Merge remote-tracking branches 'asoc/topic/cs42l73', 'asoc/topic/cs47l24', 'asoc...
[sfrench/cifs-2.6.git] / drivers / nvme / host / fc.c
1 /*
2  * Copyright (c) 2016 Avago Technologies.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful.
9  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
10  * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
11  * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
12  * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
13  * See the GNU General Public License for more details, a copy of which
14  * can be found in the file COPYING included with this package
15  *
16  */
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/module.h>
19 #include <linux/parser.h>
20 #include <uapi/scsi/fc/fc_fs.h>
21 #include <uapi/scsi/fc/fc_els.h>
22 #include <linux/delay.h>
23
24 #include "nvme.h"
25 #include "fabrics.h"
26 #include <linux/nvme-fc-driver.h>
27 #include <linux/nvme-fc.h>
28
29
30 /* *************************** Data Structures/Defines ****************** */
31
32
33 enum nvme_fc_queue_flags {
34         NVME_FC_Q_CONNECTED = 0,
35         NVME_FC_Q_LIVE,
36 };
37
38 #define NVMEFC_QUEUE_DELAY      3               /* ms units */
39
40 #define NVME_FC_DEFAULT_DEV_LOSS_TMO    60      /* seconds */
41
42 struct nvme_fc_queue {
43         struct nvme_fc_ctrl     *ctrl;
44         struct device           *dev;
45         struct blk_mq_hw_ctx    *hctx;
46         void                    *lldd_handle;
47         size_t                  cmnd_capsule_len;
48         u32                     qnum;
49         u32                     rqcnt;
50         u32                     seqno;
51
52         u64                     connection_id;
53         atomic_t                csn;
54
55         unsigned long           flags;
56 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
57
58 enum nvme_fcop_flags {
59         FCOP_FLAGS_TERMIO       = (1 << 0),
60         FCOP_FLAGS_RELEASED     = (1 << 1),
61         FCOP_FLAGS_COMPLETE     = (1 << 2),
62         FCOP_FLAGS_AEN          = (1 << 3),
63 };
64
65 struct nvmefc_ls_req_op {
66         struct nvmefc_ls_req    ls_req;
67
68         struct nvme_fc_rport    *rport;
69         struct nvme_fc_queue    *queue;
70         struct request          *rq;
71         u32                     flags;
72
73         int                     ls_error;
74         struct completion       ls_done;
75         struct list_head        lsreq_list;     /* rport->ls_req_list */
76         bool                    req_queued;
77 };
78
79 enum nvme_fcpop_state {
80         FCPOP_STATE_UNINIT      = 0,
81         FCPOP_STATE_IDLE        = 1,
82         FCPOP_STATE_ACTIVE      = 2,
83         FCPOP_STATE_ABORTED     = 3,
84         FCPOP_STATE_COMPLETE    = 4,
85 };
86
87 struct nvme_fc_fcp_op {
88         struct nvme_request     nreq;           /*
89                                                  * nvme/host/core.c
90                                                  * requires this to be
91                                                  * the 1st element in the
92                                                  * private structure
93                                                  * associated with the
94                                                  * request.
95                                                  */
96         struct nvmefc_fcp_req   fcp_req;
97
98         struct nvme_fc_ctrl     *ctrl;
99         struct nvme_fc_queue    *queue;
100         struct request          *rq;
101
102         atomic_t                state;
103         u32                     flags;
104         u32                     rqno;
105         u32                     nents;
106
107         struct nvme_fc_cmd_iu   cmd_iu;
108         struct nvme_fc_ersp_iu  rsp_iu;
109 };
110
111 struct nvme_fc_lport {
112         struct nvme_fc_local_port       localport;
113
114         struct ida                      endp_cnt;
115         struct list_head                port_list;      /* nvme_fc_port_list */
116         struct list_head                endp_list;
117         struct device                   *dev;   /* physical device for dma */
118         struct nvme_fc_port_template    *ops;
119         struct kref                     ref;
120         atomic_t                        act_rport_cnt;
121 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
122
123 struct nvme_fc_rport {
124         struct nvme_fc_remote_port      remoteport;
125
126         struct list_head                endp_list; /* for lport->endp_list */
127         struct list_head                ctrl_list;
128         struct list_head                ls_req_list;
129         struct device                   *dev;   /* physical device for dma */
130         struct nvme_fc_lport            *lport;
131         spinlock_t                      lock;
132         struct kref                     ref;
133         atomic_t                        act_ctrl_cnt;
134         unsigned long                   dev_loss_end;
135 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
136
137 enum nvme_fcctrl_flags {
138         FCCTRL_TERMIO           = (1 << 0),
139 };
140
141 struct nvme_fc_ctrl {
142         spinlock_t              lock;
143         struct nvme_fc_queue    *queues;
144         struct device           *dev;
145         struct nvme_fc_lport    *lport;
146         struct nvme_fc_rport    *rport;
147         u32                     cnum;
148
149         bool                    assoc_active;
150         u64                     association_id;
151
152         struct list_head        ctrl_list;      /* rport->ctrl_list */
153
154         struct blk_mq_tag_set   admin_tag_set;
155         struct blk_mq_tag_set   tag_set;
156
157         struct delayed_work     connect_work;
158
159         struct kref             ref;
160         u32                     flags;
161         u32                     iocnt;
162         wait_queue_head_t       ioabort_wait;
163
164         struct nvme_fc_fcp_op   aen_ops[NVME_NR_AEN_COMMANDS];
165
166         struct nvme_ctrl        ctrl;
167 };
168
169 static inline struct nvme_fc_ctrl *
170 to_fc_ctrl(struct nvme_ctrl *ctrl)
171 {
172         return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
173 }
174
175 static inline struct nvme_fc_lport *
176 localport_to_lport(struct nvme_fc_local_port *portptr)
177 {
178         return container_of(portptr, struct nvme_fc_lport, localport);
179 }
180
181 static inline struct nvme_fc_rport *
182 remoteport_to_rport(struct nvme_fc_remote_port *portptr)
183 {
184         return container_of(portptr, struct nvme_fc_rport, remoteport);
185 }
186
187 static inline struct nvmefc_ls_req_op *
188 ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
189 {
190         return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
191 }
192
193 static inline struct nvme_fc_fcp_op *
194 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
195 {
196         return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
197 }
198
199
200
201 /* *************************** Globals **************************** */
202
203
204 static DEFINE_SPINLOCK(nvme_fc_lock);
205
206 static LIST_HEAD(nvme_fc_lport_list);
207 static DEFINE_IDA(nvme_fc_local_port_cnt);
208 static DEFINE_IDA(nvme_fc_ctrl_cnt);
209
210
211
212 /*
213  * These items are short-term. They will eventually be moved into
214  * a generic FC class. See comments in module init.
215  */
216 static struct class *fc_class;
217 static struct device *fc_udev_device;
218
219
220 /* *********************** FC-NVME Port Management ************************ */
221
222 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
223                         struct nvme_fc_queue *, unsigned int);
224
225 static void
226 nvme_fc_free_lport(struct kref *ref)
227 {
228         struct nvme_fc_lport *lport =
229                 container_of(ref, struct nvme_fc_lport, ref);
230         unsigned long flags;
231
232         WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
233         WARN_ON(!list_empty(&lport->endp_list));
234
235         /* remove from transport list */
236         spin_lock_irqsave(&nvme_fc_lock, flags);
237         list_del(&lport->port_list);
238         spin_unlock_irqrestore(&nvme_fc_lock, flags);
239
240         ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num);
241         ida_destroy(&lport->endp_cnt);
242
243         put_device(lport->dev);
244
245         kfree(lport);
246 }
247
248 static void
249 nvme_fc_lport_put(struct nvme_fc_lport *lport)
250 {
251         kref_put(&lport->ref, nvme_fc_free_lport);
252 }
253
254 static int
255 nvme_fc_lport_get(struct nvme_fc_lport *lport)
256 {
257         return kref_get_unless_zero(&lport->ref);
258 }
259
260
261 static struct nvme_fc_lport *
262 nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo,
263                         struct nvme_fc_port_template *ops,
264                         struct device *dev)
265 {
266         struct nvme_fc_lport *lport;
267         unsigned long flags;
268
269         spin_lock_irqsave(&nvme_fc_lock, flags);
270
271         list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
272                 if (lport->localport.node_name != pinfo->node_name ||
273                     lport->localport.port_name != pinfo->port_name)
274                         continue;
275
276                 if (lport->dev != dev) {
277                         lport = ERR_PTR(-EXDEV);
278                         goto out_done;
279                 }
280
281                 if (lport->localport.port_state != FC_OBJSTATE_DELETED) {
282                         lport = ERR_PTR(-EEXIST);
283                         goto out_done;
284                 }
285
286                 if (!nvme_fc_lport_get(lport)) {
287                         /*
288                          * fails if ref cnt already 0. If so,
289                          * act as if lport already deleted
290                          */
291                         lport = NULL;
292                         goto out_done;
293                 }
294
295                 /* resume the lport */
296
297                 lport->ops = ops;
298                 lport->localport.port_role = pinfo->port_role;
299                 lport->localport.port_id = pinfo->port_id;
300                 lport->localport.port_state = FC_OBJSTATE_ONLINE;
301
302                 spin_unlock_irqrestore(&nvme_fc_lock, flags);
303
304                 return lport;
305         }
306
307         lport = NULL;
308
309 out_done:
310         spin_unlock_irqrestore(&nvme_fc_lock, flags);
311
312         return lport;
313 }
314
315 /**
316  * nvme_fc_register_localport - transport entry point called by an
317  *                              LLDD to register the existence of a NVME
318  *                              host FC port.
319  * @pinfo:     pointer to information about the port to be registered
320  * @template:  LLDD entrypoints and operational parameters for the port
321  * @dev:       physical hardware device node port corresponds to. Will be
322  *             used for DMA mappings
323  * @lport_p:   pointer to a local port pointer. Upon success, the routine
324  *             will allocate a nvme_fc_local_port structure and place its
325  *             address in the local port pointer. Upon failure, local port
326  *             pointer will be set to 0.
327  *
328  * Returns:
329  * a completion status. Must be 0 upon success; a negative errno
330  * (ex: -ENXIO) upon failure.
331  */
332 int
333 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
334                         struct nvme_fc_port_template *template,
335                         struct device *dev,
336                         struct nvme_fc_local_port **portptr)
337 {
338         struct nvme_fc_lport *newrec;
339         unsigned long flags;
340         int ret, idx;
341
342         if (!template->localport_delete || !template->remoteport_delete ||
343             !template->ls_req || !template->fcp_io ||
344             !template->ls_abort || !template->fcp_abort ||
345             !template->max_hw_queues || !template->max_sgl_segments ||
346             !template->max_dif_sgl_segments || !template->dma_boundary) {
347                 ret = -EINVAL;
348                 goto out_reghost_failed;
349         }
350
351         /*
352          * look to see if there is already a localport that had been
353          * deregistered and in the process of waiting for all the
354          * references to fully be removed.  If the references haven't
355          * expired, we can simply re-enable the localport. Remoteports
356          * and controller reconnections should resume naturally.
357          */
358         newrec = nvme_fc_attach_to_unreg_lport(pinfo, template, dev);
359
360         /* found an lport, but something about its state is bad */
361         if (IS_ERR(newrec)) {
362                 ret = PTR_ERR(newrec);
363                 goto out_reghost_failed;
364
365         /* found existing lport, which was resumed */
366         } else if (newrec) {
367                 *portptr = &newrec->localport;
368                 return 0;
369         }
370
371         /* nothing found - allocate a new localport struct */
372
373         newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
374                          GFP_KERNEL);
375         if (!newrec) {
376                 ret = -ENOMEM;
377                 goto out_reghost_failed;
378         }
379
380         idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL);
381         if (idx < 0) {
382                 ret = -ENOSPC;
383                 goto out_fail_kfree;
384         }
385
386         if (!get_device(dev) && dev) {
387                 ret = -ENODEV;
388                 goto out_ida_put;
389         }
390
391         INIT_LIST_HEAD(&newrec->port_list);
392         INIT_LIST_HEAD(&newrec->endp_list);
393         kref_init(&newrec->ref);
394         atomic_set(&newrec->act_rport_cnt, 0);
395         newrec->ops = template;
396         newrec->dev = dev;
397         ida_init(&newrec->endp_cnt);
398         newrec->localport.private = &newrec[1];
399         newrec->localport.node_name = pinfo->node_name;
400         newrec->localport.port_name = pinfo->port_name;
401         newrec->localport.port_role = pinfo->port_role;
402         newrec->localport.port_id = pinfo->port_id;
403         newrec->localport.port_state = FC_OBJSTATE_ONLINE;
404         newrec->localport.port_num = idx;
405
406         spin_lock_irqsave(&nvme_fc_lock, flags);
407         list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
408         spin_unlock_irqrestore(&nvme_fc_lock, flags);
409
410         if (dev)
411                 dma_set_seg_boundary(dev, template->dma_boundary);
412
413         *portptr = &newrec->localport;
414         return 0;
415
416 out_ida_put:
417         ida_simple_remove(&nvme_fc_local_port_cnt, idx);
418 out_fail_kfree:
419         kfree(newrec);
420 out_reghost_failed:
421         *portptr = NULL;
422
423         return ret;
424 }
425 EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
426
427 /**
428  * nvme_fc_unregister_localport - transport entry point called by an
429  *                              LLDD to deregister/remove a previously
430  *                              registered a NVME host FC port.
431  * @localport: pointer to the (registered) local port that is to be
432  *             deregistered.
433  *
434  * Returns:
435  * a completion status. Must be 0 upon success; a negative errno
436  * (ex: -ENXIO) upon failure.
437  */
438 int
439 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
440 {
441         struct nvme_fc_lport *lport = localport_to_lport(portptr);
442         unsigned long flags;
443
444         if (!portptr)
445                 return -EINVAL;
446
447         spin_lock_irqsave(&nvme_fc_lock, flags);
448
449         if (portptr->port_state != FC_OBJSTATE_ONLINE) {
450                 spin_unlock_irqrestore(&nvme_fc_lock, flags);
451                 return -EINVAL;
452         }
453         portptr->port_state = FC_OBJSTATE_DELETED;
454
455         spin_unlock_irqrestore(&nvme_fc_lock, flags);
456
457         if (atomic_read(&lport->act_rport_cnt) == 0)
458                 lport->ops->localport_delete(&lport->localport);
459
460         nvme_fc_lport_put(lport);
461
462         return 0;
463 }
464 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
465
466 /*
467  * TRADDR strings, per FC-NVME are fixed format:
468  *   "nn-0x<16hexdigits>:pn-0x<16hexdigits>" - 43 characters
469  * udev event will only differ by prefix of what field is
470  * being specified:
471  *    "NVMEFC_HOST_TRADDR=" or "NVMEFC_TRADDR=" - 19 max characters
472  *  19 + 43 + null_fudge = 64 characters
473  */
474 #define FCNVME_TRADDR_LENGTH            64
475
476 static void
477 nvme_fc_signal_discovery_scan(struct nvme_fc_lport *lport,
478                 struct nvme_fc_rport *rport)
479 {
480         char hostaddr[FCNVME_TRADDR_LENGTH];    /* NVMEFC_HOST_TRADDR=...*/
481         char tgtaddr[FCNVME_TRADDR_LENGTH];     /* NVMEFC_TRADDR=...*/
482         char *envp[4] = { "FC_EVENT=nvmediscovery", hostaddr, tgtaddr, NULL };
483
484         if (!(rport->remoteport.port_role & FC_PORT_ROLE_NVME_DISCOVERY))
485                 return;
486
487         snprintf(hostaddr, sizeof(hostaddr),
488                 "NVMEFC_HOST_TRADDR=nn-0x%016llx:pn-0x%016llx",
489                 lport->localport.node_name, lport->localport.port_name);
490         snprintf(tgtaddr, sizeof(tgtaddr),
491                 "NVMEFC_TRADDR=nn-0x%016llx:pn-0x%016llx",
492                 rport->remoteport.node_name, rport->remoteport.port_name);
493         kobject_uevent_env(&fc_udev_device->kobj, KOBJ_CHANGE, envp);
494 }
495
496 static void
497 nvme_fc_free_rport(struct kref *ref)
498 {
499         struct nvme_fc_rport *rport =
500                 container_of(ref, struct nvme_fc_rport, ref);
501         struct nvme_fc_lport *lport =
502                         localport_to_lport(rport->remoteport.localport);
503         unsigned long flags;
504
505         WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
506         WARN_ON(!list_empty(&rport->ctrl_list));
507
508         /* remove from lport list */
509         spin_lock_irqsave(&nvme_fc_lock, flags);
510         list_del(&rport->endp_list);
511         spin_unlock_irqrestore(&nvme_fc_lock, flags);
512
513         ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num);
514
515         kfree(rport);
516
517         nvme_fc_lport_put(lport);
518 }
519
520 static void
521 nvme_fc_rport_put(struct nvme_fc_rport *rport)
522 {
523         kref_put(&rport->ref, nvme_fc_free_rport);
524 }
525
526 static int
527 nvme_fc_rport_get(struct nvme_fc_rport *rport)
528 {
529         return kref_get_unless_zero(&rport->ref);
530 }
531
532 static void
533 nvme_fc_resume_controller(struct nvme_fc_ctrl *ctrl)
534 {
535         switch (ctrl->ctrl.state) {
536         case NVME_CTRL_NEW:
537         case NVME_CTRL_RECONNECTING:
538                 /*
539                  * As all reconnects were suppressed, schedule a
540                  * connect.
541                  */
542                 dev_info(ctrl->ctrl.device,
543                         "NVME-FC{%d}: connectivity re-established. "
544                         "Attempting reconnect\n", ctrl->cnum);
545
546                 queue_delayed_work(nvme_wq, &ctrl->connect_work, 0);
547                 break;
548
549         case NVME_CTRL_RESETTING:
550                 /*
551                  * Controller is already in the process of terminating the
552                  * association. No need to do anything further. The reconnect
553                  * step will naturally occur after the reset completes.
554                  */
555                 break;
556
557         default:
558                 /* no action to take - let it delete */
559                 break;
560         }
561 }
562
563 static struct nvme_fc_rport *
564 nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport *lport,
565                                 struct nvme_fc_port_info *pinfo)
566 {
567         struct nvme_fc_rport *rport;
568         struct nvme_fc_ctrl *ctrl;
569         unsigned long flags;
570
571         spin_lock_irqsave(&nvme_fc_lock, flags);
572
573         list_for_each_entry(rport, &lport->endp_list, endp_list) {
574                 if (rport->remoteport.node_name != pinfo->node_name ||
575                     rport->remoteport.port_name != pinfo->port_name)
576                         continue;
577
578                 if (!nvme_fc_rport_get(rport)) {
579                         rport = ERR_PTR(-ENOLCK);
580                         goto out_done;
581                 }
582
583                 spin_unlock_irqrestore(&nvme_fc_lock, flags);
584
585                 spin_lock_irqsave(&rport->lock, flags);
586
587                 /* has it been unregistered */
588                 if (rport->remoteport.port_state != FC_OBJSTATE_DELETED) {
589                         /* means lldd called us twice */
590                         spin_unlock_irqrestore(&rport->lock, flags);
591                         nvme_fc_rport_put(rport);
592                         return ERR_PTR(-ESTALE);
593                 }
594
595                 rport->remoteport.port_state = FC_OBJSTATE_ONLINE;
596                 rport->dev_loss_end = 0;
597
598                 /*
599                  * kick off a reconnect attempt on all associations to the
600                  * remote port. A successful reconnects will resume i/o.
601                  */
602                 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
603                         nvme_fc_resume_controller(ctrl);
604
605                 spin_unlock_irqrestore(&rport->lock, flags);
606
607                 return rport;
608         }
609
610         rport = NULL;
611
612 out_done:
613         spin_unlock_irqrestore(&nvme_fc_lock, flags);
614
615         return rport;
616 }
617
618 static inline void
619 __nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport *rport,
620                         struct nvme_fc_port_info *pinfo)
621 {
622         if (pinfo->dev_loss_tmo)
623                 rport->remoteport.dev_loss_tmo = pinfo->dev_loss_tmo;
624         else
625                 rport->remoteport.dev_loss_tmo = NVME_FC_DEFAULT_DEV_LOSS_TMO;
626 }
627
628 /**
629  * nvme_fc_register_remoteport - transport entry point called by an
630  *                              LLDD to register the existence of a NVME
631  *                              subsystem FC port on its fabric.
632  * @localport: pointer to the (registered) local port that the remote
633  *             subsystem port is connected to.
634  * @pinfo:     pointer to information about the port to be registered
635  * @rport_p:   pointer to a remote port pointer. Upon success, the routine
636  *             will allocate a nvme_fc_remote_port structure and place its
637  *             address in the remote port pointer. Upon failure, remote port
638  *             pointer will be set to 0.
639  *
640  * Returns:
641  * a completion status. Must be 0 upon success; a negative errno
642  * (ex: -ENXIO) upon failure.
643  */
644 int
645 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
646                                 struct nvme_fc_port_info *pinfo,
647                                 struct nvme_fc_remote_port **portptr)
648 {
649         struct nvme_fc_lport *lport = localport_to_lport(localport);
650         struct nvme_fc_rport *newrec;
651         unsigned long flags;
652         int ret, idx;
653
654         if (!nvme_fc_lport_get(lport)) {
655                 ret = -ESHUTDOWN;
656                 goto out_reghost_failed;
657         }
658
659         /*
660          * look to see if there is already a remoteport that is waiting
661          * for a reconnect (within dev_loss_tmo) with the same WWN's.
662          * If so, transition to it and reconnect.
663          */
664         newrec = nvme_fc_attach_to_suspended_rport(lport, pinfo);
665
666         /* found an rport, but something about its state is bad */
667         if (IS_ERR(newrec)) {
668                 ret = PTR_ERR(newrec);
669                 goto out_lport_put;
670
671         /* found existing rport, which was resumed */
672         } else if (newrec) {
673                 nvme_fc_lport_put(lport);
674                 __nvme_fc_set_dev_loss_tmo(newrec, pinfo);
675                 nvme_fc_signal_discovery_scan(lport, newrec);
676                 *portptr = &newrec->remoteport;
677                 return 0;
678         }
679
680         /* nothing found - allocate a new remoteport struct */
681
682         newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
683                          GFP_KERNEL);
684         if (!newrec) {
685                 ret = -ENOMEM;
686                 goto out_lport_put;
687         }
688
689         idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL);
690         if (idx < 0) {
691                 ret = -ENOSPC;
692                 goto out_kfree_rport;
693         }
694
695         INIT_LIST_HEAD(&newrec->endp_list);
696         INIT_LIST_HEAD(&newrec->ctrl_list);
697         INIT_LIST_HEAD(&newrec->ls_req_list);
698         kref_init(&newrec->ref);
699         atomic_set(&newrec->act_ctrl_cnt, 0);
700         spin_lock_init(&newrec->lock);
701         newrec->remoteport.localport = &lport->localport;
702         newrec->dev = lport->dev;
703         newrec->lport = lport;
704         newrec->remoteport.private = &newrec[1];
705         newrec->remoteport.port_role = pinfo->port_role;
706         newrec->remoteport.node_name = pinfo->node_name;
707         newrec->remoteport.port_name = pinfo->port_name;
708         newrec->remoteport.port_id = pinfo->port_id;
709         newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
710         newrec->remoteport.port_num = idx;
711         __nvme_fc_set_dev_loss_tmo(newrec, pinfo);
712
713         spin_lock_irqsave(&nvme_fc_lock, flags);
714         list_add_tail(&newrec->endp_list, &lport->endp_list);
715         spin_unlock_irqrestore(&nvme_fc_lock, flags);
716
717         nvme_fc_signal_discovery_scan(lport, newrec);
718
719         *portptr = &newrec->remoteport;
720         return 0;
721
722 out_kfree_rport:
723         kfree(newrec);
724 out_lport_put:
725         nvme_fc_lport_put(lport);
726 out_reghost_failed:
727         *portptr = NULL;
728         return ret;
729 }
730 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
731
732 static int
733 nvme_fc_abort_lsops(struct nvme_fc_rport *rport)
734 {
735         struct nvmefc_ls_req_op *lsop;
736         unsigned long flags;
737
738 restart:
739         spin_lock_irqsave(&rport->lock, flags);
740
741         list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) {
742                 if (!(lsop->flags & FCOP_FLAGS_TERMIO)) {
743                         lsop->flags |= FCOP_FLAGS_TERMIO;
744                         spin_unlock_irqrestore(&rport->lock, flags);
745                         rport->lport->ops->ls_abort(&rport->lport->localport,
746                                                 &rport->remoteport,
747                                                 &lsop->ls_req);
748                         goto restart;
749                 }
750         }
751         spin_unlock_irqrestore(&rport->lock, flags);
752
753         return 0;
754 }
755
756 static void
757 nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl *ctrl)
758 {
759         dev_info(ctrl->ctrl.device,
760                 "NVME-FC{%d}: controller connectivity lost. Awaiting "
761                 "Reconnect", ctrl->cnum);
762
763         switch (ctrl->ctrl.state) {
764         case NVME_CTRL_NEW:
765         case NVME_CTRL_LIVE:
766                 /*
767                  * Schedule a controller reset. The reset will terminate the
768                  * association and schedule the reconnect timer.  Reconnects
769                  * will be attempted until either the ctlr_loss_tmo
770                  * (max_retries * connect_delay) expires or the remoteport's
771                  * dev_loss_tmo expires.
772                  */
773                 if (nvme_reset_ctrl(&ctrl->ctrl)) {
774                         dev_warn(ctrl->ctrl.device,
775                                 "NVME-FC{%d}: Couldn't schedule reset. "
776                                 "Deleting controller.\n",
777                                 ctrl->cnum);
778                         nvme_delete_ctrl(&ctrl->ctrl);
779                 }
780                 break;
781
782         case NVME_CTRL_RECONNECTING:
783                 /*
784                  * The association has already been terminated and the
785                  * controller is attempting reconnects.  No need to do anything
786                  * futher.  Reconnects will be attempted until either the
787                  * ctlr_loss_tmo (max_retries * connect_delay) expires or the
788                  * remoteport's dev_loss_tmo expires.
789                  */
790                 break;
791
792         case NVME_CTRL_RESETTING:
793                 /*
794                  * Controller is already in the process of terminating the
795                  * association.  No need to do anything further. The reconnect
796                  * step will kick in naturally after the association is
797                  * terminated.
798                  */
799                 break;
800
801         case NVME_CTRL_DELETING:
802         default:
803                 /* no action to take - let it delete */
804                 break;
805         }
806 }
807
808 /**
809  * nvme_fc_unregister_remoteport - transport entry point called by an
810  *                              LLDD to deregister/remove a previously
811  *                              registered a NVME subsystem FC port.
812  * @remoteport: pointer to the (registered) remote port that is to be
813  *              deregistered.
814  *
815  * Returns:
816  * a completion status. Must be 0 upon success; a negative errno
817  * (ex: -ENXIO) upon failure.
818  */
819 int
820 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
821 {
822         struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
823         struct nvme_fc_ctrl *ctrl;
824         unsigned long flags;
825
826         if (!portptr)
827                 return -EINVAL;
828
829         spin_lock_irqsave(&rport->lock, flags);
830
831         if (portptr->port_state != FC_OBJSTATE_ONLINE) {
832                 spin_unlock_irqrestore(&rport->lock, flags);
833                 return -EINVAL;
834         }
835         portptr->port_state = FC_OBJSTATE_DELETED;
836
837         rport->dev_loss_end = jiffies + (portptr->dev_loss_tmo * HZ);
838
839         list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
840                 /* if dev_loss_tmo==0, dev loss is immediate */
841                 if (!portptr->dev_loss_tmo) {
842                         dev_warn(ctrl->ctrl.device,
843                                 "NVME-FC{%d}: controller connectivity lost. "
844                                 "Deleting controller.\n",
845                                 ctrl->cnum);
846                         nvme_delete_ctrl(&ctrl->ctrl);
847                 } else
848                         nvme_fc_ctrl_connectivity_loss(ctrl);
849         }
850
851         spin_unlock_irqrestore(&rport->lock, flags);
852
853         nvme_fc_abort_lsops(rport);
854
855         if (atomic_read(&rport->act_ctrl_cnt) == 0)
856                 rport->lport->ops->remoteport_delete(portptr);
857
858         /*
859          * release the reference, which will allow, if all controllers
860          * go away, which should only occur after dev_loss_tmo occurs,
861          * for the rport to be torn down.
862          */
863         nvme_fc_rport_put(rport);
864
865         return 0;
866 }
867 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
868
869 /**
870  * nvme_fc_rescan_remoteport - transport entry point called by an
871  *                              LLDD to request a nvme device rescan.
872  * @remoteport: pointer to the (registered) remote port that is to be
873  *              rescanned.
874  *
875  * Returns: N/A
876  */
877 void
878 nvme_fc_rescan_remoteport(struct nvme_fc_remote_port *remoteport)
879 {
880         struct nvme_fc_rport *rport = remoteport_to_rport(remoteport);
881
882         nvme_fc_signal_discovery_scan(rport->lport, rport);
883 }
884 EXPORT_SYMBOL_GPL(nvme_fc_rescan_remoteport);
885
886 int
887 nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port *portptr,
888                         u32 dev_loss_tmo)
889 {
890         struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
891         unsigned long flags;
892
893         spin_lock_irqsave(&rport->lock, flags);
894
895         if (portptr->port_state != FC_OBJSTATE_ONLINE) {
896                 spin_unlock_irqrestore(&rport->lock, flags);
897                 return -EINVAL;
898         }
899
900         /* a dev_loss_tmo of 0 (immediate) is allowed to be set */
901         rport->remoteport.dev_loss_tmo = dev_loss_tmo;
902
903         spin_unlock_irqrestore(&rport->lock, flags);
904
905         return 0;
906 }
907 EXPORT_SYMBOL_GPL(nvme_fc_set_remoteport_devloss);
908
909
910 /* *********************** FC-NVME DMA Handling **************************** */
911
912 /*
913  * The fcloop device passes in a NULL device pointer. Real LLD's will
914  * pass in a valid device pointer. If NULL is passed to the dma mapping
915  * routines, depending on the platform, it may or may not succeed, and
916  * may crash.
917  *
918  * As such:
919  * Wrapper all the dma routines and check the dev pointer.
920  *
921  * If simple mappings (return just a dma address, we'll noop them,
922  * returning a dma address of 0.
923  *
924  * On more complex mappings (dma_map_sg), a pseudo routine fills
925  * in the scatter list, setting all dma addresses to 0.
926  */
927
928 static inline dma_addr_t
929 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
930                 enum dma_data_direction dir)
931 {
932         return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
933 }
934
935 static inline int
936 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
937 {
938         return dev ? dma_mapping_error(dev, dma_addr) : 0;
939 }
940
941 static inline void
942 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
943         enum dma_data_direction dir)
944 {
945         if (dev)
946                 dma_unmap_single(dev, addr, size, dir);
947 }
948
949 static inline void
950 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
951                 enum dma_data_direction dir)
952 {
953         if (dev)
954                 dma_sync_single_for_cpu(dev, addr, size, dir);
955 }
956
957 static inline void
958 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
959                 enum dma_data_direction dir)
960 {
961         if (dev)
962                 dma_sync_single_for_device(dev, addr, size, dir);
963 }
964
965 /* pseudo dma_map_sg call */
966 static int
967 fc_map_sg(struct scatterlist *sg, int nents)
968 {
969         struct scatterlist *s;
970         int i;
971
972         WARN_ON(nents == 0 || sg[0].length == 0);
973
974         for_each_sg(sg, s, nents, i) {
975                 s->dma_address = 0L;
976 #ifdef CONFIG_NEED_SG_DMA_LENGTH
977                 s->dma_length = s->length;
978 #endif
979         }
980         return nents;
981 }
982
983 static inline int
984 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
985                 enum dma_data_direction dir)
986 {
987         return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
988 }
989
990 static inline void
991 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
992                 enum dma_data_direction dir)
993 {
994         if (dev)
995                 dma_unmap_sg(dev, sg, nents, dir);
996 }
997
998 /* *********************** FC-NVME LS Handling **************************** */
999
1000 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
1001 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
1002
1003
1004 static void
1005 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop)
1006 {
1007         struct nvme_fc_rport *rport = lsop->rport;
1008         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1009         unsigned long flags;
1010
1011         spin_lock_irqsave(&rport->lock, flags);
1012
1013         if (!lsop->req_queued) {
1014                 spin_unlock_irqrestore(&rport->lock, flags);
1015                 return;
1016         }
1017
1018         list_del(&lsop->lsreq_list);
1019
1020         lsop->req_queued = false;
1021
1022         spin_unlock_irqrestore(&rport->lock, flags);
1023
1024         fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1025                                   (lsreq->rqstlen + lsreq->rsplen),
1026                                   DMA_BIDIRECTIONAL);
1027
1028         nvme_fc_rport_put(rport);
1029 }
1030
1031 static int
1032 __nvme_fc_send_ls_req(struct nvme_fc_rport *rport,
1033                 struct nvmefc_ls_req_op *lsop,
1034                 void (*done)(struct nvmefc_ls_req *req, int status))
1035 {
1036         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1037         unsigned long flags;
1038         int ret = 0;
1039
1040         if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
1041                 return -ECONNREFUSED;
1042
1043         if (!nvme_fc_rport_get(rport))
1044                 return -ESHUTDOWN;
1045
1046         lsreq->done = done;
1047         lsop->rport = rport;
1048         lsop->req_queued = false;
1049         INIT_LIST_HEAD(&lsop->lsreq_list);
1050         init_completion(&lsop->ls_done);
1051
1052         lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr,
1053                                   lsreq->rqstlen + lsreq->rsplen,
1054                                   DMA_BIDIRECTIONAL);
1055         if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) {
1056                 ret = -EFAULT;
1057                 goto out_putrport;
1058         }
1059         lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
1060
1061         spin_lock_irqsave(&rport->lock, flags);
1062
1063         list_add_tail(&lsop->lsreq_list, &rport->ls_req_list);
1064
1065         lsop->req_queued = true;
1066
1067         spin_unlock_irqrestore(&rport->lock, flags);
1068
1069         ret = rport->lport->ops->ls_req(&rport->lport->localport,
1070                                         &rport->remoteport, lsreq);
1071         if (ret)
1072                 goto out_unlink;
1073
1074         return 0;
1075
1076 out_unlink:
1077         lsop->ls_error = ret;
1078         spin_lock_irqsave(&rport->lock, flags);
1079         lsop->req_queued = false;
1080         list_del(&lsop->lsreq_list);
1081         spin_unlock_irqrestore(&rport->lock, flags);
1082         fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1083                                   (lsreq->rqstlen + lsreq->rsplen),
1084                                   DMA_BIDIRECTIONAL);
1085 out_putrport:
1086         nvme_fc_rport_put(rport);
1087
1088         return ret;
1089 }
1090
1091 static void
1092 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
1093 {
1094         struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1095
1096         lsop->ls_error = status;
1097         complete(&lsop->ls_done);
1098 }
1099
1100 static int
1101 nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop)
1102 {
1103         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1104         struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
1105         int ret;
1106
1107         ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done);
1108
1109         if (!ret) {
1110                 /*
1111                  * No timeout/not interruptible as we need the struct
1112                  * to exist until the lldd calls us back. Thus mandate
1113                  * wait until driver calls back. lldd responsible for
1114                  * the timeout action
1115                  */
1116                 wait_for_completion(&lsop->ls_done);
1117
1118                 __nvme_fc_finish_ls_req(lsop);
1119
1120                 ret = lsop->ls_error;
1121         }
1122
1123         if (ret)
1124                 return ret;
1125
1126         /* ACC or RJT payload ? */
1127         if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
1128                 return -ENXIO;
1129
1130         return 0;
1131 }
1132
1133 static int
1134 nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport,
1135                 struct nvmefc_ls_req_op *lsop,
1136                 void (*done)(struct nvmefc_ls_req *req, int status))
1137 {
1138         /* don't wait for completion */
1139
1140         return __nvme_fc_send_ls_req(rport, lsop, done);
1141 }
1142
1143 /* Validation Error indexes into the string table below */
1144 enum {
1145         VERR_NO_ERROR           = 0,
1146         VERR_LSACC              = 1,
1147         VERR_LSDESC_RQST        = 2,
1148         VERR_LSDESC_RQST_LEN    = 3,
1149         VERR_ASSOC_ID           = 4,
1150         VERR_ASSOC_ID_LEN       = 5,
1151         VERR_CONN_ID            = 6,
1152         VERR_CONN_ID_LEN        = 7,
1153         VERR_CR_ASSOC           = 8,
1154         VERR_CR_ASSOC_ACC_LEN   = 9,
1155         VERR_CR_CONN            = 10,
1156         VERR_CR_CONN_ACC_LEN    = 11,
1157         VERR_DISCONN            = 12,
1158         VERR_DISCONN_ACC_LEN    = 13,
1159 };
1160
1161 static char *validation_errors[] = {
1162         "OK",
1163         "Not LS_ACC",
1164         "Not LSDESC_RQST",
1165         "Bad LSDESC_RQST Length",
1166         "Not Association ID",
1167         "Bad Association ID Length",
1168         "Not Connection ID",
1169         "Bad Connection ID Length",
1170         "Not CR_ASSOC Rqst",
1171         "Bad CR_ASSOC ACC Length",
1172         "Not CR_CONN Rqst",
1173         "Bad CR_CONN ACC Length",
1174         "Not Disconnect Rqst",
1175         "Bad Disconnect ACC Length",
1176 };
1177
1178 static int
1179 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
1180         struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
1181 {
1182         struct nvmefc_ls_req_op *lsop;
1183         struct nvmefc_ls_req *lsreq;
1184         struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
1185         struct fcnvme_ls_cr_assoc_acc *assoc_acc;
1186         int ret, fcret = 0;
1187
1188         lsop = kzalloc((sizeof(*lsop) +
1189                          ctrl->lport->ops->lsrqst_priv_sz +
1190                          sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL);
1191         if (!lsop) {
1192                 ret = -ENOMEM;
1193                 goto out_no_memory;
1194         }
1195         lsreq = &lsop->ls_req;
1196
1197         lsreq->private = (void *)&lsop[1];
1198         assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)
1199                         (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1200         assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
1201
1202         assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
1203         assoc_rqst->desc_list_len =
1204                         cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1205
1206         assoc_rqst->assoc_cmd.desc_tag =
1207                         cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
1208         assoc_rqst->assoc_cmd.desc_len =
1209                         fcnvme_lsdesc_len(
1210                                 sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1211
1212         assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1213         assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize);
1214         /* Linux supports only Dynamic controllers */
1215         assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
1216         uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id);
1217         strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
1218                 min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
1219         strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
1220                 min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
1221
1222         lsop->queue = queue;
1223         lsreq->rqstaddr = assoc_rqst;
1224         lsreq->rqstlen = sizeof(*assoc_rqst);
1225         lsreq->rspaddr = assoc_acc;
1226         lsreq->rsplen = sizeof(*assoc_acc);
1227         lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1228
1229         ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1230         if (ret)
1231                 goto out_free_buffer;
1232
1233         /* process connect LS completion */
1234
1235         /* validate the ACC response */
1236         if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1237                 fcret = VERR_LSACC;
1238         else if (assoc_acc->hdr.desc_list_len !=
1239                         fcnvme_lsdesc_len(
1240                                 sizeof(struct fcnvme_ls_cr_assoc_acc)))
1241                 fcret = VERR_CR_ASSOC_ACC_LEN;
1242         else if (assoc_acc->hdr.rqst.desc_tag !=
1243                         cpu_to_be32(FCNVME_LSDESC_RQST))
1244                 fcret = VERR_LSDESC_RQST;
1245         else if (assoc_acc->hdr.rqst.desc_len !=
1246                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1247                 fcret = VERR_LSDESC_RQST_LEN;
1248         else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
1249                 fcret = VERR_CR_ASSOC;
1250         else if (assoc_acc->associd.desc_tag !=
1251                         cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1252                 fcret = VERR_ASSOC_ID;
1253         else if (assoc_acc->associd.desc_len !=
1254                         fcnvme_lsdesc_len(
1255                                 sizeof(struct fcnvme_lsdesc_assoc_id)))
1256                 fcret = VERR_ASSOC_ID_LEN;
1257         else if (assoc_acc->connectid.desc_tag !=
1258                         cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1259                 fcret = VERR_CONN_ID;
1260         else if (assoc_acc->connectid.desc_len !=
1261                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1262                 fcret = VERR_CONN_ID_LEN;
1263
1264         if (fcret) {
1265                 ret = -EBADF;
1266                 dev_err(ctrl->dev,
1267                         "q %d connect failed: %s\n",
1268                         queue->qnum, validation_errors[fcret]);
1269         } else {
1270                 ctrl->association_id =
1271                         be64_to_cpu(assoc_acc->associd.association_id);
1272                 queue->connection_id =
1273                         be64_to_cpu(assoc_acc->connectid.connection_id);
1274                 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1275         }
1276
1277 out_free_buffer:
1278         kfree(lsop);
1279 out_no_memory:
1280         if (ret)
1281                 dev_err(ctrl->dev,
1282                         "queue %d connect admin queue failed (%d).\n",
1283                         queue->qnum, ret);
1284         return ret;
1285 }
1286
1287 static int
1288 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1289                         u16 qsize, u16 ersp_ratio)
1290 {
1291         struct nvmefc_ls_req_op *lsop;
1292         struct nvmefc_ls_req *lsreq;
1293         struct fcnvme_ls_cr_conn_rqst *conn_rqst;
1294         struct fcnvme_ls_cr_conn_acc *conn_acc;
1295         int ret, fcret = 0;
1296
1297         lsop = kzalloc((sizeof(*lsop) +
1298                          ctrl->lport->ops->lsrqst_priv_sz +
1299                          sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL);
1300         if (!lsop) {
1301                 ret = -ENOMEM;
1302                 goto out_no_memory;
1303         }
1304         lsreq = &lsop->ls_req;
1305
1306         lsreq->private = (void *)&lsop[1];
1307         conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)
1308                         (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1309         conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
1310
1311         conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
1312         conn_rqst->desc_list_len = cpu_to_be32(
1313                                 sizeof(struct fcnvme_lsdesc_assoc_id) +
1314                                 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1315
1316         conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1317         conn_rqst->associd.desc_len =
1318                         fcnvme_lsdesc_len(
1319                                 sizeof(struct fcnvme_lsdesc_assoc_id));
1320         conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1321         conn_rqst->connect_cmd.desc_tag =
1322                         cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
1323         conn_rqst->connect_cmd.desc_len =
1324                         fcnvme_lsdesc_len(
1325                                 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1326         conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1327         conn_rqst->connect_cmd.qid  = cpu_to_be16(queue->qnum);
1328         conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize);
1329
1330         lsop->queue = queue;
1331         lsreq->rqstaddr = conn_rqst;
1332         lsreq->rqstlen = sizeof(*conn_rqst);
1333         lsreq->rspaddr = conn_acc;
1334         lsreq->rsplen = sizeof(*conn_acc);
1335         lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1336
1337         ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1338         if (ret)
1339                 goto out_free_buffer;
1340
1341         /* process connect LS completion */
1342
1343         /* validate the ACC response */
1344         if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1345                 fcret = VERR_LSACC;
1346         else if (conn_acc->hdr.desc_list_len !=
1347                         fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
1348                 fcret = VERR_CR_CONN_ACC_LEN;
1349         else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
1350                 fcret = VERR_LSDESC_RQST;
1351         else if (conn_acc->hdr.rqst.desc_len !=
1352                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1353                 fcret = VERR_LSDESC_RQST_LEN;
1354         else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
1355                 fcret = VERR_CR_CONN;
1356         else if (conn_acc->connectid.desc_tag !=
1357                         cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1358                 fcret = VERR_CONN_ID;
1359         else if (conn_acc->connectid.desc_len !=
1360                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1361                 fcret = VERR_CONN_ID_LEN;
1362
1363         if (fcret) {
1364                 ret = -EBADF;
1365                 dev_err(ctrl->dev,
1366                         "q %d connect failed: %s\n",
1367                         queue->qnum, validation_errors[fcret]);
1368         } else {
1369                 queue->connection_id =
1370                         be64_to_cpu(conn_acc->connectid.connection_id);
1371                 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1372         }
1373
1374 out_free_buffer:
1375         kfree(lsop);
1376 out_no_memory:
1377         if (ret)
1378                 dev_err(ctrl->dev,
1379                         "queue %d connect command failed (%d).\n",
1380                         queue->qnum, ret);
1381         return ret;
1382 }
1383
1384 static void
1385 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
1386 {
1387         struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1388
1389         __nvme_fc_finish_ls_req(lsop);
1390
1391         /* fc-nvme iniator doesn't care about success or failure of cmd */
1392
1393         kfree(lsop);
1394 }
1395
1396 /*
1397  * This routine sends a FC-NVME LS to disconnect (aka terminate)
1398  * the FC-NVME Association.  Terminating the association also
1399  * terminates the FC-NVME connections (per queue, both admin and io
1400  * queues) that are part of the association. E.g. things are torn
1401  * down, and the related FC-NVME Association ID and Connection IDs
1402  * become invalid.
1403  *
1404  * The behavior of the fc-nvme initiator is such that it's
1405  * understanding of the association and connections will implicitly
1406  * be torn down. The action is implicit as it may be due to a loss of
1407  * connectivity with the fc-nvme target, so you may never get a
1408  * response even if you tried.  As such, the action of this routine
1409  * is to asynchronously send the LS, ignore any results of the LS, and
1410  * continue on with terminating the association. If the fc-nvme target
1411  * is present and receives the LS, it too can tear down.
1412  */
1413 static void
1414 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1415 {
1416         struct fcnvme_ls_disconnect_rqst *discon_rqst;
1417         struct fcnvme_ls_disconnect_acc *discon_acc;
1418         struct nvmefc_ls_req_op *lsop;
1419         struct nvmefc_ls_req *lsreq;
1420         int ret;
1421
1422         lsop = kzalloc((sizeof(*lsop) +
1423                          ctrl->lport->ops->lsrqst_priv_sz +
1424                          sizeof(*discon_rqst) + sizeof(*discon_acc)),
1425                         GFP_KERNEL);
1426         if (!lsop)
1427                 /* couldn't sent it... too bad */
1428                 return;
1429
1430         lsreq = &lsop->ls_req;
1431
1432         lsreq->private = (void *)&lsop[1];
1433         discon_rqst = (struct fcnvme_ls_disconnect_rqst *)
1434                         (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1435         discon_acc = (struct fcnvme_ls_disconnect_acc *)&discon_rqst[1];
1436
1437         discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT;
1438         discon_rqst->desc_list_len = cpu_to_be32(
1439                                 sizeof(struct fcnvme_lsdesc_assoc_id) +
1440                                 sizeof(struct fcnvme_lsdesc_disconn_cmd));
1441
1442         discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1443         discon_rqst->associd.desc_len =
1444                         fcnvme_lsdesc_len(
1445                                 sizeof(struct fcnvme_lsdesc_assoc_id));
1446
1447         discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1448
1449         discon_rqst->discon_cmd.desc_tag = cpu_to_be32(
1450                                                 FCNVME_LSDESC_DISCONN_CMD);
1451         discon_rqst->discon_cmd.desc_len =
1452                         fcnvme_lsdesc_len(
1453                                 sizeof(struct fcnvme_lsdesc_disconn_cmd));
1454         discon_rqst->discon_cmd.scope = FCNVME_DISCONN_ASSOCIATION;
1455         discon_rqst->discon_cmd.id = cpu_to_be64(ctrl->association_id);
1456
1457         lsreq->rqstaddr = discon_rqst;
1458         lsreq->rqstlen = sizeof(*discon_rqst);
1459         lsreq->rspaddr = discon_acc;
1460         lsreq->rsplen = sizeof(*discon_acc);
1461         lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1462
1463         ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop,
1464                                 nvme_fc_disconnect_assoc_done);
1465         if (ret)
1466                 kfree(lsop);
1467
1468         /* only meaningful part to terminating the association */
1469         ctrl->association_id = 0;
1470 }
1471
1472
1473 /* *********************** NVME Ctrl Routines **************************** */
1474
1475 static void __nvme_fc_final_op_cleanup(struct request *rq);
1476 static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg);
1477
1478 static int
1479 nvme_fc_reinit_request(void *data, struct request *rq)
1480 {
1481         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1482         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1483
1484         memset(cmdiu, 0, sizeof(*cmdiu));
1485         cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1486         cmdiu->fc_id = NVME_CMD_FC_ID;
1487         cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1488         memset(&op->rsp_iu, 0, sizeof(op->rsp_iu));
1489
1490         return 0;
1491 }
1492
1493 static void
1494 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1495                 struct nvme_fc_fcp_op *op)
1496 {
1497         fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1498                                 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1499         fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1500                                 sizeof(op->cmd_iu), DMA_TO_DEVICE);
1501
1502         atomic_set(&op->state, FCPOP_STATE_UNINIT);
1503 }
1504
1505 static void
1506 nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1507                 unsigned int hctx_idx)
1508 {
1509         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1510
1511         return __nvme_fc_exit_request(set->driver_data, op);
1512 }
1513
1514 static int
1515 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1516 {
1517         int state;
1518
1519         state = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1520         if (state != FCPOP_STATE_ACTIVE) {
1521                 atomic_set(&op->state, state);
1522                 return -ECANCELED;
1523         }
1524
1525         ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1526                                         &ctrl->rport->remoteport,
1527                                         op->queue->lldd_handle,
1528                                         &op->fcp_req);
1529
1530         return 0;
1531 }
1532
1533 static void
1534 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl)
1535 {
1536         struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
1537         unsigned long flags;
1538         int i, ret;
1539
1540         for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
1541                 if (atomic_read(&aen_op->state) != FCPOP_STATE_ACTIVE)
1542                         continue;
1543
1544                 spin_lock_irqsave(&ctrl->lock, flags);
1545                 if (ctrl->flags & FCCTRL_TERMIO) {
1546                         ctrl->iocnt++;
1547                         aen_op->flags |= FCOP_FLAGS_TERMIO;
1548                 }
1549                 spin_unlock_irqrestore(&ctrl->lock, flags);
1550
1551                 ret = __nvme_fc_abort_op(ctrl, aen_op);
1552                 if (ret) {
1553                         /*
1554                          * if __nvme_fc_abort_op failed the io wasn't
1555                          * active. Thus this call path is running in
1556                          * parallel to the io complete. Treat as non-error.
1557                          */
1558
1559                         /* back out the flags/counters */
1560                         spin_lock_irqsave(&ctrl->lock, flags);
1561                         if (ctrl->flags & FCCTRL_TERMIO)
1562                                 ctrl->iocnt--;
1563                         aen_op->flags &= ~FCOP_FLAGS_TERMIO;
1564                         spin_unlock_irqrestore(&ctrl->lock, flags);
1565                         return;
1566                 }
1567         }
1568 }
1569
1570 static inline int
1571 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl,
1572                 struct nvme_fc_fcp_op *op)
1573 {
1574         unsigned long flags;
1575         bool complete_rq = false;
1576
1577         spin_lock_irqsave(&ctrl->lock, flags);
1578         if (unlikely(op->flags & FCOP_FLAGS_TERMIO)) {
1579                 if (ctrl->flags & FCCTRL_TERMIO) {
1580                         if (!--ctrl->iocnt)
1581                                 wake_up(&ctrl->ioabort_wait);
1582                 }
1583         }
1584         if (op->flags & FCOP_FLAGS_RELEASED)
1585                 complete_rq = true;
1586         else
1587                 op->flags |= FCOP_FLAGS_COMPLETE;
1588         spin_unlock_irqrestore(&ctrl->lock, flags);
1589
1590         return complete_rq;
1591 }
1592
1593 static void
1594 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1595 {
1596         struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1597         struct request *rq = op->rq;
1598         struct nvmefc_fcp_req *freq = &op->fcp_req;
1599         struct nvme_fc_ctrl *ctrl = op->ctrl;
1600         struct nvme_fc_queue *queue = op->queue;
1601         struct nvme_completion *cqe = &op->rsp_iu.cqe;
1602         struct nvme_command *sqe = &op->cmd_iu.sqe;
1603         __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1);
1604         union nvme_result result;
1605         bool terminate_assoc = true;
1606
1607         /*
1608          * WARNING:
1609          * The current linux implementation of a nvme controller
1610          * allocates a single tag set for all io queues and sizes
1611          * the io queues to fully hold all possible tags. Thus, the
1612          * implementation does not reference or care about the sqhd
1613          * value as it never needs to use the sqhd/sqtail pointers
1614          * for submission pacing.
1615          *
1616          * This affects the FC-NVME implementation in two ways:
1617          * 1) As the value doesn't matter, we don't need to waste
1618          *    cycles extracting it from ERSPs and stamping it in the
1619          *    cases where the transport fabricates CQEs on successful
1620          *    completions.
1621          * 2) The FC-NVME implementation requires that delivery of
1622          *    ERSP completions are to go back to the nvme layer in order
1623          *    relative to the rsn, such that the sqhd value will always
1624          *    be "in order" for the nvme layer. As the nvme layer in
1625          *    linux doesn't care about sqhd, there's no need to return
1626          *    them in order.
1627          *
1628          * Additionally:
1629          * As the core nvme layer in linux currently does not look at
1630          * every field in the cqe - in cases where the FC transport must
1631          * fabricate a CQE, the following fields will not be set as they
1632          * are not referenced:
1633          *      cqe.sqid,  cqe.sqhd,  cqe.command_id
1634          *
1635          * Failure or error of an individual i/o, in a transport
1636          * detected fashion unrelated to the nvme completion status,
1637          * potentially cause the initiator and target sides to get out
1638          * of sync on SQ head/tail (aka outstanding io count allowed).
1639          * Per FC-NVME spec, failure of an individual command requires
1640          * the connection to be terminated, which in turn requires the
1641          * association to be terminated.
1642          */
1643
1644         fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1645                                 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1646
1647         if (atomic_read(&op->state) == FCPOP_STATE_ABORTED ||
1648                         op->flags & FCOP_FLAGS_TERMIO)
1649                 status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1650         else if (freq->status)
1651                 status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1652
1653         /*
1654          * For the linux implementation, if we have an unsuccesful
1655          * status, they blk-mq layer can typically be called with the
1656          * non-zero status and the content of the cqe isn't important.
1657          */
1658         if (status)
1659                 goto done;
1660
1661         /*
1662          * command completed successfully relative to the wire
1663          * protocol. However, validate anything received and
1664          * extract the status and result from the cqe (create it
1665          * where necessary).
1666          */
1667
1668         switch (freq->rcv_rsplen) {
1669
1670         case 0:
1671         case NVME_FC_SIZEOF_ZEROS_RSP:
1672                 /*
1673                  * No response payload or 12 bytes of payload (which
1674                  * should all be zeros) are considered successful and
1675                  * no payload in the CQE by the transport.
1676                  */
1677                 if (freq->transferred_length !=
1678                         be32_to_cpu(op->cmd_iu.data_len)) {
1679                         status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1680                         goto done;
1681                 }
1682                 result.u64 = 0;
1683                 break;
1684
1685         case sizeof(struct nvme_fc_ersp_iu):
1686                 /*
1687                  * The ERSP IU contains a full completion with CQE.
1688                  * Validate ERSP IU and look at cqe.
1689                  */
1690                 if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
1691                                         (freq->rcv_rsplen / 4) ||
1692                              be32_to_cpu(op->rsp_iu.xfrd_len) !=
1693                                         freq->transferred_length ||
1694                              op->rsp_iu.status_code ||
1695                              sqe->common.command_id != cqe->command_id)) {
1696                         status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1697                         goto done;
1698                 }
1699                 result = cqe->result;
1700                 status = cqe->status;
1701                 break;
1702
1703         default:
1704                 status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1705                 goto done;
1706         }
1707
1708         terminate_assoc = false;
1709
1710 done:
1711         if (op->flags & FCOP_FLAGS_AEN) {
1712                 nvme_complete_async_event(&queue->ctrl->ctrl, status, &result);
1713                 __nvme_fc_fcpop_chk_teardowns(ctrl, op);
1714                 atomic_set(&op->state, FCPOP_STATE_IDLE);
1715                 op->flags = FCOP_FLAGS_AEN;     /* clear other flags */
1716                 nvme_fc_ctrl_put(ctrl);
1717                 goto check_error;
1718         }
1719
1720         /*
1721          * Force failures of commands if we're killing the controller
1722          * or have an error on a command used to create an new association
1723          */
1724         if (status &&
1725             (blk_queue_dying(rq->q) ||
1726              ctrl->ctrl.state == NVME_CTRL_NEW ||
1727              ctrl->ctrl.state == NVME_CTRL_RECONNECTING))
1728                 status |= cpu_to_le16(NVME_SC_DNR << 1);
1729
1730         if (__nvme_fc_fcpop_chk_teardowns(ctrl, op))
1731                 __nvme_fc_final_op_cleanup(rq);
1732         else
1733                 nvme_end_request(rq, status, result);
1734
1735 check_error:
1736         if (terminate_assoc)
1737                 nvme_fc_error_recovery(ctrl, "transport detected io error");
1738 }
1739
1740 static int
1741 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
1742                 struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
1743                 struct request *rq, u32 rqno)
1744 {
1745         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1746         int ret = 0;
1747
1748         memset(op, 0, sizeof(*op));
1749         op->fcp_req.cmdaddr = &op->cmd_iu;
1750         op->fcp_req.cmdlen = sizeof(op->cmd_iu);
1751         op->fcp_req.rspaddr = &op->rsp_iu;
1752         op->fcp_req.rsplen = sizeof(op->rsp_iu);
1753         op->fcp_req.done = nvme_fc_fcpio_done;
1754         op->fcp_req.first_sgl = (struct scatterlist *)&op[1];
1755         op->fcp_req.private = &op->fcp_req.first_sgl[SG_CHUNK_SIZE];
1756         op->ctrl = ctrl;
1757         op->queue = queue;
1758         op->rq = rq;
1759         op->rqno = rqno;
1760
1761         cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1762         cmdiu->fc_id = NVME_CMD_FC_ID;
1763         cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1764
1765         op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
1766                                 &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
1767         if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
1768                 dev_err(ctrl->dev,
1769                         "FCP Op failed - cmdiu dma mapping failed.\n");
1770                 ret = EFAULT;
1771                 goto out_on_error;
1772         }
1773
1774         op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
1775                                 &op->rsp_iu, sizeof(op->rsp_iu),
1776                                 DMA_FROM_DEVICE);
1777         if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
1778                 dev_err(ctrl->dev,
1779                         "FCP Op failed - rspiu dma mapping failed.\n");
1780                 ret = EFAULT;
1781         }
1782
1783         atomic_set(&op->state, FCPOP_STATE_IDLE);
1784 out_on_error:
1785         return ret;
1786 }
1787
1788 static int
1789 nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq,
1790                 unsigned int hctx_idx, unsigned int numa_node)
1791 {
1792         struct nvme_fc_ctrl *ctrl = set->driver_data;
1793         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1794         int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
1795         struct nvme_fc_queue *queue = &ctrl->queues[queue_idx];
1796
1797         return __nvme_fc_init_request(ctrl, queue, op, rq, queue->rqcnt++);
1798 }
1799
1800 static int
1801 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
1802 {
1803         struct nvme_fc_fcp_op *aen_op;
1804         struct nvme_fc_cmd_iu *cmdiu;
1805         struct nvme_command *sqe;
1806         void *private;
1807         int i, ret;
1808
1809         aen_op = ctrl->aen_ops;
1810         for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
1811                 private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz,
1812                                                 GFP_KERNEL);
1813                 if (!private)
1814                         return -ENOMEM;
1815
1816                 cmdiu = &aen_op->cmd_iu;
1817                 sqe = &cmdiu->sqe;
1818                 ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
1819                                 aen_op, (struct request *)NULL,
1820                                 (NVME_AQ_BLK_MQ_DEPTH + i));
1821                 if (ret) {
1822                         kfree(private);
1823                         return ret;
1824                 }
1825
1826                 aen_op->flags = FCOP_FLAGS_AEN;
1827                 aen_op->fcp_req.first_sgl = NULL; /* no sg list */
1828                 aen_op->fcp_req.private = private;
1829
1830                 memset(sqe, 0, sizeof(*sqe));
1831                 sqe->common.opcode = nvme_admin_async_event;
1832                 /* Note: core layer may overwrite the sqe.command_id value */
1833                 sqe->common.command_id = NVME_AQ_BLK_MQ_DEPTH + i;
1834         }
1835         return 0;
1836 }
1837
1838 static void
1839 nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl)
1840 {
1841         struct nvme_fc_fcp_op *aen_op;
1842         int i;
1843
1844         aen_op = ctrl->aen_ops;
1845         for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
1846                 if (!aen_op->fcp_req.private)
1847                         continue;
1848
1849                 __nvme_fc_exit_request(ctrl, aen_op);
1850
1851                 kfree(aen_op->fcp_req.private);
1852                 aen_op->fcp_req.private = NULL;
1853         }
1854 }
1855
1856 static inline void
1857 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl,
1858                 unsigned int qidx)
1859 {
1860         struct nvme_fc_queue *queue = &ctrl->queues[qidx];
1861
1862         hctx->driver_data = queue;
1863         queue->hctx = hctx;
1864 }
1865
1866 static int
1867 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1868                 unsigned int hctx_idx)
1869 {
1870         struct nvme_fc_ctrl *ctrl = data;
1871
1872         __nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1);
1873
1874         return 0;
1875 }
1876
1877 static int
1878 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1879                 unsigned int hctx_idx)
1880 {
1881         struct nvme_fc_ctrl *ctrl = data;
1882
1883         __nvme_fc_init_hctx(hctx, ctrl, hctx_idx);
1884
1885         return 0;
1886 }
1887
1888 static void
1889 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx)
1890 {
1891         struct nvme_fc_queue *queue;
1892
1893         queue = &ctrl->queues[idx];
1894         memset(queue, 0, sizeof(*queue));
1895         queue->ctrl = ctrl;
1896         queue->qnum = idx;
1897         atomic_set(&queue->csn, 1);
1898         queue->dev = ctrl->dev;
1899
1900         if (idx > 0)
1901                 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
1902         else
1903                 queue->cmnd_capsule_len = sizeof(struct nvme_command);
1904
1905         /*
1906          * Considered whether we should allocate buffers for all SQEs
1907          * and CQEs and dma map them - mapping their respective entries
1908          * into the request structures (kernel vm addr and dma address)
1909          * thus the driver could use the buffers/mappings directly.
1910          * It only makes sense if the LLDD would use them for its
1911          * messaging api. It's very unlikely most adapter api's would use
1912          * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
1913          * structures were used instead.
1914          */
1915 }
1916
1917 /*
1918  * This routine terminates a queue at the transport level.
1919  * The transport has already ensured that all outstanding ios on
1920  * the queue have been terminated.
1921  * The transport will send a Disconnect LS request to terminate
1922  * the queue's connection. Termination of the admin queue will also
1923  * terminate the association at the target.
1924  */
1925 static void
1926 nvme_fc_free_queue(struct nvme_fc_queue *queue)
1927 {
1928         if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
1929                 return;
1930
1931         clear_bit(NVME_FC_Q_LIVE, &queue->flags);
1932         /*
1933          * Current implementation never disconnects a single queue.
1934          * It always terminates a whole association. So there is never
1935          * a disconnect(queue) LS sent to the target.
1936          */
1937
1938         queue->connection_id = 0;
1939 }
1940
1941 static void
1942 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
1943         struct nvme_fc_queue *queue, unsigned int qidx)
1944 {
1945         if (ctrl->lport->ops->delete_queue)
1946                 ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
1947                                 queue->lldd_handle);
1948         queue->lldd_handle = NULL;
1949 }
1950
1951 static void
1952 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
1953 {
1954         int i;
1955
1956         for (i = 1; i < ctrl->ctrl.queue_count; i++)
1957                 nvme_fc_free_queue(&ctrl->queues[i]);
1958 }
1959
1960 static int
1961 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
1962         struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
1963 {
1964         int ret = 0;
1965
1966         queue->lldd_handle = NULL;
1967         if (ctrl->lport->ops->create_queue)
1968                 ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
1969                                 qidx, qsize, &queue->lldd_handle);
1970
1971         return ret;
1972 }
1973
1974 static void
1975 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
1976 {
1977         struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1];
1978         int i;
1979
1980         for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--)
1981                 __nvme_fc_delete_hw_queue(ctrl, queue, i);
1982 }
1983
1984 static int
1985 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1986 {
1987         struct nvme_fc_queue *queue = &ctrl->queues[1];
1988         int i, ret;
1989
1990         for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) {
1991                 ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
1992                 if (ret)
1993                         goto delete_queues;
1994         }
1995
1996         return 0;
1997
1998 delete_queues:
1999         for (; i >= 0; i--)
2000                 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
2001         return ret;
2002 }
2003
2004 static int
2005 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
2006 {
2007         int i, ret = 0;
2008
2009         for (i = 1; i < ctrl->ctrl.queue_count; i++) {
2010                 ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
2011                                         (qsize / 5));
2012                 if (ret)
2013                         break;
2014                 ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
2015                 if (ret)
2016                         break;
2017
2018                 set_bit(NVME_FC_Q_LIVE, &ctrl->queues[i].flags);
2019         }
2020
2021         return ret;
2022 }
2023
2024 static void
2025 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
2026 {
2027         int i;
2028
2029         for (i = 1; i < ctrl->ctrl.queue_count; i++)
2030                 nvme_fc_init_queue(ctrl, i);
2031 }
2032
2033 static void
2034 nvme_fc_ctrl_free(struct kref *ref)
2035 {
2036         struct nvme_fc_ctrl *ctrl =
2037                 container_of(ref, struct nvme_fc_ctrl, ref);
2038         unsigned long flags;
2039
2040         if (ctrl->ctrl.tagset) {
2041                 blk_cleanup_queue(ctrl->ctrl.connect_q);
2042                 blk_mq_free_tag_set(&ctrl->tag_set);
2043         }
2044
2045         /* remove from rport list */
2046         spin_lock_irqsave(&ctrl->rport->lock, flags);
2047         list_del(&ctrl->ctrl_list);
2048         spin_unlock_irqrestore(&ctrl->rport->lock, flags);
2049
2050         blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2051         blk_cleanup_queue(ctrl->ctrl.admin_q);
2052         blk_mq_free_tag_set(&ctrl->admin_tag_set);
2053
2054         kfree(ctrl->queues);
2055
2056         put_device(ctrl->dev);
2057         nvme_fc_rport_put(ctrl->rport);
2058
2059         ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
2060         if (ctrl->ctrl.opts)
2061                 nvmf_free_options(ctrl->ctrl.opts);
2062         kfree(ctrl);
2063 }
2064
2065 static void
2066 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
2067 {
2068         kref_put(&ctrl->ref, nvme_fc_ctrl_free);
2069 }
2070
2071 static int
2072 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
2073 {
2074         return kref_get_unless_zero(&ctrl->ref);
2075 }
2076
2077 /*
2078  * All accesses from nvme core layer done - can now free the
2079  * controller. Called after last nvme_put_ctrl() call
2080  */
2081 static void
2082 nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl)
2083 {
2084         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2085
2086         WARN_ON(nctrl != &ctrl->ctrl);
2087
2088         nvme_fc_ctrl_put(ctrl);
2089 }
2090
2091 static void
2092 nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg)
2093 {
2094         /* only proceed if in LIVE state - e.g. on first error */
2095         if (ctrl->ctrl.state != NVME_CTRL_LIVE)
2096                 return;
2097
2098         dev_warn(ctrl->ctrl.device,
2099                 "NVME-FC{%d}: transport association error detected: %s\n",
2100                 ctrl->cnum, errmsg);
2101         dev_warn(ctrl->ctrl.device,
2102                 "NVME-FC{%d}: resetting controller\n", ctrl->cnum);
2103
2104         nvme_reset_ctrl(&ctrl->ctrl);
2105 }
2106
2107 static enum blk_eh_timer_return
2108 nvme_fc_timeout(struct request *rq, bool reserved)
2109 {
2110         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2111         struct nvme_fc_ctrl *ctrl = op->ctrl;
2112         int ret;
2113
2114         if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE ||
2115                         atomic_read(&op->state) == FCPOP_STATE_ABORTED)
2116                 return BLK_EH_RESET_TIMER;
2117
2118         ret = __nvme_fc_abort_op(ctrl, op);
2119         if (ret)
2120                 /* io wasn't active to abort */
2121                 return BLK_EH_NOT_HANDLED;
2122
2123         /*
2124          * we can't individually ABTS an io without affecting the queue,
2125          * thus killing the queue, adn thus the association.
2126          * So resolve by performing a controller reset, which will stop
2127          * the host/io stack, terminate the association on the link,
2128          * and recreate an association on the link.
2129          */
2130         nvme_fc_error_recovery(ctrl, "io timeout error");
2131
2132         /*
2133          * the io abort has been initiated. Have the reset timer
2134          * restarted and the abort completion will complete the io
2135          * shortly. Avoids a synchronous wait while the abort finishes.
2136          */
2137         return BLK_EH_RESET_TIMER;
2138 }
2139
2140 static int
2141 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2142                 struct nvme_fc_fcp_op *op)
2143 {
2144         struct nvmefc_fcp_req *freq = &op->fcp_req;
2145         enum dma_data_direction dir;
2146         int ret;
2147
2148         freq->sg_cnt = 0;
2149
2150         if (!blk_rq_payload_bytes(rq))
2151                 return 0;
2152
2153         freq->sg_table.sgl = freq->first_sgl;
2154         ret = sg_alloc_table_chained(&freq->sg_table,
2155                         blk_rq_nr_phys_segments(rq), freq->sg_table.sgl);
2156         if (ret)
2157                 return -ENOMEM;
2158
2159         op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
2160         WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
2161         dir = (rq_data_dir(rq) == WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
2162         freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
2163                                 op->nents, dir);
2164         if (unlikely(freq->sg_cnt <= 0)) {
2165                 sg_free_table_chained(&freq->sg_table, true);
2166                 freq->sg_cnt = 0;
2167                 return -EFAULT;
2168         }
2169
2170         /*
2171          * TODO: blk_integrity_rq(rq)  for DIF
2172          */
2173         return 0;
2174 }
2175
2176 static void
2177 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2178                 struct nvme_fc_fcp_op *op)
2179 {
2180         struct nvmefc_fcp_req *freq = &op->fcp_req;
2181
2182         if (!freq->sg_cnt)
2183                 return;
2184
2185         fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
2186                                 ((rq_data_dir(rq) == WRITE) ?
2187                                         DMA_TO_DEVICE : DMA_FROM_DEVICE));
2188
2189         nvme_cleanup_cmd(rq);
2190
2191         sg_free_table_chained(&freq->sg_table, true);
2192
2193         freq->sg_cnt = 0;
2194 }
2195
2196 /*
2197  * In FC, the queue is a logical thing. At transport connect, the target
2198  * creates its "queue" and returns a handle that is to be given to the
2199  * target whenever it posts something to the corresponding SQ.  When an
2200  * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
2201  * command contained within the SQE, an io, and assigns a FC exchange
2202  * to it. The SQE and the associated SQ handle are sent in the initial
2203  * CMD IU sents on the exchange. All transfers relative to the io occur
2204  * as part of the exchange.  The CQE is the last thing for the io,
2205  * which is transferred (explicitly or implicitly) with the RSP IU
2206  * sent on the exchange. After the CQE is received, the FC exchange is
2207  * terminaed and the Exchange may be used on a different io.
2208  *
2209  * The transport to LLDD api has the transport making a request for a
2210  * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
2211  * resource and transfers the command. The LLDD will then process all
2212  * steps to complete the io. Upon completion, the transport done routine
2213  * is called.
2214  *
2215  * So - while the operation is outstanding to the LLDD, there is a link
2216  * level FC exchange resource that is also outstanding. This must be
2217  * considered in all cleanup operations.
2218  */
2219 static blk_status_t
2220 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
2221         struct nvme_fc_fcp_op *op, u32 data_len,
2222         enum nvmefc_fcp_datadir io_dir)
2223 {
2224         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2225         struct nvme_command *sqe = &cmdiu->sqe;
2226         u32 csn;
2227         int ret;
2228
2229         /*
2230          * before attempting to send the io, check to see if we believe
2231          * the target device is present
2232          */
2233         if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2234                 goto busy;
2235
2236         if (!nvme_fc_ctrl_get(ctrl))
2237                 return BLK_STS_IOERR;
2238
2239         /* format the FC-NVME CMD IU and fcp_req */
2240         cmdiu->connection_id = cpu_to_be64(queue->connection_id);
2241         csn = atomic_inc_return(&queue->csn);
2242         cmdiu->csn = cpu_to_be32(csn);
2243         cmdiu->data_len = cpu_to_be32(data_len);
2244         switch (io_dir) {
2245         case NVMEFC_FCP_WRITE:
2246                 cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
2247                 break;
2248         case NVMEFC_FCP_READ:
2249                 cmdiu->flags = FCNVME_CMD_FLAGS_READ;
2250                 break;
2251         case NVMEFC_FCP_NODATA:
2252                 cmdiu->flags = 0;
2253                 break;
2254         }
2255         op->fcp_req.payload_length = data_len;
2256         op->fcp_req.io_dir = io_dir;
2257         op->fcp_req.transferred_length = 0;
2258         op->fcp_req.rcv_rsplen = 0;
2259         op->fcp_req.status = NVME_SC_SUCCESS;
2260         op->fcp_req.sqid = cpu_to_le16(queue->qnum);
2261
2262         /*
2263          * validate per fabric rules, set fields mandated by fabric spec
2264          * as well as those by FC-NVME spec.
2265          */
2266         WARN_ON_ONCE(sqe->common.metadata);
2267         sqe->common.flags |= NVME_CMD_SGL_METABUF;
2268
2269         /*
2270          * format SQE DPTR field per FC-NVME rules:
2271          *    type=0x5     Transport SGL Data Block Descriptor
2272          *    subtype=0xA  Transport-specific value
2273          *    address=0
2274          *    length=length of the data series
2275          */
2276         sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2277                                         NVME_SGL_FMT_TRANSPORT_A;
2278         sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
2279         sqe->rw.dptr.sgl.addr = 0;
2280
2281         if (!(op->flags & FCOP_FLAGS_AEN)) {
2282                 ret = nvme_fc_map_data(ctrl, op->rq, op);
2283                 if (ret < 0) {
2284                         nvme_cleanup_cmd(op->rq);
2285                         nvme_fc_ctrl_put(ctrl);
2286                         if (ret == -ENOMEM || ret == -EAGAIN)
2287                                 return BLK_STS_RESOURCE;
2288                         return BLK_STS_IOERR;
2289                 }
2290         }
2291
2292         fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
2293                                   sizeof(op->cmd_iu), DMA_TO_DEVICE);
2294
2295         atomic_set(&op->state, FCPOP_STATE_ACTIVE);
2296
2297         if (!(op->flags & FCOP_FLAGS_AEN))
2298                 blk_mq_start_request(op->rq);
2299
2300         ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
2301                                         &ctrl->rport->remoteport,
2302                                         queue->lldd_handle, &op->fcp_req);
2303
2304         if (ret) {
2305                 if (!(op->flags & FCOP_FLAGS_AEN))
2306                         nvme_fc_unmap_data(ctrl, op->rq, op);
2307
2308                 nvme_fc_ctrl_put(ctrl);
2309
2310                 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE &&
2311                                 ret != -EBUSY)
2312                         return BLK_STS_IOERR;
2313
2314                 goto busy;
2315         }
2316
2317         return BLK_STS_OK;
2318
2319 busy:
2320         if (!(op->flags & FCOP_FLAGS_AEN) && queue->hctx)
2321                 blk_mq_delay_run_hw_queue(queue->hctx, NVMEFC_QUEUE_DELAY);
2322
2323         return BLK_STS_RESOURCE;
2324 }
2325
2326 static inline blk_status_t nvme_fc_is_ready(struct nvme_fc_queue *queue,
2327                 struct request *rq)
2328 {
2329         if (unlikely(!test_bit(NVME_FC_Q_LIVE, &queue->flags)))
2330                 return nvmf_check_init_req(&queue->ctrl->ctrl, rq);
2331         return BLK_STS_OK;
2332 }
2333
2334 static blk_status_t
2335 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
2336                         const struct blk_mq_queue_data *bd)
2337 {
2338         struct nvme_ns *ns = hctx->queue->queuedata;
2339         struct nvme_fc_queue *queue = hctx->driver_data;
2340         struct nvme_fc_ctrl *ctrl = queue->ctrl;
2341         struct request *rq = bd->rq;
2342         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2343         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2344         struct nvme_command *sqe = &cmdiu->sqe;
2345         enum nvmefc_fcp_datadir io_dir;
2346         u32 data_len;
2347         blk_status_t ret;
2348
2349         ret = nvme_fc_is_ready(queue, rq);
2350         if (unlikely(ret))
2351                 return ret;
2352
2353         ret = nvme_setup_cmd(ns, rq, sqe);
2354         if (ret)
2355                 return ret;
2356
2357         data_len = blk_rq_payload_bytes(rq);
2358         if (data_len)
2359                 io_dir = ((rq_data_dir(rq) == WRITE) ?
2360                                         NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
2361         else
2362                 io_dir = NVMEFC_FCP_NODATA;
2363
2364         return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
2365 }
2366
2367 static struct blk_mq_tags *
2368 nvme_fc_tagset(struct nvme_fc_queue *queue)
2369 {
2370         if (queue->qnum == 0)
2371                 return queue->ctrl->admin_tag_set.tags[queue->qnum];
2372
2373         return queue->ctrl->tag_set.tags[queue->qnum - 1];
2374 }
2375
2376 static int
2377 nvme_fc_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
2378
2379 {
2380         struct nvme_fc_queue *queue = hctx->driver_data;
2381         struct nvme_fc_ctrl *ctrl = queue->ctrl;
2382         struct request *req;
2383         struct nvme_fc_fcp_op *op;
2384
2385         req = blk_mq_tag_to_rq(nvme_fc_tagset(queue), tag);
2386         if (!req)
2387                 return 0;
2388
2389         op = blk_mq_rq_to_pdu(req);
2390
2391         if ((atomic_read(&op->state) == FCPOP_STATE_ACTIVE) &&
2392                  (ctrl->lport->ops->poll_queue))
2393                 ctrl->lport->ops->poll_queue(&ctrl->lport->localport,
2394                                                  queue->lldd_handle);
2395
2396         return ((atomic_read(&op->state) != FCPOP_STATE_ACTIVE));
2397 }
2398
2399 static void
2400 nvme_fc_submit_async_event(struct nvme_ctrl *arg)
2401 {
2402         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
2403         struct nvme_fc_fcp_op *aen_op;
2404         unsigned long flags;
2405         bool terminating = false;
2406         blk_status_t ret;
2407
2408         spin_lock_irqsave(&ctrl->lock, flags);
2409         if (ctrl->flags & FCCTRL_TERMIO)
2410                 terminating = true;
2411         spin_unlock_irqrestore(&ctrl->lock, flags);
2412
2413         if (terminating)
2414                 return;
2415
2416         aen_op = &ctrl->aen_ops[0];
2417
2418         ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
2419                                         NVMEFC_FCP_NODATA);
2420         if (ret)
2421                 dev_err(ctrl->ctrl.device,
2422                         "failed async event work\n");
2423 }
2424
2425 static void
2426 __nvme_fc_final_op_cleanup(struct request *rq)
2427 {
2428         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2429         struct nvme_fc_ctrl *ctrl = op->ctrl;
2430
2431         atomic_set(&op->state, FCPOP_STATE_IDLE);
2432         op->flags &= ~(FCOP_FLAGS_TERMIO | FCOP_FLAGS_RELEASED |
2433                         FCOP_FLAGS_COMPLETE);
2434
2435         nvme_fc_unmap_data(ctrl, rq, op);
2436         nvme_complete_rq(rq);
2437         nvme_fc_ctrl_put(ctrl);
2438
2439 }
2440
2441 static void
2442 nvme_fc_complete_rq(struct request *rq)
2443 {
2444         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2445         struct nvme_fc_ctrl *ctrl = op->ctrl;
2446         unsigned long flags;
2447         bool completed = false;
2448
2449         /*
2450          * the core layer, on controller resets after calling
2451          * nvme_shutdown_ctrl(), calls complete_rq without our
2452          * calling blk_mq_complete_request(), thus there may still
2453          * be live i/o outstanding with the LLDD. Means transport has
2454          * to track complete calls vs fcpio_done calls to know what
2455          * path to take on completes and dones.
2456          */
2457         spin_lock_irqsave(&ctrl->lock, flags);
2458         if (op->flags & FCOP_FLAGS_COMPLETE)
2459                 completed = true;
2460         else
2461                 op->flags |= FCOP_FLAGS_RELEASED;
2462         spin_unlock_irqrestore(&ctrl->lock, flags);
2463
2464         if (completed)
2465                 __nvme_fc_final_op_cleanup(rq);
2466 }
2467
2468 /*
2469  * This routine is used by the transport when it needs to find active
2470  * io on a queue that is to be terminated. The transport uses
2471  * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2472  * this routine to kill them on a 1 by 1 basis.
2473  *
2474  * As FC allocates FC exchange for each io, the transport must contact
2475  * the LLDD to terminate the exchange, thus releasing the FC exchange.
2476  * After terminating the exchange the LLDD will call the transport's
2477  * normal io done path for the request, but it will have an aborted
2478  * status. The done path will return the io request back to the block
2479  * layer with an error status.
2480  */
2481 static void
2482 nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved)
2483 {
2484         struct nvme_ctrl *nctrl = data;
2485         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2486         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
2487         unsigned long flags;
2488         int status;
2489
2490         if (!blk_mq_request_started(req))
2491                 return;
2492
2493         spin_lock_irqsave(&ctrl->lock, flags);
2494         if (ctrl->flags & FCCTRL_TERMIO) {
2495                 ctrl->iocnt++;
2496                 op->flags |= FCOP_FLAGS_TERMIO;
2497         }
2498         spin_unlock_irqrestore(&ctrl->lock, flags);
2499
2500         status = __nvme_fc_abort_op(ctrl, op);
2501         if (status) {
2502                 /*
2503                  * if __nvme_fc_abort_op failed the io wasn't
2504                  * active. Thus this call path is running in
2505                  * parallel to the io complete. Treat as non-error.
2506                  */
2507
2508                 /* back out the flags/counters */
2509                 spin_lock_irqsave(&ctrl->lock, flags);
2510                 if (ctrl->flags & FCCTRL_TERMIO)
2511                         ctrl->iocnt--;
2512                 op->flags &= ~FCOP_FLAGS_TERMIO;
2513                 spin_unlock_irqrestore(&ctrl->lock, flags);
2514                 return;
2515         }
2516 }
2517
2518
2519 static const struct blk_mq_ops nvme_fc_mq_ops = {
2520         .queue_rq       = nvme_fc_queue_rq,
2521         .complete       = nvme_fc_complete_rq,
2522         .init_request   = nvme_fc_init_request,
2523         .exit_request   = nvme_fc_exit_request,
2524         .init_hctx      = nvme_fc_init_hctx,
2525         .poll           = nvme_fc_poll,
2526         .timeout        = nvme_fc_timeout,
2527 };
2528
2529 static int
2530 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
2531 {
2532         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2533         unsigned int nr_io_queues;
2534         int ret;
2535
2536         nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2537                                 ctrl->lport->ops->max_hw_queues);
2538         ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2539         if (ret) {
2540                 dev_info(ctrl->ctrl.device,
2541                         "set_queue_count failed: %d\n", ret);
2542                 return ret;
2543         }
2544
2545         ctrl->ctrl.queue_count = nr_io_queues + 1;
2546         if (!nr_io_queues)
2547                 return 0;
2548
2549         nvme_fc_init_io_queues(ctrl);
2550
2551         memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
2552         ctrl->tag_set.ops = &nvme_fc_mq_ops;
2553         ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
2554         ctrl->tag_set.reserved_tags = 1; /* fabric connect */
2555         ctrl->tag_set.numa_node = NUMA_NO_NODE;
2556         ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
2557         ctrl->tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
2558                                         (SG_CHUNK_SIZE *
2559                                                 sizeof(struct scatterlist)) +
2560                                         ctrl->lport->ops->fcprqst_priv_sz;
2561         ctrl->tag_set.driver_data = ctrl;
2562         ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1;
2563         ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
2564
2565         ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
2566         if (ret)
2567                 return ret;
2568
2569         ctrl->ctrl.tagset = &ctrl->tag_set;
2570
2571         ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
2572         if (IS_ERR(ctrl->ctrl.connect_q)) {
2573                 ret = PTR_ERR(ctrl->ctrl.connect_q);
2574                 goto out_free_tag_set;
2575         }
2576
2577         ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2578         if (ret)
2579                 goto out_cleanup_blk_queue;
2580
2581         ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2582         if (ret)
2583                 goto out_delete_hw_queues;
2584
2585         return 0;
2586
2587 out_delete_hw_queues:
2588         nvme_fc_delete_hw_io_queues(ctrl);
2589 out_cleanup_blk_queue:
2590         blk_cleanup_queue(ctrl->ctrl.connect_q);
2591 out_free_tag_set:
2592         blk_mq_free_tag_set(&ctrl->tag_set);
2593         nvme_fc_free_io_queues(ctrl);
2594
2595         /* force put free routine to ignore io queues */
2596         ctrl->ctrl.tagset = NULL;
2597
2598         return ret;
2599 }
2600
2601 static int
2602 nvme_fc_reinit_io_queues(struct nvme_fc_ctrl *ctrl)
2603 {
2604         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2605         unsigned int nr_io_queues;
2606         int ret;
2607
2608         nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2609                                 ctrl->lport->ops->max_hw_queues);
2610         ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2611         if (ret) {
2612                 dev_info(ctrl->ctrl.device,
2613                         "set_queue_count failed: %d\n", ret);
2614                 return ret;
2615         }
2616
2617         ctrl->ctrl.queue_count = nr_io_queues + 1;
2618         /* check for io queues existing */
2619         if (ctrl->ctrl.queue_count == 1)
2620                 return 0;
2621
2622         nvme_fc_init_io_queues(ctrl);
2623
2624         ret = nvme_reinit_tagset(&ctrl->ctrl, ctrl->ctrl.tagset);
2625         if (ret)
2626                 goto out_free_io_queues;
2627
2628         ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2629         if (ret)
2630                 goto out_free_io_queues;
2631
2632         ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2633         if (ret)
2634                 goto out_delete_hw_queues;
2635
2636         blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues);
2637
2638         return 0;
2639
2640 out_delete_hw_queues:
2641         nvme_fc_delete_hw_io_queues(ctrl);
2642 out_free_io_queues:
2643         nvme_fc_free_io_queues(ctrl);
2644         return ret;
2645 }
2646
2647 static void
2648 nvme_fc_rport_active_on_lport(struct nvme_fc_rport *rport)
2649 {
2650         struct nvme_fc_lport *lport = rport->lport;
2651
2652         atomic_inc(&lport->act_rport_cnt);
2653 }
2654
2655 static void
2656 nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport *rport)
2657 {
2658         struct nvme_fc_lport *lport = rport->lport;
2659         u32 cnt;
2660
2661         cnt = atomic_dec_return(&lport->act_rport_cnt);
2662         if (cnt == 0 && lport->localport.port_state == FC_OBJSTATE_DELETED)
2663                 lport->ops->localport_delete(&lport->localport);
2664 }
2665
2666 static int
2667 nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl *ctrl)
2668 {
2669         struct nvme_fc_rport *rport = ctrl->rport;
2670         u32 cnt;
2671
2672         if (ctrl->assoc_active)
2673                 return 1;
2674
2675         ctrl->assoc_active = true;
2676         cnt = atomic_inc_return(&rport->act_ctrl_cnt);
2677         if (cnt == 1)
2678                 nvme_fc_rport_active_on_lport(rport);
2679
2680         return 0;
2681 }
2682
2683 static int
2684 nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl *ctrl)
2685 {
2686         struct nvme_fc_rport *rport = ctrl->rport;
2687         struct nvme_fc_lport *lport = rport->lport;
2688         u32 cnt;
2689
2690         /* ctrl->assoc_active=false will be set independently */
2691
2692         cnt = atomic_dec_return(&rport->act_ctrl_cnt);
2693         if (cnt == 0) {
2694                 if (rport->remoteport.port_state == FC_OBJSTATE_DELETED)
2695                         lport->ops->remoteport_delete(&rport->remoteport);
2696                 nvme_fc_rport_inactive_on_lport(rport);
2697         }
2698
2699         return 0;
2700 }
2701
2702 /*
2703  * This routine restarts the controller on the host side, and
2704  * on the link side, recreates the controller association.
2705  */
2706 static int
2707 nvme_fc_create_association(struct nvme_fc_ctrl *ctrl)
2708 {
2709         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2710         int ret;
2711         bool changed;
2712
2713         ++ctrl->ctrl.nr_reconnects;
2714
2715         if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2716                 return -ENODEV;
2717
2718         if (nvme_fc_ctlr_active_on_rport(ctrl))
2719                 return -ENOTUNIQ;
2720
2721         /*
2722          * Create the admin queue
2723          */
2724
2725         nvme_fc_init_queue(ctrl, 0);
2726
2727         ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
2728                                 NVME_AQ_BLK_MQ_DEPTH);
2729         if (ret)
2730                 goto out_free_queue;
2731
2732         ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
2733                                 NVME_AQ_BLK_MQ_DEPTH,
2734                                 (NVME_AQ_BLK_MQ_DEPTH / 4));
2735         if (ret)
2736                 goto out_delete_hw_queue;
2737
2738         if (ctrl->ctrl.state != NVME_CTRL_NEW)
2739                 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2740
2741         ret = nvmf_connect_admin_queue(&ctrl->ctrl);
2742         if (ret)
2743                 goto out_disconnect_admin_queue;
2744
2745         set_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags);
2746
2747         /*
2748          * Check controller capabilities
2749          *
2750          * todo:- add code to check if ctrl attributes changed from
2751          * prior connection values
2752          */
2753
2754         ret = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->ctrl.cap);
2755         if (ret) {
2756                 dev_err(ctrl->ctrl.device,
2757                         "prop_get NVME_REG_CAP failed\n");
2758                 goto out_disconnect_admin_queue;
2759         }
2760
2761         ctrl->ctrl.sqsize =
2762                 min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap) + 1, ctrl->ctrl.sqsize);
2763
2764         ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
2765         if (ret)
2766                 goto out_disconnect_admin_queue;
2767
2768         ctrl->ctrl.max_hw_sectors =
2769                 (ctrl->lport->ops->max_sgl_segments - 1) << (PAGE_SHIFT - 9);
2770
2771         ret = nvme_init_identify(&ctrl->ctrl);
2772         if (ret)
2773                 goto out_disconnect_admin_queue;
2774
2775         /* sanity checks */
2776
2777         /* FC-NVME does not have other data in the capsule */
2778         if (ctrl->ctrl.icdoff) {
2779                 dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
2780                                 ctrl->ctrl.icdoff);
2781                 goto out_disconnect_admin_queue;
2782         }
2783
2784         /* FC-NVME supports normal SGL Data Block Descriptors */
2785
2786         if (opts->queue_size > ctrl->ctrl.maxcmd) {
2787                 /* warn if maxcmd is lower than queue_size */
2788                 dev_warn(ctrl->ctrl.device,
2789                         "queue_size %zu > ctrl maxcmd %u, reducing "
2790                         "to queue_size\n",
2791                         opts->queue_size, ctrl->ctrl.maxcmd);
2792                 opts->queue_size = ctrl->ctrl.maxcmd;
2793         }
2794
2795         ret = nvme_fc_init_aen_ops(ctrl);
2796         if (ret)
2797                 goto out_term_aen_ops;
2798
2799         /*
2800          * Create the io queues
2801          */
2802
2803         if (ctrl->ctrl.queue_count > 1) {
2804                 if (ctrl->ctrl.state == NVME_CTRL_NEW)
2805                         ret = nvme_fc_create_io_queues(ctrl);
2806                 else
2807                         ret = nvme_fc_reinit_io_queues(ctrl);
2808                 if (ret)
2809                         goto out_term_aen_ops;
2810         }
2811
2812         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
2813
2814         ctrl->ctrl.nr_reconnects = 0;
2815
2816         if (changed)
2817                 nvme_start_ctrl(&ctrl->ctrl);
2818
2819         return 0;       /* Success */
2820
2821 out_term_aen_ops:
2822         nvme_fc_term_aen_ops(ctrl);
2823 out_disconnect_admin_queue:
2824         /* send a Disconnect(association) LS to fc-nvme target */
2825         nvme_fc_xmt_disconnect_assoc(ctrl);
2826 out_delete_hw_queue:
2827         __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2828 out_free_queue:
2829         nvme_fc_free_queue(&ctrl->queues[0]);
2830         ctrl->assoc_active = false;
2831         nvme_fc_ctlr_inactive_on_rport(ctrl);
2832
2833         return ret;
2834 }
2835
2836 /*
2837  * This routine stops operation of the controller on the host side.
2838  * On the host os stack side: Admin and IO queues are stopped,
2839  *   outstanding ios on them terminated via FC ABTS.
2840  * On the link side: the association is terminated.
2841  */
2842 static void
2843 nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl)
2844 {
2845         unsigned long flags;
2846
2847         if (!ctrl->assoc_active)
2848                 return;
2849         ctrl->assoc_active = false;
2850
2851         spin_lock_irqsave(&ctrl->lock, flags);
2852         ctrl->flags |= FCCTRL_TERMIO;
2853         ctrl->iocnt = 0;
2854         spin_unlock_irqrestore(&ctrl->lock, flags);
2855
2856         /*
2857          * If io queues are present, stop them and terminate all outstanding
2858          * ios on them. As FC allocates FC exchange for each io, the
2859          * transport must contact the LLDD to terminate the exchange,
2860          * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2861          * to tell us what io's are busy and invoke a transport routine
2862          * to kill them with the LLDD.  After terminating the exchange
2863          * the LLDD will call the transport's normal io done path, but it
2864          * will have an aborted status. The done path will return the
2865          * io requests back to the block layer as part of normal completions
2866          * (but with error status).
2867          */
2868         if (ctrl->ctrl.queue_count > 1) {
2869                 nvme_stop_queues(&ctrl->ctrl);
2870                 blk_mq_tagset_busy_iter(&ctrl->tag_set,
2871                                 nvme_fc_terminate_exchange, &ctrl->ctrl);
2872         }
2873
2874         /*
2875          * Other transports, which don't have link-level contexts bound
2876          * to sqe's, would try to gracefully shutdown the controller by
2877          * writing the registers for shutdown and polling (call
2878          * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially
2879          * just aborted and we will wait on those contexts, and given
2880          * there was no indication of how live the controlelr is on the
2881          * link, don't send more io to create more contexts for the
2882          * shutdown. Let the controller fail via keepalive failure if
2883          * its still present.
2884          */
2885
2886         /*
2887          * clean up the admin queue. Same thing as above.
2888          * use blk_mq_tagset_busy_itr() and the transport routine to
2889          * terminate the exchanges.
2890          */
2891         if (ctrl->ctrl.state != NVME_CTRL_NEW)
2892                 blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
2893         blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
2894                                 nvme_fc_terminate_exchange, &ctrl->ctrl);
2895
2896         /* kill the aens as they are a separate path */
2897         nvme_fc_abort_aen_ops(ctrl);
2898
2899         /* wait for all io that had to be aborted */
2900         spin_lock_irq(&ctrl->lock);
2901         wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock);
2902         ctrl->flags &= ~FCCTRL_TERMIO;
2903         spin_unlock_irq(&ctrl->lock);
2904
2905         nvme_fc_term_aen_ops(ctrl);
2906
2907         /*
2908          * send a Disconnect(association) LS to fc-nvme target
2909          * Note: could have been sent at top of process, but
2910          * cleaner on link traffic if after the aborts complete.
2911          * Note: if association doesn't exist, association_id will be 0
2912          */
2913         if (ctrl->association_id)
2914                 nvme_fc_xmt_disconnect_assoc(ctrl);
2915
2916         if (ctrl->ctrl.tagset) {
2917                 nvme_fc_delete_hw_io_queues(ctrl);
2918                 nvme_fc_free_io_queues(ctrl);
2919         }
2920
2921         __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2922         nvme_fc_free_queue(&ctrl->queues[0]);
2923
2924         nvme_fc_ctlr_inactive_on_rport(ctrl);
2925 }
2926
2927 static void
2928 nvme_fc_delete_ctrl(struct nvme_ctrl *nctrl)
2929 {
2930         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2931
2932         cancel_delayed_work_sync(&ctrl->connect_work);
2933         /*
2934          * kill the association on the link side.  this will block
2935          * waiting for io to terminate
2936          */
2937         nvme_fc_delete_association(ctrl);
2938 }
2939
2940 static void
2941 nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status)
2942 {
2943         struct nvme_fc_rport *rport = ctrl->rport;
2944         struct nvme_fc_remote_port *portptr = &rport->remoteport;
2945         unsigned long recon_delay = ctrl->ctrl.opts->reconnect_delay * HZ;
2946         bool recon = true;
2947
2948         if (ctrl->ctrl.state != NVME_CTRL_RECONNECTING)
2949                 return;
2950
2951         if (portptr->port_state == FC_OBJSTATE_ONLINE)
2952                 dev_info(ctrl->ctrl.device,
2953                         "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
2954                         ctrl->cnum, status);
2955         else if (time_after_eq(jiffies, rport->dev_loss_end))
2956                 recon = false;
2957
2958         if (recon && nvmf_should_reconnect(&ctrl->ctrl)) {
2959                 if (portptr->port_state == FC_OBJSTATE_ONLINE)
2960                         dev_info(ctrl->ctrl.device,
2961                                 "NVME-FC{%d}: Reconnect attempt in %ld "
2962                                 "seconds\n",
2963                                 ctrl->cnum, recon_delay / HZ);
2964                 else if (time_after(jiffies + recon_delay, rport->dev_loss_end))
2965                         recon_delay = rport->dev_loss_end - jiffies;
2966
2967                 queue_delayed_work(nvme_wq, &ctrl->connect_work, recon_delay);
2968         } else {
2969                 if (portptr->port_state == FC_OBJSTATE_ONLINE)
2970                         dev_warn(ctrl->ctrl.device,
2971                                 "NVME-FC{%d}: Max reconnect attempts (%d) "
2972                                 "reached. Removing controller\n",
2973                                 ctrl->cnum, ctrl->ctrl.nr_reconnects);
2974                 else
2975                         dev_warn(ctrl->ctrl.device,
2976                                 "NVME-FC{%d}: dev_loss_tmo (%d) expired "
2977                                 "while waiting for remoteport connectivity. "
2978                                 "Removing controller\n", ctrl->cnum,
2979                                 portptr->dev_loss_tmo);
2980                 WARN_ON(nvme_delete_ctrl(&ctrl->ctrl));
2981         }
2982 }
2983
2984 static void
2985 nvme_fc_reset_ctrl_work(struct work_struct *work)
2986 {
2987         struct nvme_fc_ctrl *ctrl =
2988                 container_of(work, struct nvme_fc_ctrl, ctrl.reset_work);
2989         int ret;
2990
2991         nvme_stop_ctrl(&ctrl->ctrl);
2992
2993         /* will block will waiting for io to terminate */
2994         nvme_fc_delete_association(ctrl);
2995
2996         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING)) {
2997                 dev_err(ctrl->ctrl.device,
2998                         "NVME-FC{%d}: error_recovery: Couldn't change state "
2999                         "to RECONNECTING\n", ctrl->cnum);
3000                 return;
3001         }
3002
3003         if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE)
3004                 ret = nvme_fc_create_association(ctrl);
3005         else
3006                 ret = -ENOTCONN;
3007
3008         if (ret)
3009                 nvme_fc_reconnect_or_delete(ctrl, ret);
3010         else
3011                 dev_info(ctrl->ctrl.device,
3012                         "NVME-FC{%d}: controller reset complete\n",
3013                         ctrl->cnum);
3014 }
3015
3016 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
3017         .name                   = "fc",
3018         .module                 = THIS_MODULE,
3019         .flags                  = NVME_F_FABRICS,
3020         .reg_read32             = nvmf_reg_read32,
3021         .reg_read64             = nvmf_reg_read64,
3022         .reg_write32            = nvmf_reg_write32,
3023         .free_ctrl              = nvme_fc_nvme_ctrl_freed,
3024         .submit_async_event     = nvme_fc_submit_async_event,
3025         .delete_ctrl            = nvme_fc_delete_ctrl,
3026         .get_address            = nvmf_get_address,
3027         .reinit_request         = nvme_fc_reinit_request,
3028 };
3029
3030 static void
3031 nvme_fc_connect_ctrl_work(struct work_struct *work)
3032 {
3033         int ret;
3034
3035         struct nvme_fc_ctrl *ctrl =
3036                         container_of(to_delayed_work(work),
3037                                 struct nvme_fc_ctrl, connect_work);
3038
3039         ret = nvme_fc_create_association(ctrl);
3040         if (ret)
3041                 nvme_fc_reconnect_or_delete(ctrl, ret);
3042         else
3043                 dev_info(ctrl->ctrl.device,
3044                         "NVME-FC{%d}: controller reconnect complete\n",
3045                         ctrl->cnum);
3046 }
3047
3048
3049 static const struct blk_mq_ops nvme_fc_admin_mq_ops = {
3050         .queue_rq       = nvme_fc_queue_rq,
3051         .complete       = nvme_fc_complete_rq,
3052         .init_request   = nvme_fc_init_request,
3053         .exit_request   = nvme_fc_exit_request,
3054         .init_hctx      = nvme_fc_init_admin_hctx,
3055         .timeout        = nvme_fc_timeout,
3056 };
3057
3058
3059 /*
3060  * Fails a controller request if it matches an existing controller
3061  * (association) with the same tuple:
3062  * <Host NQN, Host ID, local FC port, remote FC port, SUBSYS NQN>
3063  *
3064  * The ports don't need to be compared as they are intrinsically
3065  * already matched by the port pointers supplied.
3066  */
3067 static bool
3068 nvme_fc_existing_controller(struct nvme_fc_rport *rport,
3069                 struct nvmf_ctrl_options *opts)
3070 {
3071         struct nvme_fc_ctrl *ctrl;
3072         unsigned long flags;
3073         bool found = false;
3074
3075         spin_lock_irqsave(&rport->lock, flags);
3076         list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
3077                 found = nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts);
3078                 if (found)
3079                         break;
3080         }
3081         spin_unlock_irqrestore(&rport->lock, flags);
3082
3083         return found;
3084 }
3085
3086 static struct nvme_ctrl *
3087 nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
3088         struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
3089 {
3090         struct nvme_fc_ctrl *ctrl;
3091         unsigned long flags;
3092         int ret, idx, retry;
3093
3094         if (!(rport->remoteport.port_role &
3095             (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) {
3096                 ret = -EBADR;
3097                 goto out_fail;
3098         }
3099
3100         if (!opts->duplicate_connect &&
3101             nvme_fc_existing_controller(rport, opts)) {
3102                 ret = -EALREADY;
3103                 goto out_fail;
3104         }
3105
3106         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
3107         if (!ctrl) {
3108                 ret = -ENOMEM;
3109                 goto out_fail;
3110         }
3111
3112         idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL);
3113         if (idx < 0) {
3114                 ret = -ENOSPC;
3115                 goto out_free_ctrl;
3116         }
3117
3118         ctrl->ctrl.opts = opts;
3119         INIT_LIST_HEAD(&ctrl->ctrl_list);
3120         ctrl->lport = lport;
3121         ctrl->rport = rport;
3122         ctrl->dev = lport->dev;
3123         ctrl->cnum = idx;
3124         ctrl->assoc_active = false;
3125         init_waitqueue_head(&ctrl->ioabort_wait);
3126
3127         get_device(ctrl->dev);
3128         kref_init(&ctrl->ref);
3129
3130         INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work);
3131         INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work);
3132         spin_lock_init(&ctrl->lock);
3133
3134         /* io queue count */
3135         ctrl->ctrl.queue_count = min_t(unsigned int,
3136                                 opts->nr_io_queues,
3137                                 lport->ops->max_hw_queues);
3138         ctrl->ctrl.queue_count++;       /* +1 for admin queue */
3139
3140         ctrl->ctrl.sqsize = opts->queue_size - 1;
3141         ctrl->ctrl.kato = opts->kato;
3142
3143         ret = -ENOMEM;
3144         ctrl->queues = kcalloc(ctrl->ctrl.queue_count,
3145                                 sizeof(struct nvme_fc_queue), GFP_KERNEL);
3146         if (!ctrl->queues)
3147                 goto out_free_ida;
3148
3149         memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
3150         ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops;
3151         ctrl->admin_tag_set.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
3152         ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */
3153         ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
3154         ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
3155                                         (SG_CHUNK_SIZE *
3156                                                 sizeof(struct scatterlist)) +
3157                                         ctrl->lport->ops->fcprqst_priv_sz;
3158         ctrl->admin_tag_set.driver_data = ctrl;
3159         ctrl->admin_tag_set.nr_hw_queues = 1;
3160         ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
3161         ctrl->admin_tag_set.flags = BLK_MQ_F_NO_SCHED;
3162
3163         ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
3164         if (ret)
3165                 goto out_free_queues;
3166         ctrl->ctrl.admin_tagset = &ctrl->admin_tag_set;
3167
3168         ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
3169         if (IS_ERR(ctrl->ctrl.admin_q)) {
3170                 ret = PTR_ERR(ctrl->ctrl.admin_q);
3171                 goto out_free_admin_tag_set;
3172         }
3173
3174         /*
3175          * Would have been nice to init io queues tag set as well.
3176          * However, we require interaction from the controller
3177          * for max io queue count before we can do so.
3178          * Defer this to the connect path.
3179          */
3180
3181         ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
3182         if (ret)
3183                 goto out_cleanup_admin_q;
3184
3185         /* at this point, teardown path changes to ref counting on nvme ctrl */
3186
3187         spin_lock_irqsave(&rport->lock, flags);
3188         list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
3189         spin_unlock_irqrestore(&rport->lock, flags);
3190
3191         /*
3192          * It's possible that transactions used to create the association
3193          * may fail. Examples: CreateAssociation LS or CreateIOConnection
3194          * LS gets dropped/corrupted/fails; or a frame gets dropped or a
3195          * command times out for one of the actions to init the controller
3196          * (Connect, Get/Set_Property, Set_Features, etc). Many of these
3197          * transport errors (frame drop, LS failure) inherently must kill
3198          * the association. The transport is coded so that any command used
3199          * to create the association (prior to a LIVE state transition
3200          * while NEW or RECONNECTING) will fail if it completes in error or
3201          * times out.
3202          *
3203          * As such: as the connect request was mostly likely due to a
3204          * udev event that discovered the remote port, meaning there is
3205          * not an admin or script there to restart if the connect
3206          * request fails, retry the initial connection creation up to
3207          * three times before giving up and declaring failure.
3208          */
3209         for (retry = 0; retry < 3; retry++) {
3210                 ret = nvme_fc_create_association(ctrl);
3211                 if (!ret)
3212                         break;
3213         }
3214
3215         if (ret) {
3216                 /* couldn't schedule retry - fail out */
3217                 dev_err(ctrl->ctrl.device,
3218                         "NVME-FC{%d}: Connect retry failed\n", ctrl->cnum);
3219
3220                 ctrl->ctrl.opts = NULL;
3221
3222                 /* initiate nvme ctrl ref counting teardown */
3223                 nvme_uninit_ctrl(&ctrl->ctrl);
3224
3225                 /* Remove core ctrl ref. */
3226                 nvme_put_ctrl(&ctrl->ctrl);
3227
3228                 /* as we're past the point where we transition to the ref
3229                  * counting teardown path, if we return a bad pointer here,
3230                  * the calling routine, thinking it's prior to the
3231                  * transition, will do an rport put. Since the teardown
3232                  * path also does a rport put, we do an extra get here to
3233                  * so proper order/teardown happens.
3234                  */
3235                 nvme_fc_rport_get(rport);
3236
3237                 if (ret > 0)
3238                         ret = -EIO;
3239                 return ERR_PTR(ret);
3240         }
3241
3242         nvme_get_ctrl(&ctrl->ctrl);
3243
3244         dev_info(ctrl->ctrl.device,
3245                 "NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
3246                 ctrl->cnum, ctrl->ctrl.opts->subsysnqn);
3247
3248         return &ctrl->ctrl;
3249
3250 out_cleanup_admin_q:
3251         blk_cleanup_queue(ctrl->ctrl.admin_q);
3252 out_free_admin_tag_set:
3253         blk_mq_free_tag_set(&ctrl->admin_tag_set);
3254 out_free_queues:
3255         kfree(ctrl->queues);
3256 out_free_ida:
3257         put_device(ctrl->dev);
3258         ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
3259 out_free_ctrl:
3260         kfree(ctrl);
3261 out_fail:
3262         /* exit via here doesn't follow ctlr ref points */
3263         return ERR_PTR(ret);
3264 }
3265
3266
3267 struct nvmet_fc_traddr {
3268         u64     nn;
3269         u64     pn;
3270 };
3271
3272 static int
3273 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
3274 {
3275         u64 token64;
3276
3277         if (match_u64(sstr, &token64))
3278                 return -EINVAL;
3279         *val = token64;
3280
3281         return 0;
3282 }
3283
3284 /*
3285  * This routine validates and extracts the WWN's from the TRADDR string.
3286  * As kernel parsers need the 0x to determine number base, universally
3287  * build string to parse with 0x prefix before parsing name strings.
3288  */
3289 static int
3290 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
3291 {
3292         char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
3293         substring_t wwn = { name, &name[sizeof(name)-1] };
3294         int nnoffset, pnoffset;
3295
3296         /* validate it string one of the 2 allowed formats */
3297         if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
3298                         !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
3299                         !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
3300                                 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
3301                 nnoffset = NVME_FC_TRADDR_OXNNLEN;
3302                 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
3303                                                 NVME_FC_TRADDR_OXNNLEN;
3304         } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
3305                         !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
3306                         !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
3307                                 "pn-", NVME_FC_TRADDR_NNLEN))) {
3308                 nnoffset = NVME_FC_TRADDR_NNLEN;
3309                 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
3310         } else
3311                 goto out_einval;
3312
3313         name[0] = '0';
3314         name[1] = 'x';
3315         name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
3316
3317         memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3318         if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
3319                 goto out_einval;
3320
3321         memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3322         if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
3323                 goto out_einval;
3324
3325         return 0;
3326
3327 out_einval:
3328         pr_warn("%s: bad traddr string\n", __func__);
3329         return -EINVAL;
3330 }
3331
3332 static struct nvme_ctrl *
3333 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
3334 {
3335         struct nvme_fc_lport *lport;
3336         struct nvme_fc_rport *rport;
3337         struct nvme_ctrl *ctrl;
3338         struct nvmet_fc_traddr laddr = { 0L, 0L };
3339         struct nvmet_fc_traddr raddr = { 0L, 0L };
3340         unsigned long flags;
3341         int ret;
3342
3343         ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE);
3344         if (ret || !raddr.nn || !raddr.pn)
3345                 return ERR_PTR(-EINVAL);
3346
3347         ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE);
3348         if (ret || !laddr.nn || !laddr.pn)
3349                 return ERR_PTR(-EINVAL);
3350
3351         /* find the host and remote ports to connect together */
3352         spin_lock_irqsave(&nvme_fc_lock, flags);
3353         list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3354                 if (lport->localport.node_name != laddr.nn ||
3355                     lport->localport.port_name != laddr.pn)
3356                         continue;
3357
3358                 list_for_each_entry(rport, &lport->endp_list, endp_list) {
3359                         if (rport->remoteport.node_name != raddr.nn ||
3360                             rport->remoteport.port_name != raddr.pn)
3361                                 continue;
3362
3363                         /* if fail to get reference fall through. Will error */
3364                         if (!nvme_fc_rport_get(rport))
3365                                 break;
3366
3367                         spin_unlock_irqrestore(&nvme_fc_lock, flags);
3368
3369                         ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport);
3370                         if (IS_ERR(ctrl))
3371                                 nvme_fc_rport_put(rport);
3372                         return ctrl;
3373                 }
3374         }
3375         spin_unlock_irqrestore(&nvme_fc_lock, flags);
3376
3377         return ERR_PTR(-ENOENT);
3378 }
3379
3380
3381 static struct nvmf_transport_ops nvme_fc_transport = {
3382         .name           = "fc",
3383         .required_opts  = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
3384         .allowed_opts   = NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO,
3385         .create_ctrl    = nvme_fc_create_ctrl,
3386 };
3387
3388 static int __init nvme_fc_init_module(void)
3389 {
3390         int ret;
3391
3392         /*
3393          * NOTE:
3394          * It is expected that in the future the kernel will combine
3395          * the FC-isms that are currently under scsi and now being
3396          * added to by NVME into a new standalone FC class. The SCSI
3397          * and NVME protocols and their devices would be under this
3398          * new FC class.
3399          *
3400          * As we need something to post FC-specific udev events to,
3401          * specifically for nvme probe events, start by creating the
3402          * new device class.  When the new standalone FC class is
3403          * put in place, this code will move to a more generic
3404          * location for the class.
3405          */
3406         fc_class = class_create(THIS_MODULE, "fc");
3407         if (IS_ERR(fc_class)) {
3408                 pr_err("couldn't register class fc\n");
3409                 return PTR_ERR(fc_class);
3410         }
3411
3412         /*
3413          * Create a device for the FC-centric udev events
3414          */
3415         fc_udev_device = device_create(fc_class, NULL, MKDEV(0, 0), NULL,
3416                                 "fc_udev_device");
3417         if (IS_ERR(fc_udev_device)) {
3418                 pr_err("couldn't create fc_udev device!\n");
3419                 ret = PTR_ERR(fc_udev_device);
3420                 goto out_destroy_class;
3421         }
3422
3423         ret = nvmf_register_transport(&nvme_fc_transport);
3424         if (ret)
3425                 goto out_destroy_device;
3426
3427         return 0;
3428
3429 out_destroy_device:
3430         device_destroy(fc_class, MKDEV(0, 0));
3431 out_destroy_class:
3432         class_destroy(fc_class);
3433         return ret;
3434 }
3435
3436 static void __exit nvme_fc_exit_module(void)
3437 {
3438         /* sanity check - all lports should be removed */
3439         if (!list_empty(&nvme_fc_lport_list))
3440                 pr_warn("%s: localport list not empty\n", __func__);
3441
3442         nvmf_unregister_transport(&nvme_fc_transport);
3443
3444         ida_destroy(&nvme_fc_local_port_cnt);
3445         ida_destroy(&nvme_fc_ctrl_cnt);
3446
3447         device_destroy(fc_class, MKDEV(0, 0));
3448         class_destroy(fc_class);
3449 }
3450
3451 module_init(nvme_fc_init_module);
3452 module_exit(nvme_fc_exit_module);
3453
3454 MODULE_LICENSE("GPL v2");