Merge remote-tracking branches 'asoc/topic/wm8524', 'asoc/topic/wm8804' and 'asoc...
[sfrench/cifs-2.6.git] / drivers / nvme / target / fc.c
1 /*
2  * Copyright (c) 2016 Avago Technologies.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful.
9  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
10  * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
11  * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
12  * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
13  * See the GNU General Public License for more details, a copy of which
14  * can be found in the file COPYING included with this package
15  *
16  */
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/blk-mq.h>
21 #include <linux/parser.h>
22 #include <linux/random.h>
23 #include <uapi/scsi/fc/fc_fs.h>
24 #include <uapi/scsi/fc/fc_els.h>
25
26 #include "nvmet.h"
27 #include <linux/nvme-fc-driver.h>
28 #include <linux/nvme-fc.h>
29
30
31 /* *************************** Data Structures/Defines ****************** */
32
33
34 #define NVMET_LS_CTX_COUNT              4
35
36 /* for this implementation, assume small single frame rqst/rsp */
37 #define NVME_FC_MAX_LS_BUFFER_SIZE              2048
38
39 struct nvmet_fc_tgtport;
40 struct nvmet_fc_tgt_assoc;
41
42 struct nvmet_fc_ls_iod {
43         struct nvmefc_tgt_ls_req        *lsreq;
44         struct nvmefc_tgt_fcp_req       *fcpreq;        /* only if RS */
45
46         struct list_head                ls_list;        /* tgtport->ls_list */
47
48         struct nvmet_fc_tgtport         *tgtport;
49         struct nvmet_fc_tgt_assoc       *assoc;
50
51         u8                              *rqstbuf;
52         u8                              *rspbuf;
53         u16                             rqstdatalen;
54         dma_addr_t                      rspdma;
55
56         struct scatterlist              sg[2];
57
58         struct work_struct              work;
59 } __aligned(sizeof(unsigned long long));
60
61 #define NVMET_FC_MAX_KB_PER_XFR         256
62
63 enum nvmet_fcp_datadir {
64         NVMET_FCP_NODATA,
65         NVMET_FCP_WRITE,
66         NVMET_FCP_READ,
67         NVMET_FCP_ABORTED,
68 };
69
70 struct nvmet_fc_fcp_iod {
71         struct nvmefc_tgt_fcp_req       *fcpreq;
72
73         struct nvme_fc_cmd_iu           cmdiubuf;
74         struct nvme_fc_ersp_iu          rspiubuf;
75         dma_addr_t                      rspdma;
76         struct scatterlist              *data_sg;
77         struct scatterlist              *next_sg;
78         int                             data_sg_cnt;
79         u32                             next_sg_offset;
80         u32                             total_length;
81         u32                             offset;
82         enum nvmet_fcp_datadir          io_dir;
83         bool                            active;
84         bool                            abort;
85         bool                            aborted;
86         bool                            writedataactive;
87         spinlock_t                      flock;
88
89         struct nvmet_req                req;
90         struct work_struct              work;
91         struct work_struct              done_work;
92
93         struct nvmet_fc_tgtport         *tgtport;
94         struct nvmet_fc_tgt_queue       *queue;
95
96         struct list_head                fcp_list;       /* tgtport->fcp_list */
97 };
98
99 struct nvmet_fc_tgtport {
100
101         struct nvmet_fc_target_port     fc_target_port;
102
103         struct list_head                tgt_list; /* nvmet_fc_target_list */
104         struct device                   *dev;   /* dev for dma mapping */
105         struct nvmet_fc_target_template *ops;
106
107         struct nvmet_fc_ls_iod          *iod;
108         spinlock_t                      lock;
109         struct list_head                ls_list;
110         struct list_head                ls_busylist;
111         struct list_head                assoc_list;
112         struct ida                      assoc_cnt;
113         struct nvmet_port               *port;
114         struct kref                     ref;
115 };
116
117 struct nvmet_fc_defer_fcp_req {
118         struct list_head                req_list;
119         struct nvmefc_tgt_fcp_req       *fcp_req;
120 };
121
122 struct nvmet_fc_tgt_queue {
123         bool                            ninetypercent;
124         u16                             qid;
125         u16                             sqsize;
126         u16                             ersp_ratio;
127         __le16                          sqhd;
128         int                             cpu;
129         atomic_t                        connected;
130         atomic_t                        sqtail;
131         atomic_t                        zrspcnt;
132         atomic_t                        rsn;
133         spinlock_t                      qlock;
134         struct nvmet_port               *port;
135         struct nvmet_cq                 nvme_cq;
136         struct nvmet_sq                 nvme_sq;
137         struct nvmet_fc_tgt_assoc       *assoc;
138         struct nvmet_fc_fcp_iod         *fod;           /* array of fcp_iods */
139         struct list_head                fod_list;
140         struct list_head                pending_cmd_list;
141         struct list_head                avail_defer_list;
142         struct workqueue_struct         *work_q;
143         struct kref                     ref;
144 } __aligned(sizeof(unsigned long long));
145
146 struct nvmet_fc_tgt_assoc {
147         u64                             association_id;
148         u32                             a_id;
149         struct nvmet_fc_tgtport         *tgtport;
150         struct list_head                a_list;
151         struct nvmet_fc_tgt_queue       *queues[NVMET_NR_QUEUES];
152         struct kref                     ref;
153 };
154
155
156 static inline int
157 nvmet_fc_iodnum(struct nvmet_fc_ls_iod *iodptr)
158 {
159         return (iodptr - iodptr->tgtport->iod);
160 }
161
162 static inline int
163 nvmet_fc_fodnum(struct nvmet_fc_fcp_iod *fodptr)
164 {
165         return (fodptr - fodptr->queue->fod);
166 }
167
168
169 /*
170  * Association and Connection IDs:
171  *
172  * Association ID will have random number in upper 6 bytes and zero
173  *   in lower 2 bytes
174  *
175  * Connection IDs will be Association ID with QID or'd in lower 2 bytes
176  *
177  * note: Association ID = Connection ID for queue 0
178  */
179 #define BYTES_FOR_QID                   sizeof(u16)
180 #define BYTES_FOR_QID_SHIFT             (BYTES_FOR_QID * 8)
181 #define NVMET_FC_QUEUEID_MASK           ((u64)((1 << BYTES_FOR_QID_SHIFT) - 1))
182
183 static inline u64
184 nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc *assoc, u16 qid)
185 {
186         return (assoc->association_id | qid);
187 }
188
189 static inline u64
190 nvmet_fc_getassociationid(u64 connectionid)
191 {
192         return connectionid & ~NVMET_FC_QUEUEID_MASK;
193 }
194
195 static inline u16
196 nvmet_fc_getqueueid(u64 connectionid)
197 {
198         return (u16)(connectionid & NVMET_FC_QUEUEID_MASK);
199 }
200
201 static inline struct nvmet_fc_tgtport *
202 targetport_to_tgtport(struct nvmet_fc_target_port *targetport)
203 {
204         return container_of(targetport, struct nvmet_fc_tgtport,
205                                  fc_target_port);
206 }
207
208 static inline struct nvmet_fc_fcp_iod *
209 nvmet_req_to_fod(struct nvmet_req *nvme_req)
210 {
211         return container_of(nvme_req, struct nvmet_fc_fcp_iod, req);
212 }
213
214
215 /* *************************** Globals **************************** */
216
217
218 static DEFINE_SPINLOCK(nvmet_fc_tgtlock);
219
220 static LIST_HEAD(nvmet_fc_target_list);
221 static DEFINE_IDA(nvmet_fc_tgtport_cnt);
222
223
224 static void nvmet_fc_handle_ls_rqst_work(struct work_struct *work);
225 static void nvmet_fc_handle_fcp_rqst_work(struct work_struct *work);
226 static void nvmet_fc_fcp_rqst_op_done_work(struct work_struct *work);
227 static void nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc);
228 static int nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc);
229 static void nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue);
230 static int nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue);
231 static void nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport);
232 static int nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport);
233 static void nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
234                                         struct nvmet_fc_fcp_iod *fod);
235
236
237 /* *********************** FC-NVME DMA Handling **************************** */
238
239 /*
240  * The fcloop device passes in a NULL device pointer. Real LLD's will
241  * pass in a valid device pointer. If NULL is passed to the dma mapping
242  * routines, depending on the platform, it may or may not succeed, and
243  * may crash.
244  *
245  * As such:
246  * Wrapper all the dma routines and check the dev pointer.
247  *
248  * If simple mappings (return just a dma address, we'll noop them,
249  * returning a dma address of 0.
250  *
251  * On more complex mappings (dma_map_sg), a pseudo routine fills
252  * in the scatter list, setting all dma addresses to 0.
253  */
254
255 static inline dma_addr_t
256 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
257                 enum dma_data_direction dir)
258 {
259         return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
260 }
261
262 static inline int
263 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
264 {
265         return dev ? dma_mapping_error(dev, dma_addr) : 0;
266 }
267
268 static inline void
269 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
270         enum dma_data_direction dir)
271 {
272         if (dev)
273                 dma_unmap_single(dev, addr, size, dir);
274 }
275
276 static inline void
277 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
278                 enum dma_data_direction dir)
279 {
280         if (dev)
281                 dma_sync_single_for_cpu(dev, addr, size, dir);
282 }
283
284 static inline void
285 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
286                 enum dma_data_direction dir)
287 {
288         if (dev)
289                 dma_sync_single_for_device(dev, addr, size, dir);
290 }
291
292 /* pseudo dma_map_sg call */
293 static int
294 fc_map_sg(struct scatterlist *sg, int nents)
295 {
296         struct scatterlist *s;
297         int i;
298
299         WARN_ON(nents == 0 || sg[0].length == 0);
300
301         for_each_sg(sg, s, nents, i) {
302                 s->dma_address = 0L;
303 #ifdef CONFIG_NEED_SG_DMA_LENGTH
304                 s->dma_length = s->length;
305 #endif
306         }
307         return nents;
308 }
309
310 static inline int
311 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
312                 enum dma_data_direction dir)
313 {
314         return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
315 }
316
317 static inline void
318 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
319                 enum dma_data_direction dir)
320 {
321         if (dev)
322                 dma_unmap_sg(dev, sg, nents, dir);
323 }
324
325
326 /* *********************** FC-NVME Port Management ************************ */
327
328
329 static int
330 nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
331 {
332         struct nvmet_fc_ls_iod *iod;
333         int i;
334
335         iod = kcalloc(NVMET_LS_CTX_COUNT, sizeof(struct nvmet_fc_ls_iod),
336                         GFP_KERNEL);
337         if (!iod)
338                 return -ENOMEM;
339
340         tgtport->iod = iod;
341
342         for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
343                 INIT_WORK(&iod->work, nvmet_fc_handle_ls_rqst_work);
344                 iod->tgtport = tgtport;
345                 list_add_tail(&iod->ls_list, &tgtport->ls_list);
346
347                 iod->rqstbuf = kcalloc(2, NVME_FC_MAX_LS_BUFFER_SIZE,
348                         GFP_KERNEL);
349                 if (!iod->rqstbuf)
350                         goto out_fail;
351
352                 iod->rspbuf = iod->rqstbuf + NVME_FC_MAX_LS_BUFFER_SIZE;
353
354                 iod->rspdma = fc_dma_map_single(tgtport->dev, iod->rspbuf,
355                                                 NVME_FC_MAX_LS_BUFFER_SIZE,
356                                                 DMA_TO_DEVICE);
357                 if (fc_dma_mapping_error(tgtport->dev, iod->rspdma))
358                         goto out_fail;
359         }
360
361         return 0;
362
363 out_fail:
364         kfree(iod->rqstbuf);
365         list_del(&iod->ls_list);
366         for (iod--, i--; i >= 0; iod--, i--) {
367                 fc_dma_unmap_single(tgtport->dev, iod->rspdma,
368                                 NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE);
369                 kfree(iod->rqstbuf);
370                 list_del(&iod->ls_list);
371         }
372
373         kfree(iod);
374
375         return -EFAULT;
376 }
377
378 static void
379 nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
380 {
381         struct nvmet_fc_ls_iod *iod = tgtport->iod;
382         int i;
383
384         for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
385                 fc_dma_unmap_single(tgtport->dev,
386                                 iod->rspdma, NVME_FC_MAX_LS_BUFFER_SIZE,
387                                 DMA_TO_DEVICE);
388                 kfree(iod->rqstbuf);
389                 list_del(&iod->ls_list);
390         }
391         kfree(tgtport->iod);
392 }
393
394 static struct nvmet_fc_ls_iod *
395 nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport *tgtport)
396 {
397         struct nvmet_fc_ls_iod *iod;
398         unsigned long flags;
399
400         spin_lock_irqsave(&tgtport->lock, flags);
401         iod = list_first_entry_or_null(&tgtport->ls_list,
402                                         struct nvmet_fc_ls_iod, ls_list);
403         if (iod)
404                 list_move_tail(&iod->ls_list, &tgtport->ls_busylist);
405         spin_unlock_irqrestore(&tgtport->lock, flags);
406         return iod;
407 }
408
409
410 static void
411 nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport *tgtport,
412                         struct nvmet_fc_ls_iod *iod)
413 {
414         unsigned long flags;
415
416         spin_lock_irqsave(&tgtport->lock, flags);
417         list_move(&iod->ls_list, &tgtport->ls_list);
418         spin_unlock_irqrestore(&tgtport->lock, flags);
419 }
420
421 static void
422 nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
423                                 struct nvmet_fc_tgt_queue *queue)
424 {
425         struct nvmet_fc_fcp_iod *fod = queue->fod;
426         int i;
427
428         for (i = 0; i < queue->sqsize; fod++, i++) {
429                 INIT_WORK(&fod->work, nvmet_fc_handle_fcp_rqst_work);
430                 INIT_WORK(&fod->done_work, nvmet_fc_fcp_rqst_op_done_work);
431                 fod->tgtport = tgtport;
432                 fod->queue = queue;
433                 fod->active = false;
434                 fod->abort = false;
435                 fod->aborted = false;
436                 fod->fcpreq = NULL;
437                 list_add_tail(&fod->fcp_list, &queue->fod_list);
438                 spin_lock_init(&fod->flock);
439
440                 fod->rspdma = fc_dma_map_single(tgtport->dev, &fod->rspiubuf,
441                                         sizeof(fod->rspiubuf), DMA_TO_DEVICE);
442                 if (fc_dma_mapping_error(tgtport->dev, fod->rspdma)) {
443                         list_del(&fod->fcp_list);
444                         for (fod--, i--; i >= 0; fod--, i--) {
445                                 fc_dma_unmap_single(tgtport->dev, fod->rspdma,
446                                                 sizeof(fod->rspiubuf),
447                                                 DMA_TO_DEVICE);
448                                 fod->rspdma = 0L;
449                                 list_del(&fod->fcp_list);
450                         }
451
452                         return;
453                 }
454         }
455 }
456
457 static void
458 nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
459                                 struct nvmet_fc_tgt_queue *queue)
460 {
461         struct nvmet_fc_fcp_iod *fod = queue->fod;
462         int i;
463
464         for (i = 0; i < queue->sqsize; fod++, i++) {
465                 if (fod->rspdma)
466                         fc_dma_unmap_single(tgtport->dev, fod->rspdma,
467                                 sizeof(fod->rspiubuf), DMA_TO_DEVICE);
468         }
469 }
470
471 static struct nvmet_fc_fcp_iod *
472 nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue *queue)
473 {
474         struct nvmet_fc_fcp_iod *fod;
475
476         lockdep_assert_held(&queue->qlock);
477
478         fod = list_first_entry_or_null(&queue->fod_list,
479                                         struct nvmet_fc_fcp_iod, fcp_list);
480         if (fod) {
481                 list_del(&fod->fcp_list);
482                 fod->active = true;
483                 /*
484                  * no queue reference is taken, as it was taken by the
485                  * queue lookup just prior to the allocation. The iod
486                  * will "inherit" that reference.
487                  */
488         }
489         return fod;
490 }
491
492
493 static void
494 nvmet_fc_queue_fcp_req(struct nvmet_fc_tgtport *tgtport,
495                        struct nvmet_fc_tgt_queue *queue,
496                        struct nvmefc_tgt_fcp_req *fcpreq)
497 {
498         struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
499
500         /*
501          * put all admin cmds on hw queue id 0. All io commands go to
502          * the respective hw queue based on a modulo basis
503          */
504         fcpreq->hwqid = queue->qid ?
505                         ((queue->qid - 1) % tgtport->ops->max_hw_queues) : 0;
506
507         if (tgtport->ops->target_features & NVMET_FCTGTFEAT_CMD_IN_ISR)
508                 queue_work_on(queue->cpu, queue->work_q, &fod->work);
509         else
510                 nvmet_fc_handle_fcp_rqst(tgtport, fod);
511 }
512
513 static void
514 nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue *queue,
515                         struct nvmet_fc_fcp_iod *fod)
516 {
517         struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
518         struct nvmet_fc_tgtport *tgtport = fod->tgtport;
519         struct nvmet_fc_defer_fcp_req *deferfcp;
520         unsigned long flags;
521
522         fc_dma_sync_single_for_cpu(tgtport->dev, fod->rspdma,
523                                 sizeof(fod->rspiubuf), DMA_TO_DEVICE);
524
525         fcpreq->nvmet_fc_private = NULL;
526
527         fod->active = false;
528         fod->abort = false;
529         fod->aborted = false;
530         fod->writedataactive = false;
531         fod->fcpreq = NULL;
532
533         tgtport->ops->fcp_req_release(&tgtport->fc_target_port, fcpreq);
534
535         spin_lock_irqsave(&queue->qlock, flags);
536         deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
537                                 struct nvmet_fc_defer_fcp_req, req_list);
538         if (!deferfcp) {
539                 list_add_tail(&fod->fcp_list, &fod->queue->fod_list);
540                 spin_unlock_irqrestore(&queue->qlock, flags);
541
542                 /* Release reference taken at queue lookup and fod allocation */
543                 nvmet_fc_tgt_q_put(queue);
544                 return;
545         }
546
547         /* Re-use the fod for the next pending cmd that was deferred */
548         list_del(&deferfcp->req_list);
549
550         fcpreq = deferfcp->fcp_req;
551
552         /* deferfcp can be reused for another IO at a later date */
553         list_add_tail(&deferfcp->req_list, &queue->avail_defer_list);
554
555         spin_unlock_irqrestore(&queue->qlock, flags);
556
557         /* Save NVME CMD IO in fod */
558         memcpy(&fod->cmdiubuf, fcpreq->rspaddr, fcpreq->rsplen);
559
560         /* Setup new fcpreq to be processed */
561         fcpreq->rspaddr = NULL;
562         fcpreq->rsplen  = 0;
563         fcpreq->nvmet_fc_private = fod;
564         fod->fcpreq = fcpreq;
565         fod->active = true;
566
567         /* inform LLDD IO is now being processed */
568         tgtport->ops->defer_rcv(&tgtport->fc_target_port, fcpreq);
569
570         /* Submit deferred IO for processing */
571         nvmet_fc_queue_fcp_req(tgtport, queue, fcpreq);
572
573         /*
574          * Leave the queue lookup get reference taken when
575          * fod was originally allocated.
576          */
577 }
578
579 static int
580 nvmet_fc_queue_to_cpu(struct nvmet_fc_tgtport *tgtport, int qid)
581 {
582         int cpu, idx, cnt;
583
584         if (tgtport->ops->max_hw_queues == 1)
585                 return WORK_CPU_UNBOUND;
586
587         /* Simple cpu selection based on qid modulo active cpu count */
588         idx = !qid ? 0 : (qid - 1) % num_active_cpus();
589
590         /* find the n'th active cpu */
591         for (cpu = 0, cnt = 0; ; ) {
592                 if (cpu_active(cpu)) {
593                         if (cnt == idx)
594                                 break;
595                         cnt++;
596                 }
597                 cpu = (cpu + 1) % num_possible_cpus();
598         }
599
600         return cpu;
601 }
602
603 static struct nvmet_fc_tgt_queue *
604 nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc *assoc,
605                         u16 qid, u16 sqsize)
606 {
607         struct nvmet_fc_tgt_queue *queue;
608         unsigned long flags;
609         int ret;
610
611         if (qid >= NVMET_NR_QUEUES)
612                 return NULL;
613
614         queue = kzalloc((sizeof(*queue) +
615                                 (sizeof(struct nvmet_fc_fcp_iod) * sqsize)),
616                                 GFP_KERNEL);
617         if (!queue)
618                 return NULL;
619
620         if (!nvmet_fc_tgt_a_get(assoc))
621                 goto out_free_queue;
622
623         queue->work_q = alloc_workqueue("ntfc%d.%d.%d", 0, 0,
624                                 assoc->tgtport->fc_target_port.port_num,
625                                 assoc->a_id, qid);
626         if (!queue->work_q)
627                 goto out_a_put;
628
629         queue->fod = (struct nvmet_fc_fcp_iod *)&queue[1];
630         queue->qid = qid;
631         queue->sqsize = sqsize;
632         queue->assoc = assoc;
633         queue->port = assoc->tgtport->port;
634         queue->cpu = nvmet_fc_queue_to_cpu(assoc->tgtport, qid);
635         INIT_LIST_HEAD(&queue->fod_list);
636         INIT_LIST_HEAD(&queue->avail_defer_list);
637         INIT_LIST_HEAD(&queue->pending_cmd_list);
638         atomic_set(&queue->connected, 0);
639         atomic_set(&queue->sqtail, 0);
640         atomic_set(&queue->rsn, 1);
641         atomic_set(&queue->zrspcnt, 0);
642         spin_lock_init(&queue->qlock);
643         kref_init(&queue->ref);
644
645         nvmet_fc_prep_fcp_iodlist(assoc->tgtport, queue);
646
647         ret = nvmet_sq_init(&queue->nvme_sq);
648         if (ret)
649                 goto out_fail_iodlist;
650
651         WARN_ON(assoc->queues[qid]);
652         spin_lock_irqsave(&assoc->tgtport->lock, flags);
653         assoc->queues[qid] = queue;
654         spin_unlock_irqrestore(&assoc->tgtport->lock, flags);
655
656         return queue;
657
658 out_fail_iodlist:
659         nvmet_fc_destroy_fcp_iodlist(assoc->tgtport, queue);
660         destroy_workqueue(queue->work_q);
661 out_a_put:
662         nvmet_fc_tgt_a_put(assoc);
663 out_free_queue:
664         kfree(queue);
665         return NULL;
666 }
667
668
669 static void
670 nvmet_fc_tgt_queue_free(struct kref *ref)
671 {
672         struct nvmet_fc_tgt_queue *queue =
673                 container_of(ref, struct nvmet_fc_tgt_queue, ref);
674         unsigned long flags;
675
676         spin_lock_irqsave(&queue->assoc->tgtport->lock, flags);
677         queue->assoc->queues[queue->qid] = NULL;
678         spin_unlock_irqrestore(&queue->assoc->tgtport->lock, flags);
679
680         nvmet_fc_destroy_fcp_iodlist(queue->assoc->tgtport, queue);
681
682         nvmet_fc_tgt_a_put(queue->assoc);
683
684         destroy_workqueue(queue->work_q);
685
686         kfree(queue);
687 }
688
689 static void
690 nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue)
691 {
692         kref_put(&queue->ref, nvmet_fc_tgt_queue_free);
693 }
694
695 static int
696 nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue)
697 {
698         return kref_get_unless_zero(&queue->ref);
699 }
700
701
702 static void
703 nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue *queue)
704 {
705         struct nvmet_fc_tgtport *tgtport = queue->assoc->tgtport;
706         struct nvmet_fc_fcp_iod *fod = queue->fod;
707         struct nvmet_fc_defer_fcp_req *deferfcp, *tempptr;
708         unsigned long flags;
709         int i, writedataactive;
710         bool disconnect;
711
712         disconnect = atomic_xchg(&queue->connected, 0);
713
714         spin_lock_irqsave(&queue->qlock, flags);
715         /* about outstanding io's */
716         for (i = 0; i < queue->sqsize; fod++, i++) {
717                 if (fod->active) {
718                         spin_lock(&fod->flock);
719                         fod->abort = true;
720                         writedataactive = fod->writedataactive;
721                         spin_unlock(&fod->flock);
722                         /*
723                          * only call lldd abort routine if waiting for
724                          * writedata. other outstanding ops should finish
725                          * on their own.
726                          */
727                         if (writedataactive) {
728                                 spin_lock(&fod->flock);
729                                 fod->aborted = true;
730                                 spin_unlock(&fod->flock);
731                                 tgtport->ops->fcp_abort(
732                                         &tgtport->fc_target_port, fod->fcpreq);
733                         }
734                 }
735         }
736
737         /* Cleanup defer'ed IOs in queue */
738         list_for_each_entry_safe(deferfcp, tempptr, &queue->avail_defer_list,
739                                 req_list) {
740                 list_del(&deferfcp->req_list);
741                 kfree(deferfcp);
742         }
743
744         for (;;) {
745                 deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
746                                 struct nvmet_fc_defer_fcp_req, req_list);
747                 if (!deferfcp)
748                         break;
749
750                 list_del(&deferfcp->req_list);
751                 spin_unlock_irqrestore(&queue->qlock, flags);
752
753                 tgtport->ops->defer_rcv(&tgtport->fc_target_port,
754                                 deferfcp->fcp_req);
755
756                 tgtport->ops->fcp_abort(&tgtport->fc_target_port,
757                                 deferfcp->fcp_req);
758
759                 tgtport->ops->fcp_req_release(&tgtport->fc_target_port,
760                                 deferfcp->fcp_req);
761
762                 kfree(deferfcp);
763
764                 spin_lock_irqsave(&queue->qlock, flags);
765         }
766         spin_unlock_irqrestore(&queue->qlock, flags);
767
768         flush_workqueue(queue->work_q);
769
770         if (disconnect)
771                 nvmet_sq_destroy(&queue->nvme_sq);
772
773         nvmet_fc_tgt_q_put(queue);
774 }
775
776 static struct nvmet_fc_tgt_queue *
777 nvmet_fc_find_target_queue(struct nvmet_fc_tgtport *tgtport,
778                                 u64 connection_id)
779 {
780         struct nvmet_fc_tgt_assoc *assoc;
781         struct nvmet_fc_tgt_queue *queue;
782         u64 association_id = nvmet_fc_getassociationid(connection_id);
783         u16 qid = nvmet_fc_getqueueid(connection_id);
784         unsigned long flags;
785
786         spin_lock_irqsave(&tgtport->lock, flags);
787         list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
788                 if (association_id == assoc->association_id) {
789                         queue = assoc->queues[qid];
790                         if (queue &&
791                             (!atomic_read(&queue->connected) ||
792                              !nvmet_fc_tgt_q_get(queue)))
793                                 queue = NULL;
794                         spin_unlock_irqrestore(&tgtport->lock, flags);
795                         return queue;
796                 }
797         }
798         spin_unlock_irqrestore(&tgtport->lock, flags);
799         return NULL;
800 }
801
802 static struct nvmet_fc_tgt_assoc *
803 nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport *tgtport)
804 {
805         struct nvmet_fc_tgt_assoc *assoc, *tmpassoc;
806         unsigned long flags;
807         u64 ran;
808         int idx;
809         bool needrandom = true;
810
811         assoc = kzalloc(sizeof(*assoc), GFP_KERNEL);
812         if (!assoc)
813                 return NULL;
814
815         idx = ida_simple_get(&tgtport->assoc_cnt, 0, 0, GFP_KERNEL);
816         if (idx < 0)
817                 goto out_free_assoc;
818
819         if (!nvmet_fc_tgtport_get(tgtport))
820                 goto out_ida_put;
821
822         assoc->tgtport = tgtport;
823         assoc->a_id = idx;
824         INIT_LIST_HEAD(&assoc->a_list);
825         kref_init(&assoc->ref);
826
827         while (needrandom) {
828                 get_random_bytes(&ran, sizeof(ran) - BYTES_FOR_QID);
829                 ran = ran << BYTES_FOR_QID_SHIFT;
830
831                 spin_lock_irqsave(&tgtport->lock, flags);
832                 needrandom = false;
833                 list_for_each_entry(tmpassoc, &tgtport->assoc_list, a_list)
834                         if (ran == tmpassoc->association_id) {
835                                 needrandom = true;
836                                 break;
837                         }
838                 if (!needrandom) {
839                         assoc->association_id = ran;
840                         list_add_tail(&assoc->a_list, &tgtport->assoc_list);
841                 }
842                 spin_unlock_irqrestore(&tgtport->lock, flags);
843         }
844
845         return assoc;
846
847 out_ida_put:
848         ida_simple_remove(&tgtport->assoc_cnt, idx);
849 out_free_assoc:
850         kfree(assoc);
851         return NULL;
852 }
853
854 static void
855 nvmet_fc_target_assoc_free(struct kref *ref)
856 {
857         struct nvmet_fc_tgt_assoc *assoc =
858                 container_of(ref, struct nvmet_fc_tgt_assoc, ref);
859         struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
860         unsigned long flags;
861
862         spin_lock_irqsave(&tgtport->lock, flags);
863         list_del(&assoc->a_list);
864         spin_unlock_irqrestore(&tgtport->lock, flags);
865         ida_simple_remove(&tgtport->assoc_cnt, assoc->a_id);
866         kfree(assoc);
867         nvmet_fc_tgtport_put(tgtport);
868 }
869
870 static void
871 nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc)
872 {
873         kref_put(&assoc->ref, nvmet_fc_target_assoc_free);
874 }
875
876 static int
877 nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc)
878 {
879         return kref_get_unless_zero(&assoc->ref);
880 }
881
882 static void
883 nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc)
884 {
885         struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
886         struct nvmet_fc_tgt_queue *queue;
887         unsigned long flags;
888         int i;
889
890         spin_lock_irqsave(&tgtport->lock, flags);
891         for (i = NVMET_NR_QUEUES - 1; i >= 0; i--) {
892                 queue = assoc->queues[i];
893                 if (queue) {
894                         if (!nvmet_fc_tgt_q_get(queue))
895                                 continue;
896                         spin_unlock_irqrestore(&tgtport->lock, flags);
897                         nvmet_fc_delete_target_queue(queue);
898                         nvmet_fc_tgt_q_put(queue);
899                         spin_lock_irqsave(&tgtport->lock, flags);
900                 }
901         }
902         spin_unlock_irqrestore(&tgtport->lock, flags);
903
904         nvmet_fc_tgt_a_put(assoc);
905 }
906
907 static struct nvmet_fc_tgt_assoc *
908 nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport *tgtport,
909                                 u64 association_id)
910 {
911         struct nvmet_fc_tgt_assoc *assoc;
912         struct nvmet_fc_tgt_assoc *ret = NULL;
913         unsigned long flags;
914
915         spin_lock_irqsave(&tgtport->lock, flags);
916         list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
917                 if (association_id == assoc->association_id) {
918                         ret = assoc;
919                         nvmet_fc_tgt_a_get(assoc);
920                         break;
921                 }
922         }
923         spin_unlock_irqrestore(&tgtport->lock, flags);
924
925         return ret;
926 }
927
928
929 /**
930  * nvme_fc_register_targetport - transport entry point called by an
931  *                              LLDD to register the existence of a local
932  *                              NVME subystem FC port.
933  * @pinfo:     pointer to information about the port to be registered
934  * @template:  LLDD entrypoints and operational parameters for the port
935  * @dev:       physical hardware device node port corresponds to. Will be
936  *             used for DMA mappings
937  * @portptr:   pointer to a local port pointer. Upon success, the routine
938  *             will allocate a nvme_fc_local_port structure and place its
939  *             address in the local port pointer. Upon failure, local port
940  *             pointer will be set to NULL.
941  *
942  * Returns:
943  * a completion status. Must be 0 upon success; a negative errno
944  * (ex: -ENXIO) upon failure.
945  */
946 int
947 nvmet_fc_register_targetport(struct nvmet_fc_port_info *pinfo,
948                         struct nvmet_fc_target_template *template,
949                         struct device *dev,
950                         struct nvmet_fc_target_port **portptr)
951 {
952         struct nvmet_fc_tgtport *newrec;
953         unsigned long flags;
954         int ret, idx;
955
956         if (!template->xmt_ls_rsp || !template->fcp_op ||
957             !template->fcp_abort ||
958             !template->fcp_req_release || !template->targetport_delete ||
959             !template->max_hw_queues || !template->max_sgl_segments ||
960             !template->max_dif_sgl_segments || !template->dma_boundary) {
961                 ret = -EINVAL;
962                 goto out_regtgt_failed;
963         }
964
965         newrec = kzalloc((sizeof(*newrec) + template->target_priv_sz),
966                          GFP_KERNEL);
967         if (!newrec) {
968                 ret = -ENOMEM;
969                 goto out_regtgt_failed;
970         }
971
972         idx = ida_simple_get(&nvmet_fc_tgtport_cnt, 0, 0, GFP_KERNEL);
973         if (idx < 0) {
974                 ret = -ENOSPC;
975                 goto out_fail_kfree;
976         }
977
978         if (!get_device(dev) && dev) {
979                 ret = -ENODEV;
980                 goto out_ida_put;
981         }
982
983         newrec->fc_target_port.node_name = pinfo->node_name;
984         newrec->fc_target_port.port_name = pinfo->port_name;
985         newrec->fc_target_port.private = &newrec[1];
986         newrec->fc_target_port.port_id = pinfo->port_id;
987         newrec->fc_target_port.port_num = idx;
988         INIT_LIST_HEAD(&newrec->tgt_list);
989         newrec->dev = dev;
990         newrec->ops = template;
991         spin_lock_init(&newrec->lock);
992         INIT_LIST_HEAD(&newrec->ls_list);
993         INIT_LIST_HEAD(&newrec->ls_busylist);
994         INIT_LIST_HEAD(&newrec->assoc_list);
995         kref_init(&newrec->ref);
996         ida_init(&newrec->assoc_cnt);
997
998         ret = nvmet_fc_alloc_ls_iodlist(newrec);
999         if (ret) {
1000                 ret = -ENOMEM;
1001                 goto out_free_newrec;
1002         }
1003
1004         spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1005         list_add_tail(&newrec->tgt_list, &nvmet_fc_target_list);
1006         spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1007
1008         *portptr = &newrec->fc_target_port;
1009         return 0;
1010
1011 out_free_newrec:
1012         put_device(dev);
1013 out_ida_put:
1014         ida_simple_remove(&nvmet_fc_tgtport_cnt, idx);
1015 out_fail_kfree:
1016         kfree(newrec);
1017 out_regtgt_failed:
1018         *portptr = NULL;
1019         return ret;
1020 }
1021 EXPORT_SYMBOL_GPL(nvmet_fc_register_targetport);
1022
1023
1024 static void
1025 nvmet_fc_free_tgtport(struct kref *ref)
1026 {
1027         struct nvmet_fc_tgtport *tgtport =
1028                 container_of(ref, struct nvmet_fc_tgtport, ref);
1029         struct device *dev = tgtport->dev;
1030         unsigned long flags;
1031
1032         spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1033         list_del(&tgtport->tgt_list);
1034         spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1035
1036         nvmet_fc_free_ls_iodlist(tgtport);
1037
1038         /* let the LLDD know we've finished tearing it down */
1039         tgtport->ops->targetport_delete(&tgtport->fc_target_port);
1040
1041         ida_simple_remove(&nvmet_fc_tgtport_cnt,
1042                         tgtport->fc_target_port.port_num);
1043
1044         ida_destroy(&tgtport->assoc_cnt);
1045
1046         kfree(tgtport);
1047
1048         put_device(dev);
1049 }
1050
1051 static void
1052 nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport)
1053 {
1054         kref_put(&tgtport->ref, nvmet_fc_free_tgtport);
1055 }
1056
1057 static int
1058 nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport)
1059 {
1060         return kref_get_unless_zero(&tgtport->ref);
1061 }
1062
1063 static void
1064 __nvmet_fc_free_assocs(struct nvmet_fc_tgtport *tgtport)
1065 {
1066         struct nvmet_fc_tgt_assoc *assoc, *next;
1067         unsigned long flags;
1068
1069         spin_lock_irqsave(&tgtport->lock, flags);
1070         list_for_each_entry_safe(assoc, next,
1071                                 &tgtport->assoc_list, a_list) {
1072                 if (!nvmet_fc_tgt_a_get(assoc))
1073                         continue;
1074                 spin_unlock_irqrestore(&tgtport->lock, flags);
1075                 nvmet_fc_delete_target_assoc(assoc);
1076                 nvmet_fc_tgt_a_put(assoc);
1077                 spin_lock_irqsave(&tgtport->lock, flags);
1078         }
1079         spin_unlock_irqrestore(&tgtport->lock, flags);
1080 }
1081
1082 /*
1083  * nvmet layer has called to terminate an association
1084  */
1085 static void
1086 nvmet_fc_delete_ctrl(struct nvmet_ctrl *ctrl)
1087 {
1088         struct nvmet_fc_tgtport *tgtport, *next;
1089         struct nvmet_fc_tgt_assoc *assoc;
1090         struct nvmet_fc_tgt_queue *queue;
1091         unsigned long flags;
1092         bool found_ctrl = false;
1093
1094         /* this is a bit ugly, but don't want to make locks layered */
1095         spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1096         list_for_each_entry_safe(tgtport, next, &nvmet_fc_target_list,
1097                         tgt_list) {
1098                 if (!nvmet_fc_tgtport_get(tgtport))
1099                         continue;
1100                 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1101
1102                 spin_lock_irqsave(&tgtport->lock, flags);
1103                 list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
1104                         queue = assoc->queues[0];
1105                         if (queue && queue->nvme_sq.ctrl == ctrl) {
1106                                 if (nvmet_fc_tgt_a_get(assoc))
1107                                         found_ctrl = true;
1108                                 break;
1109                         }
1110                 }
1111                 spin_unlock_irqrestore(&tgtport->lock, flags);
1112
1113                 nvmet_fc_tgtport_put(tgtport);
1114
1115                 if (found_ctrl) {
1116                         nvmet_fc_delete_target_assoc(assoc);
1117                         nvmet_fc_tgt_a_put(assoc);
1118                         return;
1119                 }
1120
1121                 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1122         }
1123         spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1124 }
1125
1126 /**
1127  * nvme_fc_unregister_targetport - transport entry point called by an
1128  *                              LLDD to deregister/remove a previously
1129  *                              registered a local NVME subsystem FC port.
1130  * @tgtport: pointer to the (registered) target port that is to be
1131  *           deregistered.
1132  *
1133  * Returns:
1134  * a completion status. Must be 0 upon success; a negative errno
1135  * (ex: -ENXIO) upon failure.
1136  */
1137 int
1138 nvmet_fc_unregister_targetport(struct nvmet_fc_target_port *target_port)
1139 {
1140         struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1141
1142         /* terminate any outstanding associations */
1143         __nvmet_fc_free_assocs(tgtport);
1144
1145         nvmet_fc_tgtport_put(tgtport);
1146
1147         return 0;
1148 }
1149 EXPORT_SYMBOL_GPL(nvmet_fc_unregister_targetport);
1150
1151
1152 /* *********************** FC-NVME LS Handling **************************** */
1153
1154
1155 static void
1156 nvmet_fc_format_rsp_hdr(void *buf, u8 ls_cmd, __be32 desc_len, u8 rqst_ls_cmd)
1157 {
1158         struct fcnvme_ls_acc_hdr *acc = buf;
1159
1160         acc->w0.ls_cmd = ls_cmd;
1161         acc->desc_list_len = desc_len;
1162         acc->rqst.desc_tag = cpu_to_be32(FCNVME_LSDESC_RQST);
1163         acc->rqst.desc_len =
1164                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst));
1165         acc->rqst.w0.ls_cmd = rqst_ls_cmd;
1166 }
1167
1168 static int
1169 nvmet_fc_format_rjt(void *buf, u16 buflen, u8 ls_cmd,
1170                         u8 reason, u8 explanation, u8 vendor)
1171 {
1172         struct fcnvme_ls_rjt *rjt = buf;
1173
1174         nvmet_fc_format_rsp_hdr(buf, FCNVME_LSDESC_RQST,
1175                         fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_rjt)),
1176                         ls_cmd);
1177         rjt->rjt.desc_tag = cpu_to_be32(FCNVME_LSDESC_RJT);
1178         rjt->rjt.desc_len = fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rjt));
1179         rjt->rjt.reason_code = reason;
1180         rjt->rjt.reason_explanation = explanation;
1181         rjt->rjt.vendor = vendor;
1182
1183         return sizeof(struct fcnvme_ls_rjt);
1184 }
1185
1186 /* Validation Error indexes into the string table below */
1187 enum {
1188         VERR_NO_ERROR           = 0,
1189         VERR_CR_ASSOC_LEN       = 1,
1190         VERR_CR_ASSOC_RQST_LEN  = 2,
1191         VERR_CR_ASSOC_CMD       = 3,
1192         VERR_CR_ASSOC_CMD_LEN   = 4,
1193         VERR_ERSP_RATIO         = 5,
1194         VERR_ASSOC_ALLOC_FAIL   = 6,
1195         VERR_QUEUE_ALLOC_FAIL   = 7,
1196         VERR_CR_CONN_LEN        = 8,
1197         VERR_CR_CONN_RQST_LEN   = 9,
1198         VERR_ASSOC_ID           = 10,
1199         VERR_ASSOC_ID_LEN       = 11,
1200         VERR_NO_ASSOC           = 12,
1201         VERR_CONN_ID            = 13,
1202         VERR_CONN_ID_LEN        = 14,
1203         VERR_NO_CONN            = 15,
1204         VERR_CR_CONN_CMD        = 16,
1205         VERR_CR_CONN_CMD_LEN    = 17,
1206         VERR_DISCONN_LEN        = 18,
1207         VERR_DISCONN_RQST_LEN   = 19,
1208         VERR_DISCONN_CMD        = 20,
1209         VERR_DISCONN_CMD_LEN    = 21,
1210         VERR_DISCONN_SCOPE      = 22,
1211         VERR_RS_LEN             = 23,
1212         VERR_RS_RQST_LEN        = 24,
1213         VERR_RS_CMD             = 25,
1214         VERR_RS_CMD_LEN         = 26,
1215         VERR_RS_RCTL            = 27,
1216         VERR_RS_RO              = 28,
1217 };
1218
1219 static char *validation_errors[] = {
1220         "OK",
1221         "Bad CR_ASSOC Length",
1222         "Bad CR_ASSOC Rqst Length",
1223         "Not CR_ASSOC Cmd",
1224         "Bad CR_ASSOC Cmd Length",
1225         "Bad Ersp Ratio",
1226         "Association Allocation Failed",
1227         "Queue Allocation Failed",
1228         "Bad CR_CONN Length",
1229         "Bad CR_CONN Rqst Length",
1230         "Not Association ID",
1231         "Bad Association ID Length",
1232         "No Association",
1233         "Not Connection ID",
1234         "Bad Connection ID Length",
1235         "No Connection",
1236         "Not CR_CONN Cmd",
1237         "Bad CR_CONN Cmd Length",
1238         "Bad DISCONN Length",
1239         "Bad DISCONN Rqst Length",
1240         "Not DISCONN Cmd",
1241         "Bad DISCONN Cmd Length",
1242         "Bad Disconnect Scope",
1243         "Bad RS Length",
1244         "Bad RS Rqst Length",
1245         "Not RS Cmd",
1246         "Bad RS Cmd Length",
1247         "Bad RS R_CTL",
1248         "Bad RS Relative Offset",
1249 };
1250
1251 static void
1252 nvmet_fc_ls_create_association(struct nvmet_fc_tgtport *tgtport,
1253                         struct nvmet_fc_ls_iod *iod)
1254 {
1255         struct fcnvme_ls_cr_assoc_rqst *rqst =
1256                                 (struct fcnvme_ls_cr_assoc_rqst *)iod->rqstbuf;
1257         struct fcnvme_ls_cr_assoc_acc *acc =
1258                                 (struct fcnvme_ls_cr_assoc_acc *)iod->rspbuf;
1259         struct nvmet_fc_tgt_queue *queue;
1260         int ret = 0;
1261
1262         memset(acc, 0, sizeof(*acc));
1263
1264         /*
1265          * FC-NVME spec changes. There are initiators sending different
1266          * lengths as padding sizes for Create Association Cmd descriptor
1267          * was incorrect.
1268          * Accept anything of "minimum" length. Assume format per 1.15
1269          * spec (with HOSTID reduced to 16 bytes), ignore how long the
1270          * trailing pad length is.
1271          */
1272         if (iod->rqstdatalen < FCNVME_LSDESC_CRA_RQST_MINLEN)
1273                 ret = VERR_CR_ASSOC_LEN;
1274         else if (be32_to_cpu(rqst->desc_list_len) <
1275                         FCNVME_LSDESC_CRA_RQST_MIN_LISTLEN)
1276                 ret = VERR_CR_ASSOC_RQST_LEN;
1277         else if (rqst->assoc_cmd.desc_tag !=
1278                         cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD))
1279                 ret = VERR_CR_ASSOC_CMD;
1280         else if (be32_to_cpu(rqst->assoc_cmd.desc_len) <
1281                         FCNVME_LSDESC_CRA_CMD_DESC_MIN_DESCLEN)
1282                 ret = VERR_CR_ASSOC_CMD_LEN;
1283         else if (!rqst->assoc_cmd.ersp_ratio ||
1284                  (be16_to_cpu(rqst->assoc_cmd.ersp_ratio) >=
1285                                 be16_to_cpu(rqst->assoc_cmd.sqsize)))
1286                 ret = VERR_ERSP_RATIO;
1287
1288         else {
1289                 /* new association w/ admin queue */
1290                 iod->assoc = nvmet_fc_alloc_target_assoc(tgtport);
1291                 if (!iod->assoc)
1292                         ret = VERR_ASSOC_ALLOC_FAIL;
1293                 else {
1294                         queue = nvmet_fc_alloc_target_queue(iod->assoc, 0,
1295                                         be16_to_cpu(rqst->assoc_cmd.sqsize));
1296                         if (!queue)
1297                                 ret = VERR_QUEUE_ALLOC_FAIL;
1298                 }
1299         }
1300
1301         if (ret) {
1302                 dev_err(tgtport->dev,
1303                         "Create Association LS failed: %s\n",
1304                         validation_errors[ret]);
1305                 iod->lsreq->rsplen = nvmet_fc_format_rjt(acc,
1306                                 NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd,
1307                                 FCNVME_RJT_RC_LOGIC,
1308                                 FCNVME_RJT_EXP_NONE, 0);
1309                 return;
1310         }
1311
1312         queue->ersp_ratio = be16_to_cpu(rqst->assoc_cmd.ersp_ratio);
1313         atomic_set(&queue->connected, 1);
1314         queue->sqhd = 0;        /* best place to init value */
1315
1316         /* format a response */
1317
1318         iod->lsreq->rsplen = sizeof(*acc);
1319
1320         nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1321                         fcnvme_lsdesc_len(
1322                                 sizeof(struct fcnvme_ls_cr_assoc_acc)),
1323                         FCNVME_LS_CREATE_ASSOCIATION);
1324         acc->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1325         acc->associd.desc_len =
1326                         fcnvme_lsdesc_len(
1327                                 sizeof(struct fcnvme_lsdesc_assoc_id));
1328         acc->associd.association_id =
1329                         cpu_to_be64(nvmet_fc_makeconnid(iod->assoc, 0));
1330         acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1331         acc->connectid.desc_len =
1332                         fcnvme_lsdesc_len(
1333                                 sizeof(struct fcnvme_lsdesc_conn_id));
1334         acc->connectid.connection_id = acc->associd.association_id;
1335 }
1336
1337 static void
1338 nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport *tgtport,
1339                         struct nvmet_fc_ls_iod *iod)
1340 {
1341         struct fcnvme_ls_cr_conn_rqst *rqst =
1342                                 (struct fcnvme_ls_cr_conn_rqst *)iod->rqstbuf;
1343         struct fcnvme_ls_cr_conn_acc *acc =
1344                                 (struct fcnvme_ls_cr_conn_acc *)iod->rspbuf;
1345         struct nvmet_fc_tgt_queue *queue;
1346         int ret = 0;
1347
1348         memset(acc, 0, sizeof(*acc));
1349
1350         if (iod->rqstdatalen < sizeof(struct fcnvme_ls_cr_conn_rqst))
1351                 ret = VERR_CR_CONN_LEN;
1352         else if (rqst->desc_list_len !=
1353                         fcnvme_lsdesc_len(
1354                                 sizeof(struct fcnvme_ls_cr_conn_rqst)))
1355                 ret = VERR_CR_CONN_RQST_LEN;
1356         else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1357                 ret = VERR_ASSOC_ID;
1358         else if (rqst->associd.desc_len !=
1359                         fcnvme_lsdesc_len(
1360                                 sizeof(struct fcnvme_lsdesc_assoc_id)))
1361                 ret = VERR_ASSOC_ID_LEN;
1362         else if (rqst->connect_cmd.desc_tag !=
1363                         cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD))
1364                 ret = VERR_CR_CONN_CMD;
1365         else if (rqst->connect_cmd.desc_len !=
1366                         fcnvme_lsdesc_len(
1367                                 sizeof(struct fcnvme_lsdesc_cr_conn_cmd)))
1368                 ret = VERR_CR_CONN_CMD_LEN;
1369         else if (!rqst->connect_cmd.ersp_ratio ||
1370                  (be16_to_cpu(rqst->connect_cmd.ersp_ratio) >=
1371                                 be16_to_cpu(rqst->connect_cmd.sqsize)))
1372                 ret = VERR_ERSP_RATIO;
1373
1374         else {
1375                 /* new io queue */
1376                 iod->assoc = nvmet_fc_find_target_assoc(tgtport,
1377                                 be64_to_cpu(rqst->associd.association_id));
1378                 if (!iod->assoc)
1379                         ret = VERR_NO_ASSOC;
1380                 else {
1381                         queue = nvmet_fc_alloc_target_queue(iod->assoc,
1382                                         be16_to_cpu(rqst->connect_cmd.qid),
1383                                         be16_to_cpu(rqst->connect_cmd.sqsize));
1384                         if (!queue)
1385                                 ret = VERR_QUEUE_ALLOC_FAIL;
1386
1387                         /* release get taken in nvmet_fc_find_target_assoc */
1388                         nvmet_fc_tgt_a_put(iod->assoc);
1389                 }
1390         }
1391
1392         if (ret) {
1393                 dev_err(tgtport->dev,
1394                         "Create Connection LS failed: %s\n",
1395                         validation_errors[ret]);
1396                 iod->lsreq->rsplen = nvmet_fc_format_rjt(acc,
1397                                 NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd,
1398                                 (ret == VERR_NO_ASSOC) ?
1399                                         FCNVME_RJT_RC_INV_ASSOC :
1400                                         FCNVME_RJT_RC_LOGIC,
1401                                 FCNVME_RJT_EXP_NONE, 0);
1402                 return;
1403         }
1404
1405         queue->ersp_ratio = be16_to_cpu(rqst->connect_cmd.ersp_ratio);
1406         atomic_set(&queue->connected, 1);
1407         queue->sqhd = 0;        /* best place to init value */
1408
1409         /* format a response */
1410
1411         iod->lsreq->rsplen = sizeof(*acc);
1412
1413         nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1414                         fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)),
1415                         FCNVME_LS_CREATE_CONNECTION);
1416         acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1417         acc->connectid.desc_len =
1418                         fcnvme_lsdesc_len(
1419                                 sizeof(struct fcnvme_lsdesc_conn_id));
1420         acc->connectid.connection_id =
1421                         cpu_to_be64(nvmet_fc_makeconnid(iod->assoc,
1422                                 be16_to_cpu(rqst->connect_cmd.qid)));
1423 }
1424
1425 static void
1426 nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport *tgtport,
1427                         struct nvmet_fc_ls_iod *iod)
1428 {
1429         struct fcnvme_ls_disconnect_rqst *rqst =
1430                         (struct fcnvme_ls_disconnect_rqst *)iod->rqstbuf;
1431         struct fcnvme_ls_disconnect_acc *acc =
1432                         (struct fcnvme_ls_disconnect_acc *)iod->rspbuf;
1433         struct nvmet_fc_tgt_queue *queue = NULL;
1434         struct nvmet_fc_tgt_assoc *assoc;
1435         int ret = 0;
1436         bool del_assoc = false;
1437
1438         memset(acc, 0, sizeof(*acc));
1439
1440         if (iod->rqstdatalen < sizeof(struct fcnvme_ls_disconnect_rqst))
1441                 ret = VERR_DISCONN_LEN;
1442         else if (rqst->desc_list_len !=
1443                         fcnvme_lsdesc_len(
1444                                 sizeof(struct fcnvme_ls_disconnect_rqst)))
1445                 ret = VERR_DISCONN_RQST_LEN;
1446         else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1447                 ret = VERR_ASSOC_ID;
1448         else if (rqst->associd.desc_len !=
1449                         fcnvme_lsdesc_len(
1450                                 sizeof(struct fcnvme_lsdesc_assoc_id)))
1451                 ret = VERR_ASSOC_ID_LEN;
1452         else if (rqst->discon_cmd.desc_tag !=
1453                         cpu_to_be32(FCNVME_LSDESC_DISCONN_CMD))
1454                 ret = VERR_DISCONN_CMD;
1455         else if (rqst->discon_cmd.desc_len !=
1456                         fcnvme_lsdesc_len(
1457                                 sizeof(struct fcnvme_lsdesc_disconn_cmd)))
1458                 ret = VERR_DISCONN_CMD_LEN;
1459         else if ((rqst->discon_cmd.scope != FCNVME_DISCONN_ASSOCIATION) &&
1460                         (rqst->discon_cmd.scope != FCNVME_DISCONN_CONNECTION))
1461                 ret = VERR_DISCONN_SCOPE;
1462         else {
1463                 /* match an active association */
1464                 assoc = nvmet_fc_find_target_assoc(tgtport,
1465                                 be64_to_cpu(rqst->associd.association_id));
1466                 iod->assoc = assoc;
1467                 if (assoc) {
1468                         if (rqst->discon_cmd.scope ==
1469                                         FCNVME_DISCONN_CONNECTION) {
1470                                 queue = nvmet_fc_find_target_queue(tgtport,
1471                                                 be64_to_cpu(
1472                                                         rqst->discon_cmd.id));
1473                                 if (!queue) {
1474                                         nvmet_fc_tgt_a_put(assoc);
1475                                         ret = VERR_NO_CONN;
1476                                 }
1477                         }
1478                 } else
1479                         ret = VERR_NO_ASSOC;
1480         }
1481
1482         if (ret) {
1483                 dev_err(tgtport->dev,
1484                         "Disconnect LS failed: %s\n",
1485                         validation_errors[ret]);
1486                 iod->lsreq->rsplen = nvmet_fc_format_rjt(acc,
1487                                 NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd,
1488                                 (ret == VERR_NO_ASSOC) ?
1489                                         FCNVME_RJT_RC_INV_ASSOC :
1490                                         (ret == VERR_NO_CONN) ?
1491                                                 FCNVME_RJT_RC_INV_CONN :
1492                                                 FCNVME_RJT_RC_LOGIC,
1493                                 FCNVME_RJT_EXP_NONE, 0);
1494                 return;
1495         }
1496
1497         /* format a response */
1498
1499         iod->lsreq->rsplen = sizeof(*acc);
1500
1501         nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1502                         fcnvme_lsdesc_len(
1503                                 sizeof(struct fcnvme_ls_disconnect_acc)),
1504                         FCNVME_LS_DISCONNECT);
1505
1506
1507         /* are we to delete a Connection ID (queue) */
1508         if (queue) {
1509                 int qid = queue->qid;
1510
1511                 nvmet_fc_delete_target_queue(queue);
1512
1513                 /* release the get taken by find_target_queue */
1514                 nvmet_fc_tgt_q_put(queue);
1515
1516                 /* tear association down if io queue terminated */
1517                 if (!qid)
1518                         del_assoc = true;
1519         }
1520
1521         /* release get taken in nvmet_fc_find_target_assoc */
1522         nvmet_fc_tgt_a_put(iod->assoc);
1523
1524         if (del_assoc)
1525                 nvmet_fc_delete_target_assoc(iod->assoc);
1526 }
1527
1528
1529 /* *********************** NVME Ctrl Routines **************************** */
1530
1531
1532 static void nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req);
1533
1534 static struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops;
1535
1536 static void
1537 nvmet_fc_xmt_ls_rsp_done(struct nvmefc_tgt_ls_req *lsreq)
1538 {
1539         struct nvmet_fc_ls_iod *iod = lsreq->nvmet_fc_private;
1540         struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1541
1542         fc_dma_sync_single_for_cpu(tgtport->dev, iod->rspdma,
1543                                 NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE);
1544         nvmet_fc_free_ls_iod(tgtport, iod);
1545         nvmet_fc_tgtport_put(tgtport);
1546 }
1547
1548 static void
1549 nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
1550                                 struct nvmet_fc_ls_iod *iod)
1551 {
1552         int ret;
1553
1554         fc_dma_sync_single_for_device(tgtport->dev, iod->rspdma,
1555                                   NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE);
1556
1557         ret = tgtport->ops->xmt_ls_rsp(&tgtport->fc_target_port, iod->lsreq);
1558         if (ret)
1559                 nvmet_fc_xmt_ls_rsp_done(iod->lsreq);
1560 }
1561
1562 /*
1563  * Actual processing routine for received FC-NVME LS Requests from the LLD
1564  */
1565 static void
1566 nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport *tgtport,
1567                         struct nvmet_fc_ls_iod *iod)
1568 {
1569         struct fcnvme_ls_rqst_w0 *w0 =
1570                         (struct fcnvme_ls_rqst_w0 *)iod->rqstbuf;
1571
1572         iod->lsreq->nvmet_fc_private = iod;
1573         iod->lsreq->rspbuf = iod->rspbuf;
1574         iod->lsreq->rspdma = iod->rspdma;
1575         iod->lsreq->done = nvmet_fc_xmt_ls_rsp_done;
1576         /* Be preventative. handlers will later set to valid length */
1577         iod->lsreq->rsplen = 0;
1578
1579         iod->assoc = NULL;
1580
1581         /*
1582          * handlers:
1583          *   parse request input, execute the request, and format the
1584          *   LS response
1585          */
1586         switch (w0->ls_cmd) {
1587         case FCNVME_LS_CREATE_ASSOCIATION:
1588                 /* Creates Association and initial Admin Queue/Connection */
1589                 nvmet_fc_ls_create_association(tgtport, iod);
1590                 break;
1591         case FCNVME_LS_CREATE_CONNECTION:
1592                 /* Creates an IO Queue/Connection */
1593                 nvmet_fc_ls_create_connection(tgtport, iod);
1594                 break;
1595         case FCNVME_LS_DISCONNECT:
1596                 /* Terminate a Queue/Connection or the Association */
1597                 nvmet_fc_ls_disconnect(tgtport, iod);
1598                 break;
1599         default:
1600                 iod->lsreq->rsplen = nvmet_fc_format_rjt(iod->rspbuf,
1601                                 NVME_FC_MAX_LS_BUFFER_SIZE, w0->ls_cmd,
1602                                 FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0);
1603         }
1604
1605         nvmet_fc_xmt_ls_rsp(tgtport, iod);
1606 }
1607
1608 /*
1609  * Actual processing routine for received FC-NVME LS Requests from the LLD
1610  */
1611 static void
1612 nvmet_fc_handle_ls_rqst_work(struct work_struct *work)
1613 {
1614         struct nvmet_fc_ls_iod *iod =
1615                 container_of(work, struct nvmet_fc_ls_iod, work);
1616         struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1617
1618         nvmet_fc_handle_ls_rqst(tgtport, iod);
1619 }
1620
1621
1622 /**
1623  * nvmet_fc_rcv_ls_req - transport entry point called by an LLDD
1624  *                       upon the reception of a NVME LS request.
1625  *
1626  * The nvmet-fc layer will copy payload to an internal structure for
1627  * processing.  As such, upon completion of the routine, the LLDD may
1628  * immediately free/reuse the LS request buffer passed in the call.
1629  *
1630  * If this routine returns error, the LLDD should abort the exchange.
1631  *
1632  * @tgtport:    pointer to the (registered) target port the LS was
1633  *              received on.
1634  * @lsreq:      pointer to a lsreq request structure to be used to reference
1635  *              the exchange corresponding to the LS.
1636  * @lsreqbuf:   pointer to the buffer containing the LS Request
1637  * @lsreqbuf_len: length, in bytes, of the received LS request
1638  */
1639 int
1640 nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port *target_port,
1641                         struct nvmefc_tgt_ls_req *lsreq,
1642                         void *lsreqbuf, u32 lsreqbuf_len)
1643 {
1644         struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1645         struct nvmet_fc_ls_iod *iod;
1646
1647         if (lsreqbuf_len > NVME_FC_MAX_LS_BUFFER_SIZE)
1648                 return -E2BIG;
1649
1650         if (!nvmet_fc_tgtport_get(tgtport))
1651                 return -ESHUTDOWN;
1652
1653         iod = nvmet_fc_alloc_ls_iod(tgtport);
1654         if (!iod) {
1655                 nvmet_fc_tgtport_put(tgtport);
1656                 return -ENOENT;
1657         }
1658
1659         iod->lsreq = lsreq;
1660         iod->fcpreq = NULL;
1661         memcpy(iod->rqstbuf, lsreqbuf, lsreqbuf_len);
1662         iod->rqstdatalen = lsreqbuf_len;
1663
1664         schedule_work(&iod->work);
1665
1666         return 0;
1667 }
1668 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_ls_req);
1669
1670
1671 /*
1672  * **********************
1673  * Start of FCP handling
1674  * **********************
1675  */
1676
1677 static int
1678 nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
1679 {
1680         struct scatterlist *sg;
1681         struct page *page;
1682         unsigned int nent;
1683         u32 page_len, length;
1684         int i = 0;
1685
1686         length = fod->total_length;
1687         nent = DIV_ROUND_UP(length, PAGE_SIZE);
1688         sg = kmalloc_array(nent, sizeof(struct scatterlist), GFP_KERNEL);
1689         if (!sg)
1690                 goto out;
1691
1692         sg_init_table(sg, nent);
1693
1694         while (length) {
1695                 page_len = min_t(u32, length, PAGE_SIZE);
1696
1697                 page = alloc_page(GFP_KERNEL);
1698                 if (!page)
1699                         goto out_free_pages;
1700
1701                 sg_set_page(&sg[i], page, page_len, 0);
1702                 length -= page_len;
1703                 i++;
1704         }
1705
1706         fod->data_sg = sg;
1707         fod->data_sg_cnt = nent;
1708         fod->data_sg_cnt = fc_dma_map_sg(fod->tgtport->dev, sg, nent,
1709                                 ((fod->io_dir == NVMET_FCP_WRITE) ?
1710                                         DMA_FROM_DEVICE : DMA_TO_DEVICE));
1711                                 /* note: write from initiator perspective */
1712
1713         return 0;
1714
1715 out_free_pages:
1716         while (i > 0) {
1717                 i--;
1718                 __free_page(sg_page(&sg[i]));
1719         }
1720         kfree(sg);
1721         fod->data_sg = NULL;
1722         fod->data_sg_cnt = 0;
1723 out:
1724         return NVME_SC_INTERNAL;
1725 }
1726
1727 static void
1728 nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
1729 {
1730         struct scatterlist *sg;
1731         int count;
1732
1733         if (!fod->data_sg || !fod->data_sg_cnt)
1734                 return;
1735
1736         fc_dma_unmap_sg(fod->tgtport->dev, fod->data_sg, fod->data_sg_cnt,
1737                                 ((fod->io_dir == NVMET_FCP_WRITE) ?
1738                                         DMA_FROM_DEVICE : DMA_TO_DEVICE));
1739         for_each_sg(fod->data_sg, sg, fod->data_sg_cnt, count)
1740                 __free_page(sg_page(sg));
1741         kfree(fod->data_sg);
1742         fod->data_sg = NULL;
1743         fod->data_sg_cnt = 0;
1744 }
1745
1746
1747 static bool
1748 queue_90percent_full(struct nvmet_fc_tgt_queue *q, u32 sqhd)
1749 {
1750         u32 sqtail, used;
1751
1752         /* egad, this is ugly. And sqtail is just a best guess */
1753         sqtail = atomic_read(&q->sqtail) % q->sqsize;
1754
1755         used = (sqtail < sqhd) ? (sqtail + q->sqsize - sqhd) : (sqtail - sqhd);
1756         return ((used * 10) >= (((u32)(q->sqsize - 1) * 9)));
1757 }
1758
1759 /*
1760  * Prep RSP payload.
1761  * May be a NVMET_FCOP_RSP or NVMET_FCOP_READDATA_RSP op
1762  */
1763 static void
1764 nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
1765                                 struct nvmet_fc_fcp_iod *fod)
1766 {
1767         struct nvme_fc_ersp_iu *ersp = &fod->rspiubuf;
1768         struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
1769         struct nvme_completion *cqe = &ersp->cqe;
1770         u32 *cqewd = (u32 *)cqe;
1771         bool send_ersp = false;
1772         u32 rsn, rspcnt, xfr_length;
1773
1774         if (fod->fcpreq->op == NVMET_FCOP_READDATA_RSP)
1775                 xfr_length = fod->total_length;
1776         else
1777                 xfr_length = fod->offset;
1778
1779         /*
1780          * check to see if we can send a 0's rsp.
1781          *   Note: to send a 0's response, the NVME-FC host transport will
1782          *   recreate the CQE. The host transport knows: sq id, SQHD (last
1783          *   seen in an ersp), and command_id. Thus it will create a
1784          *   zero-filled CQE with those known fields filled in. Transport
1785          *   must send an ersp for any condition where the cqe won't match
1786          *   this.
1787          *
1788          * Here are the FC-NVME mandated cases where we must send an ersp:
1789          *  every N responses, where N=ersp_ratio
1790          *  force fabric commands to send ersp's (not in FC-NVME but good
1791          *    practice)
1792          *  normal cmds: any time status is non-zero, or status is zero
1793          *     but words 0 or 1 are non-zero.
1794          *  the SQ is 90% or more full
1795          *  the cmd is a fused command
1796          *  transferred data length not equal to cmd iu length
1797          */
1798         rspcnt = atomic_inc_return(&fod->queue->zrspcnt);
1799         if (!(rspcnt % fod->queue->ersp_ratio) ||
1800             sqe->opcode == nvme_fabrics_command ||
1801             xfr_length != fod->total_length ||
1802             (le16_to_cpu(cqe->status) & 0xFFFE) || cqewd[0] || cqewd[1] ||
1803             (sqe->flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND)) ||
1804             queue_90percent_full(fod->queue, le16_to_cpu(cqe->sq_head)))
1805                 send_ersp = true;
1806
1807         /* re-set the fields */
1808         fod->fcpreq->rspaddr = ersp;
1809         fod->fcpreq->rspdma = fod->rspdma;
1810
1811         if (!send_ersp) {
1812                 memset(ersp, 0, NVME_FC_SIZEOF_ZEROS_RSP);
1813                 fod->fcpreq->rsplen = NVME_FC_SIZEOF_ZEROS_RSP;
1814         } else {
1815                 ersp->iu_len = cpu_to_be16(sizeof(*ersp)/sizeof(u32));
1816                 rsn = atomic_inc_return(&fod->queue->rsn);
1817                 ersp->rsn = cpu_to_be32(rsn);
1818                 ersp->xfrd_len = cpu_to_be32(xfr_length);
1819                 fod->fcpreq->rsplen = sizeof(*ersp);
1820         }
1821
1822         fc_dma_sync_single_for_device(tgtport->dev, fod->rspdma,
1823                                   sizeof(fod->rspiubuf), DMA_TO_DEVICE);
1824 }
1825
1826 static void nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq);
1827
1828 static void
1829 nvmet_fc_abort_op(struct nvmet_fc_tgtport *tgtport,
1830                                 struct nvmet_fc_fcp_iod *fod)
1831 {
1832         struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
1833
1834         /* data no longer needed */
1835         nvmet_fc_free_tgt_pgs(fod);
1836
1837         /*
1838          * if an ABTS was received or we issued the fcp_abort early
1839          * don't call abort routine again.
1840          */
1841         /* no need to take lock - lock was taken earlier to get here */
1842         if (!fod->aborted)
1843                 tgtport->ops->fcp_abort(&tgtport->fc_target_port, fcpreq);
1844
1845         nvmet_fc_free_fcp_iod(fod->queue, fod);
1846 }
1847
1848 static void
1849 nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
1850                                 struct nvmet_fc_fcp_iod *fod)
1851 {
1852         int ret;
1853
1854         fod->fcpreq->op = NVMET_FCOP_RSP;
1855         fod->fcpreq->timeout = 0;
1856
1857         nvmet_fc_prep_fcp_rsp(tgtport, fod);
1858
1859         ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
1860         if (ret)
1861                 nvmet_fc_abort_op(tgtport, fod);
1862 }
1863
1864 static void
1865 nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport *tgtport,
1866                                 struct nvmet_fc_fcp_iod *fod, u8 op)
1867 {
1868         struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
1869         struct scatterlist *sg, *datasg;
1870         unsigned long flags;
1871         u32 tlen, sg_off;
1872         int ret;
1873
1874         fcpreq->op = op;
1875         fcpreq->offset = fod->offset;
1876         fcpreq->timeout = NVME_FC_TGTOP_TIMEOUT_SEC;
1877         tlen = min_t(u32, (NVMET_FC_MAX_KB_PER_XFR * 1024),
1878                         (fod->total_length - fod->offset));
1879         tlen = min_t(u32, tlen, NVME_FC_MAX_SEGMENTS * PAGE_SIZE);
1880         tlen = min_t(u32, tlen, fod->tgtport->ops->max_sgl_segments
1881                                         * PAGE_SIZE);
1882         fcpreq->transfer_length = tlen;
1883         fcpreq->transferred_length = 0;
1884         fcpreq->fcp_error = 0;
1885         fcpreq->rsplen = 0;
1886
1887         fcpreq->sg_cnt = 0;
1888
1889         datasg = fod->next_sg;
1890         sg_off = fod->next_sg_offset;
1891
1892         for (sg = fcpreq->sg ; tlen; sg++) {
1893                 *sg = *datasg;
1894                 if (sg_off) {
1895                         sg->offset += sg_off;
1896                         sg->length -= sg_off;
1897                         sg->dma_address += sg_off;
1898                         sg_off = 0;
1899                 }
1900                 if (tlen < sg->length) {
1901                         sg->length = tlen;
1902                         fod->next_sg = datasg;
1903                         fod->next_sg_offset += tlen;
1904                 } else if (tlen == sg->length) {
1905                         fod->next_sg_offset = 0;
1906                         fod->next_sg = sg_next(datasg);
1907                 } else {
1908                         fod->next_sg_offset = 0;
1909                         datasg = sg_next(datasg);
1910                 }
1911                 tlen -= sg->length;
1912                 fcpreq->sg_cnt++;
1913         }
1914
1915         /*
1916          * If the last READDATA request: check if LLDD supports
1917          * combined xfr with response.
1918          */
1919         if ((op == NVMET_FCOP_READDATA) &&
1920             ((fod->offset + fcpreq->transfer_length) == fod->total_length) &&
1921             (tgtport->ops->target_features & NVMET_FCTGTFEAT_READDATA_RSP)) {
1922                 fcpreq->op = NVMET_FCOP_READDATA_RSP;
1923                 nvmet_fc_prep_fcp_rsp(tgtport, fod);
1924         }
1925
1926         ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
1927         if (ret) {
1928                 /*
1929                  * should be ok to set w/o lock as its in the thread of
1930                  * execution (not an async timer routine) and doesn't
1931                  * contend with any clearing action
1932                  */
1933                 fod->abort = true;
1934
1935                 if (op == NVMET_FCOP_WRITEDATA) {
1936                         spin_lock_irqsave(&fod->flock, flags);
1937                         fod->writedataactive = false;
1938                         spin_unlock_irqrestore(&fod->flock, flags);
1939                         nvmet_req_complete(&fod->req,
1940                                         NVME_SC_FC_TRANSPORT_ERROR);
1941                 } else /* NVMET_FCOP_READDATA or NVMET_FCOP_READDATA_RSP */ {
1942                         fcpreq->fcp_error = ret;
1943                         fcpreq->transferred_length = 0;
1944                         nvmet_fc_xmt_fcp_op_done(fod->fcpreq);
1945                 }
1946         }
1947 }
1948
1949 static inline bool
1950 __nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod *fod, bool abort)
1951 {
1952         struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
1953         struct nvmet_fc_tgtport *tgtport = fod->tgtport;
1954
1955         /* if in the middle of an io and we need to tear down */
1956         if (abort) {
1957                 if (fcpreq->op == NVMET_FCOP_WRITEDATA) {
1958                         nvmet_req_complete(&fod->req,
1959                                         NVME_SC_FC_TRANSPORT_ERROR);
1960                         return true;
1961                 }
1962
1963                 nvmet_fc_abort_op(tgtport, fod);
1964                 return true;
1965         }
1966
1967         return false;
1968 }
1969
1970 /*
1971  * actual done handler for FCP operations when completed by the lldd
1972  */
1973 static void
1974 nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod *fod)
1975 {
1976         struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
1977         struct nvmet_fc_tgtport *tgtport = fod->tgtport;
1978         unsigned long flags;
1979         bool abort;
1980
1981         spin_lock_irqsave(&fod->flock, flags);
1982         abort = fod->abort;
1983         fod->writedataactive = false;
1984         spin_unlock_irqrestore(&fod->flock, flags);
1985
1986         switch (fcpreq->op) {
1987
1988         case NVMET_FCOP_WRITEDATA:
1989                 if (__nvmet_fc_fod_op_abort(fod, abort))
1990                         return;
1991                 if (fcpreq->fcp_error ||
1992                     fcpreq->transferred_length != fcpreq->transfer_length) {
1993                         spin_lock(&fod->flock);
1994                         fod->abort = true;
1995                         spin_unlock(&fod->flock);
1996
1997                         nvmet_req_complete(&fod->req,
1998                                         NVME_SC_FC_TRANSPORT_ERROR);
1999                         return;
2000                 }
2001
2002                 fod->offset += fcpreq->transferred_length;
2003                 if (fod->offset != fod->total_length) {
2004                         spin_lock_irqsave(&fod->flock, flags);
2005                         fod->writedataactive = true;
2006                         spin_unlock_irqrestore(&fod->flock, flags);
2007
2008                         /* transfer the next chunk */
2009                         nvmet_fc_transfer_fcp_data(tgtport, fod,
2010                                                 NVMET_FCOP_WRITEDATA);
2011                         return;
2012                 }
2013
2014                 /* data transfer complete, resume with nvmet layer */
2015
2016                 fod->req.execute(&fod->req);
2017
2018                 break;
2019
2020         case NVMET_FCOP_READDATA:
2021         case NVMET_FCOP_READDATA_RSP:
2022                 if (__nvmet_fc_fod_op_abort(fod, abort))
2023                         return;
2024                 if (fcpreq->fcp_error ||
2025                     fcpreq->transferred_length != fcpreq->transfer_length) {
2026                         nvmet_fc_abort_op(tgtport, fod);
2027                         return;
2028                 }
2029
2030                 /* success */
2031
2032                 if (fcpreq->op == NVMET_FCOP_READDATA_RSP) {
2033                         /* data no longer needed */
2034                         nvmet_fc_free_tgt_pgs(fod);
2035                         nvmet_fc_free_fcp_iod(fod->queue, fod);
2036                         return;
2037                 }
2038
2039                 fod->offset += fcpreq->transferred_length;
2040                 if (fod->offset != fod->total_length) {
2041                         /* transfer the next chunk */
2042                         nvmet_fc_transfer_fcp_data(tgtport, fod,
2043                                                 NVMET_FCOP_READDATA);
2044                         return;
2045                 }
2046
2047                 /* data transfer complete, send response */
2048
2049                 /* data no longer needed */
2050                 nvmet_fc_free_tgt_pgs(fod);
2051
2052                 nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2053
2054                 break;
2055
2056         case NVMET_FCOP_RSP:
2057                 if (__nvmet_fc_fod_op_abort(fod, abort))
2058                         return;
2059                 nvmet_fc_free_fcp_iod(fod->queue, fod);
2060                 break;
2061
2062         default:
2063                 break;
2064         }
2065 }
2066
2067 static void
2068 nvmet_fc_fcp_rqst_op_done_work(struct work_struct *work)
2069 {
2070         struct nvmet_fc_fcp_iod *fod =
2071                 container_of(work, struct nvmet_fc_fcp_iod, done_work);
2072
2073         nvmet_fc_fod_op_done(fod);
2074 }
2075
2076 static void
2077 nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq)
2078 {
2079         struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2080         struct nvmet_fc_tgt_queue *queue = fod->queue;
2081
2082         if (fod->tgtport->ops->target_features & NVMET_FCTGTFEAT_OPDONE_IN_ISR)
2083                 /* context switch so completion is not in ISR context */
2084                 queue_work_on(queue->cpu, queue->work_q, &fod->done_work);
2085         else
2086                 nvmet_fc_fod_op_done(fod);
2087 }
2088
2089 /*
2090  * actual completion handler after execution by the nvmet layer
2091  */
2092 static void
2093 __nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport *tgtport,
2094                         struct nvmet_fc_fcp_iod *fod, int status)
2095 {
2096         struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
2097         struct nvme_completion *cqe = &fod->rspiubuf.cqe;
2098         unsigned long flags;
2099         bool abort;
2100
2101         spin_lock_irqsave(&fod->flock, flags);
2102         abort = fod->abort;
2103         spin_unlock_irqrestore(&fod->flock, flags);
2104
2105         /* if we have a CQE, snoop the last sq_head value */
2106         if (!status)
2107                 fod->queue->sqhd = cqe->sq_head;
2108
2109         if (abort) {
2110                 nvmet_fc_abort_op(tgtport, fod);
2111                 return;
2112         }
2113
2114         /* if an error handling the cmd post initial parsing */
2115         if (status) {
2116                 /* fudge up a failed CQE status for our transport error */
2117                 memset(cqe, 0, sizeof(*cqe));
2118                 cqe->sq_head = fod->queue->sqhd;        /* echo last cqe sqhd */
2119                 cqe->sq_id = cpu_to_le16(fod->queue->qid);
2120                 cqe->command_id = sqe->command_id;
2121                 cqe->status = cpu_to_le16(status);
2122         } else {
2123
2124                 /*
2125                  * try to push the data even if the SQE status is non-zero.
2126                  * There may be a status where data still was intended to
2127                  * be moved
2128                  */
2129                 if ((fod->io_dir == NVMET_FCP_READ) && (fod->data_sg_cnt)) {
2130                         /* push the data over before sending rsp */
2131                         nvmet_fc_transfer_fcp_data(tgtport, fod,
2132                                                 NVMET_FCOP_READDATA);
2133                         return;
2134                 }
2135
2136                 /* writes & no data - fall thru */
2137         }
2138
2139         /* data no longer needed */
2140         nvmet_fc_free_tgt_pgs(fod);
2141
2142         nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2143 }
2144
2145
2146 static void
2147 nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req)
2148 {
2149         struct nvmet_fc_fcp_iod *fod = nvmet_req_to_fod(nvme_req);
2150         struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2151
2152         __nvmet_fc_fcp_nvme_cmd_done(tgtport, fod, 0);
2153 }
2154
2155
2156 /*
2157  * Actual processing routine for received FC-NVME LS Requests from the LLD
2158  */
2159 static void
2160 nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
2161                         struct nvmet_fc_fcp_iod *fod)
2162 {
2163         struct nvme_fc_cmd_iu *cmdiu = &fod->cmdiubuf;
2164         int ret;
2165
2166         /*
2167          * Fused commands are currently not supported in the linux
2168          * implementation.
2169          *
2170          * As such, the implementation of the FC transport does not
2171          * look at the fused commands and order delivery to the upper
2172          * layer until we have both based on csn.
2173          */
2174
2175         fod->fcpreq->done = nvmet_fc_xmt_fcp_op_done;
2176
2177         fod->total_length = be32_to_cpu(cmdiu->data_len);
2178         if (cmdiu->flags & FCNVME_CMD_FLAGS_WRITE) {
2179                 fod->io_dir = NVMET_FCP_WRITE;
2180                 if (!nvme_is_write(&cmdiu->sqe))
2181                         goto transport_error;
2182         } else if (cmdiu->flags & FCNVME_CMD_FLAGS_READ) {
2183                 fod->io_dir = NVMET_FCP_READ;
2184                 if (nvme_is_write(&cmdiu->sqe))
2185                         goto transport_error;
2186         } else {
2187                 fod->io_dir = NVMET_FCP_NODATA;
2188                 if (fod->total_length)
2189                         goto transport_error;
2190         }
2191
2192         fod->req.cmd = &fod->cmdiubuf.sqe;
2193         fod->req.rsp = &fod->rspiubuf.cqe;
2194         fod->req.port = fod->queue->port;
2195
2196         /* ensure nvmet handlers will set cmd handler callback */
2197         fod->req.execute = NULL;
2198
2199         /* clear any response payload */
2200         memset(&fod->rspiubuf, 0, sizeof(fod->rspiubuf));
2201
2202         fod->data_sg = NULL;
2203         fod->data_sg_cnt = 0;
2204
2205         ret = nvmet_req_init(&fod->req,
2206                                 &fod->queue->nvme_cq,
2207                                 &fod->queue->nvme_sq,
2208                                 &nvmet_fc_tgt_fcp_ops);
2209         if (!ret) {
2210                 /* bad SQE content or invalid ctrl state */
2211                 /* nvmet layer has already called op done to send rsp. */
2212                 return;
2213         }
2214
2215         /* keep a running counter of tail position */
2216         atomic_inc(&fod->queue->sqtail);
2217
2218         if (fod->total_length) {
2219                 ret = nvmet_fc_alloc_tgt_pgs(fod);
2220                 if (ret) {
2221                         nvmet_req_complete(&fod->req, ret);
2222                         return;
2223                 }
2224         }
2225         fod->req.sg = fod->data_sg;
2226         fod->req.sg_cnt = fod->data_sg_cnt;
2227         fod->offset = 0;
2228         fod->next_sg = fod->data_sg;
2229         fod->next_sg_offset = 0;
2230
2231         if (fod->io_dir == NVMET_FCP_WRITE) {
2232                 /* pull the data over before invoking nvmet layer */
2233                 nvmet_fc_transfer_fcp_data(tgtport, fod, NVMET_FCOP_WRITEDATA);
2234                 return;
2235         }
2236
2237         /*
2238          * Reads or no data:
2239          *
2240          * can invoke the nvmet_layer now. If read data, cmd completion will
2241          * push the data
2242          */
2243
2244         fod->req.execute(&fod->req);
2245
2246         return;
2247
2248 transport_error:
2249         nvmet_fc_abort_op(tgtport, fod);
2250 }
2251
2252 /*
2253  * Actual processing routine for received FC-NVME LS Requests from the LLD
2254  */
2255 static void
2256 nvmet_fc_handle_fcp_rqst_work(struct work_struct *work)
2257 {
2258         struct nvmet_fc_fcp_iod *fod =
2259                 container_of(work, struct nvmet_fc_fcp_iod, work);
2260         struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2261
2262         nvmet_fc_handle_fcp_rqst(tgtport, fod);
2263 }
2264
2265 /**
2266  * nvmet_fc_rcv_fcp_req - transport entry point called by an LLDD
2267  *                       upon the reception of a NVME FCP CMD IU.
2268  *
2269  * Pass a FC-NVME FCP CMD IU received from the FC link to the nvmet-fc
2270  * layer for processing.
2271  *
2272  * The nvmet_fc layer allocates a local job structure (struct
2273  * nvmet_fc_fcp_iod) from the queue for the io and copies the
2274  * CMD IU buffer to the job structure. As such, on a successful
2275  * completion (returns 0), the LLDD may immediately free/reuse
2276  * the CMD IU buffer passed in the call.
2277  *
2278  * However, in some circumstances, due to the packetized nature of FC
2279  * and the api of the FC LLDD which may issue a hw command to send the
2280  * response, but the LLDD may not get the hw completion for that command
2281  * and upcall the nvmet_fc layer before a new command may be
2282  * asynchronously received - its possible for a command to be received
2283  * before the LLDD and nvmet_fc have recycled the job structure. It gives
2284  * the appearance of more commands received than fits in the sq.
2285  * To alleviate this scenario, a temporary queue is maintained in the
2286  * transport for pending LLDD requests waiting for a queue job structure.
2287  * In these "overrun" cases, a temporary queue element is allocated
2288  * the LLDD request and CMD iu buffer information remembered, and the
2289  * routine returns a -EOVERFLOW status. Subsequently, when a queue job
2290  * structure is freed, it is immediately reallocated for anything on the
2291  * pending request list. The LLDDs defer_rcv() callback is called,
2292  * informing the LLDD that it may reuse the CMD IU buffer, and the io
2293  * is then started normally with the transport.
2294  *
2295  * The LLDD, when receiving an -EOVERFLOW completion status, is to treat
2296  * the completion as successful but must not reuse the CMD IU buffer
2297  * until the LLDD's defer_rcv() callback has been called for the
2298  * corresponding struct nvmefc_tgt_fcp_req pointer.
2299  *
2300  * If there is any other condition in which an error occurs, the
2301  * transport will return a non-zero status indicating the error.
2302  * In all cases other than -EOVERFLOW, the transport has not accepted the
2303  * request and the LLDD should abort the exchange.
2304  *
2305  * @target_port: pointer to the (registered) target port the FCP CMD IU
2306  *              was received on.
2307  * @fcpreq:     pointer to a fcpreq request structure to be used to reference
2308  *              the exchange corresponding to the FCP Exchange.
2309  * @cmdiubuf:   pointer to the buffer containing the FCP CMD IU
2310  * @cmdiubuf_len: length, in bytes, of the received FCP CMD IU
2311  */
2312 int
2313 nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port *target_port,
2314                         struct nvmefc_tgt_fcp_req *fcpreq,
2315                         void *cmdiubuf, u32 cmdiubuf_len)
2316 {
2317         struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
2318         struct nvme_fc_cmd_iu *cmdiu = cmdiubuf;
2319         struct nvmet_fc_tgt_queue *queue;
2320         struct nvmet_fc_fcp_iod *fod;
2321         struct nvmet_fc_defer_fcp_req *deferfcp;
2322         unsigned long flags;
2323
2324         /* validate iu, so the connection id can be used to find the queue */
2325         if ((cmdiubuf_len != sizeof(*cmdiu)) ||
2326                         (cmdiu->scsi_id != NVME_CMD_SCSI_ID) ||
2327                         (cmdiu->fc_id != NVME_CMD_FC_ID) ||
2328                         (be16_to_cpu(cmdiu->iu_len) != (sizeof(*cmdiu)/4)))
2329                 return -EIO;
2330
2331         queue = nvmet_fc_find_target_queue(tgtport,
2332                                 be64_to_cpu(cmdiu->connection_id));
2333         if (!queue)
2334                 return -ENOTCONN;
2335
2336         /*
2337          * note: reference taken by find_target_queue
2338          * After successful fod allocation, the fod will inherit the
2339          * ownership of that reference and will remove the reference
2340          * when the fod is freed.
2341          */
2342
2343         spin_lock_irqsave(&queue->qlock, flags);
2344
2345         fod = nvmet_fc_alloc_fcp_iod(queue);
2346         if (fod) {
2347                 spin_unlock_irqrestore(&queue->qlock, flags);
2348
2349                 fcpreq->nvmet_fc_private = fod;
2350                 fod->fcpreq = fcpreq;
2351
2352                 memcpy(&fod->cmdiubuf, cmdiubuf, cmdiubuf_len);
2353
2354                 nvmet_fc_queue_fcp_req(tgtport, queue, fcpreq);
2355
2356                 return 0;
2357         }
2358
2359         if (!tgtport->ops->defer_rcv) {
2360                 spin_unlock_irqrestore(&queue->qlock, flags);
2361                 /* release the queue lookup reference */
2362                 nvmet_fc_tgt_q_put(queue);
2363                 return -ENOENT;
2364         }
2365
2366         deferfcp = list_first_entry_or_null(&queue->avail_defer_list,
2367                         struct nvmet_fc_defer_fcp_req, req_list);
2368         if (deferfcp) {
2369                 /* Just re-use one that was previously allocated */
2370                 list_del(&deferfcp->req_list);
2371         } else {
2372                 spin_unlock_irqrestore(&queue->qlock, flags);
2373
2374                 /* Now we need to dynamically allocate one */
2375                 deferfcp = kmalloc(sizeof(*deferfcp), GFP_KERNEL);
2376                 if (!deferfcp) {
2377                         /* release the queue lookup reference */
2378                         nvmet_fc_tgt_q_put(queue);
2379                         return -ENOMEM;
2380                 }
2381                 spin_lock_irqsave(&queue->qlock, flags);
2382         }
2383
2384         /* For now, use rspaddr / rsplen to save payload information */
2385         fcpreq->rspaddr = cmdiubuf;
2386         fcpreq->rsplen  = cmdiubuf_len;
2387         deferfcp->fcp_req = fcpreq;
2388
2389         /* defer processing till a fod becomes available */
2390         list_add_tail(&deferfcp->req_list, &queue->pending_cmd_list);
2391
2392         /* NOTE: the queue lookup reference is still valid */
2393
2394         spin_unlock_irqrestore(&queue->qlock, flags);
2395
2396         return -EOVERFLOW;
2397 }
2398 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_req);
2399
2400 /**
2401  * nvmet_fc_rcv_fcp_abort - transport entry point called by an LLDD
2402  *                       upon the reception of an ABTS for a FCP command
2403  *
2404  * Notify the transport that an ABTS has been received for a FCP command
2405  * that had been given to the transport via nvmet_fc_rcv_fcp_req(). The
2406  * LLDD believes the command is still being worked on
2407  * (template_ops->fcp_req_release() has not been called).
2408  *
2409  * The transport will wait for any outstanding work (an op to the LLDD,
2410  * which the lldd should complete with error due to the ABTS; or the
2411  * completion from the nvmet layer of the nvme command), then will
2412  * stop processing and call the nvmet_fc_rcv_fcp_req() callback to
2413  * return the i/o context to the LLDD.  The LLDD may send the BA_ACC
2414  * to the ABTS either after return from this function (assuming any
2415  * outstanding op work has been terminated) or upon the callback being
2416  * called.
2417  *
2418  * @target_port: pointer to the (registered) target port the FCP CMD IU
2419  *              was received on.
2420  * @fcpreq:     pointer to the fcpreq request structure that corresponds
2421  *              to the exchange that received the ABTS.
2422  */
2423 void
2424 nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port *target_port,
2425                         struct nvmefc_tgt_fcp_req *fcpreq)
2426 {
2427         struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2428         struct nvmet_fc_tgt_queue *queue;
2429         unsigned long flags;
2430
2431         if (!fod || fod->fcpreq != fcpreq)
2432                 /* job appears to have already completed, ignore abort */
2433                 return;
2434
2435         queue = fod->queue;
2436
2437         spin_lock_irqsave(&queue->qlock, flags);
2438         if (fod->active) {
2439                 /*
2440                  * mark as abort. The abort handler, invoked upon completion
2441                  * of any work, will detect the aborted status and do the
2442                  * callback.
2443                  */
2444                 spin_lock(&fod->flock);
2445                 fod->abort = true;
2446                 fod->aborted = true;
2447                 spin_unlock(&fod->flock);
2448         }
2449         spin_unlock_irqrestore(&queue->qlock, flags);
2450 }
2451 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_abort);
2452
2453
2454 struct nvmet_fc_traddr {
2455         u64     nn;
2456         u64     pn;
2457 };
2458
2459 static int
2460 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
2461 {
2462         u64 token64;
2463
2464         if (match_u64(sstr, &token64))
2465                 return -EINVAL;
2466         *val = token64;
2467
2468         return 0;
2469 }
2470
2471 /*
2472  * This routine validates and extracts the WWN's from the TRADDR string.
2473  * As kernel parsers need the 0x to determine number base, universally
2474  * build string to parse with 0x prefix before parsing name strings.
2475  */
2476 static int
2477 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
2478 {
2479         char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
2480         substring_t wwn = { name, &name[sizeof(name)-1] };
2481         int nnoffset, pnoffset;
2482
2483         /* validate it string one of the 2 allowed formats */
2484         if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
2485                         !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
2486                         !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
2487                                 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
2488                 nnoffset = NVME_FC_TRADDR_OXNNLEN;
2489                 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
2490                                                 NVME_FC_TRADDR_OXNNLEN;
2491         } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
2492                         !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
2493                         !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
2494                                 "pn-", NVME_FC_TRADDR_NNLEN))) {
2495                 nnoffset = NVME_FC_TRADDR_NNLEN;
2496                 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
2497         } else
2498                 goto out_einval;
2499
2500         name[0] = '0';
2501         name[1] = 'x';
2502         name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
2503
2504         memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2505         if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
2506                 goto out_einval;
2507
2508         memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2509         if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
2510                 goto out_einval;
2511
2512         return 0;
2513
2514 out_einval:
2515         pr_warn("%s: bad traddr string\n", __func__);
2516         return -EINVAL;
2517 }
2518
2519 static int
2520 nvmet_fc_add_port(struct nvmet_port *port)
2521 {
2522         struct nvmet_fc_tgtport *tgtport;
2523         struct nvmet_fc_traddr traddr = { 0L, 0L };
2524         unsigned long flags;
2525         int ret;
2526
2527         /* validate the address info */
2528         if ((port->disc_addr.trtype != NVMF_TRTYPE_FC) ||
2529             (port->disc_addr.adrfam != NVMF_ADDR_FAMILY_FC))
2530                 return -EINVAL;
2531
2532         /* map the traddr address info to a target port */
2533
2534         ret = nvme_fc_parse_traddr(&traddr, port->disc_addr.traddr,
2535                         sizeof(port->disc_addr.traddr));
2536         if (ret)
2537                 return ret;
2538
2539         ret = -ENXIO;
2540         spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
2541         list_for_each_entry(tgtport, &nvmet_fc_target_list, tgt_list) {
2542                 if ((tgtport->fc_target_port.node_name == traddr.nn) &&
2543                     (tgtport->fc_target_port.port_name == traddr.pn)) {
2544                         /* a FC port can only be 1 nvmet port id */
2545                         if (!tgtport->port) {
2546                                 tgtport->port = port;
2547                                 port->priv = tgtport;
2548                                 nvmet_fc_tgtport_get(tgtport);
2549                                 ret = 0;
2550                         } else
2551                                 ret = -EALREADY;
2552                         break;
2553                 }
2554         }
2555         spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
2556         return ret;
2557 }
2558
2559 static void
2560 nvmet_fc_remove_port(struct nvmet_port *port)
2561 {
2562         struct nvmet_fc_tgtport *tgtport = port->priv;
2563         unsigned long flags;
2564
2565         spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
2566         if (tgtport->port == port) {
2567                 nvmet_fc_tgtport_put(tgtport);
2568                 tgtport->port = NULL;
2569         }
2570         spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
2571 }
2572
2573 static struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops = {
2574         .owner                  = THIS_MODULE,
2575         .type                   = NVMF_TRTYPE_FC,
2576         .msdbd                  = 1,
2577         .add_port               = nvmet_fc_add_port,
2578         .remove_port            = nvmet_fc_remove_port,
2579         .queue_response         = nvmet_fc_fcp_nvme_cmd_done,
2580         .delete_ctrl            = nvmet_fc_delete_ctrl,
2581 };
2582
2583 static int __init nvmet_fc_init_module(void)
2584 {
2585         return nvmet_register_transport(&nvmet_fc_tgt_fcp_ops);
2586 }
2587
2588 static void __exit nvmet_fc_exit_module(void)
2589 {
2590         /* sanity check - all lports should be removed */
2591         if (!list_empty(&nvmet_fc_target_list))
2592                 pr_warn("%s: targetport list not empty\n", __func__);
2593
2594         nvmet_unregister_transport(&nvmet_fc_tgt_fcp_ops);
2595
2596         ida_destroy(&nvmet_fc_tgtport_cnt);
2597 }
2598
2599 module_init(nvmet_fc_init_module);
2600 module_exit(nvmet_fc_exit_module);
2601
2602 MODULE_LICENSE("GPL v2");