Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/evalenti/linux...
[sfrench/cifs-2.6.git] / drivers / of / of_reserved_mem.c
1 /*
2  * Device tree based initialization code for reserved memory.
3  *
4  * Copyright (c) 2013, The Linux Foundation. All Rights Reserved.
5  * Copyright (c) 2013,2014 Samsung Electronics Co., Ltd.
6  *              http://www.samsung.com
7  * Author: Marek Szyprowski <m.szyprowski@samsung.com>
8  * Author: Josh Cartwright <joshc@codeaurora.org>
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 of the
13  * License or (at your optional) any later version of the license.
14  */
15
16 #include <linux/err.h>
17 #include <linux/of.h>
18 #include <linux/of_fdt.h>
19 #include <linux/of_platform.h>
20 #include <linux/mm.h>
21 #include <linux/sizes.h>
22 #include <linux/of_reserved_mem.h>
23
24 #define MAX_RESERVED_REGIONS    16
25 static struct reserved_mem reserved_mem[MAX_RESERVED_REGIONS];
26 static int reserved_mem_count;
27
28 #if defined(CONFIG_HAVE_MEMBLOCK)
29 #include <linux/memblock.h>
30 int __init __weak early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
31         phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
32         phys_addr_t *res_base)
33 {
34         /*
35          * We use __memblock_alloc_base() because memblock_alloc_base()
36          * panic()s on allocation failure.
37          */
38         phys_addr_t base = __memblock_alloc_base(size, align, end);
39         if (!base)
40                 return -ENOMEM;
41
42         /*
43          * Check if the allocated region fits in to start..end window
44          */
45         if (base < start) {
46                 memblock_free(base, size);
47                 return -ENOMEM;
48         }
49
50         *res_base = base;
51         if (nomap)
52                 return memblock_remove(base, size);
53         return 0;
54 }
55 #else
56 int __init __weak early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
57         phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
58         phys_addr_t *res_base)
59 {
60         pr_err("Reserved memory not supported, ignoring region 0x%llx%s\n",
61                   size, nomap ? " (nomap)" : "");
62         return -ENOSYS;
63 }
64 #endif
65
66 /**
67  * res_mem_save_node() - save fdt node for second pass initialization
68  */
69 void __init fdt_reserved_mem_save_node(unsigned long node, const char *uname,
70                                       phys_addr_t base, phys_addr_t size)
71 {
72         struct reserved_mem *rmem = &reserved_mem[reserved_mem_count];
73
74         if (reserved_mem_count == ARRAY_SIZE(reserved_mem)) {
75                 pr_err("Reserved memory: not enough space all defined regions.\n");
76                 return;
77         }
78
79         rmem->fdt_node = node;
80         rmem->name = uname;
81         rmem->base = base;
82         rmem->size = size;
83
84         reserved_mem_count++;
85         return;
86 }
87
88 /**
89  * res_mem_alloc_size() - allocate reserved memory described by 'size', 'align'
90  *                        and 'alloc-ranges' properties
91  */
92 static int __init __reserved_mem_alloc_size(unsigned long node,
93         const char *uname, phys_addr_t *res_base, phys_addr_t *res_size)
94 {
95         int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
96         phys_addr_t start = 0, end = 0;
97         phys_addr_t base = 0, align = 0, size;
98         int len;
99         const __be32 *prop;
100         int nomap;
101         int ret;
102
103         prop = of_get_flat_dt_prop(node, "size", &len);
104         if (!prop)
105                 return -EINVAL;
106
107         if (len != dt_root_size_cells * sizeof(__be32)) {
108                 pr_err("Reserved memory: invalid size property in '%s' node.\n",
109                                 uname);
110                 return -EINVAL;
111         }
112         size = dt_mem_next_cell(dt_root_size_cells, &prop);
113
114         nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
115
116         prop = of_get_flat_dt_prop(node, "alignment", &len);
117         if (prop) {
118                 if (len != dt_root_addr_cells * sizeof(__be32)) {
119                         pr_err("Reserved memory: invalid alignment property in '%s' node.\n",
120                                 uname);
121                         return -EINVAL;
122                 }
123                 align = dt_mem_next_cell(dt_root_addr_cells, &prop);
124         }
125
126         prop = of_get_flat_dt_prop(node, "alloc-ranges", &len);
127         if (prop) {
128
129                 if (len % t_len != 0) {
130                         pr_err("Reserved memory: invalid alloc-ranges property in '%s', skipping node.\n",
131                                uname);
132                         return -EINVAL;
133                 }
134
135                 base = 0;
136
137                 while (len > 0) {
138                         start = dt_mem_next_cell(dt_root_addr_cells, &prop);
139                         end = start + dt_mem_next_cell(dt_root_size_cells,
140                                                        &prop);
141
142                         ret = early_init_dt_alloc_reserved_memory_arch(size,
143                                         align, start, end, nomap, &base);
144                         if (ret == 0) {
145                                 pr_debug("Reserved memory: allocated memory for '%s' node: base %pa, size %ld MiB\n",
146                                         uname, &base,
147                                         (unsigned long)size / SZ_1M);
148                                 break;
149                         }
150                         len -= t_len;
151                 }
152
153         } else {
154                 ret = early_init_dt_alloc_reserved_memory_arch(size, align,
155                                                         0, 0, nomap, &base);
156                 if (ret == 0)
157                         pr_debug("Reserved memory: allocated memory for '%s' node: base %pa, size %ld MiB\n",
158                                 uname, &base, (unsigned long)size / SZ_1M);
159         }
160
161         if (base == 0) {
162                 pr_info("Reserved memory: failed to allocate memory for node '%s'\n",
163                         uname);
164                 return -ENOMEM;
165         }
166
167         *res_base = base;
168         *res_size = size;
169
170         return 0;
171 }
172
173 static const struct of_device_id __rmem_of_table_sentinel
174         __used __section(__reservedmem_of_table_end);
175
176 /**
177  * res_mem_init_node() - call region specific reserved memory init code
178  */
179 static int __init __reserved_mem_init_node(struct reserved_mem *rmem)
180 {
181         extern const struct of_device_id __reservedmem_of_table[];
182         const struct of_device_id *i;
183
184         for (i = __reservedmem_of_table; i < &__rmem_of_table_sentinel; i++) {
185                 reservedmem_of_init_fn initfn = i->data;
186                 const char *compat = i->compatible;
187
188                 if (!of_flat_dt_is_compatible(rmem->fdt_node, compat))
189                         continue;
190
191                 if (initfn(rmem) == 0) {
192                         pr_info("Reserved memory: initialized node %s, compatible id %s\n",
193                                 rmem->name, compat);
194                         return 0;
195                 }
196         }
197         return -ENOENT;
198 }
199
200 /**
201  * fdt_init_reserved_mem - allocate and init all saved reserved memory regions
202  */
203 void __init fdt_init_reserved_mem(void)
204 {
205         int i;
206         for (i = 0; i < reserved_mem_count; i++) {
207                 struct reserved_mem *rmem = &reserved_mem[i];
208                 unsigned long node = rmem->fdt_node;
209                 int len;
210                 const __be32 *prop;
211                 int err = 0;
212
213                 prop = of_get_flat_dt_prop(node, "phandle", &len);
214                 if (!prop)
215                         prop = of_get_flat_dt_prop(node, "linux,phandle", &len);
216                 if (prop)
217                         rmem->phandle = of_read_number(prop, len/4);
218
219                 if (rmem->size == 0)
220                         err = __reserved_mem_alloc_size(node, rmem->name,
221                                                  &rmem->base, &rmem->size);
222                 if (err == 0)
223                         __reserved_mem_init_node(rmem);
224         }
225 }
226
227 static inline struct reserved_mem *__find_rmem(struct device_node *node)
228 {
229         unsigned int i;
230
231         if (!node->phandle)
232                 return NULL;
233
234         for (i = 0; i < reserved_mem_count; i++)
235                 if (reserved_mem[i].phandle == node->phandle)
236                         return &reserved_mem[i];
237         return NULL;
238 }
239
240 /**
241  * of_reserved_mem_device_init() - assign reserved memory region to given device
242  *
243  * This function assign memory region pointed by "memory-region" device tree
244  * property to the given device.
245  */
246 void of_reserved_mem_device_init(struct device *dev)
247 {
248         struct reserved_mem *rmem;
249         struct device_node *np;
250
251         np = of_parse_phandle(dev->of_node, "memory-region", 0);
252         if (!np)
253                 return;
254
255         rmem = __find_rmem(np);
256         of_node_put(np);
257
258         if (!rmem || !rmem->ops || !rmem->ops->device_init)
259                 return;
260
261         rmem->ops->device_init(rmem, dev);
262         dev_info(dev, "assigned reserved memory node %s\n", rmem->name);
263 }
264
265 /**
266  * of_reserved_mem_device_release() - release reserved memory device structures
267  *
268  * This function releases structures allocated for memory region handling for
269  * the given device.
270  */
271 void of_reserved_mem_device_release(struct device *dev)
272 {
273         struct reserved_mem *rmem;
274         struct device_node *np;
275
276         np = of_parse_phandle(dev->of_node, "memory-region", 0);
277         if (!np)
278                 return;
279
280         rmem = __find_rmem(np);
281         of_node_put(np);
282
283         if (!rmem || !rmem->ops || !rmem->ops->device_release)
284                 return;
285
286         rmem->ops->device_release(rmem, dev);
287 }