!domain)
2592                 return 0;
2593
2594         iommu = domain_get_iommu(domain);
2595         size = aligned_nrpages(paddr, size);
2596
2597         iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size),
2598                                 pdev->dma_mask);
2599         if (!iova)
2600                 goto error;
2601
2602         /*
2603          * Check if DMAR supports zero-length reads on write only
2604          * mappings..
2605          */
2606         if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2607                         !cap_zlr(iommu->cap))
2608                 prot |= DMA_PTE_READ;
2609         if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2610                 prot |= DMA_PTE_WRITE;
2611         /*
2612          * paddr - (paddr + size) might be partial page, we should map the whole
2613          * page.  Note: if two part of one page are separately mapped, we
2614          * might have two guest_addr mapping to the same host paddr, but this
2615          * is not a big problem
2616          */
2617         ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo),
2618                                  mm_to_dma_pfn(paddr_pfn), size, prot);
2619         if (ret)
2620                 goto error;
2621
2622         /* it's a non-present to present mapping. Only flush if caching mode */
2623         if (cap_caching_mode(iommu->cap))
2624                 iommu_flush_iotlb_psi(iommu, 0, mm_to_dma_pfn(iova->pfn_lo), size);
2625         else
2626                 iommu_flush_write_buffer(iommu);
2627
2628         start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
2629         start_paddr += paddr & ~PAGE_MASK;
2630         return start_paddr;
2631
2632 error:
2633         if (iova)
2634                 __free_iova(&domain->iovad, iova);
2635         printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
2636                 pci_name(pdev), size, (unsigned long long)paddr, dir);
2637         return 0;
2638 }
2639
2640 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
2641                                  unsigned long offset, size_t size,
2642                                  enum dma_data_direction dir,
2643                                  struct dma_attrs *attrs)
2644 {
2645         return __intel_map_single(dev, page_to_phys(page) + offset, size,
2646                                   dir, to_pci_dev(dev)->dma_mask);
2647 }
2648
2649 static void flush_unmaps(void)
2650 {
2651         int i, j;
2652
2653         timer_on = 0;
2654
2655         /* just flush them all */
2656         for (i = 0; i < g_num_of_iommus; i++) {
2657                 struct intel_iommu *iommu = g_iommus[i];
2658                 if (!iommu)
2659                         continue;
2660
2661                 if (!deferred_flush[i].next)
2662                         continue;
2663
2664                 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2665                                          DMA_TLB_GLOBAL_FLUSH);
2666                 for (j = 0; j < deferred_flush[i].next; j++) {
2667                         unsigned long mask;
2668                         struct iova *iova = deferred_flush[i].iova[j];
2669
2670                         mask = ilog2(mm_to_dma_pfn(iova->pfn_hi - iova->pfn_lo + 1));
2671                         iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
2672                                         (uint64_t)iova->pfn_lo << PAGE_SHIFT, mask);
2673                         __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
2674                 }
2675                 deferred_flush[i].next = 0;
2676         }
2677
2678         list_size = 0;
2679 }
2680
2681 static void flush_unmaps_timeout(unsigned long data)
2682 {
2683         unsigned long flags;
2684
2685         spin_lock_irqsave(&async_umap_flush_lock, flags);
2686         flush_unmaps();
2687         spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2688 }
2689
2690 static void add_unmap(struct dmar_domain *dom, struct iova *iova)
2691 {
2692         unsigned long flags;
2693         int next, iommu_id;
2694         struct intel_iommu *iommu;
2695
2696         spin_lock_irqsave(&async_umap_flush_lock, flags);
2697         if (list_size == HIGH_WATER_MARK)
2698                 flush_unmaps();
2699
2700         iommu = domain_get_iommu(dom);
2701         iommu_id = iommu->seq_id;
2702
2703         next = deferred_flush[iommu_id].next;
2704         deferred_flush[iommu_id].domain[next] = dom;
2705         deferred_flush[iommu_id].iova[next] = iova;
2706         deferred_flush[iommu_id].next++;
2707
2708         if (!timer_on) {
2709                 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
2710                 timer_on = 1;
2711         }
2712         list_size++;
2713         spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2714 }
2715
2716 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
2717                              size_t size, enum dma_data_direction dir,
2718                              struct dma_attrs *attrs)
2719 {
2720         struct pci_dev *pdev = to_pci_dev(dev);
2721         struct dmar_domain *domain;
2722         unsigned long start_pfn, last_pfn;
2723         struct iova *iova;
2724         struct intel_iommu *iommu;
2725
2726         if (iommu_no_mapping(dev))
2727                 return;
2728
2729         domain = find_domain(pdev);
2730         BUG_ON(!domain);
2731
2732         iommu = domain_get_iommu(domain);
2733
2734         iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
2735         if (WARN_ONCE(!iova, "Driver unmaps unmatched page at PFN %llx\n",
2736                       (unsigned long long)dev_addr))
2737                 return;
2738
2739         start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2740         last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
2741
2742         pr_debug("Device %s unmapping: pfn %lx-%lx\n",
2743                  pci_name(pdev), start_pfn, last_pfn);
2744
2745         /*  clear the whole page */
2746         dma_pte_clear_range(domain, start_pfn, last_pfn);
2747
2748         /* free page tables */
2749         dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2750
2751         if (intel_iommu_strict) {
2752                 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
2753                                       last_pfn - start_pfn + 1);
2754                 /* free iova */
2755                 __free_iova(&domain->iovad, iova);
2756         } else {
2757                 add_unmap(domain, iova);
2758                 /*
2759                  * queue up the release of the unmap to save the 1/6th of the
2760                  * cpu used up by the iotlb flush operation...
2761                  */
2762         }
2763 }
2764
2765 static void *intel_alloc_coherent(struct device *hwdev, size_t size,
2766                                   dma_addr_t *dma_handle, gfp_t flags)
2767 {
2768         void *vaddr;
2769         int order;
2770
2771         size = PAGE_ALIGN(size);
2772         order = get_order(size);
2773
2774         if (!iommu_no_mapping(hwdev))
2775                 flags &= ~(GFP_DMA | GFP_DMA32);
2776         else if (hwdev->coherent_dma_mask < dma_get_required_mask(hwdev)) {
2777                 if (hwdev->coherent_dma_mask < DMA_BIT_MASK(32))
2778                         flags |= GFP_DMA;
2779                 else
2780                         flags |= GFP_DMA32;
2781         }
2782
2783         vaddr = (void *)__get_free_pages(flags, order);
2784         if (!vaddr)
2785                 return NULL;
2786         memset(vaddr, 0, size);
2787
2788         *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size,
2789                                          DMA_BIDIRECTIONAL,
2790                                          hwdev->coherent_dma_mask);
2791         if (*dma_handle)
2792                 return vaddr;
2793         free_pages((unsigned long)vaddr, order);
2794         return NULL;
2795 }
2796
2797 static void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr,
2798                                 dma_addr_t dma_handle)
2799 {
2800         int order;
2801
2802         size = PAGE_ALIGN(size);
2803         order = get_order(size);
2804
2805         intel_unmap_page(hwdev, dma_handle, size, DMA_BIDIRECTIONAL, NULL);
2806         free_pages((unsigned long)vaddr, order);
2807 }
2808
2809 static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
2810                            int nelems, enum dma_data_direction dir,
2811                            struct dma_attrs *attrs)
2812 {
2813         struct pci_dev *pdev = to_pci_dev(hwdev);
2814         struct dmar_domain *domain;
2815         unsigned long start_pfn, last_pfn;
2816         struct iova *iova;
2817         struct intel_iommu *iommu;
2818
2819         if (iommu_no_mapping(hwdev))
2820                 return;
2821
2822         domain = find_domain(pdev);
2823         BUG_ON(!domain);
2824
2825         iommu = domain_get_iommu(domain);
2826
2827         iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
2828         if (WARN_ONCE(!iova, "Driver unmaps unmatched sglist at PFN %llx\n",
2829                       (unsigned long long)sglist[0].dma_address))
2830                 return;
2831
2832         start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2833         last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
2834
2835         /*  clear the whole page */
2836         dma_pte_clear_range(domain, start_pfn, last_pfn);
2837
2838         /* free page tables */
2839         dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2840
2841         if (intel_iommu_strict) {
2842                 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
2843                                       last_pfn - start_pfn + 1);
2844                 /* free iova */
2845                 __free_iova(&domain->iovad, iova);
2846         } else {
2847                 add_unmap(domain, iova);
2848                 /*
2849                  * queue up the release of the unmap to save the 1/6th of the
2850                  * cpu used up by the iotlb flush operation...
2851                  */
2852         }
2853 }
2854
2855 static int intel_nontranslate_map_sg(struct device *hddev,
2856         struct scatterlist *sglist, int nelems, int dir)
2857 {
2858         int i;
2859         struct scatterlist *sg;
2860
2861         for_each_sg(sglist, sg, nelems, i) {
2862                 BUG_ON(!sg_page(sg));
2863                 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
2864                 sg->dma_length = sg->length;
2865         }
2866         return nelems;
2867 }
2868
2869 static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems,
2870                         enum dma_data_direction dir, struct dma_attrs *attrs)
2871 {
2872         int i;
2873         struct pci_dev *pdev = to_pci_dev(hwdev);
2874         struct dmar_domain *domain;
2875         size_t size = 0;
2876         int prot = 0;
2877         size_t offset_pfn = 0;
2878         struct iova *iova = NULL;
2879         int ret;
2880         struct scatterlist *sg;
2881         unsigned long start_vpfn;
2882         struct intel_iommu *iommu;
2883
2884         BUG_ON(dir == DMA_NONE);
2885         if (iommu_no_mapping(hwdev))
2886                 return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
2887
2888         domain = get_valid_domain_for_dev(pdev);
2889         if (!domain)
2890                 return 0;
2891
2892         iommu = domain_get_iommu(domain);
2893
2894         for_each_sg(sglist, sg, nelems, i)
2895                 size += aligned_nrpages(sg->offset, sg->length);
2896
2897         iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size),
2898                                 pdev->dma_mask);
2899         if (!iova) {
2900                 sglist->dma_length = 0;
2901                 return 0;
2902         }
2903
2904         /*
2905          * Check if DMAR supports zero-length reads on write only
2906          * mappings..
2907          */
2908         if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2909                         !cap_zlr(iommu->cap))
2910                 prot |= DMA_PTE_READ;
2911         if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2912                 prot |= DMA_PTE_WRITE;
2913
2914         start_vpfn = mm_to_dma_pfn(iova->pfn_lo);
2915
2916         ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
2917         if (unlikely(ret)) {
2918                 /*  clear the page */
2919                 dma_pte_clear_range(domain, start_vpfn,
2920                                     start_vpfn + size - 1);
2921                 /* free page tables */
2922                 dma_pte_free_pagetable(domain, start_vpfn,
2923                                        start_vpfn + size - 1);
2924                 /* free iova */
2925                 __free_iova(&domain->iovad, iova);
2926                 return 0;
2927         }
2928
2929         /* it's a non-present to present mapping. Only flush if caching mode */
2930         if (cap_caching_mode(iommu->cap))
2931                 iommu_flush_iotlb_psi(iommu, 0, start_vpfn, offset_pfn);
2932         else
2933                 iommu_flush_write_buffer(iommu);
2934
2935         return nelems;
2936 }
2937
2938 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
2939 {
2940         return !dma_addr;
2941 }
2942
2943 struct dma_map_ops intel_dma_ops = {
2944         .alloc_coherent = intel_alloc_coherent,
2945         .free_coherent = intel_free_coherent,
2946         .map_sg = intel_map_sg,
2947         .unmap_sg = intel_unmap_sg,
2948         .map_page = intel_map_page,
2949         .unmap_page = intel_unmap_page,
2950         .mapping_error = intel_mapping_error,
2951 };
2952
2953 static inline int iommu_domain_cache_init(void)
2954 {
2955         int ret = 0;
2956
2957         iommu_domain_cache = kmem_cache_create("iommu_domain",
2958                                          sizeof(struct dmar_domain),
2959                                          0,
2960                                          SLAB_HWCACHE_ALIGN,
2961
2962                                          NULL);
2963         if (!iommu_domain_cache) {
2964                 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
2965                 ret = -ENOMEM;
2966         }
2967
2968         return ret;
2969 }
2970
2971 static inline int iommu_devinfo_cache_init(void)
2972 {
2973         int ret = 0;
2974
2975         iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
2976                                          sizeof(struct device_domain_info),
2977                                          0,
2978                                          SLAB_HWCACHE_ALIGN,
2979                                          NULL);
2980         if (!iommu_devinfo_cache) {
2981                 printk(KERN_ERR "Couldn't create devinfo cache\n");
2982                 ret = -ENOMEM;
2983         }
2984
2985         return ret;
2986 }
2987
2988 static inline int iommu_iova_cache_init(void)
2989 {
2990         int ret = 0;
2991
2992         iommu_iova_cache = kmem_cache_create("iommu_iova",
2993                                          sizeof(struct iova),
2994                                          0,
2995                                          SLAB_HWCACHE_ALIGN,
2996                                          NULL);
2997         if (!iommu_iova_cache) {
2998                 printk(KERN_ERR "Couldn't create iova cache\n");
2999                 ret = -ENOMEM;
3000         }
3001
3002         return ret;
3003 }
3004
3005 static int __init iommu_init_mempool(void)
3006 {
3007         int ret;
3008         ret = iommu_iova_cache_init();
3009         if (ret)
3010                 return ret;
3011
3012         ret = iommu_domain_cache_init();
3013         if (ret)
3014                 goto domain_error;
3015
3016         ret = iommu_devinfo_cache_init();
3017         if (!ret)
3018                 return ret;
3019
3020         kmem_cache_destroy(iommu_domain_cache);
3021 domain_error:
3022         kmem_cache_destroy(iommu_iova_cache);
3023
3024         return -ENOMEM;
3025 }
3026
3027 static void __init iommu_exit_mempool(void)
3028 {
3029         kmem_cache_destroy(iommu_devinfo_cache);
3030         kmem_cache_destroy(iommu_domain_cache);
3031         kmem_cache_destroy(iommu_iova_cache);
3032
3033 }
3034
3035 static void __init init_no_remapping_devices(void)
3036 {
3037         struct dmar_drhd_unit *drhd;
3038
3039         for_each_drhd_unit(drhd) {
3040                 if (!drhd->include_all) {
3041                         int i;
3042                         for (i = 0; i < drhd->devices_cnt; i++)
3043                                 if (drhd->devices[i] != NULL)
3044                                         break;
3045                         /* ignore DMAR unit if no pci devices exist */
3046                         if (i == drhd->devices_cnt)
3047                                 drhd->ignored = 1;
3048                 }
3049         }
3050
3051         if (dmar_map_gfx)
3052                 return;
3053
3054         for_each_drhd_unit(drhd) {
3055                 int i;
3056                 if (drhd->ignored || drhd->include_all)
3057                         continue;
3058
3059                 for (i = 0; i < drhd->devices_cnt; i++)
3060                         if (drhd->devices[i] &&
3061                                 !IS_GFX_DEVICE(drhd->devices[i]))
3062                                 break;
3063
3064                 if (i < drhd->devices_cnt)
3065                         continue;
3066
3067                 /* bypass IOMMU if it is just for gfx devices */
3068                 drhd->ignored = 1;
3069                 for (i = 0; i < drhd->devices_cnt; i++) {
3070                         if (!drhd->devices[i])
3071                                 continue;
3072                         drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3073                 }
3074         }
3075 }
3076
3077 #ifdef CONFIG_SUSPEND
3078 static int init_iommu_hw(void)
3079 {
3080         struct dmar_drhd_unit *drhd;
3081         struct intel_iommu *iommu = NULL;
3082
3083         for_each_active_iommu(iommu, drhd)
3084                 if (iommu->qi)
3085                         dmar_reenable_qi(iommu);
3086
3087         for_each_active_iommu(iommu, drhd) {
3088                 iommu_flush_write_buffer(iommu);
3089
3090                 iommu_set_root_entry(iommu);
3091
3092                 iommu->flush.flush_context(iommu, 0, 0, 0,
3093                                            DMA_CCMD_GLOBAL_INVL);
3094                 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3095                                          DMA_TLB_GLOBAL_FLUSH);
3096                 iommu_enable_translation(iommu);
3097                 iommu_disable_protect_mem_regions(iommu);
3098         }
3099
3100         return 0;
3101 }
3102
3103 static void iommu_flush_all(void)
3104 {
3105         struct dmar_drhd_unit *drhd;
3106         struct intel_iommu *iommu;
3107
3108         for_each_active_iommu(iommu, drhd) {
3109                 iommu->flush.flush_context(iommu, 0, 0, 0,
3110                                            DMA_CCMD_GLOBAL_INVL);
3111                 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3112                                          DMA_TLB_GLOBAL_FLUSH);
3113         }
3114 }
3115
3116 static int iommu_suspend(struct sys_device *dev, pm_message_t state)
3117 {
3118         struct dmar_drhd_unit *drhd;
3119         struct intel_iommu *iommu = NULL;
3120         unsigned long flag;
3121
3122         for_each_active_iommu(iommu, drhd) {
3123                 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
3124                                                  GFP_ATOMIC);
3125                 if (!iommu->iommu_state)
3126                         goto nomem;
3127         }
3128
3129         iommu_flush_all();
3130
3131         for_each_active_iommu(iommu, drhd) {
3132                 iommu_disable_translation(iommu);
3133
3134                 spin_lock_irqsave(&iommu->register_lock, flag);
3135
3136                 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3137                         readl(iommu->reg + DMAR_FECTL_REG);
3138                 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3139                         readl(iommu->reg + DMAR_FEDATA_REG);
3140                 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3141                         readl(iommu->reg + DMAR_FEADDR_REG);
3142                 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3143                         readl(iommu->reg + DMAR_FEUADDR_REG);
3144
3145                 spin_unlock_irqrestore(&iommu->register_lock, flag);
3146         }
3147         return 0;
3148
3149 nomem:
3150         for_each_active_iommu(iommu, drhd)
3151                 kfree(iommu->iommu_state);
3152
3153         return -ENOMEM;
3154 }
3155
3156 static int iommu_resume(struct sys_device *dev)
3157 {
3158         struct dmar_drhd_unit *drhd;
3159         struct intel_iommu *iommu = NULL;
3160         unsigned long flag;
3161
3162         if (init_iommu_hw()) {
3163                 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3164                 return -EIO;
3165         }
3166
3167         for_each_active_iommu(iommu, drhd) {
3168
3169                 spin_lock_irqsave(&iommu->register_lock, flag);
3170
3171                 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3172                         iommu->reg + DMAR_FECTL_REG);
3173                 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3174                         iommu->reg + DMAR_FEDATA_REG);
3175                 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3176                         iommu->reg + DMAR_FEADDR_REG);
3177                 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3178                         iommu->reg + DMAR_FEUADDR_REG);
3179
3180                 spin_unlock_irqrestore(&iommu->register_lock, flag);
3181         }
3182
3183         for_each_active_iommu(iommu, drhd)
3184                 kfree(iommu->iommu_state);
3185
3186         return 0;
3187 }
3188
3189 static struct sysdev_class iommu_sysclass = {
3190         .name           = "iommu",
3191         .resume         = iommu_resume,
3192         .suspend        = iommu_suspend,
3193 };
3194
3195 static struct sys_device device_iommu = {
3196         .cls    = &iommu_sysclass,
3197 };
3198
3199 static int __init init_iommu_sysfs(void)
3200 {
3201         int error;
3202
3203         error = sysdev_class_register(&iommu_sysclass);
3204         if (error)
3205                 return error;
3206
3207         error = sysdev_register(&device_iommu);
3208         if (error)
3209                 sysdev_class_unregister(&iommu_sysclass);
3210
3211         return error;
3212 }
3213
3214 #else
3215 static int __init init_iommu_sysfs(void)
3216 {
3217         return 0;
3218 }
3219 #endif  /* CONFIG_PM */
3220
3221 /*
3222  * Here we only respond to action of unbound device from driver.
3223  *
3224  * Added device is not attached to its DMAR domain here yet. That will happen
3225  * when mapping the device to iova.
3226  */
3227 static int device_notifier(struct notifier_block *nb,
3228                                   unsigned long action, void *data)
3229 {
3230         struct device *dev = data;
3231         struct pci_dev *pdev = to_pci_dev(dev);
3232         struct dmar_domain *domain;
3233
3234         if (iommu_no_mapping(dev))
3235                 return 0;
3236
3237         domain = find_domain(pdev);
3238         if (!domain)
3239                 return 0;
3240
3241         if (action == BUS_NOTIFY_UNBOUND_DRIVER && !iommu_pass_through)
3242                 domain_remove_one_dev_info(domain, pdev);
3243
3244         ret