nvme-fc: require target or discovery role for fc-nvme targets
[sfrench/cifs-2.6.git] / drivers / nvme / host / fc.c
1 /*
2  * Copyright (c) 2016 Avago Technologies.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful.
9  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
10  * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
11  * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
12  * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
13  * See the GNU General Public License for more details, a copy of which
14  * can be found in the file COPYING included with this package
15  *
16  */
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/module.h>
19 #include <linux/parser.h>
20 #include <uapi/scsi/fc/fc_fs.h>
21 #include <uapi/scsi/fc/fc_els.h>
22 #include <linux/delay.h>
23
24 #include "nvme.h"
25 #include "fabrics.h"
26 #include <linux/nvme-fc-driver.h>
27 #include <linux/nvme-fc.h>
28
29
30 /* *************************** Data Structures/Defines ****************** */
31
32
33 /*
34  * We handle AEN commands ourselves and don't even let the
35  * block layer know about them.
36  */
37 #define NVME_FC_NR_AEN_COMMANDS 1
38 #define NVME_FC_AQ_BLKMQ_DEPTH  \
39         (NVMF_AQ_DEPTH - NVME_FC_NR_AEN_COMMANDS)
40 #define AEN_CMDID_BASE          (NVME_FC_AQ_BLKMQ_DEPTH + 1)
41
42 enum nvme_fc_queue_flags {
43         NVME_FC_Q_CONNECTED = (1 << 0),
44 };
45
46 #define NVMEFC_QUEUE_DELAY      3               /* ms units */
47
48 #define NVME_FC_MAX_CONNECT_ATTEMPTS    1
49
50 struct nvme_fc_queue {
51         struct nvme_fc_ctrl     *ctrl;
52         struct device           *dev;
53         struct blk_mq_hw_ctx    *hctx;
54         void                    *lldd_handle;
55         int                     queue_size;
56         size_t                  cmnd_capsule_len;
57         u32                     qnum;
58         u32                     rqcnt;
59         u32                     seqno;
60
61         u64                     connection_id;
62         atomic_t                csn;
63
64         unsigned long           flags;
65 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
66
67 enum nvme_fcop_flags {
68         FCOP_FLAGS_TERMIO       = (1 << 0),
69         FCOP_FLAGS_RELEASED     = (1 << 1),
70         FCOP_FLAGS_COMPLETE     = (1 << 2),
71         FCOP_FLAGS_AEN          = (1 << 3),
72 };
73
74 struct nvmefc_ls_req_op {
75         struct nvmefc_ls_req    ls_req;
76
77         struct nvme_fc_rport    *rport;
78         struct nvme_fc_queue    *queue;
79         struct request          *rq;
80         u32                     flags;
81
82         int                     ls_error;
83         struct completion       ls_done;
84         struct list_head        lsreq_list;     /* rport->ls_req_list */
85         bool                    req_queued;
86 };
87
88 enum nvme_fcpop_state {
89         FCPOP_STATE_UNINIT      = 0,
90         FCPOP_STATE_IDLE        = 1,
91         FCPOP_STATE_ACTIVE      = 2,
92         FCPOP_STATE_ABORTED     = 3,
93         FCPOP_STATE_COMPLETE    = 4,
94 };
95
96 struct nvme_fc_fcp_op {
97         struct nvme_request     nreq;           /*
98                                                  * nvme/host/core.c
99                                                  * requires this to be
100                                                  * the 1st element in the
101                                                  * private structure
102                                                  * associated with the
103                                                  * request.
104                                                  */
105         struct nvmefc_fcp_req   fcp_req;
106
107         struct nvme_fc_ctrl     *ctrl;
108         struct nvme_fc_queue    *queue;
109         struct request          *rq;
110
111         atomic_t                state;
112         u32                     flags;
113         u32                     rqno;
114         u32                     nents;
115
116         struct nvme_fc_cmd_iu   cmd_iu;
117         struct nvme_fc_ersp_iu  rsp_iu;
118 };
119
120 struct nvme_fc_lport {
121         struct nvme_fc_local_port       localport;
122
123         struct ida                      endp_cnt;
124         struct list_head                port_list;      /* nvme_fc_port_list */
125         struct list_head                endp_list;
126         struct device                   *dev;   /* physical device for dma */
127         struct nvme_fc_port_template    *ops;
128         struct kref                     ref;
129 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
130
131 struct nvme_fc_rport {
132         struct nvme_fc_remote_port      remoteport;
133
134         struct list_head                endp_list; /* for lport->endp_list */
135         struct list_head                ctrl_list;
136         struct list_head                ls_req_list;
137         struct device                   *dev;   /* physical device for dma */
138         struct nvme_fc_lport            *lport;
139         spinlock_t                      lock;
140         struct kref                     ref;
141 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
142
143 enum nvme_fcctrl_flags {
144         FCCTRL_TERMIO           = (1 << 0),
145 };
146
147 struct nvme_fc_ctrl {
148         spinlock_t              lock;
149         struct nvme_fc_queue    *queues;
150         struct device           *dev;
151         struct nvme_fc_lport    *lport;
152         struct nvme_fc_rport    *rport;
153         u32                     queue_count;
154         u32                     cnum;
155
156         u64                     association_id;
157
158         u64                     cap;
159
160         struct list_head        ctrl_list;      /* rport->ctrl_list */
161
162         struct blk_mq_tag_set   admin_tag_set;
163         struct blk_mq_tag_set   tag_set;
164
165         struct work_struct      delete_work;
166         struct work_struct      reset_work;
167         struct delayed_work     connect_work;
168         int                     reconnect_delay;
169         int                     connect_attempts;
170
171         struct kref             ref;
172         u32                     flags;
173         u32                     iocnt;
174
175         struct nvme_fc_fcp_op   aen_ops[NVME_FC_NR_AEN_COMMANDS];
176
177         struct nvme_ctrl        ctrl;
178 };
179
180 static inline struct nvme_fc_ctrl *
181 to_fc_ctrl(struct nvme_ctrl *ctrl)
182 {
183         return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
184 }
185
186 static inline struct nvme_fc_lport *
187 localport_to_lport(struct nvme_fc_local_port *portptr)
188 {
189         return container_of(portptr, struct nvme_fc_lport, localport);
190 }
191
192 static inline struct nvme_fc_rport *
193 remoteport_to_rport(struct nvme_fc_remote_port *portptr)
194 {
195         return container_of(portptr, struct nvme_fc_rport, remoteport);
196 }
197
198 static inline struct nvmefc_ls_req_op *
199 ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
200 {
201         return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
202 }
203
204 static inline struct nvme_fc_fcp_op *
205 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
206 {
207         return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
208 }
209
210
211
212 /* *************************** Globals **************************** */
213
214
215 static DEFINE_SPINLOCK(nvme_fc_lock);
216
217 static LIST_HEAD(nvme_fc_lport_list);
218 static DEFINE_IDA(nvme_fc_local_port_cnt);
219 static DEFINE_IDA(nvme_fc_ctrl_cnt);
220
221 static struct workqueue_struct *nvme_fc_wq;
222
223
224
225 /* *********************** FC-NVME Port Management ************************ */
226
227 static int __nvme_fc_del_ctrl(struct nvme_fc_ctrl *);
228 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
229                         struct nvme_fc_queue *, unsigned int);
230
231
232 /**
233  * nvme_fc_register_localport - transport entry point called by an
234  *                              LLDD to register the existence of a NVME
235  *                              host FC port.
236  * @pinfo:     pointer to information about the port to be registered
237  * @template:  LLDD entrypoints and operational parameters for the port
238  * @dev:       physical hardware device node port corresponds to. Will be
239  *             used for DMA mappings
240  * @lport_p:   pointer to a local port pointer. Upon success, the routine
241  *             will allocate a nvme_fc_local_port structure and place its
242  *             address in the local port pointer. Upon failure, local port
243  *             pointer will be set to 0.
244  *
245  * Returns:
246  * a completion status. Must be 0 upon success; a negative errno
247  * (ex: -ENXIO) upon failure.
248  */
249 int
250 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
251                         struct nvme_fc_port_template *template,
252                         struct device *dev,
253                         struct nvme_fc_local_port **portptr)
254 {
255         struct nvme_fc_lport *newrec;
256         unsigned long flags;
257         int ret, idx;
258
259         if (!template->localport_delete || !template->remoteport_delete ||
260             !template->ls_req || !template->fcp_io ||
261             !template->ls_abort || !template->fcp_abort ||
262             !template->max_hw_queues || !template->max_sgl_segments ||
263             !template->max_dif_sgl_segments || !template->dma_boundary) {
264                 ret = -EINVAL;
265                 goto out_reghost_failed;
266         }
267
268         newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
269                          GFP_KERNEL);
270         if (!newrec) {
271                 ret = -ENOMEM;
272                 goto out_reghost_failed;
273         }
274
275         idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL);
276         if (idx < 0) {
277                 ret = -ENOSPC;
278                 goto out_fail_kfree;
279         }
280
281         if (!get_device(dev) && dev) {
282                 ret = -ENODEV;
283                 goto out_ida_put;
284         }
285
286         INIT_LIST_HEAD(&newrec->port_list);
287         INIT_LIST_HEAD(&newrec->endp_list);
288         kref_init(&newrec->ref);
289         newrec->ops = template;
290         newrec->dev = dev;
291         ida_init(&newrec->endp_cnt);
292         newrec->localport.private = &newrec[1];
293         newrec->localport.node_name = pinfo->node_name;
294         newrec->localport.port_name = pinfo->port_name;
295         newrec->localport.port_role = pinfo->port_role;
296         newrec->localport.port_id = pinfo->port_id;
297         newrec->localport.port_state = FC_OBJSTATE_ONLINE;
298         newrec->localport.port_num = idx;
299
300         spin_lock_irqsave(&nvme_fc_lock, flags);
301         list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
302         spin_unlock_irqrestore(&nvme_fc_lock, flags);
303
304         if (dev)
305                 dma_set_seg_boundary(dev, template->dma_boundary);
306
307         *portptr = &newrec->localport;
308         return 0;
309
310 out_ida_put:
311         ida_simple_remove(&nvme_fc_local_port_cnt, idx);
312 out_fail_kfree:
313         kfree(newrec);
314 out_reghost_failed:
315         *portptr = NULL;
316
317         return ret;
318 }
319 EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
320
321 static void
322 nvme_fc_free_lport(struct kref *ref)
323 {
324         struct nvme_fc_lport *lport =
325                 container_of(ref, struct nvme_fc_lport, ref);
326         unsigned long flags;
327
328         WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
329         WARN_ON(!list_empty(&lport->endp_list));
330
331         /* remove from transport list */
332         spin_lock_irqsave(&nvme_fc_lock, flags);
333         list_del(&lport->port_list);
334         spin_unlock_irqrestore(&nvme_fc_lock, flags);
335
336         /* let the LLDD know we've finished tearing it down */
337         lport->ops->localport_delete(&lport->localport);
338
339         ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num);
340         ida_destroy(&lport->endp_cnt);
341
342         put_device(lport->dev);
343
344         kfree(lport);
345 }
346
347 static void
348 nvme_fc_lport_put(struct nvme_fc_lport *lport)
349 {
350         kref_put(&lport->ref, nvme_fc_free_lport);
351 }
352
353 static int
354 nvme_fc_lport_get(struct nvme_fc_lport *lport)
355 {
356         return kref_get_unless_zero(&lport->ref);
357 }
358
359 /**
360  * nvme_fc_unregister_localport - transport entry point called by an
361  *                              LLDD to deregister/remove a previously
362  *                              registered a NVME host FC port.
363  * @localport: pointer to the (registered) local port that is to be
364  *             deregistered.
365  *
366  * Returns:
367  * a completion status. Must be 0 upon success; a negative errno
368  * (ex: -ENXIO) upon failure.
369  */
370 int
371 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
372 {
373         struct nvme_fc_lport *lport = localport_to_lport(portptr);
374         unsigned long flags;
375
376         if (!portptr)
377                 return -EINVAL;
378
379         spin_lock_irqsave(&nvme_fc_lock, flags);
380
381         if (portptr->port_state != FC_OBJSTATE_ONLINE) {
382                 spin_unlock_irqrestore(&nvme_fc_lock, flags);
383                 return -EINVAL;
384         }
385         portptr->port_state = FC_OBJSTATE_DELETED;
386
387         spin_unlock_irqrestore(&nvme_fc_lock, flags);
388
389         nvme_fc_lport_put(lport);
390
391         return 0;
392 }
393 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
394
395 /**
396  * nvme_fc_register_remoteport - transport entry point called by an
397  *                              LLDD to register the existence of a NVME
398  *                              subsystem FC port on its fabric.
399  * @localport: pointer to the (registered) local port that the remote
400  *             subsystem port is connected to.
401  * @pinfo:     pointer to information about the port to be registered
402  * @rport_p:   pointer to a remote port pointer. Upon success, the routine
403  *             will allocate a nvme_fc_remote_port structure and place its
404  *             address in the remote port pointer. Upon failure, remote port
405  *             pointer will be set to 0.
406  *
407  * Returns:
408  * a completion status. Must be 0 upon success; a negative errno
409  * (ex: -ENXIO) upon failure.
410  */
411 int
412 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
413                                 struct nvme_fc_port_info *pinfo,
414                                 struct nvme_fc_remote_port **portptr)
415 {
416         struct nvme_fc_lport *lport = localport_to_lport(localport);
417         struct nvme_fc_rport *newrec;
418         unsigned long flags;
419         int ret, idx;
420
421         newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
422                          GFP_KERNEL);
423         if (!newrec) {
424                 ret = -ENOMEM;
425                 goto out_reghost_failed;
426         }
427
428         if (!nvme_fc_lport_get(lport)) {
429                 ret = -ESHUTDOWN;
430                 goto out_kfree_rport;
431         }
432
433         idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL);
434         if (idx < 0) {
435                 ret = -ENOSPC;
436                 goto out_lport_put;
437         }
438
439         INIT_LIST_HEAD(&newrec->endp_list);
440         INIT_LIST_HEAD(&newrec->ctrl_list);
441         INIT_LIST_HEAD(&newrec->ls_req_list);
442         kref_init(&newrec->ref);
443         spin_lock_init(&newrec->lock);
444         newrec->remoteport.localport = &lport->localport;
445         newrec->dev = lport->dev;
446         newrec->lport = lport;
447         newrec->remoteport.private = &newrec[1];
448         newrec->remoteport.port_role = pinfo->port_role;
449         newrec->remoteport.node_name = pinfo->node_name;
450         newrec->remoteport.port_name = pinfo->port_name;
451         newrec->remoteport.port_id = pinfo->port_id;
452         newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
453         newrec->remoteport.port_num = idx;
454
455         spin_lock_irqsave(&nvme_fc_lock, flags);
456         list_add_tail(&newrec->endp_list, &lport->endp_list);
457         spin_unlock_irqrestore(&nvme_fc_lock, flags);
458
459         *portptr = &newrec->remoteport;
460         return 0;
461
462 out_lport_put:
463         nvme_fc_lport_put(lport);
464 out_kfree_rport:
465         kfree(newrec);
466 out_reghost_failed:
467         *portptr = NULL;
468         return ret;
469 }
470 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
471
472 static void
473 nvme_fc_free_rport(struct kref *ref)
474 {
475         struct nvme_fc_rport *rport =
476                 container_of(ref, struct nvme_fc_rport, ref);
477         struct nvme_fc_lport *lport =
478                         localport_to_lport(rport->remoteport.localport);
479         unsigned long flags;
480
481         WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
482         WARN_ON(!list_empty(&rport->ctrl_list));
483
484         /* remove from lport list */
485         spin_lock_irqsave(&nvme_fc_lock, flags);
486         list_del(&rport->endp_list);
487         spin_unlock_irqrestore(&nvme_fc_lock, flags);
488
489         /* let the LLDD know we've finished tearing it down */
490         lport->ops->remoteport_delete(&rport->remoteport);
491
492         ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num);
493
494         kfree(rport);
495
496         nvme_fc_lport_put(lport);
497 }
498
499 static void
500 nvme_fc_rport_put(struct nvme_fc_rport *rport)
501 {
502         kref_put(&rport->ref, nvme_fc_free_rport);
503 }
504
505 static int
506 nvme_fc_rport_get(struct nvme_fc_rport *rport)
507 {
508         return kref_get_unless_zero(&rport->ref);
509 }
510
511 static int
512 nvme_fc_abort_lsops(struct nvme_fc_rport *rport)
513 {
514         struct nvmefc_ls_req_op *lsop;
515         unsigned long flags;
516
517 restart:
518         spin_lock_irqsave(&rport->lock, flags);
519
520         list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) {
521                 if (!(lsop->flags & FCOP_FLAGS_TERMIO)) {
522                         lsop->flags |= FCOP_FLAGS_TERMIO;
523                         spin_unlock_irqrestore(&rport->lock, flags);
524                         rport->lport->ops->ls_abort(&rport->lport->localport,
525                                                 &rport->remoteport,
526                                                 &lsop->ls_req);
527                         goto restart;
528                 }
529         }
530         spin_unlock_irqrestore(&rport->lock, flags);
531
532         return 0;
533 }
534
535 /**
536  * nvme_fc_unregister_remoteport - transport entry point called by an
537  *                              LLDD to deregister/remove a previously
538  *                              registered a NVME subsystem FC port.
539  * @remoteport: pointer to the (registered) remote port that is to be
540  *              deregistered.
541  *
542  * Returns:
543  * a completion status. Must be 0 upon success; a negative errno
544  * (ex: -ENXIO) upon failure.
545  */
546 int
547 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
548 {
549         struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
550         struct nvme_fc_ctrl *ctrl;
551         unsigned long flags;
552
553         if (!portptr)
554                 return -EINVAL;
555
556         spin_lock_irqsave(&rport->lock, flags);
557
558         if (portptr->port_state != FC_OBJSTATE_ONLINE) {
559                 spin_unlock_irqrestore(&rport->lock, flags);
560                 return -EINVAL;
561         }
562         portptr->port_state = FC_OBJSTATE_DELETED;
563
564         /* tear down all associations to the remote port */
565         list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
566                 __nvme_fc_del_ctrl(ctrl);
567
568         spin_unlock_irqrestore(&rport->lock, flags);
569
570         nvme_fc_abort_lsops(rport);
571
572         nvme_fc_rport_put(rport);
573         return 0;
574 }
575 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
576
577
578 /* *********************** FC-NVME DMA Handling **************************** */
579
580 /*
581  * The fcloop device passes in a NULL device pointer. Real LLD's will
582  * pass in a valid device pointer. If NULL is passed to the dma mapping
583  * routines, depending on the platform, it may or may not succeed, and
584  * may crash.
585  *
586  * As such:
587  * Wrapper all the dma routines and check the dev pointer.
588  *
589  * If simple mappings (return just a dma address, we'll noop them,
590  * returning a dma address of 0.
591  *
592  * On more complex mappings (dma_map_sg), a pseudo routine fills
593  * in the scatter list, setting all dma addresses to 0.
594  */
595
596 static inline dma_addr_t
597 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
598                 enum dma_data_direction dir)
599 {
600         return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
601 }
602
603 static inline int
604 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
605 {
606         return dev ? dma_mapping_error(dev, dma_addr) : 0;
607 }
608
609 static inline void
610 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
611         enum dma_data_direction dir)
612 {
613         if (dev)
614                 dma_unmap_single(dev, addr, size, dir);
615 }
616
617 static inline void
618 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
619                 enum dma_data_direction dir)
620 {
621         if (dev)
622                 dma_sync_single_for_cpu(dev, addr, size, dir);
623 }
624
625 static inline void
626 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
627                 enum dma_data_direction dir)
628 {
629         if (dev)
630                 dma_sync_single_for_device(dev, addr, size, dir);
631 }
632
633 /* pseudo dma_map_sg call */
634 static int
635 fc_map_sg(struct scatterlist *sg, int nents)
636 {
637         struct scatterlist *s;
638         int i;
639
640         WARN_ON(nents == 0 || sg[0].length == 0);
641
642         for_each_sg(sg, s, nents, i) {
643                 s->dma_address = 0L;
644 #ifdef CONFIG_NEED_SG_DMA_LENGTH
645                 s->dma_length = s->length;
646 #endif
647         }
648         return nents;
649 }
650
651 static inline int
652 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
653                 enum dma_data_direction dir)
654 {
655         return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
656 }
657
658 static inline void
659 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
660                 enum dma_data_direction dir)
661 {
662         if (dev)
663                 dma_unmap_sg(dev, sg, nents, dir);
664 }
665
666
667 /* *********************** FC-NVME LS Handling **************************** */
668
669 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
670 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
671
672
673 static void
674 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop)
675 {
676         struct nvme_fc_rport *rport = lsop->rport;
677         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
678         unsigned long flags;
679
680         spin_lock_irqsave(&rport->lock, flags);
681
682         if (!lsop->req_queued) {
683                 spin_unlock_irqrestore(&rport->lock, flags);
684                 return;
685         }
686
687         list_del(&lsop->lsreq_list);
688
689         lsop->req_queued = false;
690
691         spin_unlock_irqrestore(&rport->lock, flags);
692
693         fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
694                                   (lsreq->rqstlen + lsreq->rsplen),
695                                   DMA_BIDIRECTIONAL);
696
697         nvme_fc_rport_put(rport);
698 }
699
700 static int
701 __nvme_fc_send_ls_req(struct nvme_fc_rport *rport,
702                 struct nvmefc_ls_req_op *lsop,
703                 void (*done)(struct nvmefc_ls_req *req, int status))
704 {
705         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
706         unsigned long flags;
707         int ret = 0;
708
709         if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
710                 return -ECONNREFUSED;
711
712         if (!nvme_fc_rport_get(rport))
713                 return -ESHUTDOWN;
714
715         lsreq->done = done;
716         lsop->rport = rport;
717         lsop->req_queued = false;
718         INIT_LIST_HEAD(&lsop->lsreq_list);
719         init_completion(&lsop->ls_done);
720
721         lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr,
722                                   lsreq->rqstlen + lsreq->rsplen,
723                                   DMA_BIDIRECTIONAL);
724         if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) {
725                 ret = -EFAULT;
726                 goto out_putrport;
727         }
728         lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
729
730         spin_lock_irqsave(&rport->lock, flags);
731
732         list_add_tail(&lsop->lsreq_list, &rport->ls_req_list);
733
734         lsop->req_queued = true;
735
736         spin_unlock_irqrestore(&rport->lock, flags);
737
738         ret = rport->lport->ops->ls_req(&rport->lport->localport,
739                                         &rport->remoteport, lsreq);
740         if (ret)
741                 goto out_unlink;
742
743         return 0;
744
745 out_unlink:
746         lsop->ls_error = ret;
747         spin_lock_irqsave(&rport->lock, flags);
748         lsop->req_queued = false;
749         list_del(&lsop->lsreq_list);
750         spin_unlock_irqrestore(&rport->lock, flags);
751         fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
752                                   (lsreq->rqstlen + lsreq->rsplen),
753                                   DMA_BIDIRECTIONAL);
754 out_putrport:
755         nvme_fc_rport_put(rport);
756
757         return ret;
758 }
759
760 static void
761 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
762 {
763         struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
764
765         lsop->ls_error = status;
766         complete(&lsop->ls_done);
767 }
768
769 static int
770 nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop)
771 {
772         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
773         struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
774         int ret;
775
776         ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done);
777
778         if (!ret) {
779                 /*
780                  * No timeout/not interruptible as we need the struct
781                  * to exist until the lldd calls us back. Thus mandate
782                  * wait until driver calls back. lldd responsible for
783                  * the timeout action
784                  */
785                 wait_for_completion(&lsop->ls_done);
786
787                 __nvme_fc_finish_ls_req(lsop);
788
789                 ret = lsop->ls_error;
790         }
791
792         if (ret)
793                 return ret;
794
795         /* ACC or RJT payload ? */
796         if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
797                 return -ENXIO;
798
799         return 0;
800 }
801
802 static int
803 nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport,
804                 struct nvmefc_ls_req_op *lsop,
805                 void (*done)(struct nvmefc_ls_req *req, int status))
806 {
807         /* don't wait for completion */
808
809         return __nvme_fc_send_ls_req(rport, lsop, done);
810 }
811
812 /* Validation Error indexes into the string table below */
813 enum {
814         VERR_NO_ERROR           = 0,
815         VERR_LSACC              = 1,
816         VERR_LSDESC_RQST        = 2,
817         VERR_LSDESC_RQST_LEN    = 3,
818         VERR_ASSOC_ID           = 4,
819         VERR_ASSOC_ID_LEN       = 5,
820         VERR_CONN_ID            = 6,
821         VERR_CONN_ID_LEN        = 7,
822         VERR_CR_ASSOC           = 8,
823         VERR_CR_ASSOC_ACC_LEN   = 9,
824         VERR_CR_CONN            = 10,
825         VERR_CR_CONN_ACC_LEN    = 11,
826         VERR_DISCONN            = 12,
827         VERR_DISCONN_ACC_LEN    = 13,
828 };
829
830 static char *validation_errors[] = {
831         "OK",
832         "Not LS_ACC",
833         "Not LSDESC_RQST",
834         "Bad LSDESC_RQST Length",
835         "Not Association ID",
836         "Bad Association ID Length",
837         "Not Connection ID",
838         "Bad Connection ID Length",
839         "Not CR_ASSOC Rqst",
840         "Bad CR_ASSOC ACC Length",
841         "Not CR_CONN Rqst",
842         "Bad CR_CONN ACC Length",
843         "Not Disconnect Rqst",
844         "Bad Disconnect ACC Length",
845 };
846
847 static int
848 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
849         struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
850 {
851         struct nvmefc_ls_req_op *lsop;
852         struct nvmefc_ls_req *lsreq;
853         struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
854         struct fcnvme_ls_cr_assoc_acc *assoc_acc;
855         int ret, fcret = 0;
856
857         lsop = kzalloc((sizeof(*lsop) +
858                          ctrl->lport->ops->lsrqst_priv_sz +
859                          sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL);
860         if (!lsop) {
861                 ret = -ENOMEM;
862                 goto out_no_memory;
863         }
864         lsreq = &lsop->ls_req;
865
866         lsreq->private = (void *)&lsop[1];
867         assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)
868                         (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
869         assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
870
871         assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
872         assoc_rqst->desc_list_len =
873                         cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
874
875         assoc_rqst->assoc_cmd.desc_tag =
876                         cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
877         assoc_rqst->assoc_cmd.desc_len =
878                         fcnvme_lsdesc_len(
879                                 sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
880
881         assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
882         assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize);
883         /* Linux supports only Dynamic controllers */
884         assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
885         memcpy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id,
886                 min_t(size_t, FCNVME_ASSOC_HOSTID_LEN, sizeof(uuid_be)));
887         strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
888                 min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
889         strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
890                 min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
891
892         lsop->queue = queue;
893         lsreq->rqstaddr = assoc_rqst;
894         lsreq->rqstlen = sizeof(*assoc_rqst);
895         lsreq->rspaddr = assoc_acc;
896         lsreq->rsplen = sizeof(*assoc_acc);
897         lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
898
899         ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
900         if (ret)
901                 goto out_free_buffer;
902
903         /* process connect LS completion */
904
905         /* validate the ACC response */
906         if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
907                 fcret = VERR_LSACC;
908         else if (assoc_acc->hdr.desc_list_len !=
909                         fcnvme_lsdesc_len(
910                                 sizeof(struct fcnvme_ls_cr_assoc_acc)))
911                 fcret = VERR_CR_ASSOC_ACC_LEN;
912         else if (assoc_acc->hdr.rqst.desc_tag !=
913                         cpu_to_be32(FCNVME_LSDESC_RQST))
914                 fcret = VERR_LSDESC_RQST;
915         else if (assoc_acc->hdr.rqst.desc_len !=
916                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
917                 fcret = VERR_LSDESC_RQST_LEN;
918         else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
919                 fcret = VERR_CR_ASSOC;
920         else if (assoc_acc->associd.desc_tag !=
921                         cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
922                 fcret = VERR_ASSOC_ID;
923         else if (assoc_acc->associd.desc_len !=
924                         fcnvme_lsdesc_len(
925                                 sizeof(struct fcnvme_lsdesc_assoc_id)))
926                 fcret = VERR_ASSOC_ID_LEN;
927         else if (assoc_acc->connectid.desc_tag !=
928                         cpu_to_be32(FCNVME_LSDESC_CONN_ID))
929                 fcret = VERR_CONN_ID;
930         else if (assoc_acc->connectid.desc_len !=
931                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
932                 fcret = VERR_CONN_ID_LEN;
933
934         if (fcret) {
935                 ret = -EBADF;
936                 dev_err(ctrl->dev,
937                         "q %d connect failed: %s\n",
938                         queue->qnum, validation_errors[fcret]);
939         } else {
940                 ctrl->association_id =
941                         be64_to_cpu(assoc_acc->associd.association_id);
942                 queue->connection_id =
943                         be64_to_cpu(assoc_acc->connectid.connection_id);
944                 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
945         }
946
947 out_free_buffer:
948         kfree(lsop);
949 out_no_memory:
950         if (ret)
951                 dev_err(ctrl->dev,
952                         "queue %d connect admin queue failed (%d).\n",
953                         queue->qnum, ret);
954         return ret;
955 }
956
957 static int
958 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
959                         u16 qsize, u16 ersp_ratio)
960 {
961         struct nvmefc_ls_req_op *lsop;
962         struct nvmefc_ls_req *lsreq;
963         struct fcnvme_ls_cr_conn_rqst *conn_rqst;
964         struct fcnvme_ls_cr_conn_acc *conn_acc;
965         int ret, fcret = 0;
966
967         lsop = kzalloc((sizeof(*lsop) +
968                          ctrl->lport->ops->lsrqst_priv_sz +
969                          sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL);
970         if (!lsop) {
971                 ret = -ENOMEM;
972                 goto out_no_memory;
973         }
974         lsreq = &lsop->ls_req;
975
976         lsreq->private = (void *)&lsop[1];
977         conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)
978                         (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
979         conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
980
981         conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
982         conn_rqst->desc_list_len = cpu_to_be32(
983                                 sizeof(struct fcnvme_lsdesc_assoc_id) +
984                                 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
985
986         conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
987         conn_rqst->associd.desc_len =
988                         fcnvme_lsdesc_len(
989                                 sizeof(struct fcnvme_lsdesc_assoc_id));
990         conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
991         conn_rqst->connect_cmd.desc_tag =
992                         cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
993         conn_rqst->connect_cmd.desc_len =
994                         fcnvme_lsdesc_len(
995                                 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
996         conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
997         conn_rqst->connect_cmd.qid  = cpu_to_be16(queue->qnum);
998         conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize);
999
1000         lsop->queue = queue;
1001         lsreq->rqstaddr = conn_rqst;
1002         lsreq->rqstlen = sizeof(*conn_rqst);
1003         lsreq->rspaddr = conn_acc;
1004         lsreq->rsplen = sizeof(*conn_acc);
1005         lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1006
1007         ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1008         if (ret)
1009                 goto out_free_buffer;
1010
1011         /* process connect LS completion */
1012
1013         /* validate the ACC response */
1014         if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1015                 fcret = VERR_LSACC;
1016         else if (conn_acc->hdr.desc_list_len !=
1017                         fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
1018                 fcret = VERR_CR_CONN_ACC_LEN;
1019         else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
1020                 fcret = VERR_LSDESC_RQST;
1021         else if (conn_acc->hdr.rqst.desc_len !=
1022                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1023                 fcret = VERR_LSDESC_RQST_LEN;
1024         else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
1025                 fcret = VERR_CR_CONN;
1026         else if (conn_acc->connectid.desc_tag !=
1027                         cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1028                 fcret = VERR_CONN_ID;
1029         else if (conn_acc->connectid.desc_len !=
1030                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1031                 fcret = VERR_CONN_ID_LEN;
1032
1033         if (fcret) {
1034                 ret = -EBADF;
1035                 dev_err(ctrl->dev,
1036                         "q %d connect failed: %s\n",
1037                         queue->qnum, validation_errors[fcret]);
1038         } else {
1039                 queue->connection_id =
1040                         be64_to_cpu(conn_acc->connectid.connection_id);
1041                 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1042         }
1043
1044 out_free_buffer:
1045         kfree(lsop);
1046 out_no_memory:
1047         if (ret)
1048                 dev_err(ctrl->dev,
1049                         "queue %d connect command failed (%d).\n",
1050                         queue->qnum, ret);
1051         return ret;
1052 }
1053
1054 static void
1055 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
1056 {
1057         struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1058
1059         __nvme_fc_finish_ls_req(lsop);
1060
1061         /* fc-nvme iniator doesn't care about success or failure of cmd */
1062
1063         kfree(lsop);
1064 }
1065
1066 /*
1067  * This routine sends a FC-NVME LS to disconnect (aka terminate)
1068  * the FC-NVME Association.  Terminating the association also
1069  * terminates the FC-NVME connections (per queue, both admin and io
1070  * queues) that are part of the association. E.g. things are torn
1071  * down, and the related FC-NVME Association ID and Connection IDs
1072  * become invalid.
1073  *
1074  * The behavior of the fc-nvme initiator is such that it's
1075  * understanding of the association and connections will implicitly
1076  * be torn down. The action is implicit as it may be due to a loss of
1077  * connectivity with the fc-nvme target, so you may never get a
1078  * response even if you tried.  As such, the action of this routine
1079  * is to asynchronously send the LS, ignore any results of the LS, and
1080  * continue on with terminating the association. If the fc-nvme target
1081  * is present and receives the LS, it too can tear down.
1082  */
1083 static void
1084 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1085 {
1086         struct fcnvme_ls_disconnect_rqst *discon_rqst;
1087         struct fcnvme_ls_disconnect_acc *discon_acc;
1088         struct nvmefc_ls_req_op *lsop;
1089         struct nvmefc_ls_req *lsreq;
1090         int ret;
1091
1092         lsop = kzalloc((sizeof(*lsop) +
1093                          ctrl->lport->ops->lsrqst_priv_sz +
1094                          sizeof(*discon_rqst) + sizeof(*discon_acc)),
1095                         GFP_KERNEL);
1096         if (!lsop)
1097                 /* couldn't sent it... too bad */
1098                 return;
1099
1100         lsreq = &lsop->ls_req;
1101
1102         lsreq->private = (void *)&lsop[1];
1103         discon_rqst = (struct fcnvme_ls_disconnect_rqst *)
1104                         (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1105         discon_acc = (struct fcnvme_ls_disconnect_acc *)&discon_rqst[1];
1106
1107         discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT;
1108         discon_rqst->desc_list_len = cpu_to_be32(
1109                                 sizeof(struct fcnvme_lsdesc_assoc_id) +
1110                                 sizeof(struct fcnvme_lsdesc_disconn_cmd));
1111
1112         discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1113         discon_rqst->associd.desc_len =
1114                         fcnvme_lsdesc_len(
1115                                 sizeof(struct fcnvme_lsdesc_assoc_id));
1116
1117         discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1118
1119         discon_rqst->discon_cmd.desc_tag = cpu_to_be32(
1120                                                 FCNVME_LSDESC_DISCONN_CMD);
1121         discon_rqst->discon_cmd.desc_len =
1122                         fcnvme_lsdesc_len(
1123                                 sizeof(struct fcnvme_lsdesc_disconn_cmd));
1124         discon_rqst->discon_cmd.scope = FCNVME_DISCONN_ASSOCIATION;
1125         discon_rqst->discon_cmd.id = cpu_to_be64(ctrl->association_id);
1126
1127         lsreq->rqstaddr = discon_rqst;
1128         lsreq->rqstlen = sizeof(*discon_rqst);
1129         lsreq->rspaddr = discon_acc;
1130         lsreq->rsplen = sizeof(*discon_acc);
1131         lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1132
1133         ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop,
1134                                 nvme_fc_disconnect_assoc_done);
1135         if (ret)
1136                 kfree(lsop);
1137
1138         /* only meaningful part to terminating the association */
1139         ctrl->association_id = 0;
1140 }
1141
1142
1143 /* *********************** NVME Ctrl Routines **************************** */
1144
1145 static void __nvme_fc_final_op_cleanup(struct request *rq);
1146
1147 static int
1148 nvme_fc_reinit_request(void *data, struct request *rq)
1149 {
1150         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1151         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1152
1153         memset(cmdiu, 0, sizeof(*cmdiu));
1154         cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1155         cmdiu->fc_id = NVME_CMD_FC_ID;
1156         cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1157         memset(&op->rsp_iu, 0, sizeof(op->rsp_iu));
1158
1159         return 0;
1160 }
1161
1162 static void
1163 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1164                 struct nvme_fc_fcp_op *op)
1165 {
1166         fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1167                                 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1168         fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1169                                 sizeof(op->cmd_iu), DMA_TO_DEVICE);
1170
1171         atomic_set(&op->state, FCPOP_STATE_UNINIT);
1172 }
1173
1174 static void
1175 nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1176                 unsigned int hctx_idx)
1177 {
1178         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1179
1180         return __nvme_fc_exit_request(set->driver_data, op);
1181 }
1182
1183 static int
1184 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1185 {
1186         int state;
1187
1188         state = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1189         if (state != FCPOP_STATE_ACTIVE) {
1190                 atomic_set(&op->state, state);
1191                 return -ECANCELED;
1192         }
1193
1194         ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1195                                         &ctrl->rport->remoteport,
1196                                         op->queue->lldd_handle,
1197                                         &op->fcp_req);
1198
1199         return 0;
1200 }
1201
1202 static void
1203 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl)
1204 {
1205         struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
1206         unsigned long flags;
1207         int i, ret;
1208
1209         for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) {
1210                 if (atomic_read(&aen_op->state) != FCPOP_STATE_ACTIVE)
1211                         continue;
1212
1213                 spin_lock_irqsave(&ctrl->lock, flags);
1214                 if (ctrl->flags & FCCTRL_TERMIO) {
1215                         ctrl->iocnt++;
1216                         aen_op->flags |= FCOP_FLAGS_TERMIO;
1217                 }
1218                 spin_unlock_irqrestore(&ctrl->lock, flags);
1219
1220                 ret = __nvme_fc_abort_op(ctrl, aen_op);
1221                 if (ret) {
1222                         /*
1223                          * if __nvme_fc_abort_op failed the io wasn't
1224                          * active. Thus this call path is running in
1225                          * parallel to the io complete. Treat as non-error.
1226                          */
1227
1228                         /* back out the flags/counters */
1229                         spin_lock_irqsave(&ctrl->lock, flags);
1230                         if (ctrl->flags & FCCTRL_TERMIO)
1231                                 ctrl->iocnt--;
1232                         aen_op->flags &= ~FCOP_FLAGS_TERMIO;
1233                         spin_unlock_irqrestore(&ctrl->lock, flags);
1234                         return;
1235                 }
1236         }
1237 }
1238
1239 static inline int
1240 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl,
1241                 struct nvme_fc_fcp_op *op)
1242 {
1243         unsigned long flags;
1244         bool complete_rq = false;
1245
1246         spin_lock_irqsave(&ctrl->lock, flags);
1247         if (unlikely(op->flags & FCOP_FLAGS_TERMIO)) {
1248                 if (ctrl->flags & FCCTRL_TERMIO)
1249                         ctrl->iocnt--;
1250         }
1251         if (op->flags & FCOP_FLAGS_RELEASED)
1252                 complete_rq = true;
1253         else
1254                 op->flags |= FCOP_FLAGS_COMPLETE;
1255         spin_unlock_irqrestore(&ctrl->lock, flags);
1256
1257         return complete_rq;
1258 }
1259
1260 static void
1261 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1262 {
1263         struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1264         struct request *rq = op->rq;
1265         struct nvmefc_fcp_req *freq = &op->fcp_req;
1266         struct nvme_fc_ctrl *ctrl = op->ctrl;
1267         struct nvme_fc_queue *queue = op->queue;
1268         struct nvme_completion *cqe = &op->rsp_iu.cqe;
1269         struct nvme_command *sqe = &op->cmd_iu.sqe;
1270         __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1);
1271         union nvme_result result;
1272         bool complete_rq;
1273
1274         /*
1275          * WARNING:
1276          * The current linux implementation of a nvme controller
1277          * allocates a single tag set for all io queues and sizes
1278          * the io queues to fully hold all possible tags. Thus, the
1279          * implementation does not reference or care about the sqhd
1280          * value as it never needs to use the sqhd/sqtail pointers
1281          * for submission pacing.
1282          *
1283          * This affects the FC-NVME implementation in two ways:
1284          * 1) As the value doesn't matter, we don't need to waste
1285          *    cycles extracting it from ERSPs and stamping it in the
1286          *    cases where the transport fabricates CQEs on successful
1287          *    completions.
1288          * 2) The FC-NVME implementation requires that delivery of
1289          *    ERSP completions are to go back to the nvme layer in order
1290          *    relative to the rsn, such that the sqhd value will always
1291          *    be "in order" for the nvme layer. As the nvme layer in
1292          *    linux doesn't care about sqhd, there's no need to return
1293          *    them in order.
1294          *
1295          * Additionally:
1296          * As the core nvme layer in linux currently does not look at
1297          * every field in the cqe - in cases where the FC transport must
1298          * fabricate a CQE, the following fields will not be set as they
1299          * are not referenced:
1300          *      cqe.sqid,  cqe.sqhd,  cqe.command_id
1301          */
1302
1303         fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1304                                 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1305
1306         if (atomic_read(&op->state) == FCPOP_STATE_ABORTED)
1307                 status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1308         else if (freq->status)
1309                 status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1);
1310
1311         /*
1312          * For the linux implementation, if we have an unsuccesful
1313          * status, they blk-mq layer can typically be called with the
1314          * non-zero status and the content of the cqe isn't important.
1315          */
1316         if (status)
1317                 goto done;
1318
1319         /*
1320          * command completed successfully relative to the wire
1321          * protocol. However, validate anything received and
1322          * extract the status and result from the cqe (create it
1323          * where necessary).
1324          */
1325
1326         switch (freq->rcv_rsplen) {
1327
1328         case 0:
1329         case NVME_FC_SIZEOF_ZEROS_RSP:
1330                 /*
1331                  * No response payload or 12 bytes of payload (which
1332                  * should all be zeros) are considered successful and
1333                  * no payload in the CQE by the transport.
1334                  */
1335                 if (freq->transferred_length !=
1336                         be32_to_cpu(op->cmd_iu.data_len)) {
1337                         status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1);
1338                         goto done;
1339                 }
1340                 result.u64 = 0;
1341                 break;
1342
1343         case sizeof(struct nvme_fc_ersp_iu):
1344                 /*
1345                  * The ERSP IU contains a full completion with CQE.
1346                  * Validate ERSP IU and look at cqe.
1347                  */
1348                 if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
1349                                         (freq->rcv_rsplen / 4) ||
1350                              be32_to_cpu(op->rsp_iu.xfrd_len) !=
1351                                         freq->transferred_length ||
1352                              op->rsp_iu.status_code ||
1353                              sqe->common.command_id != cqe->command_id)) {
1354                         status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1);
1355                         goto done;
1356                 }
1357                 result = cqe->result;
1358                 status = cqe->status;
1359                 break;
1360
1361         default:
1362                 status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1);
1363                 goto done;
1364         }
1365
1366 done:
1367         if (op->flags & FCOP_FLAGS_AEN) {
1368                 nvme_complete_async_event(&queue->ctrl->ctrl, status, &result);
1369                 complete_rq = __nvme_fc_fcpop_chk_teardowns(ctrl, op);
1370                 atomic_set(&op->state, FCPOP_STATE_IDLE);
1371                 op->flags = FCOP_FLAGS_AEN;     /* clear other flags */
1372                 nvme_fc_ctrl_put(ctrl);
1373                 return;
1374         }
1375
1376         complete_rq = __nvme_fc_fcpop_chk_teardowns(ctrl, op);
1377         if (!complete_rq) {
1378                 if (unlikely(op->flags & FCOP_FLAGS_TERMIO)) {
1379                         status = cpu_to_le16(NVME_SC_ABORT_REQ);
1380                         if (blk_queue_dying(rq->q))
1381                                 status |= cpu_to_le16(NVME_SC_DNR);
1382                 }
1383                 nvme_end_request(rq, status, result);
1384         } else
1385                 __nvme_fc_final_op_cleanup(rq);
1386 }
1387
1388 static int
1389 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
1390                 struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
1391                 struct request *rq, u32 rqno)
1392 {
1393         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1394         int ret = 0;
1395
1396         memset(op, 0, sizeof(*op));
1397         op->fcp_req.cmdaddr = &op->cmd_iu;
1398         op->fcp_req.cmdlen = sizeof(op->cmd_iu);
1399         op->fcp_req.rspaddr = &op->rsp_iu;
1400         op->fcp_req.rsplen = sizeof(op->rsp_iu);
1401         op->fcp_req.done = nvme_fc_fcpio_done;
1402         op->fcp_req.first_sgl = (struct scatterlist *)&op[1];
1403         op->fcp_req.private = &op->fcp_req.first_sgl[SG_CHUNK_SIZE];
1404         op->ctrl = ctrl;
1405         op->queue = queue;
1406         op->rq = rq;
1407         op->rqno = rqno;
1408
1409         cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1410         cmdiu->fc_id = NVME_CMD_FC_ID;
1411         cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1412
1413         op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
1414                                 &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
1415         if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
1416                 dev_err(ctrl->dev,
1417                         "FCP Op failed - cmdiu dma mapping failed.\n");
1418                 ret = EFAULT;
1419                 goto out_on_error;
1420         }
1421
1422         op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
1423                                 &op->rsp_iu, sizeof(op->rsp_iu),
1424                                 DMA_FROM_DEVICE);
1425         if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
1426                 dev_err(ctrl->dev,
1427                         "FCP Op failed - rspiu dma mapping failed.\n");
1428                 ret = EFAULT;
1429         }
1430
1431         atomic_set(&op->state, FCPOP_STATE_IDLE);
1432 out_on_error:
1433         return ret;
1434 }
1435
1436 static int
1437 nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq,
1438                 unsigned int hctx_idx, unsigned int numa_node)
1439 {
1440         struct nvme_fc_ctrl *ctrl = set->driver_data;
1441         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1442         struct nvme_fc_queue *queue = &ctrl->queues[hctx_idx+1];
1443
1444         return __nvme_fc_init_request(ctrl, queue, op, rq, queue->rqcnt++);
1445 }
1446
1447 static int
1448 nvme_fc_init_admin_request(struct blk_mq_tag_set *set, struct request *rq,
1449                 unsigned int hctx_idx, unsigned int numa_node)
1450 {
1451         struct nvme_fc_ctrl *ctrl = set->driver_data;
1452         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1453         struct nvme_fc_queue *queue = &ctrl->queues[0];
1454
1455         return __nvme_fc_init_request(ctrl, queue, op, rq, queue->rqcnt++);
1456 }
1457
1458 static int
1459 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
1460 {
1461         struct nvme_fc_fcp_op *aen_op;
1462         struct nvme_fc_cmd_iu *cmdiu;
1463         struct nvme_command *sqe;
1464         void *private;
1465         int i, ret;
1466
1467         aen_op = ctrl->aen_ops;
1468         for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) {
1469                 private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz,
1470                                                 GFP_KERNEL);
1471                 if (!private)
1472                         return -ENOMEM;
1473
1474                 cmdiu = &aen_op->cmd_iu;
1475                 sqe = &cmdiu->sqe;
1476                 ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
1477                                 aen_op, (struct request *)NULL,
1478                                 (AEN_CMDID_BASE + i));
1479                 if (ret) {
1480                         kfree(private);
1481                         return ret;
1482                 }
1483
1484                 aen_op->flags = FCOP_FLAGS_AEN;
1485                 aen_op->fcp_req.first_sgl = NULL; /* no sg list */
1486                 aen_op->fcp_req.private = private;
1487
1488                 memset(sqe, 0, sizeof(*sqe));
1489                 sqe->common.opcode = nvme_admin_async_event;
1490                 /* Note: core layer may overwrite the sqe.command_id value */
1491                 sqe->common.command_id = AEN_CMDID_BASE + i;
1492         }
1493         return 0;
1494 }
1495
1496 static void
1497 nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl)
1498 {
1499         struct nvme_fc_fcp_op *aen_op;
1500         int i;
1501
1502         aen_op = ctrl->aen_ops;
1503         for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) {
1504                 if (!aen_op->fcp_req.private)
1505                         continue;
1506
1507                 __nvme_fc_exit_request(ctrl, aen_op);
1508
1509                 kfree(aen_op->fcp_req.private);
1510                 aen_op->fcp_req.private = NULL;
1511         }
1512 }
1513
1514 static inline void
1515 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl,
1516                 unsigned int qidx)
1517 {
1518         struct nvme_fc_queue *queue = &ctrl->queues[qidx];
1519
1520         hctx->driver_data = queue;
1521         queue->hctx = hctx;
1522 }
1523
1524 static int
1525 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1526                 unsigned int hctx_idx)
1527 {
1528         struct nvme_fc_ctrl *ctrl = data;
1529
1530         __nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1);
1531
1532         return 0;
1533 }
1534
1535 static int
1536 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1537                 unsigned int hctx_idx)
1538 {
1539         struct nvme_fc_ctrl *ctrl = data;
1540
1541         __nvme_fc_init_hctx(hctx, ctrl, hctx_idx);
1542
1543         return 0;
1544 }
1545
1546 static void
1547 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx, size_t queue_size)
1548 {
1549         struct nvme_fc_queue *queue;
1550
1551         queue = &ctrl->queues[idx];
1552         memset(queue, 0, sizeof(*queue));
1553         queue->ctrl = ctrl;
1554         queue->qnum = idx;
1555         atomic_set(&queue->csn, 1);
1556         queue->dev = ctrl->dev;
1557
1558         if (idx > 0)
1559                 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
1560         else
1561                 queue->cmnd_capsule_len = sizeof(struct nvme_command);
1562
1563         queue->queue_size = queue_size;
1564
1565         /*
1566          * Considered whether we should allocate buffers for all SQEs
1567          * and CQEs and dma map them - mapping their respective entries
1568          * into the request structures (kernel vm addr and dma address)
1569          * thus the driver could use the buffers/mappings directly.
1570          * It only makes sense if the LLDD would use them for its
1571          * messaging api. It's very unlikely most adapter api's would use
1572          * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
1573          * structures were used instead.
1574          */
1575 }
1576
1577 /*
1578  * This routine terminates a queue at the transport level.
1579  * The transport has already ensured that all outstanding ios on
1580  * the queue have been terminated.
1581  * The transport will send a Disconnect LS request to terminate
1582  * the queue's connection. Termination of the admin queue will also
1583  * terminate the association at the target.
1584  */
1585 static void
1586 nvme_fc_free_queue(struct nvme_fc_queue *queue)
1587 {
1588         if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
1589                 return;
1590
1591         /*
1592          * Current implementation never disconnects a single queue.
1593          * It always terminates a whole association. So there is never
1594          * a disconnect(queue) LS sent to the target.
1595          */
1596
1597         queue->connection_id = 0;
1598         clear_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1599 }
1600
1601 static void
1602 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
1603         struct nvme_fc_queue *queue, unsigned int qidx)
1604 {
1605         if (ctrl->lport->ops->delete_queue)
1606                 ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
1607                                 queue->lldd_handle);
1608         queue->lldd_handle = NULL;
1609 }
1610
1611 static void
1612 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
1613 {
1614         int i;
1615
1616         for (i = 1; i < ctrl->queue_count; i++)
1617                 nvme_fc_free_queue(&ctrl->queues[i]);
1618 }
1619
1620 static int
1621 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
1622         struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
1623 {
1624         int ret = 0;
1625
1626         queue->lldd_handle = NULL;
1627         if (ctrl->lport->ops->create_queue)
1628                 ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
1629                                 qidx, qsize, &queue->lldd_handle);
1630
1631         return ret;
1632 }
1633
1634 static void
1635 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
1636 {
1637         struct nvme_fc_queue *queue = &ctrl->queues[ctrl->queue_count - 1];
1638         int i;
1639
1640         for (i = ctrl->queue_count - 1; i >= 1; i--, queue--)
1641                 __nvme_fc_delete_hw_queue(ctrl, queue, i);
1642 }
1643
1644 static int
1645 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1646 {
1647         struct nvme_fc_queue *queue = &ctrl->queues[1];
1648         int i, ret;
1649
1650         for (i = 1; i < ctrl->queue_count; i++, queue++) {
1651                 ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
1652                 if (ret)
1653                         goto delete_queues;
1654         }
1655
1656         return 0;
1657
1658 delete_queues:
1659         for (; i >= 0; i--)
1660                 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
1661         return ret;
1662 }
1663
1664 static int
1665 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1666 {
1667         int i, ret = 0;
1668
1669         for (i = 1; i < ctrl->queue_count; i++) {
1670                 ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
1671                                         (qsize / 5));
1672                 if (ret)
1673                         break;
1674                 ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
1675                 if (ret)
1676                         break;
1677         }
1678
1679         return ret;
1680 }
1681
1682 static void
1683 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
1684 {
1685         int i;
1686
1687         for (i = 1; i < ctrl->queue_count; i++)
1688                 nvme_fc_init_queue(ctrl, i, ctrl->ctrl.sqsize);
1689 }
1690
1691 static void
1692 nvme_fc_ctrl_free(struct kref *ref)
1693 {
1694         struct nvme_fc_ctrl *ctrl =
1695                 container_of(ref, struct nvme_fc_ctrl, ref);
1696         unsigned long flags;
1697
1698         if (ctrl->ctrl.tagset) {
1699                 blk_cleanup_queue(ctrl->ctrl.connect_q);
1700                 blk_mq_free_tag_set(&ctrl->tag_set);
1701         }
1702
1703         /* remove from rport list */
1704         spin_lock_irqsave(&ctrl->rport->lock, flags);
1705         list_del(&ctrl->ctrl_list);
1706         spin_unlock_irqrestore(&ctrl->rport->lock, flags);
1707
1708         blk_cleanup_queue(ctrl->ctrl.admin_q);
1709         blk_mq_free_tag_set(&ctrl->admin_tag_set);
1710
1711         kfree(ctrl->queues);
1712
1713         put_device(ctrl->dev);
1714         nvme_fc_rport_put(ctrl->rport);
1715
1716         ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
1717         if (ctrl->ctrl.opts)
1718                 nvmf_free_options(ctrl->ctrl.opts);
1719         kfree(ctrl);
1720 }
1721
1722 static void
1723 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
1724 {
1725         kref_put(&ctrl->ref, nvme_fc_ctrl_free);
1726 }
1727
1728 static int
1729 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
1730 {
1731         return kref_get_unless_zero(&ctrl->ref);
1732 }
1733
1734 /*
1735  * All accesses from nvme core layer done - can now free the
1736  * controller. Called after last nvme_put_ctrl() call
1737  */
1738 static void
1739 nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl)
1740 {
1741         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
1742
1743         WARN_ON(nctrl != &ctrl->ctrl);
1744
1745         nvme_fc_ctrl_put(ctrl);
1746 }
1747
1748 static void
1749 nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg)
1750 {
1751         dev_warn(ctrl->ctrl.device,
1752                 "NVME-FC{%d}: transport association error detected: %s\n",
1753                 ctrl->cnum, errmsg);
1754         dev_info(ctrl->ctrl.device,
1755                 "NVME-FC{%d}: resetting controller\n", ctrl->cnum);
1756
1757         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING)) {
1758                 dev_err(ctrl->ctrl.device,
1759                         "NVME-FC{%d}: error_recovery: Couldn't change state "
1760                         "to RECONNECTING\n", ctrl->cnum);
1761                 return;
1762         }
1763
1764         if (!queue_work(nvme_fc_wq, &ctrl->reset_work))
1765                 dev_err(ctrl->ctrl.device,
1766                         "NVME-FC{%d}: error_recovery: Failed to schedule "
1767                         "reset work\n", ctrl->cnum);
1768 }
1769
1770 static enum blk_eh_timer_return
1771 nvme_fc_timeout(struct request *rq, bool reserved)
1772 {
1773         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1774         struct nvme_fc_ctrl *ctrl = op->ctrl;
1775         int ret;
1776
1777         if (reserved)
1778                 return BLK_EH_RESET_TIMER;
1779
1780         ret = __nvme_fc_abort_op(ctrl, op);
1781         if (ret)
1782                 /* io wasn't active to abort consider it done */
1783                 return BLK_EH_HANDLED;
1784
1785         /*
1786          * we can't individually ABTS an io without affecting the queue,
1787          * thus killing the queue, adn thus the association.
1788          * So resolve by performing a controller reset, which will stop
1789          * the host/io stack, terminate the association on the link,
1790          * and recreate an association on the link.
1791          */
1792         nvme_fc_error_recovery(ctrl, "io timeout error");
1793
1794         return BLK_EH_HANDLED;
1795 }
1796
1797 static int
1798 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
1799                 struct nvme_fc_fcp_op *op)
1800 {
1801         struct nvmefc_fcp_req *freq = &op->fcp_req;
1802         enum dma_data_direction dir;
1803         int ret;
1804
1805         freq->sg_cnt = 0;
1806
1807         if (!blk_rq_payload_bytes(rq))
1808                 return 0;
1809
1810         freq->sg_table.sgl = freq->first_sgl;
1811         ret = sg_alloc_table_chained(&freq->sg_table,
1812                         blk_rq_nr_phys_segments(rq), freq->sg_table.sgl);
1813         if (ret)
1814                 return -ENOMEM;
1815
1816         op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
1817         WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
1818         dir = (rq_data_dir(rq) == WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
1819         freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
1820                                 op->nents, dir);
1821         if (unlikely(freq->sg_cnt <= 0)) {
1822                 sg_free_table_chained(&freq->sg_table, true);
1823                 freq->sg_cnt = 0;
1824                 return -EFAULT;
1825         }
1826
1827         /*
1828          * TODO: blk_integrity_rq(rq)  for DIF
1829          */
1830         return 0;
1831 }
1832
1833 static void
1834 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
1835                 struct nvme_fc_fcp_op *op)
1836 {
1837         struct nvmefc_fcp_req *freq = &op->fcp_req;
1838
1839         if (!freq->sg_cnt)
1840                 return;
1841
1842         fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
1843                                 ((rq_data_dir(rq) == WRITE) ?
1844                                         DMA_TO_DEVICE : DMA_FROM_DEVICE));
1845
1846         nvme_cleanup_cmd(rq);
1847
1848         sg_free_table_chained(&freq->sg_table, true);
1849
1850         freq->sg_cnt = 0;
1851 }
1852
1853 /*
1854  * In FC, the queue is a logical thing. At transport connect, the target
1855  * creates its "queue" and returns a handle that is to be given to the
1856  * target whenever it posts something to the corresponding SQ.  When an
1857  * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
1858  * command contained within the SQE, an io, and assigns a FC exchange
1859  * to it. The SQE and the associated SQ handle are sent in the initial
1860  * CMD IU sents on the exchange. All transfers relative to the io occur
1861  * as part of the exchange.  The CQE is the last thing for the io,
1862  * which is transferred (explicitly or implicitly) with the RSP IU
1863  * sent on the exchange. After the CQE is received, the FC exchange is
1864  * terminaed and the Exchange may be used on a different io.
1865  *
1866  * The transport to LLDD api has the transport making a request for a
1867  * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
1868  * resource and transfers the command. The LLDD will then process all
1869  * steps to complete the io. Upon completion, the transport done routine
1870  * is called.
1871  *
1872  * So - while the operation is outstanding to the LLDD, there is a link
1873  * level FC exchange resource that is also outstanding. This must be
1874  * considered in all cleanup operations.
1875  */
1876 static int
1877 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1878         struct nvme_fc_fcp_op *op, u32 data_len,
1879         enum nvmefc_fcp_datadir io_dir)
1880 {
1881         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1882         struct nvme_command *sqe = &cmdiu->sqe;
1883         u32 csn;
1884         int ret;
1885
1886         /*
1887          * before attempting to send the io, check to see if we believe
1888          * the target device is present
1889          */
1890         if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
1891                 return BLK_MQ_RQ_QUEUE_ERROR;
1892
1893         if (!nvme_fc_ctrl_get(ctrl))
1894                 return BLK_MQ_RQ_QUEUE_ERROR;
1895
1896         /* format the FC-NVME CMD IU and fcp_req */
1897         cmdiu->connection_id = cpu_to_be64(queue->connection_id);
1898         csn = atomic_inc_return(&queue->csn);
1899         cmdiu->csn = cpu_to_be32(csn);
1900         cmdiu->data_len = cpu_to_be32(data_len);
1901         switch (io_dir) {
1902         case NVMEFC_FCP_WRITE:
1903                 cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
1904                 break;
1905         case NVMEFC_FCP_READ:
1906                 cmdiu->flags = FCNVME_CMD_FLAGS_READ;
1907                 break;
1908         case NVMEFC_FCP_NODATA:
1909                 cmdiu->flags = 0;
1910                 break;
1911         }
1912         op->fcp_req.payload_length = data_len;
1913         op->fcp_req.io_dir = io_dir;
1914         op->fcp_req.transferred_length = 0;
1915         op->fcp_req.rcv_rsplen = 0;
1916         op->fcp_req.status = NVME_SC_SUCCESS;
1917         op->fcp_req.sqid = cpu_to_le16(queue->qnum);
1918
1919         /*
1920          * validate per fabric rules, set fields mandated by fabric spec
1921          * as well as those by FC-NVME spec.
1922          */
1923         WARN_ON_ONCE(sqe->common.metadata);
1924         WARN_ON_ONCE(sqe->common.dptr.prp1);
1925         WARN_ON_ONCE(sqe->common.dptr.prp2);
1926         sqe->common.flags |= NVME_CMD_SGL_METABUF;
1927
1928         /*
1929          * format SQE DPTR field per FC-NVME rules
1930          *    type=data block descr; subtype=offset;
1931          *    offset is currently 0.
1932          */
1933         sqe->rw.dptr.sgl.type = NVME_SGL_FMT_OFFSET;
1934         sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
1935         sqe->rw.dptr.sgl.addr = 0;
1936
1937         if (!(op->flags & FCOP_FLAGS_AEN)) {
1938                 ret = nvme_fc_map_data(ctrl, op->rq, op);
1939                 if (ret < 0) {
1940                         nvme_cleanup_cmd(op->rq);
1941                         nvme_fc_ctrl_put(ctrl);
1942                         return (ret == -ENOMEM || ret == -EAGAIN) ?
1943                                 BLK_MQ_RQ_QUEUE_BUSY : BLK_MQ_RQ_QUEUE_ERROR;
1944                 }
1945         }
1946
1947         fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
1948                                   sizeof(op->cmd_iu), DMA_TO_DEVICE);
1949
1950         atomic_set(&op->state, FCPOP_STATE_ACTIVE);
1951
1952         if (!(op->flags & FCOP_FLAGS_AEN))
1953                 blk_mq_start_request(op->rq);
1954
1955         ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
1956                                         &ctrl->rport->remoteport,
1957                                         queue->lldd_handle, &op->fcp_req);
1958
1959         if (ret) {
1960                 if (op->rq) {                   /* normal request */
1961                         nvme_fc_unmap_data(ctrl, op->rq, op);
1962                         nvme_cleanup_cmd(op->rq);
1963                 }
1964                 /* else - aen. no cleanup needed */
1965
1966                 nvme_fc_ctrl_put(ctrl);
1967
1968                 if (ret != -EBUSY)
1969                         return BLK_MQ_RQ_QUEUE_ERROR;
1970
1971                 if (op->rq) {
1972                         blk_mq_stop_hw_queues(op->rq->q);
1973                         blk_mq_delay_queue(queue->hctx, NVMEFC_QUEUE_DELAY);
1974                 }
1975                 return BLK_MQ_RQ_QUEUE_BUSY;
1976         }
1977
1978         return BLK_MQ_RQ_QUEUE_OK;
1979 }
1980
1981 static int
1982 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
1983                         const struct blk_mq_queue_data *bd)
1984 {
1985         struct nvme_ns *ns = hctx->queue->queuedata;
1986         struct nvme_fc_queue *queue = hctx->driver_data;
1987         struct nvme_fc_ctrl *ctrl = queue->ctrl;
1988         struct request *rq = bd->rq;
1989         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1990         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1991         struct nvme_command *sqe = &cmdiu->sqe;
1992         enum nvmefc_fcp_datadir io_dir;
1993         u32 data_len;
1994         int ret;
1995
1996         ret = nvme_setup_cmd(ns, rq, sqe);
1997         if (ret)
1998                 return ret;
1999
2000         data_len = blk_rq_payload_bytes(rq);
2001         if (data_len)
2002                 io_dir = ((rq_data_dir(rq) == WRITE) ?
2003                                         NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
2004         else
2005                 io_dir = NVMEFC_FCP_NODATA;
2006
2007         return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
2008 }
2009
2010 static struct blk_mq_tags *
2011 nvme_fc_tagset(struct nvme_fc_queue *queue)
2012 {
2013         if (queue->qnum == 0)
2014                 return queue->ctrl->admin_tag_set.tags[queue->qnum];
2015
2016         return queue->ctrl->tag_set.tags[queue->qnum - 1];
2017 }
2018
2019 static int
2020 nvme_fc_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
2021
2022 {
2023         struct nvme_fc_queue *queue = hctx->driver_data;
2024         struct nvme_fc_ctrl *ctrl = queue->ctrl;
2025         struct request *req;
2026         struct nvme_fc_fcp_op *op;
2027
2028         req = blk_mq_tag_to_rq(nvme_fc_tagset(queue), tag);
2029         if (!req)
2030                 return 0;
2031
2032         op = blk_mq_rq_to_pdu(req);
2033
2034         if ((atomic_read(&op->state) == FCPOP_STATE_ACTIVE) &&
2035                  (ctrl->lport->ops->poll_queue))
2036                 ctrl->lport->ops->poll_queue(&ctrl->lport->localport,
2037                                                  queue->lldd_handle);
2038
2039         return ((atomic_read(&op->state) != FCPOP_STATE_ACTIVE));
2040 }
2041
2042 static void
2043 nvme_fc_submit_async_event(struct nvme_ctrl *arg, int aer_idx)
2044 {
2045         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
2046         struct nvme_fc_fcp_op *aen_op;
2047         unsigned long flags;
2048         bool terminating = false;
2049         int ret;
2050
2051         if (aer_idx > NVME_FC_NR_AEN_COMMANDS)
2052                 return;
2053
2054         spin_lock_irqsave(&ctrl->lock, flags);
2055         if (ctrl->flags & FCCTRL_TERMIO)
2056                 terminating = true;
2057         spin_unlock_irqrestore(&ctrl->lock, flags);
2058
2059         if (terminating)
2060                 return;
2061
2062         aen_op = &ctrl->aen_ops[aer_idx];
2063
2064         ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
2065                                         NVMEFC_FCP_NODATA);
2066         if (ret)
2067                 dev_err(ctrl->ctrl.device,
2068                         "failed async event work [%d]\n", aer_idx);
2069 }
2070
2071 static void
2072 __nvme_fc_final_op_cleanup(struct request *rq)
2073 {
2074         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2075         struct nvme_fc_ctrl *ctrl = op->ctrl;
2076
2077         atomic_set(&op->state, FCPOP_STATE_IDLE);
2078         op->flags &= ~(FCOP_FLAGS_TERMIO | FCOP_FLAGS_RELEASED |
2079                         FCOP_FLAGS_COMPLETE);
2080
2081         nvme_cleanup_cmd(rq);
2082         nvme_fc_unmap_data(ctrl, rq, op);
2083         nvme_complete_rq(rq);
2084         nvme_fc_ctrl_put(ctrl);
2085
2086 }
2087
2088 static void
2089 nvme_fc_complete_rq(struct request *rq)
2090 {
2091         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2092         struct nvme_fc_ctrl *ctrl = op->ctrl;
2093         unsigned long flags;
2094         bool completed = false;
2095
2096         /*
2097          * the core layer, on controller resets after calling
2098          * nvme_shutdown_ctrl(), calls complete_rq without our
2099          * calling blk_mq_complete_request(), thus there may still
2100          * be live i/o outstanding with the LLDD. Means transport has
2101          * to track complete calls vs fcpio_done calls to know what
2102          * path to take on completes and dones.
2103          */
2104         spin_lock_irqsave(&ctrl->lock, flags);
2105         if (op->flags & FCOP_FLAGS_COMPLETE)
2106                 completed = true;
2107         else
2108                 op->flags |= FCOP_FLAGS_RELEASED;
2109         spin_unlock_irqrestore(&ctrl->lock, flags);
2110
2111         if (completed)
2112                 __nvme_fc_final_op_cleanup(rq);
2113 }
2114
2115 /*
2116  * This routine is used by the transport when it needs to find active
2117  * io on a queue that is to be terminated. The transport uses
2118  * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2119  * this routine to kill them on a 1 by 1 basis.
2120  *
2121  * As FC allocates FC exchange for each io, the transport must contact
2122  * the LLDD to terminate the exchange, thus releasing the FC exchange.
2123  * After terminating the exchange the LLDD will call the transport's
2124  * normal io done path for the request, but it will have an aborted
2125  * status. The done path will return the io request back to the block
2126  * layer with an error status.
2127  */
2128 static void
2129 nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved)
2130 {
2131         struct nvme_ctrl *nctrl = data;
2132         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2133         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
2134         unsigned long flags;
2135         int status;
2136
2137         if (!blk_mq_request_started(req))
2138                 return;
2139
2140         spin_lock_irqsave(&ctrl->lock, flags);
2141         if (ctrl->flags & FCCTRL_TERMIO) {
2142                 ctrl->iocnt++;
2143                 op->flags |= FCOP_FLAGS_TERMIO;
2144         }
2145         spin_unlock_irqrestore(&ctrl->lock, flags);
2146
2147         status = __nvme_fc_abort_op(ctrl, op);
2148         if (status) {
2149                 /*
2150                  * if __nvme_fc_abort_op failed the io wasn't
2151                  * active. Thus this call path is running in
2152                  * parallel to the io complete. Treat as non-error.
2153                  */
2154
2155                 /* back out the flags/counters */
2156                 spin_lock_irqsave(&ctrl->lock, flags);
2157                 if (ctrl->flags & FCCTRL_TERMIO)
2158                         ctrl->iocnt--;
2159                 op->flags &= ~FCOP_FLAGS_TERMIO;
2160                 spin_unlock_irqrestore(&ctrl->lock, flags);
2161                 return;
2162         }
2163 }
2164
2165
2166 static const struct blk_mq_ops nvme_fc_mq_ops = {
2167         .queue_rq       = nvme_fc_queue_rq,
2168         .complete       = nvme_fc_complete_rq,
2169         .init_request   = nvme_fc_init_request,
2170         .exit_request   = nvme_fc_exit_request,
2171         .reinit_request = nvme_fc_reinit_request,
2172         .init_hctx      = nvme_fc_init_hctx,
2173         .poll           = nvme_fc_poll,
2174         .timeout        = nvme_fc_timeout,
2175 };
2176
2177 static int
2178 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
2179 {
2180         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2181         int ret;
2182
2183         ret = nvme_set_queue_count(&ctrl->ctrl, &opts->nr_io_queues);
2184         if (ret) {
2185                 dev_info(ctrl->ctrl.device,
2186                         "set_queue_count failed: %d\n", ret);
2187                 return ret;
2188         }
2189
2190         ctrl->queue_count = opts->nr_io_queues + 1;
2191         if (!opts->nr_io_queues)
2192                 return 0;
2193
2194         dev_info(ctrl->ctrl.device, "creating %d I/O queues.\n",
2195                         opts->nr_io_queues);
2196
2197         nvme_fc_init_io_queues(ctrl);
2198
2199         memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
2200         ctrl->tag_set.ops = &nvme_fc_mq_ops;
2201         ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
2202         ctrl->tag_set.reserved_tags = 1; /* fabric connect */
2203         ctrl->tag_set.numa_node = NUMA_NO_NODE;
2204         ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
2205         ctrl->tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
2206                                         (SG_CHUNK_SIZE *
2207                                                 sizeof(struct scatterlist)) +
2208                                         ctrl->lport->ops->fcprqst_priv_sz;
2209         ctrl->tag_set.driver_data = ctrl;
2210         ctrl->tag_set.nr_hw_queues = ctrl->queue_count - 1;
2211         ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
2212
2213         ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
2214         if (ret)
2215                 return ret;
2216
2217         ctrl->ctrl.tagset = &ctrl->tag_set;
2218
2219         ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
2220         if (IS_ERR(ctrl->ctrl.connect_q)) {
2221                 ret = PTR_ERR(ctrl->ctrl.connect_q);
2222                 goto out_free_tag_set;
2223         }
2224
2225         ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2226         if (ret)
2227                 goto out_cleanup_blk_queue;
2228
2229         ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2230         if (ret)
2231                 goto out_delete_hw_queues;
2232
2233         return 0;
2234
2235 out_delete_hw_queues:
2236         nvme_fc_delete_hw_io_queues(ctrl);
2237 out_cleanup_blk_queue:
2238         nvme_stop_keep_alive(&ctrl->ctrl);
2239         blk_cleanup_queue(ctrl->ctrl.connect_q);
2240 out_free_tag_set:
2241         blk_mq_free_tag_set(&ctrl->tag_set);
2242         nvme_fc_free_io_queues(ctrl);
2243
2244         /* force put free routine to ignore io queues */
2245         ctrl->ctrl.tagset = NULL;
2246
2247         return ret;
2248 }
2249
2250 static int
2251 nvme_fc_reinit_io_queues(struct nvme_fc_ctrl *ctrl)
2252 {
2253         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2254         int ret;
2255
2256         ret = nvme_set_queue_count(&ctrl->ctrl, &opts->nr_io_queues);
2257         if (ret) {
2258                 dev_info(ctrl->ctrl.device,
2259                         "set_queue_count failed: %d\n", ret);
2260                 return ret;
2261         }
2262
2263         /* check for io queues existing */
2264         if (ctrl->queue_count == 1)
2265                 return 0;
2266
2267         dev_info(ctrl->ctrl.device, "Recreating %d I/O queues.\n",
2268                         opts->nr_io_queues);
2269
2270         nvme_fc_init_io_queues(ctrl);
2271
2272         ret = blk_mq_reinit_tagset(&ctrl->tag_set);
2273         if (ret)
2274                 goto out_free_io_queues;
2275
2276         ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2277         if (ret)
2278                 goto out_free_io_queues;
2279
2280         ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2281         if (ret)
2282                 goto out_delete_hw_queues;
2283
2284         return 0;
2285
2286 out_delete_hw_queues:
2287         nvme_fc_delete_hw_io_queues(ctrl);
2288 out_free_io_queues:
2289         nvme_fc_free_io_queues(ctrl);
2290         return ret;
2291 }
2292
2293 /*
2294  * This routine restarts the controller on the host side, and
2295  * on the link side, recreates the controller association.
2296  */
2297 static int
2298 nvme_fc_create_association(struct nvme_fc_ctrl *ctrl)
2299 {
2300         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2301         u32 segs;
2302         int ret;
2303         bool changed;
2304
2305         ctrl->connect_attempts++;
2306
2307         /*
2308          * Create the admin queue
2309          */
2310
2311         nvme_fc_init_queue(ctrl, 0, NVME_FC_AQ_BLKMQ_DEPTH);
2312
2313         ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
2314                                 NVME_FC_AQ_BLKMQ_DEPTH);
2315         if (ret)
2316                 goto out_free_queue;
2317
2318         ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
2319                                 NVME_FC_AQ_BLKMQ_DEPTH,
2320                                 (NVME_FC_AQ_BLKMQ_DEPTH / 4));
2321         if (ret)
2322                 goto out_delete_hw_queue;
2323
2324         if (ctrl->ctrl.state != NVME_CTRL_NEW)
2325                 blk_mq_start_stopped_hw_queues(ctrl->ctrl.admin_q, true);
2326
2327         ret = nvmf_connect_admin_queue(&ctrl->ctrl);
2328         if (ret)
2329                 goto out_disconnect_admin_queue;
2330
2331         /*
2332          * Check controller capabilities
2333          *
2334          * todo:- add code to check if ctrl attributes changed from
2335          * prior connection values
2336          */
2337
2338         ret = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->cap);
2339         if (ret) {
2340                 dev_err(ctrl->ctrl.device,
2341                         "prop_get NVME_REG_CAP failed\n");
2342                 goto out_disconnect_admin_queue;
2343         }
2344
2345         ctrl->ctrl.sqsize =
2346                 min_t(int, NVME_CAP_MQES(ctrl->cap) + 1, ctrl->ctrl.sqsize);
2347
2348         ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap);
2349         if (ret)
2350                 goto out_disconnect_admin_queue;
2351
2352         segs = min_t(u32, NVME_FC_MAX_SEGMENTS,
2353                         ctrl->lport->ops->max_sgl_segments);
2354         ctrl->ctrl.max_hw_sectors = (segs - 1) << (PAGE_SHIFT - 9);
2355
2356         ret = nvme_init_identify(&ctrl->ctrl);
2357         if (ret)
2358                 goto out_disconnect_admin_queue;
2359
2360         /* sanity checks */
2361
2362         /* FC-NVME does not have other data in the capsule */
2363         if (ctrl->ctrl.icdoff) {
2364                 dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
2365                                 ctrl->ctrl.icdoff);
2366                 goto out_disconnect_admin_queue;
2367         }
2368
2369         nvme_start_keep_alive(&ctrl->ctrl);
2370
2371         /* FC-NVME supports normal SGL Data Block Descriptors */
2372
2373         if (opts->queue_size > ctrl->ctrl.maxcmd) {
2374                 /* warn if maxcmd is lower than queue_size */
2375                 dev_warn(ctrl->ctrl.device,
2376                         "queue_size %zu > ctrl maxcmd %u, reducing "
2377                         "to queue_size\n",
2378                         opts->queue_size, ctrl->ctrl.maxcmd);
2379                 opts->queue_size = ctrl->ctrl.maxcmd;
2380         }
2381
2382         ret = nvme_fc_init_aen_ops(ctrl);
2383         if (ret)
2384                 goto out_term_aen_ops;
2385
2386         /*
2387          * Create the io queues
2388          */
2389
2390         if (ctrl->queue_count > 1) {
2391                 if (ctrl->ctrl.state == NVME_CTRL_NEW)
2392                         ret = nvme_fc_create_io_queues(ctrl);
2393                 else
2394                         ret = nvme_fc_reinit_io_queues(ctrl);
2395                 if (ret)
2396                         goto out_term_aen_ops;
2397         }
2398
2399         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
2400         WARN_ON_ONCE(!changed);
2401
2402         ctrl->connect_attempts = 0;
2403
2404         kref_get(&ctrl->ctrl.kref);
2405
2406         if (ctrl->queue_count > 1) {
2407                 nvme_start_queues(&ctrl->ctrl);
2408                 nvme_queue_scan(&ctrl->ctrl);
2409                 nvme_queue_async_events(&ctrl->ctrl);
2410         }
2411
2412         return 0;       /* Success */
2413
2414 out_term_aen_ops:
2415         nvme_fc_term_aen_ops(ctrl);
2416         nvme_stop_keep_alive(&ctrl->ctrl);
2417 out_disconnect_admin_queue:
2418         /* send a Disconnect(association) LS to fc-nvme target */
2419         nvme_fc_xmt_disconnect_assoc(ctrl);
2420 out_delete_hw_queue:
2421         __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2422 out_free_queue:
2423         nvme_fc_free_queue(&ctrl->queues[0]);
2424
2425         return ret;
2426 }
2427
2428 /*
2429  * This routine stops operation of the controller on the host side.
2430  * On the host os stack side: Admin and IO queues are stopped,
2431  *   outstanding ios on them terminated via FC ABTS.
2432  * On the link side: the association is terminated.
2433  */
2434 static void
2435 nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl)
2436 {
2437         unsigned long flags;
2438
2439         nvme_stop_keep_alive(&ctrl->ctrl);
2440
2441         spin_lock_irqsave(&ctrl->lock, flags);
2442         ctrl->flags |= FCCTRL_TERMIO;
2443         ctrl->iocnt = 0;
2444         spin_unlock_irqrestore(&ctrl->lock, flags);
2445
2446         /*
2447          * If io queues are present, stop them and terminate all outstanding
2448          * ios on them. As FC allocates FC exchange for each io, the
2449          * transport must contact the LLDD to terminate the exchange,
2450          * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2451          * to tell us what io's are busy and invoke a transport routine
2452          * to kill them with the LLDD.  After terminating the exchange
2453          * the LLDD will call the transport's normal io done path, but it
2454          * will have an aborted status. The done path will return the
2455          * io requests back to the block layer as part of normal completions
2456          * (but with error status).
2457          */
2458         if (ctrl->queue_count > 1) {
2459                 nvme_stop_queues(&ctrl->ctrl);
2460                 blk_mq_tagset_busy_iter(&ctrl->tag_set,
2461                                 nvme_fc_terminate_exchange, &ctrl->ctrl);
2462         }
2463
2464         /*
2465          * Other transports, which don't have link-level contexts bound
2466          * to sqe's, would try to gracefully shutdown the controller by
2467          * writing the registers for shutdown and polling (call
2468          * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially
2469          * just aborted and we will wait on those contexts, and given
2470          * there was no indication of how live the controlelr is on the
2471          * link, don't send more io to create more contexts for the
2472          * shutdown. Let the controller fail via keepalive failure if
2473          * its still present.
2474          */
2475
2476         /*
2477          * clean up the admin queue. Same thing as above.
2478          * use blk_mq_tagset_busy_itr() and the transport routine to
2479          * terminate the exchanges.
2480          */
2481         blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
2482         blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
2483                                 nvme_fc_terminate_exchange, &ctrl->ctrl);
2484
2485         /* kill the aens as they are a separate path */
2486         nvme_fc_abort_aen_ops(ctrl);
2487
2488         /* wait for all io that had to be aborted */
2489         spin_lock_irqsave(&ctrl->lock, flags);
2490         while (ctrl->iocnt) {
2491                 spin_unlock_irqrestore(&ctrl->lock, flags);
2492                 msleep(1000);
2493                 spin_lock_irqsave(&ctrl->lock, flags);
2494         }
2495         ctrl->flags &= ~FCCTRL_TERMIO;
2496         spin_unlock_irqrestore(&ctrl->lock, flags);
2497
2498         nvme_fc_term_aen_ops(ctrl);
2499
2500         /*
2501          * send a Disconnect(association) LS to fc-nvme target
2502          * Note: could have been sent at top of process, but
2503          * cleaner on link traffic if after the aborts complete.
2504          * Note: if association doesn't exist, association_id will be 0
2505          */
2506         if (ctrl->association_id)
2507                 nvme_fc_xmt_disconnect_assoc(ctrl);
2508
2509         if (ctrl->ctrl.tagset) {
2510                 nvme_fc_delete_hw_io_queues(ctrl);
2511                 nvme_fc_free_io_queues(ctrl);
2512         }
2513
2514         __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2515         nvme_fc_free_queue(&ctrl->queues[0]);
2516 }
2517
2518 static void
2519 nvme_fc_delete_ctrl_work(struct work_struct *work)
2520 {
2521         struct nvme_fc_ctrl *ctrl =
2522                 container_of(work, struct nvme_fc_ctrl, delete_work);
2523
2524         cancel_work_sync(&ctrl->reset_work);
2525         cancel_delayed_work_sync(&ctrl->connect_work);
2526
2527         /*
2528          * kill the association on the link side.  this will block
2529          * waiting for io to terminate
2530          */
2531         nvme_fc_delete_association(ctrl);
2532
2533         /*
2534          * tear down the controller
2535          * This will result in the last reference on the nvme ctrl to
2536          * expire, calling the transport nvme_fc_nvme_ctrl_freed() callback.
2537          * From there, the transport will tear down it's logical queues and
2538          * association.
2539          */
2540         nvme_uninit_ctrl(&ctrl->ctrl);
2541
2542         nvme_put_ctrl(&ctrl->ctrl);
2543 }
2544
2545 static int
2546 __nvme_fc_del_ctrl(struct nvme_fc_ctrl *ctrl)
2547 {
2548         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
2549                 return -EBUSY;
2550
2551         if (!queue_work(nvme_fc_wq, &ctrl->delete_work))
2552                 return -EBUSY;
2553
2554         return 0;
2555 }
2556
2557 /*
2558  * Request from nvme core layer to delete the controller
2559  */
2560 static int
2561 nvme_fc_del_nvme_ctrl(struct nvme_ctrl *nctrl)
2562 {
2563         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2564         int ret;
2565
2566         if (!kref_get_unless_zero(&ctrl->ctrl.kref))
2567                 return -EBUSY;
2568
2569         ret = __nvme_fc_del_ctrl(ctrl);
2570
2571         if (!ret)
2572                 flush_workqueue(nvme_fc_wq);
2573
2574         nvme_put_ctrl(&ctrl->ctrl);
2575
2576         return ret;
2577 }
2578
2579 static void
2580 nvme_fc_reset_ctrl_work(struct work_struct *work)
2581 {
2582         struct nvme_fc_ctrl *ctrl =
2583                         container_of(work, struct nvme_fc_ctrl, reset_work);
2584         int ret;
2585
2586         /* will block will waiting for io to terminate */
2587         nvme_fc_delete_association(ctrl);
2588
2589         ret = nvme_fc_create_association(ctrl);
2590         if (ret) {
2591                 dev_warn(ctrl->ctrl.device,
2592                         "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
2593                         ctrl->cnum, ret);
2594                 if (ctrl->connect_attempts >= NVME_FC_MAX_CONNECT_ATTEMPTS) {
2595                         dev_warn(ctrl->ctrl.device,
2596                                 "NVME-FC{%d}: Max reconnect attempts (%d) "
2597                                 "reached. Removing controller\n",
2598                                 ctrl->cnum, ctrl->connect_attempts);
2599
2600                         if (!nvme_change_ctrl_state(&ctrl->ctrl,
2601                                 NVME_CTRL_DELETING)) {
2602                                 dev_err(ctrl->ctrl.device,
2603                                         "NVME-FC{%d}: failed to change state "
2604                                         "to DELETING\n", ctrl->cnum);
2605                                 return;
2606                         }
2607
2608                         WARN_ON(!queue_work(nvme_fc_wq, &ctrl->delete_work));
2609                         return;
2610                 }
2611
2612                 dev_warn(ctrl->ctrl.device,
2613                         "NVME-FC{%d}: Reconnect attempt in %d seconds.\n",
2614                         ctrl->cnum, ctrl->reconnect_delay);
2615                 queue_delayed_work(nvme_fc_wq, &ctrl->connect_work,
2616                                 ctrl->reconnect_delay * HZ);
2617         } else
2618                 dev_info(ctrl->ctrl.device,
2619                         "NVME-FC{%d}: controller reset complete\n", ctrl->cnum);
2620 }
2621
2622 /*
2623  * called by the nvme core layer, for sysfs interface that requests
2624  * a reset of the nvme controller
2625  */
2626 static int
2627 nvme_fc_reset_nvme_ctrl(struct nvme_ctrl *nctrl)
2628 {
2629         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2630
2631         dev_warn(ctrl->ctrl.device,
2632                 "NVME-FC{%d}: admin requested controller reset\n", ctrl->cnum);
2633
2634         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
2635                 return -EBUSY;
2636
2637         if (!queue_work(nvme_fc_wq, &ctrl->reset_work))
2638                 return -EBUSY;
2639
2640         flush_work(&ctrl->reset_work);
2641
2642         return 0;
2643 }
2644
2645 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
2646         .name                   = "fc",
2647         .module                 = THIS_MODULE,
2648         .is_fabrics             = true,
2649         .reg_read32             = nvmf_reg_read32,
2650         .reg_read64             = nvmf_reg_read64,
2651         .reg_write32            = nvmf_reg_write32,
2652         .reset_ctrl             = nvme_fc_reset_nvme_ctrl,
2653         .free_ctrl              = nvme_fc_nvme_ctrl_freed,
2654         .submit_async_event     = nvme_fc_submit_async_event,
2655         .delete_ctrl            = nvme_fc_del_nvme_ctrl,
2656         .get_subsysnqn          = nvmf_get_subsysnqn,
2657         .get_address            = nvmf_get_address,
2658 };
2659
2660 static void
2661 nvme_fc_connect_ctrl_work(struct work_struct *work)
2662 {
2663         int ret;
2664
2665         struct nvme_fc_ctrl *ctrl =
2666                         container_of(to_delayed_work(work),
2667                                 struct nvme_fc_ctrl, connect_work);
2668
2669         ret = nvme_fc_create_association(ctrl);
2670         if (ret) {
2671                 dev_warn(ctrl->ctrl.device,
2672                         "NVME-FC{%d}: Reconnect attempt failed (%d)\n",
2673                         ctrl->cnum, ret);
2674                 if (ctrl->connect_attempts >= NVME_FC_MAX_CONNECT_ATTEMPTS) {
2675                         dev_warn(ctrl->ctrl.device,
2676                                 "NVME-FC{%d}: Max reconnect attempts (%d) "
2677                                 "reached. Removing controller\n",
2678                                 ctrl->cnum, ctrl->connect_attempts);
2679
2680                         if (!nvme_change_ctrl_state(&ctrl->ctrl,
2681                                 NVME_CTRL_DELETING)) {
2682                                 dev_err(ctrl->ctrl.device,
2683                                         "NVME-FC{%d}: failed to change state "
2684                                         "to DELETING\n", ctrl->cnum);
2685                                 return;
2686                         }
2687
2688                         WARN_ON(!queue_work(nvme_fc_wq, &ctrl->delete_work));
2689                         return;
2690                 }
2691
2692                 dev_warn(ctrl->ctrl.device,
2693                         "NVME-FC{%d}: Reconnect attempt in %d seconds.\n",
2694                         ctrl->cnum, ctrl->reconnect_delay);
2695                 queue_delayed_work(nvme_fc_wq, &ctrl->connect_work,
2696                                 ctrl->reconnect_delay * HZ);
2697         } else
2698                 dev_info(ctrl->ctrl.device,
2699                         "NVME-FC{%d}: controller reconnect complete\n",
2700                         ctrl->cnum);
2701 }
2702
2703
2704 static const struct blk_mq_ops nvme_fc_admin_mq_ops = {
2705         .queue_rq       = nvme_fc_queue_rq,
2706         .complete       = nvme_fc_complete_rq,
2707         .init_request   = nvme_fc_init_admin_request,
2708         .exit_request   = nvme_fc_exit_request,
2709         .reinit_request = nvme_fc_reinit_request,
2710         .init_hctx      = nvme_fc_init_admin_hctx,
2711         .timeout        = nvme_fc_timeout,
2712 };
2713
2714
2715 static struct nvme_ctrl *
2716 nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
2717         struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
2718 {
2719         struct nvme_fc_ctrl *ctrl;
2720         unsigned long flags;
2721         int ret, idx;
2722
2723         if (!(rport->remoteport.port_role &
2724             (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) {
2725                 ret = -EBADR;
2726                 goto out_fail;
2727         }
2728
2729         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2730         if (!ctrl) {
2731                 ret = -ENOMEM;
2732                 goto out_fail;
2733         }
2734
2735         idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL);
2736         if (idx < 0) {
2737                 ret = -ENOSPC;
2738                 goto out_free_ctrl;
2739         }
2740
2741         ctrl->ctrl.opts = opts;
2742         INIT_LIST_HEAD(&ctrl->ctrl_list);
2743         ctrl->lport = lport;
2744         ctrl->rport = rport;
2745         ctrl->dev = lport->dev;
2746         ctrl->cnum = idx;
2747
2748         get_device(ctrl->dev);
2749         kref_init(&ctrl->ref);
2750
2751         INIT_WORK(&ctrl->delete_work, nvme_fc_delete_ctrl_work);
2752         INIT_WORK(&ctrl->reset_work, nvme_fc_reset_ctrl_work);
2753         INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work);
2754         ctrl->reconnect_delay = opts->reconnect_delay;
2755         spin_lock_init(&ctrl->lock);
2756
2757         /* io queue count */
2758         ctrl->queue_count = min_t(unsigned int,
2759                                 opts->nr_io_queues,
2760                                 lport->ops->max_hw_queues);
2761         opts->nr_io_queues = ctrl->queue_count; /* so opts has valid value */
2762         ctrl->queue_count++;    /* +1 for admin queue */
2763
2764         ctrl->ctrl.sqsize = opts->queue_size - 1;
2765         ctrl->ctrl.kato = opts->kato;
2766
2767         ret = -ENOMEM;
2768         ctrl->queues = kcalloc(ctrl->queue_count, sizeof(struct nvme_fc_queue),
2769                                 GFP_KERNEL);
2770         if (!ctrl->queues)
2771                 goto out_free_ida;
2772
2773         memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
2774         ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops;
2775         ctrl->admin_tag_set.queue_depth = NVME_FC_AQ_BLKMQ_DEPTH;
2776         ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */
2777         ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
2778         ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
2779                                         (SG_CHUNK_SIZE *
2780                                                 sizeof(struct scatterlist)) +
2781                                         ctrl->lport->ops->fcprqst_priv_sz;
2782         ctrl->admin_tag_set.driver_data = ctrl;
2783         ctrl->admin_tag_set.nr_hw_queues = 1;
2784         ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
2785
2786         ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
2787         if (ret)
2788                 goto out_free_queues;
2789
2790         ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
2791         if (IS_ERR(ctrl->ctrl.admin_q)) {
2792                 ret = PTR_ERR(ctrl->ctrl.admin_q);
2793                 goto out_free_admin_tag_set;
2794         }
2795
2796         /*
2797          * Would have been nice to init io queues tag set as well.
2798          * However, we require interaction from the controller
2799          * for max io queue count before we can do so.
2800          * Defer this to the connect path.
2801          */
2802
2803         ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
2804         if (ret)
2805                 goto out_cleanup_admin_q;
2806
2807         /* at this point, teardown path changes to ref counting on nvme ctrl */
2808
2809         spin_lock_irqsave(&rport->lock, flags);
2810         list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
2811         spin_unlock_irqrestore(&rport->lock, flags);
2812
2813         ret = nvme_fc_create_association(ctrl);
2814         if (ret) {
2815                 ctrl->ctrl.opts = NULL;
2816                 /* initiate nvme ctrl ref counting teardown */
2817                 nvme_uninit_ctrl(&ctrl->ctrl);
2818                 nvme_put_ctrl(&ctrl->ctrl);
2819
2820                 /* as we're past the point where we transition to the ref
2821                  * counting teardown path, if we return a bad pointer here,
2822                  * the calling routine, thinking it's prior to the
2823                  * transition, will do an rport put. Since the teardown
2824                  * path also does a rport put, we do an extra get here to
2825                  * so proper order/teardown happens.
2826                  */
2827                 nvme_fc_rport_get(rport);
2828
2829                 if (ret > 0)
2830                         ret = -EIO;
2831                 return ERR_PTR(ret);
2832         }
2833
2834         dev_info(ctrl->ctrl.device,
2835                 "NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
2836                 ctrl->cnum, ctrl->ctrl.opts->subsysnqn);
2837
2838         return &ctrl->ctrl;
2839
2840 out_cleanup_admin_q:
2841         blk_cleanup_queue(ctrl->ctrl.admin_q);
2842 out_free_admin_tag_set:
2843         blk_mq_free_tag_set(&ctrl->admin_tag_set);
2844 out_free_queues:
2845         kfree(ctrl->queues);
2846 out_free_ida:
2847         put_device(ctrl->dev);
2848         ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
2849 out_free_ctrl:
2850         kfree(ctrl);
2851 out_fail:
2852         /* exit via here doesn't follow ctlr ref points */
2853         return ERR_PTR(ret);
2854 }
2855
2856 enum {
2857         FCT_TRADDR_ERR          = 0,
2858         FCT_TRADDR_WWNN         = 1 << 0,
2859         FCT_TRADDR_WWPN         = 1 << 1,
2860 };
2861
2862 struct nvmet_fc_traddr {
2863         u64     nn;
2864         u64     pn;
2865 };
2866
2867 static const match_table_t traddr_opt_tokens = {
2868         { FCT_TRADDR_WWNN,      "nn-%s"         },
2869         { FCT_TRADDR_WWPN,      "pn-%s"         },
2870         { FCT_TRADDR_ERR,       NULL            }
2871 };
2872
2873 static int
2874 nvme_fc_parse_address(struct nvmet_fc_traddr *traddr, char *buf)
2875 {
2876         substring_t args[MAX_OPT_ARGS];
2877         char *options, *o, *p;
2878         int token, ret = 0;
2879         u64 token64;
2880
2881         options = o = kstrdup(buf, GFP_KERNEL);
2882         if (!options)
2883                 return -ENOMEM;
2884
2885         while ((p = strsep(&o, ":\n")) != NULL) {
2886                 if (!*p)
2887                         continue;
2888
2889                 token = match_token(p, traddr_opt_tokens, args);
2890                 switch (token) {
2891                 case FCT_TRADDR_WWNN:
2892                         if (match_u64(args, &token64)) {
2893                                 ret = -EINVAL;
2894                                 goto out;
2895                         }
2896                         traddr->nn = token64;
2897                         break;
2898                 case FCT_TRADDR_WWPN:
2899                         if (match_u64(args, &token64)) {
2900                                 ret = -EINVAL;
2901                                 goto out;
2902                         }
2903                         traddr->pn = token64;
2904                         break;
2905                 default:
2906                         pr_warn("unknown traddr token or missing value '%s'\n",
2907                                         p);
2908                         ret = -EINVAL;
2909                         goto out;
2910                 }
2911         }
2912
2913 out:
2914         kfree(options);
2915         return ret;
2916 }
2917
2918 static struct nvme_ctrl *
2919 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
2920 {
2921         struct nvme_fc_lport *lport;
2922         struct nvme_fc_rport *rport;
2923         struct nvme_ctrl *ctrl;
2924         struct nvmet_fc_traddr laddr = { 0L, 0L };
2925         struct nvmet_fc_traddr raddr = { 0L, 0L };
2926         unsigned long flags;
2927         int ret;
2928
2929         ret = nvme_fc_parse_address(&raddr, opts->traddr);
2930         if (ret || !raddr.nn || !raddr.pn)
2931                 return ERR_PTR(-EINVAL);
2932
2933         ret = nvme_fc_parse_address(&laddr, opts->host_traddr);
2934         if (ret || !laddr.nn || !laddr.pn)
2935                 return ERR_PTR(-EINVAL);
2936
2937         /* find the host and remote ports to connect together */
2938         spin_lock_irqsave(&nvme_fc_lock, flags);
2939         list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
2940                 if (lport->localport.node_name != laddr.nn ||
2941                     lport->localport.port_name != laddr.pn)
2942                         continue;
2943
2944                 list_for_each_entry(rport, &lport->endp_list, endp_list) {
2945                         if (rport->remoteport.node_name != raddr.nn ||
2946                             rport->remoteport.port_name != raddr.pn)
2947                                 continue;
2948
2949                         /* if fail to get reference fall through. Will error */
2950                         if (!nvme_fc_rport_get(rport))
2951                                 break;
2952
2953                         spin_unlock_irqrestore(&nvme_fc_lock, flags);
2954
2955                         ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport);
2956                         if (IS_ERR(ctrl))
2957                                 nvme_fc_rport_put(rport);
2958                         return ctrl;
2959                 }
2960         }
2961         spin_unlock_irqrestore(&nvme_fc_lock, flags);
2962
2963         return ERR_PTR(-ENOENT);
2964 }
2965
2966
2967 static struct nvmf_transport_ops nvme_fc_transport = {
2968         .name           = "fc",
2969         .required_opts  = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
2970         .allowed_opts   = NVMF_OPT_RECONNECT_DELAY,
2971         .create_ctrl    = nvme_fc_create_ctrl,
2972 };
2973
2974 static int __init nvme_fc_init_module(void)
2975 {
2976         int ret;
2977
2978         nvme_fc_wq = create_workqueue("nvme_fc_wq");
2979         if (!nvme_fc_wq)
2980                 return -ENOMEM;
2981
2982         ret = nvmf_register_transport(&nvme_fc_transport);
2983         if (ret)
2984                 goto err;
2985
2986         return 0;
2987 err:
2988         destroy_workqueue(nvme_fc_wq);
2989         return ret;
2990 }
2991
2992 static void __exit nvme_fc_exit_module(void)
2993 {
2994         /* sanity check - all lports should be removed */
2995         if (!list_empty(&nvme_fc_lport_list))
2996                 pr_warn("%s: localport list not empty\n", __func__);
2997
2998         nvmf_unregister_transport(&nvme_fc_transport);
2999
3000         destroy_workqueue(nvme_fc_wq);
3001
3002         ida_destroy(&nvme_fc_local_port_cnt);
3003         ida_destroy(&nvme_fc_ctrl_cnt);
3004 }
3005
3006 module_init(nvme_fc_init_module);
3007 module_exit(nvme_fc_exit_module);
3008
3009 MODULE_LICENSE("GPL v2");