Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[sfrench/cifs-2.6.git] / drivers / nvme / host / pci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6
7 #include <linux/aer.h>
8 #include <linux/async.h>
9 #include <linux/blkdev.h>
10 #include <linux/blk-mq.h>
11 #include <linux/blk-mq-pci.h>
12 #include <linux/dmi.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/mutex.h>
19 #include <linux/once.h>
20 #include <linux/pci.h>
21 #include <linux/suspend.h>
22 #include <linux/t10-pi.h>
23 #include <linux/types.h>
24 #include <linux/io-64-nonatomic-lo-hi.h>
25 #include <linux/sed-opal.h>
26 #include <linux/pci-p2pdma.h>
27
28 #include "trace.h"
29 #include "nvme.h"
30
31 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
32 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
33
34 #define SGES_PER_PAGE   (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
35
36 /*
37  * These can be higher, but we need to ensure that any command doesn't
38  * require an sg allocation that needs more than a page of data.
39  */
40 #define NVME_MAX_KB_SZ  4096
41 #define NVME_MAX_SEGS   127
42
43 static int use_threaded_interrupts;
44 module_param(use_threaded_interrupts, int, 0);
45
46 static bool use_cmb_sqes = true;
47 module_param(use_cmb_sqes, bool, 0444);
48 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
49
50 static unsigned int max_host_mem_size_mb = 128;
51 module_param(max_host_mem_size_mb, uint, 0444);
52 MODULE_PARM_DESC(max_host_mem_size_mb,
53         "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
54
55 static unsigned int sgl_threshold = SZ_32K;
56 module_param(sgl_threshold, uint, 0644);
57 MODULE_PARM_DESC(sgl_threshold,
58                 "Use SGLs when average request segment size is larger or equal to "
59                 "this size. Use 0 to disable SGLs.");
60
61 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
62 static const struct kernel_param_ops io_queue_depth_ops = {
63         .set = io_queue_depth_set,
64         .get = param_get_int,
65 };
66
67 static int io_queue_depth = 1024;
68 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
69 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
70
71 static int write_queues;
72 module_param(write_queues, int, 0644);
73 MODULE_PARM_DESC(write_queues,
74         "Number of queues to use for writes. If not set, reads and writes "
75         "will share a queue set.");
76
77 static int poll_queues;
78 module_param(poll_queues, int, 0644);
79 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
80
81 struct nvme_dev;
82 struct nvme_queue;
83
84 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
85 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
86
87 /*
88  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
89  */
90 struct nvme_dev {
91         struct nvme_queue *queues;
92         struct blk_mq_tag_set tagset;
93         struct blk_mq_tag_set admin_tagset;
94         u32 __iomem *dbs;
95         struct device *dev;
96         struct dma_pool *prp_page_pool;
97         struct dma_pool *prp_small_pool;
98         unsigned online_queues;
99         unsigned max_qid;
100         unsigned io_queues[HCTX_MAX_TYPES];
101         unsigned int num_vecs;
102         int q_depth;
103         u32 db_stride;
104         void __iomem *bar;
105         unsigned long bar_mapped_size;
106         struct work_struct remove_work;
107         struct mutex shutdown_lock;
108         bool subsystem;
109         u64 cmb_size;
110         bool cmb_use_sqes;
111         u32 cmbsz;
112         u32 cmbloc;
113         struct nvme_ctrl ctrl;
114         u32 last_ps;
115
116         mempool_t *iod_mempool;
117
118         /* shadow doorbell buffer support: */
119         u32 *dbbuf_dbs;
120         dma_addr_t dbbuf_dbs_dma_addr;
121         u32 *dbbuf_eis;
122         dma_addr_t dbbuf_eis_dma_addr;
123
124         /* host memory buffer support: */
125         u64 host_mem_size;
126         u32 nr_host_mem_descs;
127         dma_addr_t host_mem_descs_dma;
128         struct nvme_host_mem_buf_desc *host_mem_descs;
129         void **host_mem_desc_bufs;
130 };
131
132 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
133 {
134         int n = 0, ret;
135
136         ret = kstrtoint(val, 10, &n);
137         if (ret != 0 || n < 2)
138                 return -EINVAL;
139
140         return param_set_int(val, kp);
141 }
142
143 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
144 {
145         return qid * 2 * stride;
146 }
147
148 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
149 {
150         return (qid * 2 + 1) * stride;
151 }
152
153 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
154 {
155         return container_of(ctrl, struct nvme_dev, ctrl);
156 }
157
158 /*
159  * An NVM Express queue.  Each device has at least two (one for admin
160  * commands and one for I/O commands).
161  */
162 struct nvme_queue {
163         struct nvme_dev *dev;
164         spinlock_t sq_lock;
165         struct nvme_command *sq_cmds;
166          /* only used for poll queues: */
167         spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
168         volatile struct nvme_completion *cqes;
169         struct blk_mq_tags **tags;
170         dma_addr_t sq_dma_addr;
171         dma_addr_t cq_dma_addr;
172         u32 __iomem *q_db;
173         u16 q_depth;
174         u16 cq_vector;
175         u16 sq_tail;
176         u16 last_sq_tail;
177         u16 cq_head;
178         u16 last_cq_head;
179         u16 qid;
180         u8 cq_phase;
181         unsigned long flags;
182 #define NVMEQ_ENABLED           0
183 #define NVMEQ_SQ_CMB            1
184 #define NVMEQ_DELETE_ERROR      2
185 #define NVMEQ_POLLED            3
186         u32 *dbbuf_sq_db;
187         u32 *dbbuf_cq_db;
188         u32 *dbbuf_sq_ei;
189         u32 *dbbuf_cq_ei;
190         struct completion delete_done;
191 };
192
193 /*
194  * The nvme_iod describes the data in an I/O.
195  *
196  * The sg pointer contains the list of PRP/SGL chunk allocations in addition
197  * to the actual struct scatterlist.
198  */
199 struct nvme_iod {
200         struct nvme_request req;
201         struct nvme_queue *nvmeq;
202         bool use_sgl;
203         int aborted;
204         int npages;             /* In the PRP list. 0 means small pool in use */
205         int nents;              /* Used in scatterlist */
206         dma_addr_t first_dma;
207         unsigned int dma_len;   /* length of single DMA segment mapping */
208         dma_addr_t meta_dma;
209         struct scatterlist *sg;
210 };
211
212 static unsigned int max_io_queues(void)
213 {
214         return num_possible_cpus() + write_queues + poll_queues;
215 }
216
217 static unsigned int max_queue_count(void)
218 {
219         /* IO queues + admin queue */
220         return 1 + max_io_queues();
221 }
222
223 static inline unsigned int nvme_dbbuf_size(u32 stride)
224 {
225         return (max_queue_count() * 8 * stride);
226 }
227
228 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
229 {
230         unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
231
232         if (dev->dbbuf_dbs)
233                 return 0;
234
235         dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
236                                             &dev->dbbuf_dbs_dma_addr,
237                                             GFP_KERNEL);
238         if (!dev->dbbuf_dbs)
239                 return -ENOMEM;
240         dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
241                                             &dev->dbbuf_eis_dma_addr,
242                                             GFP_KERNEL);
243         if (!dev->dbbuf_eis) {
244                 dma_free_coherent(dev->dev, mem_size,
245                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
246                 dev->dbbuf_dbs = NULL;
247                 return -ENOMEM;
248         }
249
250         return 0;
251 }
252
253 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
254 {
255         unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
256
257         if (dev->dbbuf_dbs) {
258                 dma_free_coherent(dev->dev, mem_size,
259                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
260                 dev->dbbuf_dbs = NULL;
261         }
262         if (dev->dbbuf_eis) {
263                 dma_free_coherent(dev->dev, mem_size,
264                                   dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
265                 dev->dbbuf_eis = NULL;
266         }
267 }
268
269 static void nvme_dbbuf_init(struct nvme_dev *dev,
270                             struct nvme_queue *nvmeq, int qid)
271 {
272         if (!dev->dbbuf_dbs || !qid)
273                 return;
274
275         nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
276         nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
277         nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
278         nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
279 }
280
281 static void nvme_dbbuf_set(struct nvme_dev *dev)
282 {
283         struct nvme_command c;
284
285         if (!dev->dbbuf_dbs)
286                 return;
287
288         memset(&c, 0, sizeof(c));
289         c.dbbuf.opcode = nvme_admin_dbbuf;
290         c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
291         c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
292
293         if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
294                 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
295                 /* Free memory and continue on */
296                 nvme_dbbuf_dma_free(dev);
297         }
298 }
299
300 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
301 {
302         return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
303 }
304
305 /* Update dbbuf and return true if an MMIO is required */
306 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
307                                               volatile u32 *dbbuf_ei)
308 {
309         if (dbbuf_db) {
310                 u16 old_value;
311
312                 /*
313                  * Ensure that the queue is written before updating
314                  * the doorbell in memory
315                  */
316                 wmb();
317
318                 old_value = *dbbuf_db;
319                 *dbbuf_db = value;
320
321                 /*
322                  * Ensure that the doorbell is updated before reading the event
323                  * index from memory.  The controller needs to provide similar
324                  * ordering to ensure the envent index is updated before reading
325                  * the doorbell.
326                  */
327                 mb();
328
329                 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
330                         return false;
331         }
332
333         return true;
334 }
335
336 /*
337  * Will slightly overestimate the number of pages needed.  This is OK
338  * as it only leads to a small amount of wasted memory for the lifetime of
339  * the I/O.
340  */
341 static int nvme_npages(unsigned size, struct nvme_dev *dev)
342 {
343         unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
344                                       dev->ctrl.page_size);
345         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
346 }
347
348 /*
349  * Calculates the number of pages needed for the SGL segments. For example a 4k
350  * page can accommodate 256 SGL descriptors.
351  */
352 static int nvme_pci_npages_sgl(unsigned int num_seg)
353 {
354         return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE);
355 }
356
357 static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev,
358                 unsigned int size, unsigned int nseg, bool use_sgl)
359 {
360         size_t alloc_size;
361
362         if (use_sgl)
363                 alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg);
364         else
365                 alloc_size = sizeof(__le64 *) * nvme_npages(size, dev);
366
367         return alloc_size + sizeof(struct scatterlist) * nseg;
368 }
369
370 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
371                                 unsigned int hctx_idx)
372 {
373         struct nvme_dev *dev = data;
374         struct nvme_queue *nvmeq = &dev->queues[0];
375
376         WARN_ON(hctx_idx != 0);
377         WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
378         WARN_ON(nvmeq->tags);
379
380         hctx->driver_data = nvmeq;
381         nvmeq->tags = &dev->admin_tagset.tags[0];
382         return 0;
383 }
384
385 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
386 {
387         struct nvme_queue *nvmeq = hctx->driver_data;
388
389         nvmeq->tags = NULL;
390 }
391
392 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
393                           unsigned int hctx_idx)
394 {
395         struct nvme_dev *dev = data;
396         struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
397
398         if (!nvmeq->tags)
399                 nvmeq->tags = &dev->tagset.tags[hctx_idx];
400
401         WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
402         hctx->driver_data = nvmeq;
403         return 0;
404 }
405
406 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
407                 unsigned int hctx_idx, unsigned int numa_node)
408 {
409         struct nvme_dev *dev = set->driver_data;
410         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
411         int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
412         struct nvme_queue *nvmeq = &dev->queues[queue_idx];
413
414         BUG_ON(!nvmeq);
415         iod->nvmeq = nvmeq;
416
417         nvme_req(req)->ctrl = &dev->ctrl;
418         return 0;
419 }
420
421 static int queue_irq_offset(struct nvme_dev *dev)
422 {
423         /* if we have more than 1 vec, admin queue offsets us by 1 */
424         if (dev->num_vecs > 1)
425                 return 1;
426
427         return 0;
428 }
429
430 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
431 {
432         struct nvme_dev *dev = set->driver_data;
433         int i, qoff, offset;
434
435         offset = queue_irq_offset(dev);
436         for (i = 0, qoff = 0; i < set->nr_maps; i++) {
437                 struct blk_mq_queue_map *map = &set->map[i];
438
439                 map->nr_queues = dev->io_queues[i];
440                 if (!map->nr_queues) {
441                         BUG_ON(i == HCTX_TYPE_DEFAULT);
442                         continue;
443                 }
444
445                 /*
446                  * The poll queue(s) doesn't have an IRQ (and hence IRQ
447                  * affinity), so use the regular blk-mq cpu mapping
448                  */
449                 map->queue_offset = qoff;
450                 if (i != HCTX_TYPE_POLL && offset)
451                         blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
452                 else
453                         blk_mq_map_queues(map);
454                 qoff += map->nr_queues;
455                 offset += map->nr_queues;
456         }
457
458         return 0;
459 }
460
461 /*
462  * Write sq tail if we are asked to, or if the next command would wrap.
463  */
464 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
465 {
466         if (!write_sq) {
467                 u16 next_tail = nvmeq->sq_tail + 1;
468
469                 if (next_tail == nvmeq->q_depth)
470                         next_tail = 0;
471                 if (next_tail != nvmeq->last_sq_tail)
472                         return;
473         }
474
475         if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
476                         nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
477                 writel(nvmeq->sq_tail, nvmeq->q_db);
478         nvmeq->last_sq_tail = nvmeq->sq_tail;
479 }
480
481 /**
482  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
483  * @nvmeq: The queue to use
484  * @cmd: The command to send
485  * @write_sq: whether to write to the SQ doorbell
486  */
487 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
488                             bool write_sq)
489 {
490         spin_lock(&nvmeq->sq_lock);
491         memcpy(&nvmeq->sq_cmds[nvmeq->sq_tail], cmd, sizeof(*cmd));
492         if (++nvmeq->sq_tail == nvmeq->q_depth)
493                 nvmeq->sq_tail = 0;
494         nvme_write_sq_db(nvmeq, write_sq);
495         spin_unlock(&nvmeq->sq_lock);
496 }
497
498 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
499 {
500         struct nvme_queue *nvmeq = hctx->driver_data;
501
502         spin_lock(&nvmeq->sq_lock);
503         if (nvmeq->sq_tail != nvmeq->last_sq_tail)
504                 nvme_write_sq_db(nvmeq, true);
505         spin_unlock(&nvmeq->sq_lock);
506 }
507
508 static void **nvme_pci_iod_list(struct request *req)
509 {
510         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
511         return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
512 }
513
514 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
515 {
516         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
517         int nseg = blk_rq_nr_phys_segments(req);
518         unsigned int avg_seg_size;
519
520         if (nseg == 0)
521                 return false;
522
523         avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
524
525         if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
526                 return false;
527         if (!iod->nvmeq->qid)
528                 return false;
529         if (!sgl_threshold || avg_seg_size < sgl_threshold)
530                 return false;
531         return true;
532 }
533
534 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
535 {
536         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
537         enum dma_data_direction dma_dir = rq_data_dir(req) ?
538                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
539         const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1;
540         dma_addr_t dma_addr = iod->first_dma, next_dma_addr;
541         int i;
542
543         if (iod->dma_len) {
544                 dma_unmap_page(dev->dev, dma_addr, iod->dma_len, dma_dir);
545                 return;
546         }
547
548         WARN_ON_ONCE(!iod->nents);
549
550         /* P2PDMA requests do not need to be unmapped */
551         if (!is_pci_p2pdma_page(sg_page(iod->sg)))
552                 dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req));
553
554
555         if (iod->npages == 0)
556                 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
557                         dma_addr);
558
559         for (i = 0; i < iod->npages; i++) {
560                 void *addr = nvme_pci_iod_list(req)[i];
561
562                 if (iod->use_sgl) {
563                         struct nvme_sgl_desc *sg_list = addr;
564
565                         next_dma_addr =
566                             le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr);
567                 } else {
568                         __le64 *prp_list = addr;
569
570                         next_dma_addr = le64_to_cpu(prp_list[last_prp]);
571                 }
572
573                 dma_pool_free(dev->prp_page_pool, addr, dma_addr);
574                 dma_addr = next_dma_addr;
575         }
576
577         mempool_free(iod->sg, dev->iod_mempool);
578 }
579
580 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
581 {
582         int i;
583         struct scatterlist *sg;
584
585         for_each_sg(sgl, sg, nents, i) {
586                 dma_addr_t phys = sg_phys(sg);
587                 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
588                         "dma_address:%pad dma_length:%d\n",
589                         i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
590                         sg_dma_len(sg));
591         }
592 }
593
594 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
595                 struct request *req, struct nvme_rw_command *cmnd)
596 {
597         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
598         struct dma_pool *pool;
599         int length = blk_rq_payload_bytes(req);
600         struct scatterlist *sg = iod->sg;
601         int dma_len = sg_dma_len(sg);
602         u64 dma_addr = sg_dma_address(sg);
603         u32 page_size = dev->ctrl.page_size;
604         int offset = dma_addr & (page_size - 1);
605         __le64 *prp_list;
606         void **list = nvme_pci_iod_list(req);
607         dma_addr_t prp_dma;
608         int nprps, i;
609
610         length -= (page_size - offset);
611         if (length <= 0) {
612                 iod->first_dma = 0;
613                 goto done;
614         }
615
616         dma_len -= (page_size - offset);
617         if (dma_len) {
618                 dma_addr += (page_size - offset);
619         } else {
620                 sg = sg_next(sg);
621                 dma_addr = sg_dma_address(sg);
622                 dma_len = sg_dma_len(sg);
623         }
624
625         if (length <= page_size) {
626                 iod->first_dma = dma_addr;
627                 goto done;
628         }
629
630         nprps = DIV_ROUND_UP(length, page_size);
631         if (nprps <= (256 / 8)) {
632                 pool = dev->prp_small_pool;
633                 iod->npages = 0;
634         } else {
635                 pool = dev->prp_page_pool;
636                 iod->npages = 1;
637         }
638
639         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
640         if (!prp_list) {
641                 iod->first_dma = dma_addr;
642                 iod->npages = -1;
643                 return BLK_STS_RESOURCE;
644         }
645         list[0] = prp_list;
646         iod->first_dma = prp_dma;
647         i = 0;
648         for (;;) {
649                 if (i == page_size >> 3) {
650                         __le64 *old_prp_list = prp_list;
651                         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
652                         if (!prp_list)
653                                 return BLK_STS_RESOURCE;
654                         list[iod->npages++] = prp_list;
655                         prp_list[0] = old_prp_list[i - 1];
656                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
657                         i = 1;
658                 }
659                 prp_list[i++] = cpu_to_le64(dma_addr);
660                 dma_len -= page_size;
661                 dma_addr += page_size;
662                 length -= page_size;
663                 if (length <= 0)
664                         break;
665                 if (dma_len > 0)
666                         continue;
667                 if (unlikely(dma_len < 0))
668                         goto bad_sgl;
669                 sg = sg_next(sg);
670                 dma_addr = sg_dma_address(sg);
671                 dma_len = sg_dma_len(sg);
672         }
673
674 done:
675         cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
676         cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
677
678         return BLK_STS_OK;
679
680  bad_sgl:
681         WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
682                         "Invalid SGL for payload:%d nents:%d\n",
683                         blk_rq_payload_bytes(req), iod->nents);
684         return BLK_STS_IOERR;
685 }
686
687 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
688                 struct scatterlist *sg)
689 {
690         sge->addr = cpu_to_le64(sg_dma_address(sg));
691         sge->length = cpu_to_le32(sg_dma_len(sg));
692         sge->type = NVME_SGL_FMT_DATA_DESC << 4;
693 }
694
695 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
696                 dma_addr_t dma_addr, int entries)
697 {
698         sge->addr = cpu_to_le64(dma_addr);
699         if (entries < SGES_PER_PAGE) {
700                 sge->length = cpu_to_le32(entries * sizeof(*sge));
701                 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
702         } else {
703                 sge->length = cpu_to_le32(PAGE_SIZE);
704                 sge->type = NVME_SGL_FMT_SEG_DESC << 4;
705         }
706 }
707
708 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
709                 struct request *req, struct nvme_rw_command *cmd, int entries)
710 {
711         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
712         struct dma_pool *pool;
713         struct nvme_sgl_desc *sg_list;
714         struct scatterlist *sg = iod->sg;
715         dma_addr_t sgl_dma;
716         int i = 0;
717
718         /* setting the transfer type as SGL */
719         cmd->flags = NVME_CMD_SGL_METABUF;
720
721         if (entries == 1) {
722                 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
723                 return BLK_STS_OK;
724         }
725
726         if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
727                 pool = dev->prp_small_pool;
728                 iod->npages = 0;
729         } else {
730                 pool = dev->prp_page_pool;
731                 iod->npages = 1;
732         }
733
734         sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
735         if (!sg_list) {
736                 iod->npages = -1;
737                 return BLK_STS_RESOURCE;
738         }
739
740         nvme_pci_iod_list(req)[0] = sg_list;
741         iod->first_dma = sgl_dma;
742
743         nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
744
745         do {
746                 if (i == SGES_PER_PAGE) {
747                         struct nvme_sgl_desc *old_sg_desc = sg_list;
748                         struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
749
750                         sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
751                         if (!sg_list)
752                                 return BLK_STS_RESOURCE;
753
754                         i = 0;
755                         nvme_pci_iod_list(req)[iod->npages++] = sg_list;
756                         sg_list[i++] = *link;
757                         nvme_pci_sgl_set_seg(link, sgl_dma, entries);
758                 }
759
760                 nvme_pci_sgl_set_data(&sg_list[i++], sg);
761                 sg = sg_next(sg);
762         } while (--entries > 0);
763
764         return BLK_STS_OK;
765 }
766
767 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
768                 struct request *req, struct nvme_rw_command *cmnd,
769                 struct bio_vec *bv)
770 {
771         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
772         unsigned int first_prp_len = dev->ctrl.page_size - bv->bv_offset;
773
774         iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
775         if (dma_mapping_error(dev->dev, iod->first_dma))
776                 return BLK_STS_RESOURCE;
777         iod->dma_len = bv->bv_len;
778
779         cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
780         if (bv->bv_len > first_prp_len)
781                 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
782         return 0;
783 }
784
785 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
786                 struct request *req, struct nvme_rw_command *cmnd,
787                 struct bio_vec *bv)
788 {
789         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
790
791         iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
792         if (dma_mapping_error(dev->dev, iod->first_dma))
793                 return BLK_STS_RESOURCE;
794         iod->dma_len = bv->bv_len;
795
796         cmnd->flags = NVME_CMD_SGL_METABUF;
797         cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
798         cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
799         cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
800         return 0;
801 }
802
803 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
804                 struct nvme_command *cmnd)
805 {
806         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
807         blk_status_t ret = BLK_STS_RESOURCE;
808         int nr_mapped;
809
810         if (blk_rq_nr_phys_segments(req) == 1) {
811                 struct bio_vec bv = req_bvec(req);
812
813                 if (!is_pci_p2pdma_page(bv.bv_page)) {
814                         if (bv.bv_offset + bv.bv_len <= dev->ctrl.page_size * 2)
815                                 return nvme_setup_prp_simple(dev, req,
816                                                              &cmnd->rw, &bv);
817
818                         if (iod->nvmeq->qid &&
819                             dev->ctrl.sgls & ((1 << 0) | (1 << 1)))
820                                 return nvme_setup_sgl_simple(dev, req,
821                                                              &cmnd->rw, &bv);
822                 }
823         }
824
825         iod->dma_len = 0;
826         iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
827         if (!iod->sg)
828                 return BLK_STS_RESOURCE;
829         sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
830         iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
831         if (!iod->nents)
832                 goto out;
833
834         if (is_pci_p2pdma_page(sg_page(iod->sg)))
835                 nr_mapped = pci_p2pdma_map_sg(dev->dev, iod->sg, iod->nents,
836                                               rq_dma_dir(req));
837         else
838                 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
839                                              rq_dma_dir(req), DMA_ATTR_NO_WARN);
840         if (!nr_mapped)
841                 goto out;
842
843         iod->use_sgl = nvme_pci_use_sgls(dev, req);
844         if (iod->use_sgl)
845                 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
846         else
847                 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
848 out:
849         if (ret != BLK_STS_OK)
850                 nvme_unmap_data(dev, req);
851         return ret;
852 }
853
854 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
855                 struct nvme_command *cmnd)
856 {
857         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
858
859         iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
860                         rq_dma_dir(req), 0);
861         if (dma_mapping_error(dev->dev, iod->meta_dma))
862                 return BLK_STS_IOERR;
863         cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
864         return 0;
865 }
866
867 /*
868  * NOTE: ns is NULL when called on the admin queue.
869  */
870 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
871                          const struct blk_mq_queue_data *bd)
872 {
873         struct nvme_ns *ns = hctx->queue->queuedata;
874         struct nvme_queue *nvmeq = hctx->driver_data;
875         struct nvme_dev *dev = nvmeq->dev;
876         struct request *req = bd->rq;
877         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
878         struct nvme_command cmnd;
879         blk_status_t ret;
880
881         iod->aborted = 0;
882         iod->npages = -1;
883         iod->nents = 0;
884
885         /*
886          * We should not need to do this, but we're still using this to
887          * ensure we can drain requests on a dying queue.
888          */
889         if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
890                 return BLK_STS_IOERR;
891
892         ret = nvme_setup_cmd(ns, req, &cmnd);
893         if (ret)
894                 return ret;
895
896         if (blk_rq_nr_phys_segments(req)) {
897                 ret = nvme_map_data(dev, req, &cmnd);
898                 if (ret)
899                         goto out_free_cmd;
900         }
901
902         if (blk_integrity_rq(req)) {
903                 ret = nvme_map_metadata(dev, req, &cmnd);
904                 if (ret)
905                         goto out_unmap_data;
906         }
907
908         blk_mq_start_request(req);
909         nvme_submit_cmd(nvmeq, &cmnd, bd->last);
910         return BLK_STS_OK;
911 out_unmap_data:
912         nvme_unmap_data(dev, req);
913 out_free_cmd:
914         nvme_cleanup_cmd(req);
915         return ret;
916 }
917
918 static void nvme_pci_complete_rq(struct request *req)
919 {
920         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
921         struct nvme_dev *dev = iod->nvmeq->dev;
922
923         nvme_cleanup_cmd(req);
924         if (blk_integrity_rq(req))
925                 dma_unmap_page(dev->dev, iod->meta_dma,
926                                rq_integrity_vec(req)->bv_len, rq_data_dir(req));
927         if (blk_rq_nr_phys_segments(req))
928                 nvme_unmap_data(dev, req);
929         nvme_complete_rq(req);
930 }
931
932 /* We read the CQE phase first to check if the rest of the entry is valid */
933 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
934 {
935         return (le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
936                         nvmeq->cq_phase;
937 }
938
939 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
940 {
941         u16 head = nvmeq->cq_head;
942
943         if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
944                                               nvmeq->dbbuf_cq_ei))
945                 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
946 }
947
948 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
949 {
950         volatile struct nvme_completion *cqe = &nvmeq->cqes[idx];
951         struct request *req;
952
953         if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
954                 dev_warn(nvmeq->dev->ctrl.device,
955                         "invalid id %d completed on queue %d\n",
956                         cqe->command_id, le16_to_cpu(cqe->sq_id));
957                 return;
958         }
959
960         /*
961          * AEN requests are special as they don't time out and can
962          * survive any kind of queue freeze and often don't respond to
963          * aborts.  We don't even bother to allocate a struct request
964          * for them but rather special case them here.
965          */
966         if (unlikely(nvmeq->qid == 0 &&
967                         cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) {
968                 nvme_complete_async_event(&nvmeq->dev->ctrl,
969                                 cqe->status, &cqe->result);
970                 return;
971         }
972
973         req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
974         trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
975         nvme_end_request(req, cqe->status, cqe->result);
976 }
977
978 static void nvme_complete_cqes(struct nvme_queue *nvmeq, u16 start, u16 end)
979 {
980         while (start != end) {
981                 nvme_handle_cqe(nvmeq, start);
982                 if (++start == nvmeq->q_depth)
983                         start = 0;
984         }
985 }
986
987 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
988 {
989         if (nvmeq->cq_head == nvmeq->q_depth - 1) {
990                 nvmeq->cq_head = 0;
991                 nvmeq->cq_phase = !nvmeq->cq_phase;
992         } else {
993                 nvmeq->cq_head++;
994         }
995 }
996
997 static inline int nvme_process_cq(struct nvme_queue *nvmeq, u16 *start,
998                                   u16 *end, unsigned int tag)
999 {
1000         int found = 0;
1001
1002         *start = nvmeq->cq_head;
1003         while (nvme_cqe_pending(nvmeq)) {
1004                 if (tag == -1U || nvmeq->cqes[nvmeq->cq_head].command_id == tag)
1005                         found++;
1006                 nvme_update_cq_head(nvmeq);
1007         }
1008         *end = nvmeq->cq_head;
1009
1010         if (*start != *end)
1011                 nvme_ring_cq_doorbell(nvmeq);
1012         return found;
1013 }
1014
1015 static irqreturn_t nvme_irq(int irq, void *data)
1016 {
1017         struct nvme_queue *nvmeq = data;
1018         irqreturn_t ret = IRQ_NONE;
1019         u16 start, end;
1020
1021         /*
1022          * The rmb/wmb pair ensures we see all updates from a previous run of
1023          * the irq handler, even if that was on another CPU.
1024          */
1025         rmb();
1026         if (nvmeq->cq_head != nvmeq->last_cq_head)
1027                 ret = IRQ_HANDLED;
1028         nvme_process_cq(nvmeq, &start, &end, -1);
1029         nvmeq->last_cq_head = nvmeq->cq_head;
1030         wmb();
1031
1032         if (start != end) {
1033                 nvme_complete_cqes(nvmeq, start, end);
1034                 return IRQ_HANDLED;
1035         }
1036
1037         return ret;
1038 }
1039
1040 static irqreturn_t nvme_irq_check(int irq, void *data)
1041 {
1042         struct nvme_queue *nvmeq = data;
1043         if (nvme_cqe_pending(nvmeq))
1044                 return IRQ_WAKE_THREAD;
1045         return IRQ_NONE;
1046 }
1047
1048 /*
1049  * Poll for completions any queue, including those not dedicated to polling.
1050  * Can be called from any context.
1051  */
1052 static int nvme_poll_irqdisable(struct nvme_queue *nvmeq, unsigned int tag)
1053 {
1054         struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1055         u16 start, end;
1056         int found;
1057
1058         /*
1059          * For a poll queue we need to protect against the polling thread
1060          * using the CQ lock.  For normal interrupt driven threads we have
1061          * to disable the interrupt to avoid racing with it.
1062          */
1063         if (test_bit(NVMEQ_POLLED, &nvmeq->flags)) {
1064                 spin_lock(&nvmeq->cq_poll_lock);
1065                 found = nvme_process_cq(nvmeq, &start, &end, tag);
1066                 spin_unlock(&nvmeq->cq_poll_lock);
1067         } else {
1068                 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1069                 found = nvme_process_cq(nvmeq, &start, &end, tag);
1070                 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1071         }
1072
1073         nvme_complete_cqes(nvmeq, start, end);
1074         return found;
1075 }
1076
1077 static int nvme_poll(struct blk_mq_hw_ctx *hctx)
1078 {
1079         struct nvme_queue *nvmeq = hctx->driver_data;
1080         u16 start, end;
1081         bool found;
1082
1083         if (!nvme_cqe_pending(nvmeq))
1084                 return 0;
1085
1086         spin_lock(&nvmeq->cq_poll_lock);
1087         found = nvme_process_cq(nvmeq, &start, &end, -1);
1088         spin_unlock(&nvmeq->cq_poll_lock);
1089
1090         nvme_complete_cqes(nvmeq, start, end);
1091         return found;
1092 }
1093
1094 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1095 {
1096         struct nvme_dev *dev = to_nvme_dev(ctrl);
1097         struct nvme_queue *nvmeq = &dev->queues[0];
1098         struct nvme_command c;
1099
1100         memset(&c, 0, sizeof(c));
1101         c.common.opcode = nvme_admin_async_event;
1102         c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1103         nvme_submit_cmd(nvmeq, &c, true);
1104 }
1105
1106 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1107 {
1108         struct nvme_command c;
1109
1110         memset(&c, 0, sizeof(c));
1111         c.delete_queue.opcode = opcode;
1112         c.delete_queue.qid = cpu_to_le16(id);
1113
1114         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1115 }
1116
1117 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1118                 struct nvme_queue *nvmeq, s16 vector)
1119 {
1120         struct nvme_command c;
1121         int flags = NVME_QUEUE_PHYS_CONTIG;
1122
1123         if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1124                 flags |= NVME_CQ_IRQ_ENABLED;
1125
1126         /*
1127          * Note: we (ab)use the fact that the prp fields survive if no data
1128          * is attached to the request.
1129          */
1130         memset(&c, 0, sizeof(c));
1131         c.create_cq.opcode = nvme_admin_create_cq;
1132         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1133         c.create_cq.cqid = cpu_to_le16(qid);
1134         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1135         c.create_cq.cq_flags = cpu_to_le16(flags);
1136         c.create_cq.irq_vector = cpu_to_le16(vector);
1137
1138         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1139 }
1140
1141 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1142                                                 struct nvme_queue *nvmeq)
1143 {
1144         struct nvme_ctrl *ctrl = &dev->ctrl;
1145         struct nvme_command c;
1146         int flags = NVME_QUEUE_PHYS_CONTIG;
1147
1148         /*
1149          * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1150          * set. Since URGENT priority is zeroes, it makes all queues
1151          * URGENT.
1152          */
1153         if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1154                 flags |= NVME_SQ_PRIO_MEDIUM;
1155
1156         /*
1157          * Note: we (ab)use the fact that the prp fields survive if no data
1158          * is attached to the request.
1159          */
1160         memset(&c, 0, sizeof(c));
1161         c.create_sq.opcode = nvme_admin_create_sq;
1162         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1163         c.create_sq.sqid = cpu_to_le16(qid);
1164         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1165         c.create_sq.sq_flags = cpu_to_le16(flags);
1166         c.create_sq.cqid = cpu_to_le16(qid);
1167
1168         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1169 }
1170
1171 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1172 {
1173         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1174 }
1175
1176 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1177 {
1178         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1179 }
1180
1181 static void abort_endio(struct request *req, blk_status_t error)
1182 {
1183         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1184         struct nvme_queue *nvmeq = iod->nvmeq;
1185
1186         dev_warn(nvmeq->dev->ctrl.device,
1187                  "Abort status: 0x%x", nvme_req(req)->status);
1188         atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1189         blk_mq_free_request(req);
1190 }
1191
1192 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1193 {
1194
1195         /* If true, indicates loss of adapter communication, possibly by a
1196          * NVMe Subsystem reset.
1197          */
1198         bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1199
1200         /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1201         switch (dev->ctrl.state) {
1202         case NVME_CTRL_RESETTING:
1203         case NVME_CTRL_CONNECTING:
1204                 return false;
1205         default:
1206                 break;
1207         }
1208
1209         /* We shouldn't reset unless the controller is on fatal error state
1210          * _or_ if we lost the communication with it.
1211          */
1212         if (!(csts & NVME_CSTS_CFS) && !nssro)
1213                 return false;
1214
1215         return true;
1216 }
1217
1218 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1219 {
1220         /* Read a config register to help see what died. */
1221         u16 pci_status;
1222         int result;
1223
1224         result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1225                                       &pci_status);
1226         if (result == PCIBIOS_SUCCESSFUL)
1227                 dev_warn(dev->ctrl.device,
1228                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1229                          csts, pci_status);
1230         else
1231                 dev_warn(dev->ctrl.device,
1232                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1233                          csts, result);
1234 }
1235
1236 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1237 {
1238         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1239         struct nvme_queue *nvmeq = iod->nvmeq;
1240         struct nvme_dev *dev = nvmeq->dev;
1241         struct request *abort_req;
1242         struct nvme_command cmd;
1243         u32 csts = readl(dev->bar + NVME_REG_CSTS);
1244
1245         /* If PCI error recovery process is happening, we cannot reset or
1246          * the recovery mechanism will surely fail.
1247          */
1248         mb();
1249         if (pci_channel_offline(to_pci_dev(dev->dev)))
1250                 return BLK_EH_RESET_TIMER;
1251
1252         /*
1253          * Reset immediately if the controller is failed
1254          */
1255         if (nvme_should_reset(dev, csts)) {
1256                 nvme_warn_reset(dev, csts);
1257                 nvme_dev_disable(dev, false);
1258                 nvme_reset_ctrl(&dev->ctrl);
1259                 return BLK_EH_DONE;
1260         }
1261
1262         /*
1263          * Did we miss an interrupt?
1264          */
1265         if (nvme_poll_irqdisable(nvmeq, req->tag)) {
1266                 dev_warn(dev->ctrl.device,
1267                          "I/O %d QID %d timeout, completion polled\n",
1268                          req->tag, nvmeq->qid);
1269                 return BLK_EH_DONE;
1270         }
1271
1272         /*
1273          * Shutdown immediately if controller times out while starting. The
1274          * reset work will see the pci device disabled when it gets the forced
1275          * cancellation error. All outstanding requests are completed on
1276          * shutdown, so we return BLK_EH_DONE.
1277          */
1278         switch (dev->ctrl.state) {
1279         case NVME_CTRL_CONNECTING:
1280                 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1281                 /* fall through */
1282         case NVME_CTRL_DELETING:
1283                 dev_warn_ratelimited(dev->ctrl.device,
1284                          "I/O %d QID %d timeout, disable controller\n",
1285                          req->tag, nvmeq->qid);
1286                 nvme_dev_disable(dev, true);
1287                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1288                 return BLK_EH_DONE;
1289         case NVME_CTRL_RESETTING:
1290                 return BLK_EH_RESET_TIMER;
1291         default:
1292                 break;
1293         }
1294
1295         /*
1296          * Shutdown the controller immediately and schedule a reset if the
1297          * command was already aborted once before and still hasn't been
1298          * returned to the driver, or if this is the admin queue.
1299          */
1300         if (!nvmeq->qid || iod->aborted) {
1301                 dev_warn(dev->ctrl.device,
1302                          "I/O %d QID %d timeout, reset controller\n",
1303                          req->tag, nvmeq->qid);
1304                 nvme_dev_disable(dev, false);
1305                 nvme_reset_ctrl(&dev->ctrl);
1306
1307                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1308                 return BLK_EH_DONE;
1309         }
1310
1311         if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1312                 atomic_inc(&dev->ctrl.abort_limit);
1313                 return BLK_EH_RESET_TIMER;
1314         }
1315         iod->aborted = 1;
1316
1317         memset(&cmd, 0, sizeof(cmd));
1318         cmd.abort.opcode = nvme_admin_abort_cmd;
1319         cmd.abort.cid = req->tag;
1320         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1321
1322         dev_warn(nvmeq->dev->ctrl.device,
1323                 "I/O %d QID %d timeout, aborting\n",
1324                  req->tag, nvmeq->qid);
1325
1326         abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1327                         BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1328         if (IS_ERR(abort_req)) {
1329                 atomic_inc(&dev->ctrl.abort_limit);
1330                 return BLK_EH_RESET_TIMER;
1331         }
1332
1333         abort_req->timeout = ADMIN_TIMEOUT;
1334         abort_req->end_io_data = NULL;
1335         blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1336
1337         /*
1338          * The aborted req will be completed on receiving the abort req.
1339          * We enable the timer again. If hit twice, it'll cause a device reset,
1340          * as the device then is in a faulty state.
1341          */
1342         return BLK_EH_RESET_TIMER;
1343 }
1344
1345 static void nvme_free_queue(struct nvme_queue *nvmeq)
1346 {
1347         dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq->q_depth),
1348                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1349         if (!nvmeq->sq_cmds)
1350                 return;
1351
1352         if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1353                 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1354                                 nvmeq->sq_cmds, SQ_SIZE(nvmeq->q_depth));
1355         } else {
1356                 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq->q_depth),
1357                                 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1358         }
1359 }
1360
1361 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1362 {
1363         int i;
1364
1365         for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1366                 dev->ctrl.queue_count--;
1367                 nvme_free_queue(&dev->queues[i]);
1368         }
1369 }
1370
1371 /**
1372  * nvme_suspend_queue - put queue into suspended state
1373  * @nvmeq: queue to suspend
1374  */
1375 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1376 {
1377         if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1378                 return 1;
1379
1380         /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1381         mb();
1382
1383         nvmeq->dev->online_queues--;
1384         if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1385                 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1386         if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1387                 pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1388         return 0;
1389 }
1390
1391 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1392 {
1393         int i;
1394
1395         for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1396                 nvme_suspend_queue(&dev->queues[i]);
1397 }
1398
1399 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1400 {
1401         struct nvme_queue *nvmeq = &dev->queues[0];
1402
1403         if (shutdown)
1404                 nvme_shutdown_ctrl(&dev->ctrl);
1405         else
1406                 nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1407
1408         nvme_poll_irqdisable(nvmeq, -1);
1409 }
1410
1411 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1412                                 int entry_size)
1413 {
1414         int q_depth = dev->q_depth;
1415         unsigned q_size_aligned = roundup(q_depth * entry_size,
1416                                           dev->ctrl.page_size);
1417
1418         if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1419                 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1420                 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1421                 q_depth = div_u64(mem_per_q, entry_size);
1422
1423                 /*
1424                  * Ensure the reduced q_depth is above some threshold where it
1425                  * would be better to map queues in system memory with the
1426                  * original depth
1427                  */
1428                 if (q_depth < 64)
1429                         return -ENOMEM;
1430         }
1431
1432         return q_depth;
1433 }
1434
1435 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1436                                 int qid, int depth)
1437 {
1438         struct pci_dev *pdev = to_pci_dev(dev->dev);
1439
1440         if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1441                 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(depth));
1442                 if (nvmeq->sq_cmds) {
1443                         nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1444                                                         nvmeq->sq_cmds);
1445                         if (nvmeq->sq_dma_addr) {
1446                                 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1447                                 return 0;
1448                         }
1449
1450                         pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(depth));
1451                 }
1452         }
1453
1454         nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1455                                 &nvmeq->sq_dma_addr, GFP_KERNEL);
1456         if (!nvmeq->sq_cmds)
1457                 return -ENOMEM;
1458         return 0;
1459 }
1460
1461 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1462 {
1463         struct nvme_queue *nvmeq = &dev->queues[qid];
1464
1465         if (dev->ctrl.queue_count > qid)
1466                 return 0;
1467
1468         nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(depth),
1469                                          &nvmeq->cq_dma_addr, GFP_KERNEL);
1470         if (!nvmeq->cqes)
1471                 goto free_nvmeq;
1472
1473         if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1474                 goto free_cqdma;
1475
1476         nvmeq->dev = dev;
1477         spin_lock_init(&nvmeq->sq_lock);
1478         spin_lock_init(&nvmeq->cq_poll_lock);
1479         nvmeq->cq_head = 0;
1480         nvmeq->cq_phase = 1;
1481         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1482         nvmeq->q_depth = depth;
1483         nvmeq->qid = qid;
1484         dev->ctrl.queue_count++;
1485
1486         return 0;
1487
1488  free_cqdma:
1489         dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1490                                                         nvmeq->cq_dma_addr);
1491  free_nvmeq:
1492         return -ENOMEM;
1493 }
1494
1495 static int queue_request_irq(struct nvme_queue *nvmeq)
1496 {
1497         struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1498         int nr = nvmeq->dev->ctrl.instance;
1499
1500         if (use_threaded_interrupts) {
1501                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1502                                 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1503         } else {
1504                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1505                                 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1506         }
1507 }
1508
1509 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1510 {
1511         struct nvme_dev *dev = nvmeq->dev;
1512
1513         nvmeq->sq_tail = 0;
1514         nvmeq->last_sq_tail = 0;
1515         nvmeq->cq_head = 0;
1516         nvmeq->cq_phase = 1;
1517         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1518         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1519         nvme_dbbuf_init(dev, nvmeq, qid);
1520         dev->online_queues++;
1521         wmb(); /* ensure the first interrupt sees the initialization */
1522 }
1523
1524 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1525 {
1526         struct nvme_dev *dev = nvmeq->dev;
1527         int result;
1528         u16 vector = 0;
1529
1530         clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1531
1532         /*
1533          * A queue's vector matches the queue identifier unless the controller
1534          * has only one vector available.
1535          */
1536         if (!polled)
1537                 vector = dev->num_vecs == 1 ? 0 : qid;
1538         else
1539                 set_bit(NVMEQ_POLLED, &nvmeq->flags);
1540
1541         result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1542         if (result)
1543                 return result;
1544
1545         result = adapter_alloc_sq(dev, qid, nvmeq);
1546         if (result < 0)
1547                 return result;
1548         else if (result)
1549                 goto release_cq;
1550
1551         nvmeq->cq_vector = vector;
1552         nvme_init_queue(nvmeq, qid);
1553
1554         if (!polled) {
1555                 nvmeq->cq_vector = vector;
1556                 result = queue_request_irq(nvmeq);
1557                 if (result < 0)
1558                         goto release_sq;
1559         }
1560
1561         set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1562         return result;
1563
1564 release_sq:
1565         dev->online_queues--;
1566         adapter_delete_sq(dev, qid);
1567 release_cq:
1568         adapter_delete_cq(dev, qid);
1569         return result;
1570 }
1571
1572 static const struct blk_mq_ops nvme_mq_admin_ops = {
1573         .queue_rq       = nvme_queue_rq,
1574         .complete       = nvme_pci_complete_rq,
1575         .init_hctx      = nvme_admin_init_hctx,
1576         .exit_hctx      = nvme_admin_exit_hctx,
1577         .init_request   = nvme_init_request,
1578         .timeout        = nvme_timeout,
1579 };
1580
1581 static const struct blk_mq_ops nvme_mq_ops = {
1582         .queue_rq       = nvme_queue_rq,
1583         .complete       = nvme_pci_complete_rq,
1584         .commit_rqs     = nvme_commit_rqs,
1585         .init_hctx      = nvme_init_hctx,
1586         .init_request   = nvme_init_request,
1587         .map_queues     = nvme_pci_map_queues,
1588         .timeout        = nvme_timeout,
1589         .poll           = nvme_poll,
1590 };
1591
1592 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1593 {
1594         if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1595                 /*
1596                  * If the controller was reset during removal, it's possible
1597                  * user requests may be waiting on a stopped queue. Start the
1598                  * queue to flush these to completion.
1599                  */
1600                 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1601                 blk_cleanup_queue(dev->ctrl.admin_q);
1602                 blk_mq_free_tag_set(&dev->admin_tagset);
1603         }
1604 }
1605
1606 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1607 {
1608         if (!dev->ctrl.admin_q) {
1609                 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1610                 dev->admin_tagset.nr_hw_queues = 1;
1611
1612                 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1613                 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1614                 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1615                 dev->admin_tagset.cmd_size = sizeof(struct nvme_iod);
1616                 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1617                 dev->admin_tagset.driver_data = dev;
1618
1619                 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1620                         return -ENOMEM;
1621                 dev->ctrl.admin_tagset = &dev->admin_tagset;
1622
1623                 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1624                 if (IS_ERR(dev->ctrl.admin_q)) {
1625                         blk_mq_free_tag_set(&dev->admin_tagset);
1626                         return -ENOMEM;
1627                 }
1628                 if (!blk_get_queue(dev->ctrl.admin_q)) {
1629                         nvme_dev_remove_admin(dev);
1630                         dev->ctrl.admin_q = NULL;
1631                         return -ENODEV;
1632                 }
1633         } else
1634                 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1635
1636         return 0;
1637 }
1638
1639 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1640 {
1641         return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1642 }
1643
1644 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1645 {
1646         struct pci_dev *pdev = to_pci_dev(dev->dev);
1647
1648         if (size <= dev->bar_mapped_size)
1649                 return 0;
1650         if (size > pci_resource_len(pdev, 0))
1651                 return -ENOMEM;
1652         if (dev->bar)
1653                 iounmap(dev->bar);
1654         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1655         if (!dev->bar) {
1656                 dev->bar_mapped_size = 0;
1657                 return -ENOMEM;
1658         }
1659         dev->bar_mapped_size = size;
1660         dev->dbs = dev->bar + NVME_REG_DBS;
1661
1662         return 0;
1663 }
1664
1665 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1666 {
1667         int result;
1668         u32 aqa;
1669         struct nvme_queue *nvmeq;
1670
1671         result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1672         if (result < 0)
1673                 return result;
1674
1675         dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1676                                 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1677
1678         if (dev->subsystem &&
1679             (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1680                 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1681
1682         result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1683         if (result < 0)
1684                 return result;
1685
1686         result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1687         if (result)
1688                 return result;
1689
1690         nvmeq = &dev->queues[0];
1691         aqa = nvmeq->q_depth - 1;
1692         aqa |= aqa << 16;
1693
1694         writel(aqa, dev->bar + NVME_REG_AQA);
1695         lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1696         lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1697
1698         result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap);
1699         if (result)
1700                 return result;
1701
1702         nvmeq->cq_vector = 0;
1703         nvme_init_queue(nvmeq, 0);
1704         result = queue_request_irq(nvmeq);
1705         if (result) {
1706                 dev->online_queues--;
1707                 return result;
1708         }
1709
1710         set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1711         return result;
1712 }
1713
1714 static int nvme_create_io_queues(struct nvme_dev *dev)
1715 {
1716         unsigned i, max, rw_queues;
1717         int ret = 0;
1718
1719         for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1720                 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1721                         ret = -ENOMEM;
1722                         break;
1723                 }
1724         }
1725
1726         max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1727         if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1728                 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1729                                 dev->io_queues[HCTX_TYPE_READ];
1730         } else {
1731                 rw_queues = max;
1732         }
1733
1734         for (i = dev->online_queues; i <= max; i++) {
1735                 bool polled = i > rw_queues;
1736
1737                 ret = nvme_create_queue(&dev->queues[i], i, polled);
1738                 if (ret)
1739                         break;
1740         }
1741
1742         /*
1743          * Ignore failing Create SQ/CQ commands, we can continue with less
1744          * than the desired amount of queues, and even a controller without
1745          * I/O queues can still be used to issue admin commands.  This might
1746          * be useful to upgrade a buggy firmware for example.
1747          */
1748         return ret >= 0 ? 0 : ret;
1749 }
1750
1751 static ssize_t nvme_cmb_show(struct device *dev,
1752                              struct device_attribute *attr,
1753                              char *buf)
1754 {
1755         struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1756
1757         return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1758                        ndev->cmbloc, ndev->cmbsz);
1759 }
1760 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1761
1762 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1763 {
1764         u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1765
1766         return 1ULL << (12 + 4 * szu);
1767 }
1768
1769 static u32 nvme_cmb_size(struct nvme_dev *dev)
1770 {
1771         return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1772 }
1773
1774 static void nvme_map_cmb(struct nvme_dev *dev)
1775 {
1776         u64 size, offset;
1777         resource_size_t bar_size;
1778         struct pci_dev *pdev = to_pci_dev(dev->dev);
1779         int bar;
1780
1781         if (dev->cmb_size)
1782                 return;
1783
1784         dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1785         if (!dev->cmbsz)
1786                 return;
1787         dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1788
1789         size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1790         offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1791         bar = NVME_CMB_BIR(dev->cmbloc);
1792         bar_size = pci_resource_len(pdev, bar);
1793
1794         if (offset > bar_size)
1795                 return;
1796
1797         /*
1798          * Controllers may support a CMB size larger than their BAR,
1799          * for example, due to being behind a bridge. Reduce the CMB to
1800          * the reported size of the BAR
1801          */
1802         if (size > bar_size - offset)
1803                 size = bar_size - offset;
1804
1805         if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1806                 dev_warn(dev->ctrl.device,
1807                          "failed to register the CMB\n");
1808                 return;
1809         }
1810
1811         dev->cmb_size = size;
1812         dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1813
1814         if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1815                         (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1816                 pci_p2pmem_publish(pdev, true);
1817
1818         if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1819                                     &dev_attr_cmb.attr, NULL))
1820                 dev_warn(dev->ctrl.device,
1821                          "failed to add sysfs attribute for CMB\n");
1822 }
1823
1824 static inline void nvme_release_cmb(struct nvme_dev *dev)
1825 {
1826         if (dev->cmb_size) {
1827                 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1828                                              &dev_attr_cmb.attr, NULL);
1829                 dev->cmb_size = 0;
1830         }
1831 }
1832
1833 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1834 {
1835         u64 dma_addr = dev->host_mem_descs_dma;
1836         struct nvme_command c;
1837         int ret;
1838
1839         memset(&c, 0, sizeof(c));
1840         c.features.opcode       = nvme_admin_set_features;
1841         c.features.fid          = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1842         c.features.dword11      = cpu_to_le32(bits);
1843         c.features.dword12      = cpu_to_le32(dev->host_mem_size >>
1844                                               ilog2(dev->ctrl.page_size));
1845         c.features.dword13      = cpu_to_le32(lower_32_bits(dma_addr));
1846         c.features.dword14      = cpu_to_le32(upper_32_bits(dma_addr));
1847         c.features.dword15      = cpu_to_le32(dev->nr_host_mem_descs);
1848
1849         ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1850         if (ret) {
1851                 dev_warn(dev->ctrl.device,
1852                          "failed to set host mem (err %d, flags %#x).\n",
1853                          ret, bits);
1854         }
1855         return ret;
1856 }
1857
1858 static void nvme_free_host_mem(struct nvme_dev *dev)
1859 {
1860         int i;
1861
1862         for (i = 0; i < dev->nr_host_mem_descs; i++) {
1863                 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1864                 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1865
1866                 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1867                                le64_to_cpu(desc->addr),
1868                                DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1869         }
1870
1871         kfree(dev->host_mem_desc_bufs);
1872         dev->host_mem_desc_bufs = NULL;
1873         dma_free_coherent(dev->dev,
1874                         dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1875                         dev->host_mem_descs, dev->host_mem_descs_dma);
1876         dev->host_mem_descs = NULL;
1877         dev->nr_host_mem_descs = 0;
1878 }
1879
1880 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1881                 u32 chunk_size)
1882 {
1883         struct nvme_host_mem_buf_desc *descs;
1884         u32 max_entries, len;
1885         dma_addr_t descs_dma;
1886         int i = 0;
1887         void **bufs;
1888         u64 size, tmp;
1889
1890         tmp = (preferred + chunk_size - 1);
1891         do_div(tmp, chunk_size);
1892         max_entries = tmp;
1893
1894         if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1895                 max_entries = dev->ctrl.hmmaxd;
1896
1897         descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1898                                    &descs_dma, GFP_KERNEL);
1899         if (!descs)
1900                 goto out;
1901
1902         bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1903         if (!bufs)
1904                 goto out_free_descs;
1905
1906         for (size = 0; size < preferred && i < max_entries; size += len) {
1907                 dma_addr_t dma_addr;
1908
1909                 len = min_t(u64, chunk_size, preferred - size);
1910                 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1911                                 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1912                 if (!bufs[i])
1913                         break;
1914
1915                 descs[i].addr = cpu_to_le64(dma_addr);
1916                 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1917                 i++;
1918         }
1919
1920         if (!size)
1921                 goto out_free_bufs;
1922
1923         dev->nr_host_mem_descs = i;
1924         dev->host_mem_size = size;
1925         dev->host_mem_descs = descs;
1926         dev->host_mem_descs_dma = descs_dma;
1927         dev->host_mem_desc_bufs = bufs;
1928         return 0;
1929
1930 out_free_bufs:
1931         while (--i >= 0) {
1932                 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1933
1934                 dma_free_attrs(dev->dev, size, bufs[i],
1935                                le64_to_cpu(descs[i].addr),
1936                                DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1937         }
1938
1939         kfree(bufs);
1940 out_free_descs:
1941         dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1942                         descs_dma);
1943 out:
1944         dev->host_mem_descs = NULL;
1945         return -ENOMEM;
1946 }
1947
1948 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1949 {
1950         u32 chunk_size;
1951
1952         /* start big and work our way down */
1953         for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1954              chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
1955              chunk_size /= 2) {
1956                 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1957                         if (!min || dev->host_mem_size >= min)
1958                                 return 0;
1959                         nvme_free_host_mem(dev);
1960                 }
1961         }
1962
1963         return -ENOMEM;
1964 }
1965
1966 static int nvme_setup_host_mem(struct nvme_dev *dev)
1967 {
1968         u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1969         u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1970         u64 min = (u64)dev->ctrl.hmmin * 4096;
1971         u32 enable_bits = NVME_HOST_MEM_ENABLE;
1972         int ret;
1973
1974         preferred = min(preferred, max);
1975         if (min > max) {
1976                 dev_warn(dev->ctrl.device,
1977                         "min host memory (%lld MiB) above limit (%d MiB).\n",
1978                         min >> ilog2(SZ_1M), max_host_mem_size_mb);
1979                 nvme_free_host_mem(dev);
1980                 return 0;
1981         }
1982
1983         /*
1984          * If we already have a buffer allocated check if we can reuse it.
1985          */
1986         if (dev->host_mem_descs) {
1987                 if (dev->host_mem_size >= min)
1988                         enable_bits |= NVME_HOST_MEM_RETURN;
1989                 else
1990                         nvme_free_host_mem(dev);
1991         }
1992
1993         if (!dev->host_mem_descs) {
1994                 if (nvme_alloc_host_mem(dev, min, preferred)) {
1995                         dev_warn(dev->ctrl.device,
1996                                 "failed to allocate host memory buffer.\n");
1997                         return 0; /* controller must work without HMB */
1998                 }
1999
2000                 dev_info(dev->ctrl.device,
2001                         "allocated %lld MiB host memory buffer.\n",
2002                         dev->host_mem_size >> ilog2(SZ_1M));
2003         }
2004
2005         ret = nvme_set_host_mem(dev, enable_bits);
2006         if (ret)
2007                 nvme_free_host_mem(dev);
2008         return ret;
2009 }
2010
2011 /*
2012  * nirqs is the number of interrupts available for write and read
2013  * queues. The core already reserved an interrupt for the admin queue.
2014  */
2015 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2016 {
2017         struct nvme_dev *dev = affd->priv;
2018         unsigned int nr_read_queues;
2019
2020         /*
2021          * If there is no interupt available for queues, ensure that
2022          * the default queue is set to 1. The affinity set size is
2023          * also set to one, but the irq core ignores it for this case.
2024          *
2025          * If only one interrupt is available or 'write_queue' == 0, combine
2026          * write and read queues.
2027          *
2028          * If 'write_queues' > 0, ensure it leaves room for at least one read
2029          * queue.
2030          */
2031         if (!nrirqs) {
2032                 nrirqs = 1;
2033                 nr_read_queues = 0;
2034         } else if (nrirqs == 1 || !write_queues) {
2035                 nr_read_queues = 0;
2036         } else if (write_queues >= nrirqs) {
2037                 nr_read_queues = 1;
2038         } else {
2039                 nr_read_queues = nrirqs - write_queues;
2040         }
2041
2042         dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2043         affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2044         dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2045         affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2046         affd->nr_sets = nr_read_queues ? 2 : 1;
2047 }
2048
2049 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2050 {
2051         struct pci_dev *pdev = to_pci_dev(dev->dev);
2052         struct irq_affinity affd = {
2053                 .pre_vectors    = 1,
2054                 .calc_sets      = nvme_calc_irq_sets,
2055                 .priv           = dev,
2056         };
2057         unsigned int irq_queues, this_p_queues;
2058         unsigned int nr_cpus = num_possible_cpus();
2059
2060         /*
2061          * Poll queues don't need interrupts, but we need at least one IO
2062          * queue left over for non-polled IO.
2063          */
2064         this_p_queues = poll_queues;
2065         if (this_p_queues >= nr_io_queues) {
2066                 this_p_queues = nr_io_queues - 1;
2067                 irq_queues = 1;
2068         } else {
2069                 if (nr_cpus < nr_io_queues - this_p_queues)
2070                         irq_queues = nr_cpus + 1;
2071                 else
2072                         irq_queues = nr_io_queues - this_p_queues + 1;
2073         }
2074         dev->io_queues[HCTX_TYPE_POLL] = this_p_queues;
2075
2076         /* Initialize for the single interrupt case */
2077         dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2078         dev->io_queues[HCTX_TYPE_READ] = 0;
2079
2080         return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2081                               PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2082 }
2083
2084 static void nvme_disable_io_queues(struct nvme_dev *dev)
2085 {
2086         if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2087                 __nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2088 }
2089
2090 static int nvme_setup_io_queues(struct nvme_dev *dev)
2091 {
2092         struct nvme_queue *adminq = &dev->queues[0];
2093         struct pci_dev *pdev = to_pci_dev(dev->dev);
2094         int result, nr_io_queues;
2095         unsigned long size;
2096
2097         nr_io_queues = max_io_queues();
2098         result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2099         if (result < 0)
2100                 return result;
2101
2102         if (nr_io_queues == 0)
2103                 return 0;
2104         
2105         clear_bit(NVMEQ_ENABLED, &adminq->flags);
2106
2107         if (dev->cmb_use_sqes) {
2108                 result = nvme_cmb_qdepth(dev, nr_io_queues,
2109                                 sizeof(struct nvme_command));
2110                 if (result > 0)
2111                         dev->q_depth = result;
2112                 else
2113                         dev->cmb_use_sqes = false;
2114         }
2115
2116         do {
2117                 size = db_bar_size(dev, nr_io_queues);
2118                 result = nvme_remap_bar(dev, size);
2119                 if (!result)
2120                         break;
2121                 if (!--nr_io_queues)
2122                         return -ENOMEM;
2123         } while (1);
2124         adminq->q_db = dev->dbs;
2125
2126  retry:
2127         /* Deregister the admin queue's interrupt */
2128         pci_free_irq(pdev, 0, adminq);
2129
2130         /*
2131          * If we enable msix early due to not intx, disable it again before
2132          * setting up the full range we need.
2133          */
2134         pci_free_irq_vectors(pdev);
2135
2136         result = nvme_setup_irqs(dev, nr_io_queues);
2137         if (result <= 0)
2138                 return -EIO;
2139
2140         dev->num_vecs = result;
2141         result = max(result - 1, 1);
2142         dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2143
2144         /*
2145          * Should investigate if there's a performance win from allocating
2146          * more queues than interrupt vectors; it might allow the submission
2147          * path to scale better, even if the receive path is limited by the
2148          * number of interrupts.
2149          */
2150         result = queue_request_irq(adminq);
2151         if (result)
2152                 return result;
2153         set_bit(NVMEQ_ENABLED, &adminq->flags);
2154
2155         result = nvme_create_io_queues(dev);
2156         if (result || dev->online_queues < 2)
2157                 return result;
2158
2159         if (dev->online_queues - 1 < dev->max_qid) {
2160                 nr_io_queues = dev->online_queues - 1;
2161                 nvme_disable_io_queues(dev);
2162                 nvme_suspend_io_queues(dev);
2163                 goto retry;
2164         }
2165         dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2166                                         dev->io_queues[HCTX_TYPE_DEFAULT],
2167                                         dev->io_queues[HCTX_TYPE_READ],
2168                                         dev->io_queues[HCTX_TYPE_POLL]);
2169         return 0;
2170 }
2171
2172 static void nvme_del_queue_end(struct request *req, blk_status_t error)
2173 {
2174         struct nvme_queue *nvmeq = req->end_io_data;
2175
2176         blk_mq_free_request(req);
2177         complete(&nvmeq->delete_done);
2178 }
2179
2180 static void nvme_del_cq_end(struct request *req, blk_status_t error)
2181 {
2182         struct nvme_queue *nvmeq = req->end_io_data;
2183
2184         if (error)
2185                 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2186
2187         nvme_del_queue_end(req, error);
2188 }
2189
2190 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2191 {
2192         struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2193         struct request *req;
2194         struct nvme_command cmd;
2195
2196         memset(&cmd, 0, sizeof(cmd));
2197         cmd.delete_queue.opcode = opcode;
2198         cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2199
2200         req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
2201         if (IS_ERR(req))
2202                 return PTR_ERR(req);
2203
2204         req->timeout = ADMIN_TIMEOUT;
2205         req->end_io_data = nvmeq;
2206
2207         init_completion(&nvmeq->delete_done);
2208         blk_execute_rq_nowait(q, NULL, req, false,
2209                         opcode == nvme_admin_delete_cq ?
2210                                 nvme_del_cq_end : nvme_del_queue_end);
2211         return 0;
2212 }
2213
2214 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2215 {
2216         int nr_queues = dev->online_queues - 1, sent = 0;
2217         unsigned long timeout;
2218
2219  retry:
2220         timeout = ADMIN_TIMEOUT;
2221         while (nr_queues > 0) {
2222                 if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2223                         break;
2224                 nr_queues--;
2225                 sent++;
2226         }
2227         while (sent) {
2228                 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2229
2230                 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2231                                 timeout);
2232                 if (timeout == 0)
2233                         return false;
2234
2235                 /* handle any remaining CQEs */
2236                 if (opcode == nvme_admin_delete_cq &&
2237                     !test_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags))
2238                         nvme_poll_irqdisable(nvmeq, -1);
2239
2240                 sent--;
2241                 if (nr_queues)
2242                         goto retry;
2243         }
2244         return true;
2245 }
2246
2247 /*
2248  * return error value only when tagset allocation failed
2249  */
2250 static int nvme_dev_add(struct nvme_dev *dev)
2251 {
2252         int ret;
2253
2254         if (!dev->ctrl.tagset) {
2255                 dev->tagset.ops = &nvme_mq_ops;
2256                 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2257                 dev->tagset.nr_maps = 2; /* default + read */
2258                 if (dev->io_queues[HCTX_TYPE_POLL])
2259                         dev->tagset.nr_maps++;
2260                 dev->tagset.timeout = NVME_IO_TIMEOUT;
2261                 dev->tagset.numa_node = dev_to_node(dev->dev);
2262                 dev->tagset.queue_depth =
2263                                 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2264                 dev->tagset.cmd_size = sizeof(struct nvme_iod);
2265                 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2266                 dev->tagset.driver_data = dev;
2267
2268                 ret = blk_mq_alloc_tag_set(&dev->tagset);
2269                 if (ret) {
2270                         dev_warn(dev->ctrl.device,
2271                                 "IO queues tagset allocation failed %d\n", ret);
2272                         return ret;
2273                 }
2274                 dev->ctrl.tagset = &dev->tagset;
2275         } else {
2276                 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2277
2278                 /* Free previously allocated queues that are no longer usable */
2279                 nvme_free_queues(dev, dev->online_queues);
2280         }
2281
2282         nvme_dbbuf_set(dev);
2283         return 0;
2284 }
2285
2286 static int nvme_pci_enable(struct nvme_dev *dev)
2287 {
2288         int result = -ENOMEM;
2289         struct pci_dev *pdev = to_pci_dev(dev->dev);
2290
2291         if (pci_enable_device_mem(pdev))
2292                 return result;
2293
2294         pci_set_master(pdev);
2295
2296         if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)))
2297                 goto disable;
2298
2299         if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2300                 result = -ENODEV;
2301                 goto disable;
2302         }
2303
2304         /*
2305          * Some devices and/or platforms don't advertise or work with INTx
2306          * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2307          * adjust this later.
2308          */
2309         result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2310         if (result < 0)
2311                 return result;
2312
2313         dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2314
2315         dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2316                                 io_queue_depth);
2317         dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2318         dev->dbs = dev->bar + 4096;
2319
2320         /*
2321          * Temporary fix for the Apple controller found in the MacBook8,1 and
2322          * some MacBook7,1 to avoid controller resets and data loss.
2323          */
2324         if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2325                 dev->q_depth = 2;
2326                 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2327                         "set queue depth=%u to work around controller resets\n",
2328                         dev->q_depth);
2329         } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2330                    (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2331                    NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2332                 dev->q_depth = 64;
2333                 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2334                         "set queue depth=%u\n", dev->q_depth);
2335         }
2336
2337         nvme_map_cmb(dev);
2338
2339         pci_enable_pcie_error_reporting(pdev);
2340         pci_save_state(pdev);
2341         return 0;
2342
2343  disable:
2344         pci_disable_device(pdev);
2345         return result;
2346 }
2347
2348 static void nvme_dev_unmap(struct nvme_dev *dev)
2349 {
2350         if (dev->bar)
2351                 iounmap(dev->bar);
2352         pci_release_mem_regions(to_pci_dev(dev->dev));
2353 }
2354
2355 static void nvme_pci_disable(struct nvme_dev *dev)
2356 {
2357         struct pci_dev *pdev = to_pci_dev(dev->dev);
2358
2359         pci_free_irq_vectors(pdev);
2360
2361         if (pci_is_enabled(pdev)) {
2362                 pci_disable_pcie_error_reporting(pdev);
2363                 pci_disable_device(pdev);
2364         }
2365 }
2366
2367 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2368 {
2369         bool dead = true, freeze = false;
2370         struct pci_dev *pdev = to_pci_dev(dev->dev);
2371
2372         mutex_lock(&dev->shutdown_lock);
2373         if (pci_is_enabled(pdev)) {
2374                 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2375
2376                 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2377                     dev->ctrl.state == NVME_CTRL_RESETTING) {
2378                         freeze = true;
2379                         nvme_start_freeze(&dev->ctrl);
2380                 }
2381                 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2382                         pdev->error_state  != pci_channel_io_normal);
2383         }
2384
2385         /*
2386          * Give the controller a chance to complete all entered requests if
2387          * doing a safe shutdown.
2388          */
2389         if (!dead && shutdown && freeze)
2390                 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2391
2392         nvme_stop_queues(&dev->ctrl);
2393
2394         if (!dead && dev->ctrl.queue_count > 0) {
2395                 nvme_disable_io_queues(dev);
2396                 nvme_disable_admin_queue(dev, shutdown);
2397         }
2398         nvme_suspend_io_queues(dev);
2399         nvme_suspend_queue(&dev->queues[0]);
2400         nvme_pci_disable(dev);
2401
2402         blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2403         blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2404
2405         /*
2406          * The driver will not be starting up queues again if shutting down so
2407          * must flush all entered requests to their failed completion to avoid
2408          * deadlocking blk-mq hot-cpu notifier.
2409          */
2410         if (shutdown) {
2411                 nvme_start_queues(&dev->ctrl);
2412                 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2413                         blk_mq_unquiesce_queue(dev->ctrl.admin_q);
2414         }
2415         mutex_unlock(&dev->shutdown_lock);
2416 }
2417
2418 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2419 {
2420         dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2421                                                 PAGE_SIZE, PAGE_SIZE, 0);
2422         if (!dev->prp_page_pool)
2423                 return -ENOMEM;
2424
2425         /* Optimisation for I/Os between 4k and 128k */
2426         dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2427                                                 256, 256, 0);
2428         if (!dev->prp_small_pool) {
2429                 dma_pool_destroy(dev->prp_page_pool);
2430                 return -ENOMEM;
2431         }
2432         return 0;
2433 }
2434
2435 static void nvme_release_prp_pools(struct nvme_dev *dev)
2436 {
2437         dma_pool_destroy(dev->prp_page_pool);
2438         dma_pool_destroy(dev->prp_small_pool);
2439 }
2440
2441 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2442 {
2443         struct nvme_dev *dev = to_nvme_dev(ctrl);
2444
2445         nvme_dbbuf_dma_free(dev);
2446         put_device(dev->dev);
2447         if (dev->tagset.tags)
2448                 blk_mq_free_tag_set(&dev->tagset);
2449         if (dev->ctrl.admin_q)
2450                 blk_put_queue(dev->ctrl.admin_q);
2451         kfree(dev->queues);
2452         free_opal_dev(dev->ctrl.opal_dev);
2453         mempool_destroy(dev->iod_mempool);
2454         kfree(dev);
2455 }
2456
2457 static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
2458 {
2459         nvme_get_ctrl(&dev->ctrl);
2460         nvme_dev_disable(dev, false);
2461         nvme_kill_queues(&dev->ctrl);
2462         if (!queue_work(nvme_wq, &dev->remove_work))
2463                 nvme_put_ctrl(&dev->ctrl);
2464 }
2465
2466 static void nvme_reset_work(struct work_struct *work)
2467 {
2468         struct nvme_dev *dev =
2469                 container_of(work, struct nvme_dev, ctrl.reset_work);
2470         bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2471         int result;
2472         enum nvme_ctrl_state new_state = NVME_CTRL_LIVE;
2473
2474         if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING)) {
2475                 result = -ENODEV;
2476                 goto out;
2477         }
2478
2479         /*
2480          * If we're called to reset a live controller first shut it down before
2481          * moving on.
2482          */
2483         if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2484                 nvme_dev_disable(dev, false);
2485         nvme_sync_queues(&dev->ctrl);
2486
2487         mutex_lock(&dev->shutdown_lock);
2488         result = nvme_pci_enable(dev);
2489         if (result)
2490                 goto out_unlock;
2491
2492         result = nvme_pci_configure_admin_queue(dev);
2493         if (result)
2494                 goto out_unlock;
2495
2496         result = nvme_alloc_admin_tags(dev);
2497         if (result)
2498                 goto out_unlock;
2499
2500         /*
2501          * Limit the max command size to prevent iod->sg allocations going
2502          * over a single page.
2503          */
2504         dev->ctrl.max_hw_sectors = min_t(u32,
2505                 NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9);
2506         dev->ctrl.max_segments = NVME_MAX_SEGS;
2507
2508         /*
2509          * Don't limit the IOMMU merged segment size.
2510          */
2511         dma_set_max_seg_size(dev->dev, 0xffffffff);
2512
2513         mutex_unlock(&dev->shutdown_lock);
2514
2515         /*
2516          * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2517          * initializing procedure here.
2518          */
2519         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2520                 dev_warn(dev->ctrl.device,
2521                         "failed to mark controller CONNECTING\n");
2522                 result = -EBUSY;
2523                 goto out;
2524         }
2525
2526         result = nvme_init_identify(&dev->ctrl);
2527         if (result)
2528                 goto out;
2529
2530         if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2531                 if (!dev->ctrl.opal_dev)
2532                         dev->ctrl.opal_dev =
2533                                 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2534                 else if (was_suspend)
2535                         opal_unlock_from_suspend(dev->ctrl.opal_dev);
2536         } else {
2537                 free_opal_dev(dev->ctrl.opal_dev);
2538                 dev->ctrl.opal_dev = NULL;
2539         }
2540
2541         if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2542                 result = nvme_dbbuf_dma_alloc(dev);
2543                 if (result)
2544                         dev_warn(dev->dev,
2545                                  "unable to allocate dma for dbbuf\n");
2546         }
2547
2548         if (dev->ctrl.hmpre) {
2549                 result = nvme_setup_host_mem(dev);
2550                 if (result < 0)
2551                         goto out;
2552         }
2553
2554         result = nvme_setup_io_queues(dev);
2555         if (result)
2556                 goto out;
2557
2558         /*
2559          * Keep the controller around but remove all namespaces if we don't have
2560          * any working I/O queue.
2561          */
2562         if (dev->online_queues < 2) {
2563                 dev_warn(dev->ctrl.device, "IO queues not created\n");
2564                 nvme_kill_queues(&dev->ctrl);
2565                 nvme_remove_namespaces(&dev->ctrl);
2566                 new_state = NVME_CTRL_ADMIN_ONLY;
2567         } else {
2568                 nvme_start_queues(&dev->ctrl);
2569                 nvme_wait_freeze(&dev->ctrl);
2570                 /* hit this only when allocate tagset fails */
2571                 if (nvme_dev_add(dev))
2572                         new_state = NVME_CTRL_ADMIN_ONLY;
2573                 nvme_unfreeze(&dev->ctrl);
2574         }
2575
2576         /*
2577          * If only admin queue live, keep it to do further investigation or
2578          * recovery.
2579          */
2580         if (!nvme_change_ctrl_state(&dev->ctrl, new_state)) {
2581                 dev_warn(dev->ctrl.device,
2582                         "failed to mark controller state %d\n", new_state);
2583                 result = -ENODEV;
2584                 goto out;
2585         }
2586
2587         nvme_start_ctrl(&dev->ctrl);
2588         return;
2589
2590  out_unlock:
2591         mutex_unlock(&dev->shutdown_lock);
2592  out:
2593         if (result)
2594                 dev_warn(dev->ctrl.device,
2595                          "Removing after probe failure status: %d\n", result);
2596         nvme_remove_dead_ctrl(dev);
2597 }
2598
2599 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2600 {
2601         struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2602         struct pci_dev *pdev = to_pci_dev(dev->dev);
2603
2604         if (pci_get_drvdata(pdev))
2605                 device_release_driver(&pdev->dev);
2606         nvme_put_ctrl(&dev->ctrl);
2607 }
2608
2609 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2610 {
2611         *val = readl(to_nvme_dev(ctrl)->bar + off);
2612         return 0;
2613 }
2614
2615 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2616 {
2617         writel(val, to_nvme_dev(ctrl)->bar + off);
2618         return 0;
2619 }
2620
2621 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2622 {
2623         *val = readq(to_nvme_dev(ctrl)->bar + off);
2624         return 0;
2625 }
2626
2627 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2628 {
2629         struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2630
2631         return snprintf(buf, size, "%s", dev_name(&pdev->dev));
2632 }
2633
2634 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2635         .name                   = "pcie",
2636         .module                 = THIS_MODULE,
2637         .flags                  = NVME_F_METADATA_SUPPORTED |
2638                                   NVME_F_PCI_P2PDMA,
2639         .reg_read32             = nvme_pci_reg_read32,
2640         .reg_write32            = nvme_pci_reg_write32,
2641         .reg_read64             = nvme_pci_reg_read64,
2642         .free_ctrl              = nvme_pci_free_ctrl,
2643         .submit_async_event     = nvme_pci_submit_async_event,
2644         .get_address            = nvme_pci_get_address,
2645 };
2646
2647 static int nvme_dev_map(struct nvme_dev *dev)
2648 {
2649         struct pci_dev *pdev = to_pci_dev(dev->dev);
2650
2651         if (pci_request_mem_regions(pdev, "nvme"))
2652                 return -ENODEV;
2653
2654         if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2655                 goto release;
2656
2657         return 0;
2658   release:
2659         pci_release_mem_regions(pdev);
2660         return -ENODEV;
2661 }
2662
2663 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2664 {
2665         if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2666                 /*
2667                  * Several Samsung devices seem to drop off the PCIe bus
2668                  * randomly when APST is on and uses the deepest sleep state.
2669                  * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2670                  * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2671                  * 950 PRO 256GB", but it seems to be restricted to two Dell
2672                  * laptops.
2673                  */
2674                 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2675                     (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2676                      dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2677                         return NVME_QUIRK_NO_DEEPEST_PS;
2678         } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2679                 /*
2680                  * Samsung SSD 960 EVO drops off the PCIe bus after system
2681                  * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2682                  * within few minutes after bootup on a Coffee Lake board -
2683                  * ASUS PRIME Z370-A
2684                  */
2685                 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2686                     (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2687                      dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2688                         return NVME_QUIRK_NO_APST;
2689         }
2690
2691         return 0;
2692 }
2693
2694 static void nvme_async_probe(void *data, async_cookie_t cookie)
2695 {
2696         struct nvme_dev *dev = data;
2697
2698         flush_work(&dev->ctrl.reset_work);
2699         flush_work(&dev->ctrl.scan_work);
2700         nvme_put_ctrl(&dev->ctrl);
2701 }
2702
2703 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2704 {
2705         int node, result = -ENOMEM;
2706         struct nvme_dev *dev;
2707         unsigned long quirks = id->driver_data;
2708         size_t alloc_size;
2709
2710         node = dev_to_node(&pdev->dev);
2711         if (node == NUMA_NO_NODE)
2712                 set_dev_node(&pdev->dev, first_memory_node);
2713
2714         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2715         if (!dev)
2716                 return -ENOMEM;
2717
2718         dev->queues = kcalloc_node(max_queue_count(), sizeof(struct nvme_queue),
2719                                         GFP_KERNEL, node);
2720         if (!dev->queues)
2721                 goto free;
2722
2723         dev->dev = get_device(&pdev->dev);
2724         pci_set_drvdata(pdev, dev);
2725
2726         result = nvme_dev_map(dev);
2727         if (result)
2728                 goto put_pci;
2729
2730         INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2731         INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2732         mutex_init(&dev->shutdown_lock);
2733
2734         result = nvme_setup_prp_pools(dev);
2735         if (result)
2736                 goto unmap;
2737
2738         quirks |= check_vendor_combination_bug(pdev);
2739
2740         /*
2741          * Double check that our mempool alloc size will cover the biggest
2742          * command we support.
2743          */
2744         alloc_size = nvme_pci_iod_alloc_size(dev, NVME_MAX_KB_SZ,
2745                                                 NVME_MAX_SEGS, true);
2746         WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2747
2748         dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
2749                                                 mempool_kfree,
2750                                                 (void *) alloc_size,
2751                                                 GFP_KERNEL, node);
2752         if (!dev->iod_mempool) {
2753                 result = -ENOMEM;
2754                 goto release_pools;
2755         }
2756
2757         result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2758                         quirks);
2759         if (result)
2760                 goto release_mempool;
2761
2762         dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2763
2764         nvme_reset_ctrl(&dev->ctrl);
2765         nvme_get_ctrl(&dev->ctrl);
2766         async_schedule(nvme_async_probe, dev);
2767
2768         return 0;
2769
2770  release_mempool:
2771         mempool_destroy(dev->iod_mempool);
2772  release_pools:
2773         nvme_release_prp_pools(dev);
2774  unmap:
2775         nvme_dev_unmap(dev);
2776  put_pci:
2777         put_device(dev->dev);
2778  free:
2779         kfree(dev->queues);
2780         kfree(dev);
2781         return result;
2782 }
2783
2784 static void nvme_reset_prepare(struct pci_dev *pdev)
2785 {
2786         struct nvme_dev *dev = pci_get_drvdata(pdev);
2787         nvme_dev_disable(dev, false);
2788 }
2789
2790 static void nvme_reset_done(struct pci_dev *pdev)
2791 {
2792         struct nvme_dev *dev = pci_get_drvdata(pdev);
2793         nvme_reset_ctrl_sync(&dev->ctrl);
2794 }
2795
2796 static void nvme_shutdown(struct pci_dev *pdev)
2797 {
2798         struct nvme_dev *dev = pci_get_drvdata(pdev);
2799         nvme_dev_disable(dev, true);
2800 }
2801
2802 /*
2803  * The driver's remove may be called on a device in a partially initialized
2804  * state. This function must not have any dependencies on the device state in
2805  * order to proceed.
2806  */
2807 static void nvme_remove(struct pci_dev *pdev)
2808 {
2809         struct nvme_dev *dev = pci_get_drvdata(pdev);
2810
2811         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2812         pci_set_drvdata(pdev, NULL);
2813
2814         if (!pci_device_is_present(pdev)) {
2815                 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2816                 nvme_dev_disable(dev, true);
2817                 nvme_dev_remove_admin(dev);
2818         }
2819
2820         flush_work(&dev->ctrl.reset_work);
2821         nvme_stop_ctrl(&dev->ctrl);
2822         nvme_remove_namespaces(&dev->ctrl);
2823         nvme_dev_disable(dev, true);
2824         nvme_release_cmb(dev);
2825         nvme_free_host_mem(dev);
2826         nvme_dev_remove_admin(dev);
2827         nvme_free_queues(dev, 0);
2828         nvme_uninit_ctrl(&dev->ctrl);
2829         nvme_release_prp_pools(dev);
2830         nvme_dev_unmap(dev);
2831         nvme_put_ctrl(&dev->ctrl);
2832 }
2833
2834 #ifdef CONFIG_PM_SLEEP
2835 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
2836 {
2837         return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
2838 }
2839
2840 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
2841 {
2842         return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
2843 }
2844
2845 static int nvme_resume(struct device *dev)
2846 {
2847         struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
2848         struct nvme_ctrl *ctrl = &ndev->ctrl;
2849
2850         if (ndev->last_ps == U32_MAX ||
2851             nvme_set_power_state(ctrl, ndev->last_ps) != 0)
2852                 nvme_reset_ctrl(ctrl);
2853         return 0;
2854 }
2855
2856 static int nvme_suspend(struct device *dev)
2857 {
2858         struct pci_dev *pdev = to_pci_dev(dev);
2859         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2860         struct nvme_ctrl *ctrl = &ndev->ctrl;
2861         int ret = -EBUSY;
2862
2863         ndev->last_ps = U32_MAX;
2864
2865         /*
2866          * The platform does not remove power for a kernel managed suspend so
2867          * use host managed nvme power settings for lowest idle power if
2868          * possible. This should have quicker resume latency than a full device
2869          * shutdown.  But if the firmware is involved after the suspend or the
2870          * device does not support any non-default power states, shut down the
2871          * device fully.
2872          *
2873          * If ASPM is not enabled for the device, shut down the device and allow
2874          * the PCI bus layer to put it into D3 in order to take the PCIe link
2875          * down, so as to allow the platform to achieve its minimum low-power
2876          * state (which may not be possible if the link is up).
2877          */
2878         if (pm_suspend_via_firmware() || !ctrl->npss ||
2879             !pcie_aspm_enabled(pdev)) {
2880                 nvme_dev_disable(ndev, true);
2881                 return 0;
2882         }
2883
2884         nvme_start_freeze(ctrl);
2885         nvme_wait_freeze(ctrl);
2886         nvme_sync_queues(ctrl);
2887
2888         if (ctrl->state != NVME_CTRL_LIVE &&
2889             ctrl->state != NVME_CTRL_ADMIN_ONLY)
2890                 goto unfreeze;
2891
2892         ret = nvme_get_power_state(ctrl, &ndev->last_ps);
2893         if (ret < 0)
2894                 goto unfreeze;
2895
2896         ret = nvme_set_power_state(ctrl, ctrl->npss);
2897         if (ret < 0)
2898                 goto unfreeze;
2899
2900         if (ret) {
2901                 /*
2902                  * Clearing npss forces a controller reset on resume. The
2903                  * correct value will be resdicovered then.
2904                  */
2905                 nvme_dev_disable(ndev, true);
2906                 ctrl->npss = 0;
2907                 ret = 0;
2908                 goto unfreeze;
2909         }
2910         /*
2911          * A saved state prevents pci pm from generically controlling the
2912          * device's power. If we're using protocol specific settings, we don't
2913          * want pci interfering.
2914          */
2915         pci_save_state(pdev);
2916 unfreeze:
2917         nvme_unfreeze(ctrl);
2918         return ret;
2919 }
2920
2921 static int nvme_simple_suspend(struct device *dev)
2922 {
2923         struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
2924
2925         nvme_dev_disable(ndev, true);
2926         return 0;
2927 }
2928
2929 static int nvme_simple_resume(struct device *dev)
2930 {
2931         struct pci_dev *pdev = to_pci_dev(dev);
2932         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2933
2934         nvme_reset_ctrl(&ndev->ctrl);
2935         return 0;
2936 }
2937
2938 static const struct dev_pm_ops nvme_dev_pm_ops = {
2939         .suspend        = nvme_suspend,
2940         .resume         = nvme_resume,
2941         .freeze         = nvme_simple_suspend,
2942         .thaw           = nvme_simple_resume,
2943         .poweroff       = nvme_simple_suspend,
2944         .restore        = nvme_simple_resume,
2945 };
2946 #endif /* CONFIG_PM_SLEEP */
2947
2948 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2949                                                 pci_channel_state_t state)
2950 {
2951         struct nvme_dev *dev = pci_get_drvdata(pdev);
2952
2953         /*
2954          * A frozen channel requires a reset. When detected, this method will
2955          * shutdown the controller to quiesce. The controller will be restarted
2956          * after the slot reset through driver's slot_reset callback.
2957          */
2958         switch (state) {
2959         case pci_channel_io_normal:
2960                 return PCI_ERS_RESULT_CAN_RECOVER;
2961         case pci_channel_io_frozen:
2962                 dev_warn(dev->ctrl.device,
2963                         "frozen state error detected, reset controller\n");
2964                 nvme_dev_disable(dev, false);
2965                 return PCI_ERS_RESULT_NEED_RESET;
2966         case pci_channel_io_perm_failure:
2967                 dev_warn(dev->ctrl.device,
2968                         "failure state error detected, request disconnect\n");
2969                 return PCI_ERS_RESULT_DISCONNECT;
2970         }
2971         return PCI_ERS_RESULT_NEED_RESET;
2972 }
2973
2974 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2975 {
2976         struct nvme_dev *dev = pci_get_drvdata(pdev);
2977
2978         dev_info(dev->ctrl.device, "restart after slot reset\n");
2979         pci_restore_state(pdev);
2980         nvme_reset_ctrl(&dev->ctrl);
2981         return PCI_ERS_RESULT_RECOVERED;
2982 }
2983
2984 static void nvme_error_resume(struct pci_dev *pdev)
2985 {
2986         struct nvme_dev *dev = pci_get_drvdata(pdev);
2987
2988         flush_work(&dev->ctrl.reset_work);
2989 }
2990
2991 static const struct pci_error_handlers nvme_err_handler = {
2992         .error_detected = nvme_error_detected,
2993         .slot_reset     = nvme_slot_reset,
2994         .resume         = nvme_error_resume,
2995         .reset_prepare  = nvme_reset_prepare,
2996         .reset_done     = nvme_reset_done,
2997 };
2998
2999 static const struct pci_device_id nvme_id_table[] = {
3000         { PCI_VDEVICE(INTEL, 0x0953),
3001                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3002                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
3003         { PCI_VDEVICE(INTEL, 0x0a53),
3004                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3005                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
3006         { PCI_VDEVICE(INTEL, 0x0a54),
3007                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3008                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
3009         { PCI_VDEVICE(INTEL, 0x0a55),
3010                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3011                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
3012         { PCI_VDEVICE(INTEL, 0xf1a5),   /* Intel 600P/P3100 */
3013                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3014                                 NVME_QUIRK_MEDIUM_PRIO_SQ },
3015         { PCI_VDEVICE(INTEL, 0xf1a6),   /* Intel 760p/Pro 7600p */
3016                 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3017         { PCI_VDEVICE(INTEL, 0x5845),   /* Qemu emulated controller */
3018                 .driver_data = NVME_QUIRK_IDENTIFY_CNS |
3019                                 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3020         { PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3021                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3022         { PCI_DEVICE(0x1c58, 0x0003),   /* HGST adapter */
3023                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3024         { PCI_DEVICE(0x1c58, 0x0023),   /* WDC SN200 adapter */
3025                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3026         { PCI_DEVICE(0x1c5f, 0x0540),   /* Memblaze Pblaze4 adapter */
3027                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3028         { PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3029                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3030         { PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3031                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3032         { PCI_DEVICE(0x1d1d, 0x1f1f),   /* LighNVM qemu device */
3033                 .driver_data = NVME_QUIRK_LIGHTNVM, },
3034         { PCI_DEVICE(0x1d1d, 0x2807),   /* CNEX WL */
3035                 .driver_data = NVME_QUIRK_LIGHTNVM, },
3036         { PCI_DEVICE(0x1d1d, 0x2601),   /* CNEX Granby */
3037                 .driver_data = NVME_QUIRK_LIGHTNVM, },
3038         { PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3039                 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3040         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3041         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
3042         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3043         { 0, }
3044 };
3045 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3046
3047 static struct pci_driver nvme_driver = {
3048         .name           = "nvme",
3049         .id_table       = nvme_id_table,
3050         .probe          = nvme_probe,
3051         .remove         = nvme_remove,
3052         .shutdown       = nvme_shutdown,
3053 #ifdef CONFIG_PM_SLEEP
3054         .driver         = {
3055                 .pm     = &nvme_dev_pm_ops,
3056         },
3057 #endif
3058         .sriov_configure = pci_sriov_configure_simple,
3059         .err_handler    = &nvme_err_handler,
3060 };
3061
3062 static int __init nvme_init(void)
3063 {
3064         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3065         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3066         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3067         BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3068         return pci_register_driver(&nvme_driver);
3069 }
3070
3071 static void __exit nvme_exit(void)
3072 {
3073         pci_unregister_driver(&nvme_driver);
3074         flush_workqueue(nvme_wq);
3075 }
3076
3077 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3078 MODULE_LICENSE("GPL");
3079 MODULE_VERSION("1.0");
3080 module_init(nvme_init);
3081 module_exit(nvme_exit);