2 * NVMe over Fabrics RDMA host code.
3 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/err.h>
19 #include <linux/string.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/types.h>
23 #include <linux/list.h>
24 #include <linux/mutex.h>
25 #include <linux/scatterlist.h>
26 #include <linux/nvme.h>
27 #include <asm/unaligned.h>
29 #include <rdma/ib_verbs.h>
30 #include <rdma/rdma_cm.h>
31 #include <linux/nvme-rdma.h>
37 #define NVME_RDMA_CONNECT_TIMEOUT_MS 3000 /* 3 second */
39 #define NVME_RDMA_MAX_SEGMENTS 256
41 #define NVME_RDMA_MAX_INLINE_SEGMENTS 1
44 * We handle AEN commands ourselves and don't even let the
45 * block layer know about them.
47 #define NVME_RDMA_NR_AEN_COMMANDS 1
48 #define NVME_RDMA_AQ_BLKMQ_DEPTH \
49 (NVME_AQ_DEPTH - NVME_RDMA_NR_AEN_COMMANDS)
51 struct nvme_rdma_device {
52 struct ib_device *dev;
55 struct list_head entry;
64 struct nvme_rdma_queue;
65 struct nvme_rdma_request {
66 struct nvme_request req;
68 struct nvme_rdma_qe sqe;
69 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
73 struct ib_reg_wr reg_wr;
74 struct ib_cqe reg_cqe;
75 struct nvme_rdma_queue *queue;
76 struct sg_table sg_table;
77 struct scatterlist first_sgl[];
80 enum nvme_rdma_queue_flags {
82 NVME_RDMA_Q_DELETING = 1,
85 struct nvme_rdma_queue {
86 struct nvme_rdma_qe *rsp_ring;
89 size_t cmnd_capsule_len;
90 struct nvme_rdma_ctrl *ctrl;
91 struct nvme_rdma_device *device;
96 struct rdma_cm_id *cm_id;
98 struct completion cm_done;
101 struct nvme_rdma_ctrl {
102 /* read only in the hot path */
103 struct nvme_rdma_queue *queues;
105 /* other member variables */
106 struct blk_mq_tag_set tag_set;
107 struct work_struct delete_work;
108 struct work_struct err_work;
110 struct nvme_rdma_qe async_event_sqe;
112 struct delayed_work reconnect_work;
114 struct list_head list;
116 struct blk_mq_tag_set admin_tag_set;
117 struct nvme_rdma_device *device;
121 struct sockaddr_storage addr;
122 struct sockaddr_storage src_addr;
124 struct nvme_ctrl ctrl;
127 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
129 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
132 static LIST_HEAD(device_list);
133 static DEFINE_MUTEX(device_list_mutex);
135 static LIST_HEAD(nvme_rdma_ctrl_list);
136 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
139 * Disabling this option makes small I/O goes faster, but is fundamentally
140 * unsafe. With it turned off we will have to register a global rkey that
141 * allows read and write access to all physical memory.
143 static bool register_always = true;
144 module_param(register_always, bool, 0444);
145 MODULE_PARM_DESC(register_always,
146 "Use memory registration even for contiguous memory regions");
148 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
149 struct rdma_cm_event *event);
150 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
152 static const struct blk_mq_ops nvme_rdma_mq_ops;
153 static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
155 /* XXX: really should move to a generic header sooner or later.. */
156 static inline void put_unaligned_le24(u32 val, u8 *p)
163 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
165 return queue - queue->ctrl->queues;
168 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
170 return queue->cmnd_capsule_len - sizeof(struct nvme_command);
173 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
174 size_t capsule_size, enum dma_data_direction dir)
176 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
180 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
181 size_t capsule_size, enum dma_data_direction dir)
183 qe->data = kzalloc(capsule_size, GFP_KERNEL);
187 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
188 if (ib_dma_mapping_error(ibdev, qe->dma)) {
196 static void nvme_rdma_free_ring(struct ib_device *ibdev,
197 struct nvme_rdma_qe *ring, size_t ib_queue_size,
198 size_t capsule_size, enum dma_data_direction dir)
202 for (i = 0; i < ib_queue_size; i++)
203 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
207 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
208 size_t ib_queue_size, size_t capsule_size,
209 enum dma_data_direction dir)
211 struct nvme_rdma_qe *ring;
214 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
218 for (i = 0; i < ib_queue_size; i++) {
219 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
226 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
230 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
232 pr_debug("QP event %s (%d)\n",
233 ib_event_msg(event->event), event->event);
237 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
239 wait_for_completion_interruptible_timeout(&queue->cm_done,
240 msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
241 return queue->cm_error;
244 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
246 struct nvme_rdma_device *dev = queue->device;
247 struct ib_qp_init_attr init_attr;
250 memset(&init_attr, 0, sizeof(init_attr));
251 init_attr.event_handler = nvme_rdma_qp_event;
253 init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
255 init_attr.cap.max_recv_wr = queue->queue_size + 1;
256 init_attr.cap.max_recv_sge = 1;
257 init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS;
258 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
259 init_attr.qp_type = IB_QPT_RC;
260 init_attr.send_cq = queue->ib_cq;
261 init_attr.recv_cq = queue->ib_cq;
263 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
265 queue->qp = queue->cm_id->qp;
269 static int nvme_rdma_reinit_request(void *data, struct request *rq)
271 struct nvme_rdma_ctrl *ctrl = data;
272 struct nvme_rdma_device *dev = ctrl->device;
273 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
276 ib_dereg_mr(req->mr);
278 req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
280 if (IS_ERR(req->mr)) {
281 ret = PTR_ERR(req->mr);
286 req->mr->need_inval = false;
292 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
293 struct request *rq, unsigned int hctx_idx)
295 struct nvme_rdma_ctrl *ctrl = set->driver_data;
296 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
297 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
298 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
299 struct nvme_rdma_device *dev = queue->device;
302 ib_dereg_mr(req->mr);
304 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
308 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
309 struct request *rq, unsigned int hctx_idx,
310 unsigned int numa_node)
312 struct nvme_rdma_ctrl *ctrl = set->driver_data;
313 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
314 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
315 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
316 struct nvme_rdma_device *dev = queue->device;
317 struct ib_device *ibdev = dev->dev;
320 ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command),
325 req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
327 if (IS_ERR(req->mr)) {
328 ret = PTR_ERR(req->mr);
337 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
342 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
343 unsigned int hctx_idx)
345 struct nvme_rdma_ctrl *ctrl = data;
346 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
348 BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
350 hctx->driver_data = queue;
354 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
355 unsigned int hctx_idx)
357 struct nvme_rdma_ctrl *ctrl = data;
358 struct nvme_rdma_queue *queue = &ctrl->queues[0];
360 BUG_ON(hctx_idx != 0);
362 hctx->driver_data = queue;
366 static void nvme_rdma_free_dev(struct kref *ref)
368 struct nvme_rdma_device *ndev =
369 container_of(ref, struct nvme_rdma_device, ref);
371 mutex_lock(&device_list_mutex);
372 list_del(&ndev->entry);
373 mutex_unlock(&device_list_mutex);
375 ib_dealloc_pd(ndev->pd);
379 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
381 kref_put(&dev->ref, nvme_rdma_free_dev);
384 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
386 return kref_get_unless_zero(&dev->ref);
389 static struct nvme_rdma_device *
390 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
392 struct nvme_rdma_device *ndev;
394 mutex_lock(&device_list_mutex);
395 list_for_each_entry(ndev, &device_list, entry) {
396 if (ndev->dev->node_guid == cm_id->device->node_guid &&
397 nvme_rdma_dev_get(ndev))
401 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
405 ndev->dev = cm_id->device;
406 kref_init(&ndev->ref);
408 ndev->pd = ib_alloc_pd(ndev->dev,
409 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
410 if (IS_ERR(ndev->pd))
413 if (!(ndev->dev->attrs.device_cap_flags &
414 IB_DEVICE_MEM_MGT_EXTENSIONS)) {
415 dev_err(&ndev->dev->dev,
416 "Memory registrations not supported.\n");
420 list_add(&ndev->entry, &device_list);
422 mutex_unlock(&device_list_mutex);
426 ib_dealloc_pd(ndev->pd);
430 mutex_unlock(&device_list_mutex);
434 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
436 struct nvme_rdma_device *dev;
437 struct ib_device *ibdev;
441 rdma_destroy_qp(queue->cm_id);
442 ib_free_cq(queue->ib_cq);
444 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
445 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
447 nvme_rdma_dev_put(dev);
450 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
452 struct ib_device *ibdev;
453 const int send_wr_factor = 3; /* MR, SEND, INV */
454 const int cq_factor = send_wr_factor + 1; /* + RECV */
455 int comp_vector, idx = nvme_rdma_queue_idx(queue);
458 queue->device = nvme_rdma_find_get_device(queue->cm_id);
459 if (!queue->device) {
460 dev_err(queue->cm_id->device->dev.parent,
461 "no client data found!\n");
462 return -ECONNREFUSED;
464 ibdev = queue->device->dev;
467 * The admin queue is barely used once the controller is live, so don't
468 * bother to spread it out.
473 comp_vector = idx % ibdev->num_comp_vectors;
476 /* +1 for ib_stop_cq */
477 queue->ib_cq = ib_alloc_cq(ibdev, queue,
478 cq_factor * queue->queue_size + 1,
479 comp_vector, IB_POLL_SOFTIRQ);
480 if (IS_ERR(queue->ib_cq)) {
481 ret = PTR_ERR(queue->ib_cq);
485 ret = nvme_rdma_create_qp(queue, send_wr_factor);
487 goto out_destroy_ib_cq;
489 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
490 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
491 if (!queue->rsp_ring) {
499 ib_destroy_qp(queue->qp);
501 ib_free_cq(queue->ib_cq);
503 nvme_rdma_dev_put(queue->device);
507 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
508 int idx, size_t queue_size)
510 struct nvme_rdma_queue *queue;
511 struct sockaddr *src_addr = NULL;
514 queue = &ctrl->queues[idx];
516 init_completion(&queue->cm_done);
519 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
521 queue->cmnd_capsule_len = sizeof(struct nvme_command);
523 queue->queue_size = queue_size;
524 atomic_set(&queue->sig_count, 0);
526 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
527 RDMA_PS_TCP, IB_QPT_RC);
528 if (IS_ERR(queue->cm_id)) {
529 dev_info(ctrl->ctrl.device,
530 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
531 return PTR_ERR(queue->cm_id);
534 if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
535 src_addr = (struct sockaddr *)&ctrl->src_addr;
537 queue->cm_error = -ETIMEDOUT;
538 ret = rdma_resolve_addr(queue->cm_id, src_addr,
539 (struct sockaddr *)&ctrl->addr,
540 NVME_RDMA_CONNECT_TIMEOUT_MS);
542 dev_info(ctrl->ctrl.device,
543 "rdma_resolve_addr failed (%d).\n", ret);
544 goto out_destroy_cm_id;
547 ret = nvme_rdma_wait_for_cm(queue);
549 dev_info(ctrl->ctrl.device,
550 "rdma_resolve_addr wait failed (%d).\n", ret);
551 goto out_destroy_cm_id;
554 clear_bit(NVME_RDMA_Q_DELETING, &queue->flags);
559 rdma_destroy_id(queue->cm_id);
563 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
565 if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
568 rdma_disconnect(queue->cm_id);
569 ib_drain_qp(queue->qp);
572 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
574 if (test_and_set_bit(NVME_RDMA_Q_DELETING, &queue->flags))
577 nvme_rdma_destroy_queue_ib(queue);
578 rdma_destroy_id(queue->cm_id);
581 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
585 for (i = 1; i < ctrl->ctrl.queue_count; i++)
586 nvme_rdma_free_queue(&ctrl->queues[i]);
589 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
593 for (i = 1; i < ctrl->ctrl.queue_count; i++)
594 nvme_rdma_stop_queue(&ctrl->queues[i]);
597 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
602 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx);
604 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
607 set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[idx].flags);
609 dev_info(ctrl->ctrl.device,
610 "failed to connect queue: %d ret=%d\n", idx, ret);
614 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
618 for (i = 1; i < ctrl->ctrl.queue_count; i++) {
619 ret = nvme_rdma_start_queue(ctrl, i);
621 goto out_stop_queues;
627 for (i--; i >= 1; i--)
628 nvme_rdma_stop_queue(&ctrl->queues[i]);
632 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
634 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
635 unsigned int nr_io_queues;
638 nr_io_queues = min(opts->nr_io_queues, num_online_cpus());
639 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
643 ctrl->ctrl.queue_count = nr_io_queues + 1;
644 if (ctrl->ctrl.queue_count < 2)
647 dev_info(ctrl->ctrl.device,
648 "creating %d I/O queues.\n", nr_io_queues);
650 for (i = 1; i < ctrl->ctrl.queue_count; i++) {
651 ret = nvme_rdma_alloc_queue(ctrl, i,
652 ctrl->ctrl.sqsize + 1);
654 goto out_free_queues;
660 for (i--; i >= 1; i--)
661 nvme_rdma_free_queue(&ctrl->queues[i]);
666 static void nvme_rdma_free_tagset(struct nvme_ctrl *nctrl, bool admin)
668 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
669 struct blk_mq_tag_set *set = admin ?
670 &ctrl->admin_tag_set : &ctrl->tag_set;
672 blk_mq_free_tag_set(set);
673 nvme_rdma_dev_put(ctrl->device);
676 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
679 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
680 struct blk_mq_tag_set *set;
684 set = &ctrl->admin_tag_set;
685 memset(set, 0, sizeof(*set));
686 set->ops = &nvme_rdma_admin_mq_ops;
687 set->queue_depth = NVME_RDMA_AQ_BLKMQ_DEPTH;
688 set->reserved_tags = 2; /* connect + keep-alive */
689 set->numa_node = NUMA_NO_NODE;
690 set->cmd_size = sizeof(struct nvme_rdma_request) +
691 SG_CHUNK_SIZE * sizeof(struct scatterlist);
692 set->driver_data = ctrl;
693 set->nr_hw_queues = 1;
694 set->timeout = ADMIN_TIMEOUT;
696 set = &ctrl->tag_set;
697 memset(set, 0, sizeof(*set));
698 set->ops = &nvme_rdma_mq_ops;
699 set->queue_depth = nctrl->opts->queue_size;
700 set->reserved_tags = 1; /* fabric connect */
701 set->numa_node = NUMA_NO_NODE;
702 set->flags = BLK_MQ_F_SHOULD_MERGE;
703 set->cmd_size = sizeof(struct nvme_rdma_request) +
704 SG_CHUNK_SIZE * sizeof(struct scatterlist);
705 set->driver_data = ctrl;
706 set->nr_hw_queues = nctrl->queue_count - 1;
707 set->timeout = NVME_IO_TIMEOUT;
710 ret = blk_mq_alloc_tag_set(set);
715 * We need a reference on the device as long as the tag_set is alive,
716 * as the MRs in the request structures need a valid ib_device.
718 ret = nvme_rdma_dev_get(ctrl->device);
721 goto out_free_tagset;
727 blk_mq_free_tag_set(set);
732 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
735 nvme_rdma_free_qe(ctrl->queues[0].device->dev, &ctrl->async_event_sqe,
736 sizeof(struct nvme_command), DMA_TO_DEVICE);
737 nvme_rdma_stop_queue(&ctrl->queues[0]);
739 blk_cleanup_queue(ctrl->ctrl.admin_q);
740 nvme_rdma_free_tagset(&ctrl->ctrl, true);
742 nvme_rdma_free_queue(&ctrl->queues[0]);
745 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
750 error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
754 ctrl->device = ctrl->queues[0].device;
756 ctrl->max_fr_pages = min_t(u32, NVME_RDMA_MAX_SEGMENTS,
757 ctrl->device->dev->attrs.max_fast_reg_page_list_len);
760 ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
761 if (IS_ERR(ctrl->ctrl.admin_tagset))
764 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
765 if (IS_ERR(ctrl->ctrl.admin_q)) {
766 error = PTR_ERR(ctrl->ctrl.admin_q);
767 goto out_free_tagset;
770 error = blk_mq_reinit_tagset(&ctrl->admin_tag_set,
771 nvme_rdma_reinit_request);
776 error = nvme_rdma_start_queue(ctrl, 0);
778 goto out_cleanup_queue;
780 error = ctrl->ctrl.ops->reg_read64(&ctrl->ctrl, NVME_REG_CAP,
783 dev_err(ctrl->ctrl.device,
784 "prop_get NVME_REG_CAP failed\n");
785 goto out_cleanup_queue;
789 min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize);
791 error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
793 goto out_cleanup_queue;
795 ctrl->ctrl.max_hw_sectors =
796 (ctrl->max_fr_pages - 1) << (PAGE_SHIFT - 9);
798 error = nvme_init_identify(&ctrl->ctrl);
800 goto out_cleanup_queue;
802 error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev,
803 &ctrl->async_event_sqe, sizeof(struct nvme_command),
806 goto out_cleanup_queue;
812 blk_cleanup_queue(ctrl->ctrl.admin_q);
815 nvme_rdma_free_tagset(&ctrl->ctrl, true);
817 nvme_rdma_free_queue(&ctrl->queues[0]);
821 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
824 nvme_rdma_stop_io_queues(ctrl);
826 blk_cleanup_queue(ctrl->ctrl.connect_q);
827 nvme_rdma_free_tagset(&ctrl->ctrl, false);
829 nvme_rdma_free_io_queues(ctrl);
832 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
836 ret = nvme_rdma_alloc_io_queues(ctrl);
841 ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
842 if (IS_ERR(ctrl->ctrl.tagset))
843 goto out_free_io_queues;
845 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
846 if (IS_ERR(ctrl->ctrl.connect_q)) {
847 ret = PTR_ERR(ctrl->ctrl.connect_q);
848 goto out_free_tag_set;
851 ret = blk_mq_reinit_tagset(&ctrl->tag_set,
852 nvme_rdma_reinit_request);
854 goto out_free_io_queues;
856 blk_mq_update_nr_hw_queues(&ctrl->tag_set,
857 ctrl->ctrl.queue_count - 1);
860 ret = nvme_rdma_start_io_queues(ctrl);
862 goto out_cleanup_connect_q;
866 out_cleanup_connect_q:
868 blk_cleanup_queue(ctrl->ctrl.connect_q);
871 nvme_rdma_free_tagset(&ctrl->ctrl, false);
873 nvme_rdma_free_io_queues(ctrl);
877 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
879 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
881 if (list_empty(&ctrl->list))
884 mutex_lock(&nvme_rdma_ctrl_mutex);
885 list_del(&ctrl->list);
886 mutex_unlock(&nvme_rdma_ctrl_mutex);
889 nvmf_free_options(nctrl->opts);
894 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
896 /* If we are resetting/deleting then do nothing */
897 if (ctrl->ctrl.state != NVME_CTRL_RECONNECTING) {
898 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
899 ctrl->ctrl.state == NVME_CTRL_LIVE);
903 if (nvmf_should_reconnect(&ctrl->ctrl)) {
904 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
905 ctrl->ctrl.opts->reconnect_delay);
906 queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
907 ctrl->ctrl.opts->reconnect_delay * HZ);
909 dev_info(ctrl->ctrl.device, "Removing controller...\n");
910 queue_work(nvme_wq, &ctrl->delete_work);
914 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
916 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
917 struct nvme_rdma_ctrl, reconnect_work);
921 ++ctrl->ctrl.nr_reconnects;
923 if (ctrl->ctrl.queue_count > 1)
924 nvme_rdma_destroy_io_queues(ctrl, false);
926 nvme_rdma_destroy_admin_queue(ctrl, false);
927 ret = nvme_rdma_configure_admin_queue(ctrl, false);
931 if (ctrl->ctrl.queue_count > 1) {
932 ret = nvme_rdma_configure_io_queues(ctrl, false);
937 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
938 WARN_ON_ONCE(!changed);
939 ctrl->ctrl.nr_reconnects = 0;
941 nvme_start_ctrl(&ctrl->ctrl);
943 dev_info(ctrl->ctrl.device, "Successfully reconnected\n");
948 dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
949 ctrl->ctrl.nr_reconnects);
950 nvme_rdma_reconnect_or_remove(ctrl);
953 static void nvme_rdma_error_recovery_work(struct work_struct *work)
955 struct nvme_rdma_ctrl *ctrl = container_of(work,
956 struct nvme_rdma_ctrl, err_work);
958 nvme_stop_ctrl(&ctrl->ctrl);
960 if (ctrl->ctrl.queue_count > 1) {
961 nvme_stop_queues(&ctrl->ctrl);
962 nvme_rdma_stop_io_queues(ctrl);
964 blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
965 nvme_rdma_stop_queue(&ctrl->queues[0]);
967 /* We must take care of fastfail/requeue all our inflight requests */
968 if (ctrl->ctrl.queue_count > 1)
969 blk_mq_tagset_busy_iter(&ctrl->tag_set,
970 nvme_cancel_request, &ctrl->ctrl);
971 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
972 nvme_cancel_request, &ctrl->ctrl);
975 * queues are not a live anymore, so restart the queues to fail fast
978 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
979 nvme_start_queues(&ctrl->ctrl);
981 nvme_rdma_reconnect_or_remove(ctrl);
984 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
986 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING))
989 queue_work(nvme_wq, &ctrl->err_work);
992 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
995 struct nvme_rdma_queue *queue = cq->cq_context;
996 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
998 if (ctrl->ctrl.state == NVME_CTRL_LIVE)
999 dev_info(ctrl->ctrl.device,
1000 "%s for CQE 0x%p failed with status %s (%d)\n",
1002 ib_wc_status_msg(wc->status), wc->status);
1003 nvme_rdma_error_recovery(ctrl);
1006 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1008 if (unlikely(wc->status != IB_WC_SUCCESS))
1009 nvme_rdma_wr_error(cq, wc, "MEMREG");
1012 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1014 if (unlikely(wc->status != IB_WC_SUCCESS))
1015 nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1018 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1019 struct nvme_rdma_request *req)
1021 struct ib_send_wr *bad_wr;
1022 struct ib_send_wr wr = {
1023 .opcode = IB_WR_LOCAL_INV,
1027 .ex.invalidate_rkey = req->mr->rkey,
1030 req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1031 wr.wr_cqe = &req->reg_cqe;
1033 return ib_post_send(queue->qp, &wr, &bad_wr);
1036 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1039 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1040 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1041 struct nvme_rdma_device *dev = queue->device;
1042 struct ib_device *ibdev = dev->dev;
1045 if (!blk_rq_bytes(rq))
1048 if (req->mr->need_inval) {
1049 res = nvme_rdma_inv_rkey(queue, req);
1050 if (unlikely(res < 0)) {
1051 dev_err(ctrl->ctrl.device,
1052 "Queueing INV WR for rkey %#x failed (%d)\n",
1053 req->mr->rkey, res);
1054 nvme_rdma_error_recovery(queue->ctrl);
1058 ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
1059 req->nents, rq_data_dir(rq) ==
1060 WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1062 nvme_cleanup_cmd(rq);
1063 sg_free_table_chained(&req->sg_table, true);
1066 static int nvme_rdma_set_sg_null(struct nvme_command *c)
1068 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1071 put_unaligned_le24(0, sg->length);
1072 put_unaligned_le32(0, sg->key);
1073 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1077 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1078 struct nvme_rdma_request *req, struct nvme_command *c)
1080 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1082 req->sge[1].addr = sg_dma_address(req->sg_table.sgl);
1083 req->sge[1].length = sg_dma_len(req->sg_table.sgl);
1084 req->sge[1].lkey = queue->device->pd->local_dma_lkey;
1086 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1087 sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl));
1088 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1090 req->inline_data = true;
1095 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1096 struct nvme_rdma_request *req, struct nvme_command *c)
1098 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1100 sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
1101 put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
1102 put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1103 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1107 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1108 struct nvme_rdma_request *req, struct nvme_command *c,
1111 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1114 nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, PAGE_SIZE);
1115 if (unlikely(nr < count)) {
1121 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1123 req->reg_cqe.done = nvme_rdma_memreg_done;
1124 memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1125 req->reg_wr.wr.opcode = IB_WR_REG_MR;
1126 req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1127 req->reg_wr.wr.num_sge = 0;
1128 req->reg_wr.mr = req->mr;
1129 req->reg_wr.key = req->mr->rkey;
1130 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1131 IB_ACCESS_REMOTE_READ |
1132 IB_ACCESS_REMOTE_WRITE;
1134 req->mr->need_inval = true;
1136 sg->addr = cpu_to_le64(req->mr->iova);
1137 put_unaligned_le24(req->mr->length, sg->length);
1138 put_unaligned_le32(req->mr->rkey, sg->key);
1139 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1140 NVME_SGL_FMT_INVALIDATE;
1145 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1146 struct request *rq, struct nvme_command *c)
1148 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1149 struct nvme_rdma_device *dev = queue->device;
1150 struct ib_device *ibdev = dev->dev;
1154 req->inline_data = false;
1155 req->mr->need_inval = false;
1157 c->common.flags |= NVME_CMD_SGL_METABUF;
1159 if (!blk_rq_bytes(rq))
1160 return nvme_rdma_set_sg_null(c);
1162 req->sg_table.sgl = req->first_sgl;
1163 ret = sg_alloc_table_chained(&req->sg_table,
1164 blk_rq_nr_phys_segments(rq), req->sg_table.sgl);
1168 req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
1170 count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents,
1171 rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1172 if (unlikely(count <= 0)) {
1173 sg_free_table_chained(&req->sg_table, true);
1178 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1179 blk_rq_payload_bytes(rq) <=
1180 nvme_rdma_inline_data_size(queue))
1181 return nvme_rdma_map_sg_inline(queue, req, c);
1183 if (dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY)
1184 return nvme_rdma_map_sg_single(queue, req, c);
1187 return nvme_rdma_map_sg_fr(queue, req, c, count);
1190 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1192 if (unlikely(wc->status != IB_WC_SUCCESS))
1193 nvme_rdma_wr_error(cq, wc, "SEND");
1197 * We want to signal completion at least every queue depth/2. This returns the
1198 * largest power of two that is not above half of (queue size + 1) to optimize
1199 * (avoid divisions).
1201 static inline bool nvme_rdma_queue_sig_limit(struct nvme_rdma_queue *queue)
1203 int limit = 1 << ilog2((queue->queue_size + 1) / 2);
1205 return (atomic_inc_return(&queue->sig_count) & (limit - 1)) == 0;
1208 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1209 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1210 struct ib_send_wr *first, bool flush)
1212 struct ib_send_wr wr, *bad_wr;
1215 sge->addr = qe->dma;
1216 sge->length = sizeof(struct nvme_command),
1217 sge->lkey = queue->device->pd->local_dma_lkey;
1219 qe->cqe.done = nvme_rdma_send_done;
1222 wr.wr_cqe = &qe->cqe;
1224 wr.num_sge = num_sge;
1225 wr.opcode = IB_WR_SEND;
1229 * Unsignalled send completions are another giant desaster in the
1230 * IB Verbs spec: If we don't regularly post signalled sends
1231 * the send queue will fill up and only a QP reset will rescue us.
1232 * Would have been way to obvious to handle this in hardware or
1233 * at least the RDMA stack..
1235 * Always signal the flushes. The magic request used for the flush
1236 * sequencer is not allocated in our driver's tagset and it's
1237 * triggered to be freed by blk_cleanup_queue(). So we need to
1238 * always mark it as signaled to ensure that the "wr_cqe", which is
1239 * embedded in request's payload, is not freed when __ib_process_cq()
1240 * calls wr_cqe->done().
1242 if (nvme_rdma_queue_sig_limit(queue) || flush)
1243 wr.send_flags |= IB_SEND_SIGNALED;
1250 ret = ib_post_send(queue->qp, first, &bad_wr);
1251 if (unlikely(ret)) {
1252 dev_err(queue->ctrl->ctrl.device,
1253 "%s failed with error code %d\n", __func__, ret);
1258 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1259 struct nvme_rdma_qe *qe)
1261 struct ib_recv_wr wr, *bad_wr;
1265 list.addr = qe->dma;
1266 list.length = sizeof(struct nvme_completion);
1267 list.lkey = queue->device->pd->local_dma_lkey;
1269 qe->cqe.done = nvme_rdma_recv_done;
1272 wr.wr_cqe = &qe->cqe;
1276 ret = ib_post_recv(queue->qp, &wr, &bad_wr);
1277 if (unlikely(ret)) {
1278 dev_err(queue->ctrl->ctrl.device,
1279 "%s failed with error code %d\n", __func__, ret);
1284 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1286 u32 queue_idx = nvme_rdma_queue_idx(queue);
1289 return queue->ctrl->admin_tag_set.tags[queue_idx];
1290 return queue->ctrl->tag_set.tags[queue_idx - 1];
1293 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg, int aer_idx)
1295 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1296 struct nvme_rdma_queue *queue = &ctrl->queues[0];
1297 struct ib_device *dev = queue->device->dev;
1298 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1299 struct nvme_command *cmd = sqe->data;
1303 if (WARN_ON_ONCE(aer_idx != 0))
1306 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1308 memset(cmd, 0, sizeof(*cmd));
1309 cmd->common.opcode = nvme_admin_async_event;
1310 cmd->common.command_id = NVME_RDMA_AQ_BLKMQ_DEPTH;
1311 cmd->common.flags |= NVME_CMD_SGL_METABUF;
1312 nvme_rdma_set_sg_null(cmd);
1314 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1317 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL, false);
1321 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1322 struct nvme_completion *cqe, struct ib_wc *wc, int tag)
1325 struct nvme_rdma_request *req;
1328 rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1330 dev_err(queue->ctrl->ctrl.device,
1331 "tag 0x%x on QP %#x not found\n",
1332 cqe->command_id, queue->qp->qp_num);
1333 nvme_rdma_error_recovery(queue->ctrl);
1336 req = blk_mq_rq_to_pdu(rq);
1341 if ((wc->wc_flags & IB_WC_WITH_INVALIDATE) &&
1342 wc->ex.invalidate_rkey == req->mr->rkey)
1343 req->mr->need_inval = false;
1345 nvme_end_request(rq, cqe->status, cqe->result);
1349 static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag)
1351 struct nvme_rdma_qe *qe =
1352 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1353 struct nvme_rdma_queue *queue = cq->cq_context;
1354 struct ib_device *ibdev = queue->device->dev;
1355 struct nvme_completion *cqe = qe->data;
1356 const size_t len = sizeof(struct nvme_completion);
1359 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1360 nvme_rdma_wr_error(cq, wc, "RECV");
1364 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1366 * AEN requests are special as they don't time out and can
1367 * survive any kind of queue freeze and often don't respond to
1368 * aborts. We don't even bother to allocate a struct request
1369 * for them but rather special case them here.
1371 if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
1372 cqe->command_id >= NVME_RDMA_AQ_BLKMQ_DEPTH))
1373 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1376 ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag);
1377 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1379 nvme_rdma_post_recv(queue, qe);
1383 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1385 __nvme_rdma_recv_done(cq, wc, -1);
1388 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1392 for (i = 0; i < queue->queue_size; i++) {
1393 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1395 goto out_destroy_queue_ib;
1400 out_destroy_queue_ib:
1401 nvme_rdma_destroy_queue_ib(queue);
1405 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1406 struct rdma_cm_event *ev)
1408 struct rdma_cm_id *cm_id = queue->cm_id;
1409 int status = ev->status;
1410 const char *rej_msg;
1411 const struct nvme_rdma_cm_rej *rej_data;
1414 rej_msg = rdma_reject_msg(cm_id, status);
1415 rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1417 if (rej_data && rej_data_len >= sizeof(u16)) {
1418 u16 sts = le16_to_cpu(rej_data->sts);
1420 dev_err(queue->ctrl->ctrl.device,
1421 "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1422 status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1424 dev_err(queue->ctrl->ctrl.device,
1425 "Connect rejected: status %d (%s).\n", status, rej_msg);
1431 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1435 ret = nvme_rdma_create_queue_ib(queue);
1439 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1441 dev_err(queue->ctrl->ctrl.device,
1442 "rdma_resolve_route failed (%d).\n",
1444 goto out_destroy_queue;
1450 nvme_rdma_destroy_queue_ib(queue);
1454 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1456 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1457 struct rdma_conn_param param = { };
1458 struct nvme_rdma_cm_req priv = { };
1461 param.qp_num = queue->qp->qp_num;
1462 param.flow_control = 1;
1464 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1465 /* maximum retry count */
1466 param.retry_count = 7;
1467 param.rnr_retry_count = 7;
1468 param.private_data = &priv;
1469 param.private_data_len = sizeof(priv);
1471 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1472 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1474 * set the admin queue depth to the minimum size
1475 * specified by the Fabrics standard.
1477 if (priv.qid == 0) {
1478 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1479 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1482 * current interpretation of the fabrics spec
1483 * is at minimum you make hrqsize sqsize+1, or a
1484 * 1's based representation of sqsize.
1486 priv.hrqsize = cpu_to_le16(queue->queue_size);
1487 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1490 ret = rdma_connect(queue->cm_id, ¶m);
1492 dev_err(ctrl->ctrl.device,
1493 "rdma_connect failed (%d).\n", ret);
1494 goto out_destroy_queue_ib;
1499 out_destroy_queue_ib:
1500 nvme_rdma_destroy_queue_ib(queue);
1504 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1505 struct rdma_cm_event *ev)
1507 struct nvme_rdma_queue *queue = cm_id->context;
1510 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1511 rdma_event_msg(ev->event), ev->event,
1514 switch (ev->event) {
1515 case RDMA_CM_EVENT_ADDR_RESOLVED:
1516 cm_error = nvme_rdma_addr_resolved(queue);
1518 case RDMA_CM_EVENT_ROUTE_RESOLVED:
1519 cm_error = nvme_rdma_route_resolved(queue);
1521 case RDMA_CM_EVENT_ESTABLISHED:
1522 queue->cm_error = nvme_rdma_conn_established(queue);
1523 /* complete cm_done regardless of success/failure */
1524 complete(&queue->cm_done);
1526 case RDMA_CM_EVENT_REJECTED:
1527 nvme_rdma_destroy_queue_ib(queue);
1528 cm_error = nvme_rdma_conn_rejected(queue, ev);
1530 case RDMA_CM_EVENT_ROUTE_ERROR:
1531 case RDMA_CM_EVENT_CONNECT_ERROR:
1532 case RDMA_CM_EVENT_UNREACHABLE:
1533 nvme_rdma_destroy_queue_ib(queue);
1534 case RDMA_CM_EVENT_ADDR_ERROR:
1535 dev_dbg(queue->ctrl->ctrl.device,
1536 "CM error event %d\n", ev->event);
1537 cm_error = -ECONNRESET;
1539 case RDMA_CM_EVENT_DISCONNECTED:
1540 case RDMA_CM_EVENT_ADDR_CHANGE:
1541 case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1542 dev_dbg(queue->ctrl->ctrl.device,
1543 "disconnect received - connection closed\n");
1544 nvme_rdma_error_recovery(queue->ctrl);
1546 case RDMA_CM_EVENT_DEVICE_REMOVAL:
1547 /* device removal is handled via the ib_client API */
1550 dev_err(queue->ctrl->ctrl.device,
1551 "Unexpected RDMA CM event (%d)\n", ev->event);
1552 nvme_rdma_error_recovery(queue->ctrl);
1557 queue->cm_error = cm_error;
1558 complete(&queue->cm_done);
1564 static enum blk_eh_timer_return
1565 nvme_rdma_timeout(struct request *rq, bool reserved)
1567 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1569 /* queue error recovery */
1570 nvme_rdma_error_recovery(req->queue->ctrl);
1572 /* fail with DNR on cmd timeout */
1573 nvme_req(rq)->status = NVME_SC_ABORT_REQ | NVME_SC_DNR;
1575 return BLK_EH_HANDLED;
1579 * We cannot accept any other command until the Connect command has completed.
1581 static inline blk_status_t
1582 nvme_rdma_queue_is_ready(struct nvme_rdma_queue *queue, struct request *rq)
1584 if (unlikely(!test_bit(NVME_RDMA_Q_LIVE, &queue->flags))) {
1585 struct nvme_command *cmd = nvme_req(rq)->cmd;
1587 if (!blk_rq_is_passthrough(rq) ||
1588 cmd->common.opcode != nvme_fabrics_command ||
1589 cmd->fabrics.fctype != nvme_fabrics_type_connect) {
1591 * reconnecting state means transport disruption, which
1592 * can take a long time and even might fail permanently,
1593 * so we can't let incoming I/O be requeued forever.
1594 * fail it fast to allow upper layers a chance to
1597 if (queue->ctrl->ctrl.state == NVME_CTRL_RECONNECTING)
1598 return BLK_STS_IOERR;
1599 return BLK_STS_RESOURCE; /* try again later */
1606 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1607 const struct blk_mq_queue_data *bd)
1609 struct nvme_ns *ns = hctx->queue->queuedata;
1610 struct nvme_rdma_queue *queue = hctx->driver_data;
1611 struct request *rq = bd->rq;
1612 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1613 struct nvme_rdma_qe *sqe = &req->sqe;
1614 struct nvme_command *c = sqe->data;
1616 struct ib_device *dev;
1620 WARN_ON_ONCE(rq->tag < 0);
1622 ret = nvme_rdma_queue_is_ready(queue, rq);
1626 dev = queue->device->dev;
1627 ib_dma_sync_single_for_cpu(dev, sqe->dma,
1628 sizeof(struct nvme_command), DMA_TO_DEVICE);
1630 ret = nvme_setup_cmd(ns, rq, c);
1634 blk_mq_start_request(rq);
1636 err = nvme_rdma_map_data(queue, rq, c);
1637 if (unlikely(err < 0)) {
1638 dev_err(queue->ctrl->ctrl.device,
1639 "Failed to map data (%d)\n", err);
1640 nvme_cleanup_cmd(rq);
1644 ib_dma_sync_single_for_device(dev, sqe->dma,
1645 sizeof(struct nvme_command), DMA_TO_DEVICE);
1647 if (req_op(rq) == REQ_OP_FLUSH)
1649 err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1650 req->mr->need_inval ? &req->reg_wr.wr : NULL, flush);
1651 if (unlikely(err)) {
1652 nvme_rdma_unmap_data(queue, rq);
1658 if (err == -ENOMEM || err == -EAGAIN)
1659 return BLK_STS_RESOURCE;
1660 return BLK_STS_IOERR;
1663 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1665 struct nvme_rdma_queue *queue = hctx->driver_data;
1666 struct ib_cq *cq = queue->ib_cq;
1670 while (ib_poll_cq(cq, 1, &wc) > 0) {
1671 struct ib_cqe *cqe = wc.wr_cqe;
1674 if (cqe->done == nvme_rdma_recv_done)
1675 found |= __nvme_rdma_recv_done(cq, &wc, tag);
1684 static void nvme_rdma_complete_rq(struct request *rq)
1686 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1688 nvme_rdma_unmap_data(req->queue, rq);
1689 nvme_complete_rq(rq);
1692 static const struct blk_mq_ops nvme_rdma_mq_ops = {
1693 .queue_rq = nvme_rdma_queue_rq,
1694 .complete = nvme_rdma_complete_rq,
1695 .init_request = nvme_rdma_init_request,
1696 .exit_request = nvme_rdma_exit_request,
1697 .init_hctx = nvme_rdma_init_hctx,
1698 .poll = nvme_rdma_poll,
1699 .timeout = nvme_rdma_timeout,
1702 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1703 .queue_rq = nvme_rdma_queue_rq,
1704 .complete = nvme_rdma_complete_rq,
1705 .init_request = nvme_rdma_init_request,
1706 .exit_request = nvme_rdma_exit_request,
1707 .init_hctx = nvme_rdma_init_admin_hctx,
1708 .timeout = nvme_rdma_timeout,
1711 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
1713 cancel_work_sync(&ctrl->err_work);
1714 cancel_delayed_work_sync(&ctrl->reconnect_work);
1716 if (ctrl->ctrl.queue_count > 1) {
1717 nvme_stop_queues(&ctrl->ctrl);
1718 blk_mq_tagset_busy_iter(&ctrl->tag_set,
1719 nvme_cancel_request, &ctrl->ctrl);
1720 nvme_rdma_destroy_io_queues(ctrl, shutdown);
1724 nvme_shutdown_ctrl(&ctrl->ctrl);
1726 nvme_disable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
1728 blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
1729 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
1730 nvme_cancel_request, &ctrl->ctrl);
1731 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1732 nvme_rdma_destroy_admin_queue(ctrl, shutdown);
1735 static void nvme_rdma_remove_ctrl(struct nvme_rdma_ctrl *ctrl)
1737 nvme_remove_namespaces(&ctrl->ctrl);
1738 nvme_rdma_shutdown_ctrl(ctrl, true);
1739 nvme_uninit_ctrl(&ctrl->ctrl);
1740 nvme_put_ctrl(&ctrl->ctrl);
1743 static void nvme_rdma_del_ctrl_work(struct work_struct *work)
1745 struct nvme_rdma_ctrl *ctrl = container_of(work,
1746 struct nvme_rdma_ctrl, delete_work);
1748 nvme_stop_ctrl(&ctrl->ctrl);
1749 nvme_rdma_remove_ctrl(ctrl);
1752 static int __nvme_rdma_del_ctrl(struct nvme_rdma_ctrl *ctrl)
1754 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
1757 if (!queue_work(nvme_wq, &ctrl->delete_work))
1763 static int nvme_rdma_del_ctrl(struct nvme_ctrl *nctrl)
1765 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1769 * Keep a reference until all work is flushed since
1770 * __nvme_rdma_del_ctrl can free the ctrl mem
1772 if (!kref_get_unless_zero(&ctrl->ctrl.kref))
1774 ret = __nvme_rdma_del_ctrl(ctrl);
1776 flush_work(&ctrl->delete_work);
1777 nvme_put_ctrl(&ctrl->ctrl);
1781 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
1783 struct nvme_rdma_ctrl *ctrl =
1784 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
1788 nvme_stop_ctrl(&ctrl->ctrl);
1789 nvme_rdma_shutdown_ctrl(ctrl, false);
1791 ret = nvme_rdma_configure_admin_queue(ctrl, false);
1795 if (ctrl->ctrl.queue_count > 1) {
1796 ret = nvme_rdma_configure_io_queues(ctrl, false);
1801 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1802 WARN_ON_ONCE(!changed);
1804 nvme_start_ctrl(&ctrl->ctrl);
1809 dev_warn(ctrl->ctrl.device, "Removing after reset failure\n");
1810 nvme_rdma_remove_ctrl(ctrl);
1813 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
1815 .module = THIS_MODULE,
1816 .flags = NVME_F_FABRICS,
1817 .reg_read32 = nvmf_reg_read32,
1818 .reg_read64 = nvmf_reg_read64,
1819 .reg_write32 = nvmf_reg_write32,
1820 .free_ctrl = nvme_rdma_free_ctrl,
1821 .submit_async_event = nvme_rdma_submit_async_event,
1822 .delete_ctrl = nvme_rdma_del_ctrl,
1823 .get_address = nvmf_get_address,
1826 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
1827 struct nvmf_ctrl_options *opts)
1829 struct nvme_rdma_ctrl *ctrl;
1834 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1836 return ERR_PTR(-ENOMEM);
1837 ctrl->ctrl.opts = opts;
1838 INIT_LIST_HEAD(&ctrl->list);
1840 if (opts->mask & NVMF_OPT_TRSVCID)
1841 port = opts->trsvcid;
1843 port = __stringify(NVME_RDMA_IP_PORT);
1845 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1846 opts->traddr, port, &ctrl->addr);
1848 pr_err("malformed address passed: %s:%s\n", opts->traddr, port);
1852 if (opts->mask & NVMF_OPT_HOST_TRADDR) {
1853 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1854 opts->host_traddr, NULL, &ctrl->src_addr);
1856 pr_err("malformed src address passed: %s\n",
1862 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
1863 0 /* no quirks, we're perfect! */);
1867 INIT_DELAYED_WORK(&ctrl->reconnect_work,
1868 nvme_rdma_reconnect_ctrl_work);
1869 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
1870 INIT_WORK(&ctrl->delete_work, nvme_rdma_del_ctrl_work);
1871 INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
1873 ctrl->ctrl.queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */
1874 ctrl->ctrl.sqsize = opts->queue_size - 1;
1875 ctrl->ctrl.kato = opts->kato;
1878 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
1881 goto out_uninit_ctrl;
1883 ret = nvme_rdma_configure_admin_queue(ctrl, true);
1885 goto out_kfree_queues;
1887 /* sanity check icdoff */
1888 if (ctrl->ctrl.icdoff) {
1889 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1891 goto out_remove_admin_queue;
1894 /* sanity check keyed sgls */
1895 if (!(ctrl->ctrl.sgls & (1 << 20))) {
1896 dev_err(ctrl->ctrl.device, "Mandatory keyed sgls are not support\n");
1898 goto out_remove_admin_queue;
1901 if (opts->queue_size > ctrl->ctrl.maxcmd) {
1902 /* warn if maxcmd is lower than queue_size */
1903 dev_warn(ctrl->ctrl.device,
1904 "queue_size %zu > ctrl maxcmd %u, clamping down\n",
1905 opts->queue_size, ctrl->ctrl.maxcmd);
1906 opts->queue_size = ctrl->ctrl.maxcmd;
1909 if (opts->queue_size > ctrl->ctrl.sqsize + 1) {
1910 /* warn if sqsize is lower than queue_size */
1911 dev_warn(ctrl->ctrl.device,
1912 "queue_size %zu > ctrl sqsize %u, clamping down\n",
1913 opts->queue_size, ctrl->ctrl.sqsize + 1);
1914 opts->queue_size = ctrl->ctrl.sqsize + 1;
1917 if (opts->nr_io_queues) {
1918 ret = nvme_rdma_configure_io_queues(ctrl, true);
1920 goto out_remove_admin_queue;
1923 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1924 WARN_ON_ONCE(!changed);
1926 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
1927 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
1929 kref_get(&ctrl->ctrl.kref);
1931 mutex_lock(&nvme_rdma_ctrl_mutex);
1932 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
1933 mutex_unlock(&nvme_rdma_ctrl_mutex);
1935 nvme_start_ctrl(&ctrl->ctrl);
1939 out_remove_admin_queue:
1940 nvme_rdma_destroy_admin_queue(ctrl, true);
1942 kfree(ctrl->queues);
1944 nvme_uninit_ctrl(&ctrl->ctrl);
1945 nvme_put_ctrl(&ctrl->ctrl);
1948 return ERR_PTR(ret);
1951 return ERR_PTR(ret);
1954 static struct nvmf_transport_ops nvme_rdma_transport = {
1956 .required_opts = NVMF_OPT_TRADDR,
1957 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
1958 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO,
1959 .create_ctrl = nvme_rdma_create_ctrl,
1962 static void nvme_rdma_add_one(struct ib_device *ib_device)
1966 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
1968 struct nvme_rdma_ctrl *ctrl;
1970 /* Delete all controllers using this device */
1971 mutex_lock(&nvme_rdma_ctrl_mutex);
1972 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
1973 if (ctrl->device->dev != ib_device)
1975 dev_info(ctrl->ctrl.device,
1976 "Removing ctrl: NQN \"%s\", addr %pISp\n",
1977 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
1978 __nvme_rdma_del_ctrl(ctrl);
1980 mutex_unlock(&nvme_rdma_ctrl_mutex);
1982 flush_workqueue(nvme_wq);
1985 static struct ib_client nvme_rdma_ib_client = {
1986 .name = "nvme_rdma",
1987 .add = nvme_rdma_add_one,
1988 .remove = nvme_rdma_remove_one
1991 static int __init nvme_rdma_init_module(void)
1995 ret = ib_register_client(&nvme_rdma_ib_client);
1999 ret = nvmf_register_transport(&nvme_rdma_transport);
2001 goto err_unreg_client;
2006 ib_unregister_client(&nvme_rdma_ib_client);
2010 static void __exit nvme_rdma_cleanup_module(void)
2012 nvmf_unregister_transport(&nvme_rdma_transport);
2013 ib_unregister_client(&nvme_rdma_ib_client);
2016 module_init(nvme_rdma_init_module);
2017 module_exit(nvme_rdma_cleanup_module);
2019 MODULE_LICENSE("GPL v2");