Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/shli/md
[sfrench/cifs-2.6.git] / drivers / nvme / host / pci.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/blk-mq-pci.h>
20 #include <linux/dmi.h>
21 #include <linux/init.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/mm.h>
25 #include <linux/module.h>
26 #include <linux/mutex.h>
27 #include <linux/pci.h>
28 #include <linux/poison.h>
29 #include <linux/t10-pi.h>
30 #include <linux/timer.h>
31 #include <linux/types.h>
32 #include <linux/io-64-nonatomic-lo-hi.h>
33 #include <asm/unaligned.h>
34 #include <linux/sed-opal.h>
35
36 #include "nvme.h"
37
38 #define NVME_Q_DEPTH            1024
39 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
40 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
41
42 /*
43  * We handle AEN commands ourselves and don't even let the
44  * block layer know about them.
45  */
46 #define NVME_AQ_BLKMQ_DEPTH     (NVME_AQ_DEPTH - NVME_NR_AERS)
47
48 static int use_threaded_interrupts;
49 module_param(use_threaded_interrupts, int, 0);
50
51 static bool use_cmb_sqes = true;
52 module_param(use_cmb_sqes, bool, 0644);
53 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
54
55 static unsigned int max_host_mem_size_mb = 128;
56 module_param(max_host_mem_size_mb, uint, 0444);
57 MODULE_PARM_DESC(max_host_mem_size_mb,
58         "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
59
60 struct nvme_dev;
61 struct nvme_queue;
62
63 static void nvme_process_cq(struct nvme_queue *nvmeq);
64 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
65
66 /*
67  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
68  */
69 struct nvme_dev {
70         struct nvme_queue **queues;
71         struct blk_mq_tag_set tagset;
72         struct blk_mq_tag_set admin_tagset;
73         u32 __iomem *dbs;
74         struct device *dev;
75         struct dma_pool *prp_page_pool;
76         struct dma_pool *prp_small_pool;
77         unsigned queue_count;
78         unsigned online_queues;
79         unsigned max_qid;
80         int q_depth;
81         u32 db_stride;
82         void __iomem *bar;
83         unsigned long bar_mapped_size;
84         struct work_struct remove_work;
85         struct mutex shutdown_lock;
86         bool subsystem;
87         void __iomem *cmb;
88         dma_addr_t cmb_dma_addr;
89         u64 cmb_size;
90         u32 cmbsz;
91         u32 cmbloc;
92         struct nvme_ctrl ctrl;
93         struct completion ioq_wait;
94
95         /* shadow doorbell buffer support: */
96         u32 *dbbuf_dbs;
97         dma_addr_t dbbuf_dbs_dma_addr;
98         u32 *dbbuf_eis;
99         dma_addr_t dbbuf_eis_dma_addr;
100
101         /* host memory buffer support: */
102         u64 host_mem_size;
103         u32 nr_host_mem_descs;
104         struct nvme_host_mem_buf_desc *host_mem_descs;
105         void **host_mem_desc_bufs;
106 };
107
108 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
109 {
110         return qid * 2 * stride;
111 }
112
113 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
114 {
115         return (qid * 2 + 1) * stride;
116 }
117
118 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
119 {
120         return container_of(ctrl, struct nvme_dev, ctrl);
121 }
122
123 /*
124  * An NVM Express queue.  Each device has at least two (one for admin
125  * commands and one for I/O commands).
126  */
127 struct nvme_queue {
128         struct device *q_dmadev;
129         struct nvme_dev *dev;
130         spinlock_t q_lock;
131         struct nvme_command *sq_cmds;
132         struct nvme_command __iomem *sq_cmds_io;
133         volatile struct nvme_completion *cqes;
134         struct blk_mq_tags **tags;
135         dma_addr_t sq_dma_addr;
136         dma_addr_t cq_dma_addr;
137         u32 __iomem *q_db;
138         u16 q_depth;
139         s16 cq_vector;
140         u16 sq_tail;
141         u16 cq_head;
142         u16 qid;
143         u8 cq_phase;
144         u8 cqe_seen;
145         u32 *dbbuf_sq_db;
146         u32 *dbbuf_cq_db;
147         u32 *dbbuf_sq_ei;
148         u32 *dbbuf_cq_ei;
149 };
150
151 /*
152  * The nvme_iod describes the data in an I/O, including the list of PRP
153  * entries.  You can't see it in this data structure because C doesn't let
154  * me express that.  Use nvme_init_iod to ensure there's enough space
155  * allocated to store the PRP list.
156  */
157 struct nvme_iod {
158         struct nvme_request req;
159         struct nvme_queue *nvmeq;
160         int aborted;
161         int npages;             /* In the PRP list. 0 means small pool in use */
162         int nents;              /* Used in scatterlist */
163         int length;             /* Of data, in bytes */
164         dma_addr_t first_dma;
165         struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
166         struct scatterlist *sg;
167         struct scatterlist inline_sg[0];
168 };
169
170 /*
171  * Check we didin't inadvertently grow the command struct
172  */
173 static inline void _nvme_check_size(void)
174 {
175         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
176         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
177         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
178         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
179         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
180         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
181         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
182         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
183         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
184         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
185         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
186         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
187         BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
188 }
189
190 static inline unsigned int nvme_dbbuf_size(u32 stride)
191 {
192         return ((num_possible_cpus() + 1) * 8 * stride);
193 }
194
195 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
196 {
197         unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
198
199         if (dev->dbbuf_dbs)
200                 return 0;
201
202         dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
203                                             &dev->dbbuf_dbs_dma_addr,
204                                             GFP_KERNEL);
205         if (!dev->dbbuf_dbs)
206                 return -ENOMEM;
207         dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
208                                             &dev->dbbuf_eis_dma_addr,
209                                             GFP_KERNEL);
210         if (!dev->dbbuf_eis) {
211                 dma_free_coherent(dev->dev, mem_size,
212                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
213                 dev->dbbuf_dbs = NULL;
214                 return -ENOMEM;
215         }
216
217         return 0;
218 }
219
220 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
221 {
222         unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
223
224         if (dev->dbbuf_dbs) {
225                 dma_free_coherent(dev->dev, mem_size,
226                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
227                 dev->dbbuf_dbs = NULL;
228         }
229         if (dev->dbbuf_eis) {
230                 dma_free_coherent(dev->dev, mem_size,
231                                   dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
232                 dev->dbbuf_eis = NULL;
233         }
234 }
235
236 static void nvme_dbbuf_init(struct nvme_dev *dev,
237                             struct nvme_queue *nvmeq, int qid)
238 {
239         if (!dev->dbbuf_dbs || !qid)
240                 return;
241
242         nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
243         nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
244         nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
245         nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
246 }
247
248 static void nvme_dbbuf_set(struct nvme_dev *dev)
249 {
250         struct nvme_command c;
251
252         if (!dev->dbbuf_dbs)
253                 return;
254
255         memset(&c, 0, sizeof(c));
256         c.dbbuf.opcode = nvme_admin_dbbuf;
257         c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
258         c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
259
260         if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
261                 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
262                 /* Free memory and continue on */
263                 nvme_dbbuf_dma_free(dev);
264         }
265 }
266
267 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
268 {
269         return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
270 }
271
272 /* Update dbbuf and return true if an MMIO is required */
273 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
274                                               volatile u32 *dbbuf_ei)
275 {
276         if (dbbuf_db) {
277                 u16 old_value;
278
279                 /*
280                  * Ensure that the queue is written before updating
281                  * the doorbell in memory
282                  */
283                 wmb();
284
285                 old_value = *dbbuf_db;
286                 *dbbuf_db = value;
287
288                 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
289                         return false;
290         }
291
292         return true;
293 }
294
295 /*
296  * Max size of iod being embedded in the request payload
297  */
298 #define NVME_INT_PAGES          2
299 #define NVME_INT_BYTES(dev)     (NVME_INT_PAGES * (dev)->ctrl.page_size)
300
301 /*
302  * Will slightly overestimate the number of pages needed.  This is OK
303  * as it only leads to a small amount of wasted memory for the lifetime of
304  * the I/O.
305  */
306 static int nvme_npages(unsigned size, struct nvme_dev *dev)
307 {
308         unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
309                                       dev->ctrl.page_size);
310         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
311 }
312
313 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
314                 unsigned int size, unsigned int nseg)
315 {
316         return sizeof(__le64 *) * nvme_npages(size, dev) +
317                         sizeof(struct scatterlist) * nseg;
318 }
319
320 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
321 {
322         return sizeof(struct nvme_iod) +
323                 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
324 }
325
326 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
327                                 unsigned int hctx_idx)
328 {
329         struct nvme_dev *dev = data;
330         struct nvme_queue *nvmeq = dev->queues[0];
331
332         WARN_ON(hctx_idx != 0);
333         WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
334         WARN_ON(nvmeq->tags);
335
336         hctx->driver_data = nvmeq;
337         nvmeq->tags = &dev->admin_tagset.tags[0];
338         return 0;
339 }
340
341 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
342 {
343         struct nvme_queue *nvmeq = hctx->driver_data;
344
345         nvmeq->tags = NULL;
346 }
347
348 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
349                           unsigned int hctx_idx)
350 {
351         struct nvme_dev *dev = data;
352         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
353
354         if (!nvmeq->tags)
355                 nvmeq->tags = &dev->tagset.tags[hctx_idx];
356
357         WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
358         hctx->driver_data = nvmeq;
359         return 0;
360 }
361
362 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
363                 unsigned int hctx_idx, unsigned int numa_node)
364 {
365         struct nvme_dev *dev = set->driver_data;
366         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
367         int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
368         struct nvme_queue *nvmeq = dev->queues[queue_idx];
369
370         BUG_ON(!nvmeq);
371         iod->nvmeq = nvmeq;
372         return 0;
373 }
374
375 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
376 {
377         struct nvme_dev *dev = set->driver_data;
378
379         return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
380 }
381
382 /**
383  * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
384  * @nvmeq: The queue to use
385  * @cmd: The command to send
386  *
387  * Safe to use from interrupt context
388  */
389 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
390                                                 struct nvme_command *cmd)
391 {
392         u16 tail = nvmeq->sq_tail;
393
394         if (nvmeq->sq_cmds_io)
395                 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
396         else
397                 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
398
399         if (++tail == nvmeq->q_depth)
400                 tail = 0;
401         if (nvme_dbbuf_update_and_check_event(tail, nvmeq->dbbuf_sq_db,
402                                               nvmeq->dbbuf_sq_ei))
403                 writel(tail, nvmeq->q_db);
404         nvmeq->sq_tail = tail;
405 }
406
407 static __le64 **iod_list(struct request *req)
408 {
409         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
410         return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req));
411 }
412
413 static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
414 {
415         struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
416         int nseg = blk_rq_nr_phys_segments(rq);
417         unsigned int size = blk_rq_payload_bytes(rq);
418
419         if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
420                 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
421                 if (!iod->sg)
422                         return BLK_STS_RESOURCE;
423         } else {
424                 iod->sg = iod->inline_sg;
425         }
426
427         iod->aborted = 0;
428         iod->npages = -1;
429         iod->nents = 0;
430         iod->length = size;
431
432         return BLK_STS_OK;
433 }
434
435 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
436 {
437         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
438         const int last_prp = dev->ctrl.page_size / 8 - 1;
439         int i;
440         __le64 **list = iod_list(req);
441         dma_addr_t prp_dma = iod->first_dma;
442
443         if (iod->npages == 0)
444                 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
445         for (i = 0; i < iod->npages; i++) {
446                 __le64 *prp_list = list[i];
447                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
448                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
449                 prp_dma = next_prp_dma;
450         }
451
452         if (iod->sg != iod->inline_sg)
453                 kfree(iod->sg);
454 }
455
456 #ifdef CONFIG_BLK_DEV_INTEGRITY
457 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
458 {
459         if (be32_to_cpu(pi->ref_tag) == v)
460                 pi->ref_tag = cpu_to_be32(p);
461 }
462
463 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
464 {
465         if (be32_to_cpu(pi->ref_tag) == p)
466                 pi->ref_tag = cpu_to_be32(v);
467 }
468
469 /**
470  * nvme_dif_remap - remaps ref tags to bip seed and physical lba
471  *
472  * The virtual start sector is the one that was originally submitted by the
473  * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
474  * start sector may be different. Remap protection information to match the
475  * physical LBA on writes, and back to the original seed on reads.
476  *
477  * Type 0 and 3 do not have a ref tag, so no remapping required.
478  */
479 static void nvme_dif_remap(struct request *req,
480                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
481 {
482         struct nvme_ns *ns = req->rq_disk->private_data;
483         struct bio_integrity_payload *bip;
484         struct t10_pi_tuple *pi;
485         void *p, *pmap;
486         u32 i, nlb, ts, phys, virt;
487
488         if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
489                 return;
490
491         bip = bio_integrity(req->bio);
492         if (!bip)
493                 return;
494
495         pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
496
497         p = pmap;
498         virt = bip_get_seed(bip);
499         phys = nvme_block_nr(ns, blk_rq_pos(req));
500         nlb = (blk_rq_bytes(req) >> ns->lba_shift);
501         ts = ns->disk->queue->integrity.tuple_size;
502
503         for (i = 0; i < nlb; i++, virt++, phys++) {
504                 pi = (struct t10_pi_tuple *)p;
505                 dif_swap(phys, virt, pi);
506                 p += ts;
507         }
508         kunmap_atomic(pmap);
509 }
510 #else /* CONFIG_BLK_DEV_INTEGRITY */
511 static void nvme_dif_remap(struct request *req,
512                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
513 {
514 }
515 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
516 {
517 }
518 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
519 {
520 }
521 #endif
522
523 static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req)
524 {
525         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
526         struct dma_pool *pool;
527         int length = blk_rq_payload_bytes(req);
528         struct scatterlist *sg = iod->sg;
529         int dma_len = sg_dma_len(sg);
530         u64 dma_addr = sg_dma_address(sg);
531         u32 page_size = dev->ctrl.page_size;
532         int offset = dma_addr & (page_size - 1);
533         __le64 *prp_list;
534         __le64 **list = iod_list(req);
535         dma_addr_t prp_dma;
536         int nprps, i;
537
538         length -= (page_size - offset);
539         if (length <= 0)
540                 return true;
541
542         dma_len -= (page_size - offset);
543         if (dma_len) {
544                 dma_addr += (page_size - offset);
545         } else {
546                 sg = sg_next(sg);
547                 dma_addr = sg_dma_address(sg);
548                 dma_len = sg_dma_len(sg);
549         }
550
551         if (length <= page_size) {
552                 iod->first_dma = dma_addr;
553                 return true;
554         }
555
556         nprps = DIV_ROUND_UP(length, page_size);
557         if (nprps <= (256 / 8)) {
558                 pool = dev->prp_small_pool;
559                 iod->npages = 0;
560         } else {
561                 pool = dev->prp_page_pool;
562                 iod->npages = 1;
563         }
564
565         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
566         if (!prp_list) {
567                 iod->first_dma = dma_addr;
568                 iod->npages = -1;
569                 return false;
570         }
571         list[0] = prp_list;
572         iod->first_dma = prp_dma;
573         i = 0;
574         for (;;) {
575                 if (i == page_size >> 3) {
576                         __le64 *old_prp_list = prp_list;
577                         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
578                         if (!prp_list)
579                                 return false;
580                         list[iod->npages++] = prp_list;
581                         prp_list[0] = old_prp_list[i - 1];
582                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
583                         i = 1;
584                 }
585                 prp_list[i++] = cpu_to_le64(dma_addr);
586                 dma_len -= page_size;
587                 dma_addr += page_size;
588                 length -= page_size;
589                 if (length <= 0)
590                         break;
591                 if (dma_len > 0)
592                         continue;
593                 BUG_ON(dma_len < 0);
594                 sg = sg_next(sg);
595                 dma_addr = sg_dma_address(sg);
596                 dma_len = sg_dma_len(sg);
597         }
598
599         return true;
600 }
601
602 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
603                 struct nvme_command *cmnd)
604 {
605         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
606         struct request_queue *q = req->q;
607         enum dma_data_direction dma_dir = rq_data_dir(req) ?
608                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
609         blk_status_t ret = BLK_STS_IOERR;
610
611         sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
612         iod->nents = blk_rq_map_sg(q, req, iod->sg);
613         if (!iod->nents)
614                 goto out;
615
616         ret = BLK_STS_RESOURCE;
617         if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
618                                 DMA_ATTR_NO_WARN))
619                 goto out;
620
621         if (!nvme_setup_prps(dev, req))
622                 goto out_unmap;
623
624         ret = BLK_STS_IOERR;
625         if (blk_integrity_rq(req)) {
626                 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
627                         goto out_unmap;
628
629                 sg_init_table(&iod->meta_sg, 1);
630                 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
631                         goto out_unmap;
632
633                 if (rq_data_dir(req))
634                         nvme_dif_remap(req, nvme_dif_prep);
635
636                 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
637                         goto out_unmap;
638         }
639
640         cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
641         cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
642         if (blk_integrity_rq(req))
643                 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
644         return BLK_STS_OK;
645
646 out_unmap:
647         dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
648 out:
649         return ret;
650 }
651
652 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
653 {
654         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
655         enum dma_data_direction dma_dir = rq_data_dir(req) ?
656                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
657
658         if (iod->nents) {
659                 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
660                 if (blk_integrity_rq(req)) {
661                         if (!rq_data_dir(req))
662                                 nvme_dif_remap(req, nvme_dif_complete);
663                         dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
664                 }
665         }
666
667         nvme_cleanup_cmd(req);
668         nvme_free_iod(dev, req);
669 }
670
671 /*
672  * NOTE: ns is NULL when called on the admin queue.
673  */
674 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
675                          const struct blk_mq_queue_data *bd)
676 {
677         struct nvme_ns *ns = hctx->queue->queuedata;
678         struct nvme_queue *nvmeq = hctx->driver_data;
679         struct nvme_dev *dev = nvmeq->dev;
680         struct request *req = bd->rq;
681         struct nvme_command cmnd;
682         blk_status_t ret;
683
684         ret = nvme_setup_cmd(ns, req, &cmnd);
685         if (ret)
686                 return ret;
687
688         ret = nvme_init_iod(req, dev);
689         if (ret)
690                 goto out_free_cmd;
691
692         if (blk_rq_nr_phys_segments(req)) {
693                 ret = nvme_map_data(dev, req, &cmnd);
694                 if (ret)
695                         goto out_cleanup_iod;
696         }
697
698         blk_mq_start_request(req);
699
700         spin_lock_irq(&nvmeq->q_lock);
701         if (unlikely(nvmeq->cq_vector < 0)) {
702                 ret = BLK_STS_IOERR;
703                 spin_unlock_irq(&nvmeq->q_lock);
704                 goto out_cleanup_iod;
705         }
706         __nvme_submit_cmd(nvmeq, &cmnd);
707         nvme_process_cq(nvmeq);
708         spin_unlock_irq(&nvmeq->q_lock);
709         return BLK_STS_OK;
710 out_cleanup_iod:
711         nvme_free_iod(dev, req);
712 out_free_cmd:
713         nvme_cleanup_cmd(req);
714         return ret;
715 }
716
717 static void nvme_pci_complete_rq(struct request *req)
718 {
719         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
720
721         nvme_unmap_data(iod->nvmeq->dev, req);
722         nvme_complete_rq(req);
723 }
724
725 /* We read the CQE phase first to check if the rest of the entry is valid */
726 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
727                 u16 phase)
728 {
729         return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
730 }
731
732 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
733 {
734         u16 head = nvmeq->cq_head;
735
736         if (likely(nvmeq->cq_vector >= 0)) {
737                 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
738                                                       nvmeq->dbbuf_cq_ei))
739                         writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
740         }
741 }
742
743 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
744                 struct nvme_completion *cqe)
745 {
746         struct request *req;
747
748         if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
749                 dev_warn(nvmeq->dev->ctrl.device,
750                         "invalid id %d completed on queue %d\n",
751                         cqe->command_id, le16_to_cpu(cqe->sq_id));
752                 return;
753         }
754
755         /*
756          * AEN requests are special as they don't time out and can
757          * survive any kind of queue freeze and often don't respond to
758          * aborts.  We don't even bother to allocate a struct request
759          * for them but rather special case them here.
760          */
761         if (unlikely(nvmeq->qid == 0 &&
762                         cqe->command_id >= NVME_AQ_BLKMQ_DEPTH)) {
763                 nvme_complete_async_event(&nvmeq->dev->ctrl,
764                                 cqe->status, &cqe->result);
765                 return;
766         }
767
768         req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
769         nvme_end_request(req, cqe->status, cqe->result);
770 }
771
772 static inline bool nvme_read_cqe(struct nvme_queue *nvmeq,
773                 struct nvme_completion *cqe)
774 {
775         if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
776                 *cqe = nvmeq->cqes[nvmeq->cq_head];
777
778                 if (++nvmeq->cq_head == nvmeq->q_depth) {
779                         nvmeq->cq_head = 0;
780                         nvmeq->cq_phase = !nvmeq->cq_phase;
781                 }
782                 return true;
783         }
784         return false;
785 }
786
787 static void nvme_process_cq(struct nvme_queue *nvmeq)
788 {
789         struct nvme_completion cqe;
790         int consumed = 0;
791
792         while (nvme_read_cqe(nvmeq, &cqe)) {
793                 nvme_handle_cqe(nvmeq, &cqe);
794                 consumed++;
795         }
796
797         if (consumed) {
798                 nvme_ring_cq_doorbell(nvmeq);
799                 nvmeq->cqe_seen = 1;
800         }
801 }
802
803 static irqreturn_t nvme_irq(int irq, void *data)
804 {
805         irqreturn_t result;
806         struct nvme_queue *nvmeq = data;
807         spin_lock(&nvmeq->q_lock);
808         nvme_process_cq(nvmeq);
809         result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
810         nvmeq->cqe_seen = 0;
811         spin_unlock(&nvmeq->q_lock);
812         return result;
813 }
814
815 static irqreturn_t nvme_irq_check(int irq, void *data)
816 {
817         struct nvme_queue *nvmeq = data;
818         if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
819                 return IRQ_WAKE_THREAD;
820         return IRQ_NONE;
821 }
822
823 static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag)
824 {
825         struct nvme_completion cqe;
826         int found = 0, consumed = 0;
827
828         if (!nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
829                 return 0;
830
831         spin_lock_irq(&nvmeq->q_lock);
832         while (nvme_read_cqe(nvmeq, &cqe)) {
833                 nvme_handle_cqe(nvmeq, &cqe);
834                 consumed++;
835
836                 if (tag == cqe.command_id) {
837                         found = 1;
838                         break;
839                 }
840        }
841
842         if (consumed)
843                 nvme_ring_cq_doorbell(nvmeq);
844         spin_unlock_irq(&nvmeq->q_lock);
845
846         return found;
847 }
848
849 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
850 {
851         struct nvme_queue *nvmeq = hctx->driver_data;
852
853         return __nvme_poll(nvmeq, tag);
854 }
855
856 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
857 {
858         struct nvme_dev *dev = to_nvme_dev(ctrl);
859         struct nvme_queue *nvmeq = dev->queues[0];
860         struct nvme_command c;
861
862         memset(&c, 0, sizeof(c));
863         c.common.opcode = nvme_admin_async_event;
864         c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
865
866         spin_lock_irq(&nvmeq->q_lock);
867         __nvme_submit_cmd(nvmeq, &c);
868         spin_unlock_irq(&nvmeq->q_lock);
869 }
870
871 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
872 {
873         struct nvme_command c;
874
875         memset(&c, 0, sizeof(c));
876         c.delete_queue.opcode = opcode;
877         c.delete_queue.qid = cpu_to_le16(id);
878
879         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
880 }
881
882 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
883                                                 struct nvme_queue *nvmeq)
884 {
885         struct nvme_command c;
886         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
887
888         /*
889          * Note: we (ab)use the fact the the prp fields survive if no data
890          * is attached to the request.
891          */
892         memset(&c, 0, sizeof(c));
893         c.create_cq.opcode = nvme_admin_create_cq;
894         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
895         c.create_cq.cqid = cpu_to_le16(qid);
896         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
897         c.create_cq.cq_flags = cpu_to_le16(flags);
898         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
899
900         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
901 }
902
903 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
904                                                 struct nvme_queue *nvmeq)
905 {
906         struct nvme_command c;
907         int flags = NVME_QUEUE_PHYS_CONTIG;
908
909         /*
910          * Note: we (ab)use the fact the the prp fields survive if no data
911          * is attached to the request.
912          */
913         memset(&c, 0, sizeof(c));
914         c.create_sq.opcode = nvme_admin_create_sq;
915         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
916         c.create_sq.sqid = cpu_to_le16(qid);
917         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
918         c.create_sq.sq_flags = cpu_to_le16(flags);
919         c.create_sq.cqid = cpu_to_le16(qid);
920
921         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
922 }
923
924 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
925 {
926         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
927 }
928
929 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
930 {
931         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
932 }
933
934 static void abort_endio(struct request *req, blk_status_t error)
935 {
936         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
937         struct nvme_queue *nvmeq = iod->nvmeq;
938
939         dev_warn(nvmeq->dev->ctrl.device,
940                  "Abort status: 0x%x", nvme_req(req)->status);
941         atomic_inc(&nvmeq->dev->ctrl.abort_limit);
942         blk_mq_free_request(req);
943 }
944
945 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
946 {
947
948         /* If true, indicates loss of adapter communication, possibly by a
949          * NVMe Subsystem reset.
950          */
951         bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
952
953         /* If there is a reset ongoing, we shouldn't reset again. */
954         if (dev->ctrl.state == NVME_CTRL_RESETTING)
955                 return false;
956
957         /* We shouldn't reset unless the controller is on fatal error state
958          * _or_ if we lost the communication with it.
959          */
960         if (!(csts & NVME_CSTS_CFS) && !nssro)
961                 return false;
962
963         /* If PCI error recovery process is happening, we cannot reset or
964          * the recovery mechanism will surely fail.
965          */
966         if (pci_channel_offline(to_pci_dev(dev->dev)))
967                 return false;
968
969         return true;
970 }
971
972 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
973 {
974         /* Read a config register to help see what died. */
975         u16 pci_status;
976         int result;
977
978         result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
979                                       &pci_status);
980         if (result == PCIBIOS_SUCCESSFUL)
981                 dev_warn(dev->ctrl.device,
982                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
983                          csts, pci_status);
984         else
985                 dev_warn(dev->ctrl.device,
986                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
987                          csts, result);
988 }
989
990 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
991 {
992         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
993         struct nvme_queue *nvmeq = iod->nvmeq;
994         struct nvme_dev *dev = nvmeq->dev;
995         struct request *abort_req;
996         struct nvme_command cmd;
997         u32 csts = readl(dev->bar + NVME_REG_CSTS);
998
999         /*
1000          * Reset immediately if the controller is failed
1001          */
1002         if (nvme_should_reset(dev, csts)) {
1003                 nvme_warn_reset(dev, csts);
1004                 nvme_dev_disable(dev, false);
1005                 nvme_reset_ctrl(&dev->ctrl);
1006                 return BLK_EH_HANDLED;
1007         }
1008
1009         /*
1010          * Did we miss an interrupt?
1011          */
1012         if (__nvme_poll(nvmeq, req->tag)) {
1013                 dev_warn(dev->ctrl.device,
1014                          "I/O %d QID %d timeout, completion polled\n",
1015                          req->tag, nvmeq->qid);
1016                 return BLK_EH_HANDLED;
1017         }
1018
1019         /*
1020          * Shutdown immediately if controller times out while starting. The
1021          * reset work will see the pci device disabled when it gets the forced
1022          * cancellation error. All outstanding requests are completed on
1023          * shutdown, so we return BLK_EH_HANDLED.
1024          */
1025         if (dev->ctrl.state == NVME_CTRL_RESETTING) {
1026                 dev_warn(dev->ctrl.device,
1027                          "I/O %d QID %d timeout, disable controller\n",
1028                          req->tag, nvmeq->qid);
1029                 nvme_dev_disable(dev, false);
1030                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1031                 return BLK_EH_HANDLED;
1032         }
1033
1034         /*
1035          * Shutdown the controller immediately and schedule a reset if the
1036          * command was already aborted once before and still hasn't been
1037          * returned to the driver, or if this is the admin queue.
1038          */
1039         if (!nvmeq->qid || iod->aborted) {
1040                 dev_warn(dev->ctrl.device,
1041                          "I/O %d QID %d timeout, reset controller\n",
1042                          req->tag, nvmeq->qid);
1043                 nvme_dev_disable(dev, false);
1044                 nvme_reset_ctrl(&dev->ctrl);
1045
1046                 /*
1047                  * Mark the request as handled, since the inline shutdown
1048                  * forces all outstanding requests to complete.
1049                  */
1050                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1051                 return BLK_EH_HANDLED;
1052         }
1053
1054         if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1055                 atomic_inc(&dev->ctrl.abort_limit);
1056                 return BLK_EH_RESET_TIMER;
1057         }
1058         iod->aborted = 1;
1059
1060         memset(&cmd, 0, sizeof(cmd));
1061         cmd.abort.opcode = nvme_admin_abort_cmd;
1062         cmd.abort.cid = req->tag;
1063         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1064
1065         dev_warn(nvmeq->dev->ctrl.device,
1066                 "I/O %d QID %d timeout, aborting\n",
1067                  req->tag, nvmeq->qid);
1068
1069         abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1070                         BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1071         if (IS_ERR(abort_req)) {
1072                 atomic_inc(&dev->ctrl.abort_limit);
1073                 return BLK_EH_RESET_TIMER;
1074         }
1075
1076         abort_req->timeout = ADMIN_TIMEOUT;
1077         abort_req->end_io_data = NULL;
1078         blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1079
1080         /*
1081          * The aborted req will be completed on receiving the abort req.
1082          * We enable the timer again. If hit twice, it'll cause a device reset,
1083          * as the device then is in a faulty state.
1084          */
1085         return BLK_EH_RESET_TIMER;
1086 }
1087
1088 static void nvme_free_queue(struct nvme_queue *nvmeq)
1089 {
1090         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1091                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1092         if (nvmeq->sq_cmds)
1093                 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1094                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1095         kfree(nvmeq);
1096 }
1097
1098 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1099 {
1100         int i;
1101
1102         for (i = dev->queue_count - 1; i >= lowest; i--) {
1103                 struct nvme_queue *nvmeq = dev->queues[i];
1104                 dev->queue_count--;
1105                 dev->queues[i] = NULL;
1106                 nvme_free_queue(nvmeq);
1107         }
1108 }
1109
1110 /**
1111  * nvme_suspend_queue - put queue into suspended state
1112  * @nvmeq - queue to suspend
1113  */
1114 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1115 {
1116         int vector;
1117
1118         spin_lock_irq(&nvmeq->q_lock);
1119         if (nvmeq->cq_vector == -1) {
1120                 spin_unlock_irq(&nvmeq->q_lock);
1121                 return 1;
1122         }
1123         vector = nvmeq->cq_vector;
1124         nvmeq->dev->online_queues--;
1125         nvmeq->cq_vector = -1;
1126         spin_unlock_irq(&nvmeq->q_lock);
1127
1128         if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1129                 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
1130
1131         pci_free_irq(to_pci_dev(nvmeq->dev->dev), vector, nvmeq);
1132
1133         return 0;
1134 }
1135
1136 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1137 {
1138         struct nvme_queue *nvmeq = dev->queues[0];
1139
1140         if (!nvmeq)
1141                 return;
1142         if (nvme_suspend_queue(nvmeq))
1143                 return;
1144
1145         if (shutdown)
1146                 nvme_shutdown_ctrl(&dev->ctrl);
1147         else
1148                 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
1149                                                 dev->bar + NVME_REG_CAP));
1150
1151         spin_lock_irq(&nvmeq->q_lock);
1152         nvme_process_cq(nvmeq);
1153         spin_unlock_irq(&nvmeq->q_lock);
1154 }
1155
1156 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1157                                 int entry_size)
1158 {
1159         int q_depth = dev->q_depth;
1160         unsigned q_size_aligned = roundup(q_depth * entry_size,
1161                                           dev->ctrl.page_size);
1162
1163         if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1164                 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1165                 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1166                 q_depth = div_u64(mem_per_q, entry_size);
1167
1168                 /*
1169                  * Ensure the reduced q_depth is above some threshold where it
1170                  * would be better to map queues in system memory with the
1171                  * original depth
1172                  */
1173                 if (q_depth < 64)
1174                         return -ENOMEM;
1175         }
1176
1177         return q_depth;
1178 }
1179
1180 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1181                                 int qid, int depth)
1182 {
1183         if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1184                 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1185                                                       dev->ctrl.page_size);
1186                 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1187                 nvmeq->sq_cmds_io = dev->cmb + offset;
1188         } else {
1189                 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1190                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
1191                 if (!nvmeq->sq_cmds)
1192                         return -ENOMEM;
1193         }
1194
1195         return 0;
1196 }
1197
1198 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1199                                                         int depth, int node)
1200 {
1201         struct nvme_queue *nvmeq = kzalloc_node(sizeof(*nvmeq), GFP_KERNEL,
1202                                                         node);
1203         if (!nvmeq)
1204                 return NULL;
1205
1206         nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1207                                           &nvmeq->cq_dma_addr, GFP_KERNEL);
1208         if (!nvmeq->cqes)
1209                 goto free_nvmeq;
1210
1211         if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1212                 goto free_cqdma;
1213
1214         nvmeq->q_dmadev = dev->dev;
1215         nvmeq->dev = dev;
1216         spin_lock_init(&nvmeq->q_lock);
1217         nvmeq->cq_head = 0;
1218         nvmeq->cq_phase = 1;
1219         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1220         nvmeq->q_depth = depth;
1221         nvmeq->qid = qid;
1222         nvmeq->cq_vector = -1;
1223         dev->queues[qid] = nvmeq;
1224         dev->queue_count++;
1225
1226         return nvmeq;
1227
1228  free_cqdma:
1229         dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1230                                                         nvmeq->cq_dma_addr);
1231  free_nvmeq:
1232         kfree(nvmeq);
1233         return NULL;
1234 }
1235
1236 static int queue_request_irq(struct nvme_queue *nvmeq)
1237 {
1238         struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1239         int nr = nvmeq->dev->ctrl.instance;
1240
1241         if (use_threaded_interrupts) {
1242                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1243                                 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1244         } else {
1245                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1246                                 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1247         }
1248 }
1249
1250 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1251 {
1252         struct nvme_dev *dev = nvmeq->dev;
1253
1254         spin_lock_irq(&nvmeq->q_lock);
1255         nvmeq->sq_tail = 0;
1256         nvmeq->cq_head = 0;
1257         nvmeq->cq_phase = 1;
1258         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1259         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1260         nvme_dbbuf_init(dev, nvmeq, qid);
1261         dev->online_queues++;
1262         spin_unlock_irq(&nvmeq->q_lock);
1263 }
1264
1265 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1266 {
1267         struct nvme_dev *dev = nvmeq->dev;
1268         int result;
1269
1270         nvmeq->cq_vector = qid - 1;
1271         result = adapter_alloc_cq(dev, qid, nvmeq);
1272         if (result < 0)
1273                 return result;
1274
1275         result = adapter_alloc_sq(dev, qid, nvmeq);
1276         if (result < 0)
1277                 goto release_cq;
1278
1279         result = queue_request_irq(nvmeq);
1280         if (result < 0)
1281                 goto release_sq;
1282
1283         nvme_init_queue(nvmeq, qid);
1284         return result;
1285
1286  release_sq:
1287         adapter_delete_sq(dev, qid);
1288  release_cq:
1289         adapter_delete_cq(dev, qid);
1290         return result;
1291 }
1292
1293 static const struct blk_mq_ops nvme_mq_admin_ops = {
1294         .queue_rq       = nvme_queue_rq,
1295         .complete       = nvme_pci_complete_rq,
1296         .init_hctx      = nvme_admin_init_hctx,
1297         .exit_hctx      = nvme_admin_exit_hctx,
1298         .init_request   = nvme_init_request,
1299         .timeout        = nvme_timeout,
1300 };
1301
1302 static const struct blk_mq_ops nvme_mq_ops = {
1303         .queue_rq       = nvme_queue_rq,
1304         .complete       = nvme_pci_complete_rq,
1305         .init_hctx      = nvme_init_hctx,
1306         .init_request   = nvme_init_request,
1307         .map_queues     = nvme_pci_map_queues,
1308         .timeout        = nvme_timeout,
1309         .poll           = nvme_poll,
1310 };
1311
1312 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1313 {
1314         if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1315                 /*
1316                  * If the controller was reset during removal, it's possible
1317                  * user requests may be waiting on a stopped queue. Start the
1318                  * queue to flush these to completion.
1319                  */
1320                 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1321                 blk_cleanup_queue(dev->ctrl.admin_q);
1322                 blk_mq_free_tag_set(&dev->admin_tagset);
1323         }
1324 }
1325
1326 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1327 {
1328         if (!dev->ctrl.admin_q) {
1329                 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1330                 dev->admin_tagset.nr_hw_queues = 1;
1331
1332                 /*
1333                  * Subtract one to leave an empty queue entry for 'Full Queue'
1334                  * condition. See NVM-Express 1.2 specification, section 4.1.2.
1335                  */
1336                 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1337                 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1338                 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1339                 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1340                 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1341                 dev->admin_tagset.driver_data = dev;
1342
1343                 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1344                         return -ENOMEM;
1345
1346                 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1347                 if (IS_ERR(dev->ctrl.admin_q)) {
1348                         blk_mq_free_tag_set(&dev->admin_tagset);
1349                         return -ENOMEM;
1350                 }
1351                 if (!blk_get_queue(dev->ctrl.admin_q)) {
1352                         nvme_dev_remove_admin(dev);
1353                         dev->ctrl.admin_q = NULL;
1354                         return -ENODEV;
1355                 }
1356         } else
1357                 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1358
1359         return 0;
1360 }
1361
1362 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1363 {
1364         return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1365 }
1366
1367 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1368 {
1369         struct pci_dev *pdev = to_pci_dev(dev->dev);
1370
1371         if (size <= dev->bar_mapped_size)
1372                 return 0;
1373         if (size > pci_resource_len(pdev, 0))
1374                 return -ENOMEM;
1375         if (dev->bar)
1376                 iounmap(dev->bar);
1377         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1378         if (!dev->bar) {
1379                 dev->bar_mapped_size = 0;
1380                 return -ENOMEM;
1381         }
1382         dev->bar_mapped_size = size;
1383         dev->dbs = dev->bar + NVME_REG_DBS;
1384
1385         return 0;
1386 }
1387
1388 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1389 {
1390         int result;
1391         u32 aqa;
1392         u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1393         struct nvme_queue *nvmeq;
1394
1395         result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1396         if (result < 0)
1397                 return result;
1398
1399         dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1400                                                 NVME_CAP_NSSRC(cap) : 0;
1401
1402         if (dev->subsystem &&
1403             (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1404                 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1405
1406         result = nvme_disable_ctrl(&dev->ctrl, cap);
1407         if (result < 0)
1408                 return result;
1409
1410         nvmeq = dev->queues[0];
1411         if (!nvmeq) {
1412                 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH,
1413                                         dev_to_node(dev->dev));
1414                 if (!nvmeq)
1415                         return -ENOMEM;
1416         }
1417
1418         aqa = nvmeq->q_depth - 1;
1419         aqa |= aqa << 16;
1420
1421         writel(aqa, dev->bar + NVME_REG_AQA);
1422         lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1423         lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1424
1425         result = nvme_enable_ctrl(&dev->ctrl, cap);
1426         if (result)
1427                 return result;
1428
1429         nvmeq->cq_vector = 0;
1430         result = queue_request_irq(nvmeq);
1431         if (result) {
1432                 nvmeq->cq_vector = -1;
1433                 return result;
1434         }
1435
1436         return result;
1437 }
1438
1439 static int nvme_create_io_queues(struct nvme_dev *dev)
1440 {
1441         unsigned i, max;
1442         int ret = 0;
1443
1444         for (i = dev->queue_count; i <= dev->max_qid; i++) {
1445                 /* vector == qid - 1, match nvme_create_queue */
1446                 if (!nvme_alloc_queue(dev, i, dev->q_depth,
1447                      pci_irq_get_node(to_pci_dev(dev->dev), i - 1))) {
1448                         ret = -ENOMEM;
1449                         break;
1450                 }
1451         }
1452
1453         max = min(dev->max_qid, dev->queue_count - 1);
1454         for (i = dev->online_queues; i <= max; i++) {
1455                 ret = nvme_create_queue(dev->queues[i], i);
1456                 if (ret)
1457                         break;
1458         }
1459
1460         /*
1461          * Ignore failing Create SQ/CQ commands, we can continue with less
1462          * than the desired aount of queues, and even a controller without
1463          * I/O queues an still be used to issue admin commands.  This might
1464          * be useful to upgrade a buggy firmware for example.
1465          */
1466         return ret >= 0 ? 0 : ret;
1467 }
1468
1469 static ssize_t nvme_cmb_show(struct device *dev,
1470                              struct device_attribute *attr,
1471                              char *buf)
1472 {
1473         struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1474
1475         return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1476                        ndev->cmbloc, ndev->cmbsz);
1477 }
1478 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1479
1480 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1481 {
1482         u64 szu, size, offset;
1483         resource_size_t bar_size;
1484         struct pci_dev *pdev = to_pci_dev(dev->dev);
1485         void __iomem *cmb;
1486         dma_addr_t dma_addr;
1487
1488         dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1489         if (!(NVME_CMB_SZ(dev->cmbsz)))
1490                 return NULL;
1491         dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1492
1493         if (!use_cmb_sqes)
1494                 return NULL;
1495
1496         szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1497         size = szu * NVME_CMB_SZ(dev->cmbsz);
1498         offset = szu * NVME_CMB_OFST(dev->cmbloc);
1499         bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc));
1500
1501         if (offset > bar_size)
1502                 return NULL;
1503
1504         /*
1505          * Controllers may support a CMB size larger than their BAR,
1506          * for example, due to being behind a bridge. Reduce the CMB to
1507          * the reported size of the BAR
1508          */
1509         if (size > bar_size - offset)
1510                 size = bar_size - offset;
1511
1512         dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset;
1513         cmb = ioremap_wc(dma_addr, size);
1514         if (!cmb)
1515                 return NULL;
1516
1517         dev->cmb_dma_addr = dma_addr;
1518         dev->cmb_size = size;
1519         return cmb;
1520 }
1521
1522 static inline void nvme_release_cmb(struct nvme_dev *dev)
1523 {
1524         if (dev->cmb) {
1525                 iounmap(dev->cmb);
1526                 dev->cmb = NULL;
1527                 if (dev->cmbsz) {
1528                         sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1529                                                      &dev_attr_cmb.attr, NULL);
1530                         dev->cmbsz = 0;
1531                 }
1532         }
1533 }
1534
1535 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1536 {
1537         size_t len = dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs);
1538         struct nvme_command c;
1539         u64 dma_addr;
1540         int ret;
1541
1542         dma_addr = dma_map_single(dev->dev, dev->host_mem_descs, len,
1543                         DMA_TO_DEVICE);
1544         if (dma_mapping_error(dev->dev, dma_addr))
1545                 return -ENOMEM;
1546
1547         memset(&c, 0, sizeof(c));
1548         c.features.opcode       = nvme_admin_set_features;
1549         c.features.fid          = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1550         c.features.dword11      = cpu_to_le32(bits);
1551         c.features.dword12      = cpu_to_le32(dev->host_mem_size >>
1552                                               ilog2(dev->ctrl.page_size));
1553         c.features.dword13      = cpu_to_le32(lower_32_bits(dma_addr));
1554         c.features.dword14      = cpu_to_le32(upper_32_bits(dma_addr));
1555         c.features.dword15      = cpu_to_le32(dev->nr_host_mem_descs);
1556
1557         ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1558         if (ret) {
1559                 dev_warn(dev->ctrl.device,
1560                          "failed to set host mem (err %d, flags %#x).\n",
1561                          ret, bits);
1562         }
1563         dma_unmap_single(dev->dev, dma_addr, len, DMA_TO_DEVICE);
1564         return ret;
1565 }
1566
1567 static void nvme_free_host_mem(struct nvme_dev *dev)
1568 {
1569         int i;
1570
1571         for (i = 0; i < dev->nr_host_mem_descs; i++) {
1572                 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1573                 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1574
1575                 dma_free_coherent(dev->dev, size, dev->host_mem_desc_bufs[i],
1576                                 le64_to_cpu(desc->addr));
1577         }
1578
1579         kfree(dev->host_mem_desc_bufs);
1580         dev->host_mem_desc_bufs = NULL;
1581         kfree(dev->host_mem_descs);
1582         dev->host_mem_descs = NULL;
1583 }
1584
1585 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1586 {
1587         struct nvme_host_mem_buf_desc *descs;
1588         u32 chunk_size, max_entries, i = 0;
1589         void **bufs;
1590         u64 size, tmp;
1591
1592         /* start big and work our way down */
1593         chunk_size = min(preferred, (u64)PAGE_SIZE << MAX_ORDER);
1594 retry:
1595         tmp = (preferred + chunk_size - 1);
1596         do_div(tmp, chunk_size);
1597         max_entries = tmp;
1598         descs = kcalloc(max_entries, sizeof(*descs), GFP_KERNEL);
1599         if (!descs)
1600                 goto out;
1601
1602         bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1603         if (!bufs)
1604                 goto out_free_descs;
1605
1606         for (size = 0; size < preferred; size += chunk_size) {
1607                 u32 len = min_t(u64, chunk_size, preferred - size);
1608                 dma_addr_t dma_addr;
1609
1610                 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1611                                 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1612                 if (!bufs[i])
1613                         break;
1614
1615                 descs[i].addr = cpu_to_le64(dma_addr);
1616                 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1617                 i++;
1618         }
1619
1620         if (!size || (min && size < min)) {
1621                 dev_warn(dev->ctrl.device,
1622                         "failed to allocate host memory buffer.\n");
1623                 goto out_free_bufs;
1624         }
1625
1626         dev_info(dev->ctrl.device,
1627                 "allocated %lld MiB host memory buffer.\n",
1628                 size >> ilog2(SZ_1M));
1629         dev->nr_host_mem_descs = i;
1630         dev->host_mem_size = size;
1631         dev->host_mem_descs = descs;
1632         dev->host_mem_desc_bufs = bufs;
1633         return 0;
1634
1635 out_free_bufs:
1636         while (--i >= 0) {
1637                 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1638
1639                 dma_free_coherent(dev->dev, size, bufs[i],
1640                                 le64_to_cpu(descs[i].addr));
1641         }
1642
1643         kfree(bufs);
1644 out_free_descs:
1645         kfree(descs);
1646 out:
1647         /* try a smaller chunk size if we failed early */
1648         if (chunk_size >= PAGE_SIZE * 2 && (i == 0 || size < min)) {
1649                 chunk_size /= 2;
1650                 goto retry;
1651         }
1652         dev->host_mem_descs = NULL;
1653         return -ENOMEM;
1654 }
1655
1656 static void nvme_setup_host_mem(struct nvme_dev *dev)
1657 {
1658         u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1659         u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1660         u64 min = (u64)dev->ctrl.hmmin * 4096;
1661         u32 enable_bits = NVME_HOST_MEM_ENABLE;
1662
1663         preferred = min(preferred, max);
1664         if (min > max) {
1665                 dev_warn(dev->ctrl.device,
1666                         "min host memory (%lld MiB) above limit (%d MiB).\n",
1667                         min >> ilog2(SZ_1M), max_host_mem_size_mb);
1668                 nvme_free_host_mem(dev);
1669                 return;
1670         }
1671
1672         /*
1673          * If we already have a buffer allocated check if we can reuse it.
1674          */
1675         if (dev->host_mem_descs) {
1676                 if (dev->host_mem_size >= min)
1677                         enable_bits |= NVME_HOST_MEM_RETURN;
1678                 else
1679                         nvme_free_host_mem(dev);
1680         }
1681
1682         if (!dev->host_mem_descs) {
1683                 if (nvme_alloc_host_mem(dev, min, preferred))
1684                         return;
1685         }
1686
1687         if (nvme_set_host_mem(dev, enable_bits))
1688                 nvme_free_host_mem(dev);
1689 }
1690
1691 static int nvme_setup_io_queues(struct nvme_dev *dev)
1692 {
1693         struct nvme_queue *adminq = dev->queues[0];
1694         struct pci_dev *pdev = to_pci_dev(dev->dev);
1695         int result, nr_io_queues;
1696         unsigned long size;
1697
1698         nr_io_queues = num_present_cpus();
1699         result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1700         if (result < 0)
1701                 return result;
1702
1703         if (nr_io_queues == 0)
1704                 return 0;
1705
1706         if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1707                 result = nvme_cmb_qdepth(dev, nr_io_queues,
1708                                 sizeof(struct nvme_command));
1709                 if (result > 0)
1710                         dev->q_depth = result;
1711                 else
1712                         nvme_release_cmb(dev);
1713         }
1714
1715         do {
1716                 size = db_bar_size(dev, nr_io_queues);
1717                 result = nvme_remap_bar(dev, size);
1718                 if (!result)
1719                         break;
1720                 if (!--nr_io_queues)
1721                         return -ENOMEM;
1722         } while (1);
1723         adminq->q_db = dev->dbs;
1724
1725         /* Deregister the admin queue's interrupt */
1726         pci_free_irq(pdev, 0, adminq);
1727
1728         /*
1729          * If we enable msix early due to not intx, disable it again before
1730          * setting up the full range we need.
1731          */
1732         pci_free_irq_vectors(pdev);
1733         nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1734                         PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1735         if (nr_io_queues <= 0)
1736                 return -EIO;
1737         dev->max_qid = nr_io_queues;
1738
1739         /*
1740          * Should investigate if there's a performance win from allocating
1741          * more queues than interrupt vectors; it might allow the submission
1742          * path to scale better, even if the receive path is limited by the
1743          * number of interrupts.
1744          */
1745
1746         result = queue_request_irq(adminq);
1747         if (result) {
1748                 adminq->cq_vector = -1;
1749                 return result;
1750         }
1751         return nvme_create_io_queues(dev);
1752 }
1753
1754 static void nvme_del_queue_end(struct request *req, blk_status_t error)
1755 {
1756         struct nvme_queue *nvmeq = req->end_io_data;
1757
1758         blk_mq_free_request(req);
1759         complete(&nvmeq->dev->ioq_wait);
1760 }
1761
1762 static void nvme_del_cq_end(struct request *req, blk_status_t error)
1763 {
1764         struct nvme_queue *nvmeq = req->end_io_data;
1765
1766         if (!error) {
1767                 unsigned long flags;
1768
1769                 /*
1770                  * We might be called with the AQ q_lock held
1771                  * and the I/O queue q_lock should always
1772                  * nest inside the AQ one.
1773                  */
1774                 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1775                                         SINGLE_DEPTH_NESTING);
1776                 nvme_process_cq(nvmeq);
1777                 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1778         }
1779
1780         nvme_del_queue_end(req, error);
1781 }
1782
1783 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1784 {
1785         struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1786         struct request *req;
1787         struct nvme_command cmd;
1788
1789         memset(&cmd, 0, sizeof(cmd));
1790         cmd.delete_queue.opcode = opcode;
1791         cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1792
1793         req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1794         if (IS_ERR(req))
1795                 return PTR_ERR(req);
1796
1797         req->timeout = ADMIN_TIMEOUT;
1798         req->end_io_data = nvmeq;
1799
1800         blk_execute_rq_nowait(q, NULL, req, false,
1801                         opcode == nvme_admin_delete_cq ?
1802                                 nvme_del_cq_end : nvme_del_queue_end);
1803         return 0;
1804 }
1805
1806 static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
1807 {
1808         int pass;
1809         unsigned long timeout;
1810         u8 opcode = nvme_admin_delete_sq;
1811
1812         for (pass = 0; pass < 2; pass++) {
1813                 int sent = 0, i = queues;
1814
1815                 reinit_completion(&dev->ioq_wait);
1816  retry:
1817                 timeout = ADMIN_TIMEOUT;
1818                 for (; i > 0; i--, sent++)
1819                         if (nvme_delete_queue(dev->queues[i], opcode))
1820                                 break;
1821
1822                 while (sent--) {
1823                         timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1824                         if (timeout == 0)
1825                                 return;
1826                         if (i)
1827                                 goto retry;
1828                 }
1829                 opcode = nvme_admin_delete_cq;
1830         }
1831 }
1832
1833 /*
1834  * Return: error value if an error occurred setting up the queues or calling
1835  * Identify Device.  0 if these succeeded, even if adding some of the
1836  * namespaces failed.  At the moment, these failures are silent.  TBD which
1837  * failures should be reported.
1838  */
1839 static int nvme_dev_add(struct nvme_dev *dev)
1840 {
1841         if (!dev->ctrl.tagset) {
1842                 dev->tagset.ops = &nvme_mq_ops;
1843                 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1844                 dev->tagset.timeout = NVME_IO_TIMEOUT;
1845                 dev->tagset.numa_node = dev_to_node(dev->dev);
1846                 dev->tagset.queue_depth =
1847                                 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1848                 dev->tagset.cmd_size = nvme_cmd_size(dev);
1849                 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1850                 dev->tagset.driver_data = dev;
1851
1852                 if (blk_mq_alloc_tag_set(&dev->tagset))
1853                         return 0;
1854                 dev->ctrl.tagset = &dev->tagset;
1855
1856                 nvme_dbbuf_set(dev);
1857         } else {
1858                 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1859
1860                 /* Free previously allocated queues that are no longer usable */
1861                 nvme_free_queues(dev, dev->online_queues);
1862         }
1863
1864         return 0;
1865 }
1866
1867 static int nvme_pci_enable(struct nvme_dev *dev)
1868 {
1869         u64 cap;
1870         int result = -ENOMEM;
1871         struct pci_dev *pdev = to_pci_dev(dev->dev);
1872
1873         if (pci_enable_device_mem(pdev))
1874                 return result;
1875
1876         pci_set_master(pdev);
1877
1878         if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1879             dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1880                 goto disable;
1881
1882         if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1883                 result = -ENODEV;
1884                 goto disable;
1885         }
1886
1887         /*
1888          * Some devices and/or platforms don't advertise or work with INTx
1889          * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1890          * adjust this later.
1891          */
1892         result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
1893         if (result < 0)
1894                 return result;
1895
1896         cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1897
1898         dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1899         dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1900         dev->dbs = dev->bar + 4096;
1901
1902         /*
1903          * Temporary fix for the Apple controller found in the MacBook8,1 and
1904          * some MacBook7,1 to avoid controller resets and data loss.
1905          */
1906         if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1907                 dev->q_depth = 2;
1908                 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
1909                         "set queue depth=%u to work around controller resets\n",
1910                         dev->q_depth);
1911         }
1912
1913         /*
1914          * CMBs can currently only exist on >=1.2 PCIe devices. We only
1915          * populate sysfs if a CMB is implemented. Note that we add the
1916          * CMB attribute to the nvme_ctrl kobj which removes the need to remove
1917          * it on exit. Since nvme_dev_attrs_group has no name we can pass
1918          * NULL as final argument to sysfs_add_file_to_group.
1919          */
1920
1921         if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
1922                 dev->cmb = nvme_map_cmb(dev);
1923
1924                 if (dev->cmbsz) {
1925                         if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1926                                                     &dev_attr_cmb.attr, NULL))
1927                                 dev_warn(dev->ctrl.device,
1928                                          "failed to add sysfs attribute for CMB\n");
1929                 }
1930         }
1931
1932         pci_enable_pcie_error_reporting(pdev);
1933         pci_save_state(pdev);
1934         return 0;
1935
1936  disable:
1937         pci_disable_device(pdev);
1938         return result;
1939 }
1940
1941 static void nvme_dev_unmap(struct nvme_dev *dev)
1942 {
1943         if (dev->bar)
1944                 iounmap(dev->bar);
1945         pci_release_mem_regions(to_pci_dev(dev->dev));
1946 }
1947
1948 static void nvme_pci_disable(struct nvme_dev *dev)
1949 {
1950         struct pci_dev *pdev = to_pci_dev(dev->dev);
1951
1952         nvme_release_cmb(dev);
1953         pci_free_irq_vectors(pdev);
1954
1955         if (pci_is_enabled(pdev)) {
1956                 pci_disable_pcie_error_reporting(pdev);
1957                 pci_disable_device(pdev);
1958         }
1959 }
1960
1961 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
1962 {
1963         int i, queues;
1964         bool dead = true;
1965         struct pci_dev *pdev = to_pci_dev(dev->dev);
1966
1967         mutex_lock(&dev->shutdown_lock);
1968         if (pci_is_enabled(pdev)) {
1969                 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1970
1971                 if (dev->ctrl.state == NVME_CTRL_LIVE ||
1972                     dev->ctrl.state == NVME_CTRL_RESETTING)
1973                         nvme_start_freeze(&dev->ctrl);
1974                 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
1975                         pdev->error_state  != pci_channel_io_normal);
1976         }
1977
1978         /*
1979          * Give the controller a chance to complete all entered requests if
1980          * doing a safe shutdown.
1981          */
1982         if (!dead) {
1983                 if (shutdown)
1984                         nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
1985
1986                 /*
1987                  * If the controller is still alive tell it to stop using the
1988                  * host memory buffer.  In theory the shutdown / reset should
1989                  * make sure that it doesn't access the host memoery anymore,
1990                  * but I'd rather be safe than sorry..
1991                  */
1992                 if (dev->host_mem_descs)
1993                         nvme_set_host_mem(dev, 0);
1994
1995         }
1996         nvme_stop_queues(&dev->ctrl);
1997
1998         queues = dev->online_queues - 1;
1999         for (i = dev->queue_count - 1; i > 0; i--)
2000                 nvme_suspend_queue(dev->queues[i]);
2001
2002         if (dead) {
2003                 /* A device might become IO incapable very soon during
2004                  * probe, before the admin queue is configured. Thus,
2005                  * queue_count can be 0 here.
2006                  */
2007                 if (dev->queue_count)
2008                         nvme_suspend_queue(dev->queues[0]);
2009         } else {
2010                 nvme_disable_io_queues(dev, queues);
2011                 nvme_disable_admin_queue(dev, shutdown);
2012         }
2013         nvme_pci_disable(dev);
2014
2015         blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2016         blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2017
2018         /*
2019          * The driver will not be starting up queues again if shutting down so
2020          * must flush all entered requests to their failed completion to avoid
2021          * deadlocking blk-mq hot-cpu notifier.
2022          */
2023         if (shutdown)
2024                 nvme_start_queues(&dev->ctrl);
2025         mutex_unlock(&dev->shutdown_lock);
2026 }
2027
2028 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2029 {
2030         dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2031                                                 PAGE_SIZE, PAGE_SIZE, 0);
2032         if (!dev->prp_page_pool)
2033                 return -ENOMEM;
2034
2035         /* Optimisation for I/Os between 4k and 128k */
2036         dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2037                                                 256, 256, 0);
2038         if (!dev->prp_small_pool) {
2039                 dma_pool_destroy(dev->prp_page_pool);
2040                 return -ENOMEM;
2041         }
2042         return 0;
2043 }
2044
2045 static void nvme_release_prp_pools(struct nvme_dev *dev)
2046 {
2047         dma_pool_destroy(dev->prp_page_pool);
2048         dma_pool_destroy(dev->prp_small_pool);
2049 }
2050
2051 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2052 {
2053         struct nvme_dev *dev = to_nvme_dev(ctrl);
2054
2055         nvme_dbbuf_dma_free(dev);
2056         put_device(dev->dev);
2057         if (dev->tagset.tags)
2058                 blk_mq_free_tag_set(&dev->tagset);
2059         if (dev->ctrl.admin_q)
2060                 blk_put_queue(dev->ctrl.admin_q);
2061         kfree(dev->queues);
2062         free_opal_dev(dev->ctrl.opal_dev);
2063         kfree(dev);
2064 }
2065
2066 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
2067 {
2068         dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
2069
2070         kref_get(&dev->ctrl.kref);
2071         nvme_dev_disable(dev, false);
2072         if (!schedule_work(&dev->remove_work))
2073                 nvme_put_ctrl(&dev->ctrl);
2074 }
2075
2076 static void nvme_reset_work(struct work_struct *work)
2077 {
2078         struct nvme_dev *dev =
2079                 container_of(work, struct nvme_dev, ctrl.reset_work);
2080         bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2081         int result = -ENODEV;
2082
2083         if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
2084                 goto out;
2085
2086         /*
2087          * If we're called to reset a live controller first shut it down before
2088          * moving on.
2089          */
2090         if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2091                 nvme_dev_disable(dev, false);
2092
2093         result = nvme_pci_enable(dev);
2094         if (result)
2095                 goto out;
2096
2097         result = nvme_configure_admin_queue(dev);
2098         if (result)
2099                 goto out;
2100
2101         nvme_init_queue(dev->queues[0], 0);
2102         result = nvme_alloc_admin_tags(dev);
2103         if (result)
2104                 goto out;
2105
2106         result = nvme_init_identify(&dev->ctrl);
2107         if (result)
2108                 goto out;
2109
2110         if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2111                 if (!dev->ctrl.opal_dev)
2112                         dev->ctrl.opal_dev =
2113                                 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2114                 else if (was_suspend)
2115                         opal_unlock_from_suspend(dev->ctrl.opal_dev);
2116         } else {
2117                 free_opal_dev(dev->ctrl.opal_dev);
2118                 dev->ctrl.opal_dev = NULL;
2119         }
2120
2121         if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2122                 result = nvme_dbbuf_dma_alloc(dev);
2123                 if (result)
2124                         dev_warn(dev->dev,
2125                                  "unable to allocate dma for dbbuf\n");
2126         }
2127
2128         if (dev->ctrl.hmpre)
2129                 nvme_setup_host_mem(dev);
2130
2131         result = nvme_setup_io_queues(dev);
2132         if (result)
2133                 goto out;
2134
2135         /*
2136          * A controller that can not execute IO typically requires user
2137          * intervention to correct. For such degraded controllers, the driver
2138          * should not submit commands the user did not request, so skip
2139          * registering for asynchronous event notification on this condition.
2140          */
2141         if (dev->online_queues > 1)
2142                 nvme_queue_async_events(&dev->ctrl);
2143
2144         /*
2145          * Keep the controller around but remove all namespaces if we don't have
2146          * any working I/O queue.
2147          */
2148         if (dev->online_queues < 2) {
2149                 dev_warn(dev->ctrl.device, "IO queues not created\n");
2150                 nvme_kill_queues(&dev->ctrl);
2151                 nvme_remove_namespaces(&dev->ctrl);
2152         } else {
2153                 nvme_start_queues(&dev->ctrl);
2154                 nvme_wait_freeze(&dev->ctrl);
2155                 nvme_dev_add(dev);
2156                 nvme_unfreeze(&dev->ctrl);
2157         }
2158
2159         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2160                 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
2161                 goto out;
2162         }
2163
2164         if (dev->online_queues > 1)
2165                 nvme_queue_scan(&dev->ctrl);
2166         return;
2167
2168  out:
2169         nvme_remove_dead_ctrl(dev, result);
2170 }
2171
2172 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2173 {
2174         struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2175         struct pci_dev *pdev = to_pci_dev(dev->dev);
2176
2177         nvme_kill_queues(&dev->ctrl);
2178         if (pci_get_drvdata(pdev))
2179                 device_release_driver(&pdev->dev);
2180         nvme_put_ctrl(&dev->ctrl);
2181 }
2182
2183 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2184 {
2185         *val = readl(to_nvme_dev(ctrl)->bar + off);
2186         return 0;
2187 }
2188
2189 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2190 {
2191         writel(val, to_nvme_dev(ctrl)->bar + off);
2192         return 0;
2193 }
2194
2195 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2196 {
2197         *val = readq(to_nvme_dev(ctrl)->bar + off);
2198         return 0;
2199 }
2200
2201 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2202         .name                   = "pcie",
2203         .module                 = THIS_MODULE,
2204         .flags                  = NVME_F_METADATA_SUPPORTED,
2205         .reg_read32             = nvme_pci_reg_read32,
2206         .reg_write32            = nvme_pci_reg_write32,
2207         .reg_read64             = nvme_pci_reg_read64,
2208         .free_ctrl              = nvme_pci_free_ctrl,
2209         .submit_async_event     = nvme_pci_submit_async_event,
2210 };
2211
2212 static int nvme_dev_map(struct nvme_dev *dev)
2213 {
2214         struct pci_dev *pdev = to_pci_dev(dev->dev);
2215
2216         if (pci_request_mem_regions(pdev, "nvme"))
2217                 return -ENODEV;
2218
2219         if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2220                 goto release;
2221
2222         return 0;
2223   release:
2224         pci_release_mem_regions(pdev);
2225         return -ENODEV;
2226 }
2227
2228 static unsigned long check_dell_samsung_bug(struct pci_dev *pdev)
2229 {
2230         if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2231                 /*
2232                  * Several Samsung devices seem to drop off the PCIe bus
2233                  * randomly when APST is on and uses the deepest sleep state.
2234                  * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2235                  * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2236                  * 950 PRO 256GB", but it seems to be restricted to two Dell
2237                  * laptops.
2238                  */
2239                 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2240                     (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2241                      dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2242                         return NVME_QUIRK_NO_DEEPEST_PS;
2243         }
2244
2245         return 0;
2246 }
2247
2248 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2249 {
2250         int node, result = -ENOMEM;
2251         struct nvme_dev *dev;
2252         unsigned long quirks = id->driver_data;
2253
2254         node = dev_to_node(&pdev->dev);
2255         if (node == NUMA_NO_NODE)
2256                 set_dev_node(&pdev->dev, first_memory_node);
2257
2258         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2259         if (!dev)
2260                 return -ENOMEM;
2261         dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2262                                                         GFP_KERNEL, node);
2263         if (!dev->queues)
2264                 goto free;
2265
2266         dev->dev = get_device(&pdev->dev);
2267         pci_set_drvdata(pdev, dev);
2268
2269         result = nvme_dev_map(dev);
2270         if (result)
2271                 goto free;
2272
2273         INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2274         INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2275         mutex_init(&dev->shutdown_lock);
2276         init_completion(&dev->ioq_wait);
2277
2278         result = nvme_setup_prp_pools(dev);
2279         if (result)
2280                 goto put_pci;
2281
2282         quirks |= check_dell_samsung_bug(pdev);
2283
2284         result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2285                         quirks);
2286         if (result)
2287                 goto release_pools;
2288
2289         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING);
2290         dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2291
2292         queue_work(nvme_wq, &dev->ctrl.reset_work);
2293         return 0;
2294
2295  release_pools:
2296         nvme_release_prp_pools(dev);
2297  put_pci:
2298         put_device(dev->dev);
2299         nvme_dev_unmap(dev);
2300  free:
2301         kfree(dev->queues);
2302         kfree(dev);
2303         return result;
2304 }
2305
2306 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2307 {
2308         struct nvme_dev *dev = pci_get_drvdata(pdev);
2309
2310         if (prepare)
2311                 nvme_dev_disable(dev, false);
2312         else
2313                 nvme_reset_ctrl(&dev->ctrl);
2314 }
2315
2316 static void nvme_shutdown(struct pci_dev *pdev)
2317 {
2318         struct nvme_dev *dev = pci_get_drvdata(pdev);
2319         nvme_dev_disable(dev, true);
2320 }
2321
2322 /*
2323  * The driver's remove may be called on a device in a partially initialized
2324  * state. This function must not have any dependencies on the device state in
2325  * order to proceed.
2326  */
2327 static void nvme_remove(struct pci_dev *pdev)
2328 {
2329         struct nvme_dev *dev = pci_get_drvdata(pdev);
2330
2331         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2332
2333         cancel_work_sync(&dev->ctrl.reset_work);
2334         pci_set_drvdata(pdev, NULL);
2335
2336         if (!pci_device_is_present(pdev)) {
2337                 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2338                 nvme_dev_disable(dev, false);
2339         }
2340
2341         flush_work(&dev->ctrl.reset_work);
2342         nvme_uninit_ctrl(&dev->ctrl);
2343         nvme_dev_disable(dev, true);
2344         nvme_free_host_mem(dev);
2345         nvme_dev_remove_admin(dev);
2346         nvme_free_queues(dev, 0);
2347         nvme_release_prp_pools(dev);
2348         nvme_dev_unmap(dev);
2349         nvme_put_ctrl(&dev->ctrl);
2350 }
2351
2352 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2353 {
2354         int ret = 0;
2355
2356         if (numvfs == 0) {
2357                 if (pci_vfs_assigned(pdev)) {
2358                         dev_warn(&pdev->dev,
2359                                 "Cannot disable SR-IOV VFs while assigned\n");
2360                         return -EPERM;
2361                 }
2362                 pci_disable_sriov(pdev);
2363                 return 0;
2364         }
2365
2366         ret = pci_enable_sriov(pdev, numvfs);
2367         return ret ? ret : numvfs;
2368 }
2369
2370 #ifdef CONFIG_PM_SLEEP
2371 static int nvme_suspend(struct device *dev)
2372 {
2373         struct pci_dev *pdev = to_pci_dev(dev);
2374         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2375
2376         nvme_dev_disable(ndev, true);
2377         return 0;
2378 }
2379
2380 static int nvme_resume(struct device *dev)
2381 {
2382         struct pci_dev *pdev = to_pci_dev(dev);
2383         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2384
2385         nvme_reset_ctrl(&ndev->ctrl);
2386         return 0;
2387 }
2388 #endif
2389
2390 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2391
2392 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2393                                                 pci_channel_state_t state)
2394 {
2395         struct nvme_dev *dev = pci_get_drvdata(pdev);
2396
2397         /*
2398          * A frozen channel requires a reset. When detected, this method will
2399          * shutdown the controller to quiesce. The controller will be restarted
2400          * after the slot reset through driver's slot_reset callback.
2401          */
2402         switch (state) {
2403         case pci_channel_io_normal:
2404                 return PCI_ERS_RESULT_CAN_RECOVER;
2405         case pci_channel_io_frozen:
2406                 dev_warn(dev->ctrl.device,
2407                         "frozen state error detected, reset controller\n");
2408                 nvme_dev_disable(dev, false);
2409                 return PCI_ERS_RESULT_NEED_RESET;
2410         case pci_channel_io_perm_failure:
2411                 dev_warn(dev->ctrl.device,
2412                         "failure state error detected, request disconnect\n");
2413                 return PCI_ERS_RESULT_DISCONNECT;
2414         }
2415         return PCI_ERS_RESULT_NEED_RESET;
2416 }
2417
2418 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2419 {
2420         struct nvme_dev *dev = pci_get_drvdata(pdev);
2421
2422         dev_info(dev->ctrl.device, "restart after slot reset\n");
2423         pci_restore_state(pdev);
2424         nvme_reset_ctrl(&dev->ctrl);
2425         return PCI_ERS_RESULT_RECOVERED;
2426 }
2427
2428 static void nvme_error_resume(struct pci_dev *pdev)
2429 {
2430         pci_cleanup_aer_uncorrect_error_status(pdev);
2431 }
2432
2433 static const struct pci_error_handlers nvme_err_handler = {
2434         .error_detected = nvme_error_detected,
2435         .slot_reset     = nvme_slot_reset,
2436         .resume         = nvme_error_resume,
2437         .reset_notify   = nvme_reset_notify,
2438 };
2439
2440 static const struct pci_device_id nvme_id_table[] = {
2441         { PCI_VDEVICE(INTEL, 0x0953),
2442                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2443                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2444         { PCI_VDEVICE(INTEL, 0x0a53),
2445                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2446                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2447         { PCI_VDEVICE(INTEL, 0x0a54),
2448                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2449                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2450         { PCI_VDEVICE(INTEL, 0xf1a5),   /* Intel 600P/P3100 */
2451                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS },
2452         { PCI_VDEVICE(INTEL, 0x5845),   /* Qemu emulated controller */
2453                 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2454         { PCI_DEVICE(0x1c58, 0x0003),   /* HGST adapter */
2455                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2456         { PCI_DEVICE(0x1c5f, 0x0540),   /* Memblaze Pblaze4 adapter */
2457                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2458         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2459         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2460         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
2461         { 0, }
2462 };
2463 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2464
2465 static struct pci_driver nvme_driver = {
2466         .name           = "nvme",
2467         .id_table       = nvme_id_table,
2468         .probe          = nvme_probe,
2469         .remove         = nvme_remove,
2470         .shutdown       = nvme_shutdown,
2471         .driver         = {
2472                 .pm     = &nvme_dev_pm_ops,
2473         },
2474         .sriov_configure = nvme_pci_sriov_configure,
2475         .err_handler    = &nvme_err_handler,
2476 };
2477
2478 static int __init nvme_init(void)
2479 {
2480         return pci_register_driver(&nvme_driver);
2481 }
2482
2483 static void __exit nvme_exit(void)
2484 {
2485         pci_unregister_driver(&nvme_driver);
2486         _nvme_check_size();
2487 }
2488
2489 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2490 MODULE_LICENSE("GPL");
2491 MODULE_VERSION("1.0");
2492 module_init(nvme_init);
2493 module_exit(nvme_exit);