2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 #include <linux/aer.h>
16 #include <linux/async.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/blk-mq-pci.h>
20 #include <linux/dmi.h>
21 #include <linux/init.h>
22 #include <linux/interrupt.h>
25 #include <linux/module.h>
26 #include <linux/mutex.h>
27 #include <linux/once.h>
28 #include <linux/pci.h>
29 #include <linux/t10-pi.h>
30 #include <linux/types.h>
31 #include <linux/io-64-nonatomic-lo-hi.h>
32 #include <linux/sed-opal.h>
36 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
37 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
39 #define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
42 * These can be higher, but we need to ensure that any command doesn't
43 * require an sg allocation that needs more than a page of data.
45 #define NVME_MAX_KB_SZ 4096
46 #define NVME_MAX_SEGS 127
48 static int use_threaded_interrupts;
49 module_param(use_threaded_interrupts, int, 0);
51 static bool use_cmb_sqes = true;
52 module_param(use_cmb_sqes, bool, 0444);
53 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
55 static unsigned int max_host_mem_size_mb = 128;
56 module_param(max_host_mem_size_mb, uint, 0444);
57 MODULE_PARM_DESC(max_host_mem_size_mb,
58 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
60 static unsigned int sgl_threshold = SZ_32K;
61 module_param(sgl_threshold, uint, 0644);
62 MODULE_PARM_DESC(sgl_threshold,
63 "Use SGLs when average request segment size is larger or equal to "
64 "this size. Use 0 to disable SGLs.");
66 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
67 static const struct kernel_param_ops io_queue_depth_ops = {
68 .set = io_queue_depth_set,
72 static int io_queue_depth = 1024;
73 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
74 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
79 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
82 * Represents an NVM Express device. Each nvme_dev is a PCI function.
85 struct nvme_queue *queues;
86 struct blk_mq_tag_set tagset;
87 struct blk_mq_tag_set admin_tagset;
90 struct dma_pool *prp_page_pool;
91 struct dma_pool *prp_small_pool;
92 unsigned online_queues;
94 unsigned int num_vecs;
98 unsigned long bar_mapped_size;
99 struct work_struct remove_work;
100 struct mutex shutdown_lock;
103 pci_bus_addr_t cmb_bus_addr;
107 struct nvme_ctrl ctrl;
108 struct completion ioq_wait;
110 mempool_t *iod_mempool;
112 /* shadow doorbell buffer support: */
114 dma_addr_t dbbuf_dbs_dma_addr;
116 dma_addr_t dbbuf_eis_dma_addr;
118 /* host memory buffer support: */
120 u32 nr_host_mem_descs;
121 dma_addr_t host_mem_descs_dma;
122 struct nvme_host_mem_buf_desc *host_mem_descs;
123 void **host_mem_desc_bufs;
126 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
130 ret = kstrtoint(val, 10, &n);
131 if (ret != 0 || n < 2)
134 return param_set_int(val, kp);
137 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
139 return qid * 2 * stride;
142 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
144 return (qid * 2 + 1) * stride;
147 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
149 return container_of(ctrl, struct nvme_dev, ctrl);
153 * An NVM Express queue. Each device has at least two (one for admin
154 * commands and one for I/O commands).
157 struct device *q_dmadev;
158 struct nvme_dev *dev;
160 struct nvme_command *sq_cmds;
161 struct nvme_command __iomem *sq_cmds_io;
162 spinlock_t cq_lock ____cacheline_aligned_in_smp;
163 volatile struct nvme_completion *cqes;
164 struct blk_mq_tags **tags;
165 dma_addr_t sq_dma_addr;
166 dma_addr_t cq_dma_addr;
182 * The nvme_iod describes the data in an I/O, including the list of PRP
183 * entries. You can't see it in this data structure because C doesn't let
184 * me express that. Use nvme_init_iod to ensure there's enough space
185 * allocated to store the PRP list.
188 struct nvme_request req;
189 struct nvme_queue *nvmeq;
192 int npages; /* In the PRP list. 0 means small pool in use */
193 int nents; /* Used in scatterlist */
194 int length; /* Of data, in bytes */
195 dma_addr_t first_dma;
196 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
197 struct scatterlist *sg;
198 struct scatterlist inline_sg[0];
202 * Check we didin't inadvertently grow the command struct
204 static inline void _nvme_check_size(void)
206 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
207 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
208 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
209 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
210 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
211 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
212 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
213 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
214 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
215 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
216 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
217 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
218 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
221 static inline unsigned int nvme_dbbuf_size(u32 stride)
223 return ((num_possible_cpus() + 1) * 8 * stride);
226 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
228 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
233 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
234 &dev->dbbuf_dbs_dma_addr,
238 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
239 &dev->dbbuf_eis_dma_addr,
241 if (!dev->dbbuf_eis) {
242 dma_free_coherent(dev->dev, mem_size,
243 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
244 dev->dbbuf_dbs = NULL;
251 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
253 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
255 if (dev->dbbuf_dbs) {
256 dma_free_coherent(dev->dev, mem_size,
257 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
258 dev->dbbuf_dbs = NULL;
260 if (dev->dbbuf_eis) {
261 dma_free_coherent(dev->dev, mem_size,
262 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
263 dev->dbbuf_eis = NULL;
267 static void nvme_dbbuf_init(struct nvme_dev *dev,
268 struct nvme_queue *nvmeq, int qid)
270 if (!dev->dbbuf_dbs || !qid)
273 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
274 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
275 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
276 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
279 static void nvme_dbbuf_set(struct nvme_dev *dev)
281 struct nvme_command c;
286 memset(&c, 0, sizeof(c));
287 c.dbbuf.opcode = nvme_admin_dbbuf;
288 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
289 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
291 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
292 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
293 /* Free memory and continue on */
294 nvme_dbbuf_dma_free(dev);
298 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
300 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
303 /* Update dbbuf and return true if an MMIO is required */
304 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
305 volatile u32 *dbbuf_ei)
311 * Ensure that the queue is written before updating
312 * the doorbell in memory
316 old_value = *dbbuf_db;
319 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
327 * Max size of iod being embedded in the request payload
329 #define NVME_INT_PAGES 2
330 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
333 * Will slightly overestimate the number of pages needed. This is OK
334 * as it only leads to a small amount of wasted memory for the lifetime of
337 static int nvme_npages(unsigned size, struct nvme_dev *dev)
339 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
340 dev->ctrl.page_size);
341 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
345 * Calculates the number of pages needed for the SGL segments. For example a 4k
346 * page can accommodate 256 SGL descriptors.
348 static int nvme_pci_npages_sgl(unsigned int num_seg)
350 return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE);
353 static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev,
354 unsigned int size, unsigned int nseg, bool use_sgl)
359 alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg);
361 alloc_size = sizeof(__le64 *) * nvme_npages(size, dev);
363 return alloc_size + sizeof(struct scatterlist) * nseg;
366 static unsigned int nvme_pci_cmd_size(struct nvme_dev *dev, bool use_sgl)
368 unsigned int alloc_size = nvme_pci_iod_alloc_size(dev,
369 NVME_INT_BYTES(dev), NVME_INT_PAGES,
372 return sizeof(struct nvme_iod) + alloc_size;
375 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
376 unsigned int hctx_idx)
378 struct nvme_dev *dev = data;
379 struct nvme_queue *nvmeq = &dev->queues[0];
381 WARN_ON(hctx_idx != 0);
382 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
383 WARN_ON(nvmeq->tags);
385 hctx->driver_data = nvmeq;
386 nvmeq->tags = &dev->admin_tagset.tags[0];
390 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
392 struct nvme_queue *nvmeq = hctx->driver_data;
397 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
398 unsigned int hctx_idx)
400 struct nvme_dev *dev = data;
401 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
404 nvmeq->tags = &dev->tagset.tags[hctx_idx];
406 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
407 hctx->driver_data = nvmeq;
411 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
412 unsigned int hctx_idx, unsigned int numa_node)
414 struct nvme_dev *dev = set->driver_data;
415 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
416 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
417 struct nvme_queue *nvmeq = &dev->queues[queue_idx];
424 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
426 struct nvme_dev *dev = set->driver_data;
428 return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev),
429 dev->num_vecs > 1 ? 1 /* admin queue */ : 0);
433 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
434 * @nvmeq: The queue to use
435 * @cmd: The command to send
437 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
439 spin_lock(&nvmeq->sq_lock);
440 if (nvmeq->sq_cmds_io)
441 memcpy_toio(&nvmeq->sq_cmds_io[nvmeq->sq_tail], cmd,
444 memcpy(&nvmeq->sq_cmds[nvmeq->sq_tail], cmd, sizeof(*cmd));
446 if (++nvmeq->sq_tail == nvmeq->q_depth)
448 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
449 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
450 writel(nvmeq->sq_tail, nvmeq->q_db);
451 spin_unlock(&nvmeq->sq_lock);
454 static void **nvme_pci_iod_list(struct request *req)
456 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
457 return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
460 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
462 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
463 int nseg = blk_rq_nr_phys_segments(req);
464 unsigned int avg_seg_size;
469 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
471 if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
473 if (!iod->nvmeq->qid)
475 if (!sgl_threshold || avg_seg_size < sgl_threshold)
480 static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
482 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
483 int nseg = blk_rq_nr_phys_segments(rq);
484 unsigned int size = blk_rq_payload_bytes(rq);
486 iod->use_sgl = nvme_pci_use_sgls(dev, rq);
488 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
489 iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
491 return BLK_STS_RESOURCE;
493 iod->sg = iod->inline_sg;
504 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
506 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
507 const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1;
508 dma_addr_t dma_addr = iod->first_dma, next_dma_addr;
512 if (iod->npages == 0)
513 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
516 for (i = 0; i < iod->npages; i++) {
517 void *addr = nvme_pci_iod_list(req)[i];
520 struct nvme_sgl_desc *sg_list = addr;
523 le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr);
525 __le64 *prp_list = addr;
527 next_dma_addr = le64_to_cpu(prp_list[last_prp]);
530 dma_pool_free(dev->prp_page_pool, addr, dma_addr);
531 dma_addr = next_dma_addr;
534 if (iod->sg != iod->inline_sg)
535 mempool_free(iod->sg, dev->iod_mempool);
538 #ifdef CONFIG_BLK_DEV_INTEGRITY
539 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
541 if (be32_to_cpu(pi->ref_tag) == v)
542 pi->ref_tag = cpu_to_be32(p);
545 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
547 if (be32_to_cpu(pi->ref_tag) == p)
548 pi->ref_tag = cpu_to_be32(v);
552 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
554 * The virtual start sector is the one that was originally submitted by the
555 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
556 * start sector may be different. Remap protection information to match the
557 * physical LBA on writes, and back to the original seed on reads.
559 * Type 0 and 3 do not have a ref tag, so no remapping required.
561 static void nvme_dif_remap(struct request *req,
562 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
564 struct nvme_ns *ns = req->rq_disk->private_data;
565 struct bio_integrity_payload *bip;
566 struct t10_pi_tuple *pi;
568 u32 i, nlb, ts, phys, virt;
570 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
573 bip = bio_integrity(req->bio);
577 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
580 virt = bip_get_seed(bip);
581 phys = nvme_block_nr(ns, blk_rq_pos(req));
582 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
583 ts = ns->disk->queue->integrity.tuple_size;
585 for (i = 0; i < nlb; i++, virt++, phys++) {
586 pi = (struct t10_pi_tuple *)p;
587 dif_swap(phys, virt, pi);
592 #else /* CONFIG_BLK_DEV_INTEGRITY */
593 static void nvme_dif_remap(struct request *req,
594 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
597 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
600 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
605 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
608 struct scatterlist *sg;
610 for_each_sg(sgl, sg, nents, i) {
611 dma_addr_t phys = sg_phys(sg);
612 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
613 "dma_address:%pad dma_length:%d\n",
614 i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
619 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
620 struct request *req, struct nvme_rw_command *cmnd)
622 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
623 struct dma_pool *pool;
624 int length = blk_rq_payload_bytes(req);
625 struct scatterlist *sg = iod->sg;
626 int dma_len = sg_dma_len(sg);
627 u64 dma_addr = sg_dma_address(sg);
628 u32 page_size = dev->ctrl.page_size;
629 int offset = dma_addr & (page_size - 1);
631 void **list = nvme_pci_iod_list(req);
635 length -= (page_size - offset);
641 dma_len -= (page_size - offset);
643 dma_addr += (page_size - offset);
646 dma_addr = sg_dma_address(sg);
647 dma_len = sg_dma_len(sg);
650 if (length <= page_size) {
651 iod->first_dma = dma_addr;
655 nprps = DIV_ROUND_UP(length, page_size);
656 if (nprps <= (256 / 8)) {
657 pool = dev->prp_small_pool;
660 pool = dev->prp_page_pool;
664 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
666 iod->first_dma = dma_addr;
668 return BLK_STS_RESOURCE;
671 iod->first_dma = prp_dma;
674 if (i == page_size >> 3) {
675 __le64 *old_prp_list = prp_list;
676 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
678 return BLK_STS_RESOURCE;
679 list[iod->npages++] = prp_list;
680 prp_list[0] = old_prp_list[i - 1];
681 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
684 prp_list[i++] = cpu_to_le64(dma_addr);
685 dma_len -= page_size;
686 dma_addr += page_size;
692 if (unlikely(dma_len < 0))
695 dma_addr = sg_dma_address(sg);
696 dma_len = sg_dma_len(sg);
700 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
701 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
706 WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
707 "Invalid SGL for payload:%d nents:%d\n",
708 blk_rq_payload_bytes(req), iod->nents);
709 return BLK_STS_IOERR;
712 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
713 struct scatterlist *sg)
715 sge->addr = cpu_to_le64(sg_dma_address(sg));
716 sge->length = cpu_to_le32(sg_dma_len(sg));
717 sge->type = NVME_SGL_FMT_DATA_DESC << 4;
720 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
721 dma_addr_t dma_addr, int entries)
723 sge->addr = cpu_to_le64(dma_addr);
724 if (entries < SGES_PER_PAGE) {
725 sge->length = cpu_to_le32(entries * sizeof(*sge));
726 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
728 sge->length = cpu_to_le32(PAGE_SIZE);
729 sge->type = NVME_SGL_FMT_SEG_DESC << 4;
733 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
734 struct request *req, struct nvme_rw_command *cmd, int entries)
736 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
737 struct dma_pool *pool;
738 struct nvme_sgl_desc *sg_list;
739 struct scatterlist *sg = iod->sg;
743 /* setting the transfer type as SGL */
744 cmd->flags = NVME_CMD_SGL_METABUF;
747 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
751 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
752 pool = dev->prp_small_pool;
755 pool = dev->prp_page_pool;
759 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
762 return BLK_STS_RESOURCE;
765 nvme_pci_iod_list(req)[0] = sg_list;
766 iod->first_dma = sgl_dma;
768 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
771 if (i == SGES_PER_PAGE) {
772 struct nvme_sgl_desc *old_sg_desc = sg_list;
773 struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
775 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
777 return BLK_STS_RESOURCE;
780 nvme_pci_iod_list(req)[iod->npages++] = sg_list;
781 sg_list[i++] = *link;
782 nvme_pci_sgl_set_seg(link, sgl_dma, entries);
785 nvme_pci_sgl_set_data(&sg_list[i++], sg);
787 } while (--entries > 0);
792 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
793 struct nvme_command *cmnd)
795 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
796 struct request_queue *q = req->q;
797 enum dma_data_direction dma_dir = rq_data_dir(req) ?
798 DMA_TO_DEVICE : DMA_FROM_DEVICE;
799 blk_status_t ret = BLK_STS_IOERR;
802 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
803 iod->nents = blk_rq_map_sg(q, req, iod->sg);
807 ret = BLK_STS_RESOURCE;
808 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
814 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
816 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
818 if (ret != BLK_STS_OK)
822 if (blk_integrity_rq(req)) {
823 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
826 sg_init_table(&iod->meta_sg, 1);
827 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
830 if (req_op(req) == REQ_OP_WRITE)
831 nvme_dif_remap(req, nvme_dif_prep);
833 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
837 if (blk_integrity_rq(req))
838 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
842 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
847 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
849 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
850 enum dma_data_direction dma_dir = rq_data_dir(req) ?
851 DMA_TO_DEVICE : DMA_FROM_DEVICE;
854 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
855 if (blk_integrity_rq(req)) {
856 if (req_op(req) == REQ_OP_READ)
857 nvme_dif_remap(req, nvme_dif_complete);
858 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
862 nvme_cleanup_cmd(req);
863 nvme_free_iod(dev, req);
867 * NOTE: ns is NULL when called on the admin queue.
869 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
870 const struct blk_mq_queue_data *bd)
872 struct nvme_ns *ns = hctx->queue->queuedata;
873 struct nvme_queue *nvmeq = hctx->driver_data;
874 struct nvme_dev *dev = nvmeq->dev;
875 struct request *req = bd->rq;
876 struct nvme_command cmnd;
880 * We should not need to do this, but we're still using this to
881 * ensure we can drain requests on a dying queue.
883 if (unlikely(nvmeq->cq_vector < 0))
884 return BLK_STS_IOERR;
886 ret = nvme_setup_cmd(ns, req, &cmnd);
890 ret = nvme_init_iod(req, dev);
894 if (blk_rq_nr_phys_segments(req)) {
895 ret = nvme_map_data(dev, req, &cmnd);
897 goto out_cleanup_iod;
900 blk_mq_start_request(req);
901 nvme_submit_cmd(nvmeq, &cmnd);
904 nvme_free_iod(dev, req);
906 nvme_cleanup_cmd(req);
910 static void nvme_pci_complete_rq(struct request *req)
912 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
914 nvme_unmap_data(iod->nvmeq->dev, req);
915 nvme_complete_rq(req);
918 /* We read the CQE phase first to check if the rest of the entry is valid */
919 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
921 return (le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
925 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
927 u16 head = nvmeq->cq_head;
929 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
931 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
934 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
936 volatile struct nvme_completion *cqe = &nvmeq->cqes[idx];
939 if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
940 dev_warn(nvmeq->dev->ctrl.device,
941 "invalid id %d completed on queue %d\n",
942 cqe->command_id, le16_to_cpu(cqe->sq_id));
947 * AEN requests are special as they don't time out and can
948 * survive any kind of queue freeze and often don't respond to
949 * aborts. We don't even bother to allocate a struct request
950 * for them but rather special case them here.
952 if (unlikely(nvmeq->qid == 0 &&
953 cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) {
954 nvme_complete_async_event(&nvmeq->dev->ctrl,
955 cqe->status, &cqe->result);
959 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
960 nvme_end_request(req, cqe->status, cqe->result);
963 static void nvme_complete_cqes(struct nvme_queue *nvmeq, u16 start, u16 end)
965 while (start != end) {
966 nvme_handle_cqe(nvmeq, start);
967 if (++start == nvmeq->q_depth)
972 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
974 if (++nvmeq->cq_head == nvmeq->q_depth) {
976 nvmeq->cq_phase = !nvmeq->cq_phase;
980 static inline bool nvme_process_cq(struct nvme_queue *nvmeq, u16 *start,
985 *start = nvmeq->cq_head;
986 while (!found && nvme_cqe_pending(nvmeq)) {
987 if (nvmeq->cqes[nvmeq->cq_head].command_id == tag)
989 nvme_update_cq_head(nvmeq);
991 *end = nvmeq->cq_head;
994 nvme_ring_cq_doorbell(nvmeq);
998 static irqreturn_t nvme_irq(int irq, void *data)
1000 struct nvme_queue *nvmeq = data;
1001 irqreturn_t ret = IRQ_NONE;
1004 spin_lock(&nvmeq->cq_lock);
1005 if (nvmeq->cq_head != nvmeq->last_cq_head)
1007 nvme_process_cq(nvmeq, &start, &end, -1);
1008 nvmeq->last_cq_head = nvmeq->cq_head;
1009 spin_unlock(&nvmeq->cq_lock);
1012 nvme_complete_cqes(nvmeq, start, end);
1019 static irqreturn_t nvme_irq_check(int irq, void *data)
1021 struct nvme_queue *nvmeq = data;
1022 if (nvme_cqe_pending(nvmeq))
1023 return IRQ_WAKE_THREAD;
1027 static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag)
1032 if (!nvme_cqe_pending(nvmeq))
1035 spin_lock_irq(&nvmeq->cq_lock);
1036 found = nvme_process_cq(nvmeq, &start, &end, tag);
1037 spin_unlock_irq(&nvmeq->cq_lock);
1039 nvme_complete_cqes(nvmeq, start, end);
1043 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1045 struct nvme_queue *nvmeq = hctx->driver_data;
1047 return __nvme_poll(nvmeq, tag);
1050 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1052 struct nvme_dev *dev = to_nvme_dev(ctrl);
1053 struct nvme_queue *nvmeq = &dev->queues[0];
1054 struct nvme_command c;
1056 memset(&c, 0, sizeof(c));
1057 c.common.opcode = nvme_admin_async_event;
1058 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1059 nvme_submit_cmd(nvmeq, &c);
1062 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1064 struct nvme_command c;
1066 memset(&c, 0, sizeof(c));
1067 c.delete_queue.opcode = opcode;
1068 c.delete_queue.qid = cpu_to_le16(id);
1070 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1073 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1074 struct nvme_queue *nvmeq, s16 vector)
1076 struct nvme_command c;
1077 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1080 * Note: we (ab)use the fact that the prp fields survive if no data
1081 * is attached to the request.
1083 memset(&c, 0, sizeof(c));
1084 c.create_cq.opcode = nvme_admin_create_cq;
1085 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1086 c.create_cq.cqid = cpu_to_le16(qid);
1087 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1088 c.create_cq.cq_flags = cpu_to_le16(flags);
1089 c.create_cq.irq_vector = cpu_to_le16(vector);
1091 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1094 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1095 struct nvme_queue *nvmeq)
1097 struct nvme_ctrl *ctrl = &dev->ctrl;
1098 struct nvme_command c;
1099 int flags = NVME_QUEUE_PHYS_CONTIG;
1102 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1103 * set. Since URGENT priority is zeroes, it makes all queues
1106 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1107 flags |= NVME_SQ_PRIO_MEDIUM;
1110 * Note: we (ab)use the fact that the prp fields survive if no data
1111 * is attached to the request.
1113 memset(&c, 0, sizeof(c));
1114 c.create_sq.opcode = nvme_admin_create_sq;
1115 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1116 c.create_sq.sqid = cpu_to_le16(qid);
1117 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1118 c.create_sq.sq_flags = cpu_to_le16(flags);
1119 c.create_sq.cqid = cpu_to_le16(qid);
1121 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1124 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1126 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1129 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1131 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1134 static void abort_endio(struct request *req, blk_status_t error)
1136 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1137 struct nvme_queue *nvmeq = iod->nvmeq;
1139 dev_warn(nvmeq->dev->ctrl.device,
1140 "Abort status: 0x%x", nvme_req(req)->status);
1141 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1142 blk_mq_free_request(req);
1145 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1148 /* If true, indicates loss of adapter communication, possibly by a
1149 * NVMe Subsystem reset.
1151 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1153 /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1154 switch (dev->ctrl.state) {
1155 case NVME_CTRL_RESETTING:
1156 case NVME_CTRL_CONNECTING:
1162 /* We shouldn't reset unless the controller is on fatal error state
1163 * _or_ if we lost the communication with it.
1165 if (!(csts & NVME_CSTS_CFS) && !nssro)
1171 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1173 /* Read a config register to help see what died. */
1177 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1179 if (result == PCIBIOS_SUCCESSFUL)
1180 dev_warn(dev->ctrl.device,
1181 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1184 dev_warn(dev->ctrl.device,
1185 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1189 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1191 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1192 struct nvme_queue *nvmeq = iod->nvmeq;
1193 struct nvme_dev *dev = nvmeq->dev;
1194 struct request *abort_req;
1195 struct nvme_command cmd;
1196 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1198 /* If PCI error recovery process is happening, we cannot reset or
1199 * the recovery mechanism will surely fail.
1202 if (pci_channel_offline(to_pci_dev(dev->dev)))
1203 return BLK_EH_RESET_TIMER;
1206 * Reset immediately if the controller is failed
1208 if (nvme_should_reset(dev, csts)) {
1209 nvme_warn_reset(dev, csts);
1210 nvme_dev_disable(dev, false);
1211 nvme_reset_ctrl(&dev->ctrl);
1216 * Did we miss an interrupt?
1218 if (__nvme_poll(nvmeq, req->tag)) {
1219 dev_warn(dev->ctrl.device,
1220 "I/O %d QID %d timeout, completion polled\n",
1221 req->tag, nvmeq->qid);
1226 * Shutdown immediately if controller times out while starting. The
1227 * reset work will see the pci device disabled when it gets the forced
1228 * cancellation error. All outstanding requests are completed on
1229 * shutdown, so we return BLK_EH_DONE.
1231 switch (dev->ctrl.state) {
1232 case NVME_CTRL_CONNECTING:
1233 case NVME_CTRL_RESETTING:
1234 dev_warn_ratelimited(dev->ctrl.device,
1235 "I/O %d QID %d timeout, disable controller\n",
1236 req->tag, nvmeq->qid);
1237 nvme_dev_disable(dev, false);
1238 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1245 * Shutdown the controller immediately and schedule a reset if the
1246 * command was already aborted once before and still hasn't been
1247 * returned to the driver, or if this is the admin queue.
1249 if (!nvmeq->qid || iod->aborted) {
1250 dev_warn(dev->ctrl.device,
1251 "I/O %d QID %d timeout, reset controller\n",
1252 req->tag, nvmeq->qid);
1253 nvme_dev_disable(dev, false);
1254 nvme_reset_ctrl(&dev->ctrl);
1256 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1260 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1261 atomic_inc(&dev->ctrl.abort_limit);
1262 return BLK_EH_RESET_TIMER;
1266 memset(&cmd, 0, sizeof(cmd));
1267 cmd.abort.opcode = nvme_admin_abort_cmd;
1268 cmd.abort.cid = req->tag;
1269 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1271 dev_warn(nvmeq->dev->ctrl.device,
1272 "I/O %d QID %d timeout, aborting\n",
1273 req->tag, nvmeq->qid);
1275 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1276 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1277 if (IS_ERR(abort_req)) {
1278 atomic_inc(&dev->ctrl.abort_limit);
1279 return BLK_EH_RESET_TIMER;
1282 abort_req->timeout = ADMIN_TIMEOUT;
1283 abort_req->end_io_data = NULL;
1284 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1287 * The aborted req will be completed on receiving the abort req.
1288 * We enable the timer again. If hit twice, it'll cause a device reset,
1289 * as the device then is in a faulty state.
1291 return BLK_EH_RESET_TIMER;
1294 static void nvme_free_queue(struct nvme_queue *nvmeq)
1296 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1297 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1299 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1300 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1303 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1307 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1308 dev->ctrl.queue_count--;
1309 nvme_free_queue(&dev->queues[i]);
1314 * nvme_suspend_queue - put queue into suspended state
1315 * @nvmeq - queue to suspend
1317 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1321 spin_lock_irq(&nvmeq->cq_lock);
1322 if (nvmeq->cq_vector == -1) {
1323 spin_unlock_irq(&nvmeq->cq_lock);
1326 vector = nvmeq->cq_vector;
1327 nvmeq->dev->online_queues--;
1328 nvmeq->cq_vector = -1;
1329 spin_unlock_irq(&nvmeq->cq_lock);
1332 * Ensure that nvme_queue_rq() sees it ->cq_vector == -1 without
1333 * having to grab the lock.
1337 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1338 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1340 pci_free_irq(to_pci_dev(nvmeq->dev->dev), vector, nvmeq);
1345 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1347 struct nvme_queue *nvmeq = &dev->queues[0];
1351 nvme_shutdown_ctrl(&dev->ctrl);
1353 nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1355 spin_lock_irq(&nvmeq->cq_lock);
1356 nvme_process_cq(nvmeq, &start, &end, -1);
1357 spin_unlock_irq(&nvmeq->cq_lock);
1359 nvme_complete_cqes(nvmeq, start, end);
1362 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1365 int q_depth = dev->q_depth;
1366 unsigned q_size_aligned = roundup(q_depth * entry_size,
1367 dev->ctrl.page_size);
1369 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1370 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1371 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1372 q_depth = div_u64(mem_per_q, entry_size);
1375 * Ensure the reduced q_depth is above some threshold where it
1376 * would be better to map queues in system memory with the
1386 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1389 /* CMB SQEs will be mapped before creation */
1390 if (qid && dev->cmb && use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS))
1393 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1394 &nvmeq->sq_dma_addr, GFP_KERNEL);
1395 if (!nvmeq->sq_cmds)
1400 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1402 struct nvme_queue *nvmeq = &dev->queues[qid];
1404 if (dev->ctrl.queue_count > qid)
1407 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1408 &nvmeq->cq_dma_addr, GFP_KERNEL);
1412 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1415 nvmeq->q_dmadev = dev->dev;
1417 spin_lock_init(&nvmeq->sq_lock);
1418 spin_lock_init(&nvmeq->cq_lock);
1420 nvmeq->cq_phase = 1;
1421 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1422 nvmeq->q_depth = depth;
1424 nvmeq->cq_vector = -1;
1425 dev->ctrl.queue_count++;
1430 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1431 nvmeq->cq_dma_addr);
1436 static int queue_request_irq(struct nvme_queue *nvmeq)
1438 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1439 int nr = nvmeq->dev->ctrl.instance;
1441 if (use_threaded_interrupts) {
1442 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1443 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1445 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1446 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1450 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1452 struct nvme_dev *dev = nvmeq->dev;
1454 spin_lock_irq(&nvmeq->cq_lock);
1457 nvmeq->cq_phase = 1;
1458 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1459 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1460 nvme_dbbuf_init(dev, nvmeq, qid);
1461 dev->online_queues++;
1462 spin_unlock_irq(&nvmeq->cq_lock);
1465 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1467 struct nvme_dev *dev = nvmeq->dev;
1471 if (dev->cmb && use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1472 unsigned offset = (qid - 1) * roundup(SQ_SIZE(nvmeq->q_depth),
1473 dev->ctrl.page_size);
1474 nvmeq->sq_dma_addr = dev->cmb_bus_addr + offset;
1475 nvmeq->sq_cmds_io = dev->cmb + offset;
1479 * A queue's vector matches the queue identifier unless the controller
1480 * has only one vector available.
1482 vector = dev->num_vecs == 1 ? 0 : qid;
1483 result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1487 result = adapter_alloc_sq(dev, qid, nvmeq);
1494 * Set cq_vector after alloc cq/sq, otherwise nvme_suspend_queue will
1495 * invoke free_irq for it and cause a 'Trying to free already-free IRQ
1496 * xxx' warning if the create CQ/SQ command times out.
1498 nvmeq->cq_vector = vector;
1499 nvme_init_queue(nvmeq, qid);
1500 result = queue_request_irq(nvmeq);
1507 nvmeq->cq_vector = -1;
1508 dev->online_queues--;
1509 adapter_delete_sq(dev, qid);
1511 adapter_delete_cq(dev, qid);
1515 static const struct blk_mq_ops nvme_mq_admin_ops = {
1516 .queue_rq = nvme_queue_rq,
1517 .complete = nvme_pci_complete_rq,
1518 .init_hctx = nvme_admin_init_hctx,
1519 .exit_hctx = nvme_admin_exit_hctx,
1520 .init_request = nvme_init_request,
1521 .timeout = nvme_timeout,
1524 static const struct blk_mq_ops nvme_mq_ops = {
1525 .queue_rq = nvme_queue_rq,
1526 .complete = nvme_pci_complete_rq,
1527 .init_hctx = nvme_init_hctx,
1528 .init_request = nvme_init_request,
1529 .map_queues = nvme_pci_map_queues,
1530 .timeout = nvme_timeout,
1534 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1536 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1538 * If the controller was reset during removal, it's possible
1539 * user requests may be waiting on a stopped queue. Start the
1540 * queue to flush these to completion.
1542 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1543 blk_cleanup_queue(dev->ctrl.admin_q);
1544 blk_mq_free_tag_set(&dev->admin_tagset);
1548 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1550 if (!dev->ctrl.admin_q) {
1551 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1552 dev->admin_tagset.nr_hw_queues = 1;
1554 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1555 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1556 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1557 dev->admin_tagset.cmd_size = nvme_pci_cmd_size(dev, false);
1558 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1559 dev->admin_tagset.driver_data = dev;
1561 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1563 dev->ctrl.admin_tagset = &dev->admin_tagset;
1565 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1566 if (IS_ERR(dev->ctrl.admin_q)) {
1567 blk_mq_free_tag_set(&dev->admin_tagset);
1570 if (!blk_get_queue(dev->ctrl.admin_q)) {
1571 nvme_dev_remove_admin(dev);
1572 dev->ctrl.admin_q = NULL;
1576 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1581 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1583 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1586 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1588 struct pci_dev *pdev = to_pci_dev(dev->dev);
1590 if (size <= dev->bar_mapped_size)
1592 if (size > pci_resource_len(pdev, 0))
1596 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1598 dev->bar_mapped_size = 0;
1601 dev->bar_mapped_size = size;
1602 dev->dbs = dev->bar + NVME_REG_DBS;
1607 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1611 struct nvme_queue *nvmeq;
1613 result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1617 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1618 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1620 if (dev->subsystem &&
1621 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1622 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1624 result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1628 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1632 nvmeq = &dev->queues[0];
1633 aqa = nvmeq->q_depth - 1;
1636 writel(aqa, dev->bar + NVME_REG_AQA);
1637 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1638 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1640 result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap);
1644 nvmeq->cq_vector = 0;
1645 nvme_init_queue(nvmeq, 0);
1646 result = queue_request_irq(nvmeq);
1648 nvmeq->cq_vector = -1;
1655 static int nvme_create_io_queues(struct nvme_dev *dev)
1660 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1661 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1667 max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1668 for (i = dev->online_queues; i <= max; i++) {
1669 ret = nvme_create_queue(&dev->queues[i], i);
1675 * Ignore failing Create SQ/CQ commands, we can continue with less
1676 * than the desired amount of queues, and even a controller without
1677 * I/O queues can still be used to issue admin commands. This might
1678 * be useful to upgrade a buggy firmware for example.
1680 return ret >= 0 ? 0 : ret;
1683 static ssize_t nvme_cmb_show(struct device *dev,
1684 struct device_attribute *attr,
1687 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1689 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
1690 ndev->cmbloc, ndev->cmbsz);
1692 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1694 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1696 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1698 return 1ULL << (12 + 4 * szu);
1701 static u32 nvme_cmb_size(struct nvme_dev *dev)
1703 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1706 static void nvme_map_cmb(struct nvme_dev *dev)
1709 resource_size_t bar_size;
1710 struct pci_dev *pdev = to_pci_dev(dev->dev);
1713 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1716 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1721 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1722 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1723 bar = NVME_CMB_BIR(dev->cmbloc);
1724 bar_size = pci_resource_len(pdev, bar);
1726 if (offset > bar_size)
1730 * Controllers may support a CMB size larger than their BAR,
1731 * for example, due to being behind a bridge. Reduce the CMB to
1732 * the reported size of the BAR
1734 if (size > bar_size - offset)
1735 size = bar_size - offset;
1737 dev->cmb = ioremap_wc(pci_resource_start(pdev, bar) + offset, size);
1740 dev->cmb_bus_addr = pci_bus_address(pdev, bar) + offset;
1741 dev->cmb_size = size;
1743 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1744 &dev_attr_cmb.attr, NULL))
1745 dev_warn(dev->ctrl.device,
1746 "failed to add sysfs attribute for CMB\n");
1749 static inline void nvme_release_cmb(struct nvme_dev *dev)
1754 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1755 &dev_attr_cmb.attr, NULL);
1760 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1762 u64 dma_addr = dev->host_mem_descs_dma;
1763 struct nvme_command c;
1766 memset(&c, 0, sizeof(c));
1767 c.features.opcode = nvme_admin_set_features;
1768 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1769 c.features.dword11 = cpu_to_le32(bits);
1770 c.features.dword12 = cpu_to_le32(dev->host_mem_size >>
1771 ilog2(dev->ctrl.page_size));
1772 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
1773 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
1774 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
1776 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1778 dev_warn(dev->ctrl.device,
1779 "failed to set host mem (err %d, flags %#x).\n",
1785 static void nvme_free_host_mem(struct nvme_dev *dev)
1789 for (i = 0; i < dev->nr_host_mem_descs; i++) {
1790 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1791 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1793 dma_free_coherent(dev->dev, size, dev->host_mem_desc_bufs[i],
1794 le64_to_cpu(desc->addr));
1797 kfree(dev->host_mem_desc_bufs);
1798 dev->host_mem_desc_bufs = NULL;
1799 dma_free_coherent(dev->dev,
1800 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1801 dev->host_mem_descs, dev->host_mem_descs_dma);
1802 dev->host_mem_descs = NULL;
1803 dev->nr_host_mem_descs = 0;
1806 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1809 struct nvme_host_mem_buf_desc *descs;
1810 u32 max_entries, len;
1811 dma_addr_t descs_dma;
1816 tmp = (preferred + chunk_size - 1);
1817 do_div(tmp, chunk_size);
1820 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1821 max_entries = dev->ctrl.hmmaxd;
1823 descs = dma_zalloc_coherent(dev->dev, max_entries * sizeof(*descs),
1824 &descs_dma, GFP_KERNEL);
1828 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1830 goto out_free_descs;
1832 for (size = 0; size < preferred && i < max_entries; size += len) {
1833 dma_addr_t dma_addr;
1835 len = min_t(u64, chunk_size, preferred - size);
1836 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1837 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1841 descs[i].addr = cpu_to_le64(dma_addr);
1842 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1849 dev->nr_host_mem_descs = i;
1850 dev->host_mem_size = size;
1851 dev->host_mem_descs = descs;
1852 dev->host_mem_descs_dma = descs_dma;
1853 dev->host_mem_desc_bufs = bufs;
1858 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1860 dma_free_coherent(dev->dev, size, bufs[i],
1861 le64_to_cpu(descs[i].addr));
1866 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1869 dev->host_mem_descs = NULL;
1873 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1877 /* start big and work our way down */
1878 for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1879 chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
1881 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1882 if (!min || dev->host_mem_size >= min)
1884 nvme_free_host_mem(dev);
1891 static int nvme_setup_host_mem(struct nvme_dev *dev)
1893 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1894 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1895 u64 min = (u64)dev->ctrl.hmmin * 4096;
1896 u32 enable_bits = NVME_HOST_MEM_ENABLE;
1899 preferred = min(preferred, max);
1901 dev_warn(dev->ctrl.device,
1902 "min host memory (%lld MiB) above limit (%d MiB).\n",
1903 min >> ilog2(SZ_1M), max_host_mem_size_mb);
1904 nvme_free_host_mem(dev);
1909 * If we already have a buffer allocated check if we can reuse it.
1911 if (dev->host_mem_descs) {
1912 if (dev->host_mem_size >= min)
1913 enable_bits |= NVME_HOST_MEM_RETURN;
1915 nvme_free_host_mem(dev);
1918 if (!dev->host_mem_descs) {
1919 if (nvme_alloc_host_mem(dev, min, preferred)) {
1920 dev_warn(dev->ctrl.device,
1921 "failed to allocate host memory buffer.\n");
1922 return 0; /* controller must work without HMB */
1925 dev_info(dev->ctrl.device,
1926 "allocated %lld MiB host memory buffer.\n",
1927 dev->host_mem_size >> ilog2(SZ_1M));
1930 ret = nvme_set_host_mem(dev, enable_bits);
1932 nvme_free_host_mem(dev);
1936 static int nvme_setup_io_queues(struct nvme_dev *dev)
1938 struct nvme_queue *adminq = &dev->queues[0];
1939 struct pci_dev *pdev = to_pci_dev(dev->dev);
1940 int result, nr_io_queues;
1943 struct irq_affinity affd = {
1947 nr_io_queues = num_possible_cpus();
1948 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1952 if (nr_io_queues == 0)
1955 if (dev->cmb && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1956 result = nvme_cmb_qdepth(dev, nr_io_queues,
1957 sizeof(struct nvme_command));
1959 dev->q_depth = result;
1961 nvme_release_cmb(dev);
1965 size = db_bar_size(dev, nr_io_queues);
1966 result = nvme_remap_bar(dev, size);
1969 if (!--nr_io_queues)
1972 adminq->q_db = dev->dbs;
1974 /* Deregister the admin queue's interrupt */
1975 pci_free_irq(pdev, 0, adminq);
1978 * If we enable msix early due to not intx, disable it again before
1979 * setting up the full range we need.
1981 pci_free_irq_vectors(pdev);
1982 result = pci_alloc_irq_vectors_affinity(pdev, 1, nr_io_queues + 1,
1983 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
1986 dev->num_vecs = result;
1987 dev->max_qid = max(result - 1, 1);
1990 * Should investigate if there's a performance win from allocating
1991 * more queues than interrupt vectors; it might allow the submission
1992 * path to scale better, even if the receive path is limited by the
1993 * number of interrupts.
1996 result = queue_request_irq(adminq);
1998 adminq->cq_vector = -1;
2001 return nvme_create_io_queues(dev);
2004 static void nvme_del_queue_end(struct request *req, blk_status_t error)
2006 struct nvme_queue *nvmeq = req->end_io_data;
2008 blk_mq_free_request(req);
2009 complete(&nvmeq->dev->ioq_wait);
2012 static void nvme_del_cq_end(struct request *req, blk_status_t error)
2014 struct nvme_queue *nvmeq = req->end_io_data;
2018 unsigned long flags;
2020 spin_lock_irqsave(&nvmeq->cq_lock, flags);
2021 nvme_process_cq(nvmeq, &start, &end, -1);
2022 spin_unlock_irqrestore(&nvmeq->cq_lock, flags);
2024 nvme_complete_cqes(nvmeq, start, end);
2027 nvme_del_queue_end(req, error);
2030 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2032 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2033 struct request *req;
2034 struct nvme_command cmd;
2036 memset(&cmd, 0, sizeof(cmd));
2037 cmd.delete_queue.opcode = opcode;
2038 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2040 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
2042 return PTR_ERR(req);
2044 req->timeout = ADMIN_TIMEOUT;
2045 req->end_io_data = nvmeq;
2047 blk_execute_rq_nowait(q, NULL, req, false,
2048 opcode == nvme_admin_delete_cq ?
2049 nvme_del_cq_end : nvme_del_queue_end);
2053 static void nvme_disable_io_queues(struct nvme_dev *dev)
2055 int pass, queues = dev->online_queues - 1;
2056 unsigned long timeout;
2057 u8 opcode = nvme_admin_delete_sq;
2059 for (pass = 0; pass < 2; pass++) {
2060 int sent = 0, i = queues;
2062 reinit_completion(&dev->ioq_wait);
2064 timeout = ADMIN_TIMEOUT;
2065 for (; i > 0; i--, sent++)
2066 if (nvme_delete_queue(&dev->queues[i], opcode))
2070 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
2076 opcode = nvme_admin_delete_cq;
2081 * return error value only when tagset allocation failed
2083 static int nvme_dev_add(struct nvme_dev *dev)
2087 if (!dev->ctrl.tagset) {
2088 dev->tagset.ops = &nvme_mq_ops;
2089 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2090 dev->tagset.timeout = NVME_IO_TIMEOUT;
2091 dev->tagset.numa_node = dev_to_node(dev->dev);
2092 dev->tagset.queue_depth =
2093 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2094 dev->tagset.cmd_size = nvme_pci_cmd_size(dev, false);
2095 if ((dev->ctrl.sgls & ((1 << 0) | (1 << 1))) && sgl_threshold) {
2096 dev->tagset.cmd_size = max(dev->tagset.cmd_size,
2097 nvme_pci_cmd_size(dev, true));
2099 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2100 dev->tagset.driver_data = dev;
2102 ret = blk_mq_alloc_tag_set(&dev->tagset);
2104 dev_warn(dev->ctrl.device,
2105 "IO queues tagset allocation failed %d\n", ret);
2108 dev->ctrl.tagset = &dev->tagset;
2110 nvme_dbbuf_set(dev);
2112 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2114 /* Free previously allocated queues that are no longer usable */
2115 nvme_free_queues(dev, dev->online_queues);
2121 static int nvme_pci_enable(struct nvme_dev *dev)
2123 int result = -ENOMEM;
2124 struct pci_dev *pdev = to_pci_dev(dev->dev);
2126 if (pci_enable_device_mem(pdev))
2129 pci_set_master(pdev);
2131 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
2132 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
2135 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2141 * Some devices and/or platforms don't advertise or work with INTx
2142 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2143 * adjust this later.
2145 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2149 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2151 dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2153 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2154 dev->dbs = dev->bar + 4096;
2157 * Temporary fix for the Apple controller found in the MacBook8,1 and
2158 * some MacBook7,1 to avoid controller resets and data loss.
2160 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2162 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2163 "set queue depth=%u to work around controller resets\n",
2165 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2166 (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2167 NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2169 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2170 "set queue depth=%u\n", dev->q_depth);
2175 pci_enable_pcie_error_reporting(pdev);
2176 pci_save_state(pdev);
2180 pci_disable_device(pdev);
2184 static void nvme_dev_unmap(struct nvme_dev *dev)
2188 pci_release_mem_regions(to_pci_dev(dev->dev));
2191 static void nvme_pci_disable(struct nvme_dev *dev)
2193 struct pci_dev *pdev = to_pci_dev(dev->dev);
2195 nvme_release_cmb(dev);
2196 pci_free_irq_vectors(pdev);
2198 if (pci_is_enabled(pdev)) {
2199 pci_disable_pcie_error_reporting(pdev);
2200 pci_disable_device(pdev);
2204 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2208 struct pci_dev *pdev = to_pci_dev(dev->dev);
2210 mutex_lock(&dev->shutdown_lock);
2211 if (pci_is_enabled(pdev)) {
2212 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2214 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2215 dev->ctrl.state == NVME_CTRL_RESETTING)
2216 nvme_start_freeze(&dev->ctrl);
2217 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2218 pdev->error_state != pci_channel_io_normal);
2222 * Give the controller a chance to complete all entered requests if
2223 * doing a safe shutdown.
2227 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2230 nvme_stop_queues(&dev->ctrl);
2232 if (!dead && dev->ctrl.queue_count > 0) {
2233 nvme_disable_io_queues(dev);
2234 nvme_disable_admin_queue(dev, shutdown);
2236 for (i = dev->ctrl.queue_count - 1; i >= 0; i--)
2237 nvme_suspend_queue(&dev->queues[i]);
2239 nvme_pci_disable(dev);
2241 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2242 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2245 * The driver will not be starting up queues again if shutting down so
2246 * must flush all entered requests to their failed completion to avoid
2247 * deadlocking blk-mq hot-cpu notifier.
2250 nvme_start_queues(&dev->ctrl);
2251 mutex_unlock(&dev->shutdown_lock);
2254 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2256 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2257 PAGE_SIZE, PAGE_SIZE, 0);
2258 if (!dev->prp_page_pool)
2261 /* Optimisation for I/Os between 4k and 128k */
2262 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2264 if (!dev->prp_small_pool) {
2265 dma_pool_destroy(dev->prp_page_pool);
2271 static void nvme_release_prp_pools(struct nvme_dev *dev)
2273 dma_pool_destroy(dev->prp_page_pool);
2274 dma_pool_destroy(dev->prp_small_pool);
2277 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2279 struct nvme_dev *dev = to_nvme_dev(ctrl);
2281 nvme_dbbuf_dma_free(dev);
2282 put_device(dev->dev);
2283 if (dev->tagset.tags)
2284 blk_mq_free_tag_set(&dev->tagset);
2285 if (dev->ctrl.admin_q)
2286 blk_put_queue(dev->ctrl.admin_q);
2288 free_opal_dev(dev->ctrl.opal_dev);
2289 mempool_destroy(dev->iod_mempool);
2293 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
2295 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
2297 nvme_get_ctrl(&dev->ctrl);
2298 nvme_dev_disable(dev, false);
2299 nvme_kill_queues(&dev->ctrl);
2300 if (!queue_work(nvme_wq, &dev->remove_work))
2301 nvme_put_ctrl(&dev->ctrl);
2304 static void nvme_reset_work(struct work_struct *work)
2306 struct nvme_dev *dev =
2307 container_of(work, struct nvme_dev, ctrl.reset_work);
2308 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2309 int result = -ENODEV;
2310 enum nvme_ctrl_state new_state = NVME_CTRL_LIVE;
2312 if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
2316 * If we're called to reset a live controller first shut it down before
2319 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2320 nvme_dev_disable(dev, false);
2323 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2324 * initializing procedure here.
2326 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2327 dev_warn(dev->ctrl.device,
2328 "failed to mark controller CONNECTING\n");
2332 result = nvme_pci_enable(dev);
2336 result = nvme_pci_configure_admin_queue(dev);
2340 result = nvme_alloc_admin_tags(dev);
2345 * Limit the max command size to prevent iod->sg allocations going
2346 * over a single page.
2348 dev->ctrl.max_hw_sectors = NVME_MAX_KB_SZ << 1;
2349 dev->ctrl.max_segments = NVME_MAX_SEGS;
2351 result = nvme_init_identify(&dev->ctrl);
2355 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2356 if (!dev->ctrl.opal_dev)
2357 dev->ctrl.opal_dev =
2358 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2359 else if (was_suspend)
2360 opal_unlock_from_suspend(dev->ctrl.opal_dev);
2362 free_opal_dev(dev->ctrl.opal_dev);
2363 dev->ctrl.opal_dev = NULL;
2366 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2367 result = nvme_dbbuf_dma_alloc(dev);
2370 "unable to allocate dma for dbbuf\n");
2373 if (dev->ctrl.hmpre) {
2374 result = nvme_setup_host_mem(dev);
2379 result = nvme_setup_io_queues(dev);
2384 * Keep the controller around but remove all namespaces if we don't have
2385 * any working I/O queue.
2387 if (dev->online_queues < 2) {
2388 dev_warn(dev->ctrl.device, "IO queues not created\n");
2389 nvme_kill_queues(&dev->ctrl);
2390 nvme_remove_namespaces(&dev->ctrl);
2391 new_state = NVME_CTRL_ADMIN_ONLY;
2393 nvme_start_queues(&dev->ctrl);
2394 nvme_wait_freeze(&dev->ctrl);
2395 /* hit this only when allocate tagset fails */
2396 if (nvme_dev_add(dev))
2397 new_state = NVME_CTRL_ADMIN_ONLY;
2398 nvme_unfreeze(&dev->ctrl);
2402 * If only admin queue live, keep it to do further investigation or
2405 if (!nvme_change_ctrl_state(&dev->ctrl, new_state)) {
2406 dev_warn(dev->ctrl.device,
2407 "failed to mark controller state %d\n", new_state);
2411 nvme_start_ctrl(&dev->ctrl);
2415 nvme_remove_dead_ctrl(dev, result);
2418 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2420 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2421 struct pci_dev *pdev = to_pci_dev(dev->dev);
2423 if (pci_get_drvdata(pdev))
2424 device_release_driver(&pdev->dev);
2425 nvme_put_ctrl(&dev->ctrl);
2428 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2430 *val = readl(to_nvme_dev(ctrl)->bar + off);
2434 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2436 writel(val, to_nvme_dev(ctrl)->bar + off);
2440 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2442 *val = readq(to_nvme_dev(ctrl)->bar + off);
2446 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2448 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2450 return snprintf(buf, size, "%s", dev_name(&pdev->dev));
2453 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2455 .module = THIS_MODULE,
2456 .flags = NVME_F_METADATA_SUPPORTED,
2457 .reg_read32 = nvme_pci_reg_read32,
2458 .reg_write32 = nvme_pci_reg_write32,
2459 .reg_read64 = nvme_pci_reg_read64,
2460 .free_ctrl = nvme_pci_free_ctrl,
2461 .submit_async_event = nvme_pci_submit_async_event,
2462 .get_address = nvme_pci_get_address,
2465 static int nvme_dev_map(struct nvme_dev *dev)
2467 struct pci_dev *pdev = to_pci_dev(dev->dev);
2469 if (pci_request_mem_regions(pdev, "nvme"))
2472 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2477 pci_release_mem_regions(pdev);
2481 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2483 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2485 * Several Samsung devices seem to drop off the PCIe bus
2486 * randomly when APST is on and uses the deepest sleep state.
2487 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2488 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2489 * 950 PRO 256GB", but it seems to be restricted to two Dell
2492 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2493 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2494 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2495 return NVME_QUIRK_NO_DEEPEST_PS;
2496 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2498 * Samsung SSD 960 EVO drops off the PCIe bus after system
2499 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2500 * within few minutes after bootup on a Coffee Lake board -
2503 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2504 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2505 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2506 return NVME_QUIRK_NO_APST;
2512 static void nvme_async_probe(void *data, async_cookie_t cookie)
2514 struct nvme_dev *dev = data;
2516 nvme_reset_ctrl_sync(&dev->ctrl);
2517 flush_work(&dev->ctrl.scan_work);
2518 nvme_put_ctrl(&dev->ctrl);
2521 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2523 int node, result = -ENOMEM;
2524 struct nvme_dev *dev;
2525 unsigned long quirks = id->driver_data;
2528 node = dev_to_node(&pdev->dev);
2529 if (node == NUMA_NO_NODE)
2530 set_dev_node(&pdev->dev, first_memory_node);
2532 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2536 dev->queues = kcalloc_node(num_possible_cpus() + 1,
2537 sizeof(struct nvme_queue), GFP_KERNEL, node);
2541 dev->dev = get_device(&pdev->dev);
2542 pci_set_drvdata(pdev, dev);
2544 result = nvme_dev_map(dev);
2548 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2549 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2550 mutex_init(&dev->shutdown_lock);
2551 init_completion(&dev->ioq_wait);
2553 result = nvme_setup_prp_pools(dev);
2557 quirks |= check_vendor_combination_bug(pdev);
2560 * Double check that our mempool alloc size will cover the biggest
2561 * command we support.
2563 alloc_size = nvme_pci_iod_alloc_size(dev, NVME_MAX_KB_SZ,
2564 NVME_MAX_SEGS, true);
2565 WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2567 dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
2569 (void *) alloc_size,
2571 if (!dev->iod_mempool) {
2576 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2579 goto release_mempool;
2581 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2583 nvme_get_ctrl(&dev->ctrl);
2584 async_schedule(nvme_async_probe, dev);
2589 mempool_destroy(dev->iod_mempool);
2591 nvme_release_prp_pools(dev);
2593 nvme_dev_unmap(dev);
2595 put_device(dev->dev);
2602 static void nvme_reset_prepare(struct pci_dev *pdev)
2604 struct nvme_dev *dev = pci_get_drvdata(pdev);
2605 nvme_dev_disable(dev, false);
2608 static void nvme_reset_done(struct pci_dev *pdev)
2610 struct nvme_dev *dev = pci_get_drvdata(pdev);
2611 nvme_reset_ctrl_sync(&dev->ctrl);
2614 static void nvme_shutdown(struct pci_dev *pdev)
2616 struct nvme_dev *dev = pci_get_drvdata(pdev);
2617 nvme_dev_disable(dev, true);
2621 * The driver's remove may be called on a device in a partially initialized
2622 * state. This function must not have any dependencies on the device state in
2625 static void nvme_remove(struct pci_dev *pdev)
2627 struct nvme_dev *dev = pci_get_drvdata(pdev);
2629 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2631 cancel_work_sync(&dev->ctrl.reset_work);
2632 pci_set_drvdata(pdev, NULL);
2634 if (!pci_device_is_present(pdev)) {
2635 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2636 nvme_dev_disable(dev, true);
2639 flush_work(&dev->ctrl.reset_work);
2640 nvme_stop_ctrl(&dev->ctrl);
2641 nvme_remove_namespaces(&dev->ctrl);
2642 nvme_dev_disable(dev, true);
2643 nvme_free_host_mem(dev);
2644 nvme_dev_remove_admin(dev);
2645 nvme_free_queues(dev, 0);
2646 nvme_uninit_ctrl(&dev->ctrl);
2647 nvme_release_prp_pools(dev);
2648 nvme_dev_unmap(dev);
2649 nvme_put_ctrl(&dev->ctrl);
2652 #ifdef CONFIG_PM_SLEEP
2653 static int nvme_suspend(struct device *dev)
2655 struct pci_dev *pdev = to_pci_dev(dev);
2656 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2658 nvme_dev_disable(ndev, true);
2662 static int nvme_resume(struct device *dev)
2664 struct pci_dev *pdev = to_pci_dev(dev);
2665 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2667 nvme_reset_ctrl(&ndev->ctrl);
2672 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2674 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2675 pci_channel_state_t state)
2677 struct nvme_dev *dev = pci_get_drvdata(pdev);
2680 * A frozen channel requires a reset. When detected, this method will
2681 * shutdown the controller to quiesce. The controller will be restarted
2682 * after the slot reset through driver's slot_reset callback.
2685 case pci_channel_io_normal:
2686 return PCI_ERS_RESULT_CAN_RECOVER;
2687 case pci_channel_io_frozen:
2688 dev_warn(dev->ctrl.device,
2689 "frozen state error detected, reset controller\n");
2690 nvme_dev_disable(dev, false);
2691 return PCI_ERS_RESULT_NEED_RESET;
2692 case pci_channel_io_perm_failure:
2693 dev_warn(dev->ctrl.device,
2694 "failure state error detected, request disconnect\n");
2695 return PCI_ERS_RESULT_DISCONNECT;
2697 return PCI_ERS_RESULT_NEED_RESET;
2700 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2702 struct nvme_dev *dev = pci_get_drvdata(pdev);
2704 dev_info(dev->ctrl.device, "restart after slot reset\n");
2705 pci_restore_state(pdev);
2706 nvme_reset_ctrl(&dev->ctrl);
2707 return PCI_ERS_RESULT_RECOVERED;
2710 static void nvme_error_resume(struct pci_dev *pdev)
2712 struct nvme_dev *dev = pci_get_drvdata(pdev);
2714 flush_work(&dev->ctrl.reset_work);
2715 pci_cleanup_aer_uncorrect_error_status(pdev);
2718 static const struct pci_error_handlers nvme_err_handler = {
2719 .error_detected = nvme_error_detected,
2720 .slot_reset = nvme_slot_reset,
2721 .resume = nvme_error_resume,
2722 .reset_prepare = nvme_reset_prepare,
2723 .reset_done = nvme_reset_done,
2726 static const struct pci_device_id nvme_id_table[] = {
2727 { PCI_VDEVICE(INTEL, 0x0953),
2728 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2729 NVME_QUIRK_DEALLOCATE_ZEROES, },
2730 { PCI_VDEVICE(INTEL, 0x0a53),
2731 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2732 NVME_QUIRK_DEALLOCATE_ZEROES, },
2733 { PCI_VDEVICE(INTEL, 0x0a54),
2734 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2735 NVME_QUIRK_DEALLOCATE_ZEROES, },
2736 { PCI_VDEVICE(INTEL, 0x0a55),
2737 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2738 NVME_QUIRK_DEALLOCATE_ZEROES, },
2739 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
2740 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
2741 NVME_QUIRK_MEDIUM_PRIO_SQ },
2742 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2743 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2744 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */
2745 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2746 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
2747 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2748 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
2749 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2750 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
2751 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2752 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
2753 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2754 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
2755 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2756 { PCI_DEVICE(0x1d1d, 0x1f1f), /* LighNVM qemu device */
2757 .driver_data = NVME_QUIRK_LIGHTNVM, },
2758 { PCI_DEVICE(0x1d1d, 0x2807), /* CNEX WL */
2759 .driver_data = NVME_QUIRK_LIGHTNVM, },
2760 { PCI_DEVICE(0x1d1d, 0x2601), /* CNEX Granby */
2761 .driver_data = NVME_QUIRK_LIGHTNVM, },
2762 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2763 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2764 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
2767 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2769 static struct pci_driver nvme_driver = {
2771 .id_table = nvme_id_table,
2772 .probe = nvme_probe,
2773 .remove = nvme_remove,
2774 .shutdown = nvme_shutdown,
2776 .pm = &nvme_dev_pm_ops,
2778 .sriov_configure = pci_sriov_configure_simple,
2779 .err_handler = &nvme_err_handler,
2782 static int __init nvme_init(void)
2784 return pci_register_driver(&nvme_driver);
2787 static void __exit nvme_exit(void)
2789 pci_unregister_driver(&nvme_driver);
2790 flush_workqueue(nvme_wq);
2794 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2795 MODULE_LICENSE("GPL");
2796 MODULE_VERSION("1.0");
2797 module_init(nvme_init);
2798 module_exit(nvme_exit);