Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound-2.6
[sfrench/cifs-2.6.git] / drivers / pci / dmar.c
1 /*
2  * Copyright (c) 2006, Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15  * Place - Suite 330, Boston, MA 02111-1307 USA.
16  *
17  * Copyright (C) 2006-2008 Intel Corporation
18  * Author: Ashok Raj <ashok.raj@intel.com>
19  * Author: Shaohua Li <shaohua.li@intel.com>
20  * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21  *
22  * This file implements early detection/parsing of Remapping Devices
23  * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
24  * tables.
25  *
26  * These routines are used by both DMA-remapping and Interrupt-remapping
27  */
28
29 #include <linux/pci.h>
30 #include <linux/dmar.h>
31 #include <linux/iova.h>
32 #include <linux/intel-iommu.h>
33 #include <linux/timer.h>
34 #include <linux/irq.h>
35 #include <linux/interrupt.h>
36 #include <linux/tboot.h>
37 #include <linux/dmi.h>
38
39 #define PREFIX "DMAR: "
40
41 /* No locks are needed as DMA remapping hardware unit
42  * list is constructed at boot time and hotplug of
43  * these units are not supported by the architecture.
44  */
45 LIST_HEAD(dmar_drhd_units);
46
47 static struct acpi_table_header * __initdata dmar_tbl;
48 static acpi_size dmar_tbl_size;
49
50 static void __init dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
51 {
52         /*
53          * add INCLUDE_ALL at the tail, so scan the list will find it at
54          * the very end.
55          */
56         if (drhd->include_all)
57                 list_add_tail(&drhd->list, &dmar_drhd_units);
58         else
59                 list_add(&drhd->list, &dmar_drhd_units);
60 }
61
62 static int __init dmar_parse_one_dev_scope(struct acpi_dmar_device_scope *scope,
63                                            struct pci_dev **dev, u16 segment)
64 {
65         struct pci_bus *bus;
66         struct pci_dev *pdev = NULL;
67         struct acpi_dmar_pci_path *path;
68         int count;
69
70         bus = pci_find_bus(segment, scope->bus);
71         path = (struct acpi_dmar_pci_path *)(scope + 1);
72         count = (scope->length - sizeof(struct acpi_dmar_device_scope))
73                 / sizeof(struct acpi_dmar_pci_path);
74
75         while (count) {
76                 if (pdev)
77                         pci_dev_put(pdev);
78                 /*
79                  * Some BIOSes list non-exist devices in DMAR table, just
80                  * ignore it
81                  */
82                 if (!bus) {
83                         printk(KERN_WARNING
84                         PREFIX "Device scope bus [%d] not found\n",
85                         scope->bus);
86                         break;
87                 }
88                 pdev = pci_get_slot(bus, PCI_DEVFN(path->dev, path->fn));
89                 if (!pdev) {
90                         printk(KERN_WARNING PREFIX
91                         "Device scope device [%04x:%02x:%02x.%02x] not found\n",
92                                 segment, bus->number, path->dev, path->fn);
93                         break;
94                 }
95                 path ++;
96                 count --;
97                 bus = pdev->subordinate;
98         }
99         if (!pdev) {
100                 printk(KERN_WARNING PREFIX
101                 "Device scope device [%04x:%02x:%02x.%02x] not found\n",
102                 segment, scope->bus, path->dev, path->fn);
103                 *dev = NULL;
104                 return 0;
105         }
106         if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && \
107                         pdev->subordinate) || (scope->entry_type == \
108                         ACPI_DMAR_SCOPE_TYPE_BRIDGE && !pdev->subordinate)) {
109                 pci_dev_put(pdev);
110                 printk(KERN_WARNING PREFIX
111                         "Device scope type does not match for %s\n",
112                          pci_name(pdev));
113                 return -EINVAL;
114         }
115         *dev = pdev;
116         return 0;
117 }
118
119 static int __init dmar_parse_dev_scope(void *start, void *end, int *cnt,
120                                        struct pci_dev ***devices, u16 segment)
121 {
122         struct acpi_dmar_device_scope *scope;
123         void * tmp = start;
124         int index;
125         int ret;
126
127         *cnt = 0;
128         while (start < end) {
129                 scope = start;
130                 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
131                     scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
132                         (*cnt)++;
133                 else
134                         printk(KERN_WARNING PREFIX
135                                 "Unsupported device scope\n");
136                 start += scope->length;
137         }
138         if (*cnt == 0)
139                 return 0;
140
141         *devices = kcalloc(*cnt, sizeof(struct pci_dev *), GFP_KERNEL);
142         if (!*devices)
143                 return -ENOMEM;
144
145         start = tmp;
146         index = 0;
147         while (start < end) {
148                 scope = start;
149                 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
150                     scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) {
151                         ret = dmar_parse_one_dev_scope(scope,
152                                 &(*devices)[index], segment);
153                         if (ret) {
154                                 kfree(*devices);
155                                 return ret;
156                         }
157                         index ++;
158                 }
159                 start += scope->length;
160         }
161
162         return 0;
163 }
164
165 /**
166  * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
167  * structure which uniquely represent one DMA remapping hardware unit
168  * present in the platform
169  */
170 static int __init
171 dmar_parse_one_drhd(struct acpi_dmar_header *header)
172 {
173         struct acpi_dmar_hardware_unit *drhd;
174         struct dmar_drhd_unit *dmaru;
175         int ret = 0;
176
177         drhd = (struct acpi_dmar_hardware_unit *)header;
178         dmaru = kzalloc(sizeof(*dmaru), GFP_KERNEL);
179         if (!dmaru)
180                 return -ENOMEM;
181
182         dmaru->hdr = header;
183         dmaru->reg_base_addr = drhd->address;
184         dmaru->segment = drhd->segment;
185         dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
186
187         ret = alloc_iommu(dmaru);
188         if (ret) {
189                 kfree(dmaru);
190                 return ret;
191         }
192         dmar_register_drhd_unit(dmaru);
193         return 0;
194 }
195
196 static int __init dmar_parse_dev(struct dmar_drhd_unit *dmaru)
197 {
198         struct acpi_dmar_hardware_unit *drhd;
199         int ret = 0;
200
201         drhd = (struct acpi_dmar_hardware_unit *) dmaru->hdr;
202
203         if (dmaru->include_all)
204                 return 0;
205
206         ret = dmar_parse_dev_scope((void *)(drhd + 1),
207                                 ((void *)drhd) + drhd->header.length,
208                                 &dmaru->devices_cnt, &dmaru->devices,
209                                 drhd->segment);
210         if (ret) {
211                 list_del(&dmaru->list);
212                 kfree(dmaru);
213         }
214         return ret;
215 }
216
217 #ifdef CONFIG_DMAR
218 LIST_HEAD(dmar_rmrr_units);
219
220 static void __init dmar_register_rmrr_unit(struct dmar_rmrr_unit *rmrr)
221 {
222         list_add(&rmrr->list, &dmar_rmrr_units);
223 }
224
225
226 static int __init
227 dmar_parse_one_rmrr(struct acpi_dmar_header *header)
228 {
229         struct acpi_dmar_reserved_memory *rmrr;
230         struct dmar_rmrr_unit *rmrru;
231
232         rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
233         if (!rmrru)
234                 return -ENOMEM;
235
236         rmrru->hdr = header;
237         rmrr = (struct acpi_dmar_reserved_memory *)header;
238         rmrru->base_address = rmrr->base_address;
239         rmrru->end_address = rmrr->end_address;
240
241         dmar_register_rmrr_unit(rmrru);
242         return 0;
243 }
244
245 static int __init
246 rmrr_parse_dev(struct dmar_rmrr_unit *rmrru)
247 {
248         struct acpi_dmar_reserved_memory *rmrr;
249         int ret;
250
251         rmrr = (struct acpi_dmar_reserved_memory *) rmrru->hdr;
252         ret = dmar_parse_dev_scope((void *)(rmrr + 1),
253                 ((void *)rmrr) + rmrr->header.length,
254                 &rmrru->devices_cnt, &rmrru->devices, rmrr->segment);
255
256         if (ret || (rmrru->devices_cnt == 0)) {
257                 list_del(&rmrru->list);
258                 kfree(rmrru);
259         }
260         return ret;
261 }
262
263 static LIST_HEAD(dmar_atsr_units);
264
265 static int __init dmar_parse_one_atsr(struct acpi_dmar_header *hdr)
266 {
267         struct acpi_dmar_atsr *atsr;
268         struct dmar_atsr_unit *atsru;
269
270         atsr = container_of(hdr, struct acpi_dmar_atsr, header);
271         atsru = kzalloc(sizeof(*atsru), GFP_KERNEL);
272         if (!atsru)
273                 return -ENOMEM;
274
275         atsru->hdr = hdr;
276         atsru->include_all = atsr->flags & 0x1;
277
278         list_add(&atsru->list, &dmar_atsr_units);
279
280         return 0;
281 }
282
283 static int __init atsr_parse_dev(struct dmar_atsr_unit *atsru)
284 {
285         int rc;
286         struct acpi_dmar_atsr *atsr;
287
288         if (atsru->include_all)
289                 return 0;
290
291         atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
292         rc = dmar_parse_dev_scope((void *)(atsr + 1),
293                                 (void *)atsr + atsr->header.length,
294                                 &atsru->devices_cnt, &atsru->devices,
295                                 atsr->segment);
296         if (rc || !atsru->devices_cnt) {
297                 list_del(&atsru->list);
298                 kfree(atsru);
299         }
300
301         return rc;
302 }
303
304 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
305 {
306         int i;
307         struct pci_bus *bus;
308         struct acpi_dmar_atsr *atsr;
309         struct dmar_atsr_unit *atsru;
310
311         list_for_each_entry(atsru, &dmar_atsr_units, list) {
312                 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
313                 if (atsr->segment == pci_domain_nr(dev->bus))
314                         goto found;
315         }
316
317         return 0;
318
319 found:
320         for (bus = dev->bus; bus; bus = bus->parent) {
321                 struct pci_dev *bridge = bus->self;
322
323                 if (!bridge || !bridge->is_pcie ||
324                     bridge->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE)
325                         return 0;
326
327                 if (bridge->pcie_type == PCI_EXP_TYPE_ROOT_PORT) {
328                         for (i = 0; i < atsru->devices_cnt; i++)
329                                 if (atsru->devices[i] == bridge)
330                                         return 1;
331                         break;
332                 }
333         }
334
335         if (atsru->include_all)
336                 return 1;
337
338         return 0;
339 }
340 #endif
341
342 static void __init
343 dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
344 {
345         struct acpi_dmar_hardware_unit *drhd;
346         struct acpi_dmar_reserved_memory *rmrr;
347         struct acpi_dmar_atsr *atsr;
348         struct acpi_dmar_rhsa *rhsa;
349
350         switch (header->type) {
351         case ACPI_DMAR_TYPE_HARDWARE_UNIT:
352                 drhd = container_of(header, struct acpi_dmar_hardware_unit,
353                                     header);
354                 printk (KERN_INFO PREFIX
355                         "DRHD base: %#016Lx flags: %#x\n",
356                         (unsigned long long)drhd->address, drhd->flags);
357                 break;
358         case ACPI_DMAR_TYPE_RESERVED_MEMORY:
359                 rmrr = container_of(header, struct acpi_dmar_reserved_memory,
360                                     header);
361                 printk (KERN_INFO PREFIX
362                         "RMRR base: %#016Lx end: %#016Lx\n",
363                         (unsigned long long)rmrr->base_address,
364                         (unsigned long long)rmrr->end_address);
365                 break;
366         case ACPI_DMAR_TYPE_ATSR:
367                 atsr = container_of(header, struct acpi_dmar_atsr, header);
368                 printk(KERN_INFO PREFIX "ATSR flags: %#x\n", atsr->flags);
369                 break;
370         case ACPI_DMAR_HARDWARE_AFFINITY:
371                 rhsa = container_of(header, struct acpi_dmar_rhsa, header);
372                 printk(KERN_INFO PREFIX "RHSA base: %#016Lx proximity domain: %#x\n",
373                        (unsigned long long)rhsa->base_address,
374                        rhsa->proximity_domain);
375                 break;
376         }
377 }
378
379 /**
380  * dmar_table_detect - checks to see if the platform supports DMAR devices
381  */
382 static int __init dmar_table_detect(void)
383 {
384         acpi_status status = AE_OK;
385
386         /* if we could find DMAR table, then there are DMAR devices */
387         status = acpi_get_table_with_size(ACPI_SIG_DMAR, 0,
388                                 (struct acpi_table_header **)&dmar_tbl,
389                                 &dmar_tbl_size);
390
391         if (ACPI_SUCCESS(status) && !dmar_tbl) {
392                 printk (KERN_WARNING PREFIX "Unable to map DMAR\n");
393                 status = AE_NOT_FOUND;
394         }
395
396         return (ACPI_SUCCESS(status) ? 1 : 0);
397 }
398
399 /**
400  * parse_dmar_table - parses the DMA reporting table
401  */
402 static int __init
403 parse_dmar_table(void)
404 {
405         struct acpi_table_dmar *dmar;
406         struct acpi_dmar_header *entry_header;
407         int ret = 0;
408
409         /*
410          * Do it again, earlier dmar_tbl mapping could be mapped with
411          * fixed map.
412          */
413         dmar_table_detect();
414
415         /*
416          * ACPI tables may not be DMA protected by tboot, so use DMAR copy
417          * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
418          */
419         dmar_tbl = tboot_get_dmar_table(dmar_tbl);
420
421         dmar = (struct acpi_table_dmar *)dmar_tbl;
422         if (!dmar)
423                 return -ENODEV;
424
425         if (dmar->width < PAGE_SHIFT - 1) {
426                 printk(KERN_WARNING PREFIX "Invalid DMAR haw\n");
427                 return -EINVAL;
428         }
429
430         printk (KERN_INFO PREFIX "Host address width %d\n",
431                 dmar->width + 1);
432
433         entry_header = (struct acpi_dmar_header *)(dmar + 1);
434         while (((unsigned long)entry_header) <
435                         (((unsigned long)dmar) + dmar_tbl->length)) {
436                 /* Avoid looping forever on bad ACPI tables */
437                 if (entry_header->length == 0) {
438                         printk(KERN_WARNING PREFIX
439                                 "Invalid 0-length structure\n");
440                         ret = -EINVAL;
441                         break;
442                 }
443
444                 dmar_table_print_dmar_entry(entry_header);
445
446                 switch (entry_header->type) {
447                 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
448                         ret = dmar_parse_one_drhd(entry_header);
449                         break;
450                 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
451 #ifdef CONFIG_DMAR
452                         ret = dmar_parse_one_rmrr(entry_header);
453 #endif
454                         break;
455                 case ACPI_DMAR_TYPE_ATSR:
456 #ifdef CONFIG_DMAR
457                         ret = dmar_parse_one_atsr(entry_header);
458 #endif
459                         break;
460                 case ACPI_DMAR_HARDWARE_AFFINITY:
461                         /* We don't do anything with RHSA (yet?) */
462                         break;
463                 default:
464                         printk(KERN_WARNING PREFIX
465                                 "Unknown DMAR structure type %d\n",
466                                 entry_header->type);
467                         ret = 0; /* for forward compatibility */
468                         break;
469                 }
470                 if (ret)
471                         break;
472
473                 entry_header = ((void *)entry_header + entry_header->length);
474         }
475         return ret;
476 }
477
478 int dmar_pci_device_match(struct pci_dev *devices[], int cnt,
479                           struct pci_dev *dev)
480 {
481         int index;
482
483         while (dev) {
484                 for (index = 0; index < cnt; index++)
485                         if (dev == devices[index])
486                                 return 1;
487
488                 /* Check our parent */
489                 dev = dev->bus->self;
490         }
491
492         return 0;
493 }
494
495 struct dmar_drhd_unit *
496 dmar_find_matched_drhd_unit(struct pci_dev *dev)
497 {
498         struct dmar_drhd_unit *dmaru = NULL;
499         struct acpi_dmar_hardware_unit *drhd;
500
501         list_for_each_entry(dmaru, &dmar_drhd_units, list) {
502                 drhd = container_of(dmaru->hdr,
503                                     struct acpi_dmar_hardware_unit,
504                                     header);
505
506                 if (dmaru->include_all &&
507                     drhd->segment == pci_domain_nr(dev->bus))
508                         return dmaru;
509
510                 if (dmar_pci_device_match(dmaru->devices,
511                                           dmaru->devices_cnt, dev))
512                         return dmaru;
513         }
514
515         return NULL;
516 }
517
518 int __init dmar_dev_scope_init(void)
519 {
520         struct dmar_drhd_unit *drhd, *drhd_n;
521         int ret = -ENODEV;
522
523         list_for_each_entry_safe(drhd, drhd_n, &dmar_drhd_units, list) {
524                 ret = dmar_parse_dev(drhd);
525                 if (ret)
526                         return ret;
527         }
528
529 #ifdef CONFIG_DMAR
530         {
531                 struct dmar_rmrr_unit *rmrr, *rmrr_n;
532                 struct dmar_atsr_unit *atsr, *atsr_n;
533
534                 list_for_each_entry_safe(rmrr, rmrr_n, &dmar_rmrr_units, list) {
535                         ret = rmrr_parse_dev(rmrr);
536                         if (ret)
537                                 return ret;
538                 }
539
540                 list_for_each_entry_safe(atsr, atsr_n, &dmar_atsr_units, list) {
541                         ret = atsr_parse_dev(atsr);
542                         if (ret)
543                                 return ret;
544                 }
545         }
546 #endif
547
548         return ret;
549 }
550
551
552 int __init dmar_table_init(void)
553 {
554         static int dmar_table_initialized;
555         int ret;
556
557         if (dmar_table_initialized)
558                 return 0;
559
560         dmar_table_initialized = 1;
561
562         ret = parse_dmar_table();
563         if (ret) {
564                 if (ret != -ENODEV)
565                         printk(KERN_INFO PREFIX "parse DMAR table failure.\n");
566                 return ret;
567         }
568
569         if (list_empty(&dmar_drhd_units)) {
570                 printk(KERN_INFO PREFIX "No DMAR devices found\n");
571                 return -ENODEV;
572         }
573
574 #ifdef CONFIG_DMAR
575         if (list_empty(&dmar_rmrr_units))
576                 printk(KERN_INFO PREFIX "No RMRR found\n");
577
578         if (list_empty(&dmar_atsr_units))
579                 printk(KERN_INFO PREFIX "No ATSR found\n");
580 #endif
581
582         return 0;
583 }
584
585 int __init check_zero_address(void)
586 {
587         struct acpi_table_dmar *dmar;
588         struct acpi_dmar_header *entry_header;
589         struct acpi_dmar_hardware_unit *drhd;
590
591         dmar = (struct acpi_table_dmar *)dmar_tbl;
592         entry_header = (struct acpi_dmar_header *)(dmar + 1);
593
594         while (((unsigned long)entry_header) <
595                         (((unsigned long)dmar) + dmar_tbl->length)) {
596                 /* Avoid looping forever on bad ACPI tables */
597                 if (entry_header->length == 0) {
598                         printk(KERN_WARNING PREFIX
599                                 "Invalid 0-length structure\n");
600                         return 0;
601                 }
602
603                 if (entry_header->type == ACPI_DMAR_TYPE_HARDWARE_UNIT) {
604                         drhd = (void *)entry_header;
605                         if (!drhd->address) {
606                                 /* Promote an attitude of violence to a BIOS engineer today */
607                                 WARN(1, "Your BIOS is broken; DMAR reported at address zero!\n"
608                                      "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
609                                      dmi_get_system_info(DMI_BIOS_VENDOR),
610                                      dmi_get_system_info(DMI_BIOS_VERSION),
611                                      dmi_get_system_info(DMI_PRODUCT_VERSION));
612                                 return 0;
613                         }
614                         break;
615                 }
616
617                 entry_header = ((void *)entry_header + entry_header->length);
618         }
619         return 1;
620 }
621
622 void __init detect_intel_iommu(void)
623 {
624         int ret;
625
626         ret = dmar_table_detect();
627         if (ret)
628                 ret = check_zero_address();
629         {
630 #ifdef CONFIG_INTR_REMAP
631                 struct acpi_table_dmar *dmar;
632                 /*
633                  * for now we will disable dma-remapping when interrupt
634                  * remapping is enabled.
635                  * When support for queued invalidation for IOTLB invalidation
636                  * is added, we will not need this any more.
637                  */
638                 dmar = (struct acpi_table_dmar *) dmar_tbl;
639                 if (ret && cpu_has_x2apic && dmar->flags & 0x1)
640                         printk(KERN_INFO
641                                "Queued invalidation will be enabled to support "
642                                "x2apic and Intr-remapping.\n");
643 #endif
644 #ifdef CONFIG_DMAR
645                 if (ret && !no_iommu && !iommu_detected && !swiotlb &&
646                     !dmar_disabled)
647                         iommu_detected = 1;
648 #endif
649         }
650         early_acpi_os_unmap_memory(dmar_tbl, dmar_tbl_size);
651         dmar_tbl = NULL;
652 }
653
654
655 int alloc_iommu(struct dmar_drhd_unit *drhd)
656 {
657         struct intel_iommu *iommu;
658         int map_size;
659         u32 ver;
660         static int iommu_allocated = 0;
661         int agaw = 0;
662         int msagaw = 0;
663
664         iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
665         if (!iommu)
666                 return -ENOMEM;
667
668         iommu->seq_id = iommu_allocated++;
669         sprintf (iommu->name, "dmar%d", iommu->seq_id);
670
671         iommu->reg = ioremap(drhd->reg_base_addr, VTD_PAGE_SIZE);
672         if (!iommu->reg) {
673                 printk(KERN_ERR "IOMMU: can't map the region\n");
674                 goto error;
675         }
676         iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
677         iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
678
679         if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
680                 /* Promote an attitude of violence to a BIOS engineer today */
681                 WARN(1, "Your BIOS is broken; DMAR reported at address %llx returns all ones!\n"
682                      "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
683                      drhd->reg_base_addr,
684                      dmi_get_system_info(DMI_BIOS_VENDOR),
685                      dmi_get_system_info(DMI_BIOS_VERSION),
686                      dmi_get_system_info(DMI_PRODUCT_VERSION));
687                 goto err_unmap;
688         }
689
690 #ifdef CONFIG_DMAR
691         agaw = iommu_calculate_agaw(iommu);
692         if (agaw < 0) {
693                 printk(KERN_ERR
694                        "Cannot get a valid agaw for iommu (seq_id = %d)\n",
695                        iommu->seq_id);
696                 goto err_unmap;
697         }
698         msagaw = iommu_calculate_max_sagaw(iommu);
699         if (msagaw < 0) {
700                 printk(KERN_ERR
701                         "Cannot get a valid max agaw for iommu (seq_id = %d)\n",
702                         iommu->seq_id);
703                 goto err_unmap;
704         }
705 #endif
706         iommu->agaw = agaw;
707         iommu->msagaw = msagaw;
708
709         /* the registers might be more than one page */
710         map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
711                 cap_max_fault_reg_offset(iommu->cap));
712         map_size = VTD_PAGE_ALIGN(map_size);
713         if (map_size > VTD_PAGE_SIZE) {
714                 iounmap(iommu->reg);
715                 iommu->reg = ioremap(drhd->reg_base_addr, map_size);
716                 if (!iommu->reg) {
717                         printk(KERN_ERR "IOMMU: can't map the region\n");
718                         goto error;
719                 }
720         }
721
722         ver = readl(iommu->reg + DMAR_VER_REG);
723         pr_info("IOMMU %llx: ver %d:%d cap %llx ecap %llx\n",
724                 (unsigned long long)drhd->reg_base_addr,
725                 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
726                 (unsigned long long)iommu->cap,
727                 (unsigned long long)iommu->ecap);
728
729         spin_lock_init(&iommu->register_lock);
730
731         drhd->iommu = iommu;
732         return 0;
733
734  err_unmap:
735         iounmap(iommu->reg);
736  error:
737         kfree(iommu);
738         return -1;
739 }
740
741 void free_iommu(struct intel_iommu *iommu)
742 {
743         if (!iommu)
744                 return;
745
746 #ifdef CONFIG_DMAR
747         free_dmar_iommu(iommu);
748 #endif
749
750         if (iommu->reg)
751                 iounmap(iommu->reg);
752         kfree(iommu);
753 }
754
755 /*
756  * Reclaim all the submitted descriptors which have completed its work.
757  */
758 static inline void reclaim_free_desc(struct q_inval *qi)
759 {
760         while (qi->desc_status[qi->free_tail] == QI_DONE ||
761                qi->desc_status[qi->free_tail] == QI_ABORT) {
762                 qi->desc_status[qi->free_tail] = QI_FREE;
763                 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
764                 qi->free_cnt++;
765         }
766 }
767
768 static int qi_check_fault(struct intel_iommu *iommu, int index)
769 {
770         u32 fault;
771         int head, tail;
772         struct q_inval *qi = iommu->qi;
773         int wait_index = (index + 1) % QI_LENGTH;
774
775         if (qi->desc_status[wait_index] == QI_ABORT)
776                 return -EAGAIN;
777
778         fault = readl(iommu->reg + DMAR_FSTS_REG);
779
780         /*
781          * If IQE happens, the head points to the descriptor associated
782          * with the error. No new descriptors are fetched until the IQE
783          * is cleared.
784          */
785         if (fault & DMA_FSTS_IQE) {
786                 head = readl(iommu->reg + DMAR_IQH_REG);
787                 if ((head >> DMAR_IQ_SHIFT) == index) {
788                         printk(KERN_ERR "VT-d detected invalid descriptor: "
789                                 "low=%llx, high=%llx\n",
790                                 (unsigned long long)qi->desc[index].low,
791                                 (unsigned long long)qi->desc[index].high);
792                         memcpy(&qi->desc[index], &qi->desc[wait_index],
793                                         sizeof(struct qi_desc));
794                         __iommu_flush_cache(iommu, &qi->desc[index],
795                                         sizeof(struct qi_desc));
796                         writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
797                         return -EINVAL;
798                 }
799         }
800
801         /*
802          * If ITE happens, all pending wait_desc commands are aborted.
803          * No new descriptors are fetched until the ITE is cleared.
804          */
805         if (fault & DMA_FSTS_ITE) {
806                 head = readl(iommu->reg + DMAR_IQH_REG);
807                 head = ((head >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
808                 head |= 1;
809                 tail = readl(iommu->reg + DMAR_IQT_REG);
810                 tail = ((tail >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
811
812                 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
813
814                 do {
815                         if (qi->desc_status[head] == QI_IN_USE)
816                                 qi->desc_status[head] = QI_ABORT;
817                         head = (head - 2 + QI_LENGTH) % QI_LENGTH;
818                 } while (head != tail);
819
820                 if (qi->desc_status[wait_index] == QI_ABORT)
821                         return -EAGAIN;
822         }
823
824         if (fault & DMA_FSTS_ICE)
825                 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
826
827         return 0;
828 }
829
830 /*
831  * Submit the queued invalidation descriptor to the remapping
832  * hardware unit and wait for its completion.
833  */
834 int qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
835 {
836         int rc;
837         struct q_inval *qi = iommu->qi;
838         struct qi_desc *hw, wait_desc;
839         int wait_index, index;
840         unsigned long flags;
841
842         if (!qi)
843                 return 0;
844
845         hw = qi->desc;
846
847 restart:
848         rc = 0;
849
850         spin_lock_irqsave(&qi->q_lock, flags);
851         while (qi->free_cnt < 3) {
852                 spin_unlock_irqrestore(&qi->q_lock, flags);
853                 cpu_relax();
854                 spin_lock_irqsave(&qi->q_lock, flags);
855         }
856
857         index = qi->free_head;
858         wait_index = (index + 1) % QI_LENGTH;
859
860         qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;
861
862         hw[index] = *desc;
863
864         wait_desc.low = QI_IWD_STATUS_DATA(QI_DONE) |
865                         QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
866         wait_desc.high = virt_to_phys(&qi->desc_status[wait_index]);
867
868         hw[wait_index] = wait_desc;
869
870         __iommu_flush_cache(iommu, &hw[index], sizeof(struct qi_desc));
871         __iommu_flush_cache(iommu, &hw[wait_index], sizeof(struct qi_desc));
872
873         qi->free_head = (qi->free_head + 2) % QI_LENGTH;
874         qi->free_cnt -= 2;
875
876         /*
877          * update the HW tail register indicating the presence of
878          * new descriptors.
879          */
880         writel(qi->free_head << DMAR_IQ_SHIFT, iommu->reg + DMAR_IQT_REG);
881
882         while (qi->desc_status[wait_index] != QI_DONE) {
883                 /*
884                  * We will leave the interrupts disabled, to prevent interrupt
885                  * context to queue another cmd while a cmd is already submitted
886                  * and waiting for completion on this cpu. This is to avoid
887                  * a deadlock where the interrupt context can wait indefinitely
888                  * for free slots in the queue.
889                  */
890                 rc = qi_check_fault(iommu, index);
891                 if (rc)
892                         break;
893
894                 spin_unlock(&qi->q_lock);
895                 cpu_relax();
896                 spin_lock(&qi->q_lock);
897         }
898
899         qi->desc_status[index] = QI_DONE;
900
901         reclaim_free_desc(qi);
902         spin_unlock_irqrestore(&qi->q_lock, flags);
903
904         if (rc == -EAGAIN)
905                 goto restart;
906
907         return rc;
908 }
909
910 /*
911  * Flush the global interrupt entry cache.
912  */
913 void qi_global_iec(struct intel_iommu *iommu)
914 {
915         struct qi_desc desc;
916
917         desc.low = QI_IEC_TYPE;
918         desc.high = 0;
919
920         /* should never fail */
921         qi_submit_sync(&desc, iommu);
922 }
923
924 void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
925                       u64 type)
926 {
927         struct qi_desc desc;
928
929         desc.low = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
930                         | QI_CC_GRAN(type) | QI_CC_TYPE;
931         desc.high = 0;
932
933         qi_submit_sync(&desc, iommu);
934 }
935
936 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
937                     unsigned int size_order, u64 type)
938 {
939         u8 dw = 0, dr = 0;
940
941         struct qi_desc desc;
942         int ih = 0;
943
944         if (cap_write_drain(iommu->cap))
945                 dw = 1;
946
947         if (cap_read_drain(iommu->cap))
948                 dr = 1;
949
950         desc.low = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
951                 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
952         desc.high = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
953                 | QI_IOTLB_AM(size_order);
954
955         qi_submit_sync(&desc, iommu);
956 }
957
958 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 qdep,
959                         u64 addr, unsigned mask)
960 {
961         struct qi_desc desc;
962
963         if (mask) {
964                 BUG_ON(addr & ((1 << (VTD_PAGE_SHIFT + mask)) - 1));
965                 addr |= (1 << (VTD_PAGE_SHIFT + mask - 1)) - 1;
966                 desc.high = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
967         } else
968                 desc.high = QI_DEV_IOTLB_ADDR(addr);
969
970         if (qdep >= QI_DEV_IOTLB_MAX_INVS)
971                 qdep = 0;
972
973         desc.low = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
974                    QI_DIOTLB_TYPE;
975
976         qi_submit_sync(&desc, iommu);
977 }
978
979 /*
980  * Disable Queued Invalidation interface.
981  */
982 void dmar_disable_qi(struct intel_iommu *iommu)
983 {
984         unsigned long flags;
985         u32 sts;
986         cycles_t start_time = get_cycles();
987
988         if (!ecap_qis(iommu->ecap))
989                 return;
990
991         spin_lock_irqsave(&iommu->register_lock, flags);
992
993         sts =  dmar_readq(iommu->reg + DMAR_GSTS_REG);
994         if (!(sts & DMA_GSTS_QIES))
995                 goto end;
996
997         /*
998          * Give a chance to HW to complete the pending invalidation requests.
999          */
1000         while ((readl(iommu->reg + DMAR_IQT_REG) !=
1001                 readl(iommu->reg + DMAR_IQH_REG)) &&
1002                 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
1003                 cpu_relax();
1004
1005         iommu->gcmd &= ~DMA_GCMD_QIE;
1006         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1007
1008         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
1009                       !(sts & DMA_GSTS_QIES), sts);
1010 end:
1011         spin_unlock_irqrestore(&iommu->register_lock, flags);
1012 }
1013
1014 /*
1015  * Enable queued invalidation.
1016  */
1017 static void __dmar_enable_qi(struct intel_iommu *iommu)
1018 {
1019         u32 sts;
1020         unsigned long flags;
1021         struct q_inval *qi = iommu->qi;
1022
1023         qi->free_head = qi->free_tail = 0;
1024         qi->free_cnt = QI_LENGTH;
1025
1026         spin_lock_irqsave(&iommu->register_lock, flags);
1027
1028         /* write zero to the tail reg */
1029         writel(0, iommu->reg + DMAR_IQT_REG);
1030
1031         dmar_writeq(iommu->reg + DMAR_IQA_REG, virt_to_phys(qi->desc));
1032
1033         iommu->gcmd |= DMA_GCMD_QIE;
1034         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1035
1036         /* Make sure hardware complete it */
1037         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1038
1039         spin_unlock_irqrestore(&iommu->register_lock, flags);
1040 }
1041
1042 /*
1043  * Enable Queued Invalidation interface. This is a must to support
1044  * interrupt-remapping. Also used by DMA-remapping, which replaces
1045  * register based IOTLB invalidation.
1046  */
1047 int dmar_enable_qi(struct intel_iommu *iommu)
1048 {
1049         struct q_inval *qi;
1050
1051         if (!ecap_qis(iommu->ecap))
1052                 return -ENOENT;
1053
1054         /*
1055          * queued invalidation is already setup and enabled.
1056          */
1057         if (iommu->qi)
1058                 return 0;
1059
1060         iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1061         if (!iommu->qi)
1062                 return -ENOMEM;
1063
1064         qi = iommu->qi;
1065
1066         qi->desc = (void *)(get_zeroed_page(GFP_ATOMIC));
1067         if (!qi->desc) {
1068                 kfree(qi);
1069                 iommu->qi = 0;
1070                 return -ENOMEM;
1071         }
1072
1073         qi->desc_status = kmalloc(QI_LENGTH * sizeof(int), GFP_ATOMIC);
1074         if (!qi->desc_status) {
1075                 free_page((unsigned long) qi->desc);
1076                 kfree(qi);
1077                 iommu->qi = 0;
1078                 return -ENOMEM;
1079         }
1080
1081         qi->free_head = qi->free_tail = 0;
1082         qi->free_cnt = QI_LENGTH;
1083
1084         spin_lock_init(&qi->q_lock);
1085
1086         __dmar_enable_qi(iommu);
1087
1088         return 0;
1089 }
1090
1091 /* iommu interrupt handling. Most stuff are MSI-like. */
1092
1093 enum faulttype {
1094         DMA_REMAP,
1095         INTR_REMAP,
1096         UNKNOWN,
1097 };
1098
1099 static const char *dma_remap_fault_reasons[] =
1100 {
1101         "Software",
1102         "Present bit in root entry is clear",
1103         "Present bit in context entry is clear",
1104         "Invalid context entry",
1105         "Access beyond MGAW",
1106         "PTE Write access is not set",
1107         "PTE Read access is not set",
1108         "Next page table ptr is invalid",
1109         "Root table address invalid",
1110         "Context table ptr is invalid",
1111         "non-zero reserved fields in RTP",
1112         "non-zero reserved fields in CTP",
1113         "non-zero reserved fields in PTE",
1114 };
1115
1116 static const char *intr_remap_fault_reasons[] =
1117 {
1118         "Detected reserved fields in the decoded interrupt-remapped request",
1119         "Interrupt index exceeded the interrupt-remapping table size",
1120         "Present field in the IRTE entry is clear",
1121         "Error accessing interrupt-remapping table pointed by IRTA_REG",
1122         "Detected reserved fields in the IRTE entry",
1123         "Blocked a compatibility format interrupt request",
1124         "Blocked an interrupt request due to source-id verification failure",
1125 };
1126
1127 #define MAX_FAULT_REASON_IDX    (ARRAY_SIZE(fault_reason_strings) - 1)
1128
1129 const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1130 {
1131         if (fault_reason >= 0x20 && (fault_reason <= 0x20 +
1132                                      ARRAY_SIZE(intr_remap_fault_reasons))) {
1133                 *fault_type = INTR_REMAP;
1134                 return intr_remap_fault_reasons[fault_reason - 0x20];
1135         } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1136                 *fault_type = DMA_REMAP;
1137                 return dma_remap_fault_reasons[fault_reason];
1138         } else {
1139                 *fault_type = UNKNOWN;
1140                 return "Unknown";
1141         }
1142 }
1143
1144 void dmar_msi_unmask(unsigned int irq)
1145 {
1146         struct intel_iommu *iommu = get_irq_data(irq);
1147         unsigned long flag;
1148
1149         /* unmask it */
1150         spin_lock_irqsave(&iommu->register_lock, flag);
1151         writel(0, iommu->reg + DMAR_FECTL_REG);
1152         /* Read a reg to force flush the post write */
1153         readl(iommu->reg + DMAR_FECTL_REG);
1154         spin_unlock_irqrestore(&iommu->register_lock, flag);
1155 }
1156
1157 void dmar_msi_mask(unsigned int irq)
1158 {
1159         unsigned long flag;
1160         struct intel_iommu *iommu = get_irq_data(irq);
1161
1162         /* mask it */
1163         spin_lock_irqsave(&iommu->register_lock, flag);
1164         writel(DMA_FECTL_IM, iommu->reg + DMAR_FECTL_REG);
1165         /* Read a reg to force flush the post write */
1166         readl(iommu->reg + DMAR_FECTL_REG);
1167         spin_unlock_irqrestore(&iommu->register_lock, flag);
1168 }
1169
1170 void dmar_msi_write(int irq, struct msi_msg *msg)
1171 {
1172         struct intel_iommu *iommu = get_irq_data(irq);
1173         unsigned long flag;
1174
1175         spin_lock_irqsave(&iommu->register_lock, flag);
1176         writel(msg->data, iommu->reg + DMAR_FEDATA_REG);
1177         writel(msg->address_lo, iommu->reg + DMAR_FEADDR_REG);
1178         writel(msg->address_hi, iommu->reg + DMAR_FEUADDR_REG);
1179         spin_unlock_irqrestore(&iommu->register_lock, flag);
1180 }
1181
1182 void dmar_msi_read(int irq, struct msi_msg *msg)
1183 {
1184         struct intel_iommu *iommu = get_irq_data(irq);
1185         unsigned long flag;
1186
1187         spin_lock_irqsave(&iommu->register_lock, flag);
1188         msg->data = readl(iommu->reg + DMAR_FEDATA_REG);
1189         msg->address_lo = readl(iommu->reg + DMAR_FEADDR_REG);
1190         msg->address_hi = readl(iommu->reg + DMAR_FEUADDR_REG);
1191         spin_unlock_irqrestore(&iommu->register_lock, flag);
1192 }
1193
1194 static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1195                 u8 fault_reason, u16 source_id, unsigned long long addr)
1196 {
1197         const char *reason;
1198         int fault_type;
1199
1200         reason = dmar_get_fault_reason(fault_reason, &fault_type);
1201
1202         if (fault_type == INTR_REMAP)
1203                 printk(KERN_ERR "INTR-REMAP: Request device [[%02x:%02x.%d] "
1204                        "fault index %llx\n"
1205                         "INTR-REMAP:[fault reason %02d] %s\n",
1206                         (source_id >> 8), PCI_SLOT(source_id & 0xFF),
1207                         PCI_FUNC(source_id & 0xFF), addr >> 48,
1208                         fault_reason, reason);
1209         else
1210                 printk(KERN_ERR
1211                        "DMAR:[%s] Request device [%02x:%02x.%d] "
1212                        "fault addr %llx \n"
1213                        "DMAR:[fault reason %02d] %s\n",
1214                        (type ? "DMA Read" : "DMA Write"),
1215                        (source_id >> 8), PCI_SLOT(source_id & 0xFF),
1216                        PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason);
1217         return 0;
1218 }
1219
1220 #define PRIMARY_FAULT_REG_LEN (16)
1221 irqreturn_t dmar_fault(int irq, void *dev_id)
1222 {
1223         struct intel_iommu *iommu = dev_id;
1224         int reg, fault_index;
1225         u32 fault_status;
1226         unsigned long flag;
1227
1228         spin_lock_irqsave(&iommu->register_lock, flag);
1229         fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1230         if (fault_status)
1231                 printk(KERN_ERR "DRHD: handling fault status reg %x\n",
1232                        fault_status);
1233
1234         /* TBD: ignore advanced fault log currently */
1235         if (!(fault_status & DMA_FSTS_PPF))
1236                 goto clear_rest;
1237
1238         fault_index = dma_fsts_fault_record_index(fault_status);
1239         reg = cap_fault_reg_offset(iommu->cap);
1240         while (1) {
1241                 u8 fault_reason;
1242                 u16 source_id;
1243                 u64 guest_addr;
1244                 int type;
1245                 u32 data;
1246
1247                 /* highest 32 bits */
1248                 data = readl(iommu->reg + reg +
1249                                 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1250                 if (!(data & DMA_FRCD_F))
1251                         break;
1252
1253                 fault_reason = dma_frcd_fault_reason(data);
1254                 type = dma_frcd_type(data);
1255
1256                 data = readl(iommu->reg + reg +
1257                                 fault_index * PRIMARY_FAULT_REG_LEN + 8);
1258                 source_id = dma_frcd_source_id(data);
1259
1260                 guest_addr = dmar_readq(iommu->reg + reg +
1261                                 fault_index * PRIMARY_FAULT_REG_LEN);
1262                 guest_addr = dma_frcd_page_addr(guest_addr);
1263                 /* clear the fault */
1264                 writel(DMA_FRCD_F, iommu->reg + reg +
1265                         fault_index * PRIMARY_FAULT_REG_LEN + 12);
1266
1267                 spin_unlock_irqrestore(&iommu->register_lock, flag);
1268
1269                 dmar_fault_do_one(iommu, type, fault_reason,
1270                                 source_id, guest_addr);
1271
1272                 fault_index++;
1273                 if (fault_index >= cap_num_fault_regs(iommu->cap))
1274                         fault_index = 0;
1275                 spin_lock_irqsave(&iommu->register_lock, flag);
1276         }
1277 clear_rest:
1278         /* clear all the other faults */
1279         fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1280         writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1281
1282         spin_unlock_irqrestore(&iommu->register_lock, flag);
1283         return IRQ_HANDLED;
1284 }
1285
1286 int dmar_set_interrupt(struct intel_iommu *iommu)
1287 {
1288         int irq, ret;
1289
1290         /*
1291          * Check if the fault interrupt is already initialized.
1292          */
1293         if (iommu->irq)
1294                 return 0;
1295
1296         irq = create_irq();
1297         if (!irq) {
1298                 printk(KERN_ERR "IOMMU: no free vectors\n");
1299                 return -EINVAL;
1300         }
1301
1302         set_irq_data(irq, iommu);
1303         iommu->irq = irq;
1304
1305         ret = arch_setup_dmar_msi(irq);
1306         if (ret) {
1307                 set_irq_data(irq, NULL);
1308                 iommu->irq = 0;
1309                 destroy_irq(irq);
1310                 return ret;
1311         }
1312
1313         ret = request_irq(irq, dmar_fault, 0, iommu->name, iommu);
1314         if (ret)
1315                 printk(KERN_ERR "IOMMU: can't request irq\n");
1316         return ret;
1317 }
1318
1319 int __init enable_drhd_fault_handling(void)
1320 {
1321         struct dmar_drhd_unit *drhd;
1322
1323         /*
1324          * Enable fault control interrupt.
1325          */
1326         for_each_drhd_unit(drhd) {
1327                 int ret;
1328                 struct intel_iommu *iommu = drhd->iommu;
1329                 ret = dmar_set_interrupt(iommu);
1330
1331                 if (ret) {
1332                         printk(KERN_ERR "DRHD %Lx: failed to enable fault, "
1333                                " interrupt, ret %d\n",
1334                                (unsigned long long)drhd->reg_base_addr, ret);
1335                         return -1;
1336                 }
1337         }
1338
1339         return 0;
1340 }
1341
1342 /*
1343  * Re-enable Queued Invalidation interface.
1344  */
1345 int dmar_reenable_qi(struct intel_iommu *iommu)
1346 {
1347         if (!ecap_qis(iommu->ecap))
1348                 return -ENOENT;
1349
1350         if (!iommu->qi)
1351                 return -ENOENT;
1352
1353         /*
1354          * First disable queued invalidation.
1355          */
1356         dmar_disable_qi(iommu);
1357         /*
1358          * Then enable queued invalidation again. Since there is no pending
1359          * invalidation requests now, it's safe to re-enable queued
1360          * invalidation.
1361          */
1362         __dmar_enable_qi(iommu);
1363
1364         return 0;
1365 }
1366
1367 /*
1368  * Check interrupt remapping support in DMAR table description.
1369  */
1370 int dmar_ir_support(void)
1371 {
1372         struct acpi_table_dmar *dmar;
1373         dmar = (struct acpi_table_dmar *)dmar_tbl;
1374         return dmar->flags & 0x1;
1375 }