Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
[sfrench/cifs-2.6.git] / drivers / nvme / host / rdma.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics RDMA host code.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <rdma/mr_pool.h>
11 #include <linux/err.h>
12 #include <linux/string.h>
13 #include <linux/atomic.h>
14 #include <linux/blk-mq.h>
15 #include <linux/blk-mq-rdma.h>
16 #include <linux/types.h>
17 #include <linux/list.h>
18 #include <linux/mutex.h>
19 #include <linux/scatterlist.h>
20 #include <linux/nvme.h>
21 #include <asm/unaligned.h>
22
23 #include <rdma/ib_verbs.h>
24 #include <rdma/rdma_cm.h>
25 #include <linux/nvme-rdma.h>
26
27 #include "nvme.h"
28 #include "fabrics.h"
29
30
31 #define NVME_RDMA_CONNECT_TIMEOUT_MS    3000            /* 3 second */
32
33 #define NVME_RDMA_MAX_SEGMENTS          256
34
35 #define NVME_RDMA_MAX_INLINE_SEGMENTS   4
36
37 struct nvme_rdma_device {
38         struct ib_device        *dev;
39         struct ib_pd            *pd;
40         struct kref             ref;
41         struct list_head        entry;
42         unsigned int            num_inline_segments;
43 };
44
45 struct nvme_rdma_qe {
46         struct ib_cqe           cqe;
47         void                    *data;
48         u64                     dma;
49 };
50
51 struct nvme_rdma_queue;
52 struct nvme_rdma_request {
53         struct nvme_request     req;
54         struct ib_mr            *mr;
55         struct nvme_rdma_qe     sqe;
56         union nvme_result       result;
57         __le16                  status;
58         refcount_t              ref;
59         struct ib_sge           sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
60         u32                     num_sge;
61         int                     nents;
62         struct ib_reg_wr        reg_wr;
63         struct ib_cqe           reg_cqe;
64         struct nvme_rdma_queue  *queue;
65         struct sg_table         sg_table;
66         struct scatterlist      first_sgl[];
67 };
68
69 enum nvme_rdma_queue_flags {
70         NVME_RDMA_Q_ALLOCATED           = 0,
71         NVME_RDMA_Q_LIVE                = 1,
72         NVME_RDMA_Q_TR_READY            = 2,
73 };
74
75 struct nvme_rdma_queue {
76         struct nvme_rdma_qe     *rsp_ring;
77         int                     queue_size;
78         size_t                  cmnd_capsule_len;
79         struct nvme_rdma_ctrl   *ctrl;
80         struct nvme_rdma_device *device;
81         struct ib_cq            *ib_cq;
82         struct ib_qp            *qp;
83
84         unsigned long           flags;
85         struct rdma_cm_id       *cm_id;
86         int                     cm_error;
87         struct completion       cm_done;
88 };
89
90 struct nvme_rdma_ctrl {
91         /* read only in the hot path */
92         struct nvme_rdma_queue  *queues;
93
94         /* other member variables */
95         struct blk_mq_tag_set   tag_set;
96         struct work_struct      err_work;
97
98         struct nvme_rdma_qe     async_event_sqe;
99
100         struct delayed_work     reconnect_work;
101
102         struct list_head        list;
103
104         struct blk_mq_tag_set   admin_tag_set;
105         struct nvme_rdma_device *device;
106
107         u32                     max_fr_pages;
108
109         struct sockaddr_storage addr;
110         struct sockaddr_storage src_addr;
111
112         struct nvme_ctrl        ctrl;
113         bool                    use_inline_data;
114         u32                     io_queues[HCTX_MAX_TYPES];
115 };
116
117 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
118 {
119         return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
120 }
121
122 static LIST_HEAD(device_list);
123 static DEFINE_MUTEX(device_list_mutex);
124
125 static LIST_HEAD(nvme_rdma_ctrl_list);
126 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
127
128 /*
129  * Disabling this option makes small I/O goes faster, but is fundamentally
130  * unsafe.  With it turned off we will have to register a global rkey that
131  * allows read and write access to all physical memory.
132  */
133 static bool register_always = true;
134 module_param(register_always, bool, 0444);
135 MODULE_PARM_DESC(register_always,
136          "Use memory registration even for contiguous memory regions");
137
138 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
139                 struct rdma_cm_event *event);
140 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
141
142 static const struct blk_mq_ops nvme_rdma_mq_ops;
143 static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
144
145 /* XXX: really should move to a generic header sooner or later.. */
146 static inline void put_unaligned_le24(u32 val, u8 *p)
147 {
148         *p++ = val;
149         *p++ = val >> 8;
150         *p++ = val >> 16;
151 }
152
153 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
154 {
155         return queue - queue->ctrl->queues;
156 }
157
158 static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue)
159 {
160         return nvme_rdma_queue_idx(queue) >
161                 queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] +
162                 queue->ctrl->io_queues[HCTX_TYPE_READ];
163 }
164
165 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
166 {
167         return queue->cmnd_capsule_len - sizeof(struct nvme_command);
168 }
169
170 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
171                 size_t capsule_size, enum dma_data_direction dir)
172 {
173         ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
174         kfree(qe->data);
175 }
176
177 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
178                 size_t capsule_size, enum dma_data_direction dir)
179 {
180         qe->data = kzalloc(capsule_size, GFP_KERNEL);
181         if (!qe->data)
182                 return -ENOMEM;
183
184         qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
185         if (ib_dma_mapping_error(ibdev, qe->dma)) {
186                 kfree(qe->data);
187                 qe->data = NULL;
188                 return -ENOMEM;
189         }
190
191         return 0;
192 }
193
194 static void nvme_rdma_free_ring(struct ib_device *ibdev,
195                 struct nvme_rdma_qe *ring, size_t ib_queue_size,
196                 size_t capsule_size, enum dma_data_direction dir)
197 {
198         int i;
199
200         for (i = 0; i < ib_queue_size; i++)
201                 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
202         kfree(ring);
203 }
204
205 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
206                 size_t ib_queue_size, size_t capsule_size,
207                 enum dma_data_direction dir)
208 {
209         struct nvme_rdma_qe *ring;
210         int i;
211
212         ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
213         if (!ring)
214                 return NULL;
215
216         /*
217          * Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue
218          * lifetime. It's safe, since any chage in the underlying RDMA device
219          * will issue error recovery and queue re-creation.
220          */
221         for (i = 0; i < ib_queue_size; i++) {
222                 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
223                         goto out_free_ring;
224         }
225
226         return ring;
227
228 out_free_ring:
229         nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
230         return NULL;
231 }
232
233 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
234 {
235         pr_debug("QP event %s (%d)\n",
236                  ib_event_msg(event->event), event->event);
237
238 }
239
240 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
241 {
242         int ret;
243
244         ret = wait_for_completion_interruptible_timeout(&queue->cm_done,
245                         msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
246         if (ret < 0)
247                 return ret;
248         if (ret == 0)
249                 return -ETIMEDOUT;
250         WARN_ON_ONCE(queue->cm_error > 0);
251         return queue->cm_error;
252 }
253
254 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
255 {
256         struct nvme_rdma_device *dev = queue->device;
257         struct ib_qp_init_attr init_attr;
258         int ret;
259
260         memset(&init_attr, 0, sizeof(init_attr));
261         init_attr.event_handler = nvme_rdma_qp_event;
262         /* +1 for drain */
263         init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
264         /* +1 for drain */
265         init_attr.cap.max_recv_wr = queue->queue_size + 1;
266         init_attr.cap.max_recv_sge = 1;
267         init_attr.cap.max_send_sge = 1 + dev->num_inline_segments;
268         init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
269         init_attr.qp_type = IB_QPT_RC;
270         init_attr.send_cq = queue->ib_cq;
271         init_attr.recv_cq = queue->ib_cq;
272
273         ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
274
275         queue->qp = queue->cm_id->qp;
276         return ret;
277 }
278
279 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
280                 struct request *rq, unsigned int hctx_idx)
281 {
282         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
283
284         kfree(req->sqe.data);
285 }
286
287 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
288                 struct request *rq, unsigned int hctx_idx,
289                 unsigned int numa_node)
290 {
291         struct nvme_rdma_ctrl *ctrl = set->driver_data;
292         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
293         int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
294         struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
295
296         nvme_req(rq)->ctrl = &ctrl->ctrl;
297         req->sqe.data = kzalloc(sizeof(struct nvme_command), GFP_KERNEL);
298         if (!req->sqe.data)
299                 return -ENOMEM;
300
301         req->queue = queue;
302
303         return 0;
304 }
305
306 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
307                 unsigned int hctx_idx)
308 {
309         struct nvme_rdma_ctrl *ctrl = data;
310         struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
311
312         BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
313
314         hctx->driver_data = queue;
315         return 0;
316 }
317
318 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
319                 unsigned int hctx_idx)
320 {
321         struct nvme_rdma_ctrl *ctrl = data;
322         struct nvme_rdma_queue *queue = &ctrl->queues[0];
323
324         BUG_ON(hctx_idx != 0);
325
326         hctx->driver_data = queue;
327         return 0;
328 }
329
330 static void nvme_rdma_free_dev(struct kref *ref)
331 {
332         struct nvme_rdma_device *ndev =
333                 container_of(ref, struct nvme_rdma_device, ref);
334
335         mutex_lock(&device_list_mutex);
336         list_del(&ndev->entry);
337         mutex_unlock(&device_list_mutex);
338
339         ib_dealloc_pd(ndev->pd);
340         kfree(ndev);
341 }
342
343 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
344 {
345         kref_put(&dev->ref, nvme_rdma_free_dev);
346 }
347
348 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
349 {
350         return kref_get_unless_zero(&dev->ref);
351 }
352
353 static struct nvme_rdma_device *
354 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
355 {
356         struct nvme_rdma_device *ndev;
357
358         mutex_lock(&device_list_mutex);
359         list_for_each_entry(ndev, &device_list, entry) {
360                 if (ndev->dev->node_guid == cm_id->device->node_guid &&
361                     nvme_rdma_dev_get(ndev))
362                         goto out_unlock;
363         }
364
365         ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
366         if (!ndev)
367                 goto out_err;
368
369         ndev->dev = cm_id->device;
370         kref_init(&ndev->ref);
371
372         ndev->pd = ib_alloc_pd(ndev->dev,
373                 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
374         if (IS_ERR(ndev->pd))
375                 goto out_free_dev;
376
377         if (!(ndev->dev->attrs.device_cap_flags &
378               IB_DEVICE_MEM_MGT_EXTENSIONS)) {
379                 dev_err(&ndev->dev->dev,
380                         "Memory registrations not supported.\n");
381                 goto out_free_pd;
382         }
383
384         ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS,
385                                         ndev->dev->attrs.max_send_sge - 1);
386         list_add(&ndev->entry, &device_list);
387 out_unlock:
388         mutex_unlock(&device_list_mutex);
389         return ndev;
390
391 out_free_pd:
392         ib_dealloc_pd(ndev->pd);
393 out_free_dev:
394         kfree(ndev);
395 out_err:
396         mutex_unlock(&device_list_mutex);
397         return NULL;
398 }
399
400 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
401 {
402         struct nvme_rdma_device *dev;
403         struct ib_device *ibdev;
404
405         if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
406                 return;
407
408         dev = queue->device;
409         ibdev = dev->dev;
410
411         ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
412
413         /*
414          * The cm_id object might have been destroyed during RDMA connection
415          * establishment error flow to avoid getting other cma events, thus
416          * the destruction of the QP shouldn't use rdma_cm API.
417          */
418         ib_destroy_qp(queue->qp);
419         ib_free_cq(queue->ib_cq);
420
421         nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
422                         sizeof(struct nvme_completion), DMA_FROM_DEVICE);
423
424         nvme_rdma_dev_put(dev);
425 }
426
427 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev)
428 {
429         return min_t(u32, NVME_RDMA_MAX_SEGMENTS,
430                      ibdev->attrs.max_fast_reg_page_list_len);
431 }
432
433 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
434 {
435         struct ib_device *ibdev;
436         const int send_wr_factor = 3;                   /* MR, SEND, INV */
437         const int cq_factor = send_wr_factor + 1;       /* + RECV */
438         int comp_vector, idx = nvme_rdma_queue_idx(queue);
439         enum ib_poll_context poll_ctx;
440         int ret;
441
442         queue->device = nvme_rdma_find_get_device(queue->cm_id);
443         if (!queue->device) {
444                 dev_err(queue->cm_id->device->dev.parent,
445                         "no client data found!\n");
446                 return -ECONNREFUSED;
447         }
448         ibdev = queue->device->dev;
449
450         /*
451          * Spread I/O queues completion vectors according their queue index.
452          * Admin queues can always go on completion vector 0.
453          */
454         comp_vector = idx == 0 ? idx : idx - 1;
455
456         /* Polling queues need direct cq polling context */
457         if (nvme_rdma_poll_queue(queue))
458                 poll_ctx = IB_POLL_DIRECT;
459         else
460                 poll_ctx = IB_POLL_SOFTIRQ;
461
462         /* +1 for ib_stop_cq */
463         queue->ib_cq = ib_alloc_cq(ibdev, queue,
464                                 cq_factor * queue->queue_size + 1,
465                                 comp_vector, poll_ctx);
466         if (IS_ERR(queue->ib_cq)) {
467                 ret = PTR_ERR(queue->ib_cq);
468                 goto out_put_dev;
469         }
470
471         ret = nvme_rdma_create_qp(queue, send_wr_factor);
472         if (ret)
473                 goto out_destroy_ib_cq;
474
475         queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
476                         sizeof(struct nvme_completion), DMA_FROM_DEVICE);
477         if (!queue->rsp_ring) {
478                 ret = -ENOMEM;
479                 goto out_destroy_qp;
480         }
481
482         ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
483                               queue->queue_size,
484                               IB_MR_TYPE_MEM_REG,
485                               nvme_rdma_get_max_fr_pages(ibdev), 0);
486         if (ret) {
487                 dev_err(queue->ctrl->ctrl.device,
488                         "failed to initialize MR pool sized %d for QID %d\n",
489                         queue->queue_size, idx);
490                 goto out_destroy_ring;
491         }
492
493         set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
494
495         return 0;
496
497 out_destroy_ring:
498         nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
499                             sizeof(struct nvme_completion), DMA_FROM_DEVICE);
500 out_destroy_qp:
501         rdma_destroy_qp(queue->cm_id);
502 out_destroy_ib_cq:
503         ib_free_cq(queue->ib_cq);
504 out_put_dev:
505         nvme_rdma_dev_put(queue->device);
506         return ret;
507 }
508
509 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
510                 int idx, size_t queue_size)
511 {
512         struct nvme_rdma_queue *queue;
513         struct sockaddr *src_addr = NULL;
514         int ret;
515
516         queue = &ctrl->queues[idx];
517         queue->ctrl = ctrl;
518         init_completion(&queue->cm_done);
519
520         if (idx > 0)
521                 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
522         else
523                 queue->cmnd_capsule_len = sizeof(struct nvme_command);
524
525         queue->queue_size = queue_size;
526
527         queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
528                         RDMA_PS_TCP, IB_QPT_RC);
529         if (IS_ERR(queue->cm_id)) {
530                 dev_info(ctrl->ctrl.device,
531                         "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
532                 return PTR_ERR(queue->cm_id);
533         }
534
535         if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
536                 src_addr = (struct sockaddr *)&ctrl->src_addr;
537
538         queue->cm_error = -ETIMEDOUT;
539         ret = rdma_resolve_addr(queue->cm_id, src_addr,
540                         (struct sockaddr *)&ctrl->addr,
541                         NVME_RDMA_CONNECT_TIMEOUT_MS);
542         if (ret) {
543                 dev_info(ctrl->ctrl.device,
544                         "rdma_resolve_addr failed (%d).\n", ret);
545                 goto out_destroy_cm_id;
546         }
547
548         ret = nvme_rdma_wait_for_cm(queue);
549         if (ret) {
550                 dev_info(ctrl->ctrl.device,
551                         "rdma connection establishment failed (%d)\n", ret);
552                 goto out_destroy_cm_id;
553         }
554
555         set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
556
557         return 0;
558
559 out_destroy_cm_id:
560         rdma_destroy_id(queue->cm_id);
561         nvme_rdma_destroy_queue_ib(queue);
562         return ret;
563 }
564
565 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
566 {
567         if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
568                 return;
569
570         rdma_disconnect(queue->cm_id);
571         ib_drain_qp(queue->qp);
572 }
573
574 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
575 {
576         if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
577                 return;
578
579         nvme_rdma_destroy_queue_ib(queue);
580         rdma_destroy_id(queue->cm_id);
581 }
582
583 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
584 {
585         int i;
586
587         for (i = 1; i < ctrl->ctrl.queue_count; i++)
588                 nvme_rdma_free_queue(&ctrl->queues[i]);
589 }
590
591 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
592 {
593         int i;
594
595         for (i = 1; i < ctrl->ctrl.queue_count; i++)
596                 nvme_rdma_stop_queue(&ctrl->queues[i]);
597 }
598
599 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
600 {
601         struct nvme_rdma_queue *queue = &ctrl->queues[idx];
602         bool poll = nvme_rdma_poll_queue(queue);
603         int ret;
604
605         if (idx)
606                 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx, poll);
607         else
608                 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
609
610         if (!ret)
611                 set_bit(NVME_RDMA_Q_LIVE, &queue->flags);
612         else
613                 dev_info(ctrl->ctrl.device,
614                         "failed to connect queue: %d ret=%d\n", idx, ret);
615         return ret;
616 }
617
618 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
619 {
620         int i, ret = 0;
621
622         for (i = 1; i < ctrl->ctrl.queue_count; i++) {
623                 ret = nvme_rdma_start_queue(ctrl, i);
624                 if (ret)
625                         goto out_stop_queues;
626         }
627
628         return 0;
629
630 out_stop_queues:
631         for (i--; i >= 1; i--)
632                 nvme_rdma_stop_queue(&ctrl->queues[i]);
633         return ret;
634 }
635
636 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
637 {
638         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
639         struct ib_device *ibdev = ctrl->device->dev;
640         unsigned int nr_io_queues, nr_default_queues;
641         unsigned int nr_read_queues, nr_poll_queues;
642         int i, ret;
643
644         nr_read_queues = min_t(unsigned int, ibdev->num_comp_vectors,
645                                 min(opts->nr_io_queues, num_online_cpus()));
646         nr_default_queues =  min_t(unsigned int, ibdev->num_comp_vectors,
647                                 min(opts->nr_write_queues, num_online_cpus()));
648         nr_poll_queues = min(opts->nr_poll_queues, num_online_cpus());
649         nr_io_queues = nr_read_queues + nr_default_queues + nr_poll_queues;
650
651         ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
652         if (ret)
653                 return ret;
654
655         ctrl->ctrl.queue_count = nr_io_queues + 1;
656         if (ctrl->ctrl.queue_count < 2)
657                 return 0;
658
659         dev_info(ctrl->ctrl.device,
660                 "creating %d I/O queues.\n", nr_io_queues);
661
662         if (opts->nr_write_queues && nr_read_queues < nr_io_queues) {
663                 /*
664                  * separate read/write queues
665                  * hand out dedicated default queues only after we have
666                  * sufficient read queues.
667                  */
668                 ctrl->io_queues[HCTX_TYPE_READ] = nr_read_queues;
669                 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
670                 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
671                         min(nr_default_queues, nr_io_queues);
672                 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
673         } else {
674                 /*
675                  * shared read/write queues
676                  * either no write queues were requested, or we don't have
677                  * sufficient queue count to have dedicated default queues.
678                  */
679                 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
680                         min(nr_read_queues, nr_io_queues);
681                 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
682         }
683
684         if (opts->nr_poll_queues && nr_io_queues) {
685                 /* map dedicated poll queues only if we have queues left */
686                 ctrl->io_queues[HCTX_TYPE_POLL] =
687                         min(nr_poll_queues, nr_io_queues);
688         }
689
690         for (i = 1; i < ctrl->ctrl.queue_count; i++) {
691                 ret = nvme_rdma_alloc_queue(ctrl, i,
692                                 ctrl->ctrl.sqsize + 1);
693                 if (ret)
694                         goto out_free_queues;
695         }
696
697         return 0;
698
699 out_free_queues:
700         for (i--; i >= 1; i--)
701                 nvme_rdma_free_queue(&ctrl->queues[i]);
702
703         return ret;
704 }
705
706 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
707                 bool admin)
708 {
709         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
710         struct blk_mq_tag_set *set;
711         int ret;
712
713         if (admin) {
714                 set = &ctrl->admin_tag_set;
715                 memset(set, 0, sizeof(*set));
716                 set->ops = &nvme_rdma_admin_mq_ops;
717                 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
718                 set->reserved_tags = 2; /* connect + keep-alive */
719                 set->numa_node = nctrl->numa_node;
720                 set->cmd_size = sizeof(struct nvme_rdma_request) +
721                         SG_CHUNK_SIZE * sizeof(struct scatterlist);
722                 set->driver_data = ctrl;
723                 set->nr_hw_queues = 1;
724                 set->timeout = ADMIN_TIMEOUT;
725                 set->flags = BLK_MQ_F_NO_SCHED;
726         } else {
727                 set = &ctrl->tag_set;
728                 memset(set, 0, sizeof(*set));
729                 set->ops = &nvme_rdma_mq_ops;
730                 set->queue_depth = nctrl->sqsize + 1;
731                 set->reserved_tags = 1; /* fabric connect */
732                 set->numa_node = nctrl->numa_node;
733                 set->flags = BLK_MQ_F_SHOULD_MERGE;
734                 set->cmd_size = sizeof(struct nvme_rdma_request) +
735                         SG_CHUNK_SIZE * sizeof(struct scatterlist);
736                 set->driver_data = ctrl;
737                 set->nr_hw_queues = nctrl->queue_count - 1;
738                 set->timeout = NVME_IO_TIMEOUT;
739                 set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
740         }
741
742         ret = blk_mq_alloc_tag_set(set);
743         if (ret)
744                 return ERR_PTR(ret);
745
746         return set;
747 }
748
749 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
750                 bool remove)
751 {
752         if (remove) {
753                 blk_cleanup_queue(ctrl->ctrl.admin_q);
754                 blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
755         }
756         if (ctrl->async_event_sqe.data) {
757                 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
758                                 sizeof(struct nvme_command), DMA_TO_DEVICE);
759                 ctrl->async_event_sqe.data = NULL;
760         }
761         nvme_rdma_free_queue(&ctrl->queues[0]);
762 }
763
764 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
765                 bool new)
766 {
767         int error;
768
769         error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
770         if (error)
771                 return error;
772
773         ctrl->device = ctrl->queues[0].device;
774         ctrl->ctrl.numa_node = dev_to_node(ctrl->device->dev->dma_device);
775
776         ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev);
777
778         /*
779          * Bind the async event SQE DMA mapping to the admin queue lifetime.
780          * It's safe, since any chage in the underlying RDMA device will issue
781          * error recovery and queue re-creation.
782          */
783         error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
784                         sizeof(struct nvme_command), DMA_TO_DEVICE);
785         if (error)
786                 goto out_free_queue;
787
788         if (new) {
789                 ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
790                 if (IS_ERR(ctrl->ctrl.admin_tagset)) {
791                         error = PTR_ERR(ctrl->ctrl.admin_tagset);
792                         goto out_free_async_qe;
793                 }
794
795                 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
796                 if (IS_ERR(ctrl->ctrl.admin_q)) {
797                         error = PTR_ERR(ctrl->ctrl.admin_q);
798                         goto out_free_tagset;
799                 }
800         }
801
802         error = nvme_rdma_start_queue(ctrl, 0);
803         if (error)
804                 goto out_cleanup_queue;
805
806         error = ctrl->ctrl.ops->reg_read64(&ctrl->ctrl, NVME_REG_CAP,
807                         &ctrl->ctrl.cap);
808         if (error) {
809                 dev_err(ctrl->ctrl.device,
810                         "prop_get NVME_REG_CAP failed\n");
811                 goto out_stop_queue;
812         }
813
814         ctrl->ctrl.sqsize =
815                 min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize);
816
817         error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
818         if (error)
819                 goto out_stop_queue;
820
821         ctrl->ctrl.max_hw_sectors =
822                 (ctrl->max_fr_pages - 1) << (ilog2(SZ_4K) - 9);
823
824         error = nvme_init_identify(&ctrl->ctrl);
825         if (error)
826                 goto out_stop_queue;
827
828         return 0;
829
830 out_stop_queue:
831         nvme_rdma_stop_queue(&ctrl->queues[0]);
832 out_cleanup_queue:
833         if (new)
834                 blk_cleanup_queue(ctrl->ctrl.admin_q);
835 out_free_tagset:
836         if (new)
837                 blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
838 out_free_async_qe:
839         nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
840                 sizeof(struct nvme_command), DMA_TO_DEVICE);
841         ctrl->async_event_sqe.data = NULL;
842 out_free_queue:
843         nvme_rdma_free_queue(&ctrl->queues[0]);
844         return error;
845 }
846
847 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
848                 bool remove)
849 {
850         if (remove) {
851                 blk_cleanup_queue(ctrl->ctrl.connect_q);
852                 blk_mq_free_tag_set(ctrl->ctrl.tagset);
853         }
854         nvme_rdma_free_io_queues(ctrl);
855 }
856
857 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
858 {
859         int ret;
860
861         ret = nvme_rdma_alloc_io_queues(ctrl);
862         if (ret)
863                 return ret;
864
865         if (new) {
866                 ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
867                 if (IS_ERR(ctrl->ctrl.tagset)) {
868                         ret = PTR_ERR(ctrl->ctrl.tagset);
869                         goto out_free_io_queues;
870                 }
871
872                 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
873                 if (IS_ERR(ctrl->ctrl.connect_q)) {
874                         ret = PTR_ERR(ctrl->ctrl.connect_q);
875                         goto out_free_tag_set;
876                 }
877         } else {
878                 blk_mq_update_nr_hw_queues(&ctrl->tag_set,
879                         ctrl->ctrl.queue_count - 1);
880         }
881
882         ret = nvme_rdma_start_io_queues(ctrl);
883         if (ret)
884                 goto out_cleanup_connect_q;
885
886         return 0;
887
888 out_cleanup_connect_q:
889         if (new)
890                 blk_cleanup_queue(ctrl->ctrl.connect_q);
891 out_free_tag_set:
892         if (new)
893                 blk_mq_free_tag_set(ctrl->ctrl.tagset);
894 out_free_io_queues:
895         nvme_rdma_free_io_queues(ctrl);
896         return ret;
897 }
898
899 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl,
900                 bool remove)
901 {
902         blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
903         nvme_rdma_stop_queue(&ctrl->queues[0]);
904         if (ctrl->ctrl.admin_tagset)
905                 blk_mq_tagset_busy_iter(ctrl->ctrl.admin_tagset,
906                         nvme_cancel_request, &ctrl->ctrl);
907         blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
908         nvme_rdma_destroy_admin_queue(ctrl, remove);
909 }
910
911 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl,
912                 bool remove)
913 {
914         if (ctrl->ctrl.queue_count > 1) {
915                 nvme_stop_queues(&ctrl->ctrl);
916                 nvme_rdma_stop_io_queues(ctrl);
917                 if (ctrl->ctrl.tagset)
918                         blk_mq_tagset_busy_iter(ctrl->ctrl.tagset,
919                                 nvme_cancel_request, &ctrl->ctrl);
920                 if (remove)
921                         nvme_start_queues(&ctrl->ctrl);
922                 nvme_rdma_destroy_io_queues(ctrl, remove);
923         }
924 }
925
926 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
927 {
928         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
929
930         if (list_empty(&ctrl->list))
931                 goto free_ctrl;
932
933         mutex_lock(&nvme_rdma_ctrl_mutex);
934         list_del(&ctrl->list);
935         mutex_unlock(&nvme_rdma_ctrl_mutex);
936
937         nvmf_free_options(nctrl->opts);
938 free_ctrl:
939         kfree(ctrl->queues);
940         kfree(ctrl);
941 }
942
943 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
944 {
945         /* If we are resetting/deleting then do nothing */
946         if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
947                 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
948                         ctrl->ctrl.state == NVME_CTRL_LIVE);
949                 return;
950         }
951
952         if (nvmf_should_reconnect(&ctrl->ctrl)) {
953                 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
954                         ctrl->ctrl.opts->reconnect_delay);
955                 queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
956                                 ctrl->ctrl.opts->reconnect_delay * HZ);
957         } else {
958                 nvme_delete_ctrl(&ctrl->ctrl);
959         }
960 }
961
962 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)
963 {
964         int ret = -EINVAL;
965         bool changed;
966
967         ret = nvme_rdma_configure_admin_queue(ctrl, new);
968         if (ret)
969                 return ret;
970
971         if (ctrl->ctrl.icdoff) {
972                 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
973                 goto destroy_admin;
974         }
975
976         if (!(ctrl->ctrl.sgls & (1 << 2))) {
977                 dev_err(ctrl->ctrl.device,
978                         "Mandatory keyed sgls are not supported!\n");
979                 goto destroy_admin;
980         }
981
982         if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) {
983                 dev_warn(ctrl->ctrl.device,
984                         "queue_size %zu > ctrl sqsize %u, clamping down\n",
985                         ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1);
986         }
987
988         if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
989                 dev_warn(ctrl->ctrl.device,
990                         "sqsize %u > ctrl maxcmd %u, clamping down\n",
991                         ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
992                 ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
993         }
994
995         if (ctrl->ctrl.sgls & (1 << 20))
996                 ctrl->use_inline_data = true;
997
998         if (ctrl->ctrl.queue_count > 1) {
999                 ret = nvme_rdma_configure_io_queues(ctrl, new);
1000                 if (ret)
1001                         goto destroy_admin;
1002         }
1003
1004         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1005         if (!changed) {
1006                 /* state change failure is ok if we're in DELETING state */
1007                 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
1008                 ret = -EINVAL;
1009                 goto destroy_io;
1010         }
1011
1012         nvme_start_ctrl(&ctrl->ctrl);
1013         return 0;
1014
1015 destroy_io:
1016         if (ctrl->ctrl.queue_count > 1)
1017                 nvme_rdma_destroy_io_queues(ctrl, new);
1018 destroy_admin:
1019         nvme_rdma_stop_queue(&ctrl->queues[0]);
1020         nvme_rdma_destroy_admin_queue(ctrl, new);
1021         return ret;
1022 }
1023
1024 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
1025 {
1026         struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
1027                         struct nvme_rdma_ctrl, reconnect_work);
1028
1029         ++ctrl->ctrl.nr_reconnects;
1030
1031         if (nvme_rdma_setup_ctrl(ctrl, false))
1032                 goto requeue;
1033
1034         dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
1035                         ctrl->ctrl.nr_reconnects);
1036
1037         ctrl->ctrl.nr_reconnects = 0;
1038
1039         return;
1040
1041 requeue:
1042         dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
1043                         ctrl->ctrl.nr_reconnects);
1044         nvme_rdma_reconnect_or_remove(ctrl);
1045 }
1046
1047 static void nvme_rdma_error_recovery_work(struct work_struct *work)
1048 {
1049         struct nvme_rdma_ctrl *ctrl = container_of(work,
1050                         struct nvme_rdma_ctrl, err_work);
1051
1052         nvme_stop_keep_alive(&ctrl->ctrl);
1053         nvme_rdma_teardown_io_queues(ctrl, false);
1054         nvme_start_queues(&ctrl->ctrl);
1055         nvme_rdma_teardown_admin_queue(ctrl, false);
1056
1057         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1058                 /* state change failure is ok if we're in DELETING state */
1059                 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
1060                 return;
1061         }
1062
1063         nvme_rdma_reconnect_or_remove(ctrl);
1064 }
1065
1066 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
1067 {
1068         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1069                 return;
1070
1071         queue_work(nvme_wq, &ctrl->err_work);
1072 }
1073
1074 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1075                 const char *op)
1076 {
1077         struct nvme_rdma_queue *queue = cq->cq_context;
1078         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1079
1080         if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1081                 dev_info(ctrl->ctrl.device,
1082                              "%s for CQE 0x%p failed with status %s (%d)\n",
1083                              op, wc->wr_cqe,
1084                              ib_wc_status_msg(wc->status), wc->status);
1085         nvme_rdma_error_recovery(ctrl);
1086 }
1087
1088 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1089 {
1090         if (unlikely(wc->status != IB_WC_SUCCESS))
1091                 nvme_rdma_wr_error(cq, wc, "MEMREG");
1092 }
1093
1094 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1095 {
1096         struct nvme_rdma_request *req =
1097                 container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1098         struct request *rq = blk_mq_rq_from_pdu(req);
1099
1100         if (unlikely(wc->status != IB_WC_SUCCESS)) {
1101                 nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1102                 return;
1103         }
1104
1105         if (refcount_dec_and_test(&req->ref))
1106                 nvme_end_request(rq, req->status, req->result);
1107
1108 }
1109
1110 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1111                 struct nvme_rdma_request *req)
1112 {
1113         struct ib_send_wr wr = {
1114                 .opcode             = IB_WR_LOCAL_INV,
1115                 .next               = NULL,
1116                 .num_sge            = 0,
1117                 .send_flags         = IB_SEND_SIGNALED,
1118                 .ex.invalidate_rkey = req->mr->rkey,
1119         };
1120
1121         req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1122         wr.wr_cqe = &req->reg_cqe;
1123
1124         return ib_post_send(queue->qp, &wr, NULL);
1125 }
1126
1127 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1128                 struct request *rq)
1129 {
1130         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1131         struct nvme_rdma_device *dev = queue->device;
1132         struct ib_device *ibdev = dev->dev;
1133
1134         if (!blk_rq_nr_phys_segments(rq))
1135                 return;
1136
1137         if (req->mr) {
1138                 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1139                 req->mr = NULL;
1140         }
1141
1142         ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
1143                         req->nents, rq_data_dir(rq) ==
1144                                     WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1145
1146         nvme_cleanup_cmd(rq);
1147         sg_free_table_chained(&req->sg_table, SG_CHUNK_SIZE);
1148 }
1149
1150 static int nvme_rdma_set_sg_null(struct nvme_command *c)
1151 {
1152         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1153
1154         sg->addr = 0;
1155         put_unaligned_le24(0, sg->length);
1156         put_unaligned_le32(0, sg->key);
1157         sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1158         return 0;
1159 }
1160
1161 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1162                 struct nvme_rdma_request *req, struct nvme_command *c,
1163                 int count)
1164 {
1165         struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1166         struct scatterlist *sgl = req->sg_table.sgl;
1167         struct ib_sge *sge = &req->sge[1];
1168         u32 len = 0;
1169         int i;
1170
1171         for (i = 0; i < count; i++, sgl++, sge++) {
1172                 sge->addr = sg_dma_address(sgl);
1173                 sge->length = sg_dma_len(sgl);
1174                 sge->lkey = queue->device->pd->local_dma_lkey;
1175                 len += sge->length;
1176         }
1177
1178         sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1179         sg->length = cpu_to_le32(len);
1180         sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1181
1182         req->num_sge += count;
1183         return 0;
1184 }
1185
1186 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1187                 struct nvme_rdma_request *req, struct nvme_command *c)
1188 {
1189         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1190
1191         sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
1192         put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
1193         put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1194         sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1195         return 0;
1196 }
1197
1198 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1199                 struct nvme_rdma_request *req, struct nvme_command *c,
1200                 int count)
1201 {
1202         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1203         int nr;
1204
1205         req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1206         if (WARN_ON_ONCE(!req->mr))
1207                 return -EAGAIN;
1208
1209         /*
1210          * Align the MR to a 4K page size to match the ctrl page size and
1211          * the block virtual boundary.
1212          */
1213         nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K);
1214         if (unlikely(nr < count)) {
1215                 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1216                 req->mr = NULL;
1217                 if (nr < 0)
1218                         return nr;
1219                 return -EINVAL;
1220         }
1221
1222         ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1223
1224         req->reg_cqe.done = nvme_rdma_memreg_done;
1225         memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1226         req->reg_wr.wr.opcode = IB_WR_REG_MR;
1227         req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1228         req->reg_wr.wr.num_sge = 0;
1229         req->reg_wr.mr = req->mr;
1230         req->reg_wr.key = req->mr->rkey;
1231         req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1232                              IB_ACCESS_REMOTE_READ |
1233                              IB_ACCESS_REMOTE_WRITE;
1234
1235         sg->addr = cpu_to_le64(req->mr->iova);
1236         put_unaligned_le24(req->mr->length, sg->length);
1237         put_unaligned_le32(req->mr->rkey, sg->key);
1238         sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1239                         NVME_SGL_FMT_INVALIDATE;
1240
1241         return 0;
1242 }
1243
1244 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1245                 struct request *rq, struct nvme_command *c)
1246 {
1247         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1248         struct nvme_rdma_device *dev = queue->device;
1249         struct ib_device *ibdev = dev->dev;
1250         int count, ret;
1251
1252         req->num_sge = 1;
1253         refcount_set(&req->ref, 2); /* send and recv completions */
1254
1255         c->common.flags |= NVME_CMD_SGL_METABUF;
1256
1257         if (!blk_rq_nr_phys_segments(rq))
1258                 return nvme_rdma_set_sg_null(c);
1259
1260         req->sg_table.sgl = req->first_sgl;
1261         ret = sg_alloc_table_chained(&req->sg_table,
1262                         blk_rq_nr_phys_segments(rq), req->sg_table.sgl,
1263                         SG_CHUNK_SIZE);
1264         if (ret)
1265                 return -ENOMEM;
1266
1267         req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
1268
1269         count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents,
1270                     rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1271         if (unlikely(count <= 0)) {
1272                 ret = -EIO;
1273                 goto out_free_table;
1274         }
1275
1276         if (count <= dev->num_inline_segments) {
1277                 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1278                     queue->ctrl->use_inline_data &&
1279                     blk_rq_payload_bytes(rq) <=
1280                                 nvme_rdma_inline_data_size(queue)) {
1281                         ret = nvme_rdma_map_sg_inline(queue, req, c, count);
1282                         goto out;
1283                 }
1284
1285                 if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
1286                         ret = nvme_rdma_map_sg_single(queue, req, c);
1287                         goto out;
1288                 }
1289         }
1290
1291         ret = nvme_rdma_map_sg_fr(queue, req, c, count);
1292 out:
1293         if (unlikely(ret))
1294                 goto out_unmap_sg;
1295
1296         return 0;
1297
1298 out_unmap_sg:
1299         ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
1300                         req->nents, rq_data_dir(rq) ==
1301                         WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1302 out_free_table:
1303         sg_free_table_chained(&req->sg_table, SG_CHUNK_SIZE);
1304         return ret;
1305 }
1306
1307 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1308 {
1309         struct nvme_rdma_qe *qe =
1310                 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1311         struct nvme_rdma_request *req =
1312                 container_of(qe, struct nvme_rdma_request, sqe);
1313         struct request *rq = blk_mq_rq_from_pdu(req);
1314
1315         if (unlikely(wc->status != IB_WC_SUCCESS)) {
1316                 nvme_rdma_wr_error(cq, wc, "SEND");
1317                 return;
1318         }
1319
1320         if (refcount_dec_and_test(&req->ref))
1321                 nvme_end_request(rq, req->status, req->result);
1322 }
1323
1324 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1325                 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1326                 struct ib_send_wr *first)
1327 {
1328         struct ib_send_wr wr;
1329         int ret;
1330
1331         sge->addr   = qe->dma;
1332         sge->length = sizeof(struct nvme_command),
1333         sge->lkey   = queue->device->pd->local_dma_lkey;
1334
1335         wr.next       = NULL;
1336         wr.wr_cqe     = &qe->cqe;
1337         wr.sg_list    = sge;
1338         wr.num_sge    = num_sge;
1339         wr.opcode     = IB_WR_SEND;
1340         wr.send_flags = IB_SEND_SIGNALED;
1341
1342         if (first)
1343                 first->next = &wr;
1344         else
1345                 first = &wr;
1346
1347         ret = ib_post_send(queue->qp, first, NULL);
1348         if (unlikely(ret)) {
1349                 dev_err(queue->ctrl->ctrl.device,
1350                              "%s failed with error code %d\n", __func__, ret);
1351         }
1352         return ret;
1353 }
1354
1355 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1356                 struct nvme_rdma_qe *qe)
1357 {
1358         struct ib_recv_wr wr;
1359         struct ib_sge list;
1360         int ret;
1361
1362         list.addr   = qe->dma;
1363         list.length = sizeof(struct nvme_completion);
1364         list.lkey   = queue->device->pd->local_dma_lkey;
1365
1366         qe->cqe.done = nvme_rdma_recv_done;
1367
1368         wr.next     = NULL;
1369         wr.wr_cqe   = &qe->cqe;
1370         wr.sg_list  = &list;
1371         wr.num_sge  = 1;
1372
1373         ret = ib_post_recv(queue->qp, &wr, NULL);
1374         if (unlikely(ret)) {
1375                 dev_err(queue->ctrl->ctrl.device,
1376                         "%s failed with error code %d\n", __func__, ret);
1377         }
1378         return ret;
1379 }
1380
1381 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1382 {
1383         u32 queue_idx = nvme_rdma_queue_idx(queue);
1384
1385         if (queue_idx == 0)
1386                 return queue->ctrl->admin_tag_set.tags[queue_idx];
1387         return queue->ctrl->tag_set.tags[queue_idx - 1];
1388 }
1389
1390 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1391 {
1392         if (unlikely(wc->status != IB_WC_SUCCESS))
1393                 nvme_rdma_wr_error(cq, wc, "ASYNC");
1394 }
1395
1396 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1397 {
1398         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1399         struct nvme_rdma_queue *queue = &ctrl->queues[0];
1400         struct ib_device *dev = queue->device->dev;
1401         struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1402         struct nvme_command *cmd = sqe->data;
1403         struct ib_sge sge;
1404         int ret;
1405
1406         ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1407
1408         memset(cmd, 0, sizeof(*cmd));
1409         cmd->common.opcode = nvme_admin_async_event;
1410         cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1411         cmd->common.flags |= NVME_CMD_SGL_METABUF;
1412         nvme_rdma_set_sg_null(cmd);
1413
1414         sqe->cqe.done = nvme_rdma_async_done;
1415
1416         ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1417                         DMA_TO_DEVICE);
1418
1419         ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1420         WARN_ON_ONCE(ret);
1421 }
1422
1423 static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1424                 struct nvme_completion *cqe, struct ib_wc *wc)
1425 {
1426         struct request *rq;
1427         struct nvme_rdma_request *req;
1428
1429         rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1430         if (!rq) {
1431                 dev_err(queue->ctrl->ctrl.device,
1432                         "tag 0x%x on QP %#x not found\n",
1433                         cqe->command_id, queue->qp->qp_num);
1434                 nvme_rdma_error_recovery(queue->ctrl);
1435                 return;
1436         }
1437         req = blk_mq_rq_to_pdu(rq);
1438
1439         req->status = cqe->status;
1440         req->result = cqe->result;
1441
1442         if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1443                 if (unlikely(wc->ex.invalidate_rkey != req->mr->rkey)) {
1444                         dev_err(queue->ctrl->ctrl.device,
1445                                 "Bogus remote invalidation for rkey %#x\n",
1446                                 req->mr->rkey);
1447                         nvme_rdma_error_recovery(queue->ctrl);
1448                 }
1449         } else if (req->mr) {
1450                 int ret;
1451
1452                 ret = nvme_rdma_inv_rkey(queue, req);
1453                 if (unlikely(ret < 0)) {
1454                         dev_err(queue->ctrl->ctrl.device,
1455                                 "Queueing INV WR for rkey %#x failed (%d)\n",
1456                                 req->mr->rkey, ret);
1457                         nvme_rdma_error_recovery(queue->ctrl);
1458                 }
1459                 /* the local invalidation completion will end the request */
1460                 return;
1461         }
1462
1463         if (refcount_dec_and_test(&req->ref))
1464                 nvme_end_request(rq, req->status, req->result);
1465 }
1466
1467 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1468 {
1469         struct nvme_rdma_qe *qe =
1470                 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1471         struct nvme_rdma_queue *queue = cq->cq_context;
1472         struct ib_device *ibdev = queue->device->dev;
1473         struct nvme_completion *cqe = qe->data;
1474         const size_t len = sizeof(struct nvme_completion);
1475
1476         if (unlikely(wc->status != IB_WC_SUCCESS)) {
1477                 nvme_rdma_wr_error(cq, wc, "RECV");
1478                 return;
1479         }
1480
1481         ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1482         /*
1483          * AEN requests are special as they don't time out and can
1484          * survive any kind of queue freeze and often don't respond to
1485          * aborts.  We don't even bother to allocate a struct request
1486          * for them but rather special case them here.
1487          */
1488         if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
1489                         cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH))
1490                 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1491                                 &cqe->result);
1492         else
1493                 nvme_rdma_process_nvme_rsp(queue, cqe, wc);
1494         ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1495
1496         nvme_rdma_post_recv(queue, qe);
1497 }
1498
1499 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1500 {
1501         int ret, i;
1502
1503         for (i = 0; i < queue->queue_size; i++) {
1504                 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1505                 if (ret)
1506                         goto out_destroy_queue_ib;
1507         }
1508
1509         return 0;
1510
1511 out_destroy_queue_ib:
1512         nvme_rdma_destroy_queue_ib(queue);
1513         return ret;
1514 }
1515
1516 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1517                 struct rdma_cm_event *ev)
1518 {
1519         struct rdma_cm_id *cm_id = queue->cm_id;
1520         int status = ev->status;
1521         const char *rej_msg;
1522         const struct nvme_rdma_cm_rej *rej_data;
1523         u8 rej_data_len;
1524
1525         rej_msg = rdma_reject_msg(cm_id, status);
1526         rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1527
1528         if (rej_data && rej_data_len >= sizeof(u16)) {
1529                 u16 sts = le16_to_cpu(rej_data->sts);
1530
1531                 dev_err(queue->ctrl->ctrl.device,
1532                       "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1533                       status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1534         } else {
1535                 dev_err(queue->ctrl->ctrl.device,
1536                         "Connect rejected: status %d (%s).\n", status, rej_msg);
1537         }
1538
1539         return -ECONNRESET;
1540 }
1541
1542 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1543 {
1544         int ret;
1545
1546         ret = nvme_rdma_create_queue_ib(queue);
1547         if (ret)
1548                 return ret;
1549
1550         ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1551         if (ret) {
1552                 dev_err(queue->ctrl->ctrl.device,
1553                         "rdma_resolve_route failed (%d).\n",
1554                         queue->cm_error);
1555                 goto out_destroy_queue;
1556         }
1557
1558         return 0;
1559
1560 out_destroy_queue:
1561         nvme_rdma_destroy_queue_ib(queue);
1562         return ret;
1563 }
1564
1565 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1566 {
1567         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1568         struct rdma_conn_param param = { };
1569         struct nvme_rdma_cm_req priv = { };
1570         int ret;
1571
1572         param.qp_num = queue->qp->qp_num;
1573         param.flow_control = 1;
1574
1575         param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1576         /* maximum retry count */
1577         param.retry_count = 7;
1578         param.rnr_retry_count = 7;
1579         param.private_data = &priv;
1580         param.private_data_len = sizeof(priv);
1581
1582         priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1583         priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1584         /*
1585          * set the admin queue depth to the minimum size
1586          * specified by the Fabrics standard.
1587          */
1588         if (priv.qid == 0) {
1589                 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1590                 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1591         } else {
1592                 /*
1593                  * current interpretation of the fabrics spec
1594                  * is at minimum you make hrqsize sqsize+1, or a
1595                  * 1's based representation of sqsize.
1596                  */
1597                 priv.hrqsize = cpu_to_le16(queue->queue_size);
1598                 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1599         }
1600
1601         ret = rdma_connect(queue->cm_id, &param);
1602         if (ret) {
1603                 dev_err(ctrl->ctrl.device,
1604                         "rdma_connect failed (%d).\n", ret);
1605                 goto out_destroy_queue_ib;
1606         }
1607
1608         return 0;
1609
1610 out_destroy_queue_ib:
1611         nvme_rdma_destroy_queue_ib(queue);
1612         return ret;
1613 }
1614
1615 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1616                 struct rdma_cm_event *ev)
1617 {
1618         struct nvme_rdma_queue *queue = cm_id->context;
1619         int cm_error = 0;
1620
1621         dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1622                 rdma_event_msg(ev->event), ev->event,
1623                 ev->status, cm_id);
1624
1625         switch (ev->event) {
1626         case RDMA_CM_EVENT_ADDR_RESOLVED:
1627                 cm_error = nvme_rdma_addr_resolved(queue);
1628                 break;
1629         case RDMA_CM_EVENT_ROUTE_RESOLVED:
1630                 cm_error = nvme_rdma_route_resolved(queue);
1631                 break;
1632         case RDMA_CM_EVENT_ESTABLISHED:
1633                 queue->cm_error = nvme_rdma_conn_established(queue);
1634                 /* complete cm_done regardless of success/failure */
1635                 complete(&queue->cm_done);
1636                 return 0;
1637         case RDMA_CM_EVENT_REJECTED:
1638                 nvme_rdma_destroy_queue_ib(queue);
1639                 cm_error = nvme_rdma_conn_rejected(queue, ev);
1640                 break;
1641         case RDMA_CM_EVENT_ROUTE_ERROR:
1642         case RDMA_CM_EVENT_CONNECT_ERROR:
1643         case RDMA_CM_EVENT_UNREACHABLE:
1644                 nvme_rdma_destroy_queue_ib(queue);
1645                 /* fall through */
1646         case RDMA_CM_EVENT_ADDR_ERROR:
1647                 dev_dbg(queue->ctrl->ctrl.device,
1648                         "CM error event %d\n", ev->event);
1649                 cm_error = -ECONNRESET;
1650                 break;
1651         case RDMA_CM_EVENT_DISCONNECTED:
1652         case RDMA_CM_EVENT_ADDR_CHANGE:
1653         case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1654                 dev_dbg(queue->ctrl->ctrl.device,
1655                         "disconnect received - connection closed\n");
1656                 nvme_rdma_error_recovery(queue->ctrl);
1657                 break;
1658         case RDMA_CM_EVENT_DEVICE_REMOVAL:
1659                 /* device removal is handled via the ib_client API */
1660                 break;
1661         default:
1662                 dev_err(queue->ctrl->ctrl.device,
1663                         "Unexpected RDMA CM event (%d)\n", ev->event);
1664                 nvme_rdma_error_recovery(queue->ctrl);
1665                 break;
1666         }
1667
1668         if (cm_error) {
1669                 queue->cm_error = cm_error;
1670                 complete(&queue->cm_done);
1671         }
1672
1673         return 0;
1674 }
1675
1676 static enum blk_eh_timer_return
1677 nvme_rdma_timeout(struct request *rq, bool reserved)
1678 {
1679         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1680         struct nvme_rdma_queue *queue = req->queue;
1681         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1682
1683         dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n",
1684                  rq->tag, nvme_rdma_queue_idx(queue));
1685
1686         if (ctrl->ctrl.state != NVME_CTRL_LIVE) {
1687                 /*
1688                  * Teardown immediately if controller times out while starting
1689                  * or we are already started error recovery. all outstanding
1690                  * requests are completed on shutdown, so we return BLK_EH_DONE.
1691                  */
1692                 flush_work(&ctrl->err_work);
1693                 nvme_rdma_teardown_io_queues(ctrl, false);
1694                 nvme_rdma_teardown_admin_queue(ctrl, false);
1695                 return BLK_EH_DONE;
1696         }
1697
1698         dev_warn(ctrl->ctrl.device, "starting error recovery\n");
1699         nvme_rdma_error_recovery(ctrl);
1700
1701         return BLK_EH_RESET_TIMER;
1702 }
1703
1704 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1705                 const struct blk_mq_queue_data *bd)
1706 {
1707         struct nvme_ns *ns = hctx->queue->queuedata;
1708         struct nvme_rdma_queue *queue = hctx->driver_data;
1709         struct request *rq = bd->rq;
1710         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1711         struct nvme_rdma_qe *sqe = &req->sqe;
1712         struct nvme_command *c = sqe->data;
1713         struct ib_device *dev;
1714         bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
1715         blk_status_t ret;
1716         int err;
1717
1718         WARN_ON_ONCE(rq->tag < 0);
1719
1720         if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
1721                 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
1722
1723         dev = queue->device->dev;
1724
1725         req->sqe.dma = ib_dma_map_single(dev, req->sqe.data,
1726                                          sizeof(struct nvme_command),
1727                                          DMA_TO_DEVICE);
1728         err = ib_dma_mapping_error(dev, req->sqe.dma);
1729         if (unlikely(err))
1730                 return BLK_STS_RESOURCE;
1731
1732         ib_dma_sync_single_for_cpu(dev, sqe->dma,
1733                         sizeof(struct nvme_command), DMA_TO_DEVICE);
1734
1735         ret = nvme_setup_cmd(ns, rq, c);
1736         if (ret)
1737                 goto unmap_qe;
1738
1739         blk_mq_start_request(rq);
1740
1741         err = nvme_rdma_map_data(queue, rq, c);
1742         if (unlikely(err < 0)) {
1743                 dev_err(queue->ctrl->ctrl.device,
1744                              "Failed to map data (%d)\n", err);
1745                 nvme_cleanup_cmd(rq);
1746                 goto err;
1747         }
1748
1749         sqe->cqe.done = nvme_rdma_send_done;
1750
1751         ib_dma_sync_single_for_device(dev, sqe->dma,
1752                         sizeof(struct nvme_command), DMA_TO_DEVICE);
1753
1754         err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1755                         req->mr ? &req->reg_wr.wr : NULL);
1756         if (unlikely(err)) {
1757                 nvme_rdma_unmap_data(queue, rq);
1758                 goto err;
1759         }
1760
1761         return BLK_STS_OK;
1762
1763 err:
1764         if (err == -ENOMEM || err == -EAGAIN)
1765                 ret = BLK_STS_RESOURCE;
1766         else
1767                 ret = BLK_STS_IOERR;
1768 unmap_qe:
1769         ib_dma_unmap_single(dev, req->sqe.dma, sizeof(struct nvme_command),
1770                             DMA_TO_DEVICE);
1771         return ret;
1772 }
1773
1774 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx)
1775 {
1776         struct nvme_rdma_queue *queue = hctx->driver_data;
1777
1778         return ib_process_cq_direct(queue->ib_cq, -1);
1779 }
1780
1781 static void nvme_rdma_complete_rq(struct request *rq)
1782 {
1783         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1784         struct nvme_rdma_queue *queue = req->queue;
1785         struct ib_device *ibdev = queue->device->dev;
1786
1787         nvme_rdma_unmap_data(queue, rq);
1788         ib_dma_unmap_single(ibdev, req->sqe.dma, sizeof(struct nvme_command),
1789                             DMA_TO_DEVICE);
1790         nvme_complete_rq(rq);
1791 }
1792
1793 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
1794 {
1795         struct nvme_rdma_ctrl *ctrl = set->driver_data;
1796         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
1797
1798         if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
1799                 /* separate read/write queues */
1800                 set->map[HCTX_TYPE_DEFAULT].nr_queues =
1801                         ctrl->io_queues[HCTX_TYPE_DEFAULT];
1802                 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
1803                 set->map[HCTX_TYPE_READ].nr_queues =
1804                         ctrl->io_queues[HCTX_TYPE_READ];
1805                 set->map[HCTX_TYPE_READ].queue_offset =
1806                         ctrl->io_queues[HCTX_TYPE_DEFAULT];
1807         } else {
1808                 /* shared read/write queues */
1809                 set->map[HCTX_TYPE_DEFAULT].nr_queues =
1810                         ctrl->io_queues[HCTX_TYPE_DEFAULT];
1811                 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
1812                 set->map[HCTX_TYPE_READ].nr_queues =
1813                         ctrl->io_queues[HCTX_TYPE_DEFAULT];
1814                 set->map[HCTX_TYPE_READ].queue_offset = 0;
1815         }
1816         blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_DEFAULT],
1817                         ctrl->device->dev, 0);
1818         blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_READ],
1819                         ctrl->device->dev, 0);
1820
1821         if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
1822                 /* map dedicated poll queues only if we have queues left */
1823                 set->map[HCTX_TYPE_POLL].nr_queues =
1824                                 ctrl->io_queues[HCTX_TYPE_POLL];
1825                 set->map[HCTX_TYPE_POLL].queue_offset =
1826                         ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1827                         ctrl->io_queues[HCTX_TYPE_READ];
1828                 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
1829         }
1830
1831         dev_info(ctrl->ctrl.device,
1832                 "mapped %d/%d/%d default/read/poll queues.\n",
1833                 ctrl->io_queues[HCTX_TYPE_DEFAULT],
1834                 ctrl->io_queues[HCTX_TYPE_READ],
1835                 ctrl->io_queues[HCTX_TYPE_POLL]);
1836
1837         return 0;
1838 }
1839
1840 static const struct blk_mq_ops nvme_rdma_mq_ops = {
1841         .queue_rq       = nvme_rdma_queue_rq,
1842         .complete       = nvme_rdma_complete_rq,
1843         .init_request   = nvme_rdma_init_request,
1844         .exit_request   = nvme_rdma_exit_request,
1845         .init_hctx      = nvme_rdma_init_hctx,
1846         .timeout        = nvme_rdma_timeout,
1847         .map_queues     = nvme_rdma_map_queues,
1848         .poll           = nvme_rdma_poll,
1849 };
1850
1851 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1852         .queue_rq       = nvme_rdma_queue_rq,
1853         .complete       = nvme_rdma_complete_rq,
1854         .init_request   = nvme_rdma_init_request,
1855         .exit_request   = nvme_rdma_exit_request,
1856         .init_hctx      = nvme_rdma_init_admin_hctx,
1857         .timeout        = nvme_rdma_timeout,
1858 };
1859
1860 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
1861 {
1862         cancel_work_sync(&ctrl->err_work);
1863         cancel_delayed_work_sync(&ctrl->reconnect_work);
1864
1865         nvme_rdma_teardown_io_queues(ctrl, shutdown);
1866         if (shutdown)
1867                 nvme_shutdown_ctrl(&ctrl->ctrl);
1868         else
1869                 nvme_disable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
1870         nvme_rdma_teardown_admin_queue(ctrl, shutdown);
1871 }
1872
1873 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
1874 {
1875         nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
1876 }
1877
1878 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
1879 {
1880         struct nvme_rdma_ctrl *ctrl =
1881                 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
1882
1883         nvme_stop_ctrl(&ctrl->ctrl);
1884         nvme_rdma_shutdown_ctrl(ctrl, false);
1885
1886         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1887                 /* state change failure should never happen */
1888                 WARN_ON_ONCE(1);
1889                 return;
1890         }
1891
1892         if (nvme_rdma_setup_ctrl(ctrl, false))
1893                 goto out_fail;
1894
1895         return;
1896
1897 out_fail:
1898         ++ctrl->ctrl.nr_reconnects;
1899         nvme_rdma_reconnect_or_remove(ctrl);
1900 }
1901
1902 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
1903         .name                   = "rdma",
1904         .module                 = THIS_MODULE,
1905         .flags                  = NVME_F_FABRICS,
1906         .reg_read32             = nvmf_reg_read32,
1907         .reg_read64             = nvmf_reg_read64,
1908         .reg_write32            = nvmf_reg_write32,
1909         .free_ctrl              = nvme_rdma_free_ctrl,
1910         .submit_async_event     = nvme_rdma_submit_async_event,
1911         .delete_ctrl            = nvme_rdma_delete_ctrl,
1912         .get_address            = nvmf_get_address,
1913 };
1914
1915 /*
1916  * Fails a connection request if it matches an existing controller
1917  * (association) with the same tuple:
1918  * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
1919  *
1920  * if local address is not specified in the request, it will match an
1921  * existing controller with all the other parameters the same and no
1922  * local port address specified as well.
1923  *
1924  * The ports don't need to be compared as they are intrinsically
1925  * already matched by the port pointers supplied.
1926  */
1927 static bool
1928 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
1929 {
1930         struct nvme_rdma_ctrl *ctrl;
1931         bool found = false;
1932
1933         mutex_lock(&nvme_rdma_ctrl_mutex);
1934         list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
1935                 found = nvmf_ip_options_match(&ctrl->ctrl, opts);
1936                 if (found)
1937                         break;
1938         }
1939         mutex_unlock(&nvme_rdma_ctrl_mutex);
1940
1941         return found;
1942 }
1943
1944 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
1945                 struct nvmf_ctrl_options *opts)
1946 {
1947         struct nvme_rdma_ctrl *ctrl;
1948         int ret;
1949         bool changed;
1950
1951         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1952         if (!ctrl)
1953                 return ERR_PTR(-ENOMEM);
1954         ctrl->ctrl.opts = opts;
1955         INIT_LIST_HEAD(&ctrl->list);
1956
1957         if (!(opts->mask & NVMF_OPT_TRSVCID)) {
1958                 opts->trsvcid =
1959                         kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL);
1960                 if (!opts->trsvcid) {
1961                         ret = -ENOMEM;
1962                         goto out_free_ctrl;
1963                 }
1964                 opts->mask |= NVMF_OPT_TRSVCID;
1965         }
1966
1967         ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1968                         opts->traddr, opts->trsvcid, &ctrl->addr);
1969         if (ret) {
1970                 pr_err("malformed address passed: %s:%s\n",
1971                         opts->traddr, opts->trsvcid);
1972                 goto out_free_ctrl;
1973         }
1974
1975         if (opts->mask & NVMF_OPT_HOST_TRADDR) {
1976                 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1977                         opts->host_traddr, NULL, &ctrl->src_addr);
1978                 if (ret) {
1979                         pr_err("malformed src address passed: %s\n",
1980                                opts->host_traddr);
1981                         goto out_free_ctrl;
1982                 }
1983         }
1984
1985         if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
1986                 ret = -EALREADY;
1987                 goto out_free_ctrl;
1988         }
1989
1990         INIT_DELAYED_WORK(&ctrl->reconnect_work,
1991                         nvme_rdma_reconnect_ctrl_work);
1992         INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
1993         INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
1994
1995         ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
1996                                 opts->nr_poll_queues + 1;
1997         ctrl->ctrl.sqsize = opts->queue_size - 1;
1998         ctrl->ctrl.kato = opts->kato;
1999
2000         ret = -ENOMEM;
2001         ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2002                                 GFP_KERNEL);
2003         if (!ctrl->queues)
2004                 goto out_free_ctrl;
2005
2006         ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
2007                                 0 /* no quirks, we're perfect! */);
2008         if (ret)
2009                 goto out_kfree_queues;
2010
2011         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
2012         WARN_ON_ONCE(!changed);
2013
2014         ret = nvme_rdma_setup_ctrl(ctrl, true);
2015         if (ret)
2016                 goto out_uninit_ctrl;
2017
2018         dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
2019                 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2020
2021         nvme_get_ctrl(&ctrl->ctrl);
2022
2023         mutex_lock(&nvme_rdma_ctrl_mutex);
2024         list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
2025         mutex_unlock(&nvme_rdma_ctrl_mutex);
2026
2027         return &ctrl->ctrl;
2028
2029 out_uninit_ctrl:
2030         nvme_uninit_ctrl(&ctrl->ctrl);
2031         nvme_put_ctrl(&ctrl->ctrl);
2032         if (ret > 0)
2033                 ret = -EIO;
2034         return ERR_PTR(ret);
2035 out_kfree_queues:
2036         kfree(ctrl->queues);
2037 out_free_ctrl:
2038         kfree(ctrl);
2039         return ERR_PTR(ret);
2040 }
2041
2042 static struct nvmf_transport_ops nvme_rdma_transport = {
2043         .name           = "rdma",
2044         .module         = THIS_MODULE,
2045         .required_opts  = NVMF_OPT_TRADDR,
2046         .allowed_opts   = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2047                           NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2048                           NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES,
2049         .create_ctrl    = nvme_rdma_create_ctrl,
2050 };
2051
2052 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2053 {
2054         struct nvme_rdma_ctrl *ctrl;
2055         struct nvme_rdma_device *ndev;
2056         bool found = false;
2057
2058         mutex_lock(&device_list_mutex);
2059         list_for_each_entry(ndev, &device_list, entry) {
2060                 if (ndev->dev == ib_device) {
2061                         found = true;
2062                         break;
2063                 }
2064         }
2065         mutex_unlock(&device_list_mutex);
2066
2067         if (!found)
2068                 return;
2069
2070         /* Delete all controllers using this device */
2071         mutex_lock(&nvme_rdma_ctrl_mutex);
2072         list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2073                 if (ctrl->device->dev != ib_device)
2074                         continue;
2075                 nvme_delete_ctrl(&ctrl->ctrl);
2076         }
2077         mutex_unlock(&nvme_rdma_ctrl_mutex);
2078
2079         flush_workqueue(nvme_delete_wq);
2080 }
2081
2082 static struct ib_client nvme_rdma_ib_client = {
2083         .name   = "nvme_rdma",
2084         .remove = nvme_rdma_remove_one
2085 };
2086
2087 static int __init nvme_rdma_init_module(void)
2088 {
2089         int ret;
2090
2091         ret = ib_register_client(&nvme_rdma_ib_client);
2092         if (ret)
2093                 return ret;
2094
2095         ret = nvmf_register_transport(&nvme_rdma_transport);
2096         if (ret)
2097                 goto err_unreg_client;
2098
2099         return 0;
2100
2101 err_unreg_client:
2102         ib_unregister_client(&nvme_rdma_ib_client);
2103         return ret;
2104 }
2105
2106 static void __exit nvme_rdma_cleanup_module(void)
2107 {
2108         nvmf_unregister_transport(&nvme_rdma_transport);
2109         ib_unregister_client(&nvme_rdma_ib_client);
2110 }
2111
2112 module_init(nvme_rdma_init_module);
2113 module_exit(nvme_rdma_cleanup_module);
2114
2115 MODULE_LICENSE("GPL v2");