Merge remote-tracking branch 'asoc/fix/rcar' into asoc-linus
[sfrench/cifs-2.6.git] / drivers / nvme / host / fc.c
1 /*
2  * Copyright (c) 2016 Avago Technologies.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful.
9  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
10  * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
11  * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
12  * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
13  * See the GNU General Public License for more details, a copy of which
14  * can be found in the file COPYING included with this package
15  *
16  */
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/module.h>
19 #include <linux/parser.h>
20 #include <uapi/scsi/fc/fc_fs.h>
21 #include <uapi/scsi/fc/fc_els.h>
22 #include <linux/delay.h>
23
24 #include "nvme.h"
25 #include "fabrics.h"
26 #include <linux/nvme-fc-driver.h>
27 #include <linux/nvme-fc.h>
28
29
30 /* *************************** Data Structures/Defines ****************** */
31
32
33 /*
34  * We handle AEN commands ourselves and don't even let the
35  * block layer know about them.
36  */
37 #define NVME_FC_NR_AEN_COMMANDS 1
38 #define NVME_FC_AQ_BLKMQ_DEPTH  \
39         (NVMF_AQ_DEPTH - NVME_FC_NR_AEN_COMMANDS)
40 #define AEN_CMDID_BASE          (NVME_FC_AQ_BLKMQ_DEPTH + 1)
41
42 enum nvme_fc_queue_flags {
43         NVME_FC_Q_CONNECTED = (1 << 0),
44 };
45
46 #define NVMEFC_QUEUE_DELAY      3               /* ms units */
47
48 struct nvme_fc_queue {
49         struct nvme_fc_ctrl     *ctrl;
50         struct device           *dev;
51         struct blk_mq_hw_ctx    *hctx;
52         void                    *lldd_handle;
53         int                     queue_size;
54         size_t                  cmnd_capsule_len;
55         u32                     qnum;
56         u32                     rqcnt;
57         u32                     seqno;
58
59         u64                     connection_id;
60         atomic_t                csn;
61
62         unsigned long           flags;
63 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
64
65 enum nvme_fcop_flags {
66         FCOP_FLAGS_TERMIO       = (1 << 0),
67         FCOP_FLAGS_RELEASED     = (1 << 1),
68         FCOP_FLAGS_COMPLETE     = (1 << 2),
69         FCOP_FLAGS_AEN          = (1 << 3),
70 };
71
72 struct nvmefc_ls_req_op {
73         struct nvmefc_ls_req    ls_req;
74
75         struct nvme_fc_rport    *rport;
76         struct nvme_fc_queue    *queue;
77         struct request          *rq;
78         u32                     flags;
79
80         int                     ls_error;
81         struct completion       ls_done;
82         struct list_head        lsreq_list;     /* rport->ls_req_list */
83         bool                    req_queued;
84 };
85
86 enum nvme_fcpop_state {
87         FCPOP_STATE_UNINIT      = 0,
88         FCPOP_STATE_IDLE        = 1,
89         FCPOP_STATE_ACTIVE      = 2,
90         FCPOP_STATE_ABORTED     = 3,
91         FCPOP_STATE_COMPLETE    = 4,
92 };
93
94 struct nvme_fc_fcp_op {
95         struct nvme_request     nreq;           /*
96                                                  * nvme/host/core.c
97                                                  * requires this to be
98                                                  * the 1st element in the
99                                                  * private structure
100                                                  * associated with the
101                                                  * request.
102                                                  */
103         struct nvmefc_fcp_req   fcp_req;
104
105         struct nvme_fc_ctrl     *ctrl;
106         struct nvme_fc_queue    *queue;
107         struct request          *rq;
108
109         atomic_t                state;
110         u32                     flags;
111         u32                     rqno;
112         u32                     nents;
113
114         struct nvme_fc_cmd_iu   cmd_iu;
115         struct nvme_fc_ersp_iu  rsp_iu;
116 };
117
118 struct nvme_fc_lport {
119         struct nvme_fc_local_port       localport;
120
121         struct ida                      endp_cnt;
122         struct list_head                port_list;      /* nvme_fc_port_list */
123         struct list_head                endp_list;
124         struct device                   *dev;   /* physical device for dma */
125         struct nvme_fc_port_template    *ops;
126         struct kref                     ref;
127 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
128
129 struct nvme_fc_rport {
130         struct nvme_fc_remote_port      remoteport;
131
132         struct list_head                endp_list; /* for lport->endp_list */
133         struct list_head                ctrl_list;
134         struct list_head                ls_req_list;
135         struct device                   *dev;   /* physical device for dma */
136         struct nvme_fc_lport            *lport;
137         spinlock_t                      lock;
138         struct kref                     ref;
139 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
140
141 enum nvme_fcctrl_flags {
142         FCCTRL_TERMIO           = (1 << 0),
143 };
144
145 struct nvme_fc_ctrl {
146         spinlock_t              lock;
147         struct nvme_fc_queue    *queues;
148         struct device           *dev;
149         struct nvme_fc_lport    *lport;
150         struct nvme_fc_rport    *rport;
151         u32                     queue_count;
152         u32                     cnum;
153
154         u64                     association_id;
155
156         u64                     cap;
157
158         struct list_head        ctrl_list;      /* rport->ctrl_list */
159
160         struct blk_mq_tag_set   admin_tag_set;
161         struct blk_mq_tag_set   tag_set;
162
163         struct work_struct      delete_work;
164         struct work_struct      reset_work;
165         struct delayed_work     connect_work;
166
167         struct kref             ref;
168         u32                     flags;
169         u32                     iocnt;
170
171         struct nvme_fc_fcp_op   aen_ops[NVME_FC_NR_AEN_COMMANDS];
172
173         struct nvme_ctrl        ctrl;
174 };
175
176 static inline struct nvme_fc_ctrl *
177 to_fc_ctrl(struct nvme_ctrl *ctrl)
178 {
179         return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
180 }
181
182 static inline struct nvme_fc_lport *
183 localport_to_lport(struct nvme_fc_local_port *portptr)
184 {
185         return container_of(portptr, struct nvme_fc_lport, localport);
186 }
187
188 static inline struct nvme_fc_rport *
189 remoteport_to_rport(struct nvme_fc_remote_port *portptr)
190 {
191         return container_of(portptr, struct nvme_fc_rport, remoteport);
192 }
193
194 static inline struct nvmefc_ls_req_op *
195 ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
196 {
197         return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
198 }
199
200 static inline struct nvme_fc_fcp_op *
201 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
202 {
203         return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
204 }
205
206
207
208 /* *************************** Globals **************************** */
209
210
211 static DEFINE_SPINLOCK(nvme_fc_lock);
212
213 static LIST_HEAD(nvme_fc_lport_list);
214 static DEFINE_IDA(nvme_fc_local_port_cnt);
215 static DEFINE_IDA(nvme_fc_ctrl_cnt);
216
217 static struct workqueue_struct *nvme_fc_wq;
218
219
220
221 /* *********************** FC-NVME Port Management ************************ */
222
223 static int __nvme_fc_del_ctrl(struct nvme_fc_ctrl *);
224 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
225                         struct nvme_fc_queue *, unsigned int);
226
227
228 /**
229  * nvme_fc_register_localport - transport entry point called by an
230  *                              LLDD to register the existence of a NVME
231  *                              host FC port.
232  * @pinfo:     pointer to information about the port to be registered
233  * @template:  LLDD entrypoints and operational parameters for the port
234  * @dev:       physical hardware device node port corresponds to. Will be
235  *             used for DMA mappings
236  * @lport_p:   pointer to a local port pointer. Upon success, the routine
237  *             will allocate a nvme_fc_local_port structure and place its
238  *             address in the local port pointer. Upon failure, local port
239  *             pointer will be set to 0.
240  *
241  * Returns:
242  * a completion status. Must be 0 upon success; a negative errno
243  * (ex: -ENXIO) upon failure.
244  */
245 int
246 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
247                         struct nvme_fc_port_template *template,
248                         struct device *dev,
249                         struct nvme_fc_local_port **portptr)
250 {
251         struct nvme_fc_lport *newrec;
252         unsigned long flags;
253         int ret, idx;
254
255         if (!template->localport_delete || !template->remoteport_delete ||
256             !template->ls_req || !template->fcp_io ||
257             !template->ls_abort || !template->fcp_abort ||
258             !template->max_hw_queues || !template->max_sgl_segments ||
259             !template->max_dif_sgl_segments || !template->dma_boundary) {
260                 ret = -EINVAL;
261                 goto out_reghost_failed;
262         }
263
264         newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
265                          GFP_KERNEL);
266         if (!newrec) {
267                 ret = -ENOMEM;
268                 goto out_reghost_failed;
269         }
270
271         idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL);
272         if (idx < 0) {
273                 ret = -ENOSPC;
274                 goto out_fail_kfree;
275         }
276
277         if (!get_device(dev) && dev) {
278                 ret = -ENODEV;
279                 goto out_ida_put;
280         }
281
282         INIT_LIST_HEAD(&newrec->port_list);
283         INIT_LIST_HEAD(&newrec->endp_list);
284         kref_init(&newrec->ref);
285         newrec->ops = template;
286         newrec->dev = dev;
287         ida_init(&newrec->endp_cnt);
288         newrec->localport.private = &newrec[1];
289         newrec->localport.node_name = pinfo->node_name;
290         newrec->localport.port_name = pinfo->port_name;
291         newrec->localport.port_role = pinfo->port_role;
292         newrec->localport.port_id = pinfo->port_id;
293         newrec->localport.port_state = FC_OBJSTATE_ONLINE;
294         newrec->localport.port_num = idx;
295
296         spin_lock_irqsave(&nvme_fc_lock, flags);
297         list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
298         spin_unlock_irqrestore(&nvme_fc_lock, flags);
299
300         if (dev)
301                 dma_set_seg_boundary(dev, template->dma_boundary);
302
303         *portptr = &newrec->localport;
304         return 0;
305
306 out_ida_put:
307         ida_simple_remove(&nvme_fc_local_port_cnt, idx);
308 out_fail_kfree:
309         kfree(newrec);
310 out_reghost_failed:
311         *portptr = NULL;
312
313         return ret;
314 }
315 EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
316
317 static void
318 nvme_fc_free_lport(struct kref *ref)
319 {
320         struct nvme_fc_lport *lport =
321                 container_of(ref, struct nvme_fc_lport, ref);
322         unsigned long flags;
323
324         WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
325         WARN_ON(!list_empty(&lport->endp_list));
326
327         /* remove from transport list */
328         spin_lock_irqsave(&nvme_fc_lock, flags);
329         list_del(&lport->port_list);
330         spin_unlock_irqrestore(&nvme_fc_lock, flags);
331
332         /* let the LLDD know we've finished tearing it down */
333         lport->ops->localport_delete(&lport->localport);
334
335         ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num);
336         ida_destroy(&lport->endp_cnt);
337
338         put_device(lport->dev);
339
340         kfree(lport);
341 }
342
343 static void
344 nvme_fc_lport_put(struct nvme_fc_lport *lport)
345 {
346         kref_put(&lport->ref, nvme_fc_free_lport);
347 }
348
349 static int
350 nvme_fc_lport_get(struct nvme_fc_lport *lport)
351 {
352         return kref_get_unless_zero(&lport->ref);
353 }
354
355 /**
356  * nvme_fc_unregister_localport - transport entry point called by an
357  *                              LLDD to deregister/remove a previously
358  *                              registered a NVME host FC port.
359  * @localport: pointer to the (registered) local port that is to be
360  *             deregistered.
361  *
362  * Returns:
363  * a completion status. Must be 0 upon success; a negative errno
364  * (ex: -ENXIO) upon failure.
365  */
366 int
367 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
368 {
369         struct nvme_fc_lport *lport = localport_to_lport(portptr);
370         unsigned long flags;
371
372         if (!portptr)
373                 return -EINVAL;
374
375         spin_lock_irqsave(&nvme_fc_lock, flags);
376
377         if (portptr->port_state != FC_OBJSTATE_ONLINE) {
378                 spin_unlock_irqrestore(&nvme_fc_lock, flags);
379                 return -EINVAL;
380         }
381         portptr->port_state = FC_OBJSTATE_DELETED;
382
383         spin_unlock_irqrestore(&nvme_fc_lock, flags);
384
385         nvme_fc_lport_put(lport);
386
387         return 0;
388 }
389 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
390
391 /**
392  * nvme_fc_register_remoteport - transport entry point called by an
393  *                              LLDD to register the existence of a NVME
394  *                              subsystem FC port on its fabric.
395  * @localport: pointer to the (registered) local port that the remote
396  *             subsystem port is connected to.
397  * @pinfo:     pointer to information about the port to be registered
398  * @rport_p:   pointer to a remote port pointer. Upon success, the routine
399  *             will allocate a nvme_fc_remote_port structure and place its
400  *             address in the remote port pointer. Upon failure, remote port
401  *             pointer will be set to 0.
402  *
403  * Returns:
404  * a completion status. Must be 0 upon success; a negative errno
405  * (ex: -ENXIO) upon failure.
406  */
407 int
408 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
409                                 struct nvme_fc_port_info *pinfo,
410                                 struct nvme_fc_remote_port **portptr)
411 {
412         struct nvme_fc_lport *lport = localport_to_lport(localport);
413         struct nvme_fc_rport *newrec;
414         unsigned long flags;
415         int ret, idx;
416
417         newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
418                          GFP_KERNEL);
419         if (!newrec) {
420                 ret = -ENOMEM;
421                 goto out_reghost_failed;
422         }
423
424         if (!nvme_fc_lport_get(lport)) {
425                 ret = -ESHUTDOWN;
426                 goto out_kfree_rport;
427         }
428
429         idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL);
430         if (idx < 0) {
431                 ret = -ENOSPC;
432                 goto out_lport_put;
433         }
434
435         INIT_LIST_HEAD(&newrec->endp_list);
436         INIT_LIST_HEAD(&newrec->ctrl_list);
437         INIT_LIST_HEAD(&newrec->ls_req_list);
438         kref_init(&newrec->ref);
439         spin_lock_init(&newrec->lock);
440         newrec->remoteport.localport = &lport->localport;
441         newrec->dev = lport->dev;
442         newrec->lport = lport;
443         newrec->remoteport.private = &newrec[1];
444         newrec->remoteport.port_role = pinfo->port_role;
445         newrec->remoteport.node_name = pinfo->node_name;
446         newrec->remoteport.port_name = pinfo->port_name;
447         newrec->remoteport.port_id = pinfo->port_id;
448         newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
449         newrec->remoteport.port_num = idx;
450
451         spin_lock_irqsave(&nvme_fc_lock, flags);
452         list_add_tail(&newrec->endp_list, &lport->endp_list);
453         spin_unlock_irqrestore(&nvme_fc_lock, flags);
454
455         *portptr = &newrec->remoteport;
456         return 0;
457
458 out_lport_put:
459         nvme_fc_lport_put(lport);
460 out_kfree_rport:
461         kfree(newrec);
462 out_reghost_failed:
463         *portptr = NULL;
464         return ret;
465 }
466 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
467
468 static void
469 nvme_fc_free_rport(struct kref *ref)
470 {
471         struct nvme_fc_rport *rport =
472                 container_of(ref, struct nvme_fc_rport, ref);
473         struct nvme_fc_lport *lport =
474                         localport_to_lport(rport->remoteport.localport);
475         unsigned long flags;
476
477         WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
478         WARN_ON(!list_empty(&rport->ctrl_list));
479
480         /* remove from lport list */
481         spin_lock_irqsave(&nvme_fc_lock, flags);
482         list_del(&rport->endp_list);
483         spin_unlock_irqrestore(&nvme_fc_lock, flags);
484
485         /* let the LLDD know we've finished tearing it down */
486         lport->ops->remoteport_delete(&rport->remoteport);
487
488         ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num);
489
490         kfree(rport);
491
492         nvme_fc_lport_put(lport);
493 }
494
495 static void
496 nvme_fc_rport_put(struct nvme_fc_rport *rport)
497 {
498         kref_put(&rport->ref, nvme_fc_free_rport);
499 }
500
501 static int
502 nvme_fc_rport_get(struct nvme_fc_rport *rport)
503 {
504         return kref_get_unless_zero(&rport->ref);
505 }
506
507 static int
508 nvme_fc_abort_lsops(struct nvme_fc_rport *rport)
509 {
510         struct nvmefc_ls_req_op *lsop;
511         unsigned long flags;
512
513 restart:
514         spin_lock_irqsave(&rport->lock, flags);
515
516         list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) {
517                 if (!(lsop->flags & FCOP_FLAGS_TERMIO)) {
518                         lsop->flags |= FCOP_FLAGS_TERMIO;
519                         spin_unlock_irqrestore(&rport->lock, flags);
520                         rport->lport->ops->ls_abort(&rport->lport->localport,
521                                                 &rport->remoteport,
522                                                 &lsop->ls_req);
523                         goto restart;
524                 }
525         }
526         spin_unlock_irqrestore(&rport->lock, flags);
527
528         return 0;
529 }
530
531 /**
532  * nvme_fc_unregister_remoteport - transport entry point called by an
533  *                              LLDD to deregister/remove a previously
534  *                              registered a NVME subsystem FC port.
535  * @remoteport: pointer to the (registered) remote port that is to be
536  *              deregistered.
537  *
538  * Returns:
539  * a completion status. Must be 0 upon success; a negative errno
540  * (ex: -ENXIO) upon failure.
541  */
542 int
543 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
544 {
545         struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
546         struct nvme_fc_ctrl *ctrl;
547         unsigned long flags;
548
549         if (!portptr)
550                 return -EINVAL;
551
552         spin_lock_irqsave(&rport->lock, flags);
553
554         if (portptr->port_state != FC_OBJSTATE_ONLINE) {
555                 spin_unlock_irqrestore(&rport->lock, flags);
556                 return -EINVAL;
557         }
558         portptr->port_state = FC_OBJSTATE_DELETED;
559
560         /* tear down all associations to the remote port */
561         list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
562                 __nvme_fc_del_ctrl(ctrl);
563
564         spin_unlock_irqrestore(&rport->lock, flags);
565
566         nvme_fc_abort_lsops(rport);
567
568         nvme_fc_rport_put(rport);
569         return 0;
570 }
571 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
572
573
574 /* *********************** FC-NVME DMA Handling **************************** */
575
576 /*
577  * The fcloop device passes in a NULL device pointer. Real LLD's will
578  * pass in a valid device pointer. If NULL is passed to the dma mapping
579  * routines, depending on the platform, it may or may not succeed, and
580  * may crash.
581  *
582  * As such:
583  * Wrapper all the dma routines and check the dev pointer.
584  *
585  * If simple mappings (return just a dma address, we'll noop them,
586  * returning a dma address of 0.
587  *
588  * On more complex mappings (dma_map_sg), a pseudo routine fills
589  * in the scatter list, setting all dma addresses to 0.
590  */
591
592 static inline dma_addr_t
593 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
594                 enum dma_data_direction dir)
595 {
596         return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
597 }
598
599 static inline int
600 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
601 {
602         return dev ? dma_mapping_error(dev, dma_addr) : 0;
603 }
604
605 static inline void
606 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
607         enum dma_data_direction dir)
608 {
609         if (dev)
610                 dma_unmap_single(dev, addr, size, dir);
611 }
612
613 static inline void
614 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
615                 enum dma_data_direction dir)
616 {
617         if (dev)
618                 dma_sync_single_for_cpu(dev, addr, size, dir);
619 }
620
621 static inline void
622 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
623                 enum dma_data_direction dir)
624 {
625         if (dev)
626                 dma_sync_single_for_device(dev, addr, size, dir);
627 }
628
629 /* pseudo dma_map_sg call */
630 static int
631 fc_map_sg(struct scatterlist *sg, int nents)
632 {
633         struct scatterlist *s;
634         int i;
635
636         WARN_ON(nents == 0 || sg[0].length == 0);
637
638         for_each_sg(sg, s, nents, i) {
639                 s->dma_address = 0L;
640 #ifdef CONFIG_NEED_SG_DMA_LENGTH
641                 s->dma_length = s->length;
642 #endif
643         }
644         return nents;
645 }
646
647 static inline int
648 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
649                 enum dma_data_direction dir)
650 {
651         return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
652 }
653
654 static inline void
655 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
656                 enum dma_data_direction dir)
657 {
658         if (dev)
659                 dma_unmap_sg(dev, sg, nents, dir);
660 }
661
662
663 /* *********************** FC-NVME LS Handling **************************** */
664
665 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
666 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
667
668
669 static void
670 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop)
671 {
672         struct nvme_fc_rport *rport = lsop->rport;
673         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
674         unsigned long flags;
675
676         spin_lock_irqsave(&rport->lock, flags);
677
678         if (!lsop->req_queued) {
679                 spin_unlock_irqrestore(&rport->lock, flags);
680                 return;
681         }
682
683         list_del(&lsop->lsreq_list);
684
685         lsop->req_queued = false;
686
687         spin_unlock_irqrestore(&rport->lock, flags);
688
689         fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
690                                   (lsreq->rqstlen + lsreq->rsplen),
691                                   DMA_BIDIRECTIONAL);
692
693         nvme_fc_rport_put(rport);
694 }
695
696 static int
697 __nvme_fc_send_ls_req(struct nvme_fc_rport *rport,
698                 struct nvmefc_ls_req_op *lsop,
699                 void (*done)(struct nvmefc_ls_req *req, int status))
700 {
701         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
702         unsigned long flags;
703         int ret = 0;
704
705         if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
706                 return -ECONNREFUSED;
707
708         if (!nvme_fc_rport_get(rport))
709                 return -ESHUTDOWN;
710
711         lsreq->done = done;
712         lsop->rport = rport;
713         lsop->req_queued = false;
714         INIT_LIST_HEAD(&lsop->lsreq_list);
715         init_completion(&lsop->ls_done);
716
717         lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr,
718                                   lsreq->rqstlen + lsreq->rsplen,
719                                   DMA_BIDIRECTIONAL);
720         if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) {
721                 ret = -EFAULT;
722                 goto out_putrport;
723         }
724         lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
725
726         spin_lock_irqsave(&rport->lock, flags);
727
728         list_add_tail(&lsop->lsreq_list, &rport->ls_req_list);
729
730         lsop->req_queued = true;
731
732         spin_unlock_irqrestore(&rport->lock, flags);
733
734         ret = rport->lport->ops->ls_req(&rport->lport->localport,
735                                         &rport->remoteport, lsreq);
736         if (ret)
737                 goto out_unlink;
738
739         return 0;
740
741 out_unlink:
742         lsop->ls_error = ret;
743         spin_lock_irqsave(&rport->lock, flags);
744         lsop->req_queued = false;
745         list_del(&lsop->lsreq_list);
746         spin_unlock_irqrestore(&rport->lock, flags);
747         fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
748                                   (lsreq->rqstlen + lsreq->rsplen),
749                                   DMA_BIDIRECTIONAL);
750 out_putrport:
751         nvme_fc_rport_put(rport);
752
753         return ret;
754 }
755
756 static void
757 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
758 {
759         struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
760
761         lsop->ls_error = status;
762         complete(&lsop->ls_done);
763 }
764
765 static int
766 nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop)
767 {
768         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
769         struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
770         int ret;
771
772         ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done);
773
774         if (!ret) {
775                 /*
776                  * No timeout/not interruptible as we need the struct
777                  * to exist until the lldd calls us back. Thus mandate
778                  * wait until driver calls back. lldd responsible for
779                  * the timeout action
780                  */
781                 wait_for_completion(&lsop->ls_done);
782
783                 __nvme_fc_finish_ls_req(lsop);
784
785                 ret = lsop->ls_error;
786         }
787
788         if (ret)
789                 return ret;
790
791         /* ACC or RJT payload ? */
792         if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
793                 return -ENXIO;
794
795         return 0;
796 }
797
798 static int
799 nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport,
800                 struct nvmefc_ls_req_op *lsop,
801                 void (*done)(struct nvmefc_ls_req *req, int status))
802 {
803         /* don't wait for completion */
804
805         return __nvme_fc_send_ls_req(rport, lsop, done);
806 }
807
808 /* Validation Error indexes into the string table below */
809 enum {
810         VERR_NO_ERROR           = 0,
811         VERR_LSACC              = 1,
812         VERR_LSDESC_RQST        = 2,
813         VERR_LSDESC_RQST_LEN    = 3,
814         VERR_ASSOC_ID           = 4,
815         VERR_ASSOC_ID_LEN       = 5,
816         VERR_CONN_ID            = 6,
817         VERR_CONN_ID_LEN        = 7,
818         VERR_CR_ASSOC           = 8,
819         VERR_CR_ASSOC_ACC_LEN   = 9,
820         VERR_CR_CONN            = 10,
821         VERR_CR_CONN_ACC_LEN    = 11,
822         VERR_DISCONN            = 12,
823         VERR_DISCONN_ACC_LEN    = 13,
824 };
825
826 static char *validation_errors[] = {
827         "OK",
828         "Not LS_ACC",
829         "Not LSDESC_RQST",
830         "Bad LSDESC_RQST Length",
831         "Not Association ID",
832         "Bad Association ID Length",
833         "Not Connection ID",
834         "Bad Connection ID Length",
835         "Not CR_ASSOC Rqst",
836         "Bad CR_ASSOC ACC Length",
837         "Not CR_CONN Rqst",
838         "Bad CR_CONN ACC Length",
839         "Not Disconnect Rqst",
840         "Bad Disconnect ACC Length",
841 };
842
843 static int
844 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
845         struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
846 {
847         struct nvmefc_ls_req_op *lsop;
848         struct nvmefc_ls_req *lsreq;
849         struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
850         struct fcnvme_ls_cr_assoc_acc *assoc_acc;
851         int ret, fcret = 0;
852
853         lsop = kzalloc((sizeof(*lsop) +
854                          ctrl->lport->ops->lsrqst_priv_sz +
855                          sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL);
856         if (!lsop) {
857                 ret = -ENOMEM;
858                 goto out_no_memory;
859         }
860         lsreq = &lsop->ls_req;
861
862         lsreq->private = (void *)&lsop[1];
863         assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)
864                         (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
865         assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
866
867         assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
868         assoc_rqst->desc_list_len =
869                         cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
870
871         assoc_rqst->assoc_cmd.desc_tag =
872                         cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
873         assoc_rqst->assoc_cmd.desc_len =
874                         fcnvme_lsdesc_len(
875                                 sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
876
877         assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
878         assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize);
879         /* Linux supports only Dynamic controllers */
880         assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
881         memcpy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id,
882                 min_t(size_t, FCNVME_ASSOC_HOSTID_LEN, sizeof(uuid_be)));
883         strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
884                 min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
885         strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
886                 min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
887
888         lsop->queue = queue;
889         lsreq->rqstaddr = assoc_rqst;
890         lsreq->rqstlen = sizeof(*assoc_rqst);
891         lsreq->rspaddr = assoc_acc;
892         lsreq->rsplen = sizeof(*assoc_acc);
893         lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
894
895         ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
896         if (ret)
897                 goto out_free_buffer;
898
899         /* process connect LS completion */
900
901         /* validate the ACC response */
902         if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
903                 fcret = VERR_LSACC;
904         else if (assoc_acc->hdr.desc_list_len !=
905                         fcnvme_lsdesc_len(
906                                 sizeof(struct fcnvme_ls_cr_assoc_acc)))
907                 fcret = VERR_CR_ASSOC_ACC_LEN;
908         else if (assoc_acc->hdr.rqst.desc_tag !=
909                         cpu_to_be32(FCNVME_LSDESC_RQST))
910                 fcret = VERR_LSDESC_RQST;
911         else if (assoc_acc->hdr.rqst.desc_len !=
912                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
913                 fcret = VERR_LSDESC_RQST_LEN;
914         else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
915                 fcret = VERR_CR_ASSOC;
916         else if (assoc_acc->associd.desc_tag !=
917                         cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
918                 fcret = VERR_ASSOC_ID;
919         else if (assoc_acc->associd.desc_len !=
920                         fcnvme_lsdesc_len(
921                                 sizeof(struct fcnvme_lsdesc_assoc_id)))
922                 fcret = VERR_ASSOC_ID_LEN;
923         else if (assoc_acc->connectid.desc_tag !=
924                         cpu_to_be32(FCNVME_LSDESC_CONN_ID))
925                 fcret = VERR_CONN_ID;
926         else if (assoc_acc->connectid.desc_len !=
927                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
928                 fcret = VERR_CONN_ID_LEN;
929
930         if (fcret) {
931                 ret = -EBADF;
932                 dev_err(ctrl->dev,
933                         "q %d connect failed: %s\n",
934                         queue->qnum, validation_errors[fcret]);
935         } else {
936                 ctrl->association_id =
937                         be64_to_cpu(assoc_acc->associd.association_id);
938                 queue->connection_id =
939                         be64_to_cpu(assoc_acc->connectid.connection_id);
940                 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
941         }
942
943 out_free_buffer:
944         kfree(lsop);
945 out_no_memory:
946         if (ret)
947                 dev_err(ctrl->dev,
948                         "queue %d connect admin queue failed (%d).\n",
949                         queue->qnum, ret);
950         return ret;
951 }
952
953 static int
954 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
955                         u16 qsize, u16 ersp_ratio)
956 {
957         struct nvmefc_ls_req_op *lsop;
958         struct nvmefc_ls_req *lsreq;
959         struct fcnvme_ls_cr_conn_rqst *conn_rqst;
960         struct fcnvme_ls_cr_conn_acc *conn_acc;
961         int ret, fcret = 0;
962
963         lsop = kzalloc((sizeof(*lsop) +
964                          ctrl->lport->ops->lsrqst_priv_sz +
965                          sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL);
966         if (!lsop) {
967                 ret = -ENOMEM;
968                 goto out_no_memory;
969         }
970         lsreq = &lsop->ls_req;
971
972         lsreq->private = (void *)&lsop[1];
973         conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)
974                         (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
975         conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
976
977         conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
978         conn_rqst->desc_list_len = cpu_to_be32(
979                                 sizeof(struct fcnvme_lsdesc_assoc_id) +
980                                 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
981
982         conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
983         conn_rqst->associd.desc_len =
984                         fcnvme_lsdesc_len(
985                                 sizeof(struct fcnvme_lsdesc_assoc_id));
986         conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
987         conn_rqst->connect_cmd.desc_tag =
988                         cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
989         conn_rqst->connect_cmd.desc_len =
990                         fcnvme_lsdesc_len(
991                                 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
992         conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
993         conn_rqst->connect_cmd.qid  = cpu_to_be16(queue->qnum);
994         conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize);
995
996         lsop->queue = queue;
997         lsreq->rqstaddr = conn_rqst;
998         lsreq->rqstlen = sizeof(*conn_rqst);
999         lsreq->rspaddr = conn_acc;
1000         lsreq->rsplen = sizeof(*conn_acc);
1001         lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1002
1003         ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1004         if (ret)
1005                 goto out_free_buffer;
1006
1007         /* process connect LS completion */
1008
1009         /* validate the ACC response */
1010         if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1011                 fcret = VERR_LSACC;
1012         else if (conn_acc->hdr.desc_list_len !=
1013                         fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
1014                 fcret = VERR_CR_CONN_ACC_LEN;
1015         else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
1016                 fcret = VERR_LSDESC_RQST;
1017         else if (conn_acc->hdr.rqst.desc_len !=
1018                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1019                 fcret = VERR_LSDESC_RQST_LEN;
1020         else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
1021                 fcret = VERR_CR_CONN;
1022         else if (conn_acc->connectid.desc_tag !=
1023                         cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1024                 fcret = VERR_CONN_ID;
1025         else if (conn_acc->connectid.desc_len !=
1026                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1027                 fcret = VERR_CONN_ID_LEN;
1028
1029         if (fcret) {
1030                 ret = -EBADF;
1031                 dev_err(ctrl->dev,
1032                         "q %d connect failed: %s\n",
1033                         queue->qnum, validation_errors[fcret]);
1034         } else {
1035                 queue->connection_id =
1036                         be64_to_cpu(conn_acc->connectid.connection_id);
1037                 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1038         }
1039
1040 out_free_buffer:
1041         kfree(lsop);
1042 out_no_memory:
1043         if (ret)
1044                 dev_err(ctrl->dev,
1045                         "queue %d connect command failed (%d).\n",
1046                         queue->qnum, ret);
1047         return ret;
1048 }
1049
1050 static void
1051 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
1052 {
1053         struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1054
1055         __nvme_fc_finish_ls_req(lsop);
1056
1057         /* fc-nvme iniator doesn't care about success or failure of cmd */
1058
1059         kfree(lsop);
1060 }
1061
1062 /*
1063  * This routine sends a FC-NVME LS to disconnect (aka terminate)
1064  * the FC-NVME Association.  Terminating the association also
1065  * terminates the FC-NVME connections (per queue, both admin and io
1066  * queues) that are part of the association. E.g. things are torn
1067  * down, and the related FC-NVME Association ID and Connection IDs
1068  * become invalid.
1069  *
1070  * The behavior of the fc-nvme initiator is such that it's
1071  * understanding of the association and connections will implicitly
1072  * be torn down. The action is implicit as it may be due to a loss of
1073  * connectivity with the fc-nvme target, so you may never get a
1074  * response even if you tried.  As such, the action of this routine
1075  * is to asynchronously send the LS, ignore any results of the LS, and
1076  * continue on with terminating the association. If the fc-nvme target
1077  * is present and receives the LS, it too can tear down.
1078  */
1079 static void
1080 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1081 {
1082         struct fcnvme_ls_disconnect_rqst *discon_rqst;
1083         struct fcnvme_ls_disconnect_acc *discon_acc;
1084         struct nvmefc_ls_req_op *lsop;
1085         struct nvmefc_ls_req *lsreq;
1086         int ret;
1087
1088         lsop = kzalloc((sizeof(*lsop) +
1089                          ctrl->lport->ops->lsrqst_priv_sz +
1090                          sizeof(*discon_rqst) + sizeof(*discon_acc)),
1091                         GFP_KERNEL);
1092         if (!lsop)
1093                 /* couldn't sent it... too bad */
1094                 return;
1095
1096         lsreq = &lsop->ls_req;
1097
1098         lsreq->private = (void *)&lsop[1];
1099         discon_rqst = (struct fcnvme_ls_disconnect_rqst *)
1100                         (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1101         discon_acc = (struct fcnvme_ls_disconnect_acc *)&discon_rqst[1];
1102
1103         discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT;
1104         discon_rqst->desc_list_len = cpu_to_be32(
1105                                 sizeof(struct fcnvme_lsdesc_assoc_id) +
1106                                 sizeof(struct fcnvme_lsdesc_disconn_cmd));
1107
1108         discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1109         discon_rqst->associd.desc_len =
1110                         fcnvme_lsdesc_len(
1111                                 sizeof(struct fcnvme_lsdesc_assoc_id));
1112
1113         discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1114
1115         discon_rqst->discon_cmd.desc_tag = cpu_to_be32(
1116                                                 FCNVME_LSDESC_DISCONN_CMD);
1117         discon_rqst->discon_cmd.desc_len =
1118                         fcnvme_lsdesc_len(
1119                                 sizeof(struct fcnvme_lsdesc_disconn_cmd));
1120         discon_rqst->discon_cmd.scope = FCNVME_DISCONN_ASSOCIATION;
1121         discon_rqst->discon_cmd.id = cpu_to_be64(ctrl->association_id);
1122
1123         lsreq->rqstaddr = discon_rqst;
1124         lsreq->rqstlen = sizeof(*discon_rqst);
1125         lsreq->rspaddr = discon_acc;
1126         lsreq->rsplen = sizeof(*discon_acc);
1127         lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1128
1129         ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop,
1130                                 nvme_fc_disconnect_assoc_done);
1131         if (ret)
1132                 kfree(lsop);
1133
1134         /* only meaningful part to terminating the association */
1135         ctrl->association_id = 0;
1136 }
1137
1138
1139 /* *********************** NVME Ctrl Routines **************************** */
1140
1141 static void __nvme_fc_final_op_cleanup(struct request *rq);
1142 static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg);
1143
1144 static int
1145 nvme_fc_reinit_request(void *data, struct request *rq)
1146 {
1147         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1148         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1149
1150         memset(cmdiu, 0, sizeof(*cmdiu));
1151         cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1152         cmdiu->fc_id = NVME_CMD_FC_ID;
1153         cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1154         memset(&op->rsp_iu, 0, sizeof(op->rsp_iu));
1155
1156         return 0;
1157 }
1158
1159 static void
1160 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1161                 struct nvme_fc_fcp_op *op)
1162 {
1163         fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1164                                 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1165         fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1166                                 sizeof(op->cmd_iu), DMA_TO_DEVICE);
1167
1168         atomic_set(&op->state, FCPOP_STATE_UNINIT);
1169 }
1170
1171 static void
1172 nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1173                 unsigned int hctx_idx)
1174 {
1175         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1176
1177         return __nvme_fc_exit_request(set->driver_data, op);
1178 }
1179
1180 static int
1181 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1182 {
1183         int state;
1184
1185         state = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1186         if (state != FCPOP_STATE_ACTIVE) {
1187                 atomic_set(&op->state, state);
1188                 return -ECANCELED;
1189         }
1190
1191         ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1192                                         &ctrl->rport->remoteport,
1193                                         op->queue->lldd_handle,
1194                                         &op->fcp_req);
1195
1196         return 0;
1197 }
1198
1199 static void
1200 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl)
1201 {
1202         struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
1203         unsigned long flags;
1204         int i, ret;
1205
1206         for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) {
1207                 if (atomic_read(&aen_op->state) != FCPOP_STATE_ACTIVE)
1208                         continue;
1209
1210                 spin_lock_irqsave(&ctrl->lock, flags);
1211                 if (ctrl->flags & FCCTRL_TERMIO) {
1212                         ctrl->iocnt++;
1213                         aen_op->flags |= FCOP_FLAGS_TERMIO;
1214                 }
1215                 spin_unlock_irqrestore(&ctrl->lock, flags);
1216
1217                 ret = __nvme_fc_abort_op(ctrl, aen_op);
1218                 if (ret) {
1219                         /*
1220                          * if __nvme_fc_abort_op failed the io wasn't
1221                          * active. Thus this call path is running in
1222                          * parallel to the io complete. Treat as non-error.
1223                          */
1224
1225                         /* back out the flags/counters */
1226                         spin_lock_irqsave(&ctrl->lock, flags);
1227                         if (ctrl->flags & FCCTRL_TERMIO)
1228                                 ctrl->iocnt--;
1229                         aen_op->flags &= ~FCOP_FLAGS_TERMIO;
1230                         spin_unlock_irqrestore(&ctrl->lock, flags);
1231                         return;
1232                 }
1233         }
1234 }
1235
1236 static inline int
1237 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl,
1238                 struct nvme_fc_fcp_op *op)
1239 {
1240         unsigned long flags;
1241         bool complete_rq = false;
1242
1243         spin_lock_irqsave(&ctrl->lock, flags);
1244         if (unlikely(op->flags & FCOP_FLAGS_TERMIO)) {
1245                 if (ctrl->flags & FCCTRL_TERMIO)
1246                         ctrl->iocnt--;
1247         }
1248         if (op->flags & FCOP_FLAGS_RELEASED)
1249                 complete_rq = true;
1250         else
1251                 op->flags |= FCOP_FLAGS_COMPLETE;
1252         spin_unlock_irqrestore(&ctrl->lock, flags);
1253
1254         return complete_rq;
1255 }
1256
1257 static void
1258 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1259 {
1260         struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1261         struct request *rq = op->rq;
1262         struct nvmefc_fcp_req *freq = &op->fcp_req;
1263         struct nvme_fc_ctrl *ctrl = op->ctrl;
1264         struct nvme_fc_queue *queue = op->queue;
1265         struct nvme_completion *cqe = &op->rsp_iu.cqe;
1266         struct nvme_command *sqe = &op->cmd_iu.sqe;
1267         __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1);
1268         union nvme_result result;
1269         bool complete_rq, terminate_assoc = true;
1270
1271         /*
1272          * WARNING:
1273          * The current linux implementation of a nvme controller
1274          * allocates a single tag set for all io queues and sizes
1275          * the io queues to fully hold all possible tags. Thus, the
1276          * implementation does not reference or care about the sqhd
1277          * value as it never needs to use the sqhd/sqtail pointers
1278          * for submission pacing.
1279          *
1280          * This affects the FC-NVME implementation in two ways:
1281          * 1) As the value doesn't matter, we don't need to waste
1282          *    cycles extracting it from ERSPs and stamping it in the
1283          *    cases where the transport fabricates CQEs on successful
1284          *    completions.
1285          * 2) The FC-NVME implementation requires that delivery of
1286          *    ERSP completions are to go back to the nvme layer in order
1287          *    relative to the rsn, such that the sqhd value will always
1288          *    be "in order" for the nvme layer. As the nvme layer in
1289          *    linux doesn't care about sqhd, there's no need to return
1290          *    them in order.
1291          *
1292          * Additionally:
1293          * As the core nvme layer in linux currently does not look at
1294          * every field in the cqe - in cases where the FC transport must
1295          * fabricate a CQE, the following fields will not be set as they
1296          * are not referenced:
1297          *      cqe.sqid,  cqe.sqhd,  cqe.command_id
1298          *
1299          * Failure or error of an individual i/o, in a transport
1300          * detected fashion unrelated to the nvme completion status,
1301          * potentially cause the initiator and target sides to get out
1302          * of sync on SQ head/tail (aka outstanding io count allowed).
1303          * Per FC-NVME spec, failure of an individual command requires
1304          * the connection to be terminated, which in turn requires the
1305          * association to be terminated.
1306          */
1307
1308         fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1309                                 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1310
1311         if (atomic_read(&op->state) == FCPOP_STATE_ABORTED)
1312                 status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1313         else if (freq->status)
1314                 status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1);
1315
1316         /*
1317          * For the linux implementation, if we have an unsuccesful
1318          * status, they blk-mq layer can typically be called with the
1319          * non-zero status and the content of the cqe isn't important.
1320          */
1321         if (status)
1322                 goto done;
1323
1324         /*
1325          * command completed successfully relative to the wire
1326          * protocol. However, validate anything received and
1327          * extract the status and result from the cqe (create it
1328          * where necessary).
1329          */
1330
1331         switch (freq->rcv_rsplen) {
1332
1333         case 0:
1334         case NVME_FC_SIZEOF_ZEROS_RSP:
1335                 /*
1336                  * No response payload or 12 bytes of payload (which
1337                  * should all be zeros) are considered successful and
1338                  * no payload in the CQE by the transport.
1339                  */
1340                 if (freq->transferred_length !=
1341                         be32_to_cpu(op->cmd_iu.data_len)) {
1342                         status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1);
1343                         goto done;
1344                 }
1345                 result.u64 = 0;
1346                 break;
1347
1348         case sizeof(struct nvme_fc_ersp_iu):
1349                 /*
1350                  * The ERSP IU contains a full completion with CQE.
1351                  * Validate ERSP IU and look at cqe.
1352                  */
1353                 if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
1354                                         (freq->rcv_rsplen / 4) ||
1355                              be32_to_cpu(op->rsp_iu.xfrd_len) !=
1356                                         freq->transferred_length ||
1357                              op->rsp_iu.status_code ||
1358                              sqe->common.command_id != cqe->command_id)) {
1359                         status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1);
1360                         goto done;
1361                 }
1362                 result = cqe->result;
1363                 status = cqe->status;
1364                 break;
1365
1366         default:
1367                 status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1);
1368                 goto done;
1369         }
1370
1371         terminate_assoc = false;
1372
1373 done:
1374         if (op->flags & FCOP_FLAGS_AEN) {
1375                 nvme_complete_async_event(&queue->ctrl->ctrl, status, &result);
1376                 complete_rq = __nvme_fc_fcpop_chk_teardowns(ctrl, op);
1377                 atomic_set(&op->state, FCPOP_STATE_IDLE);
1378                 op->flags = FCOP_FLAGS_AEN;     /* clear other flags */
1379                 nvme_fc_ctrl_put(ctrl);
1380                 goto check_error;
1381         }
1382
1383         complete_rq = __nvme_fc_fcpop_chk_teardowns(ctrl, op);
1384         if (!complete_rq) {
1385                 if (unlikely(op->flags & FCOP_FLAGS_TERMIO)) {
1386                         status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1387                         if (blk_queue_dying(rq->q))
1388                                 status |= cpu_to_le16(NVME_SC_DNR << 1);
1389                 }
1390                 nvme_end_request(rq, status, result);
1391         } else
1392                 __nvme_fc_final_op_cleanup(rq);
1393
1394 check_error:
1395         if (terminate_assoc)
1396                 nvme_fc_error_recovery(ctrl, "transport detected io error");
1397 }
1398
1399 static int
1400 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
1401                 struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
1402                 struct request *rq, u32 rqno)
1403 {
1404         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1405         int ret = 0;
1406
1407         memset(op, 0, sizeof(*op));
1408         op->fcp_req.cmdaddr = &op->cmd_iu;
1409         op->fcp_req.cmdlen = sizeof(op->cmd_iu);
1410         op->fcp_req.rspaddr = &op->rsp_iu;
1411         op->fcp_req.rsplen = sizeof(op->rsp_iu);
1412         op->fcp_req.done = nvme_fc_fcpio_done;
1413         op->fcp_req.first_sgl = (struct scatterlist *)&op[1];
1414         op->fcp_req.private = &op->fcp_req.first_sgl[SG_CHUNK_SIZE];
1415         op->ctrl = ctrl;
1416         op->queue = queue;
1417         op->rq = rq;
1418         op->rqno = rqno;
1419
1420         cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1421         cmdiu->fc_id = NVME_CMD_FC_ID;
1422         cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1423
1424         op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
1425                                 &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
1426         if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
1427                 dev_err(ctrl->dev,
1428                         "FCP Op failed - cmdiu dma mapping failed.\n");
1429                 ret = EFAULT;
1430                 goto out_on_error;
1431         }
1432
1433         op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
1434                                 &op->rsp_iu, sizeof(op->rsp_iu),
1435                                 DMA_FROM_DEVICE);
1436         if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
1437                 dev_err(ctrl->dev,
1438                         "FCP Op failed - rspiu dma mapping failed.\n");
1439                 ret = EFAULT;
1440         }
1441
1442         atomic_set(&op->state, FCPOP_STATE_IDLE);
1443 out_on_error:
1444         return ret;
1445 }
1446
1447 static int
1448 nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq,
1449                 unsigned int hctx_idx, unsigned int numa_node)
1450 {
1451         struct nvme_fc_ctrl *ctrl = set->driver_data;
1452         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1453         struct nvme_fc_queue *queue = &ctrl->queues[hctx_idx+1];
1454
1455         return __nvme_fc_init_request(ctrl, queue, op, rq, queue->rqcnt++);
1456 }
1457
1458 static int
1459 nvme_fc_init_admin_request(struct blk_mq_tag_set *set, struct request *rq,
1460                 unsigned int hctx_idx, unsigned int numa_node)
1461 {
1462         struct nvme_fc_ctrl *ctrl = set->driver_data;
1463         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1464         struct nvme_fc_queue *queue = &ctrl->queues[0];
1465
1466         return __nvme_fc_init_request(ctrl, queue, op, rq, queue->rqcnt++);
1467 }
1468
1469 static int
1470 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
1471 {
1472         struct nvme_fc_fcp_op *aen_op;
1473         struct nvme_fc_cmd_iu *cmdiu;
1474         struct nvme_command *sqe;
1475         void *private;
1476         int i, ret;
1477
1478         aen_op = ctrl->aen_ops;
1479         for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) {
1480                 private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz,
1481                                                 GFP_KERNEL);
1482                 if (!private)
1483                         return -ENOMEM;
1484
1485                 cmdiu = &aen_op->cmd_iu;
1486                 sqe = &cmdiu->sqe;
1487                 ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
1488                                 aen_op, (struct request *)NULL,
1489                                 (AEN_CMDID_BASE + i));
1490                 if (ret) {
1491                         kfree(private);
1492                         return ret;
1493                 }
1494
1495                 aen_op->flags = FCOP_FLAGS_AEN;
1496                 aen_op->fcp_req.first_sgl = NULL; /* no sg list */
1497                 aen_op->fcp_req.private = private;
1498
1499                 memset(sqe, 0, sizeof(*sqe));
1500                 sqe->common.opcode = nvme_admin_async_event;
1501                 /* Note: core layer may overwrite the sqe.command_id value */
1502                 sqe->common.command_id = AEN_CMDID_BASE + i;
1503         }
1504         return 0;
1505 }
1506
1507 static void
1508 nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl)
1509 {
1510         struct nvme_fc_fcp_op *aen_op;
1511         int i;
1512
1513         aen_op = ctrl->aen_ops;
1514         for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) {
1515                 if (!aen_op->fcp_req.private)
1516                         continue;
1517
1518                 __nvme_fc_exit_request(ctrl, aen_op);
1519
1520                 kfree(aen_op->fcp_req.private);
1521                 aen_op->fcp_req.private = NULL;
1522         }
1523 }
1524
1525 static inline void
1526 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl,
1527                 unsigned int qidx)
1528 {
1529         struct nvme_fc_queue *queue = &ctrl->queues[qidx];
1530
1531         hctx->driver_data = queue;
1532         queue->hctx = hctx;
1533 }
1534
1535 static int
1536 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1537                 unsigned int hctx_idx)
1538 {
1539         struct nvme_fc_ctrl *ctrl = data;
1540
1541         __nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1);
1542
1543         return 0;
1544 }
1545
1546 static int
1547 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1548                 unsigned int hctx_idx)
1549 {
1550         struct nvme_fc_ctrl *ctrl = data;
1551
1552         __nvme_fc_init_hctx(hctx, ctrl, hctx_idx);
1553
1554         return 0;
1555 }
1556
1557 static void
1558 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx, size_t queue_size)
1559 {
1560         struct nvme_fc_queue *queue;
1561
1562         queue = &ctrl->queues[idx];
1563         memset(queue, 0, sizeof(*queue));
1564         queue->ctrl = ctrl;
1565         queue->qnum = idx;
1566         atomic_set(&queue->csn, 1);
1567         queue->dev = ctrl->dev;
1568
1569         if (idx > 0)
1570                 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
1571         else
1572                 queue->cmnd_capsule_len = sizeof(struct nvme_command);
1573
1574         queue->queue_size = queue_size;
1575
1576         /*
1577          * Considered whether we should allocate buffers for all SQEs
1578          * and CQEs and dma map them - mapping their respective entries
1579          * into the request structures (kernel vm addr and dma address)
1580          * thus the driver could use the buffers/mappings directly.
1581          * It only makes sense if the LLDD would use them for its
1582          * messaging api. It's very unlikely most adapter api's would use
1583          * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
1584          * structures were used instead.
1585          */
1586 }
1587
1588 /*
1589  * This routine terminates a queue at the transport level.
1590  * The transport has already ensured that all outstanding ios on
1591  * the queue have been terminated.
1592  * The transport will send a Disconnect LS request to terminate
1593  * the queue's connection. Termination of the admin queue will also
1594  * terminate the association at the target.
1595  */
1596 static void
1597 nvme_fc_free_queue(struct nvme_fc_queue *queue)
1598 {
1599         if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
1600                 return;
1601
1602         /*
1603          * Current implementation never disconnects a single queue.
1604          * It always terminates a whole association. So there is never
1605          * a disconnect(queue) LS sent to the target.
1606          */
1607
1608         queue->connection_id = 0;
1609         clear_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1610 }
1611
1612 static void
1613 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
1614         struct nvme_fc_queue *queue, unsigned int qidx)
1615 {
1616         if (ctrl->lport->ops->delete_queue)
1617                 ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
1618                                 queue->lldd_handle);
1619         queue->lldd_handle = NULL;
1620 }
1621
1622 static void
1623 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
1624 {
1625         int i;
1626
1627         for (i = 1; i < ctrl->queue_count; i++)
1628                 nvme_fc_free_queue(&ctrl->queues[i]);
1629 }
1630
1631 static int
1632 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
1633         struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
1634 {
1635         int ret = 0;
1636
1637         queue->lldd_handle = NULL;
1638         if (ctrl->lport->ops->create_queue)
1639                 ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
1640                                 qidx, qsize, &queue->lldd_handle);
1641
1642         return ret;
1643 }
1644
1645 static void
1646 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
1647 {
1648         struct nvme_fc_queue *queue = &ctrl->queues[ctrl->queue_count - 1];
1649         int i;
1650
1651         for (i = ctrl->queue_count - 1; i >= 1; i--, queue--)
1652                 __nvme_fc_delete_hw_queue(ctrl, queue, i);
1653 }
1654
1655 static int
1656 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1657 {
1658         struct nvme_fc_queue *queue = &ctrl->queues[1];
1659         int i, ret;
1660
1661         for (i = 1; i < ctrl->queue_count; i++, queue++) {
1662                 ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
1663                 if (ret)
1664                         goto delete_queues;
1665         }
1666
1667         return 0;
1668
1669 delete_queues:
1670         for (; i >= 0; i--)
1671                 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
1672         return ret;
1673 }
1674
1675 static int
1676 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1677 {
1678         int i, ret = 0;
1679
1680         for (i = 1; i < ctrl->queue_count; i++) {
1681                 ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
1682                                         (qsize / 5));
1683                 if (ret)
1684                         break;
1685                 ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
1686                 if (ret)
1687                         break;
1688         }
1689
1690         return ret;
1691 }
1692
1693 static void
1694 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
1695 {
1696         int i;
1697
1698         for (i = 1; i < ctrl->queue_count; i++)
1699                 nvme_fc_init_queue(ctrl, i, ctrl->ctrl.sqsize);
1700 }
1701
1702 static void
1703 nvme_fc_ctrl_free(struct kref *ref)
1704 {
1705         struct nvme_fc_ctrl *ctrl =
1706                 container_of(ref, struct nvme_fc_ctrl, ref);
1707         unsigned long flags;
1708
1709         if (ctrl->ctrl.tagset) {
1710                 blk_cleanup_queue(ctrl->ctrl.connect_q);
1711                 blk_mq_free_tag_set(&ctrl->tag_set);
1712         }
1713
1714         /* remove from rport list */
1715         spin_lock_irqsave(&ctrl->rport->lock, flags);
1716         list_del(&ctrl->ctrl_list);
1717         spin_unlock_irqrestore(&ctrl->rport->lock, flags);
1718
1719         blk_cleanup_queue(ctrl->ctrl.admin_q);
1720         blk_mq_free_tag_set(&ctrl->admin_tag_set);
1721
1722         kfree(ctrl->queues);
1723
1724         put_device(ctrl->dev);
1725         nvme_fc_rport_put(ctrl->rport);
1726
1727         ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
1728         if (ctrl->ctrl.opts)
1729                 nvmf_free_options(ctrl->ctrl.opts);
1730         kfree(ctrl);
1731 }
1732
1733 static void
1734 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
1735 {
1736         kref_put(&ctrl->ref, nvme_fc_ctrl_free);
1737 }
1738
1739 static int
1740 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
1741 {
1742         return kref_get_unless_zero(&ctrl->ref);
1743 }
1744
1745 /*
1746  * All accesses from nvme core layer done - can now free the
1747  * controller. Called after last nvme_put_ctrl() call
1748  */
1749 static void
1750 nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl)
1751 {
1752         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
1753
1754         WARN_ON(nctrl != &ctrl->ctrl);
1755
1756         nvme_fc_ctrl_put(ctrl);
1757 }
1758
1759 static void
1760 nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg)
1761 {
1762         dev_warn(ctrl->ctrl.device,
1763                 "NVME-FC{%d}: transport association error detected: %s\n",
1764                 ctrl->cnum, errmsg);
1765         dev_warn(ctrl->ctrl.device,
1766                 "NVME-FC{%d}: resetting controller\n", ctrl->cnum);
1767
1768         /* stop the queues on error, cleanup is in reset thread */
1769         if (ctrl->queue_count > 1)
1770                 nvme_stop_queues(&ctrl->ctrl);
1771
1772         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING)) {
1773                 dev_err(ctrl->ctrl.device,
1774                         "NVME-FC{%d}: error_recovery: Couldn't change state "
1775                         "to RECONNECTING\n", ctrl->cnum);
1776                 return;
1777         }
1778
1779         if (!queue_work(nvme_fc_wq, &ctrl->reset_work))
1780                 dev_err(ctrl->ctrl.device,
1781                         "NVME-FC{%d}: error_recovery: Failed to schedule "
1782                         "reset work\n", ctrl->cnum);
1783 }
1784
1785 static enum blk_eh_timer_return
1786 nvme_fc_timeout(struct request *rq, bool reserved)
1787 {
1788         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1789         struct nvme_fc_ctrl *ctrl = op->ctrl;
1790         int ret;
1791
1792         if (reserved)
1793                 return BLK_EH_RESET_TIMER;
1794
1795         ret = __nvme_fc_abort_op(ctrl, op);
1796         if (ret)
1797                 /* io wasn't active to abort consider it done */
1798                 return BLK_EH_HANDLED;
1799
1800         /*
1801          * we can't individually ABTS an io without affecting the queue,
1802          * thus killing the queue, adn thus the association.
1803          * So resolve by performing a controller reset, which will stop
1804          * the host/io stack, terminate the association on the link,
1805          * and recreate an association on the link.
1806          */
1807         nvme_fc_error_recovery(ctrl, "io timeout error");
1808
1809         return BLK_EH_HANDLED;
1810 }
1811
1812 static int
1813 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
1814                 struct nvme_fc_fcp_op *op)
1815 {
1816         struct nvmefc_fcp_req *freq = &op->fcp_req;
1817         enum dma_data_direction dir;
1818         int ret;
1819
1820         freq->sg_cnt = 0;
1821
1822         if (!blk_rq_payload_bytes(rq))
1823                 return 0;
1824
1825         freq->sg_table.sgl = freq->first_sgl;
1826         ret = sg_alloc_table_chained(&freq->sg_table,
1827                         blk_rq_nr_phys_segments(rq), freq->sg_table.sgl);
1828         if (ret)
1829                 return -ENOMEM;
1830
1831         op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
1832         WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
1833         dir = (rq_data_dir(rq) == WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
1834         freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
1835                                 op->nents, dir);
1836         if (unlikely(freq->sg_cnt <= 0)) {
1837                 sg_free_table_chained(&freq->sg_table, true);
1838                 freq->sg_cnt = 0;
1839                 return -EFAULT;
1840         }
1841
1842         /*
1843          * TODO: blk_integrity_rq(rq)  for DIF
1844          */
1845         return 0;
1846 }
1847
1848 static void
1849 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
1850                 struct nvme_fc_fcp_op *op)
1851 {
1852         struct nvmefc_fcp_req *freq = &op->fcp_req;
1853
1854         if (!freq->sg_cnt)
1855                 return;
1856
1857         fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
1858                                 ((rq_data_dir(rq) == WRITE) ?
1859                                         DMA_TO_DEVICE : DMA_FROM_DEVICE));
1860
1861         nvme_cleanup_cmd(rq);
1862
1863         sg_free_table_chained(&freq->sg_table, true);
1864
1865         freq->sg_cnt = 0;
1866 }
1867
1868 /*
1869  * In FC, the queue is a logical thing. At transport connect, the target
1870  * creates its "queue" and returns a handle that is to be given to the
1871  * target whenever it posts something to the corresponding SQ.  When an
1872  * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
1873  * command contained within the SQE, an io, and assigns a FC exchange
1874  * to it. The SQE and the associated SQ handle are sent in the initial
1875  * CMD IU sents on the exchange. All transfers relative to the io occur
1876  * as part of the exchange.  The CQE is the last thing for the io,
1877  * which is transferred (explicitly or implicitly) with the RSP IU
1878  * sent on the exchange. After the CQE is received, the FC exchange is
1879  * terminaed and the Exchange may be used on a different io.
1880  *
1881  * The transport to LLDD api has the transport making a request for a
1882  * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
1883  * resource and transfers the command. The LLDD will then process all
1884  * steps to complete the io. Upon completion, the transport done routine
1885  * is called.
1886  *
1887  * So - while the operation is outstanding to the LLDD, there is a link
1888  * level FC exchange resource that is also outstanding. This must be
1889  * considered in all cleanup operations.
1890  */
1891 static int
1892 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1893         struct nvme_fc_fcp_op *op, u32 data_len,
1894         enum nvmefc_fcp_datadir io_dir)
1895 {
1896         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1897         struct nvme_command *sqe = &cmdiu->sqe;
1898         u32 csn;
1899         int ret;
1900
1901         /*
1902          * before attempting to send the io, check to see if we believe
1903          * the target device is present
1904          */
1905         if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
1906                 return BLK_MQ_RQ_QUEUE_ERROR;
1907
1908         if (!nvme_fc_ctrl_get(ctrl))
1909                 return BLK_MQ_RQ_QUEUE_ERROR;
1910
1911         /* format the FC-NVME CMD IU and fcp_req */
1912         cmdiu->connection_id = cpu_to_be64(queue->connection_id);
1913         csn = atomic_inc_return(&queue->csn);
1914         cmdiu->csn = cpu_to_be32(csn);
1915         cmdiu->data_len = cpu_to_be32(data_len);
1916         switch (io_dir) {
1917         case NVMEFC_FCP_WRITE:
1918                 cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
1919                 break;
1920         case NVMEFC_FCP_READ:
1921                 cmdiu->flags = FCNVME_CMD_FLAGS_READ;
1922                 break;
1923         case NVMEFC_FCP_NODATA:
1924                 cmdiu->flags = 0;
1925                 break;
1926         }
1927         op->fcp_req.payload_length = data_len;
1928         op->fcp_req.io_dir = io_dir;
1929         op->fcp_req.transferred_length = 0;
1930         op->fcp_req.rcv_rsplen = 0;
1931         op->fcp_req.status = NVME_SC_SUCCESS;
1932         op->fcp_req.sqid = cpu_to_le16(queue->qnum);
1933
1934         /*
1935          * validate per fabric rules, set fields mandated by fabric spec
1936          * as well as those by FC-NVME spec.
1937          */
1938         WARN_ON_ONCE(sqe->common.metadata);
1939         WARN_ON_ONCE(sqe->common.dptr.prp1);
1940         WARN_ON_ONCE(sqe->common.dptr.prp2);
1941         sqe->common.flags |= NVME_CMD_SGL_METABUF;
1942
1943         /*
1944          * format SQE DPTR field per FC-NVME rules
1945          *    type=data block descr; subtype=offset;
1946          *    offset is currently 0.
1947          */
1948         sqe->rw.dptr.sgl.type = NVME_SGL_FMT_OFFSET;
1949         sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
1950         sqe->rw.dptr.sgl.addr = 0;
1951
1952         if (!(op->flags & FCOP_FLAGS_AEN)) {
1953                 ret = nvme_fc_map_data(ctrl, op->rq, op);
1954                 if (ret < 0) {
1955                         nvme_cleanup_cmd(op->rq);
1956                         nvme_fc_ctrl_put(ctrl);
1957                         return (ret == -ENOMEM || ret == -EAGAIN) ?
1958                                 BLK_MQ_RQ_QUEUE_BUSY : BLK_MQ_RQ_QUEUE_ERROR;
1959                 }
1960         }
1961
1962         fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
1963                                   sizeof(op->cmd_iu), DMA_TO_DEVICE);
1964
1965         atomic_set(&op->state, FCPOP_STATE_ACTIVE);
1966
1967         if (!(op->flags & FCOP_FLAGS_AEN))
1968                 blk_mq_start_request(op->rq);
1969
1970         ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
1971                                         &ctrl->rport->remoteport,
1972                                         queue->lldd_handle, &op->fcp_req);
1973
1974         if (ret) {
1975                 if (op->rq) {                   /* normal request */
1976                         nvme_fc_unmap_data(ctrl, op->rq, op);
1977                         nvme_cleanup_cmd(op->rq);
1978                 }
1979                 /* else - aen. no cleanup needed */
1980
1981                 nvme_fc_ctrl_put(ctrl);
1982
1983                 if (ret != -EBUSY)
1984                         return BLK_MQ_RQ_QUEUE_ERROR;
1985
1986                 if (op->rq) {
1987                         blk_mq_stop_hw_queues(op->rq->q);
1988                         blk_mq_delay_queue(queue->hctx, NVMEFC_QUEUE_DELAY);
1989                 }
1990                 return BLK_MQ_RQ_QUEUE_BUSY;
1991         }
1992
1993         return BLK_MQ_RQ_QUEUE_OK;
1994 }
1995
1996 static int
1997 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
1998                         const struct blk_mq_queue_data *bd)
1999 {
2000         struct nvme_ns *ns = hctx->queue->queuedata;
2001         struct nvme_fc_queue *queue = hctx->driver_data;
2002         struct nvme_fc_ctrl *ctrl = queue->ctrl;
2003         struct request *rq = bd->rq;
2004         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2005         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2006         struct nvme_command *sqe = &cmdiu->sqe;
2007         enum nvmefc_fcp_datadir io_dir;
2008         u32 data_len;
2009         int ret;
2010
2011         ret = nvme_setup_cmd(ns, rq, sqe);
2012         if (ret)
2013                 return ret;
2014
2015         data_len = blk_rq_payload_bytes(rq);
2016         if (data_len)
2017                 io_dir = ((rq_data_dir(rq) == WRITE) ?
2018                                         NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
2019         else
2020                 io_dir = NVMEFC_FCP_NODATA;
2021
2022         return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
2023 }
2024
2025 static struct blk_mq_tags *
2026 nvme_fc_tagset(struct nvme_fc_queue *queue)
2027 {
2028         if (queue->qnum == 0)
2029                 return queue->ctrl->admin_tag_set.tags[queue->qnum];
2030
2031         return queue->ctrl->tag_set.tags[queue->qnum - 1];
2032 }
2033
2034 static int
2035 nvme_fc_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
2036
2037 {
2038         struct nvme_fc_queue *queue = hctx->driver_data;
2039         struct nvme_fc_ctrl *ctrl = queue->ctrl;
2040         struct request *req;
2041         struct nvme_fc_fcp_op *op;
2042
2043         req = blk_mq_tag_to_rq(nvme_fc_tagset(queue), tag);
2044         if (!req)
2045                 return 0;
2046
2047         op = blk_mq_rq_to_pdu(req);
2048
2049         if ((atomic_read(&op->state) == FCPOP_STATE_ACTIVE) &&
2050                  (ctrl->lport->ops->poll_queue))
2051                 ctrl->lport->ops->poll_queue(&ctrl->lport->localport,
2052                                                  queue->lldd_handle);
2053
2054         return ((atomic_read(&op->state) != FCPOP_STATE_ACTIVE));
2055 }
2056
2057 static void
2058 nvme_fc_submit_async_event(struct nvme_ctrl *arg, int aer_idx)
2059 {
2060         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
2061         struct nvme_fc_fcp_op *aen_op;
2062         unsigned long flags;
2063         bool terminating = false;
2064         int ret;
2065
2066         if (aer_idx > NVME_FC_NR_AEN_COMMANDS)
2067                 return;
2068
2069         spin_lock_irqsave(&ctrl->lock, flags);
2070         if (ctrl->flags & FCCTRL_TERMIO)
2071                 terminating = true;
2072         spin_unlock_irqrestore(&ctrl->lock, flags);
2073
2074         if (terminating)
2075                 return;
2076
2077         aen_op = &ctrl->aen_ops[aer_idx];
2078
2079         ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
2080                                         NVMEFC_FCP_NODATA);
2081         if (ret)
2082                 dev_err(ctrl->ctrl.device,
2083                         "failed async event work [%d]\n", aer_idx);
2084 }
2085
2086 static void
2087 __nvme_fc_final_op_cleanup(struct request *rq)
2088 {
2089         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2090         struct nvme_fc_ctrl *ctrl = op->ctrl;
2091
2092         atomic_set(&op->state, FCPOP_STATE_IDLE);
2093         op->flags &= ~(FCOP_FLAGS_TERMIO | FCOP_FLAGS_RELEASED |
2094                         FCOP_FLAGS_COMPLETE);
2095
2096         nvme_cleanup_cmd(rq);
2097         nvme_fc_unmap_data(ctrl, rq, op);
2098         nvme_complete_rq(rq);
2099         nvme_fc_ctrl_put(ctrl);
2100
2101 }
2102
2103 static void
2104 nvme_fc_complete_rq(struct request *rq)
2105 {
2106         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2107         struct nvme_fc_ctrl *ctrl = op->ctrl;
2108         unsigned long flags;
2109         bool completed = false;
2110
2111         /*
2112          * the core layer, on controller resets after calling
2113          * nvme_shutdown_ctrl(), calls complete_rq without our
2114          * calling blk_mq_complete_request(), thus there may still
2115          * be live i/o outstanding with the LLDD. Means transport has
2116          * to track complete calls vs fcpio_done calls to know what
2117          * path to take on completes and dones.
2118          */
2119         spin_lock_irqsave(&ctrl->lock, flags);
2120         if (op->flags & FCOP_FLAGS_COMPLETE)
2121                 completed = true;
2122         else
2123                 op->flags |= FCOP_FLAGS_RELEASED;
2124         spin_unlock_irqrestore(&ctrl->lock, flags);
2125
2126         if (completed)
2127                 __nvme_fc_final_op_cleanup(rq);
2128 }
2129
2130 /*
2131  * This routine is used by the transport when it needs to find active
2132  * io on a queue that is to be terminated. The transport uses
2133  * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2134  * this routine to kill them on a 1 by 1 basis.
2135  *
2136  * As FC allocates FC exchange for each io, the transport must contact
2137  * the LLDD to terminate the exchange, thus releasing the FC exchange.
2138  * After terminating the exchange the LLDD will call the transport's
2139  * normal io done path for the request, but it will have an aborted
2140  * status. The done path will return the io request back to the block
2141  * layer with an error status.
2142  */
2143 static void
2144 nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved)
2145 {
2146         struct nvme_ctrl *nctrl = data;
2147         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2148         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
2149         unsigned long flags;
2150         int status;
2151
2152         if (!blk_mq_request_started(req))
2153                 return;
2154
2155         spin_lock_irqsave(&ctrl->lock, flags);
2156         if (ctrl->flags & FCCTRL_TERMIO) {
2157                 ctrl->iocnt++;
2158                 op->flags |= FCOP_FLAGS_TERMIO;
2159         }
2160         spin_unlock_irqrestore(&ctrl->lock, flags);
2161
2162         status = __nvme_fc_abort_op(ctrl, op);
2163         if (status) {
2164                 /*
2165                  * if __nvme_fc_abort_op failed the io wasn't
2166                  * active. Thus this call path is running in
2167                  * parallel to the io complete. Treat as non-error.
2168                  */
2169
2170                 /* back out the flags/counters */
2171                 spin_lock_irqsave(&ctrl->lock, flags);
2172                 if (ctrl->flags & FCCTRL_TERMIO)
2173                         ctrl->iocnt--;
2174                 op->flags &= ~FCOP_FLAGS_TERMIO;
2175                 spin_unlock_irqrestore(&ctrl->lock, flags);
2176                 return;
2177         }
2178 }
2179
2180
2181 static const struct blk_mq_ops nvme_fc_mq_ops = {
2182         .queue_rq       = nvme_fc_queue_rq,
2183         .complete       = nvme_fc_complete_rq,
2184         .init_request   = nvme_fc_init_request,
2185         .exit_request   = nvme_fc_exit_request,
2186         .reinit_request = nvme_fc_reinit_request,
2187         .init_hctx      = nvme_fc_init_hctx,
2188         .poll           = nvme_fc_poll,
2189         .timeout        = nvme_fc_timeout,
2190 };
2191
2192 static int
2193 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
2194 {
2195         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2196         int ret;
2197
2198         ret = nvme_set_queue_count(&ctrl->ctrl, &opts->nr_io_queues);
2199         if (ret) {
2200                 dev_info(ctrl->ctrl.device,
2201                         "set_queue_count failed: %d\n", ret);
2202                 return ret;
2203         }
2204
2205         ctrl->queue_count = opts->nr_io_queues + 1;
2206         if (!opts->nr_io_queues)
2207                 return 0;
2208
2209         nvme_fc_init_io_queues(ctrl);
2210
2211         memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
2212         ctrl->tag_set.ops = &nvme_fc_mq_ops;
2213         ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
2214         ctrl->tag_set.reserved_tags = 1; /* fabric connect */
2215         ctrl->tag_set.numa_node = NUMA_NO_NODE;
2216         ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
2217         ctrl->tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
2218                                         (SG_CHUNK_SIZE *
2219                                                 sizeof(struct scatterlist)) +
2220                                         ctrl->lport->ops->fcprqst_priv_sz;
2221         ctrl->tag_set.driver_data = ctrl;
2222         ctrl->tag_set.nr_hw_queues = ctrl->queue_count - 1;
2223         ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
2224
2225         ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
2226         if (ret)
2227                 return ret;
2228
2229         ctrl->ctrl.tagset = &ctrl->tag_set;
2230
2231         ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
2232         if (IS_ERR(ctrl->ctrl.connect_q)) {
2233                 ret = PTR_ERR(ctrl->ctrl.connect_q);
2234                 goto out_free_tag_set;
2235         }
2236
2237         ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2238         if (ret)
2239                 goto out_cleanup_blk_queue;
2240
2241         ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2242         if (ret)
2243                 goto out_delete_hw_queues;
2244
2245         return 0;
2246
2247 out_delete_hw_queues:
2248         nvme_fc_delete_hw_io_queues(ctrl);
2249 out_cleanup_blk_queue:
2250         nvme_stop_keep_alive(&ctrl->ctrl);
2251         blk_cleanup_queue(ctrl->ctrl.connect_q);
2252 out_free_tag_set:
2253         blk_mq_free_tag_set(&ctrl->tag_set);
2254         nvme_fc_free_io_queues(ctrl);
2255
2256         /* force put free routine to ignore io queues */
2257         ctrl->ctrl.tagset = NULL;
2258
2259         return ret;
2260 }
2261
2262 static int
2263 nvme_fc_reinit_io_queues(struct nvme_fc_ctrl *ctrl)
2264 {
2265         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2266         int ret;
2267
2268         ret = nvme_set_queue_count(&ctrl->ctrl, &opts->nr_io_queues);
2269         if (ret) {
2270                 dev_info(ctrl->ctrl.device,
2271                         "set_queue_count failed: %d\n", ret);
2272                 return ret;
2273         }
2274
2275         /* check for io queues existing */
2276         if (ctrl->queue_count == 1)
2277                 return 0;
2278
2279         nvme_fc_init_io_queues(ctrl);
2280
2281         ret = blk_mq_reinit_tagset(&ctrl->tag_set);
2282         if (ret)
2283                 goto out_free_io_queues;
2284
2285         ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2286         if (ret)
2287                 goto out_free_io_queues;
2288
2289         ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2290         if (ret)
2291                 goto out_delete_hw_queues;
2292
2293         return 0;
2294
2295 out_delete_hw_queues:
2296         nvme_fc_delete_hw_io_queues(ctrl);
2297 out_free_io_queues:
2298         nvme_fc_free_io_queues(ctrl);
2299         return ret;
2300 }
2301
2302 /*
2303  * This routine restarts the controller on the host side, and
2304  * on the link side, recreates the controller association.
2305  */
2306 static int
2307 nvme_fc_create_association(struct nvme_fc_ctrl *ctrl)
2308 {
2309         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2310         u32 segs;
2311         int ret;
2312         bool changed;
2313
2314         ++ctrl->ctrl.opts->nr_reconnects;
2315
2316         /*
2317          * Create the admin queue
2318          */
2319
2320         nvme_fc_init_queue(ctrl, 0, NVME_FC_AQ_BLKMQ_DEPTH);
2321
2322         ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
2323                                 NVME_FC_AQ_BLKMQ_DEPTH);
2324         if (ret)
2325                 goto out_free_queue;
2326
2327         ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
2328                                 NVME_FC_AQ_BLKMQ_DEPTH,
2329                                 (NVME_FC_AQ_BLKMQ_DEPTH / 4));
2330         if (ret)
2331                 goto out_delete_hw_queue;
2332
2333         if (ctrl->ctrl.state != NVME_CTRL_NEW)
2334                 blk_mq_start_stopped_hw_queues(ctrl->ctrl.admin_q, true);
2335
2336         ret = nvmf_connect_admin_queue(&ctrl->ctrl);
2337         if (ret)
2338                 goto out_disconnect_admin_queue;
2339
2340         /*
2341          * Check controller capabilities
2342          *
2343          * todo:- add code to check if ctrl attributes changed from
2344          * prior connection values
2345          */
2346
2347         ret = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->cap);
2348         if (ret) {
2349                 dev_err(ctrl->ctrl.device,
2350                         "prop_get NVME_REG_CAP failed\n");
2351                 goto out_disconnect_admin_queue;
2352         }
2353
2354         ctrl->ctrl.sqsize =
2355                 min_t(int, NVME_CAP_MQES(ctrl->cap) + 1, ctrl->ctrl.sqsize);
2356
2357         ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap);
2358         if (ret)
2359                 goto out_disconnect_admin_queue;
2360
2361         segs = min_t(u32, NVME_FC_MAX_SEGMENTS,
2362                         ctrl->lport->ops->max_sgl_segments);
2363         ctrl->ctrl.max_hw_sectors = (segs - 1) << (PAGE_SHIFT - 9);
2364
2365         ret = nvme_init_identify(&ctrl->ctrl);
2366         if (ret)
2367                 goto out_disconnect_admin_queue;
2368
2369         /* sanity checks */
2370
2371         /* FC-NVME does not have other data in the capsule */
2372         if (ctrl->ctrl.icdoff) {
2373                 dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
2374                                 ctrl->ctrl.icdoff);
2375                 goto out_disconnect_admin_queue;
2376         }
2377
2378         nvme_start_keep_alive(&ctrl->ctrl);
2379
2380         /* FC-NVME supports normal SGL Data Block Descriptors */
2381
2382         if (opts->queue_size > ctrl->ctrl.maxcmd) {
2383                 /* warn if maxcmd is lower than queue_size */
2384                 dev_warn(ctrl->ctrl.device,
2385                         "queue_size %zu > ctrl maxcmd %u, reducing "
2386                         "to queue_size\n",
2387                         opts->queue_size, ctrl->ctrl.maxcmd);
2388                 opts->queue_size = ctrl->ctrl.maxcmd;
2389         }
2390
2391         ret = nvme_fc_init_aen_ops(ctrl);
2392         if (ret)
2393                 goto out_term_aen_ops;
2394
2395         /*
2396          * Create the io queues
2397          */
2398
2399         if (ctrl->queue_count > 1) {
2400                 if (ctrl->ctrl.state == NVME_CTRL_NEW)
2401                         ret = nvme_fc_create_io_queues(ctrl);
2402                 else
2403                         ret = nvme_fc_reinit_io_queues(ctrl);
2404                 if (ret)
2405                         goto out_term_aen_ops;
2406         }
2407
2408         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
2409         WARN_ON_ONCE(!changed);
2410
2411         ctrl->ctrl.opts->nr_reconnects = 0;
2412
2413         if (ctrl->queue_count > 1) {
2414                 nvme_start_queues(&ctrl->ctrl);
2415                 nvme_queue_scan(&ctrl->ctrl);
2416                 nvme_queue_async_events(&ctrl->ctrl);
2417         }
2418
2419         return 0;       /* Success */
2420
2421 out_term_aen_ops:
2422         nvme_fc_term_aen_ops(ctrl);
2423         nvme_stop_keep_alive(&ctrl->ctrl);
2424 out_disconnect_admin_queue:
2425         /* send a Disconnect(association) LS to fc-nvme target */
2426         nvme_fc_xmt_disconnect_assoc(ctrl);
2427 out_delete_hw_queue:
2428         __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2429 out_free_queue:
2430         nvme_fc_free_queue(&ctrl->queues[0]);
2431
2432         return ret;
2433 }
2434
2435 /*
2436  * This routine stops operation of the controller on the host side.
2437  * On the host os stack side: Admin and IO queues are stopped,
2438  *   outstanding ios on them terminated via FC ABTS.
2439  * On the link side: the association is terminated.
2440  */
2441 static void
2442 nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl)
2443 {
2444         unsigned long flags;
2445
2446         nvme_stop_keep_alive(&ctrl->ctrl);
2447
2448         spin_lock_irqsave(&ctrl->lock, flags);
2449         ctrl->flags |= FCCTRL_TERMIO;
2450         ctrl->iocnt = 0;
2451         spin_unlock_irqrestore(&ctrl->lock, flags);
2452
2453         /*
2454          * If io queues are present, stop them and terminate all outstanding
2455          * ios on them. As FC allocates FC exchange for each io, the
2456          * transport must contact the LLDD to terminate the exchange,
2457          * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2458          * to tell us what io's are busy and invoke a transport routine
2459          * to kill them with the LLDD.  After terminating the exchange
2460          * the LLDD will call the transport's normal io done path, but it
2461          * will have an aborted status. The done path will return the
2462          * io requests back to the block layer as part of normal completions
2463          * (but with error status).
2464          */
2465         if (ctrl->queue_count > 1) {
2466                 nvme_stop_queues(&ctrl->ctrl);
2467                 blk_mq_tagset_busy_iter(&ctrl->tag_set,
2468                                 nvme_fc_terminate_exchange, &ctrl->ctrl);
2469         }
2470
2471         /*
2472          * Other transports, which don't have link-level contexts bound
2473          * to sqe's, would try to gracefully shutdown the controller by
2474          * writing the registers for shutdown and polling (call
2475          * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially
2476          * just aborted and we will wait on those contexts, and given
2477          * there was no indication of how live the controlelr is on the
2478          * link, don't send more io to create more contexts for the
2479          * shutdown. Let the controller fail via keepalive failure if
2480          * its still present.
2481          */
2482
2483         /*
2484          * clean up the admin queue. Same thing as above.
2485          * use blk_mq_tagset_busy_itr() and the transport routine to
2486          * terminate the exchanges.
2487          */
2488         blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
2489         blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
2490                                 nvme_fc_terminate_exchange, &ctrl->ctrl);
2491
2492         /* kill the aens as they are a separate path */
2493         nvme_fc_abort_aen_ops(ctrl);
2494
2495         /* wait for all io that had to be aborted */
2496         spin_lock_irqsave(&ctrl->lock, flags);
2497         while (ctrl->iocnt) {
2498                 spin_unlock_irqrestore(&ctrl->lock, flags);
2499                 msleep(1000);
2500                 spin_lock_irqsave(&ctrl->lock, flags);
2501         }
2502         ctrl->flags &= ~FCCTRL_TERMIO;
2503         spin_unlock_irqrestore(&ctrl->lock, flags);
2504
2505         nvme_fc_term_aen_ops(ctrl);
2506
2507         /*
2508          * send a Disconnect(association) LS to fc-nvme target
2509          * Note: could have been sent at top of process, but
2510          * cleaner on link traffic if after the aborts complete.
2511          * Note: if association doesn't exist, association_id will be 0
2512          */
2513         if (ctrl->association_id)
2514                 nvme_fc_xmt_disconnect_assoc(ctrl);
2515
2516         if (ctrl->ctrl.tagset) {
2517                 nvme_fc_delete_hw_io_queues(ctrl);
2518                 nvme_fc_free_io_queues(ctrl);
2519         }
2520
2521         __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2522         nvme_fc_free_queue(&ctrl->queues[0]);
2523 }
2524
2525 static void
2526 nvme_fc_delete_ctrl_work(struct work_struct *work)
2527 {
2528         struct nvme_fc_ctrl *ctrl =
2529                 container_of(work, struct nvme_fc_ctrl, delete_work);
2530
2531         cancel_work_sync(&ctrl->reset_work);
2532         cancel_delayed_work_sync(&ctrl->connect_work);
2533
2534         /*
2535          * kill the association on the link side.  this will block
2536          * waiting for io to terminate
2537          */
2538         nvme_fc_delete_association(ctrl);
2539
2540         /*
2541          * tear down the controller
2542          * After the last reference on the nvme ctrl is removed,
2543          * the transport nvme_fc_nvme_ctrl_freed() callback will be
2544          * invoked. From there, the transport will tear down it's
2545          * logical queues and association.
2546          */
2547         nvme_uninit_ctrl(&ctrl->ctrl);
2548
2549         nvme_put_ctrl(&ctrl->ctrl);
2550 }
2551
2552 static bool
2553 __nvme_fc_schedule_delete_work(struct nvme_fc_ctrl *ctrl)
2554 {
2555         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
2556                 return true;
2557
2558         if (!queue_work(nvme_fc_wq, &ctrl->delete_work))
2559                 return true;
2560
2561         return false;
2562 }
2563
2564 static int
2565 __nvme_fc_del_ctrl(struct nvme_fc_ctrl *ctrl)
2566 {
2567         return __nvme_fc_schedule_delete_work(ctrl) ? -EBUSY : 0;
2568 }
2569
2570 /*
2571  * Request from nvme core layer to delete the controller
2572  */
2573 static int
2574 nvme_fc_del_nvme_ctrl(struct nvme_ctrl *nctrl)
2575 {
2576         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2577         int ret;
2578
2579         if (!kref_get_unless_zero(&ctrl->ctrl.kref))
2580                 return -EBUSY;
2581
2582         ret = __nvme_fc_del_ctrl(ctrl);
2583
2584         if (!ret)
2585                 flush_workqueue(nvme_fc_wq);
2586
2587         nvme_put_ctrl(&ctrl->ctrl);
2588
2589         return ret;
2590 }
2591
2592 static void
2593 nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status)
2594 {
2595         /* If we are resetting/deleting then do nothing */
2596         if (ctrl->ctrl.state != NVME_CTRL_RECONNECTING) {
2597                 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
2598                         ctrl->ctrl.state == NVME_CTRL_LIVE);
2599                 return;
2600         }
2601
2602         dev_info(ctrl->ctrl.device,
2603                 "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
2604                 ctrl->cnum, status);
2605
2606         if (nvmf_should_reconnect(&ctrl->ctrl)) {
2607                 dev_info(ctrl->ctrl.device,
2608                         "NVME-FC{%d}: Reconnect attempt in %d seconds.\n",
2609                         ctrl->cnum, ctrl->ctrl.opts->reconnect_delay);
2610                 queue_delayed_work(nvme_fc_wq, &ctrl->connect_work,
2611                                 ctrl->ctrl.opts->reconnect_delay * HZ);
2612         } else {
2613                 dev_warn(ctrl->ctrl.device,
2614                                 "NVME-FC{%d}: Max reconnect attempts (%d) "
2615                                 "reached. Removing controller\n",
2616                                 ctrl->cnum, ctrl->ctrl.opts->nr_reconnects);
2617                 WARN_ON(__nvme_fc_schedule_delete_work(ctrl));
2618         }
2619 }
2620
2621 static void
2622 nvme_fc_reset_ctrl_work(struct work_struct *work)
2623 {
2624         struct nvme_fc_ctrl *ctrl =
2625                         container_of(work, struct nvme_fc_ctrl, reset_work);
2626         int ret;
2627
2628         /* will block will waiting for io to terminate */
2629         nvme_fc_delete_association(ctrl);
2630
2631         ret = nvme_fc_create_association(ctrl);
2632         if (ret)
2633                 nvme_fc_reconnect_or_delete(ctrl, ret);
2634         else
2635                 dev_info(ctrl->ctrl.device,
2636                         "NVME-FC{%d}: controller reset complete\n", ctrl->cnum);
2637 }
2638
2639 /*
2640  * called by the nvme core layer, for sysfs interface that requests
2641  * a reset of the nvme controller
2642  */
2643 static int
2644 nvme_fc_reset_nvme_ctrl(struct nvme_ctrl *nctrl)
2645 {
2646         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2647
2648         dev_info(ctrl->ctrl.device,
2649                 "NVME-FC{%d}: admin requested controller reset\n", ctrl->cnum);
2650
2651         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
2652                 return -EBUSY;
2653
2654         if (!queue_work(nvme_fc_wq, &ctrl->reset_work))
2655                 return -EBUSY;
2656
2657         flush_work(&ctrl->reset_work);
2658
2659         return 0;
2660 }
2661
2662 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
2663         .name                   = "fc",
2664         .module                 = THIS_MODULE,
2665         .flags                  = NVME_F_FABRICS,
2666         .reg_read32             = nvmf_reg_read32,
2667         .reg_read64             = nvmf_reg_read64,
2668         .reg_write32            = nvmf_reg_write32,
2669         .reset_ctrl             = nvme_fc_reset_nvme_ctrl,
2670         .free_ctrl              = nvme_fc_nvme_ctrl_freed,
2671         .submit_async_event     = nvme_fc_submit_async_event,
2672         .delete_ctrl            = nvme_fc_del_nvme_ctrl,
2673         .get_subsysnqn          = nvmf_get_subsysnqn,
2674         .get_address            = nvmf_get_address,
2675 };
2676
2677 static void
2678 nvme_fc_connect_ctrl_work(struct work_struct *work)
2679 {
2680         int ret;
2681
2682         struct nvme_fc_ctrl *ctrl =
2683                         container_of(to_delayed_work(work),
2684                                 struct nvme_fc_ctrl, connect_work);
2685
2686         ret = nvme_fc_create_association(ctrl);
2687         if (ret)
2688                 nvme_fc_reconnect_or_delete(ctrl, ret);
2689         else
2690                 dev_info(ctrl->ctrl.device,
2691                         "NVME-FC{%d}: controller reconnect complete\n",
2692                         ctrl->cnum);
2693 }
2694
2695
2696 static const struct blk_mq_ops nvme_fc_admin_mq_ops = {
2697         .queue_rq       = nvme_fc_queue_rq,
2698         .complete       = nvme_fc_complete_rq,
2699         .init_request   = nvme_fc_init_admin_request,
2700         .exit_request   = nvme_fc_exit_request,
2701         .reinit_request = nvme_fc_reinit_request,
2702         .init_hctx      = nvme_fc_init_admin_hctx,
2703         .timeout        = nvme_fc_timeout,
2704 };
2705
2706
2707 static struct nvme_ctrl *
2708 nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
2709         struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
2710 {
2711         struct nvme_fc_ctrl *ctrl;
2712         unsigned long flags;
2713         int ret, idx;
2714
2715         if (!(rport->remoteport.port_role &
2716             (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) {
2717                 ret = -EBADR;
2718                 goto out_fail;
2719         }
2720
2721         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2722         if (!ctrl) {
2723                 ret = -ENOMEM;
2724                 goto out_fail;
2725         }
2726
2727         idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL);
2728         if (idx < 0) {
2729                 ret = -ENOSPC;
2730                 goto out_free_ctrl;
2731         }
2732
2733         ctrl->ctrl.opts = opts;
2734         INIT_LIST_HEAD(&ctrl->ctrl_list);
2735         ctrl->lport = lport;
2736         ctrl->rport = rport;
2737         ctrl->dev = lport->dev;
2738         ctrl->cnum = idx;
2739
2740         get_device(ctrl->dev);
2741         kref_init(&ctrl->ref);
2742
2743         INIT_WORK(&ctrl->delete_work, nvme_fc_delete_ctrl_work);
2744         INIT_WORK(&ctrl->reset_work, nvme_fc_reset_ctrl_work);
2745         INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work);
2746         spin_lock_init(&ctrl->lock);
2747
2748         /* io queue count */
2749         ctrl->queue_count = min_t(unsigned int,
2750                                 opts->nr_io_queues,
2751                                 lport->ops->max_hw_queues);
2752         opts->nr_io_queues = ctrl->queue_count; /* so opts has valid value */
2753         ctrl->queue_count++;    /* +1 for admin queue */
2754
2755         ctrl->ctrl.sqsize = opts->queue_size - 1;
2756         ctrl->ctrl.kato = opts->kato;
2757
2758         ret = -ENOMEM;
2759         ctrl->queues = kcalloc(ctrl->queue_count, sizeof(struct nvme_fc_queue),
2760                                 GFP_KERNEL);
2761         if (!ctrl->queues)
2762                 goto out_free_ida;
2763
2764         memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
2765         ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops;
2766         ctrl->admin_tag_set.queue_depth = NVME_FC_AQ_BLKMQ_DEPTH;
2767         ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */
2768         ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
2769         ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
2770                                         (SG_CHUNK_SIZE *
2771                                                 sizeof(struct scatterlist)) +
2772                                         ctrl->lport->ops->fcprqst_priv_sz;
2773         ctrl->admin_tag_set.driver_data = ctrl;
2774         ctrl->admin_tag_set.nr_hw_queues = 1;
2775         ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
2776
2777         ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
2778         if (ret)
2779                 goto out_free_queues;
2780
2781         ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
2782         if (IS_ERR(ctrl->ctrl.admin_q)) {
2783                 ret = PTR_ERR(ctrl->ctrl.admin_q);
2784                 goto out_free_admin_tag_set;
2785         }
2786
2787         /*
2788          * Would have been nice to init io queues tag set as well.
2789          * However, we require interaction from the controller
2790          * for max io queue count before we can do so.
2791          * Defer this to the connect path.
2792          */
2793
2794         ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
2795         if (ret)
2796                 goto out_cleanup_admin_q;
2797
2798         /* at this point, teardown path changes to ref counting on nvme ctrl */
2799
2800         spin_lock_irqsave(&rport->lock, flags);
2801         list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
2802         spin_unlock_irqrestore(&rport->lock, flags);
2803
2804         ret = nvme_fc_create_association(ctrl);
2805         if (ret) {
2806                 ctrl->ctrl.opts = NULL;
2807                 /* initiate nvme ctrl ref counting teardown */
2808                 nvme_uninit_ctrl(&ctrl->ctrl);
2809                 nvme_put_ctrl(&ctrl->ctrl);
2810
2811                 /* as we're past the point where we transition to the ref
2812                  * counting teardown path, if we return a bad pointer here,
2813                  * the calling routine, thinking it's prior to the
2814                  * transition, will do an rport put. Since the teardown
2815                  * path also does a rport put, we do an extra get here to
2816                  * so proper order/teardown happens.
2817                  */
2818                 nvme_fc_rport_get(rport);
2819
2820                 if (ret > 0)
2821                         ret = -EIO;
2822                 return ERR_PTR(ret);
2823         }
2824
2825         kref_get(&ctrl->ctrl.kref);
2826
2827         dev_info(ctrl->ctrl.device,
2828                 "NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
2829                 ctrl->cnum, ctrl->ctrl.opts->subsysnqn);
2830
2831         return &ctrl->ctrl;
2832
2833 out_cleanup_admin_q:
2834         blk_cleanup_queue(ctrl->ctrl.admin_q);
2835 out_free_admin_tag_set:
2836         blk_mq_free_tag_set(&ctrl->admin_tag_set);
2837 out_free_queues:
2838         kfree(ctrl->queues);
2839 out_free_ida:
2840         put_device(ctrl->dev);
2841         ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
2842 out_free_ctrl:
2843         kfree(ctrl);
2844 out_fail:
2845         /* exit via here doesn't follow ctlr ref points */
2846         return ERR_PTR(ret);
2847 }
2848
2849 enum {
2850         FCT_TRADDR_ERR          = 0,
2851         FCT_TRADDR_WWNN         = 1 << 0,
2852         FCT_TRADDR_WWPN         = 1 << 1,
2853 };
2854
2855 struct nvmet_fc_traddr {
2856         u64     nn;
2857         u64     pn;
2858 };
2859
2860 static const match_table_t traddr_opt_tokens = {
2861         { FCT_TRADDR_WWNN,      "nn-%s"         },
2862         { FCT_TRADDR_WWPN,      "pn-%s"         },
2863         { FCT_TRADDR_ERR,       NULL            }
2864 };
2865
2866 static int
2867 nvme_fc_parse_address(struct nvmet_fc_traddr *traddr, char *buf)
2868 {
2869         substring_t args[MAX_OPT_ARGS];
2870         char *options, *o, *p;
2871         int token, ret = 0;
2872         u64 token64;
2873
2874         options = o = kstrdup(buf, GFP_KERNEL);
2875         if (!options)
2876                 return -ENOMEM;
2877
2878         while ((p = strsep(&o, ":\n")) != NULL) {
2879                 if (!*p)
2880                         continue;
2881
2882                 token = match_token(p, traddr_opt_tokens, args);
2883                 switch (token) {
2884                 case FCT_TRADDR_WWNN:
2885                         if (match_u64(args, &token64)) {
2886                                 ret = -EINVAL;
2887                                 goto out;
2888                         }
2889                         traddr->nn = token64;
2890                         break;
2891                 case FCT_TRADDR_WWPN:
2892                         if (match_u64(args, &token64)) {
2893                                 ret = -EINVAL;
2894                                 goto out;
2895                         }
2896                         traddr->pn = token64;
2897                         break;
2898                 default:
2899                         pr_warn("unknown traddr token or missing value '%s'\n",
2900                                         p);
2901                         ret = -EINVAL;
2902                         goto out;
2903                 }
2904         }
2905
2906 out:
2907         kfree(options);
2908         return ret;
2909 }
2910
2911 static struct nvme_ctrl *
2912 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
2913 {
2914         struct nvme_fc_lport *lport;
2915         struct nvme_fc_rport *rport;
2916         struct nvme_ctrl *ctrl;
2917         struct nvmet_fc_traddr laddr = { 0L, 0L };
2918         struct nvmet_fc_traddr raddr = { 0L, 0L };
2919         unsigned long flags;
2920         int ret;
2921
2922         ret = nvme_fc_parse_address(&raddr, opts->traddr);
2923         if (ret || !raddr.nn || !raddr.pn)
2924                 return ERR_PTR(-EINVAL);
2925
2926         ret = nvme_fc_parse_address(&laddr, opts->host_traddr);
2927         if (ret || !laddr.nn || !laddr.pn)
2928                 return ERR_PTR(-EINVAL);
2929
2930         /* find the host and remote ports to connect together */
2931         spin_lock_irqsave(&nvme_fc_lock, flags);
2932         list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
2933                 if (lport->localport.node_name != laddr.nn ||
2934                     lport->localport.port_name != laddr.pn)
2935                         continue;
2936
2937                 list_for_each_entry(rport, &lport->endp_list, endp_list) {
2938                         if (rport->remoteport.node_name != raddr.nn ||
2939                             rport->remoteport.port_name != raddr.pn)
2940                                 continue;
2941
2942                         /* if fail to get reference fall through. Will error */
2943                         if (!nvme_fc_rport_get(rport))
2944                                 break;
2945
2946                         spin_unlock_irqrestore(&nvme_fc_lock, flags);
2947
2948                         ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport);
2949                         if (IS_ERR(ctrl))
2950                                 nvme_fc_rport_put(rport);
2951                         return ctrl;
2952                 }
2953         }
2954         spin_unlock_irqrestore(&nvme_fc_lock, flags);
2955
2956         return ERR_PTR(-ENOENT);
2957 }
2958
2959
2960 static struct nvmf_transport_ops nvme_fc_transport = {
2961         .name           = "fc",
2962         .required_opts  = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
2963         .allowed_opts   = NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO,
2964         .create_ctrl    = nvme_fc_create_ctrl,
2965 };
2966
2967 static int __init nvme_fc_init_module(void)
2968 {
2969         int ret;
2970
2971         nvme_fc_wq = create_workqueue("nvme_fc_wq");
2972         if (!nvme_fc_wq)
2973                 return -ENOMEM;
2974
2975         ret = nvmf_register_transport(&nvme_fc_transport);
2976         if (ret)
2977                 goto err;
2978
2979         return 0;
2980 err:
2981         destroy_workqueue(nvme_fc_wq);
2982         return ret;
2983 }
2984
2985 static void __exit nvme_fc_exit_module(void)
2986 {
2987         /* sanity check - all lports should be removed */
2988         if (!list_empty(&nvme_fc_lport_list))
2989                 pr_warn("%s: localport list not empty\n", __func__);
2990
2991         nvmf_unregister_transport(&nvme_fc_transport);
2992
2993         destroy_workqueue(nvme_fc_wq);
2994
2995         ida_destroy(&nvme_fc_local_port_cnt);
2996         ida_destroy(&nvme_fc_ctrl_cnt);
2997 }
2998
2999 module_init(nvme_fc_init_module);
3000 module_exit(nvme_fc_exit_module);
3001
3002 MODULE_LICENSE("GPL v2");