Merge remote-tracking branches 'asoc/topic/ak4613', 'asoc/topic/ak4642', 'asoc/topic...
[sfrench/cifs-2.6.git] / drivers / nvme / target / rdma.c
1 /*
2  * NVMe over Fabrics RDMA target.
3  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/atomic.h>
16 #include <linux/ctype.h>
17 #include <linux/delay.h>
18 #include <linux/err.h>
19 #include <linux/init.h>
20 #include <linux/module.h>
21 #include <linux/nvme.h>
22 #include <linux/slab.h>
23 #include <linux/string.h>
24 #include <linux/wait.h>
25 #include <linux/inet.h>
26 #include <asm/unaligned.h>
27
28 #include <rdma/ib_verbs.h>
29 #include <rdma/rdma_cm.h>
30 #include <rdma/rw.h>
31
32 #include <linux/nvme-rdma.h>
33 #include "nvmet.h"
34
35 /*
36  * We allow up to a page of inline data to go with the SQE
37  */
38 #define NVMET_RDMA_INLINE_DATA_SIZE     PAGE_SIZE
39
40 struct nvmet_rdma_cmd {
41         struct ib_sge           sge[2];
42         struct ib_cqe           cqe;
43         struct ib_recv_wr       wr;
44         struct scatterlist      inline_sg;
45         struct page             *inline_page;
46         struct nvme_command     *nvme_cmd;
47         struct nvmet_rdma_queue *queue;
48 };
49
50 enum {
51         NVMET_RDMA_REQ_INLINE_DATA      = (1 << 0),
52         NVMET_RDMA_REQ_INVALIDATE_RKEY  = (1 << 1),
53 };
54
55 struct nvmet_rdma_rsp {
56         struct ib_sge           send_sge;
57         struct ib_cqe           send_cqe;
58         struct ib_send_wr       send_wr;
59
60         struct nvmet_rdma_cmd   *cmd;
61         struct nvmet_rdma_queue *queue;
62
63         struct ib_cqe           read_cqe;
64         struct rdma_rw_ctx      rw;
65
66         struct nvmet_req        req;
67
68         u8                      n_rdma;
69         u32                     flags;
70         u32                     invalidate_rkey;
71
72         struct list_head        wait_list;
73         struct list_head        free_list;
74 };
75
76 enum nvmet_rdma_queue_state {
77         NVMET_RDMA_Q_CONNECTING,
78         NVMET_RDMA_Q_LIVE,
79         NVMET_RDMA_Q_DISCONNECTING,
80         NVMET_RDMA_IN_DEVICE_REMOVAL,
81 };
82
83 struct nvmet_rdma_queue {
84         struct rdma_cm_id       *cm_id;
85         struct nvmet_port       *port;
86         struct ib_cq            *cq;
87         atomic_t                sq_wr_avail;
88         struct nvmet_rdma_device *dev;
89         spinlock_t              state_lock;
90         enum nvmet_rdma_queue_state state;
91         struct nvmet_cq         nvme_cq;
92         struct nvmet_sq         nvme_sq;
93
94         struct nvmet_rdma_rsp   *rsps;
95         struct list_head        free_rsps;
96         spinlock_t              rsps_lock;
97         struct nvmet_rdma_cmd   *cmds;
98
99         struct work_struct      release_work;
100         struct list_head        rsp_wait_list;
101         struct list_head        rsp_wr_wait_list;
102         spinlock_t              rsp_wr_wait_lock;
103
104         int                     idx;
105         int                     host_qid;
106         int                     recv_queue_size;
107         int                     send_queue_size;
108
109         struct list_head        queue_list;
110 };
111
112 struct nvmet_rdma_device {
113         struct ib_device        *device;
114         struct ib_pd            *pd;
115         struct ib_srq           *srq;
116         struct nvmet_rdma_cmd   *srq_cmds;
117         size_t                  srq_size;
118         struct kref             ref;
119         struct list_head        entry;
120 };
121
122 static bool nvmet_rdma_use_srq;
123 module_param_named(use_srq, nvmet_rdma_use_srq, bool, 0444);
124 MODULE_PARM_DESC(use_srq, "Use shared receive queue.");
125
126 static DEFINE_IDA(nvmet_rdma_queue_ida);
127 static LIST_HEAD(nvmet_rdma_queue_list);
128 static DEFINE_MUTEX(nvmet_rdma_queue_mutex);
129
130 static LIST_HEAD(device_list);
131 static DEFINE_MUTEX(device_list_mutex);
132
133 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp);
134 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc);
135 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
136 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc);
137 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv);
138 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue);
139
140 static struct nvmet_fabrics_ops nvmet_rdma_ops;
141
142 /* XXX: really should move to a generic header sooner or later.. */
143 static inline u32 get_unaligned_le24(const u8 *p)
144 {
145         return (u32)p[0] | (u32)p[1] << 8 | (u32)p[2] << 16;
146 }
147
148 static inline bool nvmet_rdma_need_data_in(struct nvmet_rdma_rsp *rsp)
149 {
150         return nvme_is_write(rsp->req.cmd) &&
151                 rsp->req.data_len &&
152                 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
153 }
154
155 static inline bool nvmet_rdma_need_data_out(struct nvmet_rdma_rsp *rsp)
156 {
157         return !nvme_is_write(rsp->req.cmd) &&
158                 rsp->req.data_len &&
159                 !rsp->req.rsp->status &&
160                 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
161 }
162
163 static inline struct nvmet_rdma_rsp *
164 nvmet_rdma_get_rsp(struct nvmet_rdma_queue *queue)
165 {
166         struct nvmet_rdma_rsp *rsp;
167         unsigned long flags;
168
169         spin_lock_irqsave(&queue->rsps_lock, flags);
170         rsp = list_first_entry(&queue->free_rsps,
171                                 struct nvmet_rdma_rsp, free_list);
172         list_del(&rsp->free_list);
173         spin_unlock_irqrestore(&queue->rsps_lock, flags);
174
175         return rsp;
176 }
177
178 static inline void
179 nvmet_rdma_put_rsp(struct nvmet_rdma_rsp *rsp)
180 {
181         unsigned long flags;
182
183         spin_lock_irqsave(&rsp->queue->rsps_lock, flags);
184         list_add_tail(&rsp->free_list, &rsp->queue->free_rsps);
185         spin_unlock_irqrestore(&rsp->queue->rsps_lock, flags);
186 }
187
188 static void nvmet_rdma_free_sgl(struct scatterlist *sgl, unsigned int nents)
189 {
190         struct scatterlist *sg;
191         int count;
192
193         if (!sgl || !nents)
194                 return;
195
196         for_each_sg(sgl, sg, nents, count)
197                 __free_page(sg_page(sg));
198         kfree(sgl);
199 }
200
201 static int nvmet_rdma_alloc_sgl(struct scatterlist **sgl, unsigned int *nents,
202                 u32 length)
203 {
204         struct scatterlist *sg;
205         struct page *page;
206         unsigned int nent;
207         int i = 0;
208
209         nent = DIV_ROUND_UP(length, PAGE_SIZE);
210         sg = kmalloc_array(nent, sizeof(struct scatterlist), GFP_KERNEL);
211         if (!sg)
212                 goto out;
213
214         sg_init_table(sg, nent);
215
216         while (length) {
217                 u32 page_len = min_t(u32, length, PAGE_SIZE);
218
219                 page = alloc_page(GFP_KERNEL);
220                 if (!page)
221                         goto out_free_pages;
222
223                 sg_set_page(&sg[i], page, page_len, 0);
224                 length -= page_len;
225                 i++;
226         }
227         *sgl = sg;
228         *nents = nent;
229         return 0;
230
231 out_free_pages:
232         while (i > 0) {
233                 i--;
234                 __free_page(sg_page(&sg[i]));
235         }
236         kfree(sg);
237 out:
238         return NVME_SC_INTERNAL;
239 }
240
241 static int nvmet_rdma_alloc_cmd(struct nvmet_rdma_device *ndev,
242                         struct nvmet_rdma_cmd *c, bool admin)
243 {
244         /* NVMe command / RDMA RECV */
245         c->nvme_cmd = kmalloc(sizeof(*c->nvme_cmd), GFP_KERNEL);
246         if (!c->nvme_cmd)
247                 goto out;
248
249         c->sge[0].addr = ib_dma_map_single(ndev->device, c->nvme_cmd,
250                         sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
251         if (ib_dma_mapping_error(ndev->device, c->sge[0].addr))
252                 goto out_free_cmd;
253
254         c->sge[0].length = sizeof(*c->nvme_cmd);
255         c->sge[0].lkey = ndev->pd->local_dma_lkey;
256
257         if (!admin) {
258                 c->inline_page = alloc_pages(GFP_KERNEL,
259                                 get_order(NVMET_RDMA_INLINE_DATA_SIZE));
260                 if (!c->inline_page)
261                         goto out_unmap_cmd;
262                 c->sge[1].addr = ib_dma_map_page(ndev->device,
263                                 c->inline_page, 0, NVMET_RDMA_INLINE_DATA_SIZE,
264                                 DMA_FROM_DEVICE);
265                 if (ib_dma_mapping_error(ndev->device, c->sge[1].addr))
266                         goto out_free_inline_page;
267                 c->sge[1].length = NVMET_RDMA_INLINE_DATA_SIZE;
268                 c->sge[1].lkey = ndev->pd->local_dma_lkey;
269         }
270
271         c->cqe.done = nvmet_rdma_recv_done;
272
273         c->wr.wr_cqe = &c->cqe;
274         c->wr.sg_list = c->sge;
275         c->wr.num_sge = admin ? 1 : 2;
276
277         return 0;
278
279 out_free_inline_page:
280         if (!admin) {
281                 __free_pages(c->inline_page,
282                                 get_order(NVMET_RDMA_INLINE_DATA_SIZE));
283         }
284 out_unmap_cmd:
285         ib_dma_unmap_single(ndev->device, c->sge[0].addr,
286                         sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
287 out_free_cmd:
288         kfree(c->nvme_cmd);
289
290 out:
291         return -ENOMEM;
292 }
293
294 static void nvmet_rdma_free_cmd(struct nvmet_rdma_device *ndev,
295                 struct nvmet_rdma_cmd *c, bool admin)
296 {
297         if (!admin) {
298                 ib_dma_unmap_page(ndev->device, c->sge[1].addr,
299                                 NVMET_RDMA_INLINE_DATA_SIZE, DMA_FROM_DEVICE);
300                 __free_pages(c->inline_page,
301                                 get_order(NVMET_RDMA_INLINE_DATA_SIZE));
302         }
303         ib_dma_unmap_single(ndev->device, c->sge[0].addr,
304                                 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
305         kfree(c->nvme_cmd);
306 }
307
308 static struct nvmet_rdma_cmd *
309 nvmet_rdma_alloc_cmds(struct nvmet_rdma_device *ndev,
310                 int nr_cmds, bool admin)
311 {
312         struct nvmet_rdma_cmd *cmds;
313         int ret = -EINVAL, i;
314
315         cmds = kcalloc(nr_cmds, sizeof(struct nvmet_rdma_cmd), GFP_KERNEL);
316         if (!cmds)
317                 goto out;
318
319         for (i = 0; i < nr_cmds; i++) {
320                 ret = nvmet_rdma_alloc_cmd(ndev, cmds + i, admin);
321                 if (ret)
322                         goto out_free;
323         }
324
325         return cmds;
326
327 out_free:
328         while (--i >= 0)
329                 nvmet_rdma_free_cmd(ndev, cmds + i, admin);
330         kfree(cmds);
331 out:
332         return ERR_PTR(ret);
333 }
334
335 static void nvmet_rdma_free_cmds(struct nvmet_rdma_device *ndev,
336                 struct nvmet_rdma_cmd *cmds, int nr_cmds, bool admin)
337 {
338         int i;
339
340         for (i = 0; i < nr_cmds; i++)
341                 nvmet_rdma_free_cmd(ndev, cmds + i, admin);
342         kfree(cmds);
343 }
344
345 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
346                 struct nvmet_rdma_rsp *r)
347 {
348         /* NVMe CQE / RDMA SEND */
349         r->req.rsp = kmalloc(sizeof(*r->req.rsp), GFP_KERNEL);
350         if (!r->req.rsp)
351                 goto out;
352
353         r->send_sge.addr = ib_dma_map_single(ndev->device, r->req.rsp,
354                         sizeof(*r->req.rsp), DMA_TO_DEVICE);
355         if (ib_dma_mapping_error(ndev->device, r->send_sge.addr))
356                 goto out_free_rsp;
357
358         r->send_sge.length = sizeof(*r->req.rsp);
359         r->send_sge.lkey = ndev->pd->local_dma_lkey;
360
361         r->send_cqe.done = nvmet_rdma_send_done;
362
363         r->send_wr.wr_cqe = &r->send_cqe;
364         r->send_wr.sg_list = &r->send_sge;
365         r->send_wr.num_sge = 1;
366         r->send_wr.send_flags = IB_SEND_SIGNALED;
367
368         /* Data In / RDMA READ */
369         r->read_cqe.done = nvmet_rdma_read_data_done;
370         return 0;
371
372 out_free_rsp:
373         kfree(r->req.rsp);
374 out:
375         return -ENOMEM;
376 }
377
378 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
379                 struct nvmet_rdma_rsp *r)
380 {
381         ib_dma_unmap_single(ndev->device, r->send_sge.addr,
382                                 sizeof(*r->req.rsp), DMA_TO_DEVICE);
383         kfree(r->req.rsp);
384 }
385
386 static int
387 nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue *queue)
388 {
389         struct nvmet_rdma_device *ndev = queue->dev;
390         int nr_rsps = queue->recv_queue_size * 2;
391         int ret = -EINVAL, i;
392
393         queue->rsps = kcalloc(nr_rsps, sizeof(struct nvmet_rdma_rsp),
394                         GFP_KERNEL);
395         if (!queue->rsps)
396                 goto out;
397
398         for (i = 0; i < nr_rsps; i++) {
399                 struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
400
401                 ret = nvmet_rdma_alloc_rsp(ndev, rsp);
402                 if (ret)
403                         goto out_free;
404
405                 list_add_tail(&rsp->free_list, &queue->free_rsps);
406         }
407
408         return 0;
409
410 out_free:
411         while (--i >= 0) {
412                 struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
413
414                 list_del(&rsp->free_list);
415                 nvmet_rdma_free_rsp(ndev, rsp);
416         }
417         kfree(queue->rsps);
418 out:
419         return ret;
420 }
421
422 static void nvmet_rdma_free_rsps(struct nvmet_rdma_queue *queue)
423 {
424         struct nvmet_rdma_device *ndev = queue->dev;
425         int i, nr_rsps = queue->recv_queue_size * 2;
426
427         for (i = 0; i < nr_rsps; i++) {
428                 struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
429
430                 list_del(&rsp->free_list);
431                 nvmet_rdma_free_rsp(ndev, rsp);
432         }
433         kfree(queue->rsps);
434 }
435
436 static int nvmet_rdma_post_recv(struct nvmet_rdma_device *ndev,
437                 struct nvmet_rdma_cmd *cmd)
438 {
439         struct ib_recv_wr *bad_wr;
440
441         ib_dma_sync_single_for_device(ndev->device,
442                 cmd->sge[0].addr, cmd->sge[0].length,
443                 DMA_FROM_DEVICE);
444
445         if (ndev->srq)
446                 return ib_post_srq_recv(ndev->srq, &cmd->wr, &bad_wr);
447         return ib_post_recv(cmd->queue->cm_id->qp, &cmd->wr, &bad_wr);
448 }
449
450 static void nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue *queue)
451 {
452         spin_lock(&queue->rsp_wr_wait_lock);
453         while (!list_empty(&queue->rsp_wr_wait_list)) {
454                 struct nvmet_rdma_rsp *rsp;
455                 bool ret;
456
457                 rsp = list_entry(queue->rsp_wr_wait_list.next,
458                                 struct nvmet_rdma_rsp, wait_list);
459                 list_del(&rsp->wait_list);
460
461                 spin_unlock(&queue->rsp_wr_wait_lock);
462                 ret = nvmet_rdma_execute_command(rsp);
463                 spin_lock(&queue->rsp_wr_wait_lock);
464
465                 if (!ret) {
466                         list_add(&rsp->wait_list, &queue->rsp_wr_wait_list);
467                         break;
468                 }
469         }
470         spin_unlock(&queue->rsp_wr_wait_lock);
471 }
472
473
474 static void nvmet_rdma_release_rsp(struct nvmet_rdma_rsp *rsp)
475 {
476         struct nvmet_rdma_queue *queue = rsp->queue;
477
478         atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
479
480         if (rsp->n_rdma) {
481                 rdma_rw_ctx_destroy(&rsp->rw, queue->cm_id->qp,
482                                 queue->cm_id->port_num, rsp->req.sg,
483                                 rsp->req.sg_cnt, nvmet_data_dir(&rsp->req));
484         }
485
486         if (rsp->req.sg != &rsp->cmd->inline_sg)
487                 nvmet_rdma_free_sgl(rsp->req.sg, rsp->req.sg_cnt);
488
489         if (unlikely(!list_empty_careful(&queue->rsp_wr_wait_list)))
490                 nvmet_rdma_process_wr_wait_list(queue);
491
492         nvmet_rdma_put_rsp(rsp);
493 }
494
495 static void nvmet_rdma_error_comp(struct nvmet_rdma_queue *queue)
496 {
497         if (queue->nvme_sq.ctrl) {
498                 nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
499         } else {
500                 /*
501                  * we didn't setup the controller yet in case
502                  * of admin connect error, just disconnect and
503                  * cleanup the queue
504                  */
505                 nvmet_rdma_queue_disconnect(queue);
506         }
507 }
508
509 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
510 {
511         struct nvmet_rdma_rsp *rsp =
512                 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, send_cqe);
513
514         nvmet_rdma_release_rsp(rsp);
515
516         if (unlikely(wc->status != IB_WC_SUCCESS &&
517                      wc->status != IB_WC_WR_FLUSH_ERR)) {
518                 pr_err("SEND for CQE 0x%p failed with status %s (%d).\n",
519                         wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
520                 nvmet_rdma_error_comp(rsp->queue);
521         }
522 }
523
524 static void nvmet_rdma_queue_response(struct nvmet_req *req)
525 {
526         struct nvmet_rdma_rsp *rsp =
527                 container_of(req, struct nvmet_rdma_rsp, req);
528         struct rdma_cm_id *cm_id = rsp->queue->cm_id;
529         struct ib_send_wr *first_wr, *bad_wr;
530
531         if (rsp->flags & NVMET_RDMA_REQ_INVALIDATE_RKEY) {
532                 rsp->send_wr.opcode = IB_WR_SEND_WITH_INV;
533                 rsp->send_wr.ex.invalidate_rkey = rsp->invalidate_rkey;
534         } else {
535                 rsp->send_wr.opcode = IB_WR_SEND;
536         }
537
538         if (nvmet_rdma_need_data_out(rsp))
539                 first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp,
540                                 cm_id->port_num, NULL, &rsp->send_wr);
541         else
542                 first_wr = &rsp->send_wr;
543
544         nvmet_rdma_post_recv(rsp->queue->dev, rsp->cmd);
545
546         ib_dma_sync_single_for_device(rsp->queue->dev->device,
547                 rsp->send_sge.addr, rsp->send_sge.length,
548                 DMA_TO_DEVICE);
549
550         if (ib_post_send(cm_id->qp, first_wr, &bad_wr)) {
551                 pr_err("sending cmd response failed\n");
552                 nvmet_rdma_release_rsp(rsp);
553         }
554 }
555
556 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc)
557 {
558         struct nvmet_rdma_rsp *rsp =
559                 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, read_cqe);
560         struct nvmet_rdma_queue *queue = cq->cq_context;
561
562         WARN_ON(rsp->n_rdma <= 0);
563         atomic_add(rsp->n_rdma, &queue->sq_wr_avail);
564         rdma_rw_ctx_destroy(&rsp->rw, queue->cm_id->qp,
565                         queue->cm_id->port_num, rsp->req.sg,
566                         rsp->req.sg_cnt, nvmet_data_dir(&rsp->req));
567         rsp->n_rdma = 0;
568
569         if (unlikely(wc->status != IB_WC_SUCCESS)) {
570                 nvmet_req_uninit(&rsp->req);
571                 nvmet_rdma_release_rsp(rsp);
572                 if (wc->status != IB_WC_WR_FLUSH_ERR) {
573                         pr_info("RDMA READ for CQE 0x%p failed with status %s (%d).\n",
574                                 wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
575                         nvmet_rdma_error_comp(queue);
576                 }
577                 return;
578         }
579
580         rsp->req.execute(&rsp->req);
581 }
582
583 static void nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp *rsp, u32 len,
584                 u64 off)
585 {
586         sg_init_table(&rsp->cmd->inline_sg, 1);
587         sg_set_page(&rsp->cmd->inline_sg, rsp->cmd->inline_page, len, off);
588         rsp->req.sg = &rsp->cmd->inline_sg;
589         rsp->req.sg_cnt = 1;
590 }
591
592 static u16 nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp *rsp)
593 {
594         struct nvme_sgl_desc *sgl = &rsp->req.cmd->common.dptr.sgl;
595         u64 off = le64_to_cpu(sgl->addr);
596         u32 len = le32_to_cpu(sgl->length);
597
598         if (!nvme_is_write(rsp->req.cmd))
599                 return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
600
601         if (off + len > NVMET_RDMA_INLINE_DATA_SIZE) {
602                 pr_err("invalid inline data offset!\n");
603                 return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR;
604         }
605
606         /* no data command? */
607         if (!len)
608                 return 0;
609
610         nvmet_rdma_use_inline_sg(rsp, len, off);
611         rsp->flags |= NVMET_RDMA_REQ_INLINE_DATA;
612         return 0;
613 }
614
615 static u16 nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp *rsp,
616                 struct nvme_keyed_sgl_desc *sgl, bool invalidate)
617 {
618         struct rdma_cm_id *cm_id = rsp->queue->cm_id;
619         u64 addr = le64_to_cpu(sgl->addr);
620         u32 len = get_unaligned_le24(sgl->length);
621         u32 key = get_unaligned_le32(sgl->key);
622         int ret;
623         u16 status;
624
625         /* no data command? */
626         if (!len)
627                 return 0;
628
629         status = nvmet_rdma_alloc_sgl(&rsp->req.sg, &rsp->req.sg_cnt,
630                         len);
631         if (status)
632                 return status;
633
634         ret = rdma_rw_ctx_init(&rsp->rw, cm_id->qp, cm_id->port_num,
635                         rsp->req.sg, rsp->req.sg_cnt, 0, addr, key,
636                         nvmet_data_dir(&rsp->req));
637         if (ret < 0)
638                 return NVME_SC_INTERNAL;
639         rsp->n_rdma += ret;
640
641         if (invalidate) {
642                 rsp->invalidate_rkey = key;
643                 rsp->flags |= NVMET_RDMA_REQ_INVALIDATE_RKEY;
644         }
645
646         return 0;
647 }
648
649 static u16 nvmet_rdma_map_sgl(struct nvmet_rdma_rsp *rsp)
650 {
651         struct nvme_keyed_sgl_desc *sgl = &rsp->req.cmd->common.dptr.ksgl;
652
653         switch (sgl->type >> 4) {
654         case NVME_SGL_FMT_DATA_DESC:
655                 switch (sgl->type & 0xf) {
656                 case NVME_SGL_FMT_OFFSET:
657                         return nvmet_rdma_map_sgl_inline(rsp);
658                 default:
659                         pr_err("invalid SGL subtype: %#x\n", sgl->type);
660                         return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
661                 }
662         case NVME_KEY_SGL_FMT_DATA_DESC:
663                 switch (sgl->type & 0xf) {
664                 case NVME_SGL_FMT_ADDRESS | NVME_SGL_FMT_INVALIDATE:
665                         return nvmet_rdma_map_sgl_keyed(rsp, sgl, true);
666                 case NVME_SGL_FMT_ADDRESS:
667                         return nvmet_rdma_map_sgl_keyed(rsp, sgl, false);
668                 default:
669                         pr_err("invalid SGL subtype: %#x\n", sgl->type);
670                         return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
671                 }
672         default:
673                 pr_err("invalid SGL type: %#x\n", sgl->type);
674                 return NVME_SC_SGL_INVALID_TYPE | NVME_SC_DNR;
675         }
676 }
677
678 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp)
679 {
680         struct nvmet_rdma_queue *queue = rsp->queue;
681
682         if (unlikely(atomic_sub_return(1 + rsp->n_rdma,
683                         &queue->sq_wr_avail) < 0)) {
684                 pr_debug("IB send queue full (needed %d): queue %u cntlid %u\n",
685                                 1 + rsp->n_rdma, queue->idx,
686                                 queue->nvme_sq.ctrl->cntlid);
687                 atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
688                 return false;
689         }
690
691         if (nvmet_rdma_need_data_in(rsp)) {
692                 if (rdma_rw_ctx_post(&rsp->rw, queue->cm_id->qp,
693                                 queue->cm_id->port_num, &rsp->read_cqe, NULL))
694                         nvmet_req_complete(&rsp->req, NVME_SC_DATA_XFER_ERROR);
695         } else {
696                 rsp->req.execute(&rsp->req);
697         }
698
699         return true;
700 }
701
702 static void nvmet_rdma_handle_command(struct nvmet_rdma_queue *queue,
703                 struct nvmet_rdma_rsp *cmd)
704 {
705         u16 status;
706
707         ib_dma_sync_single_for_cpu(queue->dev->device,
708                 cmd->cmd->sge[0].addr, cmd->cmd->sge[0].length,
709                 DMA_FROM_DEVICE);
710         ib_dma_sync_single_for_cpu(queue->dev->device,
711                 cmd->send_sge.addr, cmd->send_sge.length,
712                 DMA_TO_DEVICE);
713
714         if (!nvmet_req_init(&cmd->req, &queue->nvme_cq,
715                         &queue->nvme_sq, &nvmet_rdma_ops))
716                 return;
717
718         status = nvmet_rdma_map_sgl(cmd);
719         if (status)
720                 goto out_err;
721
722         if (unlikely(!nvmet_rdma_execute_command(cmd))) {
723                 spin_lock(&queue->rsp_wr_wait_lock);
724                 list_add_tail(&cmd->wait_list, &queue->rsp_wr_wait_list);
725                 spin_unlock(&queue->rsp_wr_wait_lock);
726         }
727
728         return;
729
730 out_err:
731         nvmet_req_complete(&cmd->req, status);
732 }
733
734 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
735 {
736         struct nvmet_rdma_cmd *cmd =
737                 container_of(wc->wr_cqe, struct nvmet_rdma_cmd, cqe);
738         struct nvmet_rdma_queue *queue = cq->cq_context;
739         struct nvmet_rdma_rsp *rsp;
740
741         if (unlikely(wc->status != IB_WC_SUCCESS)) {
742                 if (wc->status != IB_WC_WR_FLUSH_ERR) {
743                         pr_err("RECV for CQE 0x%p failed with status %s (%d)\n",
744                                 wc->wr_cqe, ib_wc_status_msg(wc->status),
745                                 wc->status);
746                         nvmet_rdma_error_comp(queue);
747                 }
748                 return;
749         }
750
751         if (unlikely(wc->byte_len < sizeof(struct nvme_command))) {
752                 pr_err("Ctrl Fatal Error: capsule size less than 64 bytes\n");
753                 nvmet_rdma_error_comp(queue);
754                 return;
755         }
756
757         cmd->queue = queue;
758         rsp = nvmet_rdma_get_rsp(queue);
759         rsp->queue = queue;
760         rsp->cmd = cmd;
761         rsp->flags = 0;
762         rsp->req.cmd = cmd->nvme_cmd;
763         rsp->req.port = queue->port;
764         rsp->n_rdma = 0;
765
766         if (unlikely(queue->state != NVMET_RDMA_Q_LIVE)) {
767                 unsigned long flags;
768
769                 spin_lock_irqsave(&queue->state_lock, flags);
770                 if (queue->state == NVMET_RDMA_Q_CONNECTING)
771                         list_add_tail(&rsp->wait_list, &queue->rsp_wait_list);
772                 else
773                         nvmet_rdma_put_rsp(rsp);
774                 spin_unlock_irqrestore(&queue->state_lock, flags);
775                 return;
776         }
777
778         nvmet_rdma_handle_command(queue, rsp);
779 }
780
781 static void nvmet_rdma_destroy_srq(struct nvmet_rdma_device *ndev)
782 {
783         if (!ndev->srq)
784                 return;
785
786         nvmet_rdma_free_cmds(ndev, ndev->srq_cmds, ndev->srq_size, false);
787         ib_destroy_srq(ndev->srq);
788 }
789
790 static int nvmet_rdma_init_srq(struct nvmet_rdma_device *ndev)
791 {
792         struct ib_srq_init_attr srq_attr = { NULL, };
793         struct ib_srq *srq;
794         size_t srq_size;
795         int ret, i;
796
797         srq_size = 4095;        /* XXX: tune */
798
799         srq_attr.attr.max_wr = srq_size;
800         srq_attr.attr.max_sge = 2;
801         srq_attr.attr.srq_limit = 0;
802         srq_attr.srq_type = IB_SRQT_BASIC;
803         srq = ib_create_srq(ndev->pd, &srq_attr);
804         if (IS_ERR(srq)) {
805                 /*
806                  * If SRQs aren't supported we just go ahead and use normal
807                  * non-shared receive queues.
808                  */
809                 pr_info("SRQ requested but not supported.\n");
810                 return 0;
811         }
812
813         ndev->srq_cmds = nvmet_rdma_alloc_cmds(ndev, srq_size, false);
814         if (IS_ERR(ndev->srq_cmds)) {
815                 ret = PTR_ERR(ndev->srq_cmds);
816                 goto out_destroy_srq;
817         }
818
819         ndev->srq = srq;
820         ndev->srq_size = srq_size;
821
822         for (i = 0; i < srq_size; i++)
823                 nvmet_rdma_post_recv(ndev, &ndev->srq_cmds[i]);
824
825         return 0;
826
827 out_destroy_srq:
828         ib_destroy_srq(srq);
829         return ret;
830 }
831
832 static void nvmet_rdma_free_dev(struct kref *ref)
833 {
834         struct nvmet_rdma_device *ndev =
835                 container_of(ref, struct nvmet_rdma_device, ref);
836
837         mutex_lock(&device_list_mutex);
838         list_del(&ndev->entry);
839         mutex_unlock(&device_list_mutex);
840
841         nvmet_rdma_destroy_srq(ndev);
842         ib_dealloc_pd(ndev->pd);
843
844         kfree(ndev);
845 }
846
847 static struct nvmet_rdma_device *
848 nvmet_rdma_find_get_device(struct rdma_cm_id *cm_id)
849 {
850         struct nvmet_rdma_device *ndev;
851         int ret;
852
853         mutex_lock(&device_list_mutex);
854         list_for_each_entry(ndev, &device_list, entry) {
855                 if (ndev->device->node_guid == cm_id->device->node_guid &&
856                     kref_get_unless_zero(&ndev->ref))
857                         goto out_unlock;
858         }
859
860         ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
861         if (!ndev)
862                 goto out_err;
863
864         ndev->device = cm_id->device;
865         kref_init(&ndev->ref);
866
867         ndev->pd = ib_alloc_pd(ndev->device, 0);
868         if (IS_ERR(ndev->pd))
869                 goto out_free_dev;
870
871         if (nvmet_rdma_use_srq) {
872                 ret = nvmet_rdma_init_srq(ndev);
873                 if (ret)
874                         goto out_free_pd;
875         }
876
877         list_add(&ndev->entry, &device_list);
878 out_unlock:
879         mutex_unlock(&device_list_mutex);
880         pr_debug("added %s.\n", ndev->device->name);
881         return ndev;
882
883 out_free_pd:
884         ib_dealloc_pd(ndev->pd);
885 out_free_dev:
886         kfree(ndev);
887 out_err:
888         mutex_unlock(&device_list_mutex);
889         return NULL;
890 }
891
892 static int nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue *queue)
893 {
894         struct ib_qp_init_attr qp_attr;
895         struct nvmet_rdma_device *ndev = queue->dev;
896         int comp_vector, nr_cqe, ret, i;
897
898         /*
899          * Spread the io queues across completion vectors,
900          * but still keep all admin queues on vector 0.
901          */
902         comp_vector = !queue->host_qid ? 0 :
903                 queue->idx % ndev->device->num_comp_vectors;
904
905         /*
906          * Reserve CQ slots for RECV + RDMA_READ/RDMA_WRITE + RDMA_SEND.
907          */
908         nr_cqe = queue->recv_queue_size + 2 * queue->send_queue_size;
909
910         queue->cq = ib_alloc_cq(ndev->device, queue,
911                         nr_cqe + 1, comp_vector,
912                         IB_POLL_WORKQUEUE);
913         if (IS_ERR(queue->cq)) {
914                 ret = PTR_ERR(queue->cq);
915                 pr_err("failed to create CQ cqe= %d ret= %d\n",
916                        nr_cqe + 1, ret);
917                 goto out;
918         }
919
920         memset(&qp_attr, 0, sizeof(qp_attr));
921         qp_attr.qp_context = queue;
922         qp_attr.event_handler = nvmet_rdma_qp_event;
923         qp_attr.send_cq = queue->cq;
924         qp_attr.recv_cq = queue->cq;
925         qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
926         qp_attr.qp_type = IB_QPT_RC;
927         /* +1 for drain */
928         qp_attr.cap.max_send_wr = queue->send_queue_size + 1;
929         qp_attr.cap.max_rdma_ctxs = queue->send_queue_size;
930         qp_attr.cap.max_send_sge = max(ndev->device->attrs.max_sge_rd,
931                                         ndev->device->attrs.max_sge);
932
933         if (ndev->srq) {
934                 qp_attr.srq = ndev->srq;
935         } else {
936                 /* +1 for drain */
937                 qp_attr.cap.max_recv_wr = 1 + queue->recv_queue_size;
938                 qp_attr.cap.max_recv_sge = 2;
939         }
940
941         ret = rdma_create_qp(queue->cm_id, ndev->pd, &qp_attr);
942         if (ret) {
943                 pr_err("failed to create_qp ret= %d\n", ret);
944                 goto err_destroy_cq;
945         }
946
947         atomic_set(&queue->sq_wr_avail, qp_attr.cap.max_send_wr);
948
949         pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
950                  __func__, queue->cq->cqe, qp_attr.cap.max_send_sge,
951                  qp_attr.cap.max_send_wr, queue->cm_id);
952
953         if (!ndev->srq) {
954                 for (i = 0; i < queue->recv_queue_size; i++) {
955                         queue->cmds[i].queue = queue;
956                         nvmet_rdma_post_recv(ndev, &queue->cmds[i]);
957                 }
958         }
959
960 out:
961         return ret;
962
963 err_destroy_cq:
964         ib_free_cq(queue->cq);
965         goto out;
966 }
967
968 static void nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue *queue)
969 {
970         ib_drain_qp(queue->cm_id->qp);
971         rdma_destroy_qp(queue->cm_id);
972         ib_free_cq(queue->cq);
973 }
974
975 static void nvmet_rdma_free_queue(struct nvmet_rdma_queue *queue)
976 {
977         pr_info("freeing queue %d\n", queue->idx);
978
979         nvmet_sq_destroy(&queue->nvme_sq);
980
981         nvmet_rdma_destroy_queue_ib(queue);
982         if (!queue->dev->srq) {
983                 nvmet_rdma_free_cmds(queue->dev, queue->cmds,
984                                 queue->recv_queue_size,
985                                 !queue->host_qid);
986         }
987         nvmet_rdma_free_rsps(queue);
988         ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx);
989         kfree(queue);
990 }
991
992 static void nvmet_rdma_release_queue_work(struct work_struct *w)
993 {
994         struct nvmet_rdma_queue *queue =
995                 container_of(w, struct nvmet_rdma_queue, release_work);
996         struct rdma_cm_id *cm_id = queue->cm_id;
997         struct nvmet_rdma_device *dev = queue->dev;
998         enum nvmet_rdma_queue_state state = queue->state;
999
1000         nvmet_rdma_free_queue(queue);
1001
1002         if (state != NVMET_RDMA_IN_DEVICE_REMOVAL)
1003                 rdma_destroy_id(cm_id);
1004
1005         kref_put(&dev->ref, nvmet_rdma_free_dev);
1006 }
1007
1008 static int
1009 nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param *conn,
1010                                 struct nvmet_rdma_queue *queue)
1011 {
1012         struct nvme_rdma_cm_req *req;
1013
1014         req = (struct nvme_rdma_cm_req *)conn->private_data;
1015         if (!req || conn->private_data_len == 0)
1016                 return NVME_RDMA_CM_INVALID_LEN;
1017
1018         if (le16_to_cpu(req->recfmt) != NVME_RDMA_CM_FMT_1_0)
1019                 return NVME_RDMA_CM_INVALID_RECFMT;
1020
1021         queue->host_qid = le16_to_cpu(req->qid);
1022
1023         /*
1024          * req->hsqsize corresponds to our recv queue size plus 1
1025          * req->hrqsize corresponds to our send queue size
1026          */
1027         queue->recv_queue_size = le16_to_cpu(req->hsqsize) + 1;
1028         queue->send_queue_size = le16_to_cpu(req->hrqsize);
1029
1030         if (!queue->host_qid && queue->recv_queue_size > NVMF_AQ_DEPTH)
1031                 return NVME_RDMA_CM_INVALID_HSQSIZE;
1032
1033         /* XXX: Should we enforce some kind of max for IO queues? */
1034
1035         return 0;
1036 }
1037
1038 static int nvmet_rdma_cm_reject(struct rdma_cm_id *cm_id,
1039                                 enum nvme_rdma_cm_status status)
1040 {
1041         struct nvme_rdma_cm_rej rej;
1042
1043         pr_debug("rejecting connect request: status %d (%s)\n",
1044                  status, nvme_rdma_cm_msg(status));
1045
1046         rej.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1047         rej.sts = cpu_to_le16(status);
1048
1049         return rdma_reject(cm_id, (void *)&rej, sizeof(rej));
1050 }
1051
1052 static struct nvmet_rdma_queue *
1053 nvmet_rdma_alloc_queue(struct nvmet_rdma_device *ndev,
1054                 struct rdma_cm_id *cm_id,
1055                 struct rdma_cm_event *event)
1056 {
1057         struct nvmet_rdma_queue *queue;
1058         int ret;
1059
1060         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1061         if (!queue) {
1062                 ret = NVME_RDMA_CM_NO_RSC;
1063                 goto out_reject;
1064         }
1065
1066         ret = nvmet_sq_init(&queue->nvme_sq);
1067         if (ret) {
1068                 ret = NVME_RDMA_CM_NO_RSC;
1069                 goto out_free_queue;
1070         }
1071
1072         ret = nvmet_rdma_parse_cm_connect_req(&event->param.conn, queue);
1073         if (ret)
1074                 goto out_destroy_sq;
1075
1076         /*
1077          * Schedules the actual release because calling rdma_destroy_id from
1078          * inside a CM callback would trigger a deadlock. (great API design..)
1079          */
1080         INIT_WORK(&queue->release_work, nvmet_rdma_release_queue_work);
1081         queue->dev = ndev;
1082         queue->cm_id = cm_id;
1083
1084         spin_lock_init(&queue->state_lock);
1085         queue->state = NVMET_RDMA_Q_CONNECTING;
1086         INIT_LIST_HEAD(&queue->rsp_wait_list);
1087         INIT_LIST_HEAD(&queue->rsp_wr_wait_list);
1088         spin_lock_init(&queue->rsp_wr_wait_lock);
1089         INIT_LIST_HEAD(&queue->free_rsps);
1090         spin_lock_init(&queue->rsps_lock);
1091         INIT_LIST_HEAD(&queue->queue_list);
1092
1093         queue->idx = ida_simple_get(&nvmet_rdma_queue_ida, 0, 0, GFP_KERNEL);
1094         if (queue->idx < 0) {
1095                 ret = NVME_RDMA_CM_NO_RSC;
1096                 goto out_destroy_sq;
1097         }
1098
1099         ret = nvmet_rdma_alloc_rsps(queue);
1100         if (ret) {
1101                 ret = NVME_RDMA_CM_NO_RSC;
1102                 goto out_ida_remove;
1103         }
1104
1105         if (!ndev->srq) {
1106                 queue->cmds = nvmet_rdma_alloc_cmds(ndev,
1107                                 queue->recv_queue_size,
1108                                 !queue->host_qid);
1109                 if (IS_ERR(queue->cmds)) {
1110                         ret = NVME_RDMA_CM_NO_RSC;
1111                         goto out_free_responses;
1112                 }
1113         }
1114
1115         ret = nvmet_rdma_create_queue_ib(queue);
1116         if (ret) {
1117                 pr_err("%s: creating RDMA queue failed (%d).\n",
1118                         __func__, ret);
1119                 ret = NVME_RDMA_CM_NO_RSC;
1120                 goto out_free_cmds;
1121         }
1122
1123         return queue;
1124
1125 out_free_cmds:
1126         if (!ndev->srq) {
1127                 nvmet_rdma_free_cmds(queue->dev, queue->cmds,
1128                                 queue->recv_queue_size,
1129                                 !queue->host_qid);
1130         }
1131 out_free_responses:
1132         nvmet_rdma_free_rsps(queue);
1133 out_ida_remove:
1134         ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx);
1135 out_destroy_sq:
1136         nvmet_sq_destroy(&queue->nvme_sq);
1137 out_free_queue:
1138         kfree(queue);
1139 out_reject:
1140         nvmet_rdma_cm_reject(cm_id, ret);
1141         return NULL;
1142 }
1143
1144 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv)
1145 {
1146         struct nvmet_rdma_queue *queue = priv;
1147
1148         switch (event->event) {
1149         case IB_EVENT_COMM_EST:
1150                 rdma_notify(queue->cm_id, event->event);
1151                 break;
1152         default:
1153                 pr_err("received IB QP event: %s (%d)\n",
1154                        ib_event_msg(event->event), event->event);
1155                 break;
1156         }
1157 }
1158
1159 static int nvmet_rdma_cm_accept(struct rdma_cm_id *cm_id,
1160                 struct nvmet_rdma_queue *queue,
1161                 struct rdma_conn_param *p)
1162 {
1163         struct rdma_conn_param  param = { };
1164         struct nvme_rdma_cm_rep priv = { };
1165         int ret = -ENOMEM;
1166
1167         param.rnr_retry_count = 7;
1168         param.flow_control = 1;
1169         param.initiator_depth = min_t(u8, p->initiator_depth,
1170                 queue->dev->device->attrs.max_qp_init_rd_atom);
1171         param.private_data = &priv;
1172         param.private_data_len = sizeof(priv);
1173         priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1174         priv.crqsize = cpu_to_le16(queue->recv_queue_size);
1175
1176         ret = rdma_accept(cm_id, &param);
1177         if (ret)
1178                 pr_err("rdma_accept failed (error code = %d)\n", ret);
1179
1180         return ret;
1181 }
1182
1183 static int nvmet_rdma_queue_connect(struct rdma_cm_id *cm_id,
1184                 struct rdma_cm_event *event)
1185 {
1186         struct nvmet_rdma_device *ndev;
1187         struct nvmet_rdma_queue *queue;
1188         int ret = -EINVAL;
1189
1190         ndev = nvmet_rdma_find_get_device(cm_id);
1191         if (!ndev) {
1192                 nvmet_rdma_cm_reject(cm_id, NVME_RDMA_CM_NO_RSC);
1193                 return -ECONNREFUSED;
1194         }
1195
1196         queue = nvmet_rdma_alloc_queue(ndev, cm_id, event);
1197         if (!queue) {
1198                 ret = -ENOMEM;
1199                 goto put_device;
1200         }
1201         queue->port = cm_id->context;
1202
1203         if (queue->host_qid == 0) {
1204                 /* Let inflight controller teardown complete */
1205                 flush_scheduled_work();
1206         }
1207
1208         ret = nvmet_rdma_cm_accept(cm_id, queue, &event->param.conn);
1209         if (ret)
1210                 goto release_queue;
1211
1212         mutex_lock(&nvmet_rdma_queue_mutex);
1213         list_add_tail(&queue->queue_list, &nvmet_rdma_queue_list);
1214         mutex_unlock(&nvmet_rdma_queue_mutex);
1215
1216         return 0;
1217
1218 release_queue:
1219         nvmet_rdma_free_queue(queue);
1220 put_device:
1221         kref_put(&ndev->ref, nvmet_rdma_free_dev);
1222
1223         return ret;
1224 }
1225
1226 static void nvmet_rdma_queue_established(struct nvmet_rdma_queue *queue)
1227 {
1228         unsigned long flags;
1229
1230         spin_lock_irqsave(&queue->state_lock, flags);
1231         if (queue->state != NVMET_RDMA_Q_CONNECTING) {
1232                 pr_warn("trying to establish a connected queue\n");
1233                 goto out_unlock;
1234         }
1235         queue->state = NVMET_RDMA_Q_LIVE;
1236
1237         while (!list_empty(&queue->rsp_wait_list)) {
1238                 struct nvmet_rdma_rsp *cmd;
1239
1240                 cmd = list_first_entry(&queue->rsp_wait_list,
1241                                         struct nvmet_rdma_rsp, wait_list);
1242                 list_del(&cmd->wait_list);
1243
1244                 spin_unlock_irqrestore(&queue->state_lock, flags);
1245                 nvmet_rdma_handle_command(queue, cmd);
1246                 spin_lock_irqsave(&queue->state_lock, flags);
1247         }
1248
1249 out_unlock:
1250         spin_unlock_irqrestore(&queue->state_lock, flags);
1251 }
1252
1253 static void __nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1254 {
1255         bool disconnect = false;
1256         unsigned long flags;
1257
1258         pr_debug("cm_id= %p queue->state= %d\n", queue->cm_id, queue->state);
1259
1260         spin_lock_irqsave(&queue->state_lock, flags);
1261         switch (queue->state) {
1262         case NVMET_RDMA_Q_CONNECTING:
1263         case NVMET_RDMA_Q_LIVE:
1264                 queue->state = NVMET_RDMA_Q_DISCONNECTING;
1265         case NVMET_RDMA_IN_DEVICE_REMOVAL:
1266                 disconnect = true;
1267                 break;
1268         case NVMET_RDMA_Q_DISCONNECTING:
1269                 break;
1270         }
1271         spin_unlock_irqrestore(&queue->state_lock, flags);
1272
1273         if (disconnect) {
1274                 rdma_disconnect(queue->cm_id);
1275                 schedule_work(&queue->release_work);
1276         }
1277 }
1278
1279 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1280 {
1281         bool disconnect = false;
1282
1283         mutex_lock(&nvmet_rdma_queue_mutex);
1284         if (!list_empty(&queue->queue_list)) {
1285                 list_del_init(&queue->queue_list);
1286                 disconnect = true;
1287         }
1288         mutex_unlock(&nvmet_rdma_queue_mutex);
1289
1290         if (disconnect)
1291                 __nvmet_rdma_queue_disconnect(queue);
1292 }
1293
1294 static void nvmet_rdma_queue_connect_fail(struct rdma_cm_id *cm_id,
1295                 struct nvmet_rdma_queue *queue)
1296 {
1297         WARN_ON_ONCE(queue->state != NVMET_RDMA_Q_CONNECTING);
1298
1299         mutex_lock(&nvmet_rdma_queue_mutex);
1300         if (!list_empty(&queue->queue_list))
1301                 list_del_init(&queue->queue_list);
1302         mutex_unlock(&nvmet_rdma_queue_mutex);
1303
1304         pr_err("failed to connect queue %d\n", queue->idx);
1305         schedule_work(&queue->release_work);
1306 }
1307
1308 /**
1309  * nvme_rdma_device_removal() - Handle RDMA device removal
1310  * @queue:      nvmet rdma queue (cm id qp_context)
1311  * @addr:       nvmet address (cm_id context)
1312  *
1313  * DEVICE_REMOVAL event notifies us that the RDMA device is about
1314  * to unplug so we should take care of destroying our RDMA resources.
1315  * This event will be generated for each allocated cm_id.
1316  *
1317  * Note that this event can be generated on a normal queue cm_id
1318  * and/or a device bound listener cm_id (where in this case
1319  * queue will be null).
1320  *
1321  * we claim ownership on destroying the cm_id. For queues we move
1322  * the queue state to NVMET_RDMA_IN_DEVICE_REMOVAL and for port
1323  * we nullify the priv to prevent double cm_id destruction and destroying
1324  * the cm_id implicitely by returning a non-zero rc to the callout.
1325  */
1326 static int nvmet_rdma_device_removal(struct rdma_cm_id *cm_id,
1327                 struct nvmet_rdma_queue *queue)
1328 {
1329         unsigned long flags;
1330
1331         if (!queue) {
1332                 struct nvmet_port *port = cm_id->context;
1333
1334                 /*
1335                  * This is a listener cm_id. Make sure that
1336                  * future remove_port won't invoke a double
1337                  * cm_id destroy. use atomic xchg to make sure
1338                  * we don't compete with remove_port.
1339                  */
1340                 if (xchg(&port->priv, NULL) != cm_id)
1341                         return 0;
1342         } else {
1343                 /*
1344                  * This is a queue cm_id. Make sure that
1345                  * release queue will not destroy the cm_id
1346                  * and schedule all ctrl queues removal (only
1347                  * if the queue is not disconnecting already).
1348                  */
1349                 spin_lock_irqsave(&queue->state_lock, flags);
1350                 if (queue->state != NVMET_RDMA_Q_DISCONNECTING)
1351                         queue->state = NVMET_RDMA_IN_DEVICE_REMOVAL;
1352                 spin_unlock_irqrestore(&queue->state_lock, flags);
1353                 nvmet_rdma_queue_disconnect(queue);
1354                 flush_scheduled_work();
1355         }
1356
1357         /*
1358          * We need to return 1 so that the core will destroy
1359          * it's own ID.  What a great API design..
1360          */
1361         return 1;
1362 }
1363
1364 static int nvmet_rdma_cm_handler(struct rdma_cm_id *cm_id,
1365                 struct rdma_cm_event *event)
1366 {
1367         struct nvmet_rdma_queue *queue = NULL;
1368         int ret = 0;
1369
1370         if (cm_id->qp)
1371                 queue = cm_id->qp->qp_context;
1372
1373         pr_debug("%s (%d): status %d id %p\n",
1374                 rdma_event_msg(event->event), event->event,
1375                 event->status, cm_id);
1376
1377         switch (event->event) {
1378         case RDMA_CM_EVENT_CONNECT_REQUEST:
1379                 ret = nvmet_rdma_queue_connect(cm_id, event);
1380                 break;
1381         case RDMA_CM_EVENT_ESTABLISHED:
1382                 nvmet_rdma_queue_established(queue);
1383                 break;
1384         case RDMA_CM_EVENT_ADDR_CHANGE:
1385         case RDMA_CM_EVENT_DISCONNECTED:
1386         case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1387                 /*
1388                  * We might end up here when we already freed the qp
1389                  * which means queue release sequence is in progress,
1390                  * so don't get in the way...
1391                  */
1392                 if (queue)
1393                         nvmet_rdma_queue_disconnect(queue);
1394                 break;
1395         case RDMA_CM_EVENT_DEVICE_REMOVAL:
1396                 ret = nvmet_rdma_device_removal(cm_id, queue);
1397                 break;
1398         case RDMA_CM_EVENT_REJECTED:
1399                 pr_debug("Connection rejected: %s\n",
1400                          rdma_reject_msg(cm_id, event->status));
1401                 /* FALLTHROUGH */
1402         case RDMA_CM_EVENT_UNREACHABLE:
1403         case RDMA_CM_EVENT_CONNECT_ERROR:
1404                 nvmet_rdma_queue_connect_fail(cm_id, queue);
1405                 break;
1406         default:
1407                 pr_err("received unrecognized RDMA CM event %d\n",
1408                         event->event);
1409                 break;
1410         }
1411
1412         return ret;
1413 }
1414
1415 static void nvmet_rdma_delete_ctrl(struct nvmet_ctrl *ctrl)
1416 {
1417         struct nvmet_rdma_queue *queue;
1418
1419 restart:
1420         mutex_lock(&nvmet_rdma_queue_mutex);
1421         list_for_each_entry(queue, &nvmet_rdma_queue_list, queue_list) {
1422                 if (queue->nvme_sq.ctrl == ctrl) {
1423                         list_del_init(&queue->queue_list);
1424                         mutex_unlock(&nvmet_rdma_queue_mutex);
1425
1426                         __nvmet_rdma_queue_disconnect(queue);
1427                         goto restart;
1428                 }
1429         }
1430         mutex_unlock(&nvmet_rdma_queue_mutex);
1431 }
1432
1433 static int nvmet_rdma_add_port(struct nvmet_port *port)
1434 {
1435         struct rdma_cm_id *cm_id;
1436         struct sockaddr_storage addr = { };
1437         __kernel_sa_family_t af;
1438         int ret;
1439
1440         switch (port->disc_addr.adrfam) {
1441         case NVMF_ADDR_FAMILY_IP4:
1442                 af = AF_INET;
1443                 break;
1444         case NVMF_ADDR_FAMILY_IP6:
1445                 af = AF_INET6;
1446                 break;
1447         default:
1448                 pr_err("address family %d not supported\n",
1449                                 port->disc_addr.adrfam);
1450                 return -EINVAL;
1451         }
1452
1453         ret = inet_pton_with_scope(&init_net, af, port->disc_addr.traddr,
1454                         port->disc_addr.trsvcid, &addr);
1455         if (ret) {
1456                 pr_err("malformed ip/port passed: %s:%s\n",
1457                         port->disc_addr.traddr, port->disc_addr.trsvcid);
1458                 return ret;
1459         }
1460
1461         cm_id = rdma_create_id(&init_net, nvmet_rdma_cm_handler, port,
1462                         RDMA_PS_TCP, IB_QPT_RC);
1463         if (IS_ERR(cm_id)) {
1464                 pr_err("CM ID creation failed\n");
1465                 return PTR_ERR(cm_id);
1466         }
1467
1468         /*
1469          * Allow both IPv4 and IPv6 sockets to bind a single port
1470          * at the same time.
1471          */
1472         ret = rdma_set_afonly(cm_id, 1);
1473         if (ret) {
1474                 pr_err("rdma_set_afonly failed (%d)\n", ret);
1475                 goto out_destroy_id;
1476         }
1477
1478         ret = rdma_bind_addr(cm_id, (struct sockaddr *)&addr);
1479         if (ret) {
1480                 pr_err("binding CM ID to %pISpcs failed (%d)\n",
1481                         (struct sockaddr *)&addr, ret);
1482                 goto out_destroy_id;
1483         }
1484
1485         ret = rdma_listen(cm_id, 128);
1486         if (ret) {
1487                 pr_err("listening to %pISpcs failed (%d)\n",
1488                         (struct sockaddr *)&addr, ret);
1489                 goto out_destroy_id;
1490         }
1491
1492         pr_info("enabling port %d (%pISpcs)\n",
1493                 le16_to_cpu(port->disc_addr.portid), (struct sockaddr *)&addr);
1494         port->priv = cm_id;
1495         return 0;
1496
1497 out_destroy_id:
1498         rdma_destroy_id(cm_id);
1499         return ret;
1500 }
1501
1502 static void nvmet_rdma_remove_port(struct nvmet_port *port)
1503 {
1504         struct rdma_cm_id *cm_id = xchg(&port->priv, NULL);
1505
1506         if (cm_id)
1507                 rdma_destroy_id(cm_id);
1508 }
1509
1510 static struct nvmet_fabrics_ops nvmet_rdma_ops = {
1511         .owner                  = THIS_MODULE,
1512         .type                   = NVMF_TRTYPE_RDMA,
1513         .sqe_inline_size        = NVMET_RDMA_INLINE_DATA_SIZE,
1514         .msdbd                  = 1,
1515         .has_keyed_sgls         = 1,
1516         .add_port               = nvmet_rdma_add_port,
1517         .remove_port            = nvmet_rdma_remove_port,
1518         .queue_response         = nvmet_rdma_queue_response,
1519         .delete_ctrl            = nvmet_rdma_delete_ctrl,
1520 };
1521
1522 static int __init nvmet_rdma_init(void)
1523 {
1524         return nvmet_register_transport(&nvmet_rdma_ops);
1525 }
1526
1527 static void __exit nvmet_rdma_exit(void)
1528 {
1529         struct nvmet_rdma_queue *queue;
1530
1531         nvmet_unregister_transport(&nvmet_rdma_ops);
1532
1533         flush_scheduled_work();
1534
1535         mutex_lock(&nvmet_rdma_queue_mutex);
1536         while ((queue = list_first_entry_or_null(&nvmet_rdma_queue_list,
1537                         struct nvmet_rdma_queue, queue_list))) {
1538                 list_del_init(&queue->queue_list);
1539
1540                 mutex_unlock(&nvmet_rdma_queue_mutex);
1541                 __nvmet_rdma_queue_disconnect(queue);
1542                 mutex_lock(&nvmet_rdma_queue_mutex);
1543         }
1544         mutex_unlock(&nvmet_rdma_queue_mutex);
1545
1546         flush_scheduled_work();
1547         ida_destroy(&nvmet_rdma_queue_ida);
1548 }
1549
1550 module_init(nvmet_rdma_init);
1551 module_exit(nvmet_rdma_exit);
1552
1553 MODULE_LICENSE("GPL v2");
1554 MODULE_ALIAS("nvmet-transport-1"); /* 1 == NVMF_TRTYPE_RDMA */