Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[sfrench/cifs-2.6.git] / drivers / nvme / target / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common code for the NVMe target.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/random.h>
9 #include <linux/rculist.h>
10 #include <linux/pci-p2pdma.h>
11 #include <linux/scatterlist.h>
12
13 #define CREATE_TRACE_POINTS
14 #include "trace.h"
15
16 #include "nvmet.h"
17
18 struct workqueue_struct *buffered_io_wq;
19 static const struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX];
20 static DEFINE_IDA(cntlid_ida);
21
22 /*
23  * This read/write semaphore is used to synchronize access to configuration
24  * information on a target system that will result in discovery log page
25  * information change for at least one host.
26  * The full list of resources to protected by this semaphore is:
27  *
28  *  - subsystems list
29  *  - per-subsystem allowed hosts list
30  *  - allow_any_host subsystem attribute
31  *  - nvmet_genctr
32  *  - the nvmet_transports array
33  *
34  * When updating any of those lists/structures write lock should be obtained,
35  * while when reading (popolating discovery log page or checking host-subsystem
36  * link) read lock is obtained to allow concurrent reads.
37  */
38 DECLARE_RWSEM(nvmet_config_sem);
39
40 u32 nvmet_ana_group_enabled[NVMET_MAX_ANAGRPS + 1];
41 u64 nvmet_ana_chgcnt;
42 DECLARE_RWSEM(nvmet_ana_sem);
43
44 inline u16 errno_to_nvme_status(struct nvmet_req *req, int errno)
45 {
46         u16 status;
47
48         switch (errno) {
49         case 0:
50                 status = NVME_SC_SUCCESS;
51                 break;
52         case -ENOSPC:
53                 req->error_loc = offsetof(struct nvme_rw_command, length);
54                 status = NVME_SC_CAP_EXCEEDED | NVME_SC_DNR;
55                 break;
56         case -EREMOTEIO:
57                 req->error_loc = offsetof(struct nvme_rw_command, slba);
58                 status = NVME_SC_LBA_RANGE | NVME_SC_DNR;
59                 break;
60         case -EOPNOTSUPP:
61                 req->error_loc = offsetof(struct nvme_common_command, opcode);
62                 switch (req->cmd->common.opcode) {
63                 case nvme_cmd_dsm:
64                 case nvme_cmd_write_zeroes:
65                         status = NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR;
66                         break;
67                 default:
68                         status = NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
69                 }
70                 break;
71         case -ENODATA:
72                 req->error_loc = offsetof(struct nvme_rw_command, nsid);
73                 status = NVME_SC_ACCESS_DENIED;
74                 break;
75         case -EIO:
76                 /* FALLTHRU */
77         default:
78                 req->error_loc = offsetof(struct nvme_common_command, opcode);
79                 status = NVME_SC_INTERNAL | NVME_SC_DNR;
80         }
81
82         return status;
83 }
84
85 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
86                 const char *subsysnqn);
87
88 u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf,
89                 size_t len)
90 {
91         if (sg_pcopy_from_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
92                 req->error_loc = offsetof(struct nvme_common_command, dptr);
93                 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
94         }
95         return 0;
96 }
97
98 u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len)
99 {
100         if (sg_pcopy_to_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
101                 req->error_loc = offsetof(struct nvme_common_command, dptr);
102                 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
103         }
104         return 0;
105 }
106
107 u16 nvmet_zero_sgl(struct nvmet_req *req, off_t off, size_t len)
108 {
109         if (sg_zero_buffer(req->sg, req->sg_cnt, len, off) != len) {
110                 req->error_loc = offsetof(struct nvme_common_command, dptr);
111                 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
112         }
113         return 0;
114 }
115
116 static unsigned int nvmet_max_nsid(struct nvmet_subsys *subsys)
117 {
118         struct nvmet_ns *ns;
119
120         if (list_empty(&subsys->namespaces))
121                 return 0;
122
123         ns = list_last_entry(&subsys->namespaces, struct nvmet_ns, dev_link);
124         return ns->nsid;
125 }
126
127 static u32 nvmet_async_event_result(struct nvmet_async_event *aen)
128 {
129         return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16);
130 }
131
132 static void nvmet_async_events_free(struct nvmet_ctrl *ctrl)
133 {
134         struct nvmet_req *req;
135
136         while (1) {
137                 mutex_lock(&ctrl->lock);
138                 if (!ctrl->nr_async_event_cmds) {
139                         mutex_unlock(&ctrl->lock);
140                         return;
141                 }
142
143                 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
144                 mutex_unlock(&ctrl->lock);
145                 nvmet_req_complete(req, NVME_SC_INTERNAL | NVME_SC_DNR);
146         }
147 }
148
149 static void nvmet_async_event_work(struct work_struct *work)
150 {
151         struct nvmet_ctrl *ctrl =
152                 container_of(work, struct nvmet_ctrl, async_event_work);
153         struct nvmet_async_event *aen;
154         struct nvmet_req *req;
155
156         while (1) {
157                 mutex_lock(&ctrl->lock);
158                 aen = list_first_entry_or_null(&ctrl->async_events,
159                                 struct nvmet_async_event, entry);
160                 if (!aen || !ctrl->nr_async_event_cmds) {
161                         mutex_unlock(&ctrl->lock);
162                         return;
163                 }
164
165                 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
166                 nvmet_set_result(req, nvmet_async_event_result(aen));
167
168                 list_del(&aen->entry);
169                 kfree(aen);
170
171                 mutex_unlock(&ctrl->lock);
172                 nvmet_req_complete(req, 0);
173         }
174 }
175
176 void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type,
177                 u8 event_info, u8 log_page)
178 {
179         struct nvmet_async_event *aen;
180
181         aen = kmalloc(sizeof(*aen), GFP_KERNEL);
182         if (!aen)
183                 return;
184
185         aen->event_type = event_type;
186         aen->event_info = event_info;
187         aen->log_page = log_page;
188
189         mutex_lock(&ctrl->lock);
190         list_add_tail(&aen->entry, &ctrl->async_events);
191         mutex_unlock(&ctrl->lock);
192
193         schedule_work(&ctrl->async_event_work);
194 }
195
196 static void nvmet_add_to_changed_ns_log(struct nvmet_ctrl *ctrl, __le32 nsid)
197 {
198         u32 i;
199
200         mutex_lock(&ctrl->lock);
201         if (ctrl->nr_changed_ns > NVME_MAX_CHANGED_NAMESPACES)
202                 goto out_unlock;
203
204         for (i = 0; i < ctrl->nr_changed_ns; i++) {
205                 if (ctrl->changed_ns_list[i] == nsid)
206                         goto out_unlock;
207         }
208
209         if (ctrl->nr_changed_ns == NVME_MAX_CHANGED_NAMESPACES) {
210                 ctrl->changed_ns_list[0] = cpu_to_le32(0xffffffff);
211                 ctrl->nr_changed_ns = U32_MAX;
212                 goto out_unlock;
213         }
214
215         ctrl->changed_ns_list[ctrl->nr_changed_ns++] = nsid;
216 out_unlock:
217         mutex_unlock(&ctrl->lock);
218 }
219
220 void nvmet_ns_changed(struct nvmet_subsys *subsys, u32 nsid)
221 {
222         struct nvmet_ctrl *ctrl;
223
224         lockdep_assert_held(&subsys->lock);
225
226         list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
227                 nvmet_add_to_changed_ns_log(ctrl, cpu_to_le32(nsid));
228                 if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_NS_ATTR))
229                         continue;
230                 nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
231                                 NVME_AER_NOTICE_NS_CHANGED,
232                                 NVME_LOG_CHANGED_NS);
233         }
234 }
235
236 void nvmet_send_ana_event(struct nvmet_subsys *subsys,
237                 struct nvmet_port *port)
238 {
239         struct nvmet_ctrl *ctrl;
240
241         mutex_lock(&subsys->lock);
242         list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
243                 if (port && ctrl->port != port)
244                         continue;
245                 if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_ANA_CHANGE))
246                         continue;
247                 nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
248                                 NVME_AER_NOTICE_ANA, NVME_LOG_ANA);
249         }
250         mutex_unlock(&subsys->lock);
251 }
252
253 void nvmet_port_send_ana_event(struct nvmet_port *port)
254 {
255         struct nvmet_subsys_link *p;
256
257         down_read(&nvmet_config_sem);
258         list_for_each_entry(p, &port->subsystems, entry)
259                 nvmet_send_ana_event(p->subsys, port);
260         up_read(&nvmet_config_sem);
261 }
262
263 int nvmet_register_transport(const struct nvmet_fabrics_ops *ops)
264 {
265         int ret = 0;
266
267         down_write(&nvmet_config_sem);
268         if (nvmet_transports[ops->type])
269                 ret = -EINVAL;
270         else
271                 nvmet_transports[ops->type] = ops;
272         up_write(&nvmet_config_sem);
273
274         return ret;
275 }
276 EXPORT_SYMBOL_GPL(nvmet_register_transport);
277
278 void nvmet_unregister_transport(const struct nvmet_fabrics_ops *ops)
279 {
280         down_write(&nvmet_config_sem);
281         nvmet_transports[ops->type] = NULL;
282         up_write(&nvmet_config_sem);
283 }
284 EXPORT_SYMBOL_GPL(nvmet_unregister_transport);
285
286 void nvmet_port_del_ctrls(struct nvmet_port *port, struct nvmet_subsys *subsys)
287 {
288         struct nvmet_ctrl *ctrl;
289
290         mutex_lock(&subsys->lock);
291         list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
292                 if (ctrl->port == port)
293                         ctrl->ops->delete_ctrl(ctrl);
294         }
295         mutex_unlock(&subsys->lock);
296 }
297
298 int nvmet_enable_port(struct nvmet_port *port)
299 {
300         const struct nvmet_fabrics_ops *ops;
301         int ret;
302
303         lockdep_assert_held(&nvmet_config_sem);
304
305         ops = nvmet_transports[port->disc_addr.trtype];
306         if (!ops) {
307                 up_write(&nvmet_config_sem);
308                 request_module("nvmet-transport-%d", port->disc_addr.trtype);
309                 down_write(&nvmet_config_sem);
310                 ops = nvmet_transports[port->disc_addr.trtype];
311                 if (!ops) {
312                         pr_err("transport type %d not supported\n",
313                                 port->disc_addr.trtype);
314                         return -EINVAL;
315                 }
316         }
317
318         if (!try_module_get(ops->owner))
319                 return -EINVAL;
320
321         ret = ops->add_port(port);
322         if (ret) {
323                 module_put(ops->owner);
324                 return ret;
325         }
326
327         /* If the transport didn't set inline_data_size, then disable it. */
328         if (port->inline_data_size < 0)
329                 port->inline_data_size = 0;
330
331         port->enabled = true;
332         port->tr_ops = ops;
333         return 0;
334 }
335
336 void nvmet_disable_port(struct nvmet_port *port)
337 {
338         const struct nvmet_fabrics_ops *ops;
339
340         lockdep_assert_held(&nvmet_config_sem);
341
342         port->enabled = false;
343         port->tr_ops = NULL;
344
345         ops = nvmet_transports[port->disc_addr.trtype];
346         ops->remove_port(port);
347         module_put(ops->owner);
348 }
349
350 static void nvmet_keep_alive_timer(struct work_struct *work)
351 {
352         struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work),
353                         struct nvmet_ctrl, ka_work);
354         bool cmd_seen = ctrl->cmd_seen;
355
356         ctrl->cmd_seen = false;
357         if (cmd_seen) {
358                 pr_debug("ctrl %d reschedule traffic based keep-alive timer\n",
359                         ctrl->cntlid);
360                 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
361                 return;
362         }
363
364         pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n",
365                 ctrl->cntlid, ctrl->kato);
366
367         nvmet_ctrl_fatal_error(ctrl);
368 }
369
370 static void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl)
371 {
372         pr_debug("ctrl %d start keep-alive timer for %d secs\n",
373                 ctrl->cntlid, ctrl->kato);
374
375         INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer);
376         schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
377 }
378
379 static void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl)
380 {
381         pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid);
382
383         cancel_delayed_work_sync(&ctrl->ka_work);
384 }
385
386 static struct nvmet_ns *__nvmet_find_namespace(struct nvmet_ctrl *ctrl,
387                 __le32 nsid)
388 {
389         struct nvmet_ns *ns;
390
391         list_for_each_entry_rcu(ns, &ctrl->subsys->namespaces, dev_link) {
392                 if (ns->nsid == le32_to_cpu(nsid))
393                         return ns;
394         }
395
396         return NULL;
397 }
398
399 struct nvmet_ns *nvmet_find_namespace(struct nvmet_ctrl *ctrl, __le32 nsid)
400 {
401         struct nvmet_ns *ns;
402
403         rcu_read_lock();
404         ns = __nvmet_find_namespace(ctrl, nsid);
405         if (ns)
406                 percpu_ref_get(&ns->ref);
407         rcu_read_unlock();
408
409         return ns;
410 }
411
412 static void nvmet_destroy_namespace(struct percpu_ref *ref)
413 {
414         struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref);
415
416         complete(&ns->disable_done);
417 }
418
419 void nvmet_put_namespace(struct nvmet_ns *ns)
420 {
421         percpu_ref_put(&ns->ref);
422 }
423
424 static void nvmet_ns_dev_disable(struct nvmet_ns *ns)
425 {
426         nvmet_bdev_ns_disable(ns);
427         nvmet_file_ns_disable(ns);
428 }
429
430 static int nvmet_p2pmem_ns_enable(struct nvmet_ns *ns)
431 {
432         int ret;
433         struct pci_dev *p2p_dev;
434
435         if (!ns->use_p2pmem)
436                 return 0;
437
438         if (!ns->bdev) {
439                 pr_err("peer-to-peer DMA is not supported by non-block device namespaces\n");
440                 return -EINVAL;
441         }
442
443         if (!blk_queue_pci_p2pdma(ns->bdev->bd_queue)) {
444                 pr_err("peer-to-peer DMA is not supported by the driver of %s\n",
445                        ns->device_path);
446                 return -EINVAL;
447         }
448
449         if (ns->p2p_dev) {
450                 ret = pci_p2pdma_distance(ns->p2p_dev, nvmet_ns_dev(ns), true);
451                 if (ret < 0)
452                         return -EINVAL;
453         } else {
454                 /*
455                  * Right now we just check that there is p2pmem available so
456                  * we can report an error to the user right away if there
457                  * is not. We'll find the actual device to use once we
458                  * setup the controller when the port's device is available.
459                  */
460
461                 p2p_dev = pci_p2pmem_find(nvmet_ns_dev(ns));
462                 if (!p2p_dev) {
463                         pr_err("no peer-to-peer memory is available for %s\n",
464                                ns->device_path);
465                         return -EINVAL;
466                 }
467
468                 pci_dev_put(p2p_dev);
469         }
470
471         return 0;
472 }
473
474 /*
475  * Note: ctrl->subsys->lock should be held when calling this function
476  */
477 static void nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl *ctrl,
478                                     struct nvmet_ns *ns)
479 {
480         struct device *clients[2];
481         struct pci_dev *p2p_dev;
482         int ret;
483
484         if (!ctrl->p2p_client || !ns->use_p2pmem)
485                 return;
486
487         if (ns->p2p_dev) {
488                 ret = pci_p2pdma_distance(ns->p2p_dev, ctrl->p2p_client, true);
489                 if (ret < 0)
490                         return;
491
492                 p2p_dev = pci_dev_get(ns->p2p_dev);
493         } else {
494                 clients[0] = ctrl->p2p_client;
495                 clients[1] = nvmet_ns_dev(ns);
496
497                 p2p_dev = pci_p2pmem_find_many(clients, ARRAY_SIZE(clients));
498                 if (!p2p_dev) {
499                         pr_err("no peer-to-peer memory is available that's supported by %s and %s\n",
500                                dev_name(ctrl->p2p_client), ns->device_path);
501                         return;
502                 }
503         }
504
505         ret = radix_tree_insert(&ctrl->p2p_ns_map, ns->nsid, p2p_dev);
506         if (ret < 0)
507                 pci_dev_put(p2p_dev);
508
509         pr_info("using p2pmem on %s for nsid %d\n", pci_name(p2p_dev),
510                 ns->nsid);
511 }
512
513 int nvmet_ns_enable(struct nvmet_ns *ns)
514 {
515         struct nvmet_subsys *subsys = ns->subsys;
516         struct nvmet_ctrl *ctrl;
517         int ret;
518
519         mutex_lock(&subsys->lock);
520         ret = 0;
521         if (ns->enabled)
522                 goto out_unlock;
523
524         ret = -EMFILE;
525         if (subsys->nr_namespaces == NVMET_MAX_NAMESPACES)
526                 goto out_unlock;
527
528         ret = nvmet_bdev_ns_enable(ns);
529         if (ret == -ENOTBLK)
530                 ret = nvmet_file_ns_enable(ns);
531         if (ret)
532                 goto out_unlock;
533
534         ret = nvmet_p2pmem_ns_enable(ns);
535         if (ret)
536                 goto out_dev_disable;
537
538         list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
539                 nvmet_p2pmem_ns_add_p2p(ctrl, ns);
540
541         ret = percpu_ref_init(&ns->ref, nvmet_destroy_namespace,
542                                 0, GFP_KERNEL);
543         if (ret)
544                 goto out_dev_put;
545
546         if (ns->nsid > subsys->max_nsid)
547                 subsys->max_nsid = ns->nsid;
548
549         /*
550          * The namespaces list needs to be sorted to simplify the implementation
551          * of the Identify Namepace List subcommand.
552          */
553         if (list_empty(&subsys->namespaces)) {
554                 list_add_tail_rcu(&ns->dev_link, &subsys->namespaces);
555         } else {
556                 struct nvmet_ns *old;
557
558                 list_for_each_entry_rcu(old, &subsys->namespaces, dev_link) {
559                         BUG_ON(ns->nsid == old->nsid);
560                         if (ns->nsid < old->nsid)
561                                 break;
562                 }
563
564                 list_add_tail_rcu(&ns->dev_link, &old->dev_link);
565         }
566         subsys->nr_namespaces++;
567
568         nvmet_ns_changed(subsys, ns->nsid);
569         ns->enabled = true;
570         ret = 0;
571 out_unlock:
572         mutex_unlock(&subsys->lock);
573         return ret;
574 out_dev_put:
575         list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
576                 pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
577 out_dev_disable:
578         nvmet_ns_dev_disable(ns);
579         goto out_unlock;
580 }
581
582 void nvmet_ns_disable(struct nvmet_ns *ns)
583 {
584         struct nvmet_subsys *subsys = ns->subsys;
585         struct nvmet_ctrl *ctrl;
586
587         mutex_lock(&subsys->lock);
588         if (!ns->enabled)
589                 goto out_unlock;
590
591         ns->enabled = false;
592         list_del_rcu(&ns->dev_link);
593         if (ns->nsid == subsys->max_nsid)
594                 subsys->max_nsid = nvmet_max_nsid(subsys);
595
596         list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
597                 pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
598
599         mutex_unlock(&subsys->lock);
600
601         /*
602          * Now that we removed the namespaces from the lookup list, we
603          * can kill the per_cpu ref and wait for any remaining references
604          * to be dropped, as well as a RCU grace period for anyone only
605          * using the namepace under rcu_read_lock().  Note that we can't
606          * use call_rcu here as we need to ensure the namespaces have
607          * been fully destroyed before unloading the module.
608          */
609         percpu_ref_kill(&ns->ref);
610         synchronize_rcu();
611         wait_for_completion(&ns->disable_done);
612         percpu_ref_exit(&ns->ref);
613
614         mutex_lock(&subsys->lock);
615
616         subsys->nr_namespaces--;
617         nvmet_ns_changed(subsys, ns->nsid);
618         nvmet_ns_dev_disable(ns);
619 out_unlock:
620         mutex_unlock(&subsys->lock);
621 }
622
623 void nvmet_ns_free(struct nvmet_ns *ns)
624 {
625         nvmet_ns_disable(ns);
626
627         down_write(&nvmet_ana_sem);
628         nvmet_ana_group_enabled[ns->anagrpid]--;
629         up_write(&nvmet_ana_sem);
630
631         kfree(ns->device_path);
632         kfree(ns);
633 }
634
635 struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid)
636 {
637         struct nvmet_ns *ns;
638
639         ns = kzalloc(sizeof(*ns), GFP_KERNEL);
640         if (!ns)
641                 return NULL;
642
643         INIT_LIST_HEAD(&ns->dev_link);
644         init_completion(&ns->disable_done);
645
646         ns->nsid = nsid;
647         ns->subsys = subsys;
648
649         down_write(&nvmet_ana_sem);
650         ns->anagrpid = NVMET_DEFAULT_ANA_GRPID;
651         nvmet_ana_group_enabled[ns->anagrpid]++;
652         up_write(&nvmet_ana_sem);
653
654         uuid_gen(&ns->uuid);
655         ns->buffered_io = false;
656
657         return ns;
658 }
659
660 static void nvmet_update_sq_head(struct nvmet_req *req)
661 {
662         if (req->sq->size) {
663                 u32 old_sqhd, new_sqhd;
664
665                 do {
666                         old_sqhd = req->sq->sqhd;
667                         new_sqhd = (old_sqhd + 1) % req->sq->size;
668                 } while (cmpxchg(&req->sq->sqhd, old_sqhd, new_sqhd) !=
669                                         old_sqhd);
670         }
671         req->cqe->sq_head = cpu_to_le16(req->sq->sqhd & 0x0000FFFF);
672 }
673
674 static void nvmet_set_error(struct nvmet_req *req, u16 status)
675 {
676         struct nvmet_ctrl *ctrl = req->sq->ctrl;
677         struct nvme_error_slot *new_error_slot;
678         unsigned long flags;
679
680         req->cqe->status = cpu_to_le16(status << 1);
681
682         if (!ctrl || req->error_loc == NVMET_NO_ERROR_LOC)
683                 return;
684
685         spin_lock_irqsave(&ctrl->error_lock, flags);
686         ctrl->err_counter++;
687         new_error_slot =
688                 &ctrl->slots[ctrl->err_counter % NVMET_ERROR_LOG_SLOTS];
689
690         new_error_slot->error_count = cpu_to_le64(ctrl->err_counter);
691         new_error_slot->sqid = cpu_to_le16(req->sq->qid);
692         new_error_slot->cmdid = cpu_to_le16(req->cmd->common.command_id);
693         new_error_slot->status_field = cpu_to_le16(status << 1);
694         new_error_slot->param_error_location = cpu_to_le16(req->error_loc);
695         new_error_slot->lba = cpu_to_le64(req->error_slba);
696         new_error_slot->nsid = req->cmd->common.nsid;
697         spin_unlock_irqrestore(&ctrl->error_lock, flags);
698
699         /* set the more bit for this request */
700         req->cqe->status |= cpu_to_le16(1 << 14);
701 }
702
703 static void __nvmet_req_complete(struct nvmet_req *req, u16 status)
704 {
705         if (!req->sq->sqhd_disabled)
706                 nvmet_update_sq_head(req);
707         req->cqe->sq_id = cpu_to_le16(req->sq->qid);
708         req->cqe->command_id = req->cmd->common.command_id;
709
710         if (unlikely(status))
711                 nvmet_set_error(req, status);
712
713         trace_nvmet_req_complete(req);
714
715         if (req->ns)
716                 nvmet_put_namespace(req->ns);
717         req->ops->queue_response(req);
718 }
719
720 void nvmet_req_complete(struct nvmet_req *req, u16 status)
721 {
722         __nvmet_req_complete(req, status);
723         percpu_ref_put(&req->sq->ref);
724 }
725 EXPORT_SYMBOL_GPL(nvmet_req_complete);
726
727 void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq,
728                 u16 qid, u16 size)
729 {
730         cq->qid = qid;
731         cq->size = size;
732
733         ctrl->cqs[qid] = cq;
734 }
735
736 void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq,
737                 u16 qid, u16 size)
738 {
739         sq->sqhd = 0;
740         sq->qid = qid;
741         sq->size = size;
742
743         ctrl->sqs[qid] = sq;
744 }
745
746 static void nvmet_confirm_sq(struct percpu_ref *ref)
747 {
748         struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
749
750         complete(&sq->confirm_done);
751 }
752
753 void nvmet_sq_destroy(struct nvmet_sq *sq)
754 {
755         /*
756          * If this is the admin queue, complete all AERs so that our
757          * queue doesn't have outstanding requests on it.
758          */
759         if (sq->ctrl && sq->ctrl->sqs && sq->ctrl->sqs[0] == sq)
760                 nvmet_async_events_free(sq->ctrl);
761         percpu_ref_kill_and_confirm(&sq->ref, nvmet_confirm_sq);
762         wait_for_completion(&sq->confirm_done);
763         wait_for_completion(&sq->free_done);
764         percpu_ref_exit(&sq->ref);
765
766         if (sq->ctrl) {
767                 nvmet_ctrl_put(sq->ctrl);
768                 sq->ctrl = NULL; /* allows reusing the queue later */
769         }
770 }
771 EXPORT_SYMBOL_GPL(nvmet_sq_destroy);
772
773 static void nvmet_sq_free(struct percpu_ref *ref)
774 {
775         struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
776
777         complete(&sq->free_done);
778 }
779
780 int nvmet_sq_init(struct nvmet_sq *sq)
781 {
782         int ret;
783
784         ret = percpu_ref_init(&sq->ref, nvmet_sq_free, 0, GFP_KERNEL);
785         if (ret) {
786                 pr_err("percpu_ref init failed!\n");
787                 return ret;
788         }
789         init_completion(&sq->free_done);
790         init_completion(&sq->confirm_done);
791
792         return 0;
793 }
794 EXPORT_SYMBOL_GPL(nvmet_sq_init);
795
796 static inline u16 nvmet_check_ana_state(struct nvmet_port *port,
797                 struct nvmet_ns *ns)
798 {
799         enum nvme_ana_state state = port->ana_state[ns->anagrpid];
800
801         if (unlikely(state == NVME_ANA_INACCESSIBLE))
802                 return NVME_SC_ANA_INACCESSIBLE;
803         if (unlikely(state == NVME_ANA_PERSISTENT_LOSS))
804                 return NVME_SC_ANA_PERSISTENT_LOSS;
805         if (unlikely(state == NVME_ANA_CHANGE))
806                 return NVME_SC_ANA_TRANSITION;
807         return 0;
808 }
809
810 static inline u16 nvmet_io_cmd_check_access(struct nvmet_req *req)
811 {
812         if (unlikely(req->ns->readonly)) {
813                 switch (req->cmd->common.opcode) {
814                 case nvme_cmd_read:
815                 case nvme_cmd_flush:
816                         break;
817                 default:
818                         return NVME_SC_NS_WRITE_PROTECTED;
819                 }
820         }
821
822         return 0;
823 }
824
825 static u16 nvmet_parse_io_cmd(struct nvmet_req *req)
826 {
827         struct nvme_command *cmd = req->cmd;
828         u16 ret;
829
830         ret = nvmet_check_ctrl_status(req, cmd);
831         if (unlikely(ret))
832                 return ret;
833
834         req->ns = nvmet_find_namespace(req->sq->ctrl, cmd->rw.nsid);
835         if (unlikely(!req->ns)) {
836                 req->error_loc = offsetof(struct nvme_common_command, nsid);
837                 return NVME_SC_INVALID_NS | NVME_SC_DNR;
838         }
839         ret = nvmet_check_ana_state(req->port, req->ns);
840         if (unlikely(ret)) {
841                 req->error_loc = offsetof(struct nvme_common_command, nsid);
842                 return ret;
843         }
844         ret = nvmet_io_cmd_check_access(req);
845         if (unlikely(ret)) {
846                 req->error_loc = offsetof(struct nvme_common_command, nsid);
847                 return ret;
848         }
849
850         if (req->ns->file)
851                 return nvmet_file_parse_io_cmd(req);
852         else
853                 return nvmet_bdev_parse_io_cmd(req);
854 }
855
856 bool nvmet_req_init(struct nvmet_req *req, struct nvmet_cq *cq,
857                 struct nvmet_sq *sq, const struct nvmet_fabrics_ops *ops)
858 {
859         u8 flags = req->cmd->common.flags;
860         u16 status;
861
862         req->cq = cq;
863         req->sq = sq;
864         req->ops = ops;
865         req->sg = NULL;
866         req->sg_cnt = 0;
867         req->transfer_len = 0;
868         req->cqe->status = 0;
869         req->cqe->sq_head = 0;
870         req->ns = NULL;
871         req->error_loc = NVMET_NO_ERROR_LOC;
872         req->error_slba = 0;
873
874         trace_nvmet_req_init(req, req->cmd);
875
876         /* no support for fused commands yet */
877         if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) {
878                 req->error_loc = offsetof(struct nvme_common_command, flags);
879                 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
880                 goto fail;
881         }
882
883         /*
884          * For fabrics, PSDT field shall describe metadata pointer (MPTR) that
885          * contains an address of a single contiguous physical buffer that is
886          * byte aligned.
887          */
888         if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF)) {
889                 req->error_loc = offsetof(struct nvme_common_command, flags);
890                 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
891                 goto fail;
892         }
893
894         if (unlikely(!req->sq->ctrl))
895                 /* will return an error for any Non-connect command: */
896                 status = nvmet_parse_connect_cmd(req);
897         else if (likely(req->sq->qid != 0))
898                 status = nvmet_parse_io_cmd(req);
899         else if (nvme_is_fabrics(req->cmd))
900                 status = nvmet_parse_fabrics_cmd(req);
901         else if (req->sq->ctrl->subsys->type == NVME_NQN_DISC)
902                 status = nvmet_parse_discovery_cmd(req);
903         else
904                 status = nvmet_parse_admin_cmd(req);
905
906         if (status)
907                 goto fail;
908
909         if (unlikely(!percpu_ref_tryget_live(&sq->ref))) {
910                 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
911                 goto fail;
912         }
913
914         if (sq->ctrl)
915                 sq->ctrl->cmd_seen = true;
916
917         return true;
918
919 fail:
920         __nvmet_req_complete(req, status);
921         return false;
922 }
923 EXPORT_SYMBOL_GPL(nvmet_req_init);
924
925 void nvmet_req_uninit(struct nvmet_req *req)
926 {
927         percpu_ref_put(&req->sq->ref);
928         if (req->ns)
929                 nvmet_put_namespace(req->ns);
930 }
931 EXPORT_SYMBOL_GPL(nvmet_req_uninit);
932
933 void nvmet_req_execute(struct nvmet_req *req)
934 {
935         if (unlikely(req->data_len != req->transfer_len)) {
936                 req->error_loc = offsetof(struct nvme_common_command, dptr);
937                 nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR);
938         } else
939                 req->execute(req);
940 }
941 EXPORT_SYMBOL_GPL(nvmet_req_execute);
942
943 int nvmet_req_alloc_sgl(struct nvmet_req *req)
944 {
945         struct pci_dev *p2p_dev = NULL;
946
947         if (IS_ENABLED(CONFIG_PCI_P2PDMA)) {
948                 if (req->sq->ctrl && req->ns)
949                         p2p_dev = radix_tree_lookup(&req->sq->ctrl->p2p_ns_map,
950                                                     req->ns->nsid);
951
952                 req->p2p_dev = NULL;
953                 if (req->sq->qid && p2p_dev) {
954                         req->sg = pci_p2pmem_alloc_sgl(p2p_dev, &req->sg_cnt,
955                                                        req->transfer_len);
956                         if (req->sg) {
957                                 req->p2p_dev = p2p_dev;
958                                 return 0;
959                         }
960                 }
961
962                 /*
963                  * If no P2P memory was available we fallback to using
964                  * regular memory
965                  */
966         }
967
968         req->sg = sgl_alloc(req->transfer_len, GFP_KERNEL, &req->sg_cnt);
969         if (!req->sg)
970                 return -ENOMEM;
971
972         return 0;
973 }
974 EXPORT_SYMBOL_GPL(nvmet_req_alloc_sgl);
975
976 void nvmet_req_free_sgl(struct nvmet_req *req)
977 {
978         if (req->p2p_dev)
979                 pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
980         else
981                 sgl_free(req->sg);
982
983         req->sg = NULL;
984         req->sg_cnt = 0;
985 }
986 EXPORT_SYMBOL_GPL(nvmet_req_free_sgl);
987
988 static inline bool nvmet_cc_en(u32 cc)
989 {
990         return (cc >> NVME_CC_EN_SHIFT) & 0x1;
991 }
992
993 static inline u8 nvmet_cc_css(u32 cc)
994 {
995         return (cc >> NVME_CC_CSS_SHIFT) & 0x7;
996 }
997
998 static inline u8 nvmet_cc_mps(u32 cc)
999 {
1000         return (cc >> NVME_CC_MPS_SHIFT) & 0xf;
1001 }
1002
1003 static inline u8 nvmet_cc_ams(u32 cc)
1004 {
1005         return (cc >> NVME_CC_AMS_SHIFT) & 0x7;
1006 }
1007
1008 static inline u8 nvmet_cc_shn(u32 cc)
1009 {
1010         return (cc >> NVME_CC_SHN_SHIFT) & 0x3;
1011 }
1012
1013 static inline u8 nvmet_cc_iosqes(u32 cc)
1014 {
1015         return (cc >> NVME_CC_IOSQES_SHIFT) & 0xf;
1016 }
1017
1018 static inline u8 nvmet_cc_iocqes(u32 cc)
1019 {
1020         return (cc >> NVME_CC_IOCQES_SHIFT) & 0xf;
1021 }
1022
1023 static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl)
1024 {
1025         lockdep_assert_held(&ctrl->lock);
1026
1027         if (nvmet_cc_iosqes(ctrl->cc) != NVME_NVM_IOSQES ||
1028             nvmet_cc_iocqes(ctrl->cc) != NVME_NVM_IOCQES ||
1029             nvmet_cc_mps(ctrl->cc) != 0 ||
1030             nvmet_cc_ams(ctrl->cc) != 0 ||
1031             nvmet_cc_css(ctrl->cc) != 0) {
1032                 ctrl->csts = NVME_CSTS_CFS;
1033                 return;
1034         }
1035
1036         ctrl->csts = NVME_CSTS_RDY;
1037
1038         /*
1039          * Controllers that are not yet enabled should not really enforce the
1040          * keep alive timeout, but we still want to track a timeout and cleanup
1041          * in case a host died before it enabled the controller.  Hence, simply
1042          * reset the keep alive timer when the controller is enabled.
1043          */
1044         mod_delayed_work(system_wq, &ctrl->ka_work, ctrl->kato * HZ);
1045 }
1046
1047 static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl)
1048 {
1049         lockdep_assert_held(&ctrl->lock);
1050
1051         /* XXX: tear down queues? */
1052         ctrl->csts &= ~NVME_CSTS_RDY;
1053         ctrl->cc = 0;
1054 }
1055
1056 void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new)
1057 {
1058         u32 old;
1059
1060         mutex_lock(&ctrl->lock);
1061         old = ctrl->cc;
1062         ctrl->cc = new;
1063
1064         if (nvmet_cc_en(new) && !nvmet_cc_en(old))
1065                 nvmet_start_ctrl(ctrl);
1066         if (!nvmet_cc_en(new) && nvmet_cc_en(old))
1067                 nvmet_clear_ctrl(ctrl);
1068         if (nvmet_cc_shn(new) && !nvmet_cc_shn(old)) {
1069                 nvmet_clear_ctrl(ctrl);
1070                 ctrl->csts |= NVME_CSTS_SHST_CMPLT;
1071         }
1072         if (!nvmet_cc_shn(new) && nvmet_cc_shn(old))
1073                 ctrl->csts &= ~NVME_CSTS_SHST_CMPLT;
1074         mutex_unlock(&ctrl->lock);
1075 }
1076
1077 static void nvmet_init_cap(struct nvmet_ctrl *ctrl)
1078 {
1079         /* command sets supported: NVMe command set: */
1080         ctrl->cap = (1ULL << 37);
1081         /* CC.EN timeout in 500msec units: */
1082         ctrl->cap |= (15ULL << 24);
1083         /* maximum queue entries supported: */
1084         ctrl->cap |= NVMET_QUEUE_SIZE - 1;
1085 }
1086
1087 u16 nvmet_ctrl_find_get(const char *subsysnqn, const char *hostnqn, u16 cntlid,
1088                 struct nvmet_req *req, struct nvmet_ctrl **ret)
1089 {
1090         struct nvmet_subsys *subsys;
1091         struct nvmet_ctrl *ctrl;
1092         u16 status = 0;
1093
1094         subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1095         if (!subsys) {
1096                 pr_warn("connect request for invalid subsystem %s!\n",
1097                         subsysnqn);
1098                 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1099                 return NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1100         }
1101
1102         mutex_lock(&subsys->lock);
1103         list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
1104                 if (ctrl->cntlid == cntlid) {
1105                         if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) {
1106                                 pr_warn("hostnqn mismatch.\n");
1107                                 continue;
1108                         }
1109                         if (!kref_get_unless_zero(&ctrl->ref))
1110                                 continue;
1111
1112                         *ret = ctrl;
1113                         goto out;
1114                 }
1115         }
1116
1117         pr_warn("could not find controller %d for subsys %s / host %s\n",
1118                 cntlid, subsysnqn, hostnqn);
1119         req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid);
1120         status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1121
1122 out:
1123         mutex_unlock(&subsys->lock);
1124         nvmet_subsys_put(subsys);
1125         return status;
1126 }
1127
1128 u16 nvmet_check_ctrl_status(struct nvmet_req *req, struct nvme_command *cmd)
1129 {
1130         if (unlikely(!(req->sq->ctrl->cc & NVME_CC_ENABLE))) {
1131                 pr_err("got cmd %d while CC.EN == 0 on qid = %d\n",
1132                        cmd->common.opcode, req->sq->qid);
1133                 return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
1134         }
1135
1136         if (unlikely(!(req->sq->ctrl->csts & NVME_CSTS_RDY))) {
1137                 pr_err("got cmd %d while CSTS.RDY == 0 on qid = %d\n",
1138                        cmd->common.opcode, req->sq->qid);
1139                 return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
1140         }
1141         return 0;
1142 }
1143
1144 bool nvmet_host_allowed(struct nvmet_subsys *subsys, const char *hostnqn)
1145 {
1146         struct nvmet_host_link *p;
1147
1148         lockdep_assert_held(&nvmet_config_sem);
1149
1150         if (subsys->allow_any_host)
1151                 return true;
1152
1153         if (subsys->type == NVME_NQN_DISC) /* allow all access to disc subsys */
1154                 return true;
1155
1156         list_for_each_entry(p, &subsys->hosts, entry) {
1157                 if (!strcmp(nvmet_host_name(p->host), hostnqn))
1158                         return true;
1159         }
1160
1161         return false;
1162 }
1163
1164 /*
1165  * Note: ctrl->subsys->lock should be held when calling this function
1166  */
1167 static void nvmet_setup_p2p_ns_map(struct nvmet_ctrl *ctrl,
1168                 struct nvmet_req *req)
1169 {
1170         struct nvmet_ns *ns;
1171
1172         if (!req->p2p_client)
1173                 return;
1174
1175         ctrl->p2p_client = get_device(req->p2p_client);
1176
1177         list_for_each_entry_rcu(ns, &ctrl->subsys->namespaces, dev_link)
1178                 nvmet_p2pmem_ns_add_p2p(ctrl, ns);
1179 }
1180
1181 /*
1182  * Note: ctrl->subsys->lock should be held when calling this function
1183  */
1184 static void nvmet_release_p2p_ns_map(struct nvmet_ctrl *ctrl)
1185 {
1186         struct radix_tree_iter iter;
1187         void __rcu **slot;
1188
1189         radix_tree_for_each_slot(slot, &ctrl->p2p_ns_map, &iter, 0)
1190                 pci_dev_put(radix_tree_deref_slot(slot));
1191
1192         put_device(ctrl->p2p_client);
1193 }
1194
1195 static void nvmet_fatal_error_handler(struct work_struct *work)
1196 {
1197         struct nvmet_ctrl *ctrl =
1198                         container_of(work, struct nvmet_ctrl, fatal_err_work);
1199
1200         pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid);
1201         ctrl->ops->delete_ctrl(ctrl);
1202 }
1203
1204 u16 nvmet_alloc_ctrl(const char *subsysnqn, const char *hostnqn,
1205                 struct nvmet_req *req, u32 kato, struct nvmet_ctrl **ctrlp)
1206 {
1207         struct nvmet_subsys *subsys;
1208         struct nvmet_ctrl *ctrl;
1209         int ret;
1210         u16 status;
1211
1212         status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1213         subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1214         if (!subsys) {
1215                 pr_warn("connect request for invalid subsystem %s!\n",
1216                         subsysnqn);
1217                 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1218                 goto out;
1219         }
1220
1221         status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1222         down_read(&nvmet_config_sem);
1223         if (!nvmet_host_allowed(subsys, hostnqn)) {
1224                 pr_info("connect by host %s for subsystem %s not allowed\n",
1225                         hostnqn, subsysnqn);
1226                 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(hostnqn);
1227                 up_read(&nvmet_config_sem);
1228                 status = NVME_SC_CONNECT_INVALID_HOST | NVME_SC_DNR;
1229                 goto out_put_subsystem;
1230         }
1231         up_read(&nvmet_config_sem);
1232
1233         status = NVME_SC_INTERNAL;
1234         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1235         if (!ctrl)
1236                 goto out_put_subsystem;
1237         mutex_init(&ctrl->lock);
1238
1239         nvmet_init_cap(ctrl);
1240
1241         ctrl->port = req->port;
1242
1243         INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work);
1244         INIT_LIST_HEAD(&ctrl->async_events);
1245         INIT_RADIX_TREE(&ctrl->p2p_ns_map, GFP_KERNEL);
1246         INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler);
1247
1248         memcpy(ctrl->subsysnqn, subsysnqn, NVMF_NQN_SIZE);
1249         memcpy(ctrl->hostnqn, hostnqn, NVMF_NQN_SIZE);
1250
1251         kref_init(&ctrl->ref);
1252         ctrl->subsys = subsys;
1253         WRITE_ONCE(ctrl->aen_enabled, NVMET_AEN_CFG_OPTIONAL);
1254
1255         ctrl->changed_ns_list = kmalloc_array(NVME_MAX_CHANGED_NAMESPACES,
1256                         sizeof(__le32), GFP_KERNEL);
1257         if (!ctrl->changed_ns_list)
1258                 goto out_free_ctrl;
1259
1260         ctrl->cqs = kcalloc(subsys->max_qid + 1,
1261                         sizeof(struct nvmet_cq *),
1262                         GFP_KERNEL);
1263         if (!ctrl->cqs)
1264                 goto out_free_changed_ns_list;
1265
1266         ctrl->sqs = kcalloc(subsys->max_qid + 1,
1267                         sizeof(struct nvmet_sq *),
1268                         GFP_KERNEL);
1269         if (!ctrl->sqs)
1270                 goto out_free_cqs;
1271
1272         ret = ida_simple_get(&cntlid_ida,
1273                              NVME_CNTLID_MIN, NVME_CNTLID_MAX,
1274                              GFP_KERNEL);
1275         if (ret < 0) {
1276                 status = NVME_SC_CONNECT_CTRL_BUSY | NVME_SC_DNR;
1277                 goto out_free_sqs;
1278         }
1279         ctrl->cntlid = ret;
1280
1281         ctrl->ops = req->ops;
1282
1283         /*
1284          * Discovery controllers may use some arbitrary high value
1285          * in order to cleanup stale discovery sessions
1286          */
1287         if ((ctrl->subsys->type == NVME_NQN_DISC) && !kato)
1288                 kato = NVMET_DISC_KATO_MS;
1289
1290         /* keep-alive timeout in seconds */
1291         ctrl->kato = DIV_ROUND_UP(kato, 1000);
1292
1293         ctrl->err_counter = 0;
1294         spin_lock_init(&ctrl->error_lock);
1295
1296         nvmet_start_keep_alive_timer(ctrl);
1297
1298         mutex_lock(&subsys->lock);
1299         list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
1300         nvmet_setup_p2p_ns_map(ctrl, req);
1301         mutex_unlock(&subsys->lock);
1302
1303         *ctrlp = ctrl;
1304         return 0;
1305
1306 out_free_sqs:
1307         kfree(ctrl->sqs);
1308 out_free_cqs:
1309         kfree(ctrl->cqs);
1310 out_free_changed_ns_list:
1311         kfree(ctrl->changed_ns_list);
1312 out_free_ctrl:
1313         kfree(ctrl);
1314 out_put_subsystem:
1315         nvmet_subsys_put(subsys);
1316 out:
1317         return status;
1318 }
1319
1320 static void nvmet_ctrl_free(struct kref *ref)
1321 {
1322         struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref);
1323         struct nvmet_subsys *subsys = ctrl->subsys;
1324
1325         mutex_lock(&subsys->lock);
1326         nvmet_release_p2p_ns_map(ctrl);
1327         list_del(&ctrl->subsys_entry);
1328         mutex_unlock(&subsys->lock);
1329
1330         nvmet_stop_keep_alive_timer(ctrl);
1331
1332         flush_work(&ctrl->async_event_work);
1333         cancel_work_sync(&ctrl->fatal_err_work);
1334
1335         ida_simple_remove(&cntlid_ida, ctrl->cntlid);
1336
1337         kfree(ctrl->sqs);
1338         kfree(ctrl->cqs);
1339         kfree(ctrl->changed_ns_list);
1340         kfree(ctrl);
1341
1342         nvmet_subsys_put(subsys);
1343 }
1344
1345 void nvmet_ctrl_put(struct nvmet_ctrl *ctrl)
1346 {
1347         kref_put(&ctrl->ref, nvmet_ctrl_free);
1348 }
1349
1350 void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl)
1351 {
1352         mutex_lock(&ctrl->lock);
1353         if (!(ctrl->csts & NVME_CSTS_CFS)) {
1354                 ctrl->csts |= NVME_CSTS_CFS;
1355                 schedule_work(&ctrl->fatal_err_work);
1356         }
1357         mutex_unlock(&ctrl->lock);
1358 }
1359 EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error);
1360
1361 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
1362                 const char *subsysnqn)
1363 {
1364         struct nvmet_subsys_link *p;
1365
1366         if (!port)
1367                 return NULL;
1368
1369         if (!strcmp(NVME_DISC_SUBSYS_NAME, subsysnqn)) {
1370                 if (!kref_get_unless_zero(&nvmet_disc_subsys->ref))
1371                         return NULL;
1372                 return nvmet_disc_subsys;
1373         }
1374
1375         down_read(&nvmet_config_sem);
1376         list_for_each_entry(p, &port->subsystems, entry) {
1377                 if (!strncmp(p->subsys->subsysnqn, subsysnqn,
1378                                 NVMF_NQN_SIZE)) {
1379                         if (!kref_get_unless_zero(&p->subsys->ref))
1380                                 break;
1381                         up_read(&nvmet_config_sem);
1382                         return p->subsys;
1383                 }
1384         }
1385         up_read(&nvmet_config_sem);
1386         return NULL;
1387 }
1388
1389 struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn,
1390                 enum nvme_subsys_type type)
1391 {
1392         struct nvmet_subsys *subsys;
1393
1394         subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
1395         if (!subsys)
1396                 return ERR_PTR(-ENOMEM);
1397
1398         subsys->ver = NVME_VS(1, 3, 0); /* NVMe 1.3.0 */
1399         /* generate a random serial number as our controllers are ephemeral: */
1400         get_random_bytes(&subsys->serial, sizeof(subsys->serial));
1401
1402         switch (type) {
1403         case NVME_NQN_NVME:
1404                 subsys->max_qid = NVMET_NR_QUEUES;
1405                 break;
1406         case NVME_NQN_DISC:
1407                 subsys->max_qid = 0;
1408                 break;
1409         default:
1410                 pr_err("%s: Unknown Subsystem type - %d\n", __func__, type);
1411                 kfree(subsys);
1412                 return ERR_PTR(-EINVAL);
1413         }
1414         subsys->type = type;
1415         subsys->subsysnqn = kstrndup(subsysnqn, NVMF_NQN_SIZE,
1416                         GFP_KERNEL);
1417         if (!subsys->subsysnqn) {
1418                 kfree(subsys);
1419                 return ERR_PTR(-ENOMEM);
1420         }
1421
1422         kref_init(&subsys->ref);
1423
1424         mutex_init(&subsys->lock);
1425         INIT_LIST_HEAD(&subsys->namespaces);
1426         INIT_LIST_HEAD(&subsys->ctrls);
1427         INIT_LIST_HEAD(&subsys->hosts);
1428
1429         return subsys;
1430 }
1431
1432 static void nvmet_subsys_free(struct kref *ref)
1433 {
1434         struct nvmet_subsys *subsys =
1435                 container_of(ref, struct nvmet_subsys, ref);
1436
1437         WARN_ON_ONCE(!list_empty(&subsys->namespaces));
1438
1439         kfree(subsys->subsysnqn);
1440         kfree(subsys);
1441 }
1442
1443 void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys)
1444 {
1445         struct nvmet_ctrl *ctrl;
1446
1447         mutex_lock(&subsys->lock);
1448         list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
1449                 ctrl->ops->delete_ctrl(ctrl);
1450         mutex_unlock(&subsys->lock);
1451 }
1452
1453 void nvmet_subsys_put(struct nvmet_subsys *subsys)
1454 {
1455         kref_put(&subsys->ref, nvmet_subsys_free);
1456 }
1457
1458 static int __init nvmet_init(void)
1459 {
1460         int error;
1461
1462         nvmet_ana_group_enabled[NVMET_DEFAULT_ANA_GRPID] = 1;
1463
1464         buffered_io_wq = alloc_workqueue("nvmet-buffered-io-wq",
1465                         WQ_MEM_RECLAIM, 0);
1466         if (!buffered_io_wq) {
1467                 error = -ENOMEM;
1468                 goto out;
1469         }
1470
1471         error = nvmet_init_discovery();
1472         if (error)
1473                 goto out_free_work_queue;
1474
1475         error = nvmet_init_configfs();
1476         if (error)
1477                 goto out_exit_discovery;
1478         return 0;
1479
1480 out_exit_discovery:
1481         nvmet_exit_discovery();
1482 out_free_work_queue:
1483         destroy_workqueue(buffered_io_wq);
1484 out:
1485         return error;
1486 }
1487
1488 static void __exit nvmet_exit(void)
1489 {
1490         nvmet_exit_configfs();
1491         nvmet_exit_discovery();
1492         ida_destroy(&cntlid_ida);
1493         destroy_workqueue(buffered_io_wq);
1494
1495         BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024);
1496         BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024);
1497 }
1498
1499 module_init(nvmet_init);
1500 module_exit(nvmet_exit);
1501
1502 MODULE_LICENSE("GPL v2");