Merge tag 'upstream-4.16-rc1' of git://git.infradead.org/linux-ubifs
[sfrench/cifs-2.6.git] / drivers / nvme / target / fc.c
1 /*
2  * Copyright (c) 2016 Avago Technologies.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful.
9  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
10  * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
11  * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
12  * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
13  * See the GNU General Public License for more details, a copy of which
14  * can be found in the file COPYING included with this package
15  *
16  */
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/blk-mq.h>
21 #include <linux/parser.h>
22 #include <linux/random.h>
23 #include <uapi/scsi/fc/fc_fs.h>
24 #include <uapi/scsi/fc/fc_els.h>
25
26 #include "nvmet.h"
27 #include <linux/nvme-fc-driver.h>
28 #include <linux/nvme-fc.h>
29
30
31 /* *************************** Data Structures/Defines ****************** */
32
33
34 #define NVMET_LS_CTX_COUNT              4
35
36 /* for this implementation, assume small single frame rqst/rsp */
37 #define NVME_FC_MAX_LS_BUFFER_SIZE              2048
38
39 struct nvmet_fc_tgtport;
40 struct nvmet_fc_tgt_assoc;
41
42 struct nvmet_fc_ls_iod {
43         struct nvmefc_tgt_ls_req        *lsreq;
44         struct nvmefc_tgt_fcp_req       *fcpreq;        /* only if RS */
45
46         struct list_head                ls_list;        /* tgtport->ls_list */
47
48         struct nvmet_fc_tgtport         *tgtport;
49         struct nvmet_fc_tgt_assoc       *assoc;
50
51         u8                              *rqstbuf;
52         u8                              *rspbuf;
53         u16                             rqstdatalen;
54         dma_addr_t                      rspdma;
55
56         struct scatterlist              sg[2];
57
58         struct work_struct              work;
59 } __aligned(sizeof(unsigned long long));
60
61 #define NVMET_FC_MAX_SEQ_LENGTH         (256 * 1024)
62 #define NVMET_FC_MAX_XFR_SGENTS         (NVMET_FC_MAX_SEQ_LENGTH / PAGE_SIZE)
63
64 enum nvmet_fcp_datadir {
65         NVMET_FCP_NODATA,
66         NVMET_FCP_WRITE,
67         NVMET_FCP_READ,
68         NVMET_FCP_ABORTED,
69 };
70
71 struct nvmet_fc_fcp_iod {
72         struct nvmefc_tgt_fcp_req       *fcpreq;
73
74         struct nvme_fc_cmd_iu           cmdiubuf;
75         struct nvme_fc_ersp_iu          rspiubuf;
76         dma_addr_t                      rspdma;
77         struct scatterlist              *data_sg;
78         int                             data_sg_cnt;
79         u32                             offset;
80         enum nvmet_fcp_datadir          io_dir;
81         bool                            active;
82         bool                            abort;
83         bool                            aborted;
84         bool                            writedataactive;
85         spinlock_t                      flock;
86
87         struct nvmet_req                req;
88         struct work_struct              work;
89         struct work_struct              done_work;
90
91         struct nvmet_fc_tgtport         *tgtport;
92         struct nvmet_fc_tgt_queue       *queue;
93
94         struct list_head                fcp_list;       /* tgtport->fcp_list */
95 };
96
97 struct nvmet_fc_tgtport {
98
99         struct nvmet_fc_target_port     fc_target_port;
100
101         struct list_head                tgt_list; /* nvmet_fc_target_list */
102         struct device                   *dev;   /* dev for dma mapping */
103         struct nvmet_fc_target_template *ops;
104
105         struct nvmet_fc_ls_iod          *iod;
106         spinlock_t                      lock;
107         struct list_head                ls_list;
108         struct list_head                ls_busylist;
109         struct list_head                assoc_list;
110         struct ida                      assoc_cnt;
111         struct nvmet_port               *port;
112         struct kref                     ref;
113         u32                             max_sg_cnt;
114 };
115
116 struct nvmet_fc_defer_fcp_req {
117         struct list_head                req_list;
118         struct nvmefc_tgt_fcp_req       *fcp_req;
119 };
120
121 struct nvmet_fc_tgt_queue {
122         bool                            ninetypercent;
123         u16                             qid;
124         u16                             sqsize;
125         u16                             ersp_ratio;
126         __le16                          sqhd;
127         int                             cpu;
128         atomic_t                        connected;
129         atomic_t                        sqtail;
130         atomic_t                        zrspcnt;
131         atomic_t                        rsn;
132         spinlock_t                      qlock;
133         struct nvmet_port               *port;
134         struct nvmet_cq                 nvme_cq;
135         struct nvmet_sq                 nvme_sq;
136         struct nvmet_fc_tgt_assoc       *assoc;
137         struct nvmet_fc_fcp_iod         *fod;           /* array of fcp_iods */
138         struct list_head                fod_list;
139         struct list_head                pending_cmd_list;
140         struct list_head                avail_defer_list;
141         struct workqueue_struct         *work_q;
142         struct kref                     ref;
143 } __aligned(sizeof(unsigned long long));
144
145 struct nvmet_fc_tgt_assoc {
146         u64                             association_id;
147         u32                             a_id;
148         struct nvmet_fc_tgtport         *tgtport;
149         struct list_head                a_list;
150         struct nvmet_fc_tgt_queue       *queues[NVMET_NR_QUEUES + 1];
151         struct kref                     ref;
152         struct work_struct              del_work;
153 };
154
155
156 static inline int
157 nvmet_fc_iodnum(struct nvmet_fc_ls_iod *iodptr)
158 {
159         return (iodptr - iodptr->tgtport->iod);
160 }
161
162 static inline int
163 nvmet_fc_fodnum(struct nvmet_fc_fcp_iod *fodptr)
164 {
165         return (fodptr - fodptr->queue->fod);
166 }
167
168
169 /*
170  * Association and Connection IDs:
171  *
172  * Association ID will have random number in upper 6 bytes and zero
173  *   in lower 2 bytes
174  *
175  * Connection IDs will be Association ID with QID or'd in lower 2 bytes
176  *
177  * note: Association ID = Connection ID for queue 0
178  */
179 #define BYTES_FOR_QID                   sizeof(u16)
180 #define BYTES_FOR_QID_SHIFT             (BYTES_FOR_QID * 8)
181 #define NVMET_FC_QUEUEID_MASK           ((u64)((1 << BYTES_FOR_QID_SHIFT) - 1))
182
183 static inline u64
184 nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc *assoc, u16 qid)
185 {
186         return (assoc->association_id | qid);
187 }
188
189 static inline u64
190 nvmet_fc_getassociationid(u64 connectionid)
191 {
192         return connectionid & ~NVMET_FC_QUEUEID_MASK;
193 }
194
195 static inline u16
196 nvmet_fc_getqueueid(u64 connectionid)
197 {
198         return (u16)(connectionid & NVMET_FC_QUEUEID_MASK);
199 }
200
201 static inline struct nvmet_fc_tgtport *
202 targetport_to_tgtport(struct nvmet_fc_target_port *targetport)
203 {
204         return container_of(targetport, struct nvmet_fc_tgtport,
205                                  fc_target_port);
206 }
207
208 static inline struct nvmet_fc_fcp_iod *
209 nvmet_req_to_fod(struct nvmet_req *nvme_req)
210 {
211         return container_of(nvme_req, struct nvmet_fc_fcp_iod, req);
212 }
213
214
215 /* *************************** Globals **************************** */
216
217
218 static DEFINE_SPINLOCK(nvmet_fc_tgtlock);
219
220 static LIST_HEAD(nvmet_fc_target_list);
221 static DEFINE_IDA(nvmet_fc_tgtport_cnt);
222
223
224 static void nvmet_fc_handle_ls_rqst_work(struct work_struct *work);
225 static void nvmet_fc_handle_fcp_rqst_work(struct work_struct *work);
226 static void nvmet_fc_fcp_rqst_op_done_work(struct work_struct *work);
227 static void nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc);
228 static int nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc);
229 static void nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue);
230 static int nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue);
231 static void nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport);
232 static int nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport);
233 static void nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
234                                         struct nvmet_fc_fcp_iod *fod);
235 static void nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc);
236
237
238 /* *********************** FC-NVME DMA Handling **************************** */
239
240 /*
241  * The fcloop device passes in a NULL device pointer. Real LLD's will
242  * pass in a valid device pointer. If NULL is passed to the dma mapping
243  * routines, depending on the platform, it may or may not succeed, and
244  * may crash.
245  *
246  * As such:
247  * Wrapper all the dma routines and check the dev pointer.
248  *
249  * If simple mappings (return just a dma address, we'll noop them,
250  * returning a dma address of 0.
251  *
252  * On more complex mappings (dma_map_sg), a pseudo routine fills
253  * in the scatter list, setting all dma addresses to 0.
254  */
255
256 static inline dma_addr_t
257 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
258                 enum dma_data_direction dir)
259 {
260         return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
261 }
262
263 static inline int
264 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
265 {
266         return dev ? dma_mapping_error(dev, dma_addr) : 0;
267 }
268
269 static inline void
270 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
271         enum dma_data_direction dir)
272 {
273         if (dev)
274                 dma_unmap_single(dev, addr, size, dir);
275 }
276
277 static inline void
278 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
279                 enum dma_data_direction dir)
280 {
281         if (dev)
282                 dma_sync_single_for_cpu(dev, addr, size, dir);
283 }
284
285 static inline void
286 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
287                 enum dma_data_direction dir)
288 {
289         if (dev)
290                 dma_sync_single_for_device(dev, addr, size, dir);
291 }
292
293 /* pseudo dma_map_sg call */
294 static int
295 fc_map_sg(struct scatterlist *sg, int nents)
296 {
297         struct scatterlist *s;
298         int i;
299
300         WARN_ON(nents == 0 || sg[0].length == 0);
301
302         for_each_sg(sg, s, nents, i) {
303                 s->dma_address = 0L;
304 #ifdef CONFIG_NEED_SG_DMA_LENGTH
305                 s->dma_length = s->length;
306 #endif
307         }
308         return nents;
309 }
310
311 static inline int
312 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
313                 enum dma_data_direction dir)
314 {
315         return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
316 }
317
318 static inline void
319 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
320                 enum dma_data_direction dir)
321 {
322         if (dev)
323                 dma_unmap_sg(dev, sg, nents, dir);
324 }
325
326
327 /* *********************** FC-NVME Port Management ************************ */
328
329
330 static int
331 nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
332 {
333         struct nvmet_fc_ls_iod *iod;
334         int i;
335
336         iod = kcalloc(NVMET_LS_CTX_COUNT, sizeof(struct nvmet_fc_ls_iod),
337                         GFP_KERNEL);
338         if (!iod)
339                 return -ENOMEM;
340
341         tgtport->iod = iod;
342
343         for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
344                 INIT_WORK(&iod->work, nvmet_fc_handle_ls_rqst_work);
345                 iod->tgtport = tgtport;
346                 list_add_tail(&iod->ls_list, &tgtport->ls_list);
347
348                 iod->rqstbuf = kcalloc(2, NVME_FC_MAX_LS_BUFFER_SIZE,
349                         GFP_KERNEL);
350                 if (!iod->rqstbuf)
351                         goto out_fail;
352
353                 iod->rspbuf = iod->rqstbuf + NVME_FC_MAX_LS_BUFFER_SIZE;
354
355                 iod->rspdma = fc_dma_map_single(tgtport->dev, iod->rspbuf,
356                                                 NVME_FC_MAX_LS_BUFFER_SIZE,
357                                                 DMA_TO_DEVICE);
358                 if (fc_dma_mapping_error(tgtport->dev, iod->rspdma))
359                         goto out_fail;
360         }
361
362         return 0;
363
364 out_fail:
365         kfree(iod->rqstbuf);
366         list_del(&iod->ls_list);
367         for (iod--, i--; i >= 0; iod--, i--) {
368                 fc_dma_unmap_single(tgtport->dev, iod->rspdma,
369                                 NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE);
370                 kfree(iod->rqstbuf);
371                 list_del(&iod->ls_list);
372         }
373
374         kfree(iod);
375
376         return -EFAULT;
377 }
378
379 static void
380 nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
381 {
382         struct nvmet_fc_ls_iod *iod = tgtport->iod;
383         int i;
384
385         for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
386                 fc_dma_unmap_single(tgtport->dev,
387                                 iod->rspdma, NVME_FC_MAX_LS_BUFFER_SIZE,
388                                 DMA_TO_DEVICE);
389                 kfree(iod->rqstbuf);
390                 list_del(&iod->ls_list);
391         }
392         kfree(tgtport->iod);
393 }
394
395 static struct nvmet_fc_ls_iod *
396 nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport *tgtport)
397 {
398         struct nvmet_fc_ls_iod *iod;
399         unsigned long flags;
400
401         spin_lock_irqsave(&tgtport->lock, flags);
402         iod = list_first_entry_or_null(&tgtport->ls_list,
403                                         struct nvmet_fc_ls_iod, ls_list);
404         if (iod)
405                 list_move_tail(&iod->ls_list, &tgtport->ls_busylist);
406         spin_unlock_irqrestore(&tgtport->lock, flags);
407         return iod;
408 }
409
410
411 static void
412 nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport *tgtport,
413                         struct nvmet_fc_ls_iod *iod)
414 {
415         unsigned long flags;
416
417         spin_lock_irqsave(&tgtport->lock, flags);
418         list_move(&iod->ls_list, &tgtport->ls_list);
419         spin_unlock_irqrestore(&tgtport->lock, flags);
420 }
421
422 static void
423 nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
424                                 struct nvmet_fc_tgt_queue *queue)
425 {
426         struct nvmet_fc_fcp_iod *fod = queue->fod;
427         int i;
428
429         for (i = 0; i < queue->sqsize; fod++, i++) {
430                 INIT_WORK(&fod->work, nvmet_fc_handle_fcp_rqst_work);
431                 INIT_WORK(&fod->done_work, nvmet_fc_fcp_rqst_op_done_work);
432                 fod->tgtport = tgtport;
433                 fod->queue = queue;
434                 fod->active = false;
435                 fod->abort = false;
436                 fod->aborted = false;
437                 fod->fcpreq = NULL;
438                 list_add_tail(&fod->fcp_list, &queue->fod_list);
439                 spin_lock_init(&fod->flock);
440
441                 fod->rspdma = fc_dma_map_single(tgtport->dev, &fod->rspiubuf,
442                                         sizeof(fod->rspiubuf), DMA_TO_DEVICE);
443                 if (fc_dma_mapping_error(tgtport->dev, fod->rspdma)) {
444                         list_del(&fod->fcp_list);
445                         for (fod--, i--; i >= 0; fod--, i--) {
446                                 fc_dma_unmap_single(tgtport->dev, fod->rspdma,
447                                                 sizeof(fod->rspiubuf),
448                                                 DMA_TO_DEVICE);
449                                 fod->rspdma = 0L;
450                                 list_del(&fod->fcp_list);
451                         }
452
453                         return;
454                 }
455         }
456 }
457
458 static void
459 nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
460                                 struct nvmet_fc_tgt_queue *queue)
461 {
462         struct nvmet_fc_fcp_iod *fod = queue->fod;
463         int i;
464
465         for (i = 0; i < queue->sqsize; fod++, i++) {
466                 if (fod->rspdma)
467                         fc_dma_unmap_single(tgtport->dev, fod->rspdma,
468                                 sizeof(fod->rspiubuf), DMA_TO_DEVICE);
469         }
470 }
471
472 static struct nvmet_fc_fcp_iod *
473 nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue *queue)
474 {
475         struct nvmet_fc_fcp_iod *fod;
476
477         lockdep_assert_held(&queue->qlock);
478
479         fod = list_first_entry_or_null(&queue->fod_list,
480                                         struct nvmet_fc_fcp_iod, fcp_list);
481         if (fod) {
482                 list_del(&fod->fcp_list);
483                 fod->active = true;
484                 /*
485                  * no queue reference is taken, as it was taken by the
486                  * queue lookup just prior to the allocation. The iod
487                  * will "inherit" that reference.
488                  */
489         }
490         return fod;
491 }
492
493
494 static void
495 nvmet_fc_queue_fcp_req(struct nvmet_fc_tgtport *tgtport,
496                        struct nvmet_fc_tgt_queue *queue,
497                        struct nvmefc_tgt_fcp_req *fcpreq)
498 {
499         struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
500
501         /*
502          * put all admin cmds on hw queue id 0. All io commands go to
503          * the respective hw queue based on a modulo basis
504          */
505         fcpreq->hwqid = queue->qid ?
506                         ((queue->qid - 1) % tgtport->ops->max_hw_queues) : 0;
507
508         if (tgtport->ops->target_features & NVMET_FCTGTFEAT_CMD_IN_ISR)
509                 queue_work_on(queue->cpu, queue->work_q, &fod->work);
510         else
511                 nvmet_fc_handle_fcp_rqst(tgtport, fod);
512 }
513
514 static void
515 nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue *queue,
516                         struct nvmet_fc_fcp_iod *fod)
517 {
518         struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
519         struct nvmet_fc_tgtport *tgtport = fod->tgtport;
520         struct nvmet_fc_defer_fcp_req *deferfcp;
521         unsigned long flags;
522
523         fc_dma_sync_single_for_cpu(tgtport->dev, fod->rspdma,
524                                 sizeof(fod->rspiubuf), DMA_TO_DEVICE);
525
526         fcpreq->nvmet_fc_private = NULL;
527
528         fod->active = false;
529         fod->abort = false;
530         fod->aborted = false;
531         fod->writedataactive = false;
532         fod->fcpreq = NULL;
533
534         tgtport->ops->fcp_req_release(&tgtport->fc_target_port, fcpreq);
535
536         /* release the queue lookup reference on the completed IO */
537         nvmet_fc_tgt_q_put(queue);
538
539         spin_lock_irqsave(&queue->qlock, flags);
540         deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
541                                 struct nvmet_fc_defer_fcp_req, req_list);
542         if (!deferfcp) {
543                 list_add_tail(&fod->fcp_list, &fod->queue->fod_list);
544                 spin_unlock_irqrestore(&queue->qlock, flags);
545                 return;
546         }
547
548         /* Re-use the fod for the next pending cmd that was deferred */
549         list_del(&deferfcp->req_list);
550
551         fcpreq = deferfcp->fcp_req;
552
553         /* deferfcp can be reused for another IO at a later date */
554         list_add_tail(&deferfcp->req_list, &queue->avail_defer_list);
555
556         spin_unlock_irqrestore(&queue->qlock, flags);
557
558         /* Save NVME CMD IO in fod */
559         memcpy(&fod->cmdiubuf, fcpreq->rspaddr, fcpreq->rsplen);
560
561         /* Setup new fcpreq to be processed */
562         fcpreq->rspaddr = NULL;
563         fcpreq->rsplen  = 0;
564         fcpreq->nvmet_fc_private = fod;
565         fod->fcpreq = fcpreq;
566         fod->active = true;
567
568         /* inform LLDD IO is now being processed */
569         tgtport->ops->defer_rcv(&tgtport->fc_target_port, fcpreq);
570
571         /* Submit deferred IO for processing */
572         nvmet_fc_queue_fcp_req(tgtport, queue, fcpreq);
573
574         /*
575          * Leave the queue lookup get reference taken when
576          * fod was originally allocated.
577          */
578 }
579
580 static int
581 nvmet_fc_queue_to_cpu(struct nvmet_fc_tgtport *tgtport, int qid)
582 {
583         int cpu, idx, cnt;
584
585         if (tgtport->ops->max_hw_queues == 1)
586                 return WORK_CPU_UNBOUND;
587
588         /* Simple cpu selection based on qid modulo active cpu count */
589         idx = !qid ? 0 : (qid - 1) % num_active_cpus();
590
591         /* find the n'th active cpu */
592         for (cpu = 0, cnt = 0; ; ) {
593                 if (cpu_active(cpu)) {
594                         if (cnt == idx)
595                                 break;
596                         cnt++;
597                 }
598                 cpu = (cpu + 1) % num_possible_cpus();
599         }
600
601         return cpu;
602 }
603
604 static struct nvmet_fc_tgt_queue *
605 nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc *assoc,
606                         u16 qid, u16 sqsize)
607 {
608         struct nvmet_fc_tgt_queue *queue;
609         unsigned long flags;
610         int ret;
611
612         if (qid > NVMET_NR_QUEUES)
613                 return NULL;
614
615         queue = kzalloc((sizeof(*queue) +
616                                 (sizeof(struct nvmet_fc_fcp_iod) * sqsize)),
617                                 GFP_KERNEL);
618         if (!queue)
619                 return NULL;
620
621         if (!nvmet_fc_tgt_a_get(assoc))
622                 goto out_free_queue;
623
624         queue->work_q = alloc_workqueue("ntfc%d.%d.%d", 0, 0,
625                                 assoc->tgtport->fc_target_port.port_num,
626                                 assoc->a_id, qid);
627         if (!queue->work_q)
628                 goto out_a_put;
629
630         queue->fod = (struct nvmet_fc_fcp_iod *)&queue[1];
631         queue->qid = qid;
632         queue->sqsize = sqsize;
633         queue->assoc = assoc;
634         queue->port = assoc->tgtport->port;
635         queue->cpu = nvmet_fc_queue_to_cpu(assoc->tgtport, qid);
636         INIT_LIST_HEAD(&queue->fod_list);
637         INIT_LIST_HEAD(&queue->avail_defer_list);
638         INIT_LIST_HEAD(&queue->pending_cmd_list);
639         atomic_set(&queue->connected, 0);
640         atomic_set(&queue->sqtail, 0);
641         atomic_set(&queue->rsn, 1);
642         atomic_set(&queue->zrspcnt, 0);
643         spin_lock_init(&queue->qlock);
644         kref_init(&queue->ref);
645
646         nvmet_fc_prep_fcp_iodlist(assoc->tgtport, queue);
647
648         ret = nvmet_sq_init(&queue->nvme_sq);
649         if (ret)
650                 goto out_fail_iodlist;
651
652         WARN_ON(assoc->queues[qid]);
653         spin_lock_irqsave(&assoc->tgtport->lock, flags);
654         assoc->queues[qid] = queue;
655         spin_unlock_irqrestore(&assoc->tgtport->lock, flags);
656
657         return queue;
658
659 out_fail_iodlist:
660         nvmet_fc_destroy_fcp_iodlist(assoc->tgtport, queue);
661         destroy_workqueue(queue->work_q);
662 out_a_put:
663         nvmet_fc_tgt_a_put(assoc);
664 out_free_queue:
665         kfree(queue);
666         return NULL;
667 }
668
669
670 static void
671 nvmet_fc_tgt_queue_free(struct kref *ref)
672 {
673         struct nvmet_fc_tgt_queue *queue =
674                 container_of(ref, struct nvmet_fc_tgt_queue, ref);
675         unsigned long flags;
676
677         spin_lock_irqsave(&queue->assoc->tgtport->lock, flags);
678         queue->assoc->queues[queue->qid] = NULL;
679         spin_unlock_irqrestore(&queue->assoc->tgtport->lock, flags);
680
681         nvmet_fc_destroy_fcp_iodlist(queue->assoc->tgtport, queue);
682
683         nvmet_fc_tgt_a_put(queue->assoc);
684
685         destroy_workqueue(queue->work_q);
686
687         kfree(queue);
688 }
689
690 static void
691 nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue)
692 {
693         kref_put(&queue->ref, nvmet_fc_tgt_queue_free);
694 }
695
696 static int
697 nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue)
698 {
699         return kref_get_unless_zero(&queue->ref);
700 }
701
702
703 static void
704 nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue *queue)
705 {
706         struct nvmet_fc_tgtport *tgtport = queue->assoc->tgtport;
707         struct nvmet_fc_fcp_iod *fod = queue->fod;
708         struct nvmet_fc_defer_fcp_req *deferfcp, *tempptr;
709         unsigned long flags;
710         int i, writedataactive;
711         bool disconnect;
712
713         disconnect = atomic_xchg(&queue->connected, 0);
714
715         spin_lock_irqsave(&queue->qlock, flags);
716         /* about outstanding io's */
717         for (i = 0; i < queue->sqsize; fod++, i++) {
718                 if (fod->active) {
719                         spin_lock(&fod->flock);
720                         fod->abort = true;
721                         writedataactive = fod->writedataactive;
722                         spin_unlock(&fod->flock);
723                         /*
724                          * only call lldd abort routine if waiting for
725                          * writedata. other outstanding ops should finish
726                          * on their own.
727                          */
728                         if (writedataactive) {
729                                 spin_lock(&fod->flock);
730                                 fod->aborted = true;
731                                 spin_unlock(&fod->flock);
732                                 tgtport->ops->fcp_abort(
733                                         &tgtport->fc_target_port, fod->fcpreq);
734                         }
735                 }
736         }
737
738         /* Cleanup defer'ed IOs in queue */
739         list_for_each_entry_safe(deferfcp, tempptr, &queue->avail_defer_list,
740                                 req_list) {
741                 list_del(&deferfcp->req_list);
742                 kfree(deferfcp);
743         }
744
745         for (;;) {
746                 deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
747                                 struct nvmet_fc_defer_fcp_req, req_list);
748                 if (!deferfcp)
749                         break;
750
751                 list_del(&deferfcp->req_list);
752                 spin_unlock_irqrestore(&queue->qlock, flags);
753
754                 tgtport->ops->defer_rcv(&tgtport->fc_target_port,
755                                 deferfcp->fcp_req);
756
757                 tgtport->ops->fcp_abort(&tgtport->fc_target_port,
758                                 deferfcp->fcp_req);
759
760                 tgtport->ops->fcp_req_release(&tgtport->fc_target_port,
761                                 deferfcp->fcp_req);
762
763                 /* release the queue lookup reference */
764                 nvmet_fc_tgt_q_put(queue);
765
766                 kfree(deferfcp);
767
768                 spin_lock_irqsave(&queue->qlock, flags);
769         }
770         spin_unlock_irqrestore(&queue->qlock, flags);
771
772         flush_workqueue(queue->work_q);
773
774         if (disconnect)
775                 nvmet_sq_destroy(&queue->nvme_sq);
776
777         nvmet_fc_tgt_q_put(queue);
778 }
779
780 static struct nvmet_fc_tgt_queue *
781 nvmet_fc_find_target_queue(struct nvmet_fc_tgtport *tgtport,
782                                 u64 connection_id)
783 {
784         struct nvmet_fc_tgt_assoc *assoc;
785         struct nvmet_fc_tgt_queue *queue;
786         u64 association_id = nvmet_fc_getassociationid(connection_id);
787         u16 qid = nvmet_fc_getqueueid(connection_id);
788         unsigned long flags;
789
790         if (qid > NVMET_NR_QUEUES)
791                 return NULL;
792
793         spin_lock_irqsave(&tgtport->lock, flags);
794         list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
795                 if (association_id == assoc->association_id) {
796                         queue = assoc->queues[qid];
797                         if (queue &&
798                             (!atomic_read(&queue->connected) ||
799                              !nvmet_fc_tgt_q_get(queue)))
800                                 queue = NULL;
801                         spin_unlock_irqrestore(&tgtport->lock, flags);
802                         return queue;
803                 }
804         }
805         spin_unlock_irqrestore(&tgtport->lock, flags);
806         return NULL;
807 }
808
809 static void
810 nvmet_fc_delete_assoc(struct work_struct *work)
811 {
812         struct nvmet_fc_tgt_assoc *assoc =
813                 container_of(work, struct nvmet_fc_tgt_assoc, del_work);
814
815         nvmet_fc_delete_target_assoc(assoc);
816         nvmet_fc_tgt_a_put(assoc);
817 }
818
819 static struct nvmet_fc_tgt_assoc *
820 nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport *tgtport)
821 {
822         struct nvmet_fc_tgt_assoc *assoc, *tmpassoc;
823         unsigned long flags;
824         u64 ran;
825         int idx;
826         bool needrandom = true;
827
828         assoc = kzalloc(sizeof(*assoc), GFP_KERNEL);
829         if (!assoc)
830                 return NULL;
831
832         idx = ida_simple_get(&tgtport->assoc_cnt, 0, 0, GFP_KERNEL);
833         if (idx < 0)
834                 goto out_free_assoc;
835
836         if (!nvmet_fc_tgtport_get(tgtport))
837                 goto out_ida_put;
838
839         assoc->tgtport = tgtport;
840         assoc->a_id = idx;
841         INIT_LIST_HEAD(&assoc->a_list);
842         kref_init(&assoc->ref);
843         INIT_WORK(&assoc->del_work, nvmet_fc_delete_assoc);
844
845         while (needrandom) {
846                 get_random_bytes(&ran, sizeof(ran) - BYTES_FOR_QID);
847                 ran = ran << BYTES_FOR_QID_SHIFT;
848
849                 spin_lock_irqsave(&tgtport->lock, flags);
850                 needrandom = false;
851                 list_for_each_entry(tmpassoc, &tgtport->assoc_list, a_list)
852                         if (ran == tmpassoc->association_id) {
853                                 needrandom = true;
854                                 break;
855                         }
856                 if (!needrandom) {
857                         assoc->association_id = ran;
858                         list_add_tail(&assoc->a_list, &tgtport->assoc_list);
859                 }
860                 spin_unlock_irqrestore(&tgtport->lock, flags);
861         }
862
863         return assoc;
864
865 out_ida_put:
866         ida_simple_remove(&tgtport->assoc_cnt, idx);
867 out_free_assoc:
868         kfree(assoc);
869         return NULL;
870 }
871
872 static void
873 nvmet_fc_target_assoc_free(struct kref *ref)
874 {
875         struct nvmet_fc_tgt_assoc *assoc =
876                 container_of(ref, struct nvmet_fc_tgt_assoc, ref);
877         struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
878         unsigned long flags;
879
880         spin_lock_irqsave(&tgtport->lock, flags);
881         list_del(&assoc->a_list);
882         spin_unlock_irqrestore(&tgtport->lock, flags);
883         ida_simple_remove(&tgtport->assoc_cnt, assoc->a_id);
884         kfree(assoc);
885         nvmet_fc_tgtport_put(tgtport);
886 }
887
888 static void
889 nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc)
890 {
891         kref_put(&assoc->ref, nvmet_fc_target_assoc_free);
892 }
893
894 static int
895 nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc)
896 {
897         return kref_get_unless_zero(&assoc->ref);
898 }
899
900 static void
901 nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc)
902 {
903         struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
904         struct nvmet_fc_tgt_queue *queue;
905         unsigned long flags;
906         int i;
907
908         spin_lock_irqsave(&tgtport->lock, flags);
909         for (i = NVMET_NR_QUEUES; i >= 0; i--) {
910                 queue = assoc->queues[i];
911                 if (queue) {
912                         if (!nvmet_fc_tgt_q_get(queue))
913                                 continue;
914                         spin_unlock_irqrestore(&tgtport->lock, flags);
915                         nvmet_fc_delete_target_queue(queue);
916                         nvmet_fc_tgt_q_put(queue);
917                         spin_lock_irqsave(&tgtport->lock, flags);
918                 }
919         }
920         spin_unlock_irqrestore(&tgtport->lock, flags);
921
922         nvmet_fc_tgt_a_put(assoc);
923 }
924
925 static struct nvmet_fc_tgt_assoc *
926 nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport *tgtport,
927                                 u64 association_id)
928 {
929         struct nvmet_fc_tgt_assoc *assoc;
930         struct nvmet_fc_tgt_assoc *ret = NULL;
931         unsigned long flags;
932
933         spin_lock_irqsave(&tgtport->lock, flags);
934         list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
935                 if (association_id == assoc->association_id) {
936                         ret = assoc;
937                         nvmet_fc_tgt_a_get(assoc);
938                         break;
939                 }
940         }
941         spin_unlock_irqrestore(&tgtport->lock, flags);
942
943         return ret;
944 }
945
946
947 /**
948  * nvme_fc_register_targetport - transport entry point called by an
949  *                              LLDD to register the existence of a local
950  *                              NVME subystem FC port.
951  * @pinfo:     pointer to information about the port to be registered
952  * @template:  LLDD entrypoints and operational parameters for the port
953  * @dev:       physical hardware device node port corresponds to. Will be
954  *             used for DMA mappings
955  * @portptr:   pointer to a local port pointer. Upon success, the routine
956  *             will allocate a nvme_fc_local_port structure and place its
957  *             address in the local port pointer. Upon failure, local port
958  *             pointer will be set to NULL.
959  *
960  * Returns:
961  * a completion status. Must be 0 upon success; a negative errno
962  * (ex: -ENXIO) upon failure.
963  */
964 int
965 nvmet_fc_register_targetport(struct nvmet_fc_port_info *pinfo,
966                         struct nvmet_fc_target_template *template,
967                         struct device *dev,
968                         struct nvmet_fc_target_port **portptr)
969 {
970         struct nvmet_fc_tgtport *newrec;
971         unsigned long flags;
972         int ret, idx;
973
974         if (!template->xmt_ls_rsp || !template->fcp_op ||
975             !template->fcp_abort ||
976             !template->fcp_req_release || !template->targetport_delete ||
977             !template->max_hw_queues || !template->max_sgl_segments ||
978             !template->max_dif_sgl_segments || !template->dma_boundary) {
979                 ret = -EINVAL;
980                 goto out_regtgt_failed;
981         }
982
983         newrec = kzalloc((sizeof(*newrec) + template->target_priv_sz),
984                          GFP_KERNEL);
985         if (!newrec) {
986                 ret = -ENOMEM;
987                 goto out_regtgt_failed;
988         }
989
990         idx = ida_simple_get(&nvmet_fc_tgtport_cnt, 0, 0, GFP_KERNEL);
991         if (idx < 0) {
992                 ret = -ENOSPC;
993                 goto out_fail_kfree;
994         }
995
996         if (!get_device(dev) && dev) {
997                 ret = -ENODEV;
998                 goto out_ida_put;
999         }
1000
1001         newrec->fc_target_port.node_name = pinfo->node_name;
1002         newrec->fc_target_port.port_name = pinfo->port_name;
1003         newrec->fc_target_port.private = &newrec[1];
1004         newrec->fc_target_port.port_id = pinfo->port_id;
1005         newrec->fc_target_port.port_num = idx;
1006         INIT_LIST_HEAD(&newrec->tgt_list);
1007         newrec->dev = dev;
1008         newrec->ops = template;
1009         spin_lock_init(&newrec->lock);
1010         INIT_LIST_HEAD(&newrec->ls_list);
1011         INIT_LIST_HEAD(&newrec->ls_busylist);
1012         INIT_LIST_HEAD(&newrec->assoc_list);
1013         kref_init(&newrec->ref);
1014         ida_init(&newrec->assoc_cnt);
1015         newrec->max_sg_cnt = min_t(u32, NVMET_FC_MAX_XFR_SGENTS,
1016                                         template->max_sgl_segments);
1017
1018         ret = nvmet_fc_alloc_ls_iodlist(newrec);
1019         if (ret) {
1020                 ret = -ENOMEM;
1021                 goto out_free_newrec;
1022         }
1023
1024         spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1025         list_add_tail(&newrec->tgt_list, &nvmet_fc_target_list);
1026         spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1027
1028         *portptr = &newrec->fc_target_port;
1029         return 0;
1030
1031 out_free_newrec:
1032         put_device(dev);
1033 out_ida_put:
1034         ida_simple_remove(&nvmet_fc_tgtport_cnt, idx);
1035 out_fail_kfree:
1036         kfree(newrec);
1037 out_regtgt_failed:
1038         *portptr = NULL;
1039         return ret;
1040 }
1041 EXPORT_SYMBOL_GPL(nvmet_fc_register_targetport);
1042
1043
1044 static void
1045 nvmet_fc_free_tgtport(struct kref *ref)
1046 {
1047         struct nvmet_fc_tgtport *tgtport =
1048                 container_of(ref, struct nvmet_fc_tgtport, ref);
1049         struct device *dev = tgtport->dev;
1050         unsigned long flags;
1051
1052         spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1053         list_del(&tgtport->tgt_list);
1054         spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1055
1056         nvmet_fc_free_ls_iodlist(tgtport);
1057
1058         /* let the LLDD know we've finished tearing it down */
1059         tgtport->ops->targetport_delete(&tgtport->fc_target_port);
1060
1061         ida_simple_remove(&nvmet_fc_tgtport_cnt,
1062                         tgtport->fc_target_port.port_num);
1063
1064         ida_destroy(&tgtport->assoc_cnt);
1065
1066         kfree(tgtport);
1067
1068         put_device(dev);
1069 }
1070
1071 static void
1072 nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport)
1073 {
1074         kref_put(&tgtport->ref, nvmet_fc_free_tgtport);
1075 }
1076
1077 static int
1078 nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport)
1079 {
1080         return kref_get_unless_zero(&tgtport->ref);
1081 }
1082
1083 static void
1084 __nvmet_fc_free_assocs(struct nvmet_fc_tgtport *tgtport)
1085 {
1086         struct nvmet_fc_tgt_assoc *assoc, *next;
1087         unsigned long flags;
1088
1089         spin_lock_irqsave(&tgtport->lock, flags);
1090         list_for_each_entry_safe(assoc, next,
1091                                 &tgtport->assoc_list, a_list) {
1092                 if (!nvmet_fc_tgt_a_get(assoc))
1093                         continue;
1094                 spin_unlock_irqrestore(&tgtport->lock, flags);
1095                 nvmet_fc_delete_target_assoc(assoc);
1096                 nvmet_fc_tgt_a_put(assoc);
1097                 spin_lock_irqsave(&tgtport->lock, flags);
1098         }
1099         spin_unlock_irqrestore(&tgtport->lock, flags);
1100 }
1101
1102 /*
1103  * nvmet layer has called to terminate an association
1104  */
1105 static void
1106 nvmet_fc_delete_ctrl(struct nvmet_ctrl *ctrl)
1107 {
1108         struct nvmet_fc_tgtport *tgtport, *next;
1109         struct nvmet_fc_tgt_assoc *assoc;
1110         struct nvmet_fc_tgt_queue *queue;
1111         unsigned long flags;
1112         bool found_ctrl = false;
1113
1114         /* this is a bit ugly, but don't want to make locks layered */
1115         spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1116         list_for_each_entry_safe(tgtport, next, &nvmet_fc_target_list,
1117                         tgt_list) {
1118                 if (!nvmet_fc_tgtport_get(tgtport))
1119                         continue;
1120                 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1121
1122                 spin_lock_irqsave(&tgtport->lock, flags);
1123                 list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
1124                         queue = assoc->queues[0];
1125                         if (queue && queue->nvme_sq.ctrl == ctrl) {
1126                                 if (nvmet_fc_tgt_a_get(assoc))
1127                                         found_ctrl = true;
1128                                 break;
1129                         }
1130                 }
1131                 spin_unlock_irqrestore(&tgtport->lock, flags);
1132
1133                 nvmet_fc_tgtport_put(tgtport);
1134
1135                 if (found_ctrl) {
1136                         schedule_work(&assoc->del_work);
1137                         return;
1138                 }
1139
1140                 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1141         }
1142         spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1143 }
1144
1145 /**
1146  * nvme_fc_unregister_targetport - transport entry point called by an
1147  *                              LLDD to deregister/remove a previously
1148  *                              registered a local NVME subsystem FC port.
1149  * @tgtport: pointer to the (registered) target port that is to be
1150  *           deregistered.
1151  *
1152  * Returns:
1153  * a completion status. Must be 0 upon success; a negative errno
1154  * (ex: -ENXIO) upon failure.
1155  */
1156 int
1157 nvmet_fc_unregister_targetport(struct nvmet_fc_target_port *target_port)
1158 {
1159         struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1160
1161         /* terminate any outstanding associations */
1162         __nvmet_fc_free_assocs(tgtport);
1163
1164         nvmet_fc_tgtport_put(tgtport);
1165
1166         return 0;
1167 }
1168 EXPORT_SYMBOL_GPL(nvmet_fc_unregister_targetport);
1169
1170
1171 /* *********************** FC-NVME LS Handling **************************** */
1172
1173
1174 static void
1175 nvmet_fc_format_rsp_hdr(void *buf, u8 ls_cmd, __be32 desc_len, u8 rqst_ls_cmd)
1176 {
1177         struct fcnvme_ls_acc_hdr *acc = buf;
1178
1179         acc->w0.ls_cmd = ls_cmd;
1180         acc->desc_list_len = desc_len;
1181         acc->rqst.desc_tag = cpu_to_be32(FCNVME_LSDESC_RQST);
1182         acc->rqst.desc_len =
1183                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst));
1184         acc->rqst.w0.ls_cmd = rqst_ls_cmd;
1185 }
1186
1187 static int
1188 nvmet_fc_format_rjt(void *buf, u16 buflen, u8 ls_cmd,
1189                         u8 reason, u8 explanation, u8 vendor)
1190 {
1191         struct fcnvme_ls_rjt *rjt = buf;
1192
1193         nvmet_fc_format_rsp_hdr(buf, FCNVME_LSDESC_RQST,
1194                         fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_rjt)),
1195                         ls_cmd);
1196         rjt->rjt.desc_tag = cpu_to_be32(FCNVME_LSDESC_RJT);
1197         rjt->rjt.desc_len = fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rjt));
1198         rjt->rjt.reason_code = reason;
1199         rjt->rjt.reason_explanation = explanation;
1200         rjt->rjt.vendor = vendor;
1201
1202         return sizeof(struct fcnvme_ls_rjt);
1203 }
1204
1205 /* Validation Error indexes into the string table below */
1206 enum {
1207         VERR_NO_ERROR           = 0,
1208         VERR_CR_ASSOC_LEN       = 1,
1209         VERR_CR_ASSOC_RQST_LEN  = 2,
1210         VERR_CR_ASSOC_CMD       = 3,
1211         VERR_CR_ASSOC_CMD_LEN   = 4,
1212         VERR_ERSP_RATIO         = 5,
1213         VERR_ASSOC_ALLOC_FAIL   = 6,
1214         VERR_QUEUE_ALLOC_FAIL   = 7,
1215         VERR_CR_CONN_LEN        = 8,
1216         VERR_CR_CONN_RQST_LEN   = 9,
1217         VERR_ASSOC_ID           = 10,
1218         VERR_ASSOC_ID_LEN       = 11,
1219         VERR_NO_ASSOC           = 12,
1220         VERR_CONN_ID            = 13,
1221         VERR_CONN_ID_LEN        = 14,
1222         VERR_NO_CONN            = 15,
1223         VERR_CR_CONN_CMD        = 16,
1224         VERR_CR_CONN_CMD_LEN    = 17,
1225         VERR_DISCONN_LEN        = 18,
1226         VERR_DISCONN_RQST_LEN   = 19,
1227         VERR_DISCONN_CMD        = 20,
1228         VERR_DISCONN_CMD_LEN    = 21,
1229         VERR_DISCONN_SCOPE      = 22,
1230         VERR_RS_LEN             = 23,
1231         VERR_RS_RQST_LEN        = 24,
1232         VERR_RS_CMD             = 25,
1233         VERR_RS_CMD_LEN         = 26,
1234         VERR_RS_RCTL            = 27,
1235         VERR_RS_RO              = 28,
1236 };
1237
1238 static char *validation_errors[] = {
1239         "OK",
1240         "Bad CR_ASSOC Length",
1241         "Bad CR_ASSOC Rqst Length",
1242         "Not CR_ASSOC Cmd",
1243         "Bad CR_ASSOC Cmd Length",
1244         "Bad Ersp Ratio",
1245         "Association Allocation Failed",
1246         "Queue Allocation Failed",
1247         "Bad CR_CONN Length",
1248         "Bad CR_CONN Rqst Length",
1249         "Not Association ID",
1250         "Bad Association ID Length",
1251         "No Association",
1252         "Not Connection ID",
1253         "Bad Connection ID Length",
1254         "No Connection",
1255         "Not CR_CONN Cmd",
1256         "Bad CR_CONN Cmd Length",
1257         "Bad DISCONN Length",
1258         "Bad DISCONN Rqst Length",
1259         "Not DISCONN Cmd",
1260         "Bad DISCONN Cmd Length",
1261         "Bad Disconnect Scope",
1262         "Bad RS Length",
1263         "Bad RS Rqst Length",
1264         "Not RS Cmd",
1265         "Bad RS Cmd Length",
1266         "Bad RS R_CTL",
1267         "Bad RS Relative Offset",
1268 };
1269
1270 static void
1271 nvmet_fc_ls_create_association(struct nvmet_fc_tgtport *tgtport,
1272                         struct nvmet_fc_ls_iod *iod)
1273 {
1274         struct fcnvme_ls_cr_assoc_rqst *rqst =
1275                                 (struct fcnvme_ls_cr_assoc_rqst *)iod->rqstbuf;
1276         struct fcnvme_ls_cr_assoc_acc *acc =
1277                                 (struct fcnvme_ls_cr_assoc_acc *)iod->rspbuf;
1278         struct nvmet_fc_tgt_queue *queue;
1279         int ret = 0;
1280
1281         memset(acc, 0, sizeof(*acc));
1282
1283         /*
1284          * FC-NVME spec changes. There are initiators sending different
1285          * lengths as padding sizes for Create Association Cmd descriptor
1286          * was incorrect.
1287          * Accept anything of "minimum" length. Assume format per 1.15
1288          * spec (with HOSTID reduced to 16 bytes), ignore how long the
1289          * trailing pad length is.
1290          */
1291         if (iod->rqstdatalen < FCNVME_LSDESC_CRA_RQST_MINLEN)
1292                 ret = VERR_CR_ASSOC_LEN;
1293         else if (be32_to_cpu(rqst->desc_list_len) <
1294                         FCNVME_LSDESC_CRA_RQST_MIN_LISTLEN)
1295                 ret = VERR_CR_ASSOC_RQST_LEN;
1296         else if (rqst->assoc_cmd.desc_tag !=
1297                         cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD))
1298                 ret = VERR_CR_ASSOC_CMD;
1299         else if (be32_to_cpu(rqst->assoc_cmd.desc_len) <
1300                         FCNVME_LSDESC_CRA_CMD_DESC_MIN_DESCLEN)
1301                 ret = VERR_CR_ASSOC_CMD_LEN;
1302         else if (!rqst->assoc_cmd.ersp_ratio ||
1303                  (be16_to_cpu(rqst->assoc_cmd.ersp_ratio) >=
1304                                 be16_to_cpu(rqst->assoc_cmd.sqsize)))
1305                 ret = VERR_ERSP_RATIO;
1306
1307         else {
1308                 /* new association w/ admin queue */
1309                 iod->assoc = nvmet_fc_alloc_target_assoc(tgtport);
1310                 if (!iod->assoc)
1311                         ret = VERR_ASSOC_ALLOC_FAIL;
1312                 else {
1313                         queue = nvmet_fc_alloc_target_queue(iod->assoc, 0,
1314                                         be16_to_cpu(rqst->assoc_cmd.sqsize));
1315                         if (!queue)
1316                                 ret = VERR_QUEUE_ALLOC_FAIL;
1317                 }
1318         }
1319
1320         if (ret) {
1321                 dev_err(tgtport->dev,
1322                         "Create Association LS failed: %s\n",
1323                         validation_errors[ret]);
1324                 iod->lsreq->rsplen = nvmet_fc_format_rjt(acc,
1325                                 NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd,
1326                                 FCNVME_RJT_RC_LOGIC,
1327                                 FCNVME_RJT_EXP_NONE, 0);
1328                 return;
1329         }
1330
1331         queue->ersp_ratio = be16_to_cpu(rqst->assoc_cmd.ersp_ratio);
1332         atomic_set(&queue->connected, 1);
1333         queue->sqhd = 0;        /* best place to init value */
1334
1335         /* format a response */
1336
1337         iod->lsreq->rsplen = sizeof(*acc);
1338
1339         nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1340                         fcnvme_lsdesc_len(
1341                                 sizeof(struct fcnvme_ls_cr_assoc_acc)),
1342                         FCNVME_LS_CREATE_ASSOCIATION);
1343         acc->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1344         acc->associd.desc_len =
1345                         fcnvme_lsdesc_len(
1346                                 sizeof(struct fcnvme_lsdesc_assoc_id));
1347         acc->associd.association_id =
1348                         cpu_to_be64(nvmet_fc_makeconnid(iod->assoc, 0));
1349         acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1350         acc->connectid.desc_len =
1351                         fcnvme_lsdesc_len(
1352                                 sizeof(struct fcnvme_lsdesc_conn_id));
1353         acc->connectid.connection_id = acc->associd.association_id;
1354 }
1355
1356 static void
1357 nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport *tgtport,
1358                         struct nvmet_fc_ls_iod *iod)
1359 {
1360         struct fcnvme_ls_cr_conn_rqst *rqst =
1361                                 (struct fcnvme_ls_cr_conn_rqst *)iod->rqstbuf;
1362         struct fcnvme_ls_cr_conn_acc *acc =
1363                                 (struct fcnvme_ls_cr_conn_acc *)iod->rspbuf;
1364         struct nvmet_fc_tgt_queue *queue;
1365         int ret = 0;
1366
1367         memset(acc, 0, sizeof(*acc));
1368
1369         if (iod->rqstdatalen < sizeof(struct fcnvme_ls_cr_conn_rqst))
1370                 ret = VERR_CR_CONN_LEN;
1371         else if (rqst->desc_list_len !=
1372                         fcnvme_lsdesc_len(
1373                                 sizeof(struct fcnvme_ls_cr_conn_rqst)))
1374                 ret = VERR_CR_CONN_RQST_LEN;
1375         else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1376                 ret = VERR_ASSOC_ID;
1377         else if (rqst->associd.desc_len !=
1378                         fcnvme_lsdesc_len(
1379                                 sizeof(struct fcnvme_lsdesc_assoc_id)))
1380                 ret = VERR_ASSOC_ID_LEN;
1381         else if (rqst->connect_cmd.desc_tag !=
1382                         cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD))
1383                 ret = VERR_CR_CONN_CMD;
1384         else if (rqst->connect_cmd.desc_len !=
1385                         fcnvme_lsdesc_len(
1386                                 sizeof(struct fcnvme_lsdesc_cr_conn_cmd)))
1387                 ret = VERR_CR_CONN_CMD_LEN;
1388         else if (!rqst->connect_cmd.ersp_ratio ||
1389                  (be16_to_cpu(rqst->connect_cmd.ersp_ratio) >=
1390                                 be16_to_cpu(rqst->connect_cmd.sqsize)))
1391                 ret = VERR_ERSP_RATIO;
1392
1393         else {
1394                 /* new io queue */
1395                 iod->assoc = nvmet_fc_find_target_assoc(tgtport,
1396                                 be64_to_cpu(rqst->associd.association_id));
1397                 if (!iod->assoc)
1398                         ret = VERR_NO_ASSOC;
1399                 else {
1400                         queue = nvmet_fc_alloc_target_queue(iod->assoc,
1401                                         be16_to_cpu(rqst->connect_cmd.qid),
1402                                         be16_to_cpu(rqst->connect_cmd.sqsize));
1403                         if (!queue)
1404                                 ret = VERR_QUEUE_ALLOC_FAIL;
1405
1406                         /* release get taken in nvmet_fc_find_target_assoc */
1407                         nvmet_fc_tgt_a_put(iod->assoc);
1408                 }
1409         }
1410
1411         if (ret) {
1412                 dev_err(tgtport->dev,
1413                         "Create Connection LS failed: %s\n",
1414                         validation_errors[ret]);
1415                 iod->lsreq->rsplen = nvmet_fc_format_rjt(acc,
1416                                 NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd,
1417                                 (ret == VERR_NO_ASSOC) ?
1418                                         FCNVME_RJT_RC_INV_ASSOC :
1419                                         FCNVME_RJT_RC_LOGIC,
1420                                 FCNVME_RJT_EXP_NONE, 0);
1421                 return;
1422         }
1423
1424         queue->ersp_ratio = be16_to_cpu(rqst->connect_cmd.ersp_ratio);
1425         atomic_set(&queue->connected, 1);
1426         queue->sqhd = 0;        /* best place to init value */
1427
1428         /* format a response */
1429
1430         iod->lsreq->rsplen = sizeof(*acc);
1431
1432         nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1433                         fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)),
1434                         FCNVME_LS_CREATE_CONNECTION);
1435         acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1436         acc->connectid.desc_len =
1437                         fcnvme_lsdesc_len(
1438                                 sizeof(struct fcnvme_lsdesc_conn_id));
1439         acc->connectid.connection_id =
1440                         cpu_to_be64(nvmet_fc_makeconnid(iod->assoc,
1441                                 be16_to_cpu(rqst->connect_cmd.qid)));
1442 }
1443
1444 static void
1445 nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport *tgtport,
1446                         struct nvmet_fc_ls_iod *iod)
1447 {
1448         struct fcnvme_ls_disconnect_rqst *rqst =
1449                         (struct fcnvme_ls_disconnect_rqst *)iod->rqstbuf;
1450         struct fcnvme_ls_disconnect_acc *acc =
1451                         (struct fcnvme_ls_disconnect_acc *)iod->rspbuf;
1452         struct nvmet_fc_tgt_queue *queue = NULL;
1453         struct nvmet_fc_tgt_assoc *assoc;
1454         int ret = 0;
1455         bool del_assoc = false;
1456
1457         memset(acc, 0, sizeof(*acc));
1458
1459         if (iod->rqstdatalen < sizeof(struct fcnvme_ls_disconnect_rqst))
1460                 ret = VERR_DISCONN_LEN;
1461         else if (rqst->desc_list_len !=
1462                         fcnvme_lsdesc_len(
1463                                 sizeof(struct fcnvme_ls_disconnect_rqst)))
1464                 ret = VERR_DISCONN_RQST_LEN;
1465         else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1466                 ret = VERR_ASSOC_ID;
1467         else if (rqst->associd.desc_len !=
1468                         fcnvme_lsdesc_len(
1469                                 sizeof(struct fcnvme_lsdesc_assoc_id)))
1470                 ret = VERR_ASSOC_ID_LEN;
1471         else if (rqst->discon_cmd.desc_tag !=
1472                         cpu_to_be32(FCNVME_LSDESC_DISCONN_CMD))
1473                 ret = VERR_DISCONN_CMD;
1474         else if (rqst->discon_cmd.desc_len !=
1475                         fcnvme_lsdesc_len(
1476                                 sizeof(struct fcnvme_lsdesc_disconn_cmd)))
1477                 ret = VERR_DISCONN_CMD_LEN;
1478         else if ((rqst->discon_cmd.scope != FCNVME_DISCONN_ASSOCIATION) &&
1479                         (rqst->discon_cmd.scope != FCNVME_DISCONN_CONNECTION))
1480                 ret = VERR_DISCONN_SCOPE;
1481         else {
1482                 /* match an active association */
1483                 assoc = nvmet_fc_find_target_assoc(tgtport,
1484                                 be64_to_cpu(rqst->associd.association_id));
1485                 iod->assoc = assoc;
1486                 if (assoc) {
1487                         if (rqst->discon_cmd.scope ==
1488                                         FCNVME_DISCONN_CONNECTION) {
1489                                 queue = nvmet_fc_find_target_queue(tgtport,
1490                                                 be64_to_cpu(
1491                                                         rqst->discon_cmd.id));
1492                                 if (!queue) {
1493                                         nvmet_fc_tgt_a_put(assoc);
1494                                         ret = VERR_NO_CONN;
1495                                 }
1496                         }
1497                 } else
1498                         ret = VERR_NO_ASSOC;
1499         }
1500
1501         if (ret) {
1502                 dev_err(tgtport->dev,
1503                         "Disconnect LS failed: %s\n",
1504                         validation_errors[ret]);
1505                 iod->lsreq->rsplen = nvmet_fc_format_rjt(acc,
1506                                 NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd,
1507                                 (ret == VERR_NO_ASSOC) ?
1508                                         FCNVME_RJT_RC_INV_ASSOC :
1509                                         (ret == VERR_NO_CONN) ?
1510                                                 FCNVME_RJT_RC_INV_CONN :
1511                                                 FCNVME_RJT_RC_LOGIC,
1512                                 FCNVME_RJT_EXP_NONE, 0);
1513                 return;
1514         }
1515
1516         /* format a response */
1517
1518         iod->lsreq->rsplen = sizeof(*acc);
1519
1520         nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1521                         fcnvme_lsdesc_len(
1522                                 sizeof(struct fcnvme_ls_disconnect_acc)),
1523                         FCNVME_LS_DISCONNECT);
1524
1525
1526         /* are we to delete a Connection ID (queue) */
1527         if (queue) {
1528                 int qid = queue->qid;
1529
1530                 nvmet_fc_delete_target_queue(queue);
1531
1532                 /* release the get taken by find_target_queue */
1533                 nvmet_fc_tgt_q_put(queue);
1534
1535                 /* tear association down if io queue terminated */
1536                 if (!qid)
1537                         del_assoc = true;
1538         }
1539
1540         /* release get taken in nvmet_fc_find_target_assoc */
1541         nvmet_fc_tgt_a_put(iod->assoc);
1542
1543         if (del_assoc)
1544                 nvmet_fc_delete_target_assoc(iod->assoc);
1545 }
1546
1547
1548 /* *********************** NVME Ctrl Routines **************************** */
1549
1550
1551 static void nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req);
1552
1553 static struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops;
1554
1555 static void
1556 nvmet_fc_xmt_ls_rsp_done(struct nvmefc_tgt_ls_req *lsreq)
1557 {
1558         struct nvmet_fc_ls_iod *iod = lsreq->nvmet_fc_private;
1559         struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1560
1561         fc_dma_sync_single_for_cpu(tgtport->dev, iod->rspdma,
1562                                 NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE);
1563         nvmet_fc_free_ls_iod(tgtport, iod);
1564         nvmet_fc_tgtport_put(tgtport);
1565 }
1566
1567 static void
1568 nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
1569                                 struct nvmet_fc_ls_iod *iod)
1570 {
1571         int ret;
1572
1573         fc_dma_sync_single_for_device(tgtport->dev, iod->rspdma,
1574                                   NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE);
1575
1576         ret = tgtport->ops->xmt_ls_rsp(&tgtport->fc_target_port, iod->lsreq);
1577         if (ret)
1578                 nvmet_fc_xmt_ls_rsp_done(iod->lsreq);
1579 }
1580
1581 /*
1582  * Actual processing routine for received FC-NVME LS Requests from the LLD
1583  */
1584 static void
1585 nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport *tgtport,
1586                         struct nvmet_fc_ls_iod *iod)
1587 {
1588         struct fcnvme_ls_rqst_w0 *w0 =
1589                         (struct fcnvme_ls_rqst_w0 *)iod->rqstbuf;
1590
1591         iod->lsreq->nvmet_fc_private = iod;
1592         iod->lsreq->rspbuf = iod->rspbuf;
1593         iod->lsreq->rspdma = iod->rspdma;
1594         iod->lsreq->done = nvmet_fc_xmt_ls_rsp_done;
1595         /* Be preventative. handlers will later set to valid length */
1596         iod->lsreq->rsplen = 0;
1597
1598         iod->assoc = NULL;
1599
1600         /*
1601          * handlers:
1602          *   parse request input, execute the request, and format the
1603          *   LS response
1604          */
1605         switch (w0->ls_cmd) {
1606         case FCNVME_LS_CREATE_ASSOCIATION:
1607                 /* Creates Association and initial Admin Queue/Connection */
1608                 nvmet_fc_ls_create_association(tgtport, iod);
1609                 break;
1610         case FCNVME_LS_CREATE_CONNECTION:
1611                 /* Creates an IO Queue/Connection */
1612                 nvmet_fc_ls_create_connection(tgtport, iod);
1613                 break;
1614         case FCNVME_LS_DISCONNECT:
1615                 /* Terminate a Queue/Connection or the Association */
1616                 nvmet_fc_ls_disconnect(tgtport, iod);
1617                 break;
1618         default:
1619                 iod->lsreq->rsplen = nvmet_fc_format_rjt(iod->rspbuf,
1620                                 NVME_FC_MAX_LS_BUFFER_SIZE, w0->ls_cmd,
1621                                 FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0);
1622         }
1623
1624         nvmet_fc_xmt_ls_rsp(tgtport, iod);
1625 }
1626
1627 /*
1628  * Actual processing routine for received FC-NVME LS Requests from the LLD
1629  */
1630 static void
1631 nvmet_fc_handle_ls_rqst_work(struct work_struct *work)
1632 {
1633         struct nvmet_fc_ls_iod *iod =
1634                 container_of(work, struct nvmet_fc_ls_iod, work);
1635         struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1636
1637         nvmet_fc_handle_ls_rqst(tgtport, iod);
1638 }
1639
1640
1641 /**
1642  * nvmet_fc_rcv_ls_req - transport entry point called by an LLDD
1643  *                       upon the reception of a NVME LS request.
1644  *
1645  * The nvmet-fc layer will copy payload to an internal structure for
1646  * processing.  As such, upon completion of the routine, the LLDD may
1647  * immediately free/reuse the LS request buffer passed in the call.
1648  *
1649  * If this routine returns error, the LLDD should abort the exchange.
1650  *
1651  * @tgtport:    pointer to the (registered) target port the LS was
1652  *              received on.
1653  * @lsreq:      pointer to a lsreq request structure to be used to reference
1654  *              the exchange corresponding to the LS.
1655  * @lsreqbuf:   pointer to the buffer containing the LS Request
1656  * @lsreqbuf_len: length, in bytes, of the received LS request
1657  */
1658 int
1659 nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port *target_port,
1660                         struct nvmefc_tgt_ls_req *lsreq,
1661                         void *lsreqbuf, u32 lsreqbuf_len)
1662 {
1663         struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1664         struct nvmet_fc_ls_iod *iod;
1665
1666         if (lsreqbuf_len > NVME_FC_MAX_LS_BUFFER_SIZE)
1667                 return -E2BIG;
1668
1669         if (!nvmet_fc_tgtport_get(tgtport))
1670                 return -ESHUTDOWN;
1671
1672         iod = nvmet_fc_alloc_ls_iod(tgtport);
1673         if (!iod) {
1674                 nvmet_fc_tgtport_put(tgtport);
1675                 return -ENOENT;
1676         }
1677
1678         iod->lsreq = lsreq;
1679         iod->fcpreq = NULL;
1680         memcpy(iod->rqstbuf, lsreqbuf, lsreqbuf_len);
1681         iod->rqstdatalen = lsreqbuf_len;
1682
1683         schedule_work(&iod->work);
1684
1685         return 0;
1686 }
1687 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_ls_req);
1688
1689
1690 /*
1691  * **********************
1692  * Start of FCP handling
1693  * **********************
1694  */
1695
1696 static int
1697 nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
1698 {
1699         struct scatterlist *sg;
1700         unsigned int nent;
1701
1702         sg = sgl_alloc(fod->req.transfer_len, GFP_KERNEL, &nent);
1703         if (!sg)
1704                 goto out;
1705
1706         fod->data_sg = sg;
1707         fod->data_sg_cnt = nent;
1708         fod->data_sg_cnt = fc_dma_map_sg(fod->tgtport->dev, sg, nent,
1709                                 ((fod->io_dir == NVMET_FCP_WRITE) ?
1710                                         DMA_FROM_DEVICE : DMA_TO_DEVICE));
1711                                 /* note: write from initiator perspective */
1712
1713         return 0;
1714
1715 out:
1716         return NVME_SC_INTERNAL;
1717 }
1718
1719 static void
1720 nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
1721 {
1722         if (!fod->data_sg || !fod->data_sg_cnt)
1723                 return;
1724
1725         fc_dma_unmap_sg(fod->tgtport->dev, fod->data_sg, fod->data_sg_cnt,
1726                                 ((fod->io_dir == NVMET_FCP_WRITE) ?
1727                                         DMA_FROM_DEVICE : DMA_TO_DEVICE));
1728         sgl_free(fod->data_sg);
1729         fod->data_sg = NULL;
1730         fod->data_sg_cnt = 0;
1731 }
1732
1733
1734 static bool
1735 queue_90percent_full(struct nvmet_fc_tgt_queue *q, u32 sqhd)
1736 {
1737         u32 sqtail, used;
1738
1739         /* egad, this is ugly. And sqtail is just a best guess */
1740         sqtail = atomic_read(&q->sqtail) % q->sqsize;
1741
1742         used = (sqtail < sqhd) ? (sqtail + q->sqsize - sqhd) : (sqtail - sqhd);
1743         return ((used * 10) >= (((u32)(q->sqsize - 1) * 9)));
1744 }
1745
1746 /*
1747  * Prep RSP payload.
1748  * May be a NVMET_FCOP_RSP or NVMET_FCOP_READDATA_RSP op
1749  */
1750 static void
1751 nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
1752                                 struct nvmet_fc_fcp_iod *fod)
1753 {
1754         struct nvme_fc_ersp_iu *ersp = &fod->rspiubuf;
1755         struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
1756         struct nvme_completion *cqe = &ersp->cqe;
1757         u32 *cqewd = (u32 *)cqe;
1758         bool send_ersp = false;
1759         u32 rsn, rspcnt, xfr_length;
1760
1761         if (fod->fcpreq->op == NVMET_FCOP_READDATA_RSP)
1762                 xfr_length = fod->req.transfer_len;
1763         else
1764                 xfr_length = fod->offset;
1765
1766         /*
1767          * check to see if we can send a 0's rsp.
1768          *   Note: to send a 0's response, the NVME-FC host transport will
1769          *   recreate the CQE. The host transport knows: sq id, SQHD (last
1770          *   seen in an ersp), and command_id. Thus it will create a
1771          *   zero-filled CQE with those known fields filled in. Transport
1772          *   must send an ersp for any condition where the cqe won't match
1773          *   this.
1774          *
1775          * Here are the FC-NVME mandated cases where we must send an ersp:
1776          *  every N responses, where N=ersp_ratio
1777          *  force fabric commands to send ersp's (not in FC-NVME but good
1778          *    practice)
1779          *  normal cmds: any time status is non-zero, or status is zero
1780          *     but words 0 or 1 are non-zero.
1781          *  the SQ is 90% or more full
1782          *  the cmd is a fused command
1783          *  transferred data length not equal to cmd iu length
1784          */
1785         rspcnt = atomic_inc_return(&fod->queue->zrspcnt);
1786         if (!(rspcnt % fod->queue->ersp_ratio) ||
1787             sqe->opcode == nvme_fabrics_command ||
1788             xfr_length != fod->req.transfer_len ||
1789             (le16_to_cpu(cqe->status) & 0xFFFE) || cqewd[0] || cqewd[1] ||
1790             (sqe->flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND)) ||
1791             queue_90percent_full(fod->queue, le16_to_cpu(cqe->sq_head)))
1792                 send_ersp = true;
1793
1794         /* re-set the fields */
1795         fod->fcpreq->rspaddr = ersp;
1796         fod->fcpreq->rspdma = fod->rspdma;
1797
1798         if (!send_ersp) {
1799                 memset(ersp, 0, NVME_FC_SIZEOF_ZEROS_RSP);
1800                 fod->fcpreq->rsplen = NVME_FC_SIZEOF_ZEROS_RSP;
1801         } else {
1802                 ersp->iu_len = cpu_to_be16(sizeof(*ersp)/sizeof(u32));
1803                 rsn = atomic_inc_return(&fod->queue->rsn);
1804                 ersp->rsn = cpu_to_be32(rsn);
1805                 ersp->xfrd_len = cpu_to_be32(xfr_length);
1806                 fod->fcpreq->rsplen = sizeof(*ersp);
1807         }
1808
1809         fc_dma_sync_single_for_device(tgtport->dev, fod->rspdma,
1810                                   sizeof(fod->rspiubuf), DMA_TO_DEVICE);
1811 }
1812
1813 static void nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq);
1814
1815 static void
1816 nvmet_fc_abort_op(struct nvmet_fc_tgtport *tgtport,
1817                                 struct nvmet_fc_fcp_iod *fod)
1818 {
1819         struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
1820
1821         /* data no longer needed */
1822         nvmet_fc_free_tgt_pgs(fod);
1823
1824         /*
1825          * if an ABTS was received or we issued the fcp_abort early
1826          * don't call abort routine again.
1827          */
1828         /* no need to take lock - lock was taken earlier to get here */
1829         if (!fod->aborted)
1830                 tgtport->ops->fcp_abort(&tgtport->fc_target_port, fcpreq);
1831
1832         nvmet_fc_free_fcp_iod(fod->queue, fod);
1833 }
1834
1835 static void
1836 nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
1837                                 struct nvmet_fc_fcp_iod *fod)
1838 {
1839         int ret;
1840
1841         fod->fcpreq->op = NVMET_FCOP_RSP;
1842         fod->fcpreq->timeout = 0;
1843
1844         nvmet_fc_prep_fcp_rsp(tgtport, fod);
1845
1846         ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
1847         if (ret)
1848                 nvmet_fc_abort_op(tgtport, fod);
1849 }
1850
1851 static void
1852 nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport *tgtport,
1853                                 struct nvmet_fc_fcp_iod *fod, u8 op)
1854 {
1855         struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
1856         unsigned long flags;
1857         u32 tlen;
1858         int ret;
1859
1860         fcpreq->op = op;
1861         fcpreq->offset = fod->offset;
1862         fcpreq->timeout = NVME_FC_TGTOP_TIMEOUT_SEC;
1863
1864         tlen = min_t(u32, tgtport->max_sg_cnt * PAGE_SIZE,
1865                         (fod->req.transfer_len - fod->offset));
1866         fcpreq->transfer_length = tlen;
1867         fcpreq->transferred_length = 0;
1868         fcpreq->fcp_error = 0;
1869         fcpreq->rsplen = 0;
1870
1871         fcpreq->sg = &fod->data_sg[fod->offset / PAGE_SIZE];
1872         fcpreq->sg_cnt = DIV_ROUND_UP(tlen, PAGE_SIZE);
1873
1874         /*
1875          * If the last READDATA request: check if LLDD supports
1876          * combined xfr with response.
1877          */
1878         if ((op == NVMET_FCOP_READDATA) &&
1879             ((fod->offset + fcpreq->transfer_length) == fod->req.transfer_len) &&
1880             (tgtport->ops->target_features & NVMET_FCTGTFEAT_READDATA_RSP)) {
1881                 fcpreq->op = NVMET_FCOP_READDATA_RSP;
1882                 nvmet_fc_prep_fcp_rsp(tgtport, fod);
1883         }
1884
1885         ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
1886         if (ret) {
1887                 /*
1888                  * should be ok to set w/o lock as its in the thread of
1889                  * execution (not an async timer routine) and doesn't
1890                  * contend with any clearing action
1891                  */
1892                 fod->abort = true;
1893
1894                 if (op == NVMET_FCOP_WRITEDATA) {
1895                         spin_lock_irqsave(&fod->flock, flags);
1896                         fod->writedataactive = false;
1897                         spin_unlock_irqrestore(&fod->flock, flags);
1898                         nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
1899                 } else /* NVMET_FCOP_READDATA or NVMET_FCOP_READDATA_RSP */ {
1900                         fcpreq->fcp_error = ret;
1901                         fcpreq->transferred_length = 0;
1902                         nvmet_fc_xmt_fcp_op_done(fod->fcpreq);
1903                 }
1904         }
1905 }
1906
1907 static inline bool
1908 __nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod *fod, bool abort)
1909 {
1910         struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
1911         struct nvmet_fc_tgtport *tgtport = fod->tgtport;
1912
1913         /* if in the middle of an io and we need to tear down */
1914         if (abort) {
1915                 if (fcpreq->op == NVMET_FCOP_WRITEDATA) {
1916                         nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
1917                         return true;
1918                 }
1919
1920                 nvmet_fc_abort_op(tgtport, fod);
1921                 return true;
1922         }
1923
1924         return false;
1925 }
1926
1927 /*
1928  * actual done handler for FCP operations when completed by the lldd
1929  */
1930 static void
1931 nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod *fod)
1932 {
1933         struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
1934         struct nvmet_fc_tgtport *tgtport = fod->tgtport;
1935         unsigned long flags;
1936         bool abort;
1937
1938         spin_lock_irqsave(&fod->flock, flags);
1939         abort = fod->abort;
1940         fod->writedataactive = false;
1941         spin_unlock_irqrestore(&fod->flock, flags);
1942
1943         switch (fcpreq->op) {
1944
1945         case NVMET_FCOP_WRITEDATA:
1946                 if (__nvmet_fc_fod_op_abort(fod, abort))
1947                         return;
1948                 if (fcpreq->fcp_error ||
1949                     fcpreq->transferred_length != fcpreq->transfer_length) {
1950                         spin_lock(&fod->flock);
1951                         fod->abort = true;
1952                         spin_unlock(&fod->flock);
1953
1954                         nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
1955                         return;
1956                 }
1957
1958                 fod->offset += fcpreq->transferred_length;
1959                 if (fod->offset != fod->req.transfer_len) {
1960                         spin_lock_irqsave(&fod->flock, flags);
1961                         fod->writedataactive = true;
1962                         spin_unlock_irqrestore(&fod->flock, flags);
1963
1964                         /* transfer the next chunk */
1965                         nvmet_fc_transfer_fcp_data(tgtport, fod,
1966                                                 NVMET_FCOP_WRITEDATA);
1967                         return;
1968                 }
1969
1970                 /* data transfer complete, resume with nvmet layer */
1971                 nvmet_req_execute(&fod->req);
1972                 break;
1973
1974         case NVMET_FCOP_READDATA:
1975         case NVMET_FCOP_READDATA_RSP:
1976                 if (__nvmet_fc_fod_op_abort(fod, abort))
1977                         return;
1978                 if (fcpreq->fcp_error ||
1979                     fcpreq->transferred_length != fcpreq->transfer_length) {
1980                         nvmet_fc_abort_op(tgtport, fod);
1981                         return;
1982                 }
1983
1984                 /* success */
1985
1986                 if (fcpreq->op == NVMET_FCOP_READDATA_RSP) {
1987                         /* data no longer needed */
1988                         nvmet_fc_free_tgt_pgs(fod);
1989                         nvmet_fc_free_fcp_iod(fod->queue, fod);
1990                         return;
1991                 }
1992
1993                 fod->offset += fcpreq->transferred_length;
1994                 if (fod->offset != fod->req.transfer_len) {
1995                         /* transfer the next chunk */
1996                         nvmet_fc_transfer_fcp_data(tgtport, fod,
1997                                                 NVMET_FCOP_READDATA);
1998                         return;
1999                 }
2000
2001                 /* data transfer complete, send response */
2002
2003                 /* data no longer needed */
2004                 nvmet_fc_free_tgt_pgs(fod);
2005
2006                 nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2007
2008                 break;
2009
2010         case NVMET_FCOP_RSP:
2011                 if (__nvmet_fc_fod_op_abort(fod, abort))
2012                         return;
2013                 nvmet_fc_free_fcp_iod(fod->queue, fod);
2014                 break;
2015
2016         default:
2017                 break;
2018         }
2019 }
2020
2021 static void
2022 nvmet_fc_fcp_rqst_op_done_work(struct work_struct *work)
2023 {
2024         struct nvmet_fc_fcp_iod *fod =
2025                 container_of(work, struct nvmet_fc_fcp_iod, done_work);
2026
2027         nvmet_fc_fod_op_done(fod);
2028 }
2029
2030 static void
2031 nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq)
2032 {
2033         struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2034         struct nvmet_fc_tgt_queue *queue = fod->queue;
2035
2036         if (fod->tgtport->ops->target_features & NVMET_FCTGTFEAT_OPDONE_IN_ISR)
2037                 /* context switch so completion is not in ISR context */
2038                 queue_work_on(queue->cpu, queue->work_q, &fod->done_work);
2039         else
2040                 nvmet_fc_fod_op_done(fod);
2041 }
2042
2043 /*
2044  * actual completion handler after execution by the nvmet layer
2045  */
2046 static void
2047 __nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport *tgtport,
2048                         struct nvmet_fc_fcp_iod *fod, int status)
2049 {
2050         struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
2051         struct nvme_completion *cqe = &fod->rspiubuf.cqe;
2052         unsigned long flags;
2053         bool abort;
2054
2055         spin_lock_irqsave(&fod->flock, flags);
2056         abort = fod->abort;
2057         spin_unlock_irqrestore(&fod->flock, flags);
2058
2059         /* if we have a CQE, snoop the last sq_head value */
2060         if (!status)
2061                 fod->queue->sqhd = cqe->sq_head;
2062
2063         if (abort) {
2064                 nvmet_fc_abort_op(tgtport, fod);
2065                 return;
2066         }
2067
2068         /* if an error handling the cmd post initial parsing */
2069         if (status) {
2070                 /* fudge up a failed CQE status for our transport error */
2071                 memset(cqe, 0, sizeof(*cqe));
2072                 cqe->sq_head = fod->queue->sqhd;        /* echo last cqe sqhd */
2073                 cqe->sq_id = cpu_to_le16(fod->queue->qid);
2074                 cqe->command_id = sqe->command_id;
2075                 cqe->status = cpu_to_le16(status);
2076         } else {
2077
2078                 /*
2079                  * try to push the data even if the SQE status is non-zero.
2080                  * There may be a status where data still was intended to
2081                  * be moved
2082                  */
2083                 if ((fod->io_dir == NVMET_FCP_READ) && (fod->data_sg_cnt)) {
2084                         /* push the data over before sending rsp */
2085                         nvmet_fc_transfer_fcp_data(tgtport, fod,
2086                                                 NVMET_FCOP_READDATA);
2087                         return;
2088                 }
2089
2090                 /* writes & no data - fall thru */
2091         }
2092
2093         /* data no longer needed */
2094         nvmet_fc_free_tgt_pgs(fod);
2095
2096         nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2097 }
2098
2099
2100 static void
2101 nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req)
2102 {
2103         struct nvmet_fc_fcp_iod *fod = nvmet_req_to_fod(nvme_req);
2104         struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2105
2106         __nvmet_fc_fcp_nvme_cmd_done(tgtport, fod, 0);
2107 }
2108
2109
2110 /*
2111  * Actual processing routine for received FC-NVME LS Requests from the LLD
2112  */
2113 static void
2114 nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
2115                         struct nvmet_fc_fcp_iod *fod)
2116 {
2117         struct nvme_fc_cmd_iu *cmdiu = &fod->cmdiubuf;
2118         u32 xfrlen = be32_to_cpu(cmdiu->data_len);
2119         int ret;
2120
2121         /*
2122          * Fused commands are currently not supported in the linux
2123          * implementation.
2124          *
2125          * As such, the implementation of the FC transport does not
2126          * look at the fused commands and order delivery to the upper
2127          * layer until we have both based on csn.
2128          */
2129
2130         fod->fcpreq->done = nvmet_fc_xmt_fcp_op_done;
2131
2132         if (cmdiu->flags & FCNVME_CMD_FLAGS_WRITE) {
2133                 fod->io_dir = NVMET_FCP_WRITE;
2134                 if (!nvme_is_write(&cmdiu->sqe))
2135                         goto transport_error;
2136         } else if (cmdiu->flags & FCNVME_CMD_FLAGS_READ) {
2137                 fod->io_dir = NVMET_FCP_READ;
2138                 if (nvme_is_write(&cmdiu->sqe))
2139                         goto transport_error;
2140         } else {
2141                 fod->io_dir = NVMET_FCP_NODATA;
2142                 if (xfrlen)
2143                         goto transport_error;
2144         }
2145
2146         fod->req.cmd = &fod->cmdiubuf.sqe;
2147         fod->req.rsp = &fod->rspiubuf.cqe;
2148         fod->req.port = fod->queue->port;
2149
2150         /* clear any response payload */
2151         memset(&fod->rspiubuf, 0, sizeof(fod->rspiubuf));
2152
2153         fod->data_sg = NULL;
2154         fod->data_sg_cnt = 0;
2155
2156         ret = nvmet_req_init(&fod->req,
2157                                 &fod->queue->nvme_cq,
2158                                 &fod->queue->nvme_sq,
2159                                 &nvmet_fc_tgt_fcp_ops);
2160         if (!ret) {
2161                 /* bad SQE content or invalid ctrl state */
2162                 /* nvmet layer has already called op done to send rsp. */
2163                 return;
2164         }
2165
2166         fod->req.transfer_len = xfrlen;
2167
2168         /* keep a running counter of tail position */
2169         atomic_inc(&fod->queue->sqtail);
2170
2171         if (fod->req.transfer_len) {
2172                 ret = nvmet_fc_alloc_tgt_pgs(fod);
2173                 if (ret) {
2174                         nvmet_req_complete(&fod->req, ret);
2175                         return;
2176                 }
2177         }
2178         fod->req.sg = fod->data_sg;
2179         fod->req.sg_cnt = fod->data_sg_cnt;
2180         fod->offset = 0;
2181
2182         if (fod->io_dir == NVMET_FCP_WRITE) {
2183                 /* pull the data over before invoking nvmet layer */
2184                 nvmet_fc_transfer_fcp_data(tgtport, fod, NVMET_FCOP_WRITEDATA);
2185                 return;
2186         }
2187
2188         /*
2189          * Reads or no data:
2190          *
2191          * can invoke the nvmet_layer now. If read data, cmd completion will
2192          * push the data
2193          */
2194         nvmet_req_execute(&fod->req);
2195         return;
2196
2197 transport_error:
2198         nvmet_fc_abort_op(tgtport, fod);
2199 }
2200
2201 /*
2202  * Actual processing routine for received FC-NVME LS Requests from the LLD
2203  */
2204 static void
2205 nvmet_fc_handle_fcp_rqst_work(struct work_struct *work)
2206 {
2207         struct nvmet_fc_fcp_iod *fod =
2208                 container_of(work, struct nvmet_fc_fcp_iod, work);
2209         struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2210
2211         nvmet_fc_handle_fcp_rqst(tgtport, fod);
2212 }
2213
2214 /**
2215  * nvmet_fc_rcv_fcp_req - transport entry point called by an LLDD
2216  *                       upon the reception of a NVME FCP CMD IU.
2217  *
2218  * Pass a FC-NVME FCP CMD IU received from the FC link to the nvmet-fc
2219  * layer for processing.
2220  *
2221  * The nvmet_fc layer allocates a local job structure (struct
2222  * nvmet_fc_fcp_iod) from the queue for the io and copies the
2223  * CMD IU buffer to the job structure. As such, on a successful
2224  * completion (returns 0), the LLDD may immediately free/reuse
2225  * the CMD IU buffer passed in the call.
2226  *
2227  * However, in some circumstances, due to the packetized nature of FC
2228  * and the api of the FC LLDD which may issue a hw command to send the
2229  * response, but the LLDD may not get the hw completion for that command
2230  * and upcall the nvmet_fc layer before a new command may be
2231  * asynchronously received - its possible for a command to be received
2232  * before the LLDD and nvmet_fc have recycled the job structure. It gives
2233  * the appearance of more commands received than fits in the sq.
2234  * To alleviate this scenario, a temporary queue is maintained in the
2235  * transport for pending LLDD requests waiting for a queue job structure.
2236  * In these "overrun" cases, a temporary queue element is allocated
2237  * the LLDD request and CMD iu buffer information remembered, and the
2238  * routine returns a -EOVERFLOW status. Subsequently, when a queue job
2239  * structure is freed, it is immediately reallocated for anything on the
2240  * pending request list. The LLDDs defer_rcv() callback is called,
2241  * informing the LLDD that it may reuse the CMD IU buffer, and the io
2242  * is then started normally with the transport.
2243  *
2244  * The LLDD, when receiving an -EOVERFLOW completion status, is to treat
2245  * the completion as successful but must not reuse the CMD IU buffer
2246  * until the LLDD's defer_rcv() callback has been called for the
2247  * corresponding struct nvmefc_tgt_fcp_req pointer.
2248  *
2249  * If there is any other condition in which an error occurs, the
2250  * transport will return a non-zero status indicating the error.
2251  * In all cases other than -EOVERFLOW, the transport has not accepted the
2252  * request and the LLDD should abort the exchange.
2253  *
2254  * @target_port: pointer to the (registered) target port the FCP CMD IU
2255  *              was received on.
2256  * @fcpreq:     pointer to a fcpreq request structure to be used to reference
2257  *              the exchange corresponding to the FCP Exchange.
2258  * @cmdiubuf:   pointer to the buffer containing the FCP CMD IU
2259  * @cmdiubuf_len: length, in bytes, of the received FCP CMD IU
2260  */
2261 int
2262 nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port *target_port,
2263                         struct nvmefc_tgt_fcp_req *fcpreq,
2264                         void *cmdiubuf, u32 cmdiubuf_len)
2265 {
2266         struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
2267         struct nvme_fc_cmd_iu *cmdiu = cmdiubuf;
2268         struct nvmet_fc_tgt_queue *queue;
2269         struct nvmet_fc_fcp_iod *fod;
2270         struct nvmet_fc_defer_fcp_req *deferfcp;
2271         unsigned long flags;
2272
2273         /* validate iu, so the connection id can be used to find the queue */
2274         if ((cmdiubuf_len != sizeof(*cmdiu)) ||
2275                         (cmdiu->scsi_id != NVME_CMD_SCSI_ID) ||
2276                         (cmdiu->fc_id != NVME_CMD_FC_ID) ||
2277                         (be16_to_cpu(cmdiu->iu_len) != (sizeof(*cmdiu)/4)))
2278                 return -EIO;
2279
2280         queue = nvmet_fc_find_target_queue(tgtport,
2281                                 be64_to_cpu(cmdiu->connection_id));
2282         if (!queue)
2283                 return -ENOTCONN;
2284
2285         /*
2286          * note: reference taken by find_target_queue
2287          * After successful fod allocation, the fod will inherit the
2288          * ownership of that reference and will remove the reference
2289          * when the fod is freed.
2290          */
2291
2292         spin_lock_irqsave(&queue->qlock, flags);
2293
2294         fod = nvmet_fc_alloc_fcp_iod(queue);
2295         if (fod) {
2296                 spin_unlock_irqrestore(&queue->qlock, flags);
2297
2298                 fcpreq->nvmet_fc_private = fod;
2299                 fod->fcpreq = fcpreq;
2300
2301                 memcpy(&fod->cmdiubuf, cmdiubuf, cmdiubuf_len);
2302
2303                 nvmet_fc_queue_fcp_req(tgtport, queue, fcpreq);
2304
2305                 return 0;
2306         }
2307
2308         if (!tgtport->ops->defer_rcv) {
2309                 spin_unlock_irqrestore(&queue->qlock, flags);
2310                 /* release the queue lookup reference */
2311                 nvmet_fc_tgt_q_put(queue);
2312                 return -ENOENT;
2313         }
2314
2315         deferfcp = list_first_entry_or_null(&queue->avail_defer_list,
2316                         struct nvmet_fc_defer_fcp_req, req_list);
2317         if (deferfcp) {
2318                 /* Just re-use one that was previously allocated */
2319                 list_del(&deferfcp->req_list);
2320         } else {
2321                 spin_unlock_irqrestore(&queue->qlock, flags);
2322
2323                 /* Now we need to dynamically allocate one */
2324                 deferfcp = kmalloc(sizeof(*deferfcp), GFP_KERNEL);
2325                 if (!deferfcp) {
2326                         /* release the queue lookup reference */
2327                         nvmet_fc_tgt_q_put(queue);
2328                         return -ENOMEM;
2329                 }
2330                 spin_lock_irqsave(&queue->qlock, flags);
2331         }
2332
2333         /* For now, use rspaddr / rsplen to save payload information */
2334         fcpreq->rspaddr = cmdiubuf;
2335         fcpreq->rsplen  = cmdiubuf_len;
2336         deferfcp->fcp_req = fcpreq;
2337
2338         /* defer processing till a fod becomes available */
2339         list_add_tail(&deferfcp->req_list, &queue->pending_cmd_list);
2340
2341         /* NOTE: the queue lookup reference is still valid */
2342
2343         spin_unlock_irqrestore(&queue->qlock, flags);
2344
2345         return -EOVERFLOW;
2346 }
2347 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_req);
2348
2349 /**
2350  * nvmet_fc_rcv_fcp_abort - transport entry point called by an LLDD
2351  *                       upon the reception of an ABTS for a FCP command
2352  *
2353  * Notify the transport that an ABTS has been received for a FCP command
2354  * that had been given to the transport via nvmet_fc_rcv_fcp_req(). The
2355  * LLDD believes the command is still being worked on
2356  * (template_ops->fcp_req_release() has not been called).
2357  *
2358  * The transport will wait for any outstanding work (an op to the LLDD,
2359  * which the lldd should complete with error due to the ABTS; or the
2360  * completion from the nvmet layer of the nvme command), then will
2361  * stop processing and call the nvmet_fc_rcv_fcp_req() callback to
2362  * return the i/o context to the LLDD.  The LLDD may send the BA_ACC
2363  * to the ABTS either after return from this function (assuming any
2364  * outstanding op work has been terminated) or upon the callback being
2365  * called.
2366  *
2367  * @target_port: pointer to the (registered) target port the FCP CMD IU
2368  *              was received on.
2369  * @fcpreq:     pointer to the fcpreq request structure that corresponds
2370  *              to the exchange that received the ABTS.
2371  */
2372 void
2373 nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port *target_port,
2374                         struct nvmefc_tgt_fcp_req *fcpreq)
2375 {
2376         struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2377         struct nvmet_fc_tgt_queue *queue;
2378         unsigned long flags;
2379
2380         if (!fod || fod->fcpreq != fcpreq)
2381                 /* job appears to have already completed, ignore abort */
2382                 return;
2383
2384         queue = fod->queue;
2385
2386         spin_lock_irqsave(&queue->qlock, flags);
2387         if (fod->active) {
2388                 /*
2389                  * mark as abort. The abort handler, invoked upon completion
2390                  * of any work, will detect the aborted status and do the
2391                  * callback.
2392                  */
2393                 spin_lock(&fod->flock);
2394                 fod->abort = true;
2395                 fod->aborted = true;
2396                 spin_unlock(&fod->flock);
2397         }
2398         spin_unlock_irqrestore(&queue->qlock, flags);
2399 }
2400 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_abort);
2401
2402
2403 struct nvmet_fc_traddr {
2404         u64     nn;
2405         u64     pn;
2406 };
2407
2408 static int
2409 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
2410 {
2411         u64 token64;
2412
2413         if (match_u64(sstr, &token64))
2414                 return -EINVAL;
2415         *val = token64;
2416
2417         return 0;
2418 }
2419
2420 /*
2421  * This routine validates and extracts the WWN's from the TRADDR string.
2422  * As kernel parsers need the 0x to determine number base, universally
2423  * build string to parse with 0x prefix before parsing name strings.
2424  */
2425 static int
2426 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
2427 {
2428         char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
2429         substring_t wwn = { name, &name[sizeof(name)-1] };
2430         int nnoffset, pnoffset;
2431
2432         /* validate it string one of the 2 allowed formats */
2433         if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
2434                         !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
2435                         !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
2436                                 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
2437                 nnoffset = NVME_FC_TRADDR_OXNNLEN;
2438                 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
2439                                                 NVME_FC_TRADDR_OXNNLEN;
2440         } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
2441                         !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
2442                         !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
2443                                 "pn-", NVME_FC_TRADDR_NNLEN))) {
2444                 nnoffset = NVME_FC_TRADDR_NNLEN;
2445                 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
2446         } else
2447                 goto out_einval;
2448
2449         name[0] = '0';
2450         name[1] = 'x';
2451         name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
2452
2453         memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2454         if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
2455                 goto out_einval;
2456
2457         memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2458         if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
2459                 goto out_einval;
2460
2461         return 0;
2462
2463 out_einval:
2464         pr_warn("%s: bad traddr string\n", __func__);
2465         return -EINVAL;
2466 }
2467
2468 static int
2469 nvmet_fc_add_port(struct nvmet_port *port)
2470 {
2471         struct nvmet_fc_tgtport *tgtport;
2472         struct nvmet_fc_traddr traddr = { 0L, 0L };
2473         unsigned long flags;
2474         int ret;
2475
2476         /* validate the address info */
2477         if ((port->disc_addr.trtype != NVMF_TRTYPE_FC) ||
2478             (port->disc_addr.adrfam != NVMF_ADDR_FAMILY_FC))
2479                 return -EINVAL;
2480
2481         /* map the traddr address info to a target port */
2482
2483         ret = nvme_fc_parse_traddr(&traddr, port->disc_addr.traddr,
2484                         sizeof(port->disc_addr.traddr));
2485         if (ret)
2486                 return ret;
2487
2488         ret = -ENXIO;
2489         spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
2490         list_for_each_entry(tgtport, &nvmet_fc_target_list, tgt_list) {
2491                 if ((tgtport->fc_target_port.node_name == traddr.nn) &&
2492                     (tgtport->fc_target_port.port_name == traddr.pn)) {
2493                         tgtport->port = port;
2494                         ret = 0;
2495                         break;
2496                 }
2497         }
2498         spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
2499         return ret;
2500 }
2501
2502 static void
2503 nvmet_fc_remove_port(struct nvmet_port *port)
2504 {
2505         /* nothing to do */
2506 }
2507
2508 static struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops = {
2509         .owner                  = THIS_MODULE,
2510         .type                   = NVMF_TRTYPE_FC,
2511         .msdbd                  = 1,
2512         .add_port               = nvmet_fc_add_port,
2513         .remove_port            = nvmet_fc_remove_port,
2514         .queue_response         = nvmet_fc_fcp_nvme_cmd_done,
2515         .delete_ctrl            = nvmet_fc_delete_ctrl,
2516 };
2517
2518 static int __init nvmet_fc_init_module(void)
2519 {
2520         return nvmet_register_transport(&nvmet_fc_tgt_fcp_ops);
2521 }
2522
2523 static void __exit nvmet_fc_exit_module(void)
2524 {
2525         /* sanity check - all lports should be removed */
2526         if (!list_empty(&nvmet_fc_target_list))
2527                 pr_warn("%s: targetport list not empty\n", __func__);
2528
2529         nvmet_unregister_transport(&nvmet_fc_tgt_fcp_ops);
2530
2531         ida_destroy(&nvmet_fc_tgtport_cnt);
2532 }
2533
2534 module_init(nvmet_fc_init_module);
2535 module_exit(nvmet_fc_exit_module);
2536
2537 MODULE_LICENSE("GPL v2");