Merge tag 'for-linus-20190118' of git://git.kernel.dk/linux-block
[sfrench/cifs-2.6.git] / drivers / nvme / host / pci.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/aer.h>
16 #include <linux/async.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/blk-mq-pci.h>
20 #include <linux/dmi.h>
21 #include <linux/init.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/mm.h>
25 #include <linux/module.h>
26 #include <linux/mutex.h>
27 #include <linux/once.h>
28 #include <linux/pci.h>
29 #include <linux/t10-pi.h>
30 #include <linux/types.h>
31 #include <linux/io-64-nonatomic-lo-hi.h>
32 #include <linux/sed-opal.h>
33 #include <linux/pci-p2pdma.h>
34
35 #include "trace.h"
36 #include "nvme.h"
37
38 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
39 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
40
41 #define SGES_PER_PAGE   (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
42
43 /*
44  * These can be higher, but we need to ensure that any command doesn't
45  * require an sg allocation that needs more than a page of data.
46  */
47 #define NVME_MAX_KB_SZ  4096
48 #define NVME_MAX_SEGS   127
49
50 static int use_threaded_interrupts;
51 module_param(use_threaded_interrupts, int, 0);
52
53 static bool use_cmb_sqes = true;
54 module_param(use_cmb_sqes, bool, 0444);
55 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
56
57 static unsigned int max_host_mem_size_mb = 128;
58 module_param(max_host_mem_size_mb, uint, 0444);
59 MODULE_PARM_DESC(max_host_mem_size_mb,
60         "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
61
62 static unsigned int sgl_threshold = SZ_32K;
63 module_param(sgl_threshold, uint, 0644);
64 MODULE_PARM_DESC(sgl_threshold,
65                 "Use SGLs when average request segment size is larger or equal to "
66                 "this size. Use 0 to disable SGLs.");
67
68 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
69 static const struct kernel_param_ops io_queue_depth_ops = {
70         .set = io_queue_depth_set,
71         .get = param_get_int,
72 };
73
74 static int io_queue_depth = 1024;
75 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
76 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
77
78 static int queue_count_set(const char *val, const struct kernel_param *kp);
79 static const struct kernel_param_ops queue_count_ops = {
80         .set = queue_count_set,
81         .get = param_get_int,
82 };
83
84 static int write_queues;
85 module_param_cb(write_queues, &queue_count_ops, &write_queues, 0644);
86 MODULE_PARM_DESC(write_queues,
87         "Number of queues to use for writes. If not set, reads and writes "
88         "will share a queue set.");
89
90 static int poll_queues = 0;
91 module_param_cb(poll_queues, &queue_count_ops, &poll_queues, 0644);
92 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
93
94 struct nvme_dev;
95 struct nvme_queue;
96
97 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
98 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
99
100 /*
101  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
102  */
103 struct nvme_dev {
104         struct nvme_queue *queues;
105         struct blk_mq_tag_set tagset;
106         struct blk_mq_tag_set admin_tagset;
107         u32 __iomem *dbs;
108         struct device *dev;
109         struct dma_pool *prp_page_pool;
110         struct dma_pool *prp_small_pool;
111         unsigned online_queues;
112         unsigned max_qid;
113         unsigned io_queues[HCTX_MAX_TYPES];
114         unsigned int num_vecs;
115         int q_depth;
116         u32 db_stride;
117         void __iomem *bar;
118         unsigned long bar_mapped_size;
119         struct work_struct remove_work;
120         struct mutex shutdown_lock;
121         bool subsystem;
122         u64 cmb_size;
123         bool cmb_use_sqes;
124         u32 cmbsz;
125         u32 cmbloc;
126         struct nvme_ctrl ctrl;
127
128         mempool_t *iod_mempool;
129
130         /* shadow doorbell buffer support: */
131         u32 *dbbuf_dbs;
132         dma_addr_t dbbuf_dbs_dma_addr;
133         u32 *dbbuf_eis;
134         dma_addr_t dbbuf_eis_dma_addr;
135
136         /* host memory buffer support: */
137         u64 host_mem_size;
138         u32 nr_host_mem_descs;
139         dma_addr_t host_mem_descs_dma;
140         struct nvme_host_mem_buf_desc *host_mem_descs;
141         void **host_mem_desc_bufs;
142 };
143
144 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
145 {
146         int n = 0, ret;
147
148         ret = kstrtoint(val, 10, &n);
149         if (ret != 0 || n < 2)
150                 return -EINVAL;
151
152         return param_set_int(val, kp);
153 }
154
155 static int queue_count_set(const char *val, const struct kernel_param *kp)
156 {
157         int n = 0, ret;
158
159         ret = kstrtoint(val, 10, &n);
160         if (n > num_possible_cpus())
161                 n = num_possible_cpus();
162
163         return param_set_int(val, kp);
164 }
165
166 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
167 {
168         return qid * 2 * stride;
169 }
170
171 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
172 {
173         return (qid * 2 + 1) * stride;
174 }
175
176 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
177 {
178         return container_of(ctrl, struct nvme_dev, ctrl);
179 }
180
181 /*
182  * An NVM Express queue.  Each device has at least two (one for admin
183  * commands and one for I/O commands).
184  */
185 struct nvme_queue {
186         struct device *q_dmadev;
187         struct nvme_dev *dev;
188         spinlock_t sq_lock;
189         struct nvme_command *sq_cmds;
190          /* only used for poll queues: */
191         spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
192         volatile struct nvme_completion *cqes;
193         struct blk_mq_tags **tags;
194         dma_addr_t sq_dma_addr;
195         dma_addr_t cq_dma_addr;
196         u32 __iomem *q_db;
197         u16 q_depth;
198         s16 cq_vector;
199         u16 sq_tail;
200         u16 last_sq_tail;
201         u16 cq_head;
202         u16 last_cq_head;
203         u16 qid;
204         u8 cq_phase;
205         unsigned long flags;
206 #define NVMEQ_ENABLED           0
207 #define NVMEQ_SQ_CMB            1
208 #define NVMEQ_DELETE_ERROR      2
209         u32 *dbbuf_sq_db;
210         u32 *dbbuf_cq_db;
211         u32 *dbbuf_sq_ei;
212         u32 *dbbuf_cq_ei;
213         struct completion delete_done;
214 };
215
216 /*
217  * The nvme_iod describes the data in an I/O, including the list of PRP
218  * entries.  You can't see it in this data structure because C doesn't let
219  * me express that.  Use nvme_init_iod to ensure there's enough space
220  * allocated to store the PRP list.
221  */
222 struct nvme_iod {
223         struct nvme_request req;
224         struct nvme_queue *nvmeq;
225         bool use_sgl;
226         int aborted;
227         int npages;             /* In the PRP list. 0 means small pool in use */
228         int nents;              /* Used in scatterlist */
229         int length;             /* Of data, in bytes */
230         dma_addr_t first_dma;
231         struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
232         struct scatterlist *sg;
233         struct scatterlist inline_sg[0];
234 };
235
236 /*
237  * Check we didin't inadvertently grow the command struct
238  */
239 static inline void _nvme_check_size(void)
240 {
241         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
242         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
243         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
244         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
245         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
246         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
247         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
248         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
249         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
250         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
251         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
252         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
253         BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
254 }
255
256 static unsigned int max_io_queues(void)
257 {
258         return num_possible_cpus() + write_queues + poll_queues;
259 }
260
261 static unsigned int max_queue_count(void)
262 {
263         /* IO queues + admin queue */
264         return 1 + max_io_queues();
265 }
266
267 static inline unsigned int nvme_dbbuf_size(u32 stride)
268 {
269         return (max_queue_count() * 8 * stride);
270 }
271
272 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
273 {
274         unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
275
276         if (dev->dbbuf_dbs)
277                 return 0;
278
279         dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
280                                             &dev->dbbuf_dbs_dma_addr,
281                                             GFP_KERNEL);
282         if (!dev->dbbuf_dbs)
283                 return -ENOMEM;
284         dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
285                                             &dev->dbbuf_eis_dma_addr,
286                                             GFP_KERNEL);
287         if (!dev->dbbuf_eis) {
288                 dma_free_coherent(dev->dev, mem_size,
289                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
290                 dev->dbbuf_dbs = NULL;
291                 return -ENOMEM;
292         }
293
294         return 0;
295 }
296
297 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
298 {
299         unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
300
301         if (dev->dbbuf_dbs) {
302                 dma_free_coherent(dev->dev, mem_size,
303                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
304                 dev->dbbuf_dbs = NULL;
305         }
306         if (dev->dbbuf_eis) {
307                 dma_free_coherent(dev->dev, mem_size,
308                                   dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
309                 dev->dbbuf_eis = NULL;
310         }
311 }
312
313 static void nvme_dbbuf_init(struct nvme_dev *dev,
314                             struct nvme_queue *nvmeq, int qid)
315 {
316         if (!dev->dbbuf_dbs || !qid)
317                 return;
318
319         nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
320         nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
321         nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
322         nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
323 }
324
325 static void nvme_dbbuf_set(struct nvme_dev *dev)
326 {
327         struct nvme_command c;
328
329         if (!dev->dbbuf_dbs)
330                 return;
331
332         memset(&c, 0, sizeof(c));
333         c.dbbuf.opcode = nvme_admin_dbbuf;
334         c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
335         c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
336
337         if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
338                 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
339                 /* Free memory and continue on */
340                 nvme_dbbuf_dma_free(dev);
341         }
342 }
343
344 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
345 {
346         return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
347 }
348
349 /* Update dbbuf and return true if an MMIO is required */
350 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
351                                               volatile u32 *dbbuf_ei)
352 {
353         if (dbbuf_db) {
354                 u16 old_value;
355
356                 /*
357                  * Ensure that the queue is written before updating
358                  * the doorbell in memory
359                  */
360                 wmb();
361
362                 old_value = *dbbuf_db;
363                 *dbbuf_db = value;
364
365                 /*
366                  * Ensure that the doorbell is updated before reading the event
367                  * index from memory.  The controller needs to provide similar
368                  * ordering to ensure the envent index is updated before reading
369                  * the doorbell.
370                  */
371                 mb();
372
373                 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
374                         return false;
375         }
376
377         return true;
378 }
379
380 /*
381  * Max size of iod being embedded in the request payload
382  */
383 #define NVME_INT_PAGES          2
384 #define NVME_INT_BYTES(dev)     (NVME_INT_PAGES * (dev)->ctrl.page_size)
385
386 /*
387  * Will slightly overestimate the number of pages needed.  This is OK
388  * as it only leads to a small amount of wasted memory for the lifetime of
389  * the I/O.
390  */
391 static int nvme_npages(unsigned size, struct nvme_dev *dev)
392 {
393         unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
394                                       dev->ctrl.page_size);
395         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
396 }
397
398 /*
399  * Calculates the number of pages needed for the SGL segments. For example a 4k
400  * page can accommodate 256 SGL descriptors.
401  */
402 static int nvme_pci_npages_sgl(unsigned int num_seg)
403 {
404         return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE);
405 }
406
407 static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev,
408                 unsigned int size, unsigned int nseg, bool use_sgl)
409 {
410         size_t alloc_size;
411
412         if (use_sgl)
413                 alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg);
414         else
415                 alloc_size = sizeof(__le64 *) * nvme_npages(size, dev);
416
417         return alloc_size + sizeof(struct scatterlist) * nseg;
418 }
419
420 static unsigned int nvme_pci_cmd_size(struct nvme_dev *dev, bool use_sgl)
421 {
422         unsigned int alloc_size = nvme_pci_iod_alloc_size(dev,
423                                     NVME_INT_BYTES(dev), NVME_INT_PAGES,
424                                     use_sgl);
425
426         return sizeof(struct nvme_iod) + alloc_size;
427 }
428
429 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
430                                 unsigned int hctx_idx)
431 {
432         struct nvme_dev *dev = data;
433         struct nvme_queue *nvmeq = &dev->queues[0];
434
435         WARN_ON(hctx_idx != 0);
436         WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
437         WARN_ON(nvmeq->tags);
438
439         hctx->driver_data = nvmeq;
440         nvmeq->tags = &dev->admin_tagset.tags[0];
441         return 0;
442 }
443
444 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
445 {
446         struct nvme_queue *nvmeq = hctx->driver_data;
447
448         nvmeq->tags = NULL;
449 }
450
451 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
452                           unsigned int hctx_idx)
453 {
454         struct nvme_dev *dev = data;
455         struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
456
457         if (!nvmeq->tags)
458                 nvmeq->tags = &dev->tagset.tags[hctx_idx];
459
460         WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
461         hctx->driver_data = nvmeq;
462         return 0;
463 }
464
465 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
466                 unsigned int hctx_idx, unsigned int numa_node)
467 {
468         struct nvme_dev *dev = set->driver_data;
469         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
470         int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
471         struct nvme_queue *nvmeq = &dev->queues[queue_idx];
472
473         BUG_ON(!nvmeq);
474         iod->nvmeq = nvmeq;
475
476         nvme_req(req)->ctrl = &dev->ctrl;
477         return 0;
478 }
479
480 static int queue_irq_offset(struct nvme_dev *dev)
481 {
482         /* if we have more than 1 vec, admin queue offsets us by 1 */
483         if (dev->num_vecs > 1)
484                 return 1;
485
486         return 0;
487 }
488
489 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
490 {
491         struct nvme_dev *dev = set->driver_data;
492         int i, qoff, offset;
493
494         offset = queue_irq_offset(dev);
495         for (i = 0, qoff = 0; i < set->nr_maps; i++) {
496                 struct blk_mq_queue_map *map = &set->map[i];
497
498                 map->nr_queues = dev->io_queues[i];
499                 if (!map->nr_queues) {
500                         BUG_ON(i == HCTX_TYPE_DEFAULT);
501                         continue;
502                 }
503
504                 /*
505                  * The poll queue(s) doesn't have an IRQ (and hence IRQ
506                  * affinity), so use the regular blk-mq cpu mapping
507                  */
508                 map->queue_offset = qoff;
509                 if (i != HCTX_TYPE_POLL)
510                         blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
511                 else
512                         blk_mq_map_queues(map);
513                 qoff += map->nr_queues;
514                 offset += map->nr_queues;
515         }
516
517         return 0;
518 }
519
520 /*
521  * Write sq tail if we are asked to, or if the next command would wrap.
522  */
523 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
524 {
525         if (!write_sq) {
526                 u16 next_tail = nvmeq->sq_tail + 1;
527
528                 if (next_tail == nvmeq->q_depth)
529                         next_tail = 0;
530                 if (next_tail != nvmeq->last_sq_tail)
531                         return;
532         }
533
534         if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
535                         nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
536                 writel(nvmeq->sq_tail, nvmeq->q_db);
537         nvmeq->last_sq_tail = nvmeq->sq_tail;
538 }
539
540 /**
541  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
542  * @nvmeq: The queue to use
543  * @cmd: The command to send
544  * @write_sq: whether to write to the SQ doorbell
545  */
546 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
547                             bool write_sq)
548 {
549         spin_lock(&nvmeq->sq_lock);
550         memcpy(&nvmeq->sq_cmds[nvmeq->sq_tail], cmd, sizeof(*cmd));
551         if (++nvmeq->sq_tail == nvmeq->q_depth)
552                 nvmeq->sq_tail = 0;
553         nvme_write_sq_db(nvmeq, write_sq);
554         spin_unlock(&nvmeq->sq_lock);
555 }
556
557 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
558 {
559         struct nvme_queue *nvmeq = hctx->driver_data;
560
561         spin_lock(&nvmeq->sq_lock);
562         if (nvmeq->sq_tail != nvmeq->last_sq_tail)
563                 nvme_write_sq_db(nvmeq, true);
564         spin_unlock(&nvmeq->sq_lock);
565 }
566
567 static void **nvme_pci_iod_list(struct request *req)
568 {
569         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
570         return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
571 }
572
573 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
574 {
575         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
576         int nseg = blk_rq_nr_phys_segments(req);
577         unsigned int avg_seg_size;
578
579         if (nseg == 0)
580                 return false;
581
582         avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
583
584         if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
585                 return false;
586         if (!iod->nvmeq->qid)
587                 return false;
588         if (!sgl_threshold || avg_seg_size < sgl_threshold)
589                 return false;
590         return true;
591 }
592
593 static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
594 {
595         struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
596         int nseg = blk_rq_nr_phys_segments(rq);
597         unsigned int size = blk_rq_payload_bytes(rq);
598
599         iod->use_sgl = nvme_pci_use_sgls(dev, rq);
600
601         if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
602                 iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
603                 if (!iod->sg)
604                         return BLK_STS_RESOURCE;
605         } else {
606                 iod->sg = iod->inline_sg;
607         }
608
609         iod->aborted = 0;
610         iod->npages = -1;
611         iod->nents = 0;
612         iod->length = size;
613
614         return BLK_STS_OK;
615 }
616
617 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
618 {
619         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
620         const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1;
621         dma_addr_t dma_addr = iod->first_dma, next_dma_addr;
622
623         int i;
624
625         if (iod->npages == 0)
626                 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
627                         dma_addr);
628
629         for (i = 0; i < iod->npages; i++) {
630                 void *addr = nvme_pci_iod_list(req)[i];
631
632                 if (iod->use_sgl) {
633                         struct nvme_sgl_desc *sg_list = addr;
634
635                         next_dma_addr =
636                             le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr);
637                 } else {
638                         __le64 *prp_list = addr;
639
640                         next_dma_addr = le64_to_cpu(prp_list[last_prp]);
641                 }
642
643                 dma_pool_free(dev->prp_page_pool, addr, dma_addr);
644                 dma_addr = next_dma_addr;
645         }
646
647         if (iod->sg != iod->inline_sg)
648                 mempool_free(iod->sg, dev->iod_mempool);
649 }
650
651 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
652 {
653         int i;
654         struct scatterlist *sg;
655
656         for_each_sg(sgl, sg, nents, i) {
657                 dma_addr_t phys = sg_phys(sg);
658                 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
659                         "dma_address:%pad dma_length:%d\n",
660                         i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
661                         sg_dma_len(sg));
662         }
663 }
664
665 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
666                 struct request *req, struct nvme_rw_command *cmnd)
667 {
668         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
669         struct dma_pool *pool;
670         int length = blk_rq_payload_bytes(req);
671         struct scatterlist *sg = iod->sg;
672         int dma_len = sg_dma_len(sg);
673         u64 dma_addr = sg_dma_address(sg);
674         u32 page_size = dev->ctrl.page_size;
675         int offset = dma_addr & (page_size - 1);
676         __le64 *prp_list;
677         void **list = nvme_pci_iod_list(req);
678         dma_addr_t prp_dma;
679         int nprps, i;
680
681         length -= (page_size - offset);
682         if (length <= 0) {
683                 iod->first_dma = 0;
684                 goto done;
685         }
686
687         dma_len -= (page_size - offset);
688         if (dma_len) {
689                 dma_addr += (page_size - offset);
690         } else {
691                 sg = sg_next(sg);
692                 dma_addr = sg_dma_address(sg);
693                 dma_len = sg_dma_len(sg);
694         }
695
696         if (length <= page_size) {
697                 iod->first_dma = dma_addr;
698                 goto done;
699         }
700
701         nprps = DIV_ROUND_UP(length, page_size);
702         if (nprps <= (256 / 8)) {
703                 pool = dev->prp_small_pool;
704                 iod->npages = 0;
705         } else {
706                 pool = dev->prp_page_pool;
707                 iod->npages = 1;
708         }
709
710         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
711         if (!prp_list) {
712                 iod->first_dma = dma_addr;
713                 iod->npages = -1;
714                 return BLK_STS_RESOURCE;
715         }
716         list[0] = prp_list;
717         iod->first_dma = prp_dma;
718         i = 0;
719         for (;;) {
720                 if (i == page_size >> 3) {
721                         __le64 *old_prp_list = prp_list;
722                         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
723                         if (!prp_list)
724                                 return BLK_STS_RESOURCE;
725                         list[iod->npages++] = prp_list;
726                         prp_list[0] = old_prp_list[i - 1];
727                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
728                         i = 1;
729                 }
730                 prp_list[i++] = cpu_to_le64(dma_addr);
731                 dma_len -= page_size;
732                 dma_addr += page_size;
733                 length -= page_size;
734                 if (length <= 0)
735                         break;
736                 if (dma_len > 0)
737                         continue;
738                 if (unlikely(dma_len < 0))
739                         goto bad_sgl;
740                 sg = sg_next(sg);
741                 dma_addr = sg_dma_address(sg);
742                 dma_len = sg_dma_len(sg);
743         }
744
745 done:
746         cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
747         cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
748
749         return BLK_STS_OK;
750
751  bad_sgl:
752         WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
753                         "Invalid SGL for payload:%d nents:%d\n",
754                         blk_rq_payload_bytes(req), iod->nents);
755         return BLK_STS_IOERR;
756 }
757
758 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
759                 struct scatterlist *sg)
760 {
761         sge->addr = cpu_to_le64(sg_dma_address(sg));
762         sge->length = cpu_to_le32(sg_dma_len(sg));
763         sge->type = NVME_SGL_FMT_DATA_DESC << 4;
764 }
765
766 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
767                 dma_addr_t dma_addr, int entries)
768 {
769         sge->addr = cpu_to_le64(dma_addr);
770         if (entries < SGES_PER_PAGE) {
771                 sge->length = cpu_to_le32(entries * sizeof(*sge));
772                 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
773         } else {
774                 sge->length = cpu_to_le32(PAGE_SIZE);
775                 sge->type = NVME_SGL_FMT_SEG_DESC << 4;
776         }
777 }
778
779 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
780                 struct request *req, struct nvme_rw_command *cmd, int entries)
781 {
782         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
783         struct dma_pool *pool;
784         struct nvme_sgl_desc *sg_list;
785         struct scatterlist *sg = iod->sg;
786         dma_addr_t sgl_dma;
787         int i = 0;
788
789         /* setting the transfer type as SGL */
790         cmd->flags = NVME_CMD_SGL_METABUF;
791
792         if (entries == 1) {
793                 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
794                 return BLK_STS_OK;
795         }
796
797         if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
798                 pool = dev->prp_small_pool;
799                 iod->npages = 0;
800         } else {
801                 pool = dev->prp_page_pool;
802                 iod->npages = 1;
803         }
804
805         sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
806         if (!sg_list) {
807                 iod->npages = -1;
808                 return BLK_STS_RESOURCE;
809         }
810
811         nvme_pci_iod_list(req)[0] = sg_list;
812         iod->first_dma = sgl_dma;
813
814         nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
815
816         do {
817                 if (i == SGES_PER_PAGE) {
818                         struct nvme_sgl_desc *old_sg_desc = sg_list;
819                         struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
820
821                         sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
822                         if (!sg_list)
823                                 return BLK_STS_RESOURCE;
824
825                         i = 0;
826                         nvme_pci_iod_list(req)[iod->npages++] = sg_list;
827                         sg_list[i++] = *link;
828                         nvme_pci_sgl_set_seg(link, sgl_dma, entries);
829                 }
830
831                 nvme_pci_sgl_set_data(&sg_list[i++], sg);
832                 sg = sg_next(sg);
833         } while (--entries > 0);
834
835         return BLK_STS_OK;
836 }
837
838 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
839                 struct nvme_command *cmnd)
840 {
841         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
842         struct request_queue *q = req->q;
843         enum dma_data_direction dma_dir = rq_data_dir(req) ?
844                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
845         blk_status_t ret = BLK_STS_IOERR;
846         int nr_mapped;
847
848         sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
849         iod->nents = blk_rq_map_sg(q, req, iod->sg);
850         if (!iod->nents)
851                 goto out;
852
853         ret = BLK_STS_RESOURCE;
854
855         if (is_pci_p2pdma_page(sg_page(iod->sg)))
856                 nr_mapped = pci_p2pdma_map_sg(dev->dev, iod->sg, iod->nents,
857                                           dma_dir);
858         else
859                 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
860                                              dma_dir,  DMA_ATTR_NO_WARN);
861         if (!nr_mapped)
862                 goto out;
863
864         if (iod->use_sgl)
865                 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
866         else
867                 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
868
869         if (ret != BLK_STS_OK)
870                 goto out_unmap;
871
872         ret = BLK_STS_IOERR;
873         if (blk_integrity_rq(req)) {
874                 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
875                         goto out_unmap;
876
877                 sg_init_table(&iod->meta_sg, 1);
878                 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
879                         goto out_unmap;
880
881                 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
882                         goto out_unmap;
883
884                 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
885         }
886
887         return BLK_STS_OK;
888
889 out_unmap:
890         dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
891 out:
892         return ret;
893 }
894
895 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
896 {
897         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
898         enum dma_data_direction dma_dir = rq_data_dir(req) ?
899                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
900
901         if (iod->nents) {
902                 /* P2PDMA requests do not need to be unmapped */
903                 if (!is_pci_p2pdma_page(sg_page(iod->sg)))
904                         dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
905
906                 if (blk_integrity_rq(req))
907                         dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
908         }
909
910         nvme_cleanup_cmd(req);
911         nvme_free_iod(dev, req);
912 }
913
914 /*
915  * NOTE: ns is NULL when called on the admin queue.
916  */
917 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
918                          const struct blk_mq_queue_data *bd)
919 {
920         struct nvme_ns *ns = hctx->queue->queuedata;
921         struct nvme_queue *nvmeq = hctx->driver_data;
922         struct nvme_dev *dev = nvmeq->dev;
923         struct request *req = bd->rq;
924         struct nvme_command cmnd;
925         blk_status_t ret;
926
927         /*
928          * We should not need to do this, but we're still using this to
929          * ensure we can drain requests on a dying queue.
930          */
931         if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
932                 return BLK_STS_IOERR;
933
934         ret = nvme_setup_cmd(ns, req, &cmnd);
935         if (ret)
936                 return ret;
937
938         ret = nvme_init_iod(req, dev);
939         if (ret)
940                 goto out_free_cmd;
941
942         if (blk_rq_nr_phys_segments(req)) {
943                 ret = nvme_map_data(dev, req, &cmnd);
944                 if (ret)
945                         goto out_cleanup_iod;
946         }
947
948         blk_mq_start_request(req);
949         nvme_submit_cmd(nvmeq, &cmnd, bd->last);
950         return BLK_STS_OK;
951 out_cleanup_iod:
952         nvme_free_iod(dev, req);
953 out_free_cmd:
954         nvme_cleanup_cmd(req);
955         return ret;
956 }
957
958 static void nvme_pci_complete_rq(struct request *req)
959 {
960         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
961
962         nvme_unmap_data(iod->nvmeq->dev, req);
963         nvme_complete_rq(req);
964 }
965
966 /* We read the CQE phase first to check if the rest of the entry is valid */
967 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
968 {
969         return (le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
970                         nvmeq->cq_phase;
971 }
972
973 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
974 {
975         u16 head = nvmeq->cq_head;
976
977         if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
978                                               nvmeq->dbbuf_cq_ei))
979                 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
980 }
981
982 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
983 {
984         volatile struct nvme_completion *cqe = &nvmeq->cqes[idx];
985         struct request *req;
986
987         if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
988                 dev_warn(nvmeq->dev->ctrl.device,
989                         "invalid id %d completed on queue %d\n",
990                         cqe->command_id, le16_to_cpu(cqe->sq_id));
991                 return;
992         }
993
994         /*
995          * AEN requests are special as they don't time out and can
996          * survive any kind of queue freeze and often don't respond to
997          * aborts.  We don't even bother to allocate a struct request
998          * for them but rather special case them here.
999          */
1000         if (unlikely(nvmeq->qid == 0 &&
1001                         cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) {
1002                 nvme_complete_async_event(&nvmeq->dev->ctrl,
1003                                 cqe->status, &cqe->result);
1004                 return;
1005         }
1006
1007         req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
1008         trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1009         nvme_end_request(req, cqe->status, cqe->result);
1010 }
1011
1012 static void nvme_complete_cqes(struct nvme_queue *nvmeq, u16 start, u16 end)
1013 {
1014         while (start != end) {
1015                 nvme_handle_cqe(nvmeq, start);
1016                 if (++start == nvmeq->q_depth)
1017                         start = 0;
1018         }
1019 }
1020
1021 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1022 {
1023         if (nvmeq->cq_head == nvmeq->q_depth - 1) {
1024                 nvmeq->cq_head = 0;
1025                 nvmeq->cq_phase = !nvmeq->cq_phase;
1026         } else {
1027                 nvmeq->cq_head++;
1028         }
1029 }
1030
1031 static inline int nvme_process_cq(struct nvme_queue *nvmeq, u16 *start,
1032                                   u16 *end, unsigned int tag)
1033 {
1034         int found = 0;
1035
1036         *start = nvmeq->cq_head;
1037         while (nvme_cqe_pending(nvmeq)) {
1038                 if (tag == -1U || nvmeq->cqes[nvmeq->cq_head].command_id == tag)
1039                         found++;
1040                 nvme_update_cq_head(nvmeq);
1041         }
1042         *end = nvmeq->cq_head;
1043
1044         if (*start != *end)
1045                 nvme_ring_cq_doorbell(nvmeq);
1046         return found;
1047 }
1048
1049 static irqreturn_t nvme_irq(int irq, void *data)
1050 {
1051         struct nvme_queue *nvmeq = data;
1052         irqreturn_t ret = IRQ_NONE;
1053         u16 start, end;
1054
1055         /*
1056          * The rmb/wmb pair ensures we see all updates from a previous run of
1057          * the irq handler, even if that was on another CPU.
1058          */
1059         rmb();
1060         if (nvmeq->cq_head != nvmeq->last_cq_head)
1061                 ret = IRQ_HANDLED;
1062         nvme_process_cq(nvmeq, &start, &end, -1);
1063         nvmeq->last_cq_head = nvmeq->cq_head;
1064         wmb();
1065
1066         if (start != end) {
1067                 nvme_complete_cqes(nvmeq, start, end);
1068                 return IRQ_HANDLED;
1069         }
1070
1071         return ret;
1072 }
1073
1074 static irqreturn_t nvme_irq_check(int irq, void *data)
1075 {
1076         struct nvme_queue *nvmeq = data;
1077         if (nvme_cqe_pending(nvmeq))
1078                 return IRQ_WAKE_THREAD;
1079         return IRQ_NONE;
1080 }
1081
1082 /*
1083  * Poll for completions any queue, including those not dedicated to polling.
1084  * Can be called from any context.
1085  */
1086 static int nvme_poll_irqdisable(struct nvme_queue *nvmeq, unsigned int tag)
1087 {
1088         struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1089         u16 start, end;
1090         int found;
1091
1092         /*
1093          * For a poll queue we need to protect against the polling thread
1094          * using the CQ lock.  For normal interrupt driven threads we have
1095          * to disable the interrupt to avoid racing with it.
1096          */
1097         if (nvmeq->cq_vector == -1) {
1098                 spin_lock(&nvmeq->cq_poll_lock);
1099                 found = nvme_process_cq(nvmeq, &start, &end, tag);
1100                 spin_unlock(&nvmeq->cq_poll_lock);
1101         } else {
1102                 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1103                 found = nvme_process_cq(nvmeq, &start, &end, tag);
1104                 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1105         }
1106
1107         nvme_complete_cqes(nvmeq, start, end);
1108         return found;
1109 }
1110
1111 static int nvme_poll(struct blk_mq_hw_ctx *hctx)
1112 {
1113         struct nvme_queue *nvmeq = hctx->driver_data;
1114         u16 start, end;
1115         bool found;
1116
1117         if (!nvme_cqe_pending(nvmeq))
1118                 return 0;
1119
1120         spin_lock(&nvmeq->cq_poll_lock);
1121         found = nvme_process_cq(nvmeq, &start, &end, -1);
1122         spin_unlock(&nvmeq->cq_poll_lock);
1123
1124         nvme_complete_cqes(nvmeq, start, end);
1125         return found;
1126 }
1127
1128 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1129 {
1130         struct nvme_dev *dev = to_nvme_dev(ctrl);
1131         struct nvme_queue *nvmeq = &dev->queues[0];
1132         struct nvme_command c;
1133
1134         memset(&c, 0, sizeof(c));
1135         c.common.opcode = nvme_admin_async_event;
1136         c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1137         nvme_submit_cmd(nvmeq, &c, true);
1138 }
1139
1140 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1141 {
1142         struct nvme_command c;
1143
1144         memset(&c, 0, sizeof(c));
1145         c.delete_queue.opcode = opcode;
1146         c.delete_queue.qid = cpu_to_le16(id);
1147
1148         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1149 }
1150
1151 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1152                 struct nvme_queue *nvmeq, s16 vector)
1153 {
1154         struct nvme_command c;
1155         int flags = NVME_QUEUE_PHYS_CONTIG;
1156
1157         if (vector != -1)
1158                 flags |= NVME_CQ_IRQ_ENABLED;
1159
1160         /*
1161          * Note: we (ab)use the fact that the prp fields survive if no data
1162          * is attached to the request.
1163          */
1164         memset(&c, 0, sizeof(c));
1165         c.create_cq.opcode = nvme_admin_create_cq;
1166         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1167         c.create_cq.cqid = cpu_to_le16(qid);
1168         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1169         c.create_cq.cq_flags = cpu_to_le16(flags);
1170         if (vector != -1)
1171                 c.create_cq.irq_vector = cpu_to_le16(vector);
1172         else
1173                 c.create_cq.irq_vector = 0;
1174
1175         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1176 }
1177
1178 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1179                                                 struct nvme_queue *nvmeq)
1180 {
1181         struct nvme_ctrl *ctrl = &dev->ctrl;
1182         struct nvme_command c;
1183         int flags = NVME_QUEUE_PHYS_CONTIG;
1184
1185         /*
1186          * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1187          * set. Since URGENT priority is zeroes, it makes all queues
1188          * URGENT.
1189          */
1190         if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1191                 flags |= NVME_SQ_PRIO_MEDIUM;
1192
1193         /*
1194          * Note: we (ab)use the fact that the prp fields survive if no data
1195          * is attached to the request.
1196          */
1197         memset(&c, 0, sizeof(c));
1198         c.create_sq.opcode = nvme_admin_create_sq;
1199         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1200         c.create_sq.sqid = cpu_to_le16(qid);
1201         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1202         c.create_sq.sq_flags = cpu_to_le16(flags);
1203         c.create_sq.cqid = cpu_to_le16(qid);
1204
1205         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1206 }
1207
1208 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1209 {
1210         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1211 }
1212
1213 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1214 {
1215         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1216 }
1217
1218 static void abort_endio(struct request *req, blk_status_t error)
1219 {
1220         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1221         struct nvme_queue *nvmeq = iod->nvmeq;
1222
1223         dev_warn(nvmeq->dev->ctrl.device,
1224                  "Abort status: 0x%x", nvme_req(req)->status);
1225         atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1226         blk_mq_free_request(req);
1227 }
1228
1229 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1230 {
1231
1232         /* If true, indicates loss of adapter communication, possibly by a
1233          * NVMe Subsystem reset.
1234          */
1235         bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1236
1237         /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1238         switch (dev->ctrl.state) {
1239         case NVME_CTRL_RESETTING:
1240         case NVME_CTRL_CONNECTING:
1241                 return false;
1242         default:
1243                 break;
1244         }
1245
1246         /* We shouldn't reset unless the controller is on fatal error state
1247          * _or_ if we lost the communication with it.
1248          */
1249         if (!(csts & NVME_CSTS_CFS) && !nssro)
1250                 return false;
1251
1252         return true;
1253 }
1254
1255 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1256 {
1257         /* Read a config register to help see what died. */
1258         u16 pci_status;
1259         int result;
1260
1261         result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1262                                       &pci_status);
1263         if (result == PCIBIOS_SUCCESSFUL)
1264                 dev_warn(dev->ctrl.device,
1265                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1266                          csts, pci_status);
1267         else
1268                 dev_warn(dev->ctrl.device,
1269                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1270                          csts, result);
1271 }
1272
1273 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1274 {
1275         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1276         struct nvme_queue *nvmeq = iod->nvmeq;
1277         struct nvme_dev *dev = nvmeq->dev;
1278         struct request *abort_req;
1279         struct nvme_command cmd;
1280         u32 csts = readl(dev->bar + NVME_REG_CSTS);
1281
1282         /* If PCI error recovery process is happening, we cannot reset or
1283          * the recovery mechanism will surely fail.
1284          */
1285         mb();
1286         if (pci_channel_offline(to_pci_dev(dev->dev)))
1287                 return BLK_EH_RESET_TIMER;
1288
1289         /*
1290          * Reset immediately if the controller is failed
1291          */
1292         if (nvme_should_reset(dev, csts)) {
1293                 nvme_warn_reset(dev, csts);
1294                 nvme_dev_disable(dev, false);
1295                 nvme_reset_ctrl(&dev->ctrl);
1296                 return BLK_EH_DONE;
1297         }
1298
1299         /*
1300          * Did we miss an interrupt?
1301          */
1302         if (nvme_poll_irqdisable(nvmeq, req->tag)) {
1303                 dev_warn(dev->ctrl.device,
1304                          "I/O %d QID %d timeout, completion polled\n",
1305                          req->tag, nvmeq->qid);
1306                 return BLK_EH_DONE;
1307         }
1308
1309         /*
1310          * Shutdown immediately if controller times out while starting. The
1311          * reset work will see the pci device disabled when it gets the forced
1312          * cancellation error. All outstanding requests are completed on
1313          * shutdown, so we return BLK_EH_DONE.
1314          */
1315         switch (dev->ctrl.state) {
1316         case NVME_CTRL_CONNECTING:
1317         case NVME_CTRL_RESETTING:
1318                 dev_warn_ratelimited(dev->ctrl.device,
1319                          "I/O %d QID %d timeout, disable controller\n",
1320                          req->tag, nvmeq->qid);
1321                 nvme_dev_disable(dev, false);
1322                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1323                 return BLK_EH_DONE;
1324         default:
1325                 break;
1326         }
1327
1328         /*
1329          * Shutdown the controller immediately and schedule a reset if the
1330          * command was already aborted once before and still hasn't been
1331          * returned to the driver, or if this is the admin queue.
1332          */
1333         if (!nvmeq->qid || iod->aborted) {
1334                 dev_warn(dev->ctrl.device,
1335                          "I/O %d QID %d timeout, reset controller\n",
1336                          req->tag, nvmeq->qid);
1337                 nvme_dev_disable(dev, false);
1338                 nvme_reset_ctrl(&dev->ctrl);
1339
1340                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1341                 return BLK_EH_DONE;
1342         }
1343
1344         if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1345                 atomic_inc(&dev->ctrl.abort_limit);
1346                 return BLK_EH_RESET_TIMER;
1347         }
1348         iod->aborted = 1;
1349
1350         memset(&cmd, 0, sizeof(cmd));
1351         cmd.abort.opcode = nvme_admin_abort_cmd;
1352         cmd.abort.cid = req->tag;
1353         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1354
1355         dev_warn(nvmeq->dev->ctrl.device,
1356                 "I/O %d QID %d timeout, aborting\n",
1357                  req->tag, nvmeq->qid);
1358
1359         abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1360                         BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1361         if (IS_ERR(abort_req)) {
1362                 atomic_inc(&dev->ctrl.abort_limit);
1363                 return BLK_EH_RESET_TIMER;
1364         }
1365
1366         abort_req->timeout = ADMIN_TIMEOUT;
1367         abort_req->end_io_data = NULL;
1368         blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1369
1370         /*
1371          * The aborted req will be completed on receiving the abort req.
1372          * We enable the timer again. If hit twice, it'll cause a device reset,
1373          * as the device then is in a faulty state.
1374          */
1375         return BLK_EH_RESET_TIMER;
1376 }
1377
1378 static void nvme_free_queue(struct nvme_queue *nvmeq)
1379 {
1380         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1381                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1382         if (!nvmeq->sq_cmds)
1383                 return;
1384
1385         if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1386                 pci_free_p2pmem(to_pci_dev(nvmeq->q_dmadev),
1387                                 nvmeq->sq_cmds, SQ_SIZE(nvmeq->q_depth));
1388         } else {
1389                 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1390                                 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1391         }
1392 }
1393
1394 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1395 {
1396         int i;
1397
1398         for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1399                 dev->ctrl.queue_count--;
1400                 nvme_free_queue(&dev->queues[i]);
1401         }
1402 }
1403
1404 /**
1405  * nvme_suspend_queue - put queue into suspended state
1406  * @nvmeq: queue to suspend
1407  */
1408 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1409 {
1410         if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1411                 return 1;
1412
1413         /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1414         mb();
1415
1416         nvmeq->dev->online_queues--;
1417         if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1418                 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1419         if (nvmeq->cq_vector == -1)
1420                 return 0;
1421         pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1422         nvmeq->cq_vector = -1;
1423         return 0;
1424 }
1425
1426 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1427 {
1428         int i;
1429
1430         for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1431                 nvme_suspend_queue(&dev->queues[i]);
1432 }
1433
1434 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1435 {
1436         struct nvme_queue *nvmeq = &dev->queues[0];
1437
1438         if (shutdown)
1439                 nvme_shutdown_ctrl(&dev->ctrl);
1440         else
1441                 nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1442
1443         nvme_poll_irqdisable(nvmeq, -1);
1444 }
1445
1446 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1447                                 int entry_size)
1448 {
1449         int q_depth = dev->q_depth;
1450         unsigned q_size_aligned = roundup(q_depth * entry_size,
1451                                           dev->ctrl.page_size);
1452
1453         if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1454                 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1455                 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1456                 q_depth = div_u64(mem_per_q, entry_size);
1457
1458                 /*
1459                  * Ensure the reduced q_depth is above some threshold where it
1460                  * would be better to map queues in system memory with the
1461                  * original depth
1462                  */
1463                 if (q_depth < 64)
1464                         return -ENOMEM;
1465         }
1466
1467         return q_depth;
1468 }
1469
1470 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1471                                 int qid, int depth)
1472 {
1473         struct pci_dev *pdev = to_pci_dev(dev->dev);
1474
1475         if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1476                 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(depth));
1477                 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1478                                                 nvmeq->sq_cmds);
1479                 if (nvmeq->sq_dma_addr) {
1480                         set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1481                         return 0; 
1482                 }
1483         }
1484
1485         nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1486                                 &nvmeq->sq_dma_addr, GFP_KERNEL);
1487         if (!nvmeq->sq_cmds)
1488                 return -ENOMEM;
1489         return 0;
1490 }
1491
1492 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1493 {
1494         struct nvme_queue *nvmeq = &dev->queues[qid];
1495
1496         if (dev->ctrl.queue_count > qid)
1497                 return 0;
1498
1499         nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(depth),
1500                                          &nvmeq->cq_dma_addr, GFP_KERNEL);
1501         if (!nvmeq->cqes)
1502                 goto free_nvmeq;
1503
1504         if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1505                 goto free_cqdma;
1506
1507         nvmeq->q_dmadev = dev->dev;
1508         nvmeq->dev = dev;
1509         spin_lock_init(&nvmeq->sq_lock);
1510         spin_lock_init(&nvmeq->cq_poll_lock);
1511         nvmeq->cq_head = 0;
1512         nvmeq->cq_phase = 1;
1513         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1514         nvmeq->q_depth = depth;
1515         nvmeq->qid = qid;
1516         nvmeq->cq_vector = -1;
1517         dev->ctrl.queue_count++;
1518
1519         return 0;
1520
1521  free_cqdma:
1522         dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1523                                                         nvmeq->cq_dma_addr);
1524  free_nvmeq:
1525         return -ENOMEM;
1526 }
1527
1528 static int queue_request_irq(struct nvme_queue *nvmeq)
1529 {
1530         struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1531         int nr = nvmeq->dev->ctrl.instance;
1532
1533         if (use_threaded_interrupts) {
1534                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1535                                 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1536         } else {
1537                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1538                                 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1539         }
1540 }
1541
1542 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1543 {
1544         struct nvme_dev *dev = nvmeq->dev;
1545
1546         nvmeq->sq_tail = 0;
1547         nvmeq->last_sq_tail = 0;
1548         nvmeq->cq_head = 0;
1549         nvmeq->cq_phase = 1;
1550         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1551         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1552         nvme_dbbuf_init(dev, nvmeq, qid);
1553         dev->online_queues++;
1554         wmb(); /* ensure the first interrupt sees the initialization */
1555 }
1556
1557 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1558 {
1559         struct nvme_dev *dev = nvmeq->dev;
1560         int result;
1561         s16 vector;
1562
1563         clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1564
1565         /*
1566          * A queue's vector matches the queue identifier unless the controller
1567          * has only one vector available.
1568          */
1569         if (!polled)
1570                 vector = dev->num_vecs == 1 ? 0 : qid;
1571         else
1572                 vector = -1;
1573
1574         result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1575         if (result)
1576                 return result;
1577
1578         result = adapter_alloc_sq(dev, qid, nvmeq);
1579         if (result < 0)
1580                 return result;
1581         else if (result)
1582                 goto release_cq;
1583
1584         nvmeq->cq_vector = vector;
1585         nvme_init_queue(nvmeq, qid);
1586
1587         if (vector != -1) {
1588                 result = queue_request_irq(nvmeq);
1589                 if (result < 0)
1590                         goto release_sq;
1591         }
1592
1593         set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1594         return result;
1595
1596 release_sq:
1597         nvmeq->cq_vector = -1;
1598         dev->online_queues--;
1599         adapter_delete_sq(dev, qid);
1600 release_cq:
1601         adapter_delete_cq(dev, qid);
1602         return result;
1603 }
1604
1605 static const struct blk_mq_ops nvme_mq_admin_ops = {
1606         .queue_rq       = nvme_queue_rq,
1607         .complete       = nvme_pci_complete_rq,
1608         .init_hctx      = nvme_admin_init_hctx,
1609         .exit_hctx      = nvme_admin_exit_hctx,
1610         .init_request   = nvme_init_request,
1611         .timeout        = nvme_timeout,
1612 };
1613
1614 static const struct blk_mq_ops nvme_mq_ops = {
1615         .queue_rq       = nvme_queue_rq,
1616         .complete       = nvme_pci_complete_rq,
1617         .commit_rqs     = nvme_commit_rqs,
1618         .init_hctx      = nvme_init_hctx,
1619         .init_request   = nvme_init_request,
1620         .map_queues     = nvme_pci_map_queues,
1621         .timeout        = nvme_timeout,
1622         .poll           = nvme_poll,
1623 };
1624
1625 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1626 {
1627         if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1628                 /*
1629                  * If the controller was reset during removal, it's possible
1630                  * user requests may be waiting on a stopped queue. Start the
1631                  * queue to flush these to completion.
1632                  */
1633                 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1634                 blk_cleanup_queue(dev->ctrl.admin_q);
1635                 blk_mq_free_tag_set(&dev->admin_tagset);
1636         }
1637 }
1638
1639 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1640 {
1641         if (!dev->ctrl.admin_q) {
1642                 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1643                 dev->admin_tagset.nr_hw_queues = 1;
1644
1645                 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1646                 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1647                 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1648                 dev->admin_tagset.cmd_size = nvme_pci_cmd_size(dev, false);
1649                 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1650                 dev->admin_tagset.driver_data = dev;
1651
1652                 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1653                         return -ENOMEM;
1654                 dev->ctrl.admin_tagset = &dev->admin_tagset;
1655
1656                 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1657                 if (IS_ERR(dev->ctrl.admin_q)) {
1658                         blk_mq_free_tag_set(&dev->admin_tagset);
1659                         return -ENOMEM;
1660                 }
1661                 if (!blk_get_queue(dev->ctrl.admin_q)) {
1662                         nvme_dev_remove_admin(dev);
1663                         dev->ctrl.admin_q = NULL;
1664                         return -ENODEV;
1665                 }
1666         } else
1667                 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1668
1669         return 0;
1670 }
1671
1672 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1673 {
1674         return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1675 }
1676
1677 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1678 {
1679         struct pci_dev *pdev = to_pci_dev(dev->dev);
1680
1681         if (size <= dev->bar_mapped_size)
1682                 return 0;
1683         if (size > pci_resource_len(pdev, 0))
1684                 return -ENOMEM;
1685         if (dev->bar)
1686                 iounmap(dev->bar);
1687         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1688         if (!dev->bar) {
1689                 dev->bar_mapped_size = 0;
1690                 return -ENOMEM;
1691         }
1692         dev->bar_mapped_size = size;
1693         dev->dbs = dev->bar + NVME_REG_DBS;
1694
1695         return 0;
1696 }
1697
1698 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1699 {
1700         int result;
1701         u32 aqa;
1702         struct nvme_queue *nvmeq;
1703
1704         result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1705         if (result < 0)
1706                 return result;
1707
1708         dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1709                                 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1710
1711         if (dev->subsystem &&
1712             (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1713                 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1714
1715         result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1716         if (result < 0)
1717                 return result;
1718
1719         result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1720         if (result)
1721                 return result;
1722
1723         nvmeq = &dev->queues[0];
1724         aqa = nvmeq->q_depth - 1;
1725         aqa |= aqa << 16;
1726
1727         writel(aqa, dev->bar + NVME_REG_AQA);
1728         lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1729         lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1730
1731         result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap);
1732         if (result)
1733                 return result;
1734
1735         nvmeq->cq_vector = 0;
1736         nvme_init_queue(nvmeq, 0);
1737         result = queue_request_irq(nvmeq);
1738         if (result) {
1739                 nvmeq->cq_vector = -1;
1740                 return result;
1741         }
1742
1743         set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1744         return result;
1745 }
1746
1747 static int nvme_create_io_queues(struct nvme_dev *dev)
1748 {
1749         unsigned i, max, rw_queues;
1750         int ret = 0;
1751
1752         for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1753                 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1754                         ret = -ENOMEM;
1755                         break;
1756                 }
1757         }
1758
1759         max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1760         if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1761                 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1762                                 dev->io_queues[HCTX_TYPE_READ];
1763         } else {
1764                 rw_queues = max;
1765         }
1766
1767         for (i = dev->online_queues; i <= max; i++) {
1768                 bool polled = i > rw_queues;
1769
1770                 ret = nvme_create_queue(&dev->queues[i], i, polled);
1771                 if (ret)
1772                         break;
1773         }
1774
1775         /*
1776          * Ignore failing Create SQ/CQ commands, we can continue with less
1777          * than the desired amount of queues, and even a controller without
1778          * I/O queues can still be used to issue admin commands.  This might
1779          * be useful to upgrade a buggy firmware for example.
1780          */
1781         return ret >= 0 ? 0 : ret;
1782 }
1783
1784 static ssize_t nvme_cmb_show(struct device *dev,
1785                              struct device_attribute *attr,
1786                              char *buf)
1787 {
1788         struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1789
1790         return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1791                        ndev->cmbloc, ndev->cmbsz);
1792 }
1793 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1794
1795 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1796 {
1797         u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1798
1799         return 1ULL << (12 + 4 * szu);
1800 }
1801
1802 static u32 nvme_cmb_size(struct nvme_dev *dev)
1803 {
1804         return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1805 }
1806
1807 static void nvme_map_cmb(struct nvme_dev *dev)
1808 {
1809         u64 size, offset;
1810         resource_size_t bar_size;
1811         struct pci_dev *pdev = to_pci_dev(dev->dev);
1812         int bar;
1813
1814         if (dev->cmb_size)
1815                 return;
1816
1817         dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1818         if (!dev->cmbsz)
1819                 return;
1820         dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1821
1822         size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1823         offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1824         bar = NVME_CMB_BIR(dev->cmbloc);
1825         bar_size = pci_resource_len(pdev, bar);
1826
1827         if (offset > bar_size)
1828                 return;
1829
1830         /*
1831          * Controllers may support a CMB size larger than their BAR,
1832          * for example, due to being behind a bridge. Reduce the CMB to
1833          * the reported size of the BAR
1834          */
1835         if (size > bar_size - offset)
1836                 size = bar_size - offset;
1837
1838         if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1839                 dev_warn(dev->ctrl.device,
1840                          "failed to register the CMB\n");
1841                 return;
1842         }
1843
1844         dev->cmb_size = size;
1845         dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1846
1847         if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1848                         (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1849                 pci_p2pmem_publish(pdev, true);
1850
1851         if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1852                                     &dev_attr_cmb.attr, NULL))
1853                 dev_warn(dev->ctrl.device,
1854                          "failed to add sysfs attribute for CMB\n");
1855 }
1856
1857 static inline void nvme_release_cmb(struct nvme_dev *dev)
1858 {
1859         if (dev->cmb_size) {
1860                 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1861                                              &dev_attr_cmb.attr, NULL);
1862                 dev->cmb_size = 0;
1863         }
1864 }
1865
1866 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1867 {
1868         u64 dma_addr = dev->host_mem_descs_dma;
1869         struct nvme_command c;
1870         int ret;
1871
1872         memset(&c, 0, sizeof(c));
1873         c.features.opcode       = nvme_admin_set_features;
1874         c.features.fid          = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1875         c.features.dword11      = cpu_to_le32(bits);
1876         c.features.dword12      = cpu_to_le32(dev->host_mem_size >>
1877                                               ilog2(dev->ctrl.page_size));
1878         c.features.dword13      = cpu_to_le32(lower_32_bits(dma_addr));
1879         c.features.dword14      = cpu_to_le32(upper_32_bits(dma_addr));
1880         c.features.dword15      = cpu_to_le32(dev->nr_host_mem_descs);
1881
1882         ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1883         if (ret) {
1884                 dev_warn(dev->ctrl.device,
1885                          "failed to set host mem (err %d, flags %#x).\n",
1886                          ret, bits);
1887         }
1888         return ret;
1889 }
1890
1891 static void nvme_free_host_mem(struct nvme_dev *dev)
1892 {
1893         int i;
1894
1895         for (i = 0; i < dev->nr_host_mem_descs; i++) {
1896                 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1897                 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1898
1899                 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1900                                le64_to_cpu(desc->addr),
1901                                DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1902         }
1903
1904         kfree(dev->host_mem_desc_bufs);
1905         dev->host_mem_desc_bufs = NULL;
1906         dma_free_coherent(dev->dev,
1907                         dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1908                         dev->host_mem_descs, dev->host_mem_descs_dma);
1909         dev->host_mem_descs = NULL;
1910         dev->nr_host_mem_descs = 0;
1911 }
1912
1913 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1914                 u32 chunk_size)
1915 {
1916         struct nvme_host_mem_buf_desc *descs;
1917         u32 max_entries, len;
1918         dma_addr_t descs_dma;
1919         int i = 0;
1920         void **bufs;
1921         u64 size, tmp;
1922
1923         tmp = (preferred + chunk_size - 1);
1924         do_div(tmp, chunk_size);
1925         max_entries = tmp;
1926
1927         if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1928                 max_entries = dev->ctrl.hmmaxd;
1929
1930         descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1931                                    &descs_dma, GFP_KERNEL);
1932         if (!descs)
1933                 goto out;
1934
1935         bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1936         if (!bufs)
1937                 goto out_free_descs;
1938
1939         for (size = 0; size < preferred && i < max_entries; size += len) {
1940                 dma_addr_t dma_addr;
1941
1942                 len = min_t(u64, chunk_size, preferred - size);
1943                 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1944                                 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1945                 if (!bufs[i])
1946                         break;
1947
1948                 descs[i].addr = cpu_to_le64(dma_addr);
1949                 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1950                 i++;
1951         }
1952
1953         if (!size)
1954                 goto out_free_bufs;
1955
1956         dev->nr_host_mem_descs = i;
1957         dev->host_mem_size = size;
1958         dev->host_mem_descs = descs;
1959         dev->host_mem_descs_dma = descs_dma;
1960         dev->host_mem_desc_bufs = bufs;
1961         return 0;
1962
1963 out_free_bufs:
1964         while (--i >= 0) {
1965                 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1966
1967                 dma_free_attrs(dev->dev, size, bufs[i],
1968                                le64_to_cpu(descs[i].addr),
1969                                DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1970         }
1971
1972         kfree(bufs);
1973 out_free_descs:
1974         dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1975                         descs_dma);
1976 out:
1977         dev->host_mem_descs = NULL;
1978         return -ENOMEM;
1979 }
1980
1981 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1982 {
1983         u32 chunk_size;
1984
1985         /* start big and work our way down */
1986         for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1987              chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
1988              chunk_size /= 2) {
1989                 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1990                         if (!min || dev->host_mem_size >= min)
1991                                 return 0;
1992                         nvme_free_host_mem(dev);
1993                 }
1994         }
1995
1996         return -ENOMEM;
1997 }
1998
1999 static int nvme_setup_host_mem(struct nvme_dev *dev)
2000 {
2001         u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2002         u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2003         u64 min = (u64)dev->ctrl.hmmin * 4096;
2004         u32 enable_bits = NVME_HOST_MEM_ENABLE;
2005         int ret;
2006
2007         preferred = min(preferred, max);
2008         if (min > max) {
2009                 dev_warn(dev->ctrl.device,
2010                         "min host memory (%lld MiB) above limit (%d MiB).\n",
2011                         min >> ilog2(SZ_1M), max_host_mem_size_mb);
2012                 nvme_free_host_mem(dev);
2013                 return 0;
2014         }
2015
2016         /*
2017          * If we already have a buffer allocated check if we can reuse it.
2018          */
2019         if (dev->host_mem_descs) {
2020                 if (dev->host_mem_size >= min)
2021                         enable_bits |= NVME_HOST_MEM_RETURN;
2022                 else
2023                         nvme_free_host_mem(dev);
2024         }
2025
2026         if (!dev->host_mem_descs) {
2027                 if (nvme_alloc_host_mem(dev, min, preferred)) {
2028                         dev_warn(dev->ctrl.device,
2029                                 "failed to allocate host memory buffer.\n");
2030                         return 0; /* controller must work without HMB */
2031                 }
2032
2033                 dev_info(dev->ctrl.device,
2034                         "allocated %lld MiB host memory buffer.\n",
2035                         dev->host_mem_size >> ilog2(SZ_1M));
2036         }
2037
2038         ret = nvme_set_host_mem(dev, enable_bits);
2039         if (ret)
2040                 nvme_free_host_mem(dev);
2041         return ret;
2042 }
2043
2044 /* irq_queues covers admin queue */
2045 static void nvme_calc_io_queues(struct nvme_dev *dev, unsigned int irq_queues)
2046 {
2047         unsigned int this_w_queues = write_queues;
2048
2049         WARN_ON(!irq_queues);
2050
2051         /*
2052          * Setup read/write queue split, assign admin queue one independent
2053          * irq vector if irq_queues is > 1.
2054          */
2055         if (irq_queues <= 2) {
2056                 dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2057                 dev->io_queues[HCTX_TYPE_READ] = 0;
2058                 return;
2059         }
2060
2061         /*
2062          * If 'write_queues' is set, ensure it leaves room for at least
2063          * one read queue and one admin queue
2064          */
2065         if (this_w_queues >= irq_queues)
2066                 this_w_queues = irq_queues - 2;
2067
2068         /*
2069          * If 'write_queues' is set to zero, reads and writes will share
2070          * a queue set.
2071          */
2072         if (!this_w_queues) {
2073                 dev->io_queues[HCTX_TYPE_DEFAULT] = irq_queues - 1;
2074                 dev->io_queues[HCTX_TYPE_READ] = 0;
2075         } else {
2076                 dev->io_queues[HCTX_TYPE_DEFAULT] = this_w_queues;
2077                 dev->io_queues[HCTX_TYPE_READ] = irq_queues - this_w_queues - 1;
2078         }
2079 }
2080
2081 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2082 {
2083         struct pci_dev *pdev = to_pci_dev(dev->dev);
2084         int irq_sets[2];
2085         struct irq_affinity affd = {
2086                 .pre_vectors = 1,
2087                 .nr_sets = ARRAY_SIZE(irq_sets),
2088                 .sets = irq_sets,
2089         };
2090         int result = 0;
2091         unsigned int irq_queues, this_p_queues;
2092
2093         /*
2094          * Poll queues don't need interrupts, but we need at least one IO
2095          * queue left over for non-polled IO.
2096          */
2097         this_p_queues = poll_queues;
2098         if (this_p_queues >= nr_io_queues) {
2099                 this_p_queues = nr_io_queues - 1;
2100                 irq_queues = 1;
2101         } else {
2102                 irq_queues = nr_io_queues - this_p_queues + 1;
2103         }
2104         dev->io_queues[HCTX_TYPE_POLL] = this_p_queues;
2105
2106         /*
2107          * For irq sets, we have to ask for minvec == maxvec. This passes
2108          * any reduction back to us, so we can adjust our queue counts and
2109          * IRQ vector needs.
2110          */
2111         do {
2112                 nvme_calc_io_queues(dev, irq_queues);
2113                 irq_sets[0] = dev->io_queues[HCTX_TYPE_DEFAULT];
2114                 irq_sets[1] = dev->io_queues[HCTX_TYPE_READ];
2115                 if (!irq_sets[1])
2116                         affd.nr_sets = 1;
2117
2118                 /*
2119                  * If we got a failure and we're down to asking for just
2120                  * 1 + 1 queues, just ask for a single vector. We'll share
2121                  * that between the single IO queue and the admin queue.
2122                  * Otherwise, we assign one independent vector to admin queue.
2123                  */
2124                 if (irq_queues > 1)
2125                         irq_queues = irq_sets[0] + irq_sets[1] + 1;
2126
2127                 result = pci_alloc_irq_vectors_affinity(pdev, irq_queues,
2128                                 irq_queues,
2129                                 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2130
2131                 /*
2132                  * Need to reduce our vec counts. If we get ENOSPC, the
2133                  * platform should support mulitple vecs, we just need
2134                  * to decrease our ask. If we get EINVAL, the platform
2135                  * likely does not. Back down to ask for just one vector.
2136                  */
2137                 if (result == -ENOSPC) {
2138                         irq_queues--;
2139                         if (!irq_queues)
2140                                 return result;
2141                         continue;
2142                 } else if (result == -EINVAL) {
2143                         irq_queues = 1;
2144                         continue;
2145                 } else if (result <= 0)
2146                         return -EIO;
2147                 break;
2148         } while (1);
2149
2150         return result;
2151 }
2152
2153 static void nvme_disable_io_queues(struct nvme_dev *dev)
2154 {
2155         if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2156                 __nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2157 }
2158
2159 static int nvme_setup_io_queues(struct nvme_dev *dev)
2160 {
2161         struct nvme_queue *adminq = &dev->queues[0];
2162         struct pci_dev *pdev = to_pci_dev(dev->dev);
2163         int result, nr_io_queues;
2164         unsigned long size;
2165
2166         nr_io_queues = max_io_queues();
2167         result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2168         if (result < 0)
2169                 return result;
2170
2171         if (nr_io_queues == 0)
2172                 return 0;
2173         
2174         clear_bit(NVMEQ_ENABLED, &adminq->flags);
2175
2176         if (dev->cmb_use_sqes) {
2177                 result = nvme_cmb_qdepth(dev, nr_io_queues,
2178                                 sizeof(struct nvme_command));
2179                 if (result > 0)
2180                         dev->q_depth = result;
2181                 else
2182                         dev->cmb_use_sqes = false;
2183         }
2184
2185         do {
2186                 size = db_bar_size(dev, nr_io_queues);
2187                 result = nvme_remap_bar(dev, size);
2188                 if (!result)
2189                         break;
2190                 if (!--nr_io_queues)
2191                         return -ENOMEM;
2192         } while (1);
2193         adminq->q_db = dev->dbs;
2194
2195  retry:
2196         /* Deregister the admin queue's interrupt */
2197         pci_free_irq(pdev, 0, adminq);
2198
2199         /*
2200          * If we enable msix early due to not intx, disable it again before
2201          * setting up the full range we need.
2202          */
2203         pci_free_irq_vectors(pdev);
2204
2205         result = nvme_setup_irqs(dev, nr_io_queues);
2206         if (result <= 0)
2207                 return -EIO;
2208
2209         dev->num_vecs = result;
2210         result = max(result - 1, 1);
2211         dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2212
2213         /*
2214          * Should investigate if there's a performance win from allocating
2215          * more queues than interrupt vectors; it might allow the submission
2216          * path to scale better, even if the receive path is limited by the
2217          * number of interrupts.
2218          */
2219         result = queue_request_irq(adminq);
2220         if (result) {
2221                 adminq->cq_vector = -1;
2222                 return result;
2223         }
2224         set_bit(NVMEQ_ENABLED, &adminq->flags);
2225
2226         result = nvme_create_io_queues(dev);
2227         if (result || dev->online_queues < 2)
2228                 return result;
2229
2230         if (dev->online_queues - 1 < dev->max_qid) {
2231                 nr_io_queues = dev->online_queues - 1;
2232                 nvme_disable_io_queues(dev);
2233                 nvme_suspend_io_queues(dev);
2234                 goto retry;
2235         }
2236         dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2237                                         dev->io_queues[HCTX_TYPE_DEFAULT],
2238                                         dev->io_queues[HCTX_TYPE_READ],
2239                                         dev->io_queues[HCTX_TYPE_POLL]);
2240         return 0;
2241 }
2242
2243 static void nvme_del_queue_end(struct request *req, blk_status_t error)
2244 {
2245         struct nvme_queue *nvmeq = req->end_io_data;
2246
2247         blk_mq_free_request(req);
2248         complete(&nvmeq->delete_done);
2249 }
2250
2251 static void nvme_del_cq_end(struct request *req, blk_status_t error)
2252 {
2253         struct nvme_queue *nvmeq = req->end_io_data;
2254
2255         if (error)
2256                 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2257
2258         nvme_del_queue_end(req, error);
2259 }
2260
2261 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2262 {
2263         struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2264         struct request *req;
2265         struct nvme_command cmd;
2266
2267         memset(&cmd, 0, sizeof(cmd));
2268         cmd.delete_queue.opcode = opcode;
2269         cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2270
2271         req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
2272         if (IS_ERR(req))
2273                 return PTR_ERR(req);
2274
2275         req->timeout = ADMIN_TIMEOUT;
2276         req->end_io_data = nvmeq;
2277
2278         init_completion(&nvmeq->delete_done);
2279         blk_execute_rq_nowait(q, NULL, req, false,
2280                         opcode == nvme_admin_delete_cq ?
2281                                 nvme_del_cq_end : nvme_del_queue_end);
2282         return 0;
2283 }
2284
2285 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2286 {
2287         int nr_queues = dev->online_queues - 1, sent = 0;
2288         unsigned long timeout;
2289
2290  retry:
2291         timeout = ADMIN_TIMEOUT;
2292         while (nr_queues > 0) {
2293                 if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2294                         break;
2295                 nr_queues--;
2296                 sent++;
2297         }
2298         while (sent) {
2299                 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2300
2301                 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2302                                 timeout);
2303                 if (timeout == 0)
2304                         return false;
2305
2306                 /* handle any remaining CQEs */
2307                 if (opcode == nvme_admin_delete_cq &&
2308                     !test_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags))
2309                         nvme_poll_irqdisable(nvmeq, -1);
2310
2311                 sent--;
2312                 if (nr_queues)
2313                         goto retry;
2314         }
2315         return true;
2316 }
2317
2318 /*
2319  * return error value only when tagset allocation failed
2320  */
2321 static int nvme_dev_add(struct nvme_dev *dev)
2322 {
2323         int ret;
2324
2325         if (!dev->ctrl.tagset) {
2326                 dev->tagset.ops = &nvme_mq_ops;
2327                 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2328                 dev->tagset.nr_maps = 2; /* default + read */
2329                 if (dev->io_queues[HCTX_TYPE_POLL])
2330                         dev->tagset.nr_maps++;
2331                 dev->tagset.timeout = NVME_IO_TIMEOUT;
2332                 dev->tagset.numa_node = dev_to_node(dev->dev);
2333                 dev->tagset.queue_depth =
2334                                 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2335                 dev->tagset.cmd_size = nvme_pci_cmd_size(dev, false);
2336                 if ((dev->ctrl.sgls & ((1 << 0) | (1 << 1))) && sgl_threshold) {
2337                         dev->tagset.cmd_size = max(dev->tagset.cmd_size,
2338                                         nvme_pci_cmd_size(dev, true));
2339                 }
2340                 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2341                 dev->tagset.driver_data = dev;
2342
2343                 ret = blk_mq_alloc_tag_set(&dev->tagset);
2344                 if (ret) {
2345                         dev_warn(dev->ctrl.device,
2346                                 "IO queues tagset allocation failed %d\n", ret);
2347                         return ret;
2348                 }
2349                 dev->ctrl.tagset = &dev->tagset;
2350
2351                 nvme_dbbuf_set(dev);
2352         } else {
2353                 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2354
2355                 /* Free previously allocated queues that are no longer usable */
2356                 nvme_free_queues(dev, dev->online_queues);
2357         }
2358
2359         return 0;
2360 }
2361
2362 static int nvme_pci_enable(struct nvme_dev *dev)
2363 {
2364         int result = -ENOMEM;
2365         struct pci_dev *pdev = to_pci_dev(dev->dev);
2366
2367         if (pci_enable_device_mem(pdev))
2368                 return result;
2369
2370         pci_set_master(pdev);
2371
2372         if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
2373             dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
2374                 goto disable;
2375
2376         if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2377                 result = -ENODEV;
2378                 goto disable;
2379         }
2380
2381         /*
2382          * Some devices and/or platforms don't advertise or work with INTx
2383          * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2384          * adjust this later.
2385          */
2386         result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2387         if (result < 0)
2388                 return result;
2389
2390         dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2391
2392         dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2393                                 io_queue_depth);
2394         dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2395         dev->dbs = dev->bar + 4096;
2396
2397         /*
2398          * Temporary fix for the Apple controller found in the MacBook8,1 and
2399          * some MacBook7,1 to avoid controller resets and data loss.
2400          */
2401         if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2402                 dev->q_depth = 2;
2403                 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2404                         "set queue depth=%u to work around controller resets\n",
2405                         dev->q_depth);
2406         } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2407                    (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2408                    NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2409                 dev->q_depth = 64;
2410                 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2411                         "set queue depth=%u\n", dev->q_depth);
2412         }
2413
2414         nvme_map_cmb(dev);
2415
2416         pci_enable_pcie_error_reporting(pdev);
2417         pci_save_state(pdev);
2418         return 0;
2419
2420  disable:
2421         pci_disable_device(pdev);
2422         return result;
2423 }
2424
2425 static void nvme_dev_unmap(struct nvme_dev *dev)
2426 {
2427         if (dev->bar)
2428                 iounmap(dev->bar);
2429         pci_release_mem_regions(to_pci_dev(dev->dev));
2430 }
2431
2432 static void nvme_pci_disable(struct nvme_dev *dev)
2433 {
2434         struct pci_dev *pdev = to_pci_dev(dev->dev);
2435
2436         pci_free_irq_vectors(pdev);
2437
2438         if (pci_is_enabled(pdev)) {
2439                 pci_disable_pcie_error_reporting(pdev);
2440                 pci_disable_device(pdev);
2441         }
2442 }
2443
2444 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2445 {
2446         bool dead = true;
2447         struct pci_dev *pdev = to_pci_dev(dev->dev);
2448
2449         mutex_lock(&dev->shutdown_lock);
2450         if (pci_is_enabled(pdev)) {
2451                 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2452
2453                 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2454                     dev->ctrl.state == NVME_CTRL_RESETTING)
2455                         nvme_start_freeze(&dev->ctrl);
2456                 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2457                         pdev->error_state  != pci_channel_io_normal);
2458         }
2459
2460         /*
2461          * Give the controller a chance to complete all entered requests if
2462          * doing a safe shutdown.
2463          */
2464         if (!dead) {
2465                 if (shutdown)
2466                         nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2467         }
2468
2469         nvme_stop_queues(&dev->ctrl);
2470
2471         if (!dead && dev->ctrl.queue_count > 0) {
2472                 nvme_disable_io_queues(dev);
2473                 nvme_disable_admin_queue(dev, shutdown);
2474         }
2475         nvme_suspend_io_queues(dev);
2476         nvme_suspend_queue(&dev->queues[0]);
2477         nvme_pci_disable(dev);
2478
2479         blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2480         blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2481
2482         /*
2483          * The driver will not be starting up queues again if shutting down so
2484          * must flush all entered requests to their failed completion to avoid
2485          * deadlocking blk-mq hot-cpu notifier.
2486          */
2487         if (shutdown)
2488                 nvme_start_queues(&dev->ctrl);
2489         mutex_unlock(&dev->shutdown_lock);
2490 }
2491
2492 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2493 {
2494         dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2495                                                 PAGE_SIZE, PAGE_SIZE, 0);
2496         if (!dev->prp_page_pool)
2497                 return -ENOMEM;
2498
2499         /* Optimisation for I/Os between 4k and 128k */
2500         dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2501                                                 256, 256, 0);
2502         if (!dev->prp_small_pool) {
2503                 dma_pool_destroy(dev->prp_page_pool);
2504                 return -ENOMEM;
2505         }
2506         return 0;
2507 }
2508
2509 static void nvme_release_prp_pools(struct nvme_dev *dev)
2510 {
2511         dma_pool_destroy(dev->prp_page_pool);
2512         dma_pool_destroy(dev->prp_small_pool);
2513 }
2514
2515 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2516 {
2517         struct nvme_dev *dev = to_nvme_dev(ctrl);
2518
2519         nvme_dbbuf_dma_free(dev);
2520         put_device(dev->dev);
2521         if (dev->tagset.tags)
2522                 blk_mq_free_tag_set(&dev->tagset);
2523         if (dev->ctrl.admin_q)
2524                 blk_put_queue(dev->ctrl.admin_q);
2525         kfree(dev->queues);
2526         free_opal_dev(dev->ctrl.opal_dev);
2527         mempool_destroy(dev->iod_mempool);
2528         kfree(dev);
2529 }
2530
2531 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
2532 {
2533         dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
2534
2535         nvme_get_ctrl(&dev->ctrl);
2536         nvme_dev_disable(dev, false);
2537         nvme_kill_queues(&dev->ctrl);
2538         if (!queue_work(nvme_wq, &dev->remove_work))
2539                 nvme_put_ctrl(&dev->ctrl);
2540 }
2541
2542 static void nvme_reset_work(struct work_struct *work)
2543 {
2544         struct nvme_dev *dev =
2545                 container_of(work, struct nvme_dev, ctrl.reset_work);
2546         bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2547         int result = -ENODEV;
2548         enum nvme_ctrl_state new_state = NVME_CTRL_LIVE;
2549
2550         if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
2551                 goto out;
2552
2553         /*
2554          * If we're called to reset a live controller first shut it down before
2555          * moving on.
2556          */
2557         if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2558                 nvme_dev_disable(dev, false);
2559
2560         /*
2561          * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2562          * initializing procedure here.
2563          */
2564         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2565                 dev_warn(dev->ctrl.device,
2566                         "failed to mark controller CONNECTING\n");
2567                 goto out;
2568         }
2569
2570         result = nvme_pci_enable(dev);
2571         if (result)
2572                 goto out;
2573
2574         result = nvme_pci_configure_admin_queue(dev);
2575         if (result)
2576                 goto out;
2577
2578         result = nvme_alloc_admin_tags(dev);
2579         if (result)
2580                 goto out;
2581
2582         /*
2583          * Limit the max command size to prevent iod->sg allocations going
2584          * over a single page.
2585          */
2586         dev->ctrl.max_hw_sectors = NVME_MAX_KB_SZ << 1;
2587         dev->ctrl.max_segments = NVME_MAX_SEGS;
2588
2589         result = nvme_init_identify(&dev->ctrl);
2590         if (result)
2591                 goto out;
2592
2593         if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2594                 if (!dev->ctrl.opal_dev)
2595                         dev->ctrl.opal_dev =
2596                                 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2597                 else if (was_suspend)
2598                         opal_unlock_from_suspend(dev->ctrl.opal_dev);
2599         } else {
2600                 free_opal_dev(dev->ctrl.opal_dev);
2601                 dev->ctrl.opal_dev = NULL;
2602         }
2603
2604         if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2605                 result = nvme_dbbuf_dma_alloc(dev);
2606                 if (result)
2607                         dev_warn(dev->dev,
2608                                  "unable to allocate dma for dbbuf\n");
2609         }
2610
2611         if (dev->ctrl.hmpre) {
2612                 result = nvme_setup_host_mem(dev);
2613                 if (result < 0)
2614                         goto out;
2615         }
2616
2617         result = nvme_setup_io_queues(dev);
2618         if (result)
2619                 goto out;
2620
2621         /*
2622          * Keep the controller around but remove all namespaces if we don't have
2623          * any working I/O queue.
2624          */
2625         if (dev->online_queues < 2) {
2626                 dev_warn(dev->ctrl.device, "IO queues not created\n");
2627                 nvme_kill_queues(&dev->ctrl);
2628                 nvme_remove_namespaces(&dev->ctrl);
2629                 new_state = NVME_CTRL_ADMIN_ONLY;
2630         } else {
2631                 nvme_start_queues(&dev->ctrl);
2632                 nvme_wait_freeze(&dev->ctrl);
2633                 /* hit this only when allocate tagset fails */
2634                 if (nvme_dev_add(dev))
2635                         new_state = NVME_CTRL_ADMIN_ONLY;
2636                 nvme_unfreeze(&dev->ctrl);
2637         }
2638
2639         /*
2640          * If only admin queue live, keep it to do further investigation or
2641          * recovery.
2642          */
2643         if (!nvme_change_ctrl_state(&dev->ctrl, new_state)) {
2644                 dev_warn(dev->ctrl.device,
2645                         "failed to mark controller state %d\n", new_state);
2646                 goto out;
2647         }
2648
2649         nvme_start_ctrl(&dev->ctrl);
2650         return;
2651
2652  out:
2653         nvme_remove_dead_ctrl(dev, result);
2654 }
2655
2656 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2657 {
2658         struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2659         struct pci_dev *pdev = to_pci_dev(dev->dev);
2660
2661         if (pci_get_drvdata(pdev))
2662                 device_release_driver(&pdev->dev);
2663         nvme_put_ctrl(&dev->ctrl);
2664 }
2665
2666 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2667 {
2668         *val = readl(to_nvme_dev(ctrl)->bar + off);
2669         return 0;
2670 }
2671
2672 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2673 {
2674         writel(val, to_nvme_dev(ctrl)->bar + off);
2675         return 0;
2676 }
2677
2678 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2679 {
2680         *val = readq(to_nvme_dev(ctrl)->bar + off);
2681         return 0;
2682 }
2683
2684 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2685 {
2686         struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2687
2688         return snprintf(buf, size, "%s", dev_name(&pdev->dev));
2689 }
2690
2691 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2692         .name                   = "pcie",
2693         .module                 = THIS_MODULE,
2694         .flags                  = NVME_F_METADATA_SUPPORTED |
2695                                   NVME_F_PCI_P2PDMA,
2696         .reg_read32             = nvme_pci_reg_read32,
2697         .reg_write32            = nvme_pci_reg_write32,
2698         .reg_read64             = nvme_pci_reg_read64,
2699         .free_ctrl              = nvme_pci_free_ctrl,
2700         .submit_async_event     = nvme_pci_submit_async_event,
2701         .get_address            = nvme_pci_get_address,
2702 };
2703
2704 static int nvme_dev_map(struct nvme_dev *dev)
2705 {
2706         struct pci_dev *pdev = to_pci_dev(dev->dev);
2707
2708         if (pci_request_mem_regions(pdev, "nvme"))
2709                 return -ENODEV;
2710
2711         if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2712                 goto release;
2713
2714         return 0;
2715   release:
2716         pci_release_mem_regions(pdev);
2717         return -ENODEV;
2718 }
2719
2720 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2721 {
2722         if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2723                 /*
2724                  * Several Samsung devices seem to drop off the PCIe bus
2725                  * randomly when APST is on and uses the deepest sleep state.
2726                  * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2727                  * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2728                  * 950 PRO 256GB", but it seems to be restricted to two Dell
2729                  * laptops.
2730                  */
2731                 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2732                     (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2733                      dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2734                         return NVME_QUIRK_NO_DEEPEST_PS;
2735         } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2736                 /*
2737                  * Samsung SSD 960 EVO drops off the PCIe bus after system
2738                  * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2739                  * within few minutes after bootup on a Coffee Lake board -
2740                  * ASUS PRIME Z370-A
2741                  */
2742                 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2743                     (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2744                      dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2745                         return NVME_QUIRK_NO_APST;
2746         }
2747
2748         return 0;
2749 }
2750
2751 static void nvme_async_probe(void *data, async_cookie_t cookie)
2752 {
2753         struct nvme_dev *dev = data;
2754
2755         nvme_reset_ctrl_sync(&dev->ctrl);
2756         flush_work(&dev->ctrl.scan_work);
2757         nvme_put_ctrl(&dev->ctrl);
2758 }
2759
2760 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2761 {
2762         int node, result = -ENOMEM;
2763         struct nvme_dev *dev;
2764         unsigned long quirks = id->driver_data;
2765         size_t alloc_size;
2766
2767         node = dev_to_node(&pdev->dev);
2768         if (node == NUMA_NO_NODE)
2769                 set_dev_node(&pdev->dev, first_memory_node);
2770
2771         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2772         if (!dev)
2773                 return -ENOMEM;
2774
2775         dev->queues = kcalloc_node(max_queue_count(), sizeof(struct nvme_queue),
2776                                         GFP_KERNEL, node);
2777         if (!dev->queues)
2778                 goto free;
2779
2780         dev->dev = get_device(&pdev->dev);
2781         pci_set_drvdata(pdev, dev);
2782
2783         result = nvme_dev_map(dev);
2784         if (result)
2785                 goto put_pci;
2786
2787         INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2788         INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2789         mutex_init(&dev->shutdown_lock);
2790
2791         result = nvme_setup_prp_pools(dev);
2792         if (result)
2793                 goto unmap;
2794
2795         quirks |= check_vendor_combination_bug(pdev);
2796
2797         /*
2798          * Double check that our mempool alloc size will cover the biggest
2799          * command we support.
2800          */
2801         alloc_size = nvme_pci_iod_alloc_size(dev, NVME_MAX_KB_SZ,
2802                                                 NVME_MAX_SEGS, true);
2803         WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2804
2805         dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
2806                                                 mempool_kfree,
2807                                                 (void *) alloc_size,
2808                                                 GFP_KERNEL, node);
2809         if (!dev->iod_mempool) {
2810                 result = -ENOMEM;
2811                 goto release_pools;
2812         }
2813
2814         result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2815                         quirks);
2816         if (result)
2817                 goto release_mempool;
2818
2819         dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2820
2821         nvme_get_ctrl(&dev->ctrl);
2822         async_schedule(nvme_async_probe, dev);
2823
2824         return 0;
2825
2826  release_mempool:
2827         mempool_destroy(dev->iod_mempool);
2828  release_pools:
2829         nvme_release_prp_pools(dev);
2830  unmap:
2831         nvme_dev_unmap(dev);
2832  put_pci:
2833         put_device(dev->dev);
2834  free:
2835         kfree(dev->queues);
2836         kfree(dev);
2837         return result;
2838 }
2839
2840 static void nvme_reset_prepare(struct pci_dev *pdev)
2841 {
2842         struct nvme_dev *dev = pci_get_drvdata(pdev);
2843         nvme_dev_disable(dev, false);
2844 }
2845
2846 static void nvme_reset_done(struct pci_dev *pdev)
2847 {
2848         struct nvme_dev *dev = pci_get_drvdata(pdev);
2849         nvme_reset_ctrl_sync(&dev->ctrl);
2850 }
2851
2852 static void nvme_shutdown(struct pci_dev *pdev)
2853 {
2854         struct nvme_dev *dev = pci_get_drvdata(pdev);
2855         nvme_dev_disable(dev, true);
2856 }
2857
2858 /*
2859  * The driver's remove may be called on a device in a partially initialized
2860  * state. This function must not have any dependencies on the device state in
2861  * order to proceed.
2862  */
2863 static void nvme_remove(struct pci_dev *pdev)
2864 {
2865         struct nvme_dev *dev = pci_get_drvdata(pdev);
2866
2867         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2868         pci_set_drvdata(pdev, NULL);
2869
2870         if (!pci_device_is_present(pdev)) {
2871                 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2872                 nvme_dev_disable(dev, true);
2873                 nvme_dev_remove_admin(dev);
2874         }
2875
2876         flush_work(&dev->ctrl.reset_work);
2877         nvme_stop_ctrl(&dev->ctrl);
2878         nvme_remove_namespaces(&dev->ctrl);
2879         nvme_dev_disable(dev, true);
2880         nvme_release_cmb(dev);
2881         nvme_free_host_mem(dev);
2882         nvme_dev_remove_admin(dev);
2883         nvme_free_queues(dev, 0);
2884         nvme_uninit_ctrl(&dev->ctrl);
2885         nvme_release_prp_pools(dev);
2886         nvme_dev_unmap(dev);
2887         nvme_put_ctrl(&dev->ctrl);
2888 }
2889
2890 #ifdef CONFIG_PM_SLEEP
2891 static int nvme_suspend(struct device *dev)
2892 {
2893         struct pci_dev *pdev = to_pci_dev(dev);
2894         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2895
2896         nvme_dev_disable(ndev, true);
2897         return 0;
2898 }
2899
2900 static int nvme_resume(struct device *dev)
2901 {
2902         struct pci_dev *pdev = to_pci_dev(dev);
2903         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2904
2905         nvme_reset_ctrl(&ndev->ctrl);
2906         return 0;
2907 }
2908 #endif
2909
2910 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2911
2912 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2913                                                 pci_channel_state_t state)
2914 {
2915         struct nvme_dev *dev = pci_get_drvdata(pdev);
2916
2917         /*
2918          * A frozen channel requires a reset. When detected, this method will
2919          * shutdown the controller to quiesce. The controller will be restarted
2920          * after the slot reset through driver's slot_reset callback.
2921          */
2922         switch (state) {
2923         case pci_channel_io_normal:
2924                 return PCI_ERS_RESULT_CAN_RECOVER;
2925         case pci_channel_io_frozen:
2926                 dev_warn(dev->ctrl.device,
2927                         "frozen state error detected, reset controller\n");
2928                 nvme_dev_disable(dev, false);
2929                 return PCI_ERS_RESULT_NEED_RESET;
2930         case pci_channel_io_perm_failure:
2931                 dev_warn(dev->ctrl.device,
2932                         "failure state error detected, request disconnect\n");
2933                 return PCI_ERS_RESULT_DISCONNECT;
2934         }
2935         return PCI_ERS_RESULT_NEED_RESET;
2936 }
2937
2938 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2939 {
2940         struct nvme_dev *dev = pci_get_drvdata(pdev);
2941
2942         dev_info(dev->ctrl.device, "restart after slot reset\n");
2943         pci_restore_state(pdev);
2944         nvme_reset_ctrl(&dev->ctrl);
2945         return PCI_ERS_RESULT_RECOVERED;
2946 }
2947
2948 static void nvme_error_resume(struct pci_dev *pdev)
2949 {
2950         struct nvme_dev *dev = pci_get_drvdata(pdev);
2951
2952         flush_work(&dev->ctrl.reset_work);
2953 }
2954
2955 static const struct pci_error_handlers nvme_err_handler = {
2956         .error_detected = nvme_error_detected,
2957         .slot_reset     = nvme_slot_reset,
2958         .resume         = nvme_error_resume,
2959         .reset_prepare  = nvme_reset_prepare,
2960         .reset_done     = nvme_reset_done,
2961 };
2962
2963 static const struct pci_device_id nvme_id_table[] = {
2964         { PCI_VDEVICE(INTEL, 0x0953),
2965                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2966                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2967         { PCI_VDEVICE(INTEL, 0x0a53),
2968                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2969                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2970         { PCI_VDEVICE(INTEL, 0x0a54),
2971                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2972                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2973         { PCI_VDEVICE(INTEL, 0x0a55),
2974                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2975                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2976         { PCI_VDEVICE(INTEL, 0xf1a5),   /* Intel 600P/P3100 */
2977                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
2978                                 NVME_QUIRK_MEDIUM_PRIO_SQ },
2979         { PCI_VDEVICE(INTEL, 0xf1a6),   /* Intel 760p/Pro 7600p */
2980                 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
2981         { PCI_VDEVICE(INTEL, 0x5845),   /* Qemu emulated controller */
2982                 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2983         { PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
2984                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2985         { PCI_DEVICE(0x1c58, 0x0003),   /* HGST adapter */
2986                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2987         { PCI_DEVICE(0x1c58, 0x0023),   /* WDC SN200 adapter */
2988                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2989         { PCI_DEVICE(0x1c5f, 0x0540),   /* Memblaze Pblaze4 adapter */
2990                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2991         { PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
2992                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2993         { PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
2994                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2995         { PCI_DEVICE(0x1d1d, 0x1f1f),   /* LighNVM qemu device */
2996                 .driver_data = NVME_QUIRK_LIGHTNVM, },
2997         { PCI_DEVICE(0x1d1d, 0x2807),   /* CNEX WL */
2998                 .driver_data = NVME_QUIRK_LIGHTNVM, },
2999         { PCI_DEVICE(0x1d1d, 0x2601),   /* CNEX Granby */
3000                 .driver_data = NVME_QUIRK_LIGHTNVM, },
3001         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3002         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
3003         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3004         { 0, }
3005 };
3006 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3007
3008 static struct pci_driver nvme_driver = {
3009         .name           = "nvme",
3010         .id_table       = nvme_id_table,
3011         .probe          = nvme_probe,
3012         .remove         = nvme_remove,
3013         .shutdown       = nvme_shutdown,
3014         .driver         = {
3015                 .pm     = &nvme_dev_pm_ops,
3016         },
3017         .sriov_configure = pci_sriov_configure_simple,
3018         .err_handler    = &nvme_err_handler,
3019 };
3020
3021 static int __init nvme_init(void)
3022 {
3023         return pci_register_driver(&nvme_driver);
3024 }
3025
3026 static void __exit nvme_exit(void)
3027 {
3028         pci_unregister_driver(&nvme_driver);
3029         flush_workqueue(nvme_wq);
3030         _nvme_check_size();
3031 }
3032
3033 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3034 MODULE_LICENSE("GPL");
3035 MODULE_VERSION("1.0");
3036 module_init(nvme_init);
3037 module_exit(nvme_exit);