Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[sfrench/cifs-2.6.git] / drivers / nvme / host / rdma.c
1 /*
2  * NVMe over Fabrics RDMA host code.
3  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/err.h>
19 #include <linux/string.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/blk-mq-rdma.h>
23 #include <linux/types.h>
24 #include <linux/list.h>
25 #include <linux/mutex.h>
26 #include <linux/scatterlist.h>
27 #include <linux/nvme.h>
28 #include <asm/unaligned.h>
29
30 #include <rdma/ib_verbs.h>
31 #include <rdma/rdma_cm.h>
32 #include <linux/nvme-rdma.h>
33
34 #include "nvme.h"
35 #include "fabrics.h"
36
37
38 #define NVME_RDMA_CONNECT_TIMEOUT_MS    3000            /* 3 second */
39
40 #define NVME_RDMA_MAX_SEGMENT_SIZE      0xffffff        /* 24-bit SGL field */
41
42 #define NVME_RDMA_MAX_SEGMENTS          256
43
44 #define NVME_RDMA_MAX_INLINE_SEGMENTS   1
45
46 /*
47  * We handle AEN commands ourselves and don't even let the
48  * block layer know about them.
49  */
50 #define NVME_RDMA_NR_AEN_COMMANDS      1
51 #define NVME_RDMA_AQ_BLKMQ_DEPTH       \
52         (NVME_AQ_DEPTH - NVME_RDMA_NR_AEN_COMMANDS)
53
54 struct nvme_rdma_device {
55         struct ib_device       *dev;
56         struct ib_pd           *pd;
57         struct kref             ref;
58         struct list_head        entry;
59 };
60
61 struct nvme_rdma_qe {
62         struct ib_cqe           cqe;
63         void                    *data;
64         u64                     dma;
65 };
66
67 struct nvme_rdma_queue;
68 struct nvme_rdma_request {
69         struct nvme_request     req;
70         struct ib_mr            *mr;
71         struct nvme_rdma_qe     sqe;
72         struct ib_sge           sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
73         u32                     num_sge;
74         int                     nents;
75         bool                    inline_data;
76         struct ib_reg_wr        reg_wr;
77         struct ib_cqe           reg_cqe;
78         struct nvme_rdma_queue  *queue;
79         struct sg_table         sg_table;
80         struct scatterlist      first_sgl[];
81 };
82
83 enum nvme_rdma_queue_flags {
84         NVME_RDMA_Q_LIVE                = 0,
85         NVME_RDMA_Q_DELETING            = 1,
86 };
87
88 struct nvme_rdma_queue {
89         struct nvme_rdma_qe     *rsp_ring;
90         atomic_t                sig_count;
91         int                     queue_size;
92         size_t                  cmnd_capsule_len;
93         struct nvme_rdma_ctrl   *ctrl;
94         struct nvme_rdma_device *device;
95         struct ib_cq            *ib_cq;
96         struct ib_qp            *qp;
97
98         unsigned long           flags;
99         struct rdma_cm_id       *cm_id;
100         int                     cm_error;
101         struct completion       cm_done;
102 };
103
104 struct nvme_rdma_ctrl {
105         /* read only in the hot path */
106         struct nvme_rdma_queue  *queues;
107
108         /* other member variables */
109         struct blk_mq_tag_set   tag_set;
110         struct work_struct      delete_work;
111         struct work_struct      err_work;
112
113         struct nvme_rdma_qe     async_event_sqe;
114
115         struct delayed_work     reconnect_work;
116
117         struct list_head        list;
118
119         struct blk_mq_tag_set   admin_tag_set;
120         struct nvme_rdma_device *device;
121
122         u32                     max_fr_pages;
123
124         struct sockaddr_storage addr;
125         struct sockaddr_storage src_addr;
126
127         struct nvme_ctrl        ctrl;
128 };
129
130 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
131 {
132         return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
133 }
134
135 static LIST_HEAD(device_list);
136 static DEFINE_MUTEX(device_list_mutex);
137
138 static LIST_HEAD(nvme_rdma_ctrl_list);
139 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
140
141 /*
142  * Disabling this option makes small I/O goes faster, but is fundamentally
143  * unsafe.  With it turned off we will have to register a global rkey that
144  * allows read and write access to all physical memory.
145  */
146 static bool register_always = true;
147 module_param(register_always, bool, 0444);
148 MODULE_PARM_DESC(register_always,
149          "Use memory registration even for contiguous memory regions");
150
151 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
152                 struct rdma_cm_event *event);
153 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
154
155 /* XXX: really should move to a generic header sooner or later.. */
156 static inline void put_unaligned_le24(u32 val, u8 *p)
157 {
158         *p++ = val;
159         *p++ = val >> 8;
160         *p++ = val >> 16;
161 }
162
163 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
164 {
165         return queue - queue->ctrl->queues;
166 }
167
168 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
169 {
170         return queue->cmnd_capsule_len - sizeof(struct nvme_command);
171 }
172
173 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
174                 size_t capsule_size, enum dma_data_direction dir)
175 {
176         ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
177         kfree(qe->data);
178 }
179
180 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
181                 size_t capsule_size, enum dma_data_direction dir)
182 {
183         qe->data = kzalloc(capsule_size, GFP_KERNEL);
184         if (!qe->data)
185                 return -ENOMEM;
186
187         qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
188         if (ib_dma_mapping_error(ibdev, qe->dma)) {
189                 kfree(qe->data);
190                 return -ENOMEM;
191         }
192
193         return 0;
194 }
195
196 static void nvme_rdma_free_ring(struct ib_device *ibdev,
197                 struct nvme_rdma_qe *ring, size_t ib_queue_size,
198                 size_t capsule_size, enum dma_data_direction dir)
199 {
200         int i;
201
202         for (i = 0; i < ib_queue_size; i++)
203                 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
204         kfree(ring);
205 }
206
207 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
208                 size_t ib_queue_size, size_t capsule_size,
209                 enum dma_data_direction dir)
210 {
211         struct nvme_rdma_qe *ring;
212         int i;
213
214         ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
215         if (!ring)
216                 return NULL;
217
218         for (i = 0; i < ib_queue_size; i++) {
219                 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
220                         goto out_free_ring;
221         }
222
223         return ring;
224
225 out_free_ring:
226         nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
227         return NULL;
228 }
229
230 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
231 {
232         pr_debug("QP event %s (%d)\n",
233                  ib_event_msg(event->event), event->event);
234
235 }
236
237 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
238 {
239         wait_for_completion_interruptible_timeout(&queue->cm_done,
240                         msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
241         return queue->cm_error;
242 }
243
244 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
245 {
246         struct nvme_rdma_device *dev = queue->device;
247         struct ib_qp_init_attr init_attr;
248         int ret;
249
250         memset(&init_attr, 0, sizeof(init_attr));
251         init_attr.event_handler = nvme_rdma_qp_event;
252         /* +1 for drain */
253         init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
254         /* +1 for drain */
255         init_attr.cap.max_recv_wr = queue->queue_size + 1;
256         init_attr.cap.max_recv_sge = 1;
257         init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS;
258         init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
259         init_attr.qp_type = IB_QPT_RC;
260         init_attr.send_cq = queue->ib_cq;
261         init_attr.recv_cq = queue->ib_cq;
262
263         ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
264
265         queue->qp = queue->cm_id->qp;
266         return ret;
267 }
268
269 static int nvme_rdma_reinit_request(void *data, struct request *rq)
270 {
271         struct nvme_rdma_ctrl *ctrl = data;
272         struct nvme_rdma_device *dev = ctrl->device;
273         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
274         int ret = 0;
275
276         ib_dereg_mr(req->mr);
277
278         req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
279                         ctrl->max_fr_pages);
280         if (IS_ERR(req->mr)) {
281                 ret = PTR_ERR(req->mr);
282                 req->mr = NULL;
283                 goto out;
284         }
285
286         req->mr->need_inval = false;
287
288 out:
289         return ret;
290 }
291
292 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
293                 struct request *rq, unsigned int hctx_idx)
294 {
295         struct nvme_rdma_ctrl *ctrl = set->driver_data;
296         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
297         int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
298         struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
299         struct nvme_rdma_device *dev = queue->device;
300
301         if (req->mr)
302                 ib_dereg_mr(req->mr);
303
304         nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
305                         DMA_TO_DEVICE);
306 }
307
308 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
309                 struct request *rq, unsigned int hctx_idx,
310                 unsigned int numa_node)
311 {
312         struct nvme_rdma_ctrl *ctrl = set->driver_data;
313         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
314         int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
315         struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
316         struct nvme_rdma_device *dev = queue->device;
317         struct ib_device *ibdev = dev->dev;
318         int ret;
319
320         ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command),
321                         DMA_TO_DEVICE);
322         if (ret)
323                 return ret;
324
325         req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
326                         ctrl->max_fr_pages);
327         if (IS_ERR(req->mr)) {
328                 ret = PTR_ERR(req->mr);
329                 goto out_free_qe;
330         }
331
332         req->queue = queue;
333
334         return 0;
335
336 out_free_qe:
337         nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
338                         DMA_TO_DEVICE);
339         return -ENOMEM;
340 }
341
342 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
343                 unsigned int hctx_idx)
344 {
345         struct nvme_rdma_ctrl *ctrl = data;
346         struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
347
348         BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
349
350         hctx->driver_data = queue;
351         return 0;
352 }
353
354 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
355                 unsigned int hctx_idx)
356 {
357         struct nvme_rdma_ctrl *ctrl = data;
358         struct nvme_rdma_queue *queue = &ctrl->queues[0];
359
360         BUG_ON(hctx_idx != 0);
361
362         hctx->driver_data = queue;
363         return 0;
364 }
365
366 static void nvme_rdma_free_dev(struct kref *ref)
367 {
368         struct nvme_rdma_device *ndev =
369                 container_of(ref, struct nvme_rdma_device, ref);
370
371         mutex_lock(&device_list_mutex);
372         list_del(&ndev->entry);
373         mutex_unlock(&device_list_mutex);
374
375         ib_dealloc_pd(ndev->pd);
376         kfree(ndev);
377 }
378
379 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
380 {
381         kref_put(&dev->ref, nvme_rdma_free_dev);
382 }
383
384 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
385 {
386         return kref_get_unless_zero(&dev->ref);
387 }
388
389 static struct nvme_rdma_device *
390 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
391 {
392         struct nvme_rdma_device *ndev;
393
394         mutex_lock(&device_list_mutex);
395         list_for_each_entry(ndev, &device_list, entry) {
396                 if (ndev->dev->node_guid == cm_id->device->node_guid &&
397                     nvme_rdma_dev_get(ndev))
398                         goto out_unlock;
399         }
400
401         ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
402         if (!ndev)
403                 goto out_err;
404
405         ndev->dev = cm_id->device;
406         kref_init(&ndev->ref);
407
408         ndev->pd = ib_alloc_pd(ndev->dev,
409                 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
410         if (IS_ERR(ndev->pd))
411                 goto out_free_dev;
412
413         if (!(ndev->dev->attrs.device_cap_flags &
414               IB_DEVICE_MEM_MGT_EXTENSIONS)) {
415                 dev_err(&ndev->dev->dev,
416                         "Memory registrations not supported.\n");
417                 goto out_free_pd;
418         }
419
420         list_add(&ndev->entry, &device_list);
421 out_unlock:
422         mutex_unlock(&device_list_mutex);
423         return ndev;
424
425 out_free_pd:
426         ib_dealloc_pd(ndev->pd);
427 out_free_dev:
428         kfree(ndev);
429 out_err:
430         mutex_unlock(&device_list_mutex);
431         return NULL;
432 }
433
434 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
435 {
436         struct nvme_rdma_device *dev;
437         struct ib_device *ibdev;
438
439         dev = queue->device;
440         ibdev = dev->dev;
441         rdma_destroy_qp(queue->cm_id);
442         ib_free_cq(queue->ib_cq);
443
444         nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
445                         sizeof(struct nvme_completion), DMA_FROM_DEVICE);
446
447         nvme_rdma_dev_put(dev);
448 }
449
450 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
451 {
452         struct ib_device *ibdev;
453         const int send_wr_factor = 3;                   /* MR, SEND, INV */
454         const int cq_factor = send_wr_factor + 1;       /* + RECV */
455         int comp_vector, idx = nvme_rdma_queue_idx(queue);
456         int ret;
457
458         queue->device = nvme_rdma_find_get_device(queue->cm_id);
459         if (!queue->device) {
460                 dev_err(queue->cm_id->device->dev.parent,
461                         "no client data found!\n");
462                 return -ECONNREFUSED;
463         }
464         ibdev = queue->device->dev;
465
466         /*
467          * Spread I/O queues completion vectors according their queue index.
468          * Admin queues can always go on completion vector 0.
469          */
470         comp_vector = idx == 0 ? idx : idx - 1;
471
472         /* +1 for ib_stop_cq */
473         queue->ib_cq = ib_alloc_cq(ibdev, queue,
474                                 cq_factor * queue->queue_size + 1,
475                                 comp_vector, IB_POLL_SOFTIRQ);
476         if (IS_ERR(queue->ib_cq)) {
477                 ret = PTR_ERR(queue->ib_cq);
478                 goto out_put_dev;
479         }
480
481         ret = nvme_rdma_create_qp(queue, send_wr_factor);
482         if (ret)
483                 goto out_destroy_ib_cq;
484
485         queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
486                         sizeof(struct nvme_completion), DMA_FROM_DEVICE);
487         if (!queue->rsp_ring) {
488                 ret = -ENOMEM;
489                 goto out_destroy_qp;
490         }
491
492         return 0;
493
494 out_destroy_qp:
495         ib_destroy_qp(queue->qp);
496 out_destroy_ib_cq:
497         ib_free_cq(queue->ib_cq);
498 out_put_dev:
499         nvme_rdma_dev_put(queue->device);
500         return ret;
501 }
502
503 static int nvme_rdma_init_queue(struct nvme_rdma_ctrl *ctrl,
504                 int idx, size_t queue_size)
505 {
506         struct nvme_rdma_queue *queue;
507         struct sockaddr *src_addr = NULL;
508         int ret;
509
510         queue = &ctrl->queues[idx];
511         queue->ctrl = ctrl;
512         init_completion(&queue->cm_done);
513
514         if (idx > 0)
515                 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
516         else
517                 queue->cmnd_capsule_len = sizeof(struct nvme_command);
518
519         queue->queue_size = queue_size;
520         atomic_set(&queue->sig_count, 0);
521
522         queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
523                         RDMA_PS_TCP, IB_QPT_RC);
524         if (IS_ERR(queue->cm_id)) {
525                 dev_info(ctrl->ctrl.device,
526                         "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
527                 return PTR_ERR(queue->cm_id);
528         }
529
530         if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
531                 src_addr = (struct sockaddr *)&ctrl->src_addr;
532
533         queue->cm_error = -ETIMEDOUT;
534         ret = rdma_resolve_addr(queue->cm_id, src_addr,
535                         (struct sockaddr *)&ctrl->addr,
536                         NVME_RDMA_CONNECT_TIMEOUT_MS);
537         if (ret) {
538                 dev_info(ctrl->ctrl.device,
539                         "rdma_resolve_addr failed (%d).\n", ret);
540                 goto out_destroy_cm_id;
541         }
542
543         ret = nvme_rdma_wait_for_cm(queue);
544         if (ret) {
545                 dev_info(ctrl->ctrl.device,
546                         "rdma_resolve_addr wait failed (%d).\n", ret);
547                 goto out_destroy_cm_id;
548         }
549
550         clear_bit(NVME_RDMA_Q_DELETING, &queue->flags);
551
552         return 0;
553
554 out_destroy_cm_id:
555         rdma_destroy_id(queue->cm_id);
556         return ret;
557 }
558
559 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
560 {
561         rdma_disconnect(queue->cm_id);
562         ib_drain_qp(queue->qp);
563 }
564
565 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
566 {
567         nvme_rdma_destroy_queue_ib(queue);
568         rdma_destroy_id(queue->cm_id);
569 }
570
571 static void nvme_rdma_stop_and_free_queue(struct nvme_rdma_queue *queue)
572 {
573         if (test_and_set_bit(NVME_RDMA_Q_DELETING, &queue->flags))
574                 return;
575         nvme_rdma_stop_queue(queue);
576         nvme_rdma_free_queue(queue);
577 }
578
579 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
580 {
581         int i;
582
583         for (i = 1; i < ctrl->ctrl.queue_count; i++)
584                 nvme_rdma_stop_and_free_queue(&ctrl->queues[i]);
585 }
586
587 static int nvme_rdma_connect_io_queues(struct nvme_rdma_ctrl *ctrl)
588 {
589         int i, ret = 0;
590
591         for (i = 1; i < ctrl->ctrl.queue_count; i++) {
592                 ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
593                 if (ret) {
594                         dev_info(ctrl->ctrl.device,
595                                 "failed to connect i/o queue: %d\n", ret);
596                         goto out_free_queues;
597                 }
598                 set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[i].flags);
599         }
600
601         return 0;
602
603 out_free_queues:
604         nvme_rdma_free_io_queues(ctrl);
605         return ret;
606 }
607
608 static int nvme_rdma_init_io_queues(struct nvme_rdma_ctrl *ctrl)
609 {
610         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
611         struct ib_device *ibdev = ctrl->device->dev;
612         unsigned int nr_io_queues;
613         int i, ret;
614
615         nr_io_queues = min(opts->nr_io_queues, num_online_cpus());
616
617         /*
618          * we map queues according to the device irq vectors for
619          * optimal locality so we don't need more queues than
620          * completion vectors.
621          */
622         nr_io_queues = min_t(unsigned int, nr_io_queues,
623                                 ibdev->num_comp_vectors);
624
625         ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
626         if (ret)
627                 return ret;
628
629         ctrl->ctrl.queue_count = nr_io_queues + 1;
630         if (ctrl->ctrl.queue_count < 2)
631                 return 0;
632
633         dev_info(ctrl->ctrl.device,
634                 "creating %d I/O queues.\n", nr_io_queues);
635
636         for (i = 1; i < ctrl->ctrl.queue_count; i++) {
637                 ret = nvme_rdma_init_queue(ctrl, i,
638                                            ctrl->ctrl.opts->queue_size);
639                 if (ret) {
640                         dev_info(ctrl->ctrl.device,
641                                 "failed to initialize i/o queue: %d\n", ret);
642                         goto out_free_queues;
643                 }
644         }
645
646         return 0;
647
648 out_free_queues:
649         for (i--; i >= 1; i--)
650                 nvme_rdma_stop_and_free_queue(&ctrl->queues[i]);
651
652         return ret;
653 }
654
655 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl)
656 {
657         nvme_rdma_free_qe(ctrl->queues[0].device->dev, &ctrl->async_event_sqe,
658                         sizeof(struct nvme_command), DMA_TO_DEVICE);
659         nvme_rdma_stop_and_free_queue(&ctrl->queues[0]);
660         blk_cleanup_queue(ctrl->ctrl.admin_q);
661         blk_mq_free_tag_set(&ctrl->admin_tag_set);
662         nvme_rdma_dev_put(ctrl->device);
663 }
664
665 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
666 {
667         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
668
669         if (list_empty(&ctrl->list))
670                 goto free_ctrl;
671
672         mutex_lock(&nvme_rdma_ctrl_mutex);
673         list_del(&ctrl->list);
674         mutex_unlock(&nvme_rdma_ctrl_mutex);
675
676         kfree(ctrl->queues);
677         nvmf_free_options(nctrl->opts);
678 free_ctrl:
679         kfree(ctrl);
680 }
681
682 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
683 {
684         /* If we are resetting/deleting then do nothing */
685         if (ctrl->ctrl.state != NVME_CTRL_RECONNECTING) {
686                 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
687                         ctrl->ctrl.state == NVME_CTRL_LIVE);
688                 return;
689         }
690
691         if (nvmf_should_reconnect(&ctrl->ctrl)) {
692                 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
693                         ctrl->ctrl.opts->reconnect_delay);
694                 queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
695                                 ctrl->ctrl.opts->reconnect_delay * HZ);
696         } else {
697                 dev_info(ctrl->ctrl.device, "Removing controller...\n");
698                 queue_work(nvme_wq, &ctrl->delete_work);
699         }
700 }
701
702 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
703 {
704         struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
705                         struct nvme_rdma_ctrl, reconnect_work);
706         bool changed;
707         int ret;
708
709         ++ctrl->ctrl.nr_reconnects;
710
711         if (ctrl->ctrl.queue_count > 1) {
712                 nvme_rdma_free_io_queues(ctrl);
713
714                 ret = blk_mq_reinit_tagset(&ctrl->tag_set,
715                                            nvme_rdma_reinit_request);
716                 if (ret)
717                         goto requeue;
718         }
719
720         nvme_rdma_stop_and_free_queue(&ctrl->queues[0]);
721
722         ret = blk_mq_reinit_tagset(&ctrl->admin_tag_set,
723                                    nvme_rdma_reinit_request);
724         if (ret)
725                 goto requeue;
726
727         ret = nvme_rdma_init_queue(ctrl, 0, NVME_AQ_DEPTH);
728         if (ret)
729                 goto requeue;
730
731         ret = nvmf_connect_admin_queue(&ctrl->ctrl);
732         if (ret)
733                 goto requeue;
734
735         set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[0].flags);
736
737         ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
738         if (ret)
739                 goto requeue;
740
741         if (ctrl->ctrl.queue_count > 1) {
742                 ret = nvme_rdma_init_io_queues(ctrl);
743                 if (ret)
744                         goto requeue;
745
746                 ret = nvme_rdma_connect_io_queues(ctrl);
747                 if (ret)
748                         goto requeue;
749
750                 blk_mq_update_nr_hw_queues(&ctrl->tag_set,
751                                 ctrl->ctrl.queue_count - 1);
752         }
753
754         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
755         WARN_ON_ONCE(!changed);
756         ctrl->ctrl.nr_reconnects = 0;
757
758         nvme_start_ctrl(&ctrl->ctrl);
759
760         dev_info(ctrl->ctrl.device, "Successfully reconnected\n");
761
762         return;
763
764 requeue:
765         dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
766                         ctrl->ctrl.nr_reconnects);
767         nvme_rdma_reconnect_or_remove(ctrl);
768 }
769
770 static void nvme_rdma_error_recovery_work(struct work_struct *work)
771 {
772         struct nvme_rdma_ctrl *ctrl = container_of(work,
773                         struct nvme_rdma_ctrl, err_work);
774         int i;
775
776         nvme_stop_ctrl(&ctrl->ctrl);
777
778         for (i = 0; i < ctrl->ctrl.queue_count; i++)
779                 clear_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[i].flags);
780
781         if (ctrl->ctrl.queue_count > 1)
782                 nvme_stop_queues(&ctrl->ctrl);
783         blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
784
785         /* We must take care of fastfail/requeue all our inflight requests */
786         if (ctrl->ctrl.queue_count > 1)
787                 blk_mq_tagset_busy_iter(&ctrl->tag_set,
788                                         nvme_cancel_request, &ctrl->ctrl);
789         blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
790                                 nvme_cancel_request, &ctrl->ctrl);
791
792         /*
793          * queues are not a live anymore, so restart the queues to fail fast
794          * new IO
795          */
796         blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
797         nvme_start_queues(&ctrl->ctrl);
798
799         nvme_rdma_reconnect_or_remove(ctrl);
800 }
801
802 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
803 {
804         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING))
805                 return;
806
807         queue_work(nvme_wq, &ctrl->err_work);
808 }
809
810 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
811                 const char *op)
812 {
813         struct nvme_rdma_queue *queue = cq->cq_context;
814         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
815
816         if (ctrl->ctrl.state == NVME_CTRL_LIVE)
817                 dev_info(ctrl->ctrl.device,
818                              "%s for CQE 0x%p failed with status %s (%d)\n",
819                              op, wc->wr_cqe,
820                              ib_wc_status_msg(wc->status), wc->status);
821         nvme_rdma_error_recovery(ctrl);
822 }
823
824 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
825 {
826         if (unlikely(wc->status != IB_WC_SUCCESS))
827                 nvme_rdma_wr_error(cq, wc, "MEMREG");
828 }
829
830 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
831 {
832         if (unlikely(wc->status != IB_WC_SUCCESS))
833                 nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
834 }
835
836 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
837                 struct nvme_rdma_request *req)
838 {
839         struct ib_send_wr *bad_wr;
840         struct ib_send_wr wr = {
841                 .opcode             = IB_WR_LOCAL_INV,
842                 .next               = NULL,
843                 .num_sge            = 0,
844                 .send_flags         = 0,
845                 .ex.invalidate_rkey = req->mr->rkey,
846         };
847
848         req->reg_cqe.done = nvme_rdma_inv_rkey_done;
849         wr.wr_cqe = &req->reg_cqe;
850
851         return ib_post_send(queue->qp, &wr, &bad_wr);
852 }
853
854 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
855                 struct request *rq)
856 {
857         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
858         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
859         struct nvme_rdma_device *dev = queue->device;
860         struct ib_device *ibdev = dev->dev;
861         int res;
862
863         if (!blk_rq_bytes(rq))
864                 return;
865
866         if (req->mr->need_inval) {
867                 res = nvme_rdma_inv_rkey(queue, req);
868                 if (res < 0) {
869                         dev_err(ctrl->ctrl.device,
870                                 "Queueing INV WR for rkey %#x failed (%d)\n",
871                                 req->mr->rkey, res);
872                         nvme_rdma_error_recovery(queue->ctrl);
873                 }
874         }
875
876         ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
877                         req->nents, rq_data_dir(rq) ==
878                                     WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
879
880         nvme_cleanup_cmd(rq);
881         sg_free_table_chained(&req->sg_table, true);
882 }
883
884 static int nvme_rdma_set_sg_null(struct nvme_command *c)
885 {
886         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
887
888         sg->addr = 0;
889         put_unaligned_le24(0, sg->length);
890         put_unaligned_le32(0, sg->key);
891         sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
892         return 0;
893 }
894
895 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
896                 struct nvme_rdma_request *req, struct nvme_command *c)
897 {
898         struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
899
900         req->sge[1].addr = sg_dma_address(req->sg_table.sgl);
901         req->sge[1].length = sg_dma_len(req->sg_table.sgl);
902         req->sge[1].lkey = queue->device->pd->local_dma_lkey;
903
904         sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
905         sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl));
906         sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
907
908         req->inline_data = true;
909         req->num_sge++;
910         return 0;
911 }
912
913 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
914                 struct nvme_rdma_request *req, struct nvme_command *c)
915 {
916         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
917
918         sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
919         put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
920         put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
921         sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
922         return 0;
923 }
924
925 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
926                 struct nvme_rdma_request *req, struct nvme_command *c,
927                 int count)
928 {
929         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
930         int nr;
931
932         /*
933          * Align the MR to a 4K page size to match the ctrl page size and
934          * the block virtual boundary.
935          */
936         nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K);
937         if (nr < count) {
938                 if (nr < 0)
939                         return nr;
940                 return -EINVAL;
941         }
942
943         ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
944
945         req->reg_cqe.done = nvme_rdma_memreg_done;
946         memset(&req->reg_wr, 0, sizeof(req->reg_wr));
947         req->reg_wr.wr.opcode = IB_WR_REG_MR;
948         req->reg_wr.wr.wr_cqe = &req->reg_cqe;
949         req->reg_wr.wr.num_sge = 0;
950         req->reg_wr.mr = req->mr;
951         req->reg_wr.key = req->mr->rkey;
952         req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
953                              IB_ACCESS_REMOTE_READ |
954                              IB_ACCESS_REMOTE_WRITE;
955
956         req->mr->need_inval = true;
957
958         sg->addr = cpu_to_le64(req->mr->iova);
959         put_unaligned_le24(req->mr->length, sg->length);
960         put_unaligned_le32(req->mr->rkey, sg->key);
961         sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
962                         NVME_SGL_FMT_INVALIDATE;
963
964         return 0;
965 }
966
967 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
968                 struct request *rq, struct nvme_command *c)
969 {
970         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
971         struct nvme_rdma_device *dev = queue->device;
972         struct ib_device *ibdev = dev->dev;
973         int count, ret;
974
975         req->num_sge = 1;
976         req->inline_data = false;
977         req->mr->need_inval = false;
978
979         c->common.flags |= NVME_CMD_SGL_METABUF;
980
981         if (!blk_rq_bytes(rq))
982                 return nvme_rdma_set_sg_null(c);
983
984         req->sg_table.sgl = req->first_sgl;
985         ret = sg_alloc_table_chained(&req->sg_table,
986                         blk_rq_nr_phys_segments(rq), req->sg_table.sgl);
987         if (ret)
988                 return -ENOMEM;
989
990         req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
991
992         count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents,
993                     rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
994         if (unlikely(count <= 0)) {
995                 sg_free_table_chained(&req->sg_table, true);
996                 return -EIO;
997         }
998
999         if (count == 1) {
1000                 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1001                     blk_rq_payload_bytes(rq) <=
1002                                 nvme_rdma_inline_data_size(queue))
1003                         return nvme_rdma_map_sg_inline(queue, req, c);
1004
1005                 if (dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY)
1006                         return nvme_rdma_map_sg_single(queue, req, c);
1007         }
1008
1009         return nvme_rdma_map_sg_fr(queue, req, c, count);
1010 }
1011
1012 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1013 {
1014         if (unlikely(wc->status != IB_WC_SUCCESS))
1015                 nvme_rdma_wr_error(cq, wc, "SEND");
1016 }
1017
1018 /*
1019  * We want to signal completion at least every queue depth/2.  This returns the
1020  * largest power of two that is not above half of (queue size + 1) to optimize
1021  * (avoid divisions).
1022  */
1023 static inline bool nvme_rdma_queue_sig_limit(struct nvme_rdma_queue *queue)
1024 {
1025         int limit = 1 << ilog2((queue->queue_size + 1) / 2);
1026
1027         return (atomic_inc_return(&queue->sig_count) & (limit - 1)) == 0;
1028 }
1029
1030 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1031                 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1032                 struct ib_send_wr *first, bool flush)
1033 {
1034         struct ib_send_wr wr, *bad_wr;
1035         int ret;
1036
1037         sge->addr   = qe->dma;
1038         sge->length = sizeof(struct nvme_command),
1039         sge->lkey   = queue->device->pd->local_dma_lkey;
1040
1041         qe->cqe.done = nvme_rdma_send_done;
1042
1043         wr.next       = NULL;
1044         wr.wr_cqe     = &qe->cqe;
1045         wr.sg_list    = sge;
1046         wr.num_sge    = num_sge;
1047         wr.opcode     = IB_WR_SEND;
1048         wr.send_flags = 0;
1049
1050         /*
1051          * Unsignalled send completions are another giant desaster in the
1052          * IB Verbs spec:  If we don't regularly post signalled sends
1053          * the send queue will fill up and only a QP reset will rescue us.
1054          * Would have been way to obvious to handle this in hardware or
1055          * at least the RDMA stack..
1056          *
1057          * Always signal the flushes. The magic request used for the flush
1058          * sequencer is not allocated in our driver's tagset and it's
1059          * triggered to be freed by blk_cleanup_queue(). So we need to
1060          * always mark it as signaled to ensure that the "wr_cqe", which is
1061          * embedded in request's payload, is not freed when __ib_process_cq()
1062          * calls wr_cqe->done().
1063          */
1064         if (nvme_rdma_queue_sig_limit(queue) || flush)
1065                 wr.send_flags |= IB_SEND_SIGNALED;
1066
1067         if (first)
1068                 first->next = &wr;
1069         else
1070                 first = &wr;
1071
1072         ret = ib_post_send(queue->qp, first, &bad_wr);
1073         if (ret) {
1074                 dev_err(queue->ctrl->ctrl.device,
1075                              "%s failed with error code %d\n", __func__, ret);
1076         }
1077         return ret;
1078 }
1079
1080 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1081                 struct nvme_rdma_qe *qe)
1082 {
1083         struct ib_recv_wr wr, *bad_wr;
1084         struct ib_sge list;
1085         int ret;
1086
1087         list.addr   = qe->dma;
1088         list.length = sizeof(struct nvme_completion);
1089         list.lkey   = queue->device->pd->local_dma_lkey;
1090
1091         qe->cqe.done = nvme_rdma_recv_done;
1092
1093         wr.next     = NULL;
1094         wr.wr_cqe   = &qe->cqe;
1095         wr.sg_list  = &list;
1096         wr.num_sge  = 1;
1097
1098         ret = ib_post_recv(queue->qp, &wr, &bad_wr);
1099         if (ret) {
1100                 dev_err(queue->ctrl->ctrl.device,
1101                         "%s failed with error code %d\n", __func__, ret);
1102         }
1103         return ret;
1104 }
1105
1106 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1107 {
1108         u32 queue_idx = nvme_rdma_queue_idx(queue);
1109
1110         if (queue_idx == 0)
1111                 return queue->ctrl->admin_tag_set.tags[queue_idx];
1112         return queue->ctrl->tag_set.tags[queue_idx - 1];
1113 }
1114
1115 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg, int aer_idx)
1116 {
1117         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1118         struct nvme_rdma_queue *queue = &ctrl->queues[0];
1119         struct ib_device *dev = queue->device->dev;
1120         struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1121         struct nvme_command *cmd = sqe->data;
1122         struct ib_sge sge;
1123         int ret;
1124
1125         if (WARN_ON_ONCE(aer_idx != 0))
1126                 return;
1127
1128         ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1129
1130         memset(cmd, 0, sizeof(*cmd));
1131         cmd->common.opcode = nvme_admin_async_event;
1132         cmd->common.command_id = NVME_RDMA_AQ_BLKMQ_DEPTH;
1133         cmd->common.flags |= NVME_CMD_SGL_METABUF;
1134         nvme_rdma_set_sg_null(cmd);
1135
1136         ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1137                         DMA_TO_DEVICE);
1138
1139         ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL, false);
1140         WARN_ON_ONCE(ret);
1141 }
1142
1143 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1144                 struct nvme_completion *cqe, struct ib_wc *wc, int tag)
1145 {
1146         struct request *rq;
1147         struct nvme_rdma_request *req;
1148         int ret = 0;
1149
1150         rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1151         if (!rq) {
1152                 dev_err(queue->ctrl->ctrl.device,
1153                         "tag 0x%x on QP %#x not found\n",
1154                         cqe->command_id, queue->qp->qp_num);
1155                 nvme_rdma_error_recovery(queue->ctrl);
1156                 return ret;
1157         }
1158         req = blk_mq_rq_to_pdu(rq);
1159
1160         if (rq->tag == tag)
1161                 ret = 1;
1162
1163         if ((wc->wc_flags & IB_WC_WITH_INVALIDATE) &&
1164             wc->ex.invalidate_rkey == req->mr->rkey)
1165                 req->mr->need_inval = false;
1166
1167         nvme_end_request(rq, cqe->status, cqe->result);
1168         return ret;
1169 }
1170
1171 static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag)
1172 {
1173         struct nvme_rdma_qe *qe =
1174                 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1175         struct nvme_rdma_queue *queue = cq->cq_context;
1176         struct ib_device *ibdev = queue->device->dev;
1177         struct nvme_completion *cqe = qe->data;
1178         const size_t len = sizeof(struct nvme_completion);
1179         int ret = 0;
1180
1181         if (unlikely(wc->status != IB_WC_SUCCESS)) {
1182                 nvme_rdma_wr_error(cq, wc, "RECV");
1183                 return 0;
1184         }
1185
1186         ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1187         /*
1188          * AEN requests are special as they don't time out and can
1189          * survive any kind of queue freeze and often don't respond to
1190          * aborts.  We don't even bother to allocate a struct request
1191          * for them but rather special case them here.
1192          */
1193         if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
1194                         cqe->command_id >= NVME_RDMA_AQ_BLKMQ_DEPTH))
1195                 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1196                                 &cqe->result);
1197         else
1198                 ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag);
1199         ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1200
1201         nvme_rdma_post_recv(queue, qe);
1202         return ret;
1203 }
1204
1205 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1206 {
1207         __nvme_rdma_recv_done(cq, wc, -1);
1208 }
1209
1210 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1211 {
1212         int ret, i;
1213
1214         for (i = 0; i < queue->queue_size; i++) {
1215                 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1216                 if (ret)
1217                         goto out_destroy_queue_ib;
1218         }
1219
1220         return 0;
1221
1222 out_destroy_queue_ib:
1223         nvme_rdma_destroy_queue_ib(queue);
1224         return ret;
1225 }
1226
1227 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1228                 struct rdma_cm_event *ev)
1229 {
1230         struct rdma_cm_id *cm_id = queue->cm_id;
1231         int status = ev->status;
1232         const char *rej_msg;
1233         const struct nvme_rdma_cm_rej *rej_data;
1234         u8 rej_data_len;
1235
1236         rej_msg = rdma_reject_msg(cm_id, status);
1237         rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1238
1239         if (rej_data && rej_data_len >= sizeof(u16)) {
1240                 u16 sts = le16_to_cpu(rej_data->sts);
1241
1242                 dev_err(queue->ctrl->ctrl.device,
1243                       "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1244                       status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1245         } else {
1246                 dev_err(queue->ctrl->ctrl.device,
1247                         "Connect rejected: status %d (%s).\n", status, rej_msg);
1248         }
1249
1250         return -ECONNRESET;
1251 }
1252
1253 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1254 {
1255         int ret;
1256
1257         ret = nvme_rdma_create_queue_ib(queue);
1258         if (ret)
1259                 return ret;
1260
1261         ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1262         if (ret) {
1263                 dev_err(queue->ctrl->ctrl.device,
1264                         "rdma_resolve_route failed (%d).\n",
1265                         queue->cm_error);
1266                 goto out_destroy_queue;
1267         }
1268
1269         return 0;
1270
1271 out_destroy_queue:
1272         nvme_rdma_destroy_queue_ib(queue);
1273         return ret;
1274 }
1275
1276 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1277 {
1278         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1279         struct rdma_conn_param param = { };
1280         struct nvme_rdma_cm_req priv = { };
1281         int ret;
1282
1283         param.qp_num = queue->qp->qp_num;
1284         param.flow_control = 1;
1285
1286         param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1287         /* maximum retry count */
1288         param.retry_count = 7;
1289         param.rnr_retry_count = 7;
1290         param.private_data = &priv;
1291         param.private_data_len = sizeof(priv);
1292
1293         priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1294         priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1295         /*
1296          * set the admin queue depth to the minimum size
1297          * specified by the Fabrics standard.
1298          */
1299         if (priv.qid == 0) {
1300                 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1301                 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1302         } else {
1303                 /*
1304                  * current interpretation of the fabrics spec
1305                  * is at minimum you make hrqsize sqsize+1, or a
1306                  * 1's based representation of sqsize.
1307                  */
1308                 priv.hrqsize = cpu_to_le16(queue->queue_size);
1309                 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1310         }
1311
1312         ret = rdma_connect(queue->cm_id, &param);
1313         if (ret) {
1314                 dev_err(ctrl->ctrl.device,
1315                         "rdma_connect failed (%d).\n", ret);
1316                 goto out_destroy_queue_ib;
1317         }
1318
1319         return 0;
1320
1321 out_destroy_queue_ib:
1322         nvme_rdma_destroy_queue_ib(queue);
1323         return ret;
1324 }
1325
1326 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1327                 struct rdma_cm_event *ev)
1328 {
1329         struct nvme_rdma_queue *queue = cm_id->context;
1330         int cm_error = 0;
1331
1332         dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1333                 rdma_event_msg(ev->event), ev->event,
1334                 ev->status, cm_id);
1335
1336         switch (ev->event) {
1337         case RDMA_CM_EVENT_ADDR_RESOLVED:
1338                 cm_error = nvme_rdma_addr_resolved(queue);
1339                 break;
1340         case RDMA_CM_EVENT_ROUTE_RESOLVED:
1341                 cm_error = nvme_rdma_route_resolved(queue);
1342                 break;
1343         case RDMA_CM_EVENT_ESTABLISHED:
1344                 queue->cm_error = nvme_rdma_conn_established(queue);
1345                 /* complete cm_done regardless of success/failure */
1346                 complete(&queue->cm_done);
1347                 return 0;
1348         case RDMA_CM_EVENT_REJECTED:
1349                 nvme_rdma_destroy_queue_ib(queue);
1350                 cm_error = nvme_rdma_conn_rejected(queue, ev);
1351                 break;
1352         case RDMA_CM_EVENT_ROUTE_ERROR:
1353         case RDMA_CM_EVENT_CONNECT_ERROR:
1354         case RDMA_CM_EVENT_UNREACHABLE:
1355                 nvme_rdma_destroy_queue_ib(queue);
1356         case RDMA_CM_EVENT_ADDR_ERROR:
1357                 dev_dbg(queue->ctrl->ctrl.device,
1358                         "CM error event %d\n", ev->event);
1359                 cm_error = -ECONNRESET;
1360                 break;
1361         case RDMA_CM_EVENT_DISCONNECTED:
1362         case RDMA_CM_EVENT_ADDR_CHANGE:
1363         case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1364                 dev_dbg(queue->ctrl->ctrl.device,
1365                         "disconnect received - connection closed\n");
1366                 nvme_rdma_error_recovery(queue->ctrl);
1367                 break;
1368         case RDMA_CM_EVENT_DEVICE_REMOVAL:
1369                 /* device removal is handled via the ib_client API */
1370                 break;
1371         default:
1372                 dev_err(queue->ctrl->ctrl.device,
1373                         "Unexpected RDMA CM event (%d)\n", ev->event);
1374                 nvme_rdma_error_recovery(queue->ctrl);
1375                 break;
1376         }
1377
1378         if (cm_error) {
1379                 queue->cm_error = cm_error;
1380                 complete(&queue->cm_done);
1381         }
1382
1383         return 0;
1384 }
1385
1386 static enum blk_eh_timer_return
1387 nvme_rdma_timeout(struct request *rq, bool reserved)
1388 {
1389         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1390
1391         /* queue error recovery */
1392         nvme_rdma_error_recovery(req->queue->ctrl);
1393
1394         /* fail with DNR on cmd timeout */
1395         nvme_req(rq)->status = NVME_SC_ABORT_REQ | NVME_SC_DNR;
1396
1397         return BLK_EH_HANDLED;
1398 }
1399
1400 /*
1401  * We cannot accept any other command until the Connect command has completed.
1402  */
1403 static inline blk_status_t
1404 nvme_rdma_queue_is_ready(struct nvme_rdma_queue *queue, struct request *rq)
1405 {
1406         if (unlikely(!test_bit(NVME_RDMA_Q_LIVE, &queue->flags))) {
1407                 struct nvme_command *cmd = nvme_req(rq)->cmd;
1408
1409                 if (!blk_rq_is_passthrough(rq) ||
1410                     cmd->common.opcode != nvme_fabrics_command ||
1411                     cmd->fabrics.fctype != nvme_fabrics_type_connect) {
1412                         /*
1413                          * reconnecting state means transport disruption, which
1414                          * can take a long time and even might fail permanently,
1415                          * so we can't let incoming I/O be requeued forever.
1416                          * fail it fast to allow upper layers a chance to
1417                          * failover.
1418                          */
1419                         if (queue->ctrl->ctrl.state == NVME_CTRL_RECONNECTING)
1420                                 return BLK_STS_IOERR;
1421                         return BLK_STS_RESOURCE; /* try again later */
1422                 }
1423         }
1424
1425         return 0;
1426 }
1427
1428 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1429                 const struct blk_mq_queue_data *bd)
1430 {
1431         struct nvme_ns *ns = hctx->queue->queuedata;
1432         struct nvme_rdma_queue *queue = hctx->driver_data;
1433         struct request *rq = bd->rq;
1434         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1435         struct nvme_rdma_qe *sqe = &req->sqe;
1436         struct nvme_command *c = sqe->data;
1437         bool flush = false;
1438         struct ib_device *dev;
1439         blk_status_t ret;
1440         int err;
1441
1442         WARN_ON_ONCE(rq->tag < 0);
1443
1444         ret = nvme_rdma_queue_is_ready(queue, rq);
1445         if (unlikely(ret))
1446                 return ret;
1447
1448         dev = queue->device->dev;
1449         ib_dma_sync_single_for_cpu(dev, sqe->dma,
1450                         sizeof(struct nvme_command), DMA_TO_DEVICE);
1451
1452         ret = nvme_setup_cmd(ns, rq, c);
1453         if (ret)
1454                 return ret;
1455
1456         blk_mq_start_request(rq);
1457
1458         err = nvme_rdma_map_data(queue, rq, c);
1459         if (err < 0) {
1460                 dev_err(queue->ctrl->ctrl.device,
1461                              "Failed to map data (%d)\n", err);
1462                 nvme_cleanup_cmd(rq);
1463                 goto err;
1464         }
1465
1466         ib_dma_sync_single_for_device(dev, sqe->dma,
1467                         sizeof(struct nvme_command), DMA_TO_DEVICE);
1468
1469         if (req_op(rq) == REQ_OP_FLUSH)
1470                 flush = true;
1471         err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1472                         req->mr->need_inval ? &req->reg_wr.wr : NULL, flush);
1473         if (err) {
1474                 nvme_rdma_unmap_data(queue, rq);
1475                 goto err;
1476         }
1477
1478         return BLK_STS_OK;
1479 err:
1480         if (err == -ENOMEM || err == -EAGAIN)
1481                 return BLK_STS_RESOURCE;
1482         return BLK_STS_IOERR;
1483 }
1484
1485 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1486 {
1487         struct nvme_rdma_queue *queue = hctx->driver_data;
1488         struct ib_cq *cq = queue->ib_cq;
1489         struct ib_wc wc;
1490         int found = 0;
1491
1492         while (ib_poll_cq(cq, 1, &wc) > 0) {
1493                 struct ib_cqe *cqe = wc.wr_cqe;
1494
1495                 if (cqe) {
1496                         if (cqe->done == nvme_rdma_recv_done)
1497                                 found |= __nvme_rdma_recv_done(cq, &wc, tag);
1498                         else
1499                                 cqe->done(cq, &wc);
1500                 }
1501         }
1502
1503         return found;
1504 }
1505
1506 static void nvme_rdma_complete_rq(struct request *rq)
1507 {
1508         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1509
1510         nvme_rdma_unmap_data(req->queue, rq);
1511         nvme_complete_rq(rq);
1512 }
1513
1514 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
1515 {
1516         struct nvme_rdma_ctrl *ctrl = set->driver_data;
1517
1518         return blk_mq_rdma_map_queues(set, ctrl->device->dev, 0);
1519 }
1520
1521 static const struct blk_mq_ops nvme_rdma_mq_ops = {
1522         .queue_rq       = nvme_rdma_queue_rq,
1523         .complete       = nvme_rdma_complete_rq,
1524         .init_request   = nvme_rdma_init_request,
1525         .exit_request   = nvme_rdma_exit_request,
1526         .init_hctx      = nvme_rdma_init_hctx,
1527         .poll           = nvme_rdma_poll,
1528         .timeout        = nvme_rdma_timeout,
1529         .map_queues     = nvme_rdma_map_queues,
1530 };
1531
1532 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1533         .queue_rq       = nvme_rdma_queue_rq,
1534         .complete       = nvme_rdma_complete_rq,
1535         .init_request   = nvme_rdma_init_request,
1536         .exit_request   = nvme_rdma_exit_request,
1537         .init_hctx      = nvme_rdma_init_admin_hctx,
1538         .timeout        = nvme_rdma_timeout,
1539 };
1540
1541 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl)
1542 {
1543         int error;
1544
1545         error = nvme_rdma_init_queue(ctrl, 0, NVME_AQ_DEPTH);
1546         if (error)
1547                 return error;
1548
1549         ctrl->device = ctrl->queues[0].device;
1550
1551         /*
1552          * We need a reference on the device as long as the tag_set is alive,
1553          * as the MRs in the request structures need a valid ib_device.
1554          */
1555         error = -EINVAL;
1556         if (!nvme_rdma_dev_get(ctrl->device))
1557                 goto out_free_queue;
1558
1559         ctrl->max_fr_pages = min_t(u32, NVME_RDMA_MAX_SEGMENTS,
1560                 ctrl->device->dev->attrs.max_fast_reg_page_list_len);
1561
1562         memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
1563         ctrl->admin_tag_set.ops = &nvme_rdma_admin_mq_ops;
1564         ctrl->admin_tag_set.queue_depth = NVME_RDMA_AQ_BLKMQ_DEPTH;
1565         ctrl->admin_tag_set.reserved_tags = 2; /* connect + keep-alive */
1566         ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
1567         ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_rdma_request) +
1568                 SG_CHUNK_SIZE * sizeof(struct scatterlist);
1569         ctrl->admin_tag_set.driver_data = ctrl;
1570         ctrl->admin_tag_set.nr_hw_queues = 1;
1571         ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
1572
1573         error = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
1574         if (error)
1575                 goto out_put_dev;
1576
1577         ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
1578         if (IS_ERR(ctrl->ctrl.admin_q)) {
1579                 error = PTR_ERR(ctrl->ctrl.admin_q);
1580                 goto out_free_tagset;
1581         }
1582
1583         error = nvmf_connect_admin_queue(&ctrl->ctrl);
1584         if (error)
1585                 goto out_cleanup_queue;
1586
1587         set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[0].flags);
1588
1589         error = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP,
1590                         &ctrl->ctrl.cap);
1591         if (error) {
1592                 dev_err(ctrl->ctrl.device,
1593                         "prop_get NVME_REG_CAP failed\n");
1594                 goto out_cleanup_queue;
1595         }
1596
1597         ctrl->ctrl.sqsize =
1598                 min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize);
1599
1600         error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
1601         if (error)
1602                 goto out_cleanup_queue;
1603
1604         ctrl->ctrl.max_hw_sectors =
1605                 (ctrl->max_fr_pages - 1) << (ilog2(SZ_4K) - 9);
1606
1607         error = nvme_init_identify(&ctrl->ctrl);
1608         if (error)
1609                 goto out_cleanup_queue;
1610
1611         error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev,
1612                         &ctrl->async_event_sqe, sizeof(struct nvme_command),
1613                         DMA_TO_DEVICE);
1614         if (error)
1615                 goto out_cleanup_queue;
1616
1617         return 0;
1618
1619 out_cleanup_queue:
1620         blk_cleanup_queue(ctrl->ctrl.admin_q);
1621 out_free_tagset:
1622         /* disconnect and drain the queue before freeing the tagset */
1623         nvme_rdma_stop_queue(&ctrl->queues[0]);
1624         blk_mq_free_tag_set(&ctrl->admin_tag_set);
1625 out_put_dev:
1626         nvme_rdma_dev_put(ctrl->device);
1627 out_free_queue:
1628         nvme_rdma_free_queue(&ctrl->queues[0]);
1629         return error;
1630 }
1631
1632 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl)
1633 {
1634         cancel_work_sync(&ctrl->err_work);
1635         cancel_delayed_work_sync(&ctrl->reconnect_work);
1636
1637         if (ctrl->ctrl.queue_count > 1) {
1638                 nvme_stop_queues(&ctrl->ctrl);
1639                 blk_mq_tagset_busy_iter(&ctrl->tag_set,
1640                                         nvme_cancel_request, &ctrl->ctrl);
1641                 nvme_rdma_free_io_queues(ctrl);
1642         }
1643
1644         if (test_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[0].flags))
1645                 nvme_shutdown_ctrl(&ctrl->ctrl);
1646
1647         blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
1648         blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
1649                                 nvme_cancel_request, &ctrl->ctrl);
1650         blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1651         nvme_rdma_destroy_admin_queue(ctrl);
1652 }
1653
1654 static void __nvme_rdma_remove_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
1655 {
1656         nvme_stop_ctrl(&ctrl->ctrl);
1657         nvme_remove_namespaces(&ctrl->ctrl);
1658         if (shutdown)
1659                 nvme_rdma_shutdown_ctrl(ctrl);
1660
1661         nvme_uninit_ctrl(&ctrl->ctrl);
1662         if (ctrl->ctrl.tagset) {
1663                 blk_cleanup_queue(ctrl->ctrl.connect_q);
1664                 blk_mq_free_tag_set(&ctrl->tag_set);
1665                 nvme_rdma_dev_put(ctrl->device);
1666         }
1667
1668         nvme_put_ctrl(&ctrl->ctrl);
1669 }
1670
1671 static void nvme_rdma_del_ctrl_work(struct work_struct *work)
1672 {
1673         struct nvme_rdma_ctrl *ctrl = container_of(work,
1674                                 struct nvme_rdma_ctrl, delete_work);
1675
1676         __nvme_rdma_remove_ctrl(ctrl, true);
1677 }
1678
1679 static int __nvme_rdma_del_ctrl(struct nvme_rdma_ctrl *ctrl)
1680 {
1681         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
1682                 return -EBUSY;
1683
1684         if (!queue_work(nvme_wq, &ctrl->delete_work))
1685                 return -EBUSY;
1686
1687         return 0;
1688 }
1689
1690 static int nvme_rdma_del_ctrl(struct nvme_ctrl *nctrl)
1691 {
1692         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1693         int ret = 0;
1694
1695         /*
1696          * Keep a reference until all work is flushed since
1697          * __nvme_rdma_del_ctrl can free the ctrl mem
1698          */
1699         if (!kref_get_unless_zero(&ctrl->ctrl.kref))
1700                 return -EBUSY;
1701         ret = __nvme_rdma_del_ctrl(ctrl);
1702         if (!ret)
1703                 flush_work(&ctrl->delete_work);
1704         nvme_put_ctrl(&ctrl->ctrl);
1705         return ret;
1706 }
1707
1708 static void nvme_rdma_remove_ctrl_work(struct work_struct *work)
1709 {
1710         struct nvme_rdma_ctrl *ctrl = container_of(work,
1711                                 struct nvme_rdma_ctrl, delete_work);
1712
1713         __nvme_rdma_remove_ctrl(ctrl, false);
1714 }
1715
1716 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
1717 {
1718         struct nvme_rdma_ctrl *ctrl =
1719                 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
1720         int ret;
1721         bool changed;
1722
1723         nvme_stop_ctrl(&ctrl->ctrl);
1724         nvme_rdma_shutdown_ctrl(ctrl);
1725
1726         ret = nvme_rdma_configure_admin_queue(ctrl);
1727         if (ret) {
1728                 /* ctrl is already shutdown, just remove the ctrl */
1729                 INIT_WORK(&ctrl->delete_work, nvme_rdma_remove_ctrl_work);
1730                 goto del_dead_ctrl;
1731         }
1732
1733         if (ctrl->ctrl.queue_count > 1) {
1734                 ret = blk_mq_reinit_tagset(&ctrl->tag_set,
1735                                            nvme_rdma_reinit_request);
1736                 if (ret)
1737                         goto del_dead_ctrl;
1738
1739                 ret = nvme_rdma_init_io_queues(ctrl);
1740                 if (ret)
1741                         goto del_dead_ctrl;
1742
1743                 ret = nvme_rdma_connect_io_queues(ctrl);
1744                 if (ret)
1745                         goto del_dead_ctrl;
1746
1747                 blk_mq_update_nr_hw_queues(&ctrl->tag_set,
1748                                 ctrl->ctrl.queue_count - 1);
1749         }
1750
1751         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1752         WARN_ON_ONCE(!changed);
1753
1754         nvme_start_ctrl(&ctrl->ctrl);
1755
1756         return;
1757
1758 del_dead_ctrl:
1759         /* Deleting this dead controller... */
1760         dev_warn(ctrl->ctrl.device, "Removing after reset failure\n");
1761         WARN_ON(!queue_work(nvme_wq, &ctrl->delete_work));
1762 }
1763
1764 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
1765         .name                   = "rdma",
1766         .module                 = THIS_MODULE,
1767         .flags                  = NVME_F_FABRICS,
1768         .reg_read32             = nvmf_reg_read32,
1769         .reg_read64             = nvmf_reg_read64,
1770         .reg_write32            = nvmf_reg_write32,
1771         .free_ctrl              = nvme_rdma_free_ctrl,
1772         .submit_async_event     = nvme_rdma_submit_async_event,
1773         .delete_ctrl            = nvme_rdma_del_ctrl,
1774         .get_address            = nvmf_get_address,
1775 };
1776
1777 static int nvme_rdma_create_io_queues(struct nvme_rdma_ctrl *ctrl)
1778 {
1779         int ret;
1780
1781         ret = nvme_rdma_init_io_queues(ctrl);
1782         if (ret)
1783                 return ret;
1784
1785         /*
1786          * We need a reference on the device as long as the tag_set is alive,
1787          * as the MRs in the request structures need a valid ib_device.
1788          */
1789         ret = -EINVAL;
1790         if (!nvme_rdma_dev_get(ctrl->device))
1791                 goto out_free_io_queues;
1792
1793         memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
1794         ctrl->tag_set.ops = &nvme_rdma_mq_ops;
1795         ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
1796         ctrl->tag_set.reserved_tags = 1; /* fabric connect */
1797         ctrl->tag_set.numa_node = NUMA_NO_NODE;
1798         ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
1799         ctrl->tag_set.cmd_size = sizeof(struct nvme_rdma_request) +
1800                 SG_CHUNK_SIZE * sizeof(struct scatterlist);
1801         ctrl->tag_set.driver_data = ctrl;
1802         ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1;
1803         ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
1804
1805         ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
1806         if (ret)
1807                 goto out_put_dev;
1808         ctrl->ctrl.tagset = &ctrl->tag_set;
1809
1810         ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
1811         if (IS_ERR(ctrl->ctrl.connect_q)) {
1812                 ret = PTR_ERR(ctrl->ctrl.connect_q);
1813                 goto out_free_tag_set;
1814         }
1815
1816         ret = nvme_rdma_connect_io_queues(ctrl);
1817         if (ret)
1818                 goto out_cleanup_connect_q;
1819
1820         return 0;
1821
1822 out_cleanup_connect_q:
1823         blk_cleanup_queue(ctrl->ctrl.connect_q);
1824 out_free_tag_set:
1825         blk_mq_free_tag_set(&ctrl->tag_set);
1826 out_put_dev:
1827         nvme_rdma_dev_put(ctrl->device);
1828 out_free_io_queues:
1829         nvme_rdma_free_io_queues(ctrl);
1830         return ret;
1831 }
1832
1833 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
1834                 struct nvmf_ctrl_options *opts)
1835 {
1836         struct nvme_rdma_ctrl *ctrl;
1837         int ret;
1838         bool changed;
1839         char *port;
1840
1841         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1842         if (!ctrl)
1843                 return ERR_PTR(-ENOMEM);
1844         ctrl->ctrl.opts = opts;
1845         INIT_LIST_HEAD(&ctrl->list);
1846
1847         if (opts->mask & NVMF_OPT_TRSVCID)
1848                 port = opts->trsvcid;
1849         else
1850                 port = __stringify(NVME_RDMA_IP_PORT);
1851
1852         ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1853                         opts->traddr, port, &ctrl->addr);
1854         if (ret) {
1855                 pr_err("malformed address passed: %s:%s\n", opts->traddr, port);
1856                 goto out_free_ctrl;
1857         }
1858
1859         if (opts->mask & NVMF_OPT_HOST_TRADDR) {
1860                 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1861                         opts->host_traddr, NULL, &ctrl->src_addr);
1862                 if (ret) {
1863                         pr_err("malformed src address passed: %s\n",
1864                                opts->host_traddr);
1865                         goto out_free_ctrl;
1866                 }
1867         }
1868
1869         ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
1870                                 0 /* no quirks, we're perfect! */);
1871         if (ret)
1872                 goto out_free_ctrl;
1873
1874         INIT_DELAYED_WORK(&ctrl->reconnect_work,
1875                         nvme_rdma_reconnect_ctrl_work);
1876         INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
1877         INIT_WORK(&ctrl->delete_work, nvme_rdma_del_ctrl_work);
1878         INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
1879
1880         ctrl->ctrl.queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */
1881         ctrl->ctrl.sqsize = opts->queue_size - 1;
1882         ctrl->ctrl.kato = opts->kato;
1883
1884         ret = -ENOMEM;
1885         ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
1886                                 GFP_KERNEL);
1887         if (!ctrl->queues)
1888                 goto out_uninit_ctrl;
1889
1890         ret = nvme_rdma_configure_admin_queue(ctrl);
1891         if (ret)
1892                 goto out_kfree_queues;
1893
1894         /* sanity check icdoff */
1895         if (ctrl->ctrl.icdoff) {
1896                 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1897                 ret = -EINVAL;
1898                 goto out_remove_admin_queue;
1899         }
1900
1901         /* sanity check keyed sgls */
1902         if (!(ctrl->ctrl.sgls & (1 << 20))) {
1903                 dev_err(ctrl->ctrl.device, "Mandatory keyed sgls are not support\n");
1904                 ret = -EINVAL;
1905                 goto out_remove_admin_queue;
1906         }
1907
1908         if (opts->queue_size > ctrl->ctrl.maxcmd) {
1909                 /* warn if maxcmd is lower than queue_size */
1910                 dev_warn(ctrl->ctrl.device,
1911                         "queue_size %zu > ctrl maxcmd %u, clamping down\n",
1912                         opts->queue_size, ctrl->ctrl.maxcmd);
1913                 opts->queue_size = ctrl->ctrl.maxcmd;
1914         }
1915
1916         if (opts->queue_size > ctrl->ctrl.sqsize + 1) {
1917                 /* warn if sqsize is lower than queue_size */
1918                 dev_warn(ctrl->ctrl.device,
1919                         "queue_size %zu > ctrl sqsize %u, clamping down\n",
1920                         opts->queue_size, ctrl->ctrl.sqsize + 1);
1921                 opts->queue_size = ctrl->ctrl.sqsize + 1;
1922         }
1923
1924         if (opts->nr_io_queues) {
1925                 ret = nvme_rdma_create_io_queues(ctrl);
1926                 if (ret)
1927                         goto out_remove_admin_queue;
1928         }
1929
1930         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1931         WARN_ON_ONCE(!changed);
1932
1933         dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
1934                 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
1935
1936         kref_get(&ctrl->ctrl.kref);
1937
1938         mutex_lock(&nvme_rdma_ctrl_mutex);
1939         list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
1940         mutex_unlock(&nvme_rdma_ctrl_mutex);
1941
1942         nvme_start_ctrl(&ctrl->ctrl);
1943
1944         return &ctrl->ctrl;
1945
1946 out_remove_admin_queue:
1947         nvme_rdma_destroy_admin_queue(ctrl);
1948 out_kfree_queues:
1949         kfree(ctrl->queues);
1950 out_uninit_ctrl:
1951         nvme_uninit_ctrl(&ctrl->ctrl);
1952         nvme_put_ctrl(&ctrl->ctrl);
1953         if (ret > 0)
1954                 ret = -EIO;
1955         return ERR_PTR(ret);
1956 out_free_ctrl:
1957         kfree(ctrl);
1958         return ERR_PTR(ret);
1959 }
1960
1961 static struct nvmf_transport_ops nvme_rdma_transport = {
1962         .name           = "rdma",
1963         .required_opts  = NVMF_OPT_TRADDR,
1964         .allowed_opts   = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
1965                           NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO,
1966         .create_ctrl    = nvme_rdma_create_ctrl,
1967 };
1968
1969 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
1970 {
1971         struct nvme_rdma_ctrl *ctrl;
1972
1973         /* Delete all controllers using this device */
1974         mutex_lock(&nvme_rdma_ctrl_mutex);
1975         list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
1976                 if (ctrl->device->dev != ib_device)
1977                         continue;
1978                 dev_info(ctrl->ctrl.device,
1979                         "Removing ctrl: NQN \"%s\", addr %pISp\n",
1980                         ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
1981                 __nvme_rdma_del_ctrl(ctrl);
1982         }
1983         mutex_unlock(&nvme_rdma_ctrl_mutex);
1984
1985         flush_workqueue(nvme_wq);
1986 }
1987
1988 static struct ib_client nvme_rdma_ib_client = {
1989         .name   = "nvme_rdma",
1990         .remove = nvme_rdma_remove_one
1991 };
1992
1993 static int __init nvme_rdma_init_module(void)
1994 {
1995         int ret;
1996
1997         ret = ib_register_client(&nvme_rdma_ib_client);
1998         if (ret)
1999                 return ret;
2000
2001         ret = nvmf_register_transport(&nvme_rdma_transport);
2002         if (ret)
2003                 goto err_unreg_client;
2004
2005         return 0;
2006
2007 err_unreg_client:
2008         ib_unregister_client(&nvme_rdma_ib_client);
2009         return ret;
2010 }
2011
2012 static void __exit nvme_rdma_cleanup_module(void)
2013 {
2014         nvmf_unregister_transport(&nvme_rdma_transport);
2015         ib_unregister_client(&nvme_rdma_ib_client);
2016 }
2017
2018 module_init(nvme_rdma_init_module);
2019 module_exit(nvme_rdma_cleanup_module);
2020
2021 MODULE_LICENSE("GPL v2");